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Abstract Self-stabilization in distributed systems is a technique to guarantee
convergence to a set of legitimate states without external intervention when a
transient fault or bad initialization occurs. Recently, there has been a surge of
efforts in designing techniques for automated synthesis of self-stabilizing algorithms
that are correct by construction. Most of these techniques, however, are not
parameterized, meaning that they can only synthesize a solution for a fixed and
predetermined number of processes. In this paper, we report a breakthrough
in parameterized synthesis of self-stabilizing algorithms in symmetric networks,
including ring, line, mesh, and torus. First, we develop cutoffs that guarantee (1)
closure in legitimate states, and (2) deadlock-freedom outside the legitimate states.
We also develop a sufficient condition for convergence in self-stabilizing systems.
Since some of our cutoffs grow with the size of the local state space of processes,
scalability of the synthesis procedure is still a problem. We address this problem
by introducing a novel SMT-based technique for counterexample-guided synthesis
of self-stabilizing algorithms in symmetric networks. We have fully implemented
our technique and successfully synthesized solutions to maximal matching, three
coloring, and maximal independent set problems for ring and line topologies.
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1 Introduction

Program synthesis (often called the “holy grail” of computer science) is the problem
of automated generation of a computer program from a formally specified set of
properties. The program generated in this fashion is guaranteed to be correct by
construction. Program synthesis is known to be computationally intractable and,
thus, is usually used to deal with small but intricate components of a system. An
example of such components is concurrent/distributed algorithms that may exhibit
obscure corner cases, where reasoning about their correctness is not straightforward.

Dijkstra [13] introduced the notion of self-stabilization in distributed systems,
where the system always converges to a good behavior even if it is arbitrarily ini-
tialized or is subject to transient faults. Proof of self-stabilization is, however, often
much more complex than what it initially seems like. Dijkstra himself published the
proof of correctness of his seminal 3-state machine solution 12 years later [14]. This
means that program synthesis can play a prime role in designing and reasoning
about the correctness of self-stabilizing algorithms.

In previous work [20–24], we introduced a set of algorithms and tools for
synthesizing self-stabilizing protocols. Our techniques take as input the network
topology, timing model (asynchronous or synchronous), the good behavior of
the protocol (either explicitly as a set of legitimate states or implicitly as a set
of temporal logic formulas), type of symmetry, and type of stabilization (e.g.,
strong, weak, monotonic, ideal) and generate a set of first-order modulo theory
(SMT) constraints. Then, an SMT-solver solves these constraints and, if satisfiable,
produces a model that respects the input specification. Our tool Assess [22]
has successfully synthesized complex algorithms such as Raymond’s distributed
mutual exclusion [46], Dijkstra’s token ring [13] (for both three and four state
machines), maximal matching [43], weak stabilizing token circulation in anonymous
networks [12], and the three coloring problem [30]. Our algorithms are complete for
a predetermined fixed number of processes; i.e., if they fail to find a solution to
the synthesis problem, then there does not exist one. This completeness, however,
comes at a big cost which is scalability. That is, for most instances, we could only
synthesize solutions for up to 5 processes at best.

In this paper, our goal is to address scalability as well as the shortcoming
that the previous work can synthesize only a fixed and predetermined number of
processes. To this end, we focus on automated synthesis of self-stabilizing protocols
in symmetric and parameterized networks, including ring, line, mesh, and torus,
where an unbounded number of processes exhibit identical behavior. We make two
main contributions. First, we show how to solve the parameterized synthesis problem
based on the notion of cutoffs [18] that can guarantee properties of distributed
systems of arbitrary size by considering only systems of up to a certain fixed size
c ∈ N, and augmented by a sound but incomplete abstraction-based synthesis
approach for properties whose realizability are known to be undecidable [38,41]. In
particular, we provide:

– cutoffs for the closure and deadlock-freedom properties, under the assumption
that the set of legitimate states is defined by a conjunction of predicates on
the local state of processes; we show that smaller cutoffs are possible under
additional assumptions, and for rings, we additionally show that our cutoffs
are tight under their respective assumptions;
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– an abstraction-based method for the synthesis of the convergence property, which
is known to be undecidable in general [38,41]; we show how a sufficient condition
for convergence of the parameterized system can be efficiently checked on a
finite system that over-approximates the behavior of systems of arbitrary size.

Note that the cutoffs and the sufficient condition hold for both synthesis and
verification of self-stabilizing protocols.

A drawback of our cutoffs is that some of them are quadratic or exponential in
the state space of a single process, so even with a tight cutoff, we need synthesis
methods that scale to a large number of processes. Thus, as our second contribution,
we propose a counterexample-guided synthesis technique that exploits our symmetry
assumption. More specifically, our technique consists of four steps (see Fig. 1):

1. First, we synthesize a solution for a small network of i processes using existing
techniques [20–24];

2. Next, we trivially generalize this solution to a larger network of i+ 1 processes;
3. Then, we verify this solution using a model checker, and
4. If verification succeeds, we return to step 2 and attempt a larger network.

Otherwise, we obtain a counterexample that is added as a negative constraint
to the synthesis algorithm, and we return to step 1 for another round of synthesis
with limited search space.

Using this approach and our cutoff results, we successfully synthesized parame-
terized self-stabilizing protocols for well-known problems including three coloring,
maximal matching, and maximal independent set for ring and line topologies in less
than 10 minutes. To our knowledge, this is the first instance of such parameterized
synthesis.

network topology
for i processes

legitimate behavior (LS)

Synthesis Algorithm
Model for

i+ 1 processes,
i+ +

Model Checking

self-stabilization
properties

Check
the Result

self-stabilizing
protocol

satisfied
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resulting
model

Fig. 1 SMT-based Counterexample-Guided Synthesis Technique

Organization The rest of the paper is organized as follows. Section 2 introduces
the preliminary concepts. In Section 3, we present the formal statement of our
synthesis problem. The parameterized correctness results are presented in Section 4,
while our counterexample-guided synthesis approach is presented in Section 5.
Experimental results and case studies are reported in Section 6. Related work is
discussed in Section 7, and finally, we make concluding remarks and discuss future
work in Section 8.
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2 Preliminaries

In this section, we present the background concepts on self-stabilization and our
computation model for distributed programs.

2.1 Distributed Programs

Most self-stabilizing algorithms are defined in the shared-memory model. Assume
V to be the set of all variables in the system, where each variable v ∈ V has a finite
domain Dv. We define a state s as a valuation of each variable in V by a value in its
domain. The set of all possible states is called the state space, and represented by
S. A transition is defined as an ordered pair (s0, s1), where s0, s1 ∈ S. We denote
the value of a variable v in state s by v(s).

Definition 1 A process π is a tuple 〈Rπ,Wπ, Tπ〉, where

– Rπ ⊆ V is the set of variables such that π can read their value and is called
the read-set of π;

– Wπ ⊆ Rπ is the set of variables such that π can change their value and is called
the write-set of π, and

– Tπ is the set of transitions of π, where for each transition (s0, s1) ∈ Tπ and
each variable v ∈ V with v(s0) 6= v(s1), we have v ∈Wπ. ut

The third condition imposes the constraint that a process can only change the
value of a variable in its write-set, and the second condition states that this change
cannot be blind. A process π = 〈Rπ,Wπ, Tπ〉 is called enabled in state s0 if there
exists a state s1 such that (s0, s1) ∈ Tπ. The local state space of π is the set of all
possible valuations of the variables that π can read, i.e., the Cartesian product of
the domain of all variables in Rπ:

Sπ =
∏
v∈Rπ

Dv.

Definition 2 A distributed program is a tuple D = 〈PD, TD〉, where

– PD is a set of processes over a common set V of variables, such that:

– for any two distinct processes π1, π2 ∈ PD, we have Wπ1 ∩Wπ2 = ∅;
– for each process π ∈ PD and each transition (s0, s1) ∈ Tπ, the following

read restriction holds:

∀s′0, s′1 :
(

(∀v ∈ Rπ : (v(s0) = v(s′0) ∧ v(s1) = v(s′1))) ∧

(∀v 6∈ Rπ : v(s′0) = v(s′1))
)

=⇒ (s′0, s
′
1) ∈ Tπ (1)

– TD is the set of transitions and is the union of transitions of all processes:

TD =
⋃

π∈PD

Tπ.

ut
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Intuitively, the read restriction in Definition 2 imposes the constraint that for each
process π, each transition in Tπ depends only on the variables in the read-set of π.
Thus, each transition defines an equivalence class in TD, which we call a group of
transitions. The key consequence of read restriction is that during synthesis, if a
transition is included (respectively, excluded) in TD, then its corresponding group
must also be included (respectively, excluded) in TD.

π0

π3 π1

π2

Fig. 2 One-bit maximal
matching example.

Example. We use the problem of distributed self-
stabilizing one-bit maximal matching as a running ex-
ample to describe the concepts throughout the pa-
per. In a graph, a maximal matching is a maximal
set of edges, in which no two edges share a common
vertex. Consider a ring of 4 processes (see Fig. 2),
and let V = {x0, x1, x2, x3} be the set of variables,
where each xi, i ∈ [0, 3], is a Boolean variable with
domain {F, T}. Let D = 〈PD, TD〉 be a distributed pro-
gram, where PD = {π0, π1, π2, π3}. Each process πi
(0 ≤ i ≤ 3) can write to variable xi (i.e., Wπi = {xi}),
and read the variables of its own and its neighbors
(Rπi = {xi, x(i+1) mod 4, x(i−1) mod 4}). Notice that
following Definition 2 and read/write restrictions of π0,
(arbitrary) transitions such as:

t1 =
(

[x0 = F, x1 = F, x2 = F, x3 = F], [x0 = T, x1 = F, x2 = F, x3 = F]
)

t2 =
(

[x0 = F, x1 = F, x2 = T, x3 = F], [x0 = T, x1 = F, x2 = T, x3 = F]
)

are in the same group. The reason is that π0 cannot read x2, and if, for example,
t1 is included in the set of transitions, while t2 is not, it implies that the execution
in process π0 depends on the value of x2, which is not possible.

Definition 3 An uninterpreted local function for a process maps the local state
space of a process to a domain Dlf . The interpretation of an uninterpreted local
function for a process π is a function:

lf : Sπ → Dlf

where Sπ is the local state space of π. ut

In the sequel, we use “uninterpreted functions” to refer to uninterpreted local
functions.

Example. To formulate the requirements in the one-bit maximal matching example,
we assume each process πi, where i ∈ [0, 3], is associated with an uninterpreted
local function, called matchi, with the domain Dmatchi = {l, r, n}, where l, r, and
n correspond to the cases where the process is matched to its left, right, and no
neighbor (self-matched), respectively. The interpretation of matchi is a function:

(matchi)I : {F, T} × {F, T} × {F, T} → {l, r, n}

In other words, the value of matchi depends on the value of the process and its
neighbors’ Boolean variables.
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Definition 4 A local predicate X of a process maps the local state space of a
process to a Boolean:

X : Sπ → {F, T}
Likewise, a (global) state predicate Y maps the state space of a distributed program
to a Boolean:

X : S → {F, T}
ut

We say that a local predicate X does not depend on a variable v ∈ Rπ if the
following holds:

∀s0, s1 ∈ Sπ :
(
∀v′ ∈ Rπ \ {v} : v′(s0) = v′(s1)

)
=⇒ (X(s0)⇔ X(s1)) (2)

We use these definitions to define locally defined legitimate states in Section 2.3,
and later to define special cases where legitimate states do not depend on a subset
of the read-set Rπ.

2.1.1 Network Topology

A topology specifies the communication model of a distributed program.

Definition 5 A topology is a tuple T = 〈V, |PT |, RT ,WT 〉, where

– V is a finite set of finite-domain discrete variables;
– |PT | ∈ N≥1 is the number of processes;
– RT is a mapping {0, . . . , |PT | − 1} → 2V from a process index to its read-set,

and
– WT is a mapping {0, . . . , |PT | − 1} → 2V from a process index to its write-set,

such that WT (i) ⊆ RT (i), for all i (0 ≤ i ≤ |PT | − 1). ut

Example. The topology of our maximal matching problem is a tuple 〈V, |PT |, RT ,WT 〉:
– V = {x0, x1, x2, x3}, with domains Dx0 = Dx1 = Dx2 = Dx3 = {T, F};
– |PT | = 4;
– RT (0) = {x0, x1, x3}; RT (1) = {x1, x2, x0}; RT (2) = {x2, x3, x1}, RT (3) =
{x3, x0, x2};

– WT (0) = {x0}; WT (1) = {x1}; WT (2) = {x2}, and WT (3) = {x3}.

Definition 6 A distributed program D = 〈PD, TD〉 has topology
T = 〈V, |PT |, RT ,WT 〉 iff

– each process π ∈ PD is defined over V ;
– |PD| = |PT |;
– there is a mapping g : {0, . . . , |PT | − 1} → PD, such that

∀i ∈ {0, . . . , |PT | − 1} : (RT (i) = Rg(i)) ∧ (WT (i) = Wg(i)).

ut

To simplify the usage of topology in this paper, we refer to different topologies
based on the read-set of each process. For example, a bidirectional ring topology
is the one, where each process can read the variables of its own, as well as the
processes on its left and right, while in a unidirectional ring, a process can only
read the variable of one of its neighbors, and not both.
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2.2 Symmetric Networks

Roughly speaking, a topology is symmetric, if the read-set and write-set of any two
distinct processes can be swapped (i.e., there is a bijection that maps read/write
variables of a process to another).

Definition 7 A topology T = 〈V, |PT |, RT ,WT 〉 is symmetric, iff for any
distinct i, j ∈ {0 . . . |PT | − 1}, there exists

– a bijection f : RT (i)→ RT (j), such that ∀v ∈ RT (i) : Dv = Df(v), and
– a bijection g : WT (i)→WT (j), such that ∀v ∈WT (i) : Dv = Dg(v). ut

For example, we call a symmetric topology a (bi-directional) ring (of size
k = |PT |) if for every i ∈ {0 . . . |PT | − 1}, we have:

RT (i) = WT (i− 1 mod k) ∪ WT (i) ∪ WT (i+ 1 mod k).

Example. The topology of our one-bit maximal matching example is a symmetric
ring of size 4 (Fig. 2). For any two i, j ∈ [0, 3], function g is the mapping from
xi to a xj , and function f maps xi 7→ xj , x(i+1) mod 4 7→ x(j+1) mod 4, and
x(i−1) mod 4 7→ x(j−1) mod 4.

Definition 8 A distributed program D = 〈PD, TD〉 is called symmetric iff

– it has a symmetric topology, and
– for any two distinct processes π, π′ ∈ PD, the following condition holds:

∀(s0, s1) ∈ Tπ : ∃(s′0, s′1) ∈ Tπ′ :(
∀v ∈ Rπ :

(
v(s0) = f(v)(s′0)

)
∧
(
∀v ∈Wπ : (v(s1) = g(v)(s′1)

)) (3)

where f and g are the functions defined in Definition 7. ut

In other words, in a symmetric distributed program the read- and write-sets of all
processes are identical up to renaming, and so are their transitions. Therefore, we
also write T π for a symmetric distributed program that has topology T and where
all processes are identical up to renaming to π.

2.3 Self-Stabilization

Given a state predicate, called the set of legitimate states (denoted by LS), a
self-stabilizing [13] program always recovers to a state in LS from any arbitrary
state (e.g., due to bad initialization or occurrence of transient faults) in a finite
number of steps, and stays in LS thereafter.

Definition 9 A computation of D = 〈PD, TD〉 is an infinite sequence of states
s = s0s1 · · · , such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a
computation reaches a state si, from where there is no state s 6= si, such that
(si, s) ∈ TD, then the computation stutters at si indefinitely. Such a computation
is called a terminating computation. ut
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Definition 10 A distributed program D = 〈PD, TD〉 is self-stabilizing for a set
LS of legitimate states iff

1. (Convergence) For any computation s = s0s1 · · · , there exists a state sj ∈ s
(j ≥ 0), such that sj ∈ LS . 1

2. (Closure) For any transition (si, si+1) ∈ TD, if si ∈ LS , then si+1 ∈ LS . ut

Definition 11 A set of legitimate states is locally defined if it can be defined by
the set {

s | ∀i ∈ {0 . . . |PT | − 1} : LS i(s)
}
,

where LS i is a local predicate of process πi. ut

Example. In our maximal matching example in a ring topology, each process can
be matched to one of its two adjacent processes. To formulate this requirement, we
assume each process πi is associated with a local uninterpreted function, called
matchi, with the domain Dmatchi = {l, r, n}. LS can be locally defined with
following assignment: (see Fig 3)

LS i =
{
s |

(matchi−1(ΠRπi−1
(s)) = r ∧ matchi(ΠRπi (s)) = l ∧ matchi+1(ΠRπi+1

(s)) = n) ∨

(matchi−1(ΠRπi−1
(s)) = n ∧ matchi(ΠRπi (s)) = r ∧ matchi+1(ΠRπi+1

(s)) = l) ∨

(matchi−1(ΠRπi−1
(s)) = l ∧ matchi(ΠRπi (s)) = n ∧ matchi+1(ΠRπi+1

(s)) = r) ∨

(matchi−1(ΠRπi−1
(s)) = l ∧ matchi(ΠRπi (s)) = r ∧ matchi+1(ΠRπi+1

(s)) = l) ∨

(matchi−1(ΠRπi−1
(s)) = r ∧ matchi(ΠRπi (s)) = l ∧ matchi+1(ΠRπi+1

(s)) = r)
}

The system is in a legitimate state if and only if all processes are in a local legitimate
state. For example, in a ring of size three with the set of processes P = {π0, π1, π2},
the set of legitimate states can be formulated as the following:

{s | LS0(s) ∧ LS1(s) ∧ LS2(s)}

Note how uninterpreted functions can be used to easily express LS . Without
matchi, the user has to explicitly specify the cases where a process is matched
to its left, right or itself, using the Boolean variables of its own and its adjacent
processes (its read-set).

3 Problem Statement

Our goal is to propose an automated method for parameterized synthesis of self-
stabilizing protocols in symmetric networks. That is, we consider a problem where
the size of the topology is a parameter, and we want to automatically synthesize
the set of transitions and the interpretation of the uninterpreted function of each
process, such that the resulting distributed program is self-stabilizing for any value
of the parameter.

1 Note that a computation may be terminating in a state in LS .
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Fig. 3 Definition of local legitimate states for maximal matching.

Formally, a parameterized topology is a sequence of symmetric topologies

T1, T2, . . . ,

where for all n, we have |PTn | = n and read-sets and write-sets bijections, as
required in Definition 7 also exist between process indices from different elements
of the sequence. A parameterized program is a sequence of symmetric distributed
programs D1,D2, . . ., such that Di = T πi for a parameterized topology T1, T2, . . .,
and some process π.

The parameterized synthesis problem takes as input:

– a parameterized topology, and
– a set of locally defined legitimate states LS ,

and generates as output:

– a process π, such that for every element Tn of the topology, the program
Dn = T πn is self-stabilizing to LS .

Definition 12 For a given parameterized topology and a property under consid-
eration, a cutoff is a natural number c, such that for any given process π and a
locally defined LS the following holds: Dn = T πn satisfies the property wrt. LS for
all n ∈ N iff Di = T πi satisfies the property wrt. LS for all i ≤ c. ut

That is, to prove that a property holds for programs of arbitrary size, it is
enough to prove it for programs up to the cutoff size. Note that this implies that if
c is a cutoff for a given parameterized topology and a property, then any c′ > c
is also a cutoff. We say that a cutoff c is tight if no smaller cutoff (for the given
parameterized topology and property) exists, i.e., if c− 1 is not a cutoff. We will
also consider cutoffs that are restricted to a certain class of processes, or only hold
if LS is defined in a certain way. Furthermore, note that cutoffs can be used for
both parameterized verification and synthesis.

In Section 4, we will present cutoffs for two properties: (i) closure, and (ii) the
absence of deadlocks outside of LS . Our idea for proving the cutoffs is to show that
if a system instance with a size greater than the cutoff violates the property under
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study, then the property is also violated for some n ≤ c. Then, we prove tightness
by giving an example demonstrating that c− 1 is not a cutoff. Moreover, we will
introduce an abstraction-based method that can be combined with the cutoffs to
solve the parameterized synthesis problem.

4 Parameterized Synthesis of Self-Stabilization

In this section, we show how to reduce reasoning about parameterized programs to
reasoning about a finite number of finite programs. To prove self-stabilization, we
need to prove that the algorithm has the two properties of closure and convergence
from Definition 10. We split the latter into two properties: (1) the absence of
deadlocks outside of LS , and (2) the absence of cycles outside of LS . In the following,
we provide cutoffs for closure and deadlock-freedom outside of LS , as well as a
sound abstraction to prove the absence of cycles outside of LS . Finally, we provide
our main theorem that combines these results into a method for parameterized
synthesis of self-stabilizing algorithms.

4.1 Parameterized Synthesis of Self-Stabilization in Symmetric Rings

In this section, we present our cutoff results for parameterized synthesis of self-
stabilization in symmetric rings.

4.1.1 Cutoffs for Closure

Assume that the write-set of each process has l valuations. In other words, if process
πi has WT (i) = {v1, . . . , vk}, then l = |Dv1 | × · · · × |Dvk |. WLOG, we assume that
WT (i) = {vi} for all i, with possible values vi(s) ∈ {0, . . . , l − 1}. In the following,
addition and subtraction are always modulo the size of the respective domain, e.g.,
addition of process indices is modulo n if we consider a program with n processes.
We first state our cutoff results, and then give examples that witness the tightness
of our cutoffs.

Lemma 1 For symmetric distributed algorithms on a ring topology, the following
are cutoffs for the closure property:

– c = l2, if LS is locally defined;
– c = l + 1, if LS is locally defined and LS i does not depend on WT (i− 1), and
– c = 3, if LS is locally defined and LS i depends on neither WT (i − 1) nor
WT (i+ 1).

All of the cutoffs are tight under their respective assumptions.

Proof Note that to prove that a given c is a cutoff, we only need to prove the
“if” direction of Definition 12 — the other direction is trivial. Thus, for each case
of the lemma, it is sufficient to prove the following boundedness property for
counterexamples to closure: for any process and any LS that satisfies the given
assumption, if we have a violation of the closure property in a ring of arbitrary size
n, then we also have a violation of the closure property in a ring of size smaller or
equal to the given c. Since this is trivial if n ≤ c, we will show it only for n > c.
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For the first item, we first show the boundedness property for c = l2 + 1, and in
a second step show that it also holds for c = l2. Consider a ring of size n > l2 + 1,
and assume there exist states s ∈ LS and s′ /∈ LS , such that there is a transition
from s to s′. WLOG, assume that (s, s′) ∈ Tπ0 , i.e., this is a transition of process π0.
Now, consider the n−1 pairs of consecutive processes (πi, πi+1), where i ∈ [0, n−2].
Note that π0 appears in just one tuple. Based on the pigeonhole principle, at least
two of these pairs of processes have the same valuation of their write-sets in s, since
we have n− 1 ≥ l2 + 1 tuples and only l2 possible pairs of the write-sets of a tuple.
Assume that (πi, πi+1) and (πj , πj+1) have the same valuation of their write-sets.
Then, consider a smaller ring composed of π0, . . . , πi, πj+1, . . . , πn−1 that is in a
state s1 with vp(s1) = vp(s) for all p ∈ {0, . . . , i, j+ 1, . . . , n− 1} (see Fig. 4). Note
that for every p, this construction ensures that the read-set of πp in s1 is the same
as in s. Therefore, we have s1 ∈ LS and π0 can still take a transition that leads
to a state outside of LS . If |{0, . . . , i, j + 1, . . . , n − 1}| > c, we can repeat the
removal of processes by the same argument until we arrive at a ring of size at most
c = l2 + 1.

To see that the boundedness property also holds with c = l2, note that in the
construction above we excluded the pair (πn−1, π0) from the sequence in which we
look for the same valuation of the write-sets. The reason is that the construction
above does not work if we find that (π0, π1) and (πn−1, π0) have the same valuation.
However, if that is the case then we must have v0(s) = v1(s) = vn−1(s), and we can
reduce the example to a ring that only consists of 3 processes with this valuation
of their write-set. Thus, we can assume that (π0, π1) and (πn−1, π0) have different
valuations, and in that case the pigeonhole principle works in any ring of size
n > l2, since we can now include the pair (πn−1, π0). This proves the first item.

For the second item (i.e., c = l + 1), a similar construction can be used, where
we only consider single valuations of write-sets instead of pairs. Therefore, the l2 in
the cutoff value can be replaced by l. However, the reduction to c = l is not possible:
it may happen that the valuation of π0 is the same as one of its neighbors. In that
case we cannot reduce to a smaller ring, since that may change the valuation of a
neighbor of π0, which might make the transition to a state outside of LS impossible.
Therefore, the cutoff is not l, but l + 1.

Finally, for the third item (i.e., c = 3), we only need to ensure that π0 can still
take the transition to a state outside of LS , i.e., the valuations of its neighbors
remain the same, and that every remaining process keeps the valuation of its
write-set. This is enough since LS i only depends on its own valuation. Thus, c = 3
is sufficient.

Tightness for the three cases is witnessed by Examples 1, 2 and 3, respectively.
ut

Example 1 Consider programs composed of an arbitrary number of processes, where
the transition relation Tπi of process πi is such that (s, s′) ∈ Tπi if vi−1(s) = vi+1(s)
and vi(s

′) = vi−1(s), and otherwise no transition is possible.

Let (d0, d1), (d1, d2), . . . , (dl2−1, d0) be a sequence of pairs from {0, . . . , l− 1}×
{0, . . . , l− 1}, such that each pair in {0, . . . , l− 1} × {0, . . . , l− 1} appears exactly
once in the sequence.2

2 One can see that it is possible to find such a sequence of length l2 by an induction on l.
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Let LS be locally defined in the following way:

LSi(s)⇔
∨

j∈{0,...,l2−1}

(vi−1(s) = dj−1 ∧ vi(s) = dj ∧ vi+1(s) = dj+1)

Note that for the program to be in LS, there must be at least l2 processes. Also
note that by definition of the sequence of pairs above, in a state s ∈ LS there must
be at least one process with vi−1(s) = vi+1(s). This process can take a transition to
a state s′ with vi(s

′) = vi−1(s), and therefore vi−1(s′) = vi(s
′) = vi+1(s′). Finally,

note that s′ /∈ LSi, since a repetition of pairs was excluded in our definition of the
sequence of pairs above.

Since a violation of closure is possible in a ring of size l2, but not in any smaller
ring, l2 − 1 cannot be a cutoff for the first case of Lemma 1.

Example 2 Consider programs where the transition relation Tπi is such that:

– no transition is possible from any state s with vi+1(s) = vi(s)+1 and vi−1(s) =
vi(s)− 1,

– no transition is possible if vi−1(s) = vi(s) = vi+1(s), and
– in all other cases, the process can increment the value vi. In particular, there is

a transition from any state s with vi−1(s) = l − 1 and vi(s) = vi+1(s) = 0 to a
state s′ with vi(s

′) = 1.

Let LS be locally defined in the following way, where LSi does not depend on
WT (i− 1):

LSi(s)⇔ vi+1(s) = vi(s) + 1 ∨ vi+1(s) = vi(s) = 0

Note that for the program to be in LS, either vi(s) = 0 must hold for all i, or
there must be at least l processes. Now, note that for a program composed of c
processes, a violation of closure is impossible if c ≤ l (since for a state in LS either
all values are 0, or the values are exactly 0, . . . , l− 1 in this order; in both cases no
transition is possible). However, a violation of closure is possible if c = l + 1: let s
be such that the values vi(s) are 0, 0, 1, . . . , l − 1, in this order. Then s is in LS,
and the first process has a transition to a state s′ with s′ /∈ LS.

Since a violation of closure is possible in a ring of size l + 1, but not in any
smaller ring, l cannot be a cutoff for the second case of Lemma 1.

Example 3 Consider programs composed of processes with possible valuations
vi(s) ∈ {0, 1, 2} of their write-set, and a transition relation such that (s, s′) ∈ Tπi
if vi−1(s) = 0 ∧ vi+1(s) = 1 ∧ vi(s) ≤ 1 and vi(s

′) = 2, and no other transitions
are possible.

Let LS be locally defined in the following way, where LSi depends on neither
WT (i− 1) nor on WT (i− 1):

LSi(s)⇔ vi(s) ∈ {0, 1}

Since a violation of closure is possible in a ring of size 3, but not in any smaller
ring, 2 cannot be a cutoff for the third case of Lemma 1.
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4.1.2 Cutoffs for Deadlock Detection

Again, we first state our cutoff results and then provide examples that witness the
tightness of our cutoffs.

Lemma 2 For self-stabilizing algorithms on a ring topology, the following are
cutoffs for the detection of deadlocks outside of LS:

– c = l2, if transitions of a process πi can depend on its whole read-set (i.e.,
WT (i), WT (i+ 1), and WT (i− 1));

– c = l + 1, if transitions of a process πi do not depend on WT (i− 1) (i.e., the
ring is uni-directional), and

– c = 3, if transitions of a process πi depend on neither WT (i− 1) nor WT (i+ 1)
(i.e., processes are completely independent).

All of the cutoffs are tight under their respective assumptions.

Proof For the first case, the proof is based on the same idea as the first case of
Lemma 1. That is, given a ring of size n > l2 + 1 where the given program has
a deadlock state s /∈ LS , we can construct a smaller ring with a deadlock state
s1 /∈ LS , where the definition of LS is based on the same sequence of valuation-pairs
as in Lemma 1.

The second and third cases are again similar to the second and third cases of
Lemma 1, except that we need to consider restricted transition relations instead of
restricted definitions of LS .

Tightness of the cutoffs is witnessed by Examples 4, 5 and 6. ut

Example 4 Let (d0, d1), (d1, d2), . . . , (dl2−1, d0) be a sequence of pairs of values,
such that each pair in {0, . . . , l − 1} × {0, . . . , l − 1} appears exactly once in the
sequence, like in Example 1.

Consider programs composed of processes with a transition relation Tπi such that
in state s no transition is possible for process πi if (vi−1(s), vi(s)), (vi(s), vi+1(s))
are consecutive pairs in the sequence, and otherwise vi can be incremented. Thus,
a deadlock is only possible if we have at least l2 processes.

We can ensure that the state s in which we deadlock is not in LS by letting

LSi(s)⇔ vi−1(s) = vi(s) = vi+1(s)

Since a deadlock outside of LS is possible in a ring of size l2, but not in any
smaller ring, l2 − 1 cannot be a cutoff for the first case of Lemma 2.

Example 5 Consider programs composed of processes with a transition relation Tπi
such that in state s no transition is possible for process πi if vi(s) + 1 = vi+1(s) or
vi(s) = vi+1(s) = 0, and otherwise vi can be incremented. Note that this transition
relation does not depend on WT (i− 1). Then, a deadlock is possible if all vi(s) = 0
for all processes πi, or if we have at least l processes.

Let LS be defined by

LSi(s)⇔ vi−1(s) = vi(s) = vi+1(s) ∨ vi(s) + 1 = vi+1(s)

Note that a deadlock outside of LS is not possible in rings of size up to l, but
it is possible in a ring of size l + 1: if s has valuations 0, 0, 1, ..., l − 1, in this order,
then s is deadlocked and s /∈ LS0. Thus, l cannot be a cutoff for the second case of
Lemma 2.
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π0

πj+1

πj πi+1

πi

Fig. 4 Reducing a ring (blue dotted) to a
smaller ring (red dashed).

πi

πi−1

πi−2

πi−3

πi+1

πi+2

πi+3

Fig. 5 Blue processes act based on the
synthesized algorithm and grey processes
act randomly.

Example 6 Consider a process πi with possible valuations vi(s) ∈ {0, 1, 2, 3} of
its write-set, and a transition relation such that (s, s′) ∈ Tπi if vi(s) = 3 and
vi(s

′) ∈ {0, 1, 2}, and no other transitions are possible. Note that this transition
relation depends neither on WT (i− 1) nor on WT (i+ 1).

Furthermore, let LSi be specified in terms of its read-set RT (i):

LSi(s)⇔ (vi−1(s) 6= vi(s) ∧ vi(s) 6= vi+1(s) ∧ vi−1(s) 6= vi+1(s))

Then LSi(s) always holds if we are in a program with 1 or 2 processes, i.e.,
there cannot be deadlocks outside of LS. However, there can be deadlocks outside
of LS in a program with 3 processes. Therefore, 2 cannot be a cutoff for the third
case of Lemma 2.

4.1.3 Process Abstraction for Convergence

As mentioned before, to prove self-stabilization of a parameterized program, we
need to prove closure and convergence. Closure can be proved based on Lemma 1,
and Lemma 2 shows how to deal with deadlocks outside of LS . Thus, the missing
part is a method to prove that there are no cycles outside of LS that prevents a
computation to eventually reach LS . In contrast to the two previous problems, we
now consider infinite behaviors of the system. Since parameterized verification and
synthesis of symmetric self-stabilization in rings is known to be undecidable [38,41],
we cannot obtain cutoffs for this property. Therefore, we resort to proving the
absence of cycles based on a sound abstraction of the system behavior.

The basic idea is the following: we check whether there is a loop that starts
and ends in the same local state outside LS i, for an arbitrary process. We define
the following convergence property:

∀s | ¬LSi(s)⇒ ¬ s
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, where s is a local state of πi (i.e., the valuation of its read-set), is the ‘eventually’
operator, and is the ‘always’ operator in temporal logic. That is, given a local
state s outside LSi, s does not become true infinitely often. 3

We attempt to prove the property in a ring of size 3, where one process (πi)
behaves according to the synthesized protocol. The other two processes (πi−1 and
πi+1) have the same write-set, but can execute arbitrary transitions. The idea
is that these two processes over-approximate the possible behaviors of all other
processes. If we can prove the property above in this abstraction of the system,
then this implies that no loops are possible in a concrete system in a ring of size
≥ 1. Otherwise, we add more processes to the left and right of πi that act according
to the protocol, and check the property again 4. In other words, the abstraction
approach is flexible and its precision can be refined by increasing the number of
processes that behave according to the protocol. For the problems we considered in
our experiments (see Sect. 6), the property is satisfied by refining the abstraction to
at most 5 + 2 processes (5 processes act according to the protocol and 2 processes
at the two ends execute random actions.). Fig. 5 shows the abstraction with 5 + 2
processes.

4.1.4 Parameterized Self-Stabilization for Rings

Based on Lemmas 1 and 2, and the approach in Section 4.1.3, we obtain our main
result for rings.

Theorem 1 Let T1, T2, . . . be a parameterized ring topology, π a process, and LS
be locally defined by LS i. Let c1 and c2 be cutoffs for closure and deadlock-freedom
wrt. LS, respectively. If (1) closure holds in rings of size up to c1, (2) deadlocks
outside of LS are impossible in rings of size up to c2, and (3) the absence of
cycles can be proven in an abstract system as above, then every instance of the
parameterized program is self-stabilizing to LS. ut

4.2 Parameterized Synthesis of Self-Stabilization in Symmetric Lines

In this section, we present our cutoff results for parameterized synthesis of self-
stabilization in lines. Note that in a line, we don’t have a completely symmetric
topology, as the two processes at the two ends of the line do not have the same
read-set (number of neighbors) as the other processes. Therefore, by symmetry, we
refer to a protocol that is similar for all processes except for the processes at the
two ends of the line.

4.2.1 Cutoffs for Closure

Assume that the write-set of each process has l valuations. In other words, if process
πi has WT (i) = {v1, . . . , vk}, then l = |Dv1 | × · · · × |Dvk |. Again, we assume that
WT (i) = {vi} for all i, with possible values vi(s) ∈ {0, . . . , l − 1}.

3 Note that this property can be easily transformed to a property without the universal
quantifier by introducing new variables that can take arbitrary values at the initialization and
then keep their values.

4 This approach is inspired by similar abstraction-based methods for the verification and
synthesis of systems with many processes [3, 10].
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Lemma 3 For self-stabilizing algorithms on a line topology, the following are
cutoffs for the closure property:

– c = 2l2 + 2, if LS is locally defined,
– c = 2l + 2, if LS is locally defined and LS i does not depend on WT (i− 1), and
– c = 3, if LS is locally defined and LS i depends on neither WT (i − 1) nor
WT (i+ 1).

Proof The proof has the same structure as the proof of Lemma 1. Again, it is
sufficient to show the boundedness property for counterexamples to closure.

We provide the proof idea for the first case. Consider a line of size n > 2l2 + 2,
and assume there exist states s ∈ LS and s′ /∈ LS such that there is a transition
from s to s′. WLOG, assume that (s, s′) ∈ Tπk , i.e., this is a transition of πk. Now,
at least one of the lines created by πk ([π0 · · ·πk] and [πk · · ·πn−1]) has at least
l2 + 1 pairs of processes. WLOG, assume that | {(π0, π1), · · · , (πk−1, πk)} |≥ l2 + 1.
Based on the pigeonhole principle, at least two of these pairs of processes have the
same valuations of their write-sets in s, since we have only l2 possible valuations
of the write-sets of a tuple. Assume that (vi(s), vi+1(s)) = (vj(s), vj+1(s)). Then,
consider the smaller line composed of π0, . . . , πi, πj+1, . . . , πk, . . . , πn−1 that is in
a state s1 with vp(s1) = vp(s) for all p ∈ {0, . . . , i, j + 1, . . . , n − 1} (see Fig. 6).
Note that this construction does not change the valuations of the read-sets of
the remaining processes, and hence we have s1 ∈ LS , and πk can still take the
transition that leads to a state outside of LS .

For the second case (i.e., c = 2l + 2), we use a similar idea. Consider a line of
size n > 2l + 2. Assume there exist states s ∈ LS and s′ /∈ LS such that there is a
transition from s to s′. WLOG, assume that (s, s′) ∈ Tπk , i.e., this is a transition of
πk. Now, at least one of the lines created by πk ([π0 · · ·πk−1] and [πk+1 · · ·πn−1])
has a size greater than or equal to l+1. WLOG, assume that | [π0 · · ·πk−1] |≥ l+1.
Based on the pigeonhole principle, at least two of these processes have the same
valuation of their write-sets in s. Assume that vi(s) = vj(s). Then consider a
smaller line composed of π0, . . . , πi, πj+1, . . . , πk, . . . , πn−1 that is in a state s1
with vp(s1) = vp(s) for all p ∈ {0, . . . , i, j + 1, . . . , n− 1} (Fig. 7). Note that this
construction does not change the valuations of the read-sets of the remaining
processes, and hence we have s1 ∈ LS , and πk can still take a transition that leads
to a state outside of LS .

Finally, in the third case (i.e., c = 3), we only need to have the two processes
at the two ends and one middle process, as the transition of each process only
depends on its own local variables. ut

We conjecture that tightness of these cutoffs (possibly up to a small constant)
can be observed by an extension of the tightness argument for rings, where instead
of one sequence for the ring we define two sequences for the line: one from the left
end of the line to a distinguished element in the middle, and one from the middle
to the right end, resulting in a lower bound in the order of 2l2.

4.2.2 Cutoffs for Deadlock Detection

Lemma 4 For self-stabilizing algorithms on a line topology, the following are
cutoffs for the detection of deadlocks outside of LS:
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π0 πi πi+1 πj πj+1 πk πn−1

π0 πi πj+1 πk πn−1

Fig. 6 Reducing a line to a smaller line for the first case

π0 πi πj πj+1 πk πn−1

π0 πi πj+1 πk πn−1

Fig. 7 Reducing a line to a smaller line for the second case

– c = 2l2 + 2, if transitions of a process πi can depend on its whole read-set (i.e.,
WT (i), WT (i+ 1), and WT (i− 1)),

– c = 2l + 2, if transitions do not depend on WT (i− 1), and
– c = 3, if transitions of a process πi depend on neither WT (i− 1) nor WT (i− 1)

(i.e., processes are completely independent).

Proof Again, we have to prove the boundedness property for counterexamples.
For the first case, consider a line of size n > 2l2 + 2, and assume that with the

given program we have a deadlock state s /∈ LS . That is, s /∈ LS i for at least one
of the processes (assume πk), and there is no state s′ and no process πi such that
(s, s′) ∈ Tπi . Note that at least one of the two lines created by πk ([π0 · · ·πk] and
[πk · · ·πn−1]) has at least l2 +1 processes. Hence, there are at least two pairs of con-
secutive processes in the same local states. Assume that we have (vi(s), vi+1(s)) =
(vj(s), vj+1(s)). We consider the smaller line [π0, . . . , πi, πj+1, . . . , πn− 1] in a state
s1 with vp(s1) = vp(s) for all p ∈ {0, . . . , i, j+1, . . . , n−1}. Then s1 /∈ LS , and the
program is deadlocked in s1. As before, we can repeat the construction if necessary.

For the second case (i.e., c = 2l + 2), consider a line of size n > 2l + 2, and
assume that with the given program we have a deadlock state s /∈ LS . Assume
s /∈ LSk. Note that at least one of the two lines created by πk ([π0 · · ·πk] and
[πk · · ·πN−1]) has at least l + 1 processes. Hence, there are at least two processes
with the same valuation of their write-set. Assume that vi(s) = vj(s). We consider
the smaller line [π0, . . . , πi, πj+1, . . . , πn− 1] in a state s1 with vp(s1) = vp(s) for
all p ∈ {0, . . . , i, j + 1, . . . , n− 1}. Then s1 /∈ LS , and the program is deadlocked
in s1. As before, we can repeat the construction if necessary.

For the last case (i.e., c = 3), since transitions of the process only depend on its
own local state, it suffices to check a line with two end processes, and one middle
process. ut

4.2.3 Process Abstraction for Convergence

Similar to the proof in Sect. 4.1.3, we check whether there is a loop that starts and
ends in the same local state for an arbitrary process.



18 Nahal Mirzaie et al.

∀s | ¬LSi(s)⇒ ¬ s

If we can show that this is not possible, then certainly, no global loop is possible
outside LS (see Fig. 8). To show that the protocol satisfies convergence, we should
prove that every single process in the line does not visit a local state outside LS
infinitely often. We divide the processes in a line into five categories. Consider a
line of N processes with the set of processes {π0, π1, ..., πN−2, πN−1}, where π0
and πN−1 are left and right process respectively that have different transitions and
definitions of local LS than the other processes. The five categories of processes in
this topology are as follows:

– Left process ({π0}): To assure that π0 does not violate the convergence prop-
erty, we abstract the system behavior for this process. We start with {π0, πrr}
set of processes where πrr is a random right process with an arbitrary set of
transitions. Then in this topology, we check the convergence property for π0. If
it is not satisfied, we refine the abstraction by adding one more process, and
change the topology to {π0, π1, πrr}, where π1 acts according to the topology
of middle processes. We check the convergence property again for π0 in this
new topology. We continue till the property is satisfied. Assume the property is
satisfied for π0 in the {π0, π1, ..., πnl , πrr} topology. This means that we need at
least nl processes at the right side of π0 to guarantee that π0 does not violate
the convergence property.

– Right process ({πN−1}) : Verification of the convergence property for this pro-
cess is similar to the left process, but on the other side. Assume {πrl, πnr , ..., πN−1}
is the smallest topology, where the property is satisfied for πN−1, and πrl is a
random left process with an arbitrary set of transitions.

– Middle processes Verification of the convergence property for middle pro-
cesses is similar to the process abstraction in rings. In other words, we consider
one process πm that acts according to the protocol of the symmetric processes,
with two random processes at the two ends, and check the property. If it is
not satisfied, we add more processes (that act according to the protocol of the
symmetric processes) to the left and right of πm, until the property is satisfied
for πm. Assume that i processes are added to the left and j processes are added
to right of πm.

– Left-side processes As mentioned in the previous item, assume that i pro-
cesses are added to the left of a middle process, so that the convergence property
is satisfied for πm. The convergence property should be checked for all these
processes, when they are in interaction with the left process ({π0}). If πls is a
left-side process (1 ≤ ls ≤ i), then we start with {π0, π1, ..., πls, πrr} topology
and check the convergence property for πls. If the property is not satisfied,
we refine the abstraction by adding processes to the right side of πls, until
the property is satisfied for πls. For each process in this category, we find the
smallest required size for the property to be satisfied, and report the maximum
of them.
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π0 π1 π2 πnl πrr

πrl πnr πN−3 πN−2 πN−1

πrl πm−i πm−1 πm πm+1 πm+j πrr

π0 π1 πls πnls πrr

πrl πnrs πrs πN−2 πN−1

Fig. 8 Process abstraction in line for each category. We check convergence property on the
red processe while gray processes act randomly.

– Right-side processes The procedure is similar to the left-side processes, but
on the other side.

After calculating all minimum sizes, their maximum (let’s call it M) is reported
as the smallest topology size, where it is guaranteed that convergence is satisfied
for every topology with a size ≥M .

4.2.4 Parameterized Self-Stabilization for Lines

Based on Lemmas 3 and 4, and the approach in Section 4.2.3, we obtain our main
result.

Theorem 2 Let T1, T2, . . . be a parameterized line topology, π a process, and let
LS be locally defined by LS i. Let c1 and c2 be cutoffs for closure and deadlock
detection wrt. LS, respectively. If (1) closure holds in lines of size up to c1, (2)
deadlocks outside of LS are impossible in lines of size up to c2, and (3) the absence
of cycles can be proven in lines of up to size c3 and in an abstract system as
above, then every instance of the parameterized program D1 = T π1 ,D2 = T π2 , . . . is
self-stabilizing to LS. ut

4.3 Parameterized Synthesis of Self-Stabilization in Symmetric Mesh

In this section, we present our cutoff results for parameterized synthesis of self-
stabilization in the mesh topology. We study a common type of mesh, namely, the
square grid topology, and consider |c| and |r| as the number of columns and rows
respectively. Note that we assume the number of rows is constant, and the number
of columns can change in a parameterized mesh topology.
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4.3.1 Cutoffs for Closure

Assume that the write-set of each process has l valuations. In other words, if
process πi,j (ith process in jth column) has WT (i, j) = {v1, . . . , vk}, then l =
|Dv1 | × · · · × |Dvk |. Again, we assume that WT (i, j) = {v(i,j)} for all (i, j), with
possible values v(i,j)(s) ∈ {0, . . . , l − 1}.

Lemma 5 For self-stabilizing algorithms on a mesh topology, the following are
cutoffs for the closure property:

– c = |r|(2l2|r| + 2), if LS is locally defined,

– c = |r|(2l|r| + 2), if LS is locally defined and LS (i,j) does not depend on
WT (i, j − 1), and

– c = 3|r|, if LS is locally defined and LS (i,j) depends on neither WT (i, j − 1)
nor WT (i, j + 1).

Proof As before, we prove a boundedness property for counterexamples.
Similar to our proof approach for lines, consider a mesh with size of n >

|r|(2l2|r| + 2). Since in each column there are exactly |r| processes, we have
k > (2l2|r| + 2) columns. Assume there exists a transition from s ∈ LS to
s′ /∈ LS , with (s, s′) ∈ Tπ(i,j) . Now consider two sequences of pairs of columns
(c0, c1), ..., (cj−1, cj) and (cj , cj+1), ... , (c|c|−2, c|c|−1). One of these two sequences

has at least l2|r|+1 pairs and only l2|r| possible valuations of the write-sets of a pair.
So based on pigeonhole principle there exist at least 2 pairs of columns, say (ct, ct+1)
and (cu, cu+1), such that have for each i ∈ {0, ..., |r| − 1}, (v(i,t)(s), v(i+1,t)(s)) =
(v(i,u)(s), v(i+1,u)(s)). So if we consider a smaller mesh with columns of c0, ..., ct,cu+1,
..., c|c|−1 in a state s1 with local valuations as in state s, then there exists a transi-
tion (s1, s

′
1) ∈ Tπ(i,j) with s1 ∈ LS to some state s′1 /∈ LS . Again, this construction

can be repeated if necessary.
The proof for the second item works in a similar way. Note that instead of sets of

tuples of columns, we have two sequences of columns c0, ..., cj−1 and cj+1, ..., c|c|−1,

and one of them has at least l|r| + 1 columns.
For the third item, we only need to have the two columns at the two ends and

one middle column, as the transition of each process only depends on its own local
variables. ut

4.3.2 Cutoffs for Deadlock Freedom

Lemma 6 For self-stabilizing algorithms on a mesh topology, the following are
cutoffs for the detection of deadlocks outside of LS:

– c = |r|(2l2|r|+ 2), if transitions of a process πi can depend on its whole read-set
(i.e.,WT (i, j), WT (i− 1, j), WT (i+ 1, j), WT (i, j − 1) and WT (i, j + 1)),

– c = |r|(2l|r|+2), if transitions of a process πi do not depend on WT (i, j−1), and

– c = 3|r|, if transitions of a process πi depend on neither WT (i, j − 1) nor
WT (i, j + 1).
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Proof The proof idea is analogous to the proof of Lemma 5. ut

Note that a line protocol is also a mesh, where |r| = 1, and our results for mesh
and line are consistent, considering this fact.

4.3.3 Process Abstraction for Convergence

For convergence, again like our approach for lines we develop a sound abstraction
of system behavior, but use lines with |n| processes that act randomly. We use two
dummy lines and add sufficient lines between them until the following property is
satisfied for the three consecutive processes in the middle of mesh. Similar to the
other topologies, we verify the following formula:

∀s | ¬LSi(s)⇒ ¬ s

4.3.4 Parameterized Self-Stabilization for Mesh

Based on Lemmas 5 and 6, and the approach in Section 4.3.3, we obtain our main
result.

Theorem 3 Let T1, T2, . . . be a parameterized mesh topology, π a process, and let
LS be locally defined by LS i. Let c1 and c2 be cutoffs for closure and deadlock
detection wrt. LS, respectively. If (1) closure holds in meshes of size up to c1, (2)
deadlocks outside of LS are impossible in meshes of size up to c2, and (3) the
absence of cycles can be proven in meshes of up to size c3 and in an abstract system
as above, then every instance of the parameterized program D1 = T π1 ,D2 = T π2 , . . .
is self-stabilizing to LS. ut

4.4 Parameterized Synthesis of Self-Stabilization in Symmetric Torus

We study 2-D torus protocols with k rings and m processes in each ring with
expansion by increasing the number of rings (k), not the number of processes in
each ring.

4.4.1 Cutoffs for Closure

Assume that the write-set of each process has l valuations. In other words, if process
πi,j (ith process in jth ring) has WT (i, j) = {v1, . . . , vk}, then l = |Dv1 |×· · ·×|Dvk |.
Again, we assume that WT (i, j) = {vi} for all (i, j), with possible values v(i,j)(s) ∈
{0, . . . , l − 1}.

Lemma 7 For self-stabilizing algorithms on a torus topology, the following are
cutoffs for the closure property:

– c = |m|(l2|m|), if LS is locally defined,

– c = |m|(l|m|+1), if LS is locally defined and LS i does not depend on WT (i, j−1).
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– c = 3|m|, if LS is locally defined and LS i depends on neither WT (i, j − 1) nor
WT (i, j + 1).

Proof Like our proof approach for rings, we have a torus protocol with size of
n > |m|(l2|m|). Since in each ring there are exactly |m| processes, we have k > l2|m|

rings. Assume there exists a transition from s ∈ LS to s′ /∈ LS , with (s, s′) ∈ Tπ(0,0) .
Now consider the sequence of pairs of rings (r0, r1), ..., (rk−2, rk−1), (rk−1, r0). We
have at least l2|m|+1 pairs and only l2|m| possible valuations of the write-sets of a
pair. So based on the pigeonhole principle there exist at least 2 pairs of rings, say
(rt, rt+1) and (ru, ru+1), such that for each i ∈ {0, ..., |r|}, (v(i,t)(s), v(i,t+1)(s)) =
(v(i, u)(s), v(i,u+1)(s)). So in a smaller torus with rings r0, ..., rs, rt+1, ..., rk−1 with
local valuations as in state s there exist a transition from s ∈ LS to s′ /∈ LS taken
by π(0,0).

The second and third part work as expected. ut

4.4.2 Cutoffs for Deadlock Freedom

Lemma 8 For self-stabilizing algorithms on a torus topology, the following are
cutoffs for the detection of deadlocks outside of LS:

– c = |m|(l2|m|), if transitions of a process πi can depend on its whole read-set
(i.e., WT (i, j), WT (i− 1, j), WT (i+ 1, j), WT (i, j − 1) and WT (i, j + 1)),

– c = |m|(l|m|+1), if transitions of a process πi do not depend on WT (i, j−1), and

– c = 3|m|, if transitions of a process πi depend on neither WT (i, j − 1) nor
WT (i, j + 1).

Proof The proof idea is analogous to the proof of Lemma 7. ut

Note that a ring protocol is also a special torus with |m| = 1, and hence, our cutoff
results for ring is consistent with the cutoffs we propose for torus.

4.4.3 Process Abstraction for Convergence

For convergence, we develop a sound abstraction of the system behavior based on
our approach for rings, where single processes are now replaced by fixed-size rings.
A dummy ring is a ring with |m| processes that act randomly. We use two dummy
rings and add sufficient rings between them like a cylinder until the following
property is satisfied for the three consecutive processes in the middle of cylinder:

∀s | ¬LSi(s)⇒ ¬ s

4.4.4 Parameterized Self-Stabilization for Torus

Based on Lemmas 7 and 8, and the approach in Section 4.4.3, we obtain our main
result.
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Theorem 4 Let T1, T2, . . . be a parameterized torus topology, π a process, and let
LS be locally defined by LS i. Let c1 and c2 be cutoffs for closure and deadlock
detection wrt. LS, respectively. If (1) closure holds in torus protocols of size up to
c1, (2) deadlocks outside of LS are impossible in torus protocols of size up to c2,
and (3) the absence of cycles can be proven in torus protocols of up to size c3 and
in an abstract system as above, then every instance of the parameterized program
D1 = T π1 ,D2 = T π2 , . . . is self-stabilizing to LS. ut

5 SMT-based Counterexample-Guided Synthesis

5.1 General Idea

In [20,21,23], we introduced SMT-based methods to solve the synthesis problem
for self-stabilizing systems. In a nutshell, our techniques generate a set of SMT
constraints from the input synthesis instance. Each SMT constraint corresponds
to one of the requirements of the desired protocol. They are all given to an SMT
solver, and the generated model represents a self-stabilizing protocol. In order to
scale up these technique to synthesize solutions up to the cutoff point efficiently,
in this section we propose a method that synthesizes solutions in small topologies
and tries to generalize them to bigger topologies. Let us first present a näıve idea,
where we first synthesize a protocol for a small topology and then simply use this
solution for larger topologies with the hope that since the protocol is symmetric, a
small solution works in a larger network as well. We now show that this approach
is not conceivable even for very simple protocols.

Example. When applying our latest algorithm [23] to the one-bit maximal matching
example, the first synthesized solution for 4 processes is the following transition
relation encoded by guarded commands for each process πi:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

and the following interpretation for uninterpreted function matchi:

matchi : (xi = T) ∧
(
(x(i+1) = T) ∨ (x(i−1) = F)

)
7→ l

(x(i+1) = T) ∧ (x(i−1) = F) 7→ l

(xi = T) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = T) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = F) 7→ n

Now, if we trivially use the synthesized protocol on a topology with 5 processes, the
resulting protocol is incorrect. In particular, the following is a counterexample (i.e.,
a finite computation that violates the specification) in terms of predicate match:(

[match0 = n,match1 = n,match2 = n,match3 = n,match4 = n],

[match0 = l,match1 = n,match2 = n,match3 = n,match4 = l],

[match0 = l,match1 = r,match2 = l,match3 = n,match4 = l]
)
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Fig. 9 Example of three counterexamples
for one-bit maximal matching. Blue labels
are valuation and red labels indicate the
match interpretation.

This computation violates convergence, as it reaches a deadlock state in ¬LS . The
computation is depicted in Fig 9, where the black solid line shows a matching
between the two end processes. As you can see in the figure, the last state is not
a maximal matching. This example shows that a synthesized symmetric solution
cannot be trivially extended to larger topologies.

5.2 The Counterexample-Guided Synthesis Algorithm

In order to limit the search space of SMT-solvers for a solution, we incorporate a
synthesis-verification loop guided by counterexamples. Our approach consists of
the following steps:
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1. Given a topology with i processes and a set of legitimate states, we use our
existing approach [20, 21, 23] to formulate the synthesis problem as an SMT
instance.

2. We use an SMT solver to find a solution for the SMT instance, as a transition
relation and an interpretation for each uninterpreted function. Note that due to
symmetry, the transition relations and the interpretation functions are identical
for all processes.

3. Next, we generalize the solution for a topology with i+ 1 processes and verify
this solution using a model checker.

4. If the result of verification is positive, then we go back to step 3 to check the
properties for a topology with i + 2 processes. Otherwise, we transform the
generated counterexample into an SMT constraint and add it to the initial
SMT instance (step 1) and return to step 2.

We do not include the details of our SMT encoding of the synthesis problem,
since it has been described in length in previous publications [20,21,23] and we use
it as a black box. We now analyze the nature of counterexamples. In the context
of closure and convergence, a model checker may generate a counterexample of
the form s = s0s1 · · · sn. Observe that s is one of the following three types of
counterexamples:

– If closure is violated, then s = (s0, s1), where s0 ∈ LS and s1 6∈ LS .
– If convergence is violated by s = s0s1 · · · sn, where for all i ∈ [0, n], we have
si 6∈ LS and either
– s0 = sn; i.e., a loop exists outside the set of legitimate states, or
– there does not exist a state s, where (sn, s) is a valid transition; i.e., sn is a

deadlock state outside the set of legitimate states.

For example, the counterexample presented in Section 5.1 is of the third type.
Dealing with the first type of counterexamples is pretty straightforward: we

only add a constraint to the SMT instance that disallows transition (s0, s1) in the
transition relation. To address deadlocks, we need to add a constraint to the SMT
instance to enforce a change in the resulting synthesized model, so that sn is not a
deadlock state. To this end, we propose two sets of heuristics to change either the
transition relation or the interpretation of uninterpreted functions in Section 5.3.
Dealing with loops is a bit more complicated. For example, one can remove a
transition from the loop to break it, but the choice of transition may involve
a combinatorial enumeration to find the right transition. Therefore, reasoning
about loop counterexamples could be a difficult problem, which we postpone to
future work. Interestingly, all of our case studies in Section 6 do not involve loop
counterexamples.

5.3 Heuristics Considering Transition Relations

The simplest method to resolve a deadlock is to formulate a constraint imposing
the existence of an outgoing transition from sn. Since in this paper, our focus is on
asynchronous systems, a transition is the execution of one of the processes. We
propose two strategies for selecting a process to have an outgoing transition from a
deadlock state.
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Progress Heuristic. In this approach, we add a constraint stating that at least one
of the processes should have an outgoing transition from sn. More formally, assume
that the current topology includes i processes, where the read-set of each process
has r variables, with domains D0, . . . , Dr−1, and the write-set of each process
includes w variables, with domains D′0, · · · , D′w−1. Note that since the goal is to
synthesize a symmetric program, all processes execute similarly according to the
function Tπ:

Tπ :
( ∏
j∈[0,r−1]

Dj
)
→
( ∏
j∈[0,w−1]

D′j
)

and function f is of type:

f : [0, i)→
(
S →

( ∏
j∈[0,r−1]

Dj
))

Then, the constraint to be added to the SMT instance can be written as:

∃val0 ∈ D′0, · · · .∃valw−1 ∈ D′w−1 :∨
k∈[0,i)

((
f(k)(sn), [val0, val1, · · · , valw−1]

)
∈ Tπ

)

Note that the function f takes the process id and the global state, and projects
out the local state of the process.

Example. Consider the counterexample mentioned in Section 5.1. Each process
can read three Boolean variables and write to one Boolean variable and, hence, Tπ
is defined as follows:

Tπ : {F, T} × {F, T} × {F, T} → {F, T}

Note that for each process πj , f(j) returns [x(j−1), xj , x(j+1)]. In the counterex-
ample we presented in the previous example, the last state where the deadlock
happens is:

[x0 = T, x1 = F, x2 = T, x3 = F, x4 = F]

Thus, we add the following constraint to the SMT instance:

∃val ∈ {F, T} :
(

([F, T, F], val) ∈ Tπ ∨ ([T, F, T], val) ∈ Tπ ∨ ([F, T, F], val) ∈ Tπ ∨

([T, F, F], val) ∈ Tπ ∨ ([F, F, T], val) ∈ Tπ
)

In the above constraint, the jth clause imposes a constraint on Tπ to have an
outgoing transition considering the local state of the jth process. (Note that the
first and third clauses are the same, and we just put them for clarity.)

Local LS Heuristic. As mentioned in Section 2, we focus on sets LS that can be
locally defined, i.e., the set of legitimate states can be described as a conjunction
over local legitimate states of processes. In this case, a deadlock can be resolved
by imposing a constraint to have an outgoing transition for at least one of the
processes that are not in their local legitimate states.
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Example. For the counterexample of one-bit maximal matching with 4 processes,
the local set of legitimate states is the following:

(match(i−1) = l ∧ matchi = n ∧ match(i+1) = r) ∨
(match(i−1) = r ∧ matchi = l ∧ match(i+1) = n) ∨
(match(i−1) = r ∧ matchi = l ∧ match(i+1) = r) ∨
(match(i−1) = l ∧ matchi = r ∧ match(i+1) = l) ∨
(match(i−1) = n ∧ matchi = r ∧ match(i+1) = l)

and the deadlock state is:

[x0 = T, x1 = F, x2 = T, x3 = F, x4 = F]

For checking the local state of each process, we should first note the values of
uninterpreted functions matchi in this state:

[match0 = l,match1 = r,match2 = l,match3 = n,match4 = l]

Processes π0, π3, and π4 are not in a local legitimate state, and hence, the added
constraint to the original SMT model will be as follows:

∃val ∈ {F, T} :
(

([F, T, F], val) ∈ Tπ ∨ ([T, F, F], val) ∈ Tπ ∨ ([F, F, T], val) ∈ Tπ
)

Note that although this method seems more efficient than the progress approach in
terms of having shorter constraints, it has the drawback of missing some solutions
that the previous approach can find. More specifically, for a process being in a
legitimate local state in a deadlock state, it may be the case that taking a transition
by this process leads to a state, from which its neighbors can take other transitions
that finally leads to a legitimate state.

5.4 Heuristics Considering Uninterpreted Functions

Our second class of heuristics focus on uninterpreted functions. That is, we impose
a constraint to change the interpretation function of at least one uninterpreted
function in the deadlock state. Similar to the heuristics introduced for transition
relations, we introduce two approaches for selecting at least one process to change
the interpretation of its uninterpreted function. Because of the similarity to the
previous heuristics, we skip the details of this heuristic.

6 Case Studies and Experimental Results

We used the model finder Alloy [32] and model checker NuSMV [19] to implement
our counterexample-guided synthesis approach. Our experimental platform is an
2.9 GHz Intel Core i7 processor, with 16 GB of RAM.

We present case studies for well-known problems in ring and line topologies.
Since the cutoffs for mesh and torus are much bigger 5, we believe that parameterized
synthesis in such networks goes beyond any existing synthesis approach, and
practical solutions to these problems are left for future work.

5 For example, for a topology with l = 3 in a torus with |m| = 3, the cutoff for the first case
will be 2187.
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6.1 Parameterized Synthesis in Rings

We used our proposed algorithm to synthesize parameterized self-stabilizing al-
gorithms for four problems that are well known in the distributed computing
community. Our synthesis results are reported in Table 1. Looking at Table 1, we
notice that in some case studies the progress heuristic has better efficiency, while
in some others, the local LS finds the solution faster. Since the SMT solvers have
many heuristics for finding the solutions, we cannot exactly say why this happens.
But one reason we can mention for the progress heuristic having better efficiency
compared to the local LS is due to the fact that the constraints added in the local
LS heuristic are too restrictive, and hence, Alloy needs to search more in order to
find a solution. In the cases that the local LS heuristic works faster, it is probably
due to the smaller constraints added in this case.

6.1.1 Three Coloring

We consider the three coloring problem [30] on a ring, where each process πi is
associated with a variable ci with domain {0, 1, 2}. Each value of the variable ci
represents a distinct color. A process can read and write its own variable. It can
also read the variables of its neighbors. LS includes all states, where each process
has a color different from its both neighbors. Thus, for a ring of 4 processes, LS is
defined by the following predicate:

c0(s) 6= c1(s) ∧ c1(s) 6= c2(s) ∧ c2(s) 6= c3(s) ∧ c3(s) 6= c0(s)

Observe that the closure/deadlock-freedom cutoff point for this case study is 32 = 9
and, hence, we need to synthesize a solution for 9 processes. The synthesis time
reported in Table 1 is a bit smaller in the case of local LS heuristic, which is
probably due to the smaller constraints added in this case. The resulting protocols
for the two heuristics are different. The following is one synthesized protocol for
the case of local LS, which is obtained by 5 iterations of synthesis-verification in
our CEGIS approach:

πi : (ci = 2) ∧ (c(i+1) = 2) ∧ (c(i−1) 6= 0) → ci := 0

(ci 6= 0) ∧ (c(i+1) = 1) ∧ (c(i−1) = 2) → ci := 0

(ci = 1) ∧ (c(i+1) = 1) ∧ (c(i−1) 6= 2) → ci := 2

(ci = 0) ∧ (c(i+1) 6= 2) ∧ (c(i−1) = 0) → ci := 2

(ci 6= 1) ∧ (c(i+1) = 2) ∧ (c(i−1) = 0) → ci := 1

6.1.2 One-Bit Maximal Matching

This case study is the running example in this paper with cutoff point of 22 = 4
processes. Note that using the heuristics considering transition relations, we could
not synthesize a protocol for this problem (Alloy reports unsatisfiablity after adding
the counterexample constraints). The interesting point about this case study is
that the progress heuristic has better efficiency compared to the local LS . The
reason may be due to the fact that the constraints added in the local LS heuristic
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Problem cutoff # Heuristic Synthesis Model Checking
Time Time

Three Coloring 9 Local LS 6m 17sec 56 msec
Three Coloring 9 Progress 9m 5sec 51 msec
One-Bit MM* 4 Local LS 1m 43sec 47 msec
One-Bit MM 4 Progress 1m 30sec 47 msec

Maximal Matching 9 Local LS 7m 59sec 63 msec
Maximal Matching 9 Progress 4m 57sec 68 msec

Maximal Independent Set* 4 Local LS 10sec 61 msec
Maximal Independent Set 4 Progress 10sec 61 msec

Table 1 Results for parameterized synthesis in ring topologies. (* In these cases, synthesized
protocols for both progress and local LS heuristics are the same.)

are too restrictive, and hence, Alloy needs to search more in order to find a solution.
The synthesized solutions using both heuristics are the same for this case study,
which are obtained by 6 iterations of synthesis-verification in our CEGIS approach.
The synthesized transition relation is the following:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

and the interpretation function for matchi is the following:

matchi : (xi = T) ∧ (x(i+1) = T) ∧ (x(i−1) = T) 7→ l

(x(i+1) = F) ∧ (x(i−1) = F) 7→ l

(xi = T) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ r

(xi = F) ∧ (x(i+1) = T) 7→ r

(xi = T) ∧ (x(i+1) = T) ∧ (x(i−1) = F) 7→ n

(xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = T) 7→ n

6.1.3 Maximal Matching

In this case study, we used the same problem as in Section 6.1.2, but instead of using
one Boolean variable for each process, we use a variable with three values {l, r, n}
and, hence, we do not need the uninterpreted functions anymore. The resulting
protocols for the two heuristics are different. As an example, the synthesized
protocol for the case of local LS is the following, which is obtained by 3 iterations
of synthesis-verification in our CEGIS approach:

πi : (xi = n) ∧ (x(i+1) = n) ∧ (x(i−1) = n) → xi := r

(xi 6= r) ∧ (x(i+1) 6= r) ∧ (x(i−1) = l) → xi := r

(xi 6= n) ∧ (x(i+1) = r) ∧ (x(i−1) = l) → xi := n

(xi = n) ∧ (x(i−1) = r) → xi := l

(xi = r) ∧ (x(i+1) = r) ∧ (x(i−1) 6= l) → xi := l
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6.1.4 Maximal Independent Set

An independent set in a graph is a subset of vertices in which no pair of vertices
are adjacent. To synthesize a protocol that finds a maximal independent set, we
consider a set of processes connected in a ring topology, where each process has
a Boolean variable, the value of which shows whether or not it is included in the
maximal independent set. The set of legitimate states include those states, where
the processes whose variables have the true value form a maximal independent set.
As an example, if ci is the variable of the process πi, then the set of legitimate
states for the case of four processes is formulated by the following predicate:

(c0(s) = T ∧ c1(s) = F ∧ c2(s) = T ∧ c3(s) = F)

∨
(c0(s) = F ∧ c1(s) = T ∧ c2(s) = F ∧ c3(s) = T)

The resulting protocol is the following:

πi : (xi = F) ∧ (x(i+1) = F) ∧ (x(i−1) = F) → xi := T

(xi = T) ∧ (x(i+1) = T) → xi := F

6.2 Parameterized Synthesis in Lines

Our case studies for synthesis in line topologies are similar to those we presented
for rings. Our synthesis results are reported in Table 2.

6.2.1 Three Coloring

The resulting protocols for the two heuristics are the same for the three coloring
problem. Note that in the case of line topologies, we synthesize three protocols; two
for the two processes at the ends of the line, and one for all the middle processes.
The synthesized protocol for the middle processes is the following:

πi : (ci = 2) ∧ (c(i+1) = 2) ∧ (c(i−1) 6= 0) → ci := 0

(ci 6= 0) ∧ (c(i+1) = 1) ∧ (c(i−1) = 2) → ci := 0

(ci = 2) ∧ (c(i+1) = 2) ∧ (c(i−1) = 0) → ci := 1

(ci = 0) ∧ (c(i+1) = 2) ∧ (c(i−1) = 0) → ci := 1

(ci = 1) ∧ (c(i+1) = 1) ∧ (c(i−1) 6= 2) → ci := 2

(ci = 0) ∧ (c(i+1) 6= 2) ∧ (c(i−1) = 0) → ci := 2

The synthesized protocol for the left end of the line is:

π0 : (c0 = 1) ∧ (c1 = 1) → c0 := 2

(c0 = 0) ∧ (c1 = 0) → c0 := 2

(c0 = 2) ∧ (c1 = 2) → c0 := 1
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Problem cutoff # Heuristic Synthesis Overall Model Checking
Time Time*

Three Coloring 20 Local LS 2m 9sec 130 msec
Three Coloring 20 Progress 1m 44sec 121 msec

Maximal Independent Set 10 Local LS 4sec 151 msec
Maximal Independent Set 10 Progress 4sec 151 msec

Table 2 Results for parameterized synthesis on line.(Overall model checking time is the sum
of the times needed for left process, left-side processes, middle processes, right-side processes,
and right process.)

Finally, the synthesized protocol for the right end of the line is:

πn : (cn = 0) ∧ (c(n−1) = 0) → cn := 1

(cn = 2) ∧ (c(n−1) = 2) → c0 := 1

(cn = 1) ∧ (c(n−1) = 1) → c0 := 2

6.2.2 Maximal Independent Set

The synthesized protocols for this problem are the same for both heuristics. The
synthesized protocol for the middle processes is:

πi : (ci = F) ∧ (c(i+1) = F) ∧ (c(i−1) = F) → ci := T

(ci = T) ∧ (c(i+1) = T) → ci := F

The synthesized protocol for the left end of the line is:

π0 : (c0 = T) ∧ (c(1) = T) → ci := F

(c0 = F) ∧ (c(1) = F) → ci := T

Finally, the synthesized protocol for the right end of the line is:

πn : (cn = T) ∧ (c(n−1) = T) → cn := F

7 Related Work

Synthesis of distributed systems: There are different techniques for automated
synthesis of distributed systems, from which we can mention the genetic-based
approach [49], and bounded synthesis [28]. There are also techniques for automated
completion of distributed protocols based on program sketching in the literature,
including [1, 2, 29].
Synthesis of self-stabilization: In the context of self-stabilization, in [16], a
lightweight method is proposed to generate initial designs of self-stabilizing pro-
tocols, and then a heuristic is introduced to add convergence to a non-stabilizing
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protocol for a specific number of processes. Other techniques for synthesizing
self-stabilization for fixed-size topologies is introduced in [39, 40]. Klinkhammer
and Ebnenasir show that adding strong convergence is NP-complete in the size of
the state space, which itself is exponential in the number of variables of the proto-
col [37]. Faghih and Bonakdarpour introduced an SMT-based synthesis technique
for automatically synthesizing self-stabilizing systems [20,21] that is complete and
not based on existing non-stabilizing algorithms. An extension of this work [23]
allows us to symbolically specify the legitimate states as a set of requirements,
and supports the synthesis of ideal-stabilizing systems. While these approaches are
promising and can automatically synthesize a number of well-known self-stabilizing
systems, they suffer from the problem of scalability, as the complexity of the
problem increases exponentially in the number of processes. For example, all re-
sults reported by Faghih and Bonakdarpour [20,21,23] correspond to automated
synthesis of self-stabilizing systems with at most 5 processes. One way to address
this scalability issue in synthesis is to use a counterexample-guided inductive syn-
thesis (CEGIS) method, as it has been proposed for the completion of program
sketches [48], for the lazy synthesis of reactive systems [27,34], and for the synthesis
of Byzantine-resilient systems [7]. The latter approach also supports the synthesis
of self-stabilizing systems, but counterexamples are only used to guide the encoding
of Byzantine-resilience, and the approach is limited to synchronous systems. The
difference between these methods and our CEGIS approach is that we have used
counterexamples to guide synthesis for an increasing size of the topology, which
allows us to scale the SMT-based synthesis of self-stabilizing algorithms to systems
with up to 200 processes.

Parameterized synthesis of distributed systems: The problem of scalability
in the number of processes can be solved once and for all by using a parameterized
synthesis approach, as introduced by Jacobs and Bloem [33] for (non-stabilizing)
reactive systems, and later applied to synthesize a parameterized controller for
the AMBA bus protocol [8]. The approach relies on cutoff results, similar to the
ones we introduced in this work for closure and deadlock detection. Parameterized
model checking and synthesis of guarded protocols for LTL properties based on
cutoff results is studied in [4,35]. The main difference between our work and theirs
is that first of all we are focusing on self-stabilization, and secondly, they study
processes with global knowledge (i.e., a process “sees” all other processes, not
only its neighbors), while we study systems of processes with partial view of the
global state. Modular application of cutoff results in synthesis is introduced in [36].
An extension of the approach [7] also supports the parameterized synthesis of
self-stabilizing systems, but only for synchronous systems, and not in all cases
resulting in a completely symmetric system. There are also papers on the synthesis
of parameterized self-stabilizing protocols for a specific problem. For example, the
authors in [15] provide a synchronous self-stabilizing and Byzantine-tolerant param-
eterized protocol for counting problem in clique topologies. Lazic et al. [42] propose
a method for synthesizing parameterized fault-tolerant distributed algorithms.
In contrast to our approach, synthesis is based on a sketch of an asynchronous
threshold-based fault-tolerant distributed algorithm, and the goal is to find the
right values for coefficients that may be missing in the guards.

In [25] and [26], the authors present a method to synthesize parameterized
self-stabilizing protocols in rings by proposing necessary and sufficient conditions
specified in the local state space of each process for deadlock-freedom. They also
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propose sufficient conditions that guarantee the absence of cycles (livelocks) in
parameterized unidirectional rings. Our work is different in that first of all, there
is no discussion on closure in these references, and secondly, the results are only
presented on rings (deadlock-freedom on bidirectional rings and livelock freedom in
unidirectional rings). It is not obvious how these results can be extended to reason
about these properties in other topologies, or to guarantee closure. The sufficient
idea introduced in these references is similar to our process abstraction approach,
as they are both only sufficient, and also they both identify livelock-freedom from
the local state space. However, in our approach, the abstraction can be refined, if
our specified property is not satisfied, while the approach in [26] is only on the local
states of one process, and does not rely on the changes in other processes of the ring,
and hence, if the proposed condition is not satisfied on the local state space of one
process, there is no way to add more information about other processes, and check if
it can be satisfied. It is shown that parameterized verification of self-stabilization is
undecidable in uni-directional rings [38], while the parameterized synthesis problem
is undecidable in bi-directional rings, but surprisingly remains decidable in uni-
directional rings [41]. Authors in [41] proposed a sound and complete algorithm
for synthesizing self-stabilizing protocols for uni-directional rings. This work is
extended in [17] to other unidirectional topologies, including chains and trees.
Our paper is different in that although our proposed CEGIS based method is
not complete, but it is not specific to any particular topology. Also, our cutoff
results cover more topologies, using which researchers can synthesize parameterized
solutions to different self-stabilizing problems. In other words, thanks to the cutoffs,
any synthesis method that can synthesize a solution up to the identified cutoff, is
guaranteed to be a parameterized solution.
Parameterized verification of distributed systems: There are several papers
on parameterized verification of distributed systems. Some of these papers use
the idea of invariants [9, 50], where invariant is a safety property that is satisfied
for a process, and any system that is created by composing the process with
itself for arbitrary number of times. In [11], a new model checker for verifying
safety properties of parameterized systems is introduced. Parameterized verification
of deadlock freedom for a class of symmetric systems based on abstraction is
studied in [6]. Parameterized verification of safety properties by determining cut-
offs is studied in [31, 47], as well. Note that in self-stabilization, we have safety
as well as liveness properties. There is also a class of works on parameterized
verification using compositional model checking [5, 44]. In this work, we focus on
parameterized synthesis of a class of distributed systems. Although there may be
ways for parameterized synthesis using parameterized verification of distributed
systems, our idea is based on introducing synthesis cutoffs for different topologies.

8 Conclusion

In this paper, we proposed a new method for parameterized synthesis of self-
stabilizing algorithms in symmetric rings using cutoff points. We presented new
cutoff results for closure properties and deadlock detection in ring, line, mesh and
torus topologies. We proved tightness of the cutoff results for rings and conjecture
that those for lines are also tight, while tightness of the cutoffs for the other two
topologies remains an open problem.



34 Nahal Mirzaie et al.

Furthermore, in order to scale the existing synthesis solutions [20–24] up to the
cutoff point, we introduced an iterative loop of synthesis and verification guided by
counterexamples. We demonstrated the effectiveness of our approach by synthesizing
parameterized self-stabilizing protocols for well-known problems including self-
stabilizing three coloring, maximal matching, and maximal independent set. For
future, we plan to work on asymmetric and synchronous networks.
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