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Abstract

We present DECIM, an approach to solve the challenge of detecting
endpoint compromise in messaging. DECIM manages and refreshes
encryption/decryption keys in an automatic and transparent way: it
makes it necessary for uses of the key to be inserted in an append-only
log, which the device owner can interrogate in order to detect misuse.

We propose a multi-device messaging protocol that exploits our
concept to allow users to detect unauthorised usage of their device keys.
It is co-designed with a formal model, and we verify its core security
property using the Tamarin prover. We present a proof-of-concept
implementation providing the main features required for deployment.
We find that DECIM messaging is efficient even for millions of users.

The methods we introduce are not intended to replace existing
methods used to keep keys safe (such as hardware devices, careful pro-
cedures, or key refreshment techniques). Rather, our methods provide
a useful and effective additional layer of security.

1 Introduction

Spurred by government surveillance [1–3] and users’ desire for strong
security [4], a new trend of using end-to-end secure communication has
spread. Large companies and security communities have started to deploy
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and provide message services with end-to-end encryption, which include Ap-
ple iMessage, Facebook WhatsApp, Google End-to-End email encryption,
and Telegram Messenger, to millions of users.

One challenge in providing end-to-end encrypted messaging concerns how
to authenticate public keys. Even though methods based on the CA-model
(e.g. S/MIME) and the web-of-trust (e.g. OpenPGP) have been available
for decades, they have failed to be widely deployed because of the security
and usability concerns [5]. Recently, CIRT [6] and CONIKS [7] have been
proposed to solve the key authentication problem for messaging, by making
all issued key bindings transparent to end-users. Both CIRT and CONIKS
support multiple devices, and detect misbehaviours or compromise of the key
certification authority. However, while these services provide a good level
of protection on users’ communication, they still rely on the assumption
that the end-device cannot be compromised. Yet, this assumption is rather
hard to justify in practice: new software vulnerabilities [8–10] are discovered
every day, and malware is common on mobile devices such as phones and
tablets [11] as well as on traditional platforms like desktop PCs.

Signal [12] (formerly TextSecure) moves a step towards handling device
compromise. It rotates keys through a ratcheting process (a.k.a. Axolotl
protocol), which generates three types of keys, namely root key, chain key,
and message key. The root key is a relatively long-term key generated from
users’ public keys and updated through the ratchet process. The chain key
and message key are ephemeral keys derived from the associated root key.
Each chain key is a session key, and the associated message keys are used to
encrypt/decrypt messages exchanged in that session. (We refer the reader
to [13] for more detail.)

An attacker who learns the chain keys and message keys will not be able
to learn messages that have been exchanged in other sessions. However,
if the root key has also been compromised, then the attacker is able to
perform a man-in-the-middle (MITM) attack to intercept future messages.
Additionally, the ratcheting process can lock the attacker out from the point
that the attacker discontinued being the MITM. The ratcheting process has
been built into several systems including WhatsApp, one of the most popular
messaging platforms.

Whilst Signal is an important contribution to message security, it leaves
open the question of how to defend against an attacker (e.g., a platform
operator or an internet service provider) who is in a unique position to act
as a persistent MITM, and has previously compromised a victim’s device.

This paper explores a different part of the complex design space inhabited
by CIRT/CONIKS and Signal. We develop DECIM, a method to Detect
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Endpoint Compromise in Messaging applications.

Contribution Our first contribution is to develop an attacker model in
which platforms may be periodically compromised. That means that they can
be compromised by an attacker at any time, but we assume that the victim
periodically takes steps to remove malware and eliminate vulnerabilities.
Unfortunately, the compromise could have revealed long-term keys. We
thus propose security goals that aim to detect the subsequent usage of such
keys by the attacker.

Second, we propose an approach for detecting endpoint compromise in
messaging (DECIM), to transparently manage ephemeral encryption/decryption
keys. It enables users to detect subsequent usage of compromised long-term
keys by the attacker even against a persistent MITM attacker, while avoiding
the use of expensive and inconvenient manual process for re-authenticating
and distributing keys through the underlying PKIs (e.g. applying for a new
certificate from a CA), unless attacks are actually detected.

We develop two DECIM protocols. The first is a basic protocol that
makes strong assumptions about the participants being simultaneously on-
line, and serves mostly to explain the concepts. The second protocol is a
more fully developed messaging application, supporting multiple devices per
user and allowing the receiver to be offline at the time the sender sends a
message.

We provide a proof-of-concept implementation of the detailed messaging
application, and conduct a performance evaluation on the system. It shows
that the protocol is efficient and scalable: even in an extreme case, i.e. the
messaging system has been operating for 100 years with 109 users (each
with 3 devices), clients only need to download 2.2 KB extra data for the
compromise detection. The memory usage on the server side for enrolling
105 new devices of distinct users is only 410 MB, and it takes roughly 5.7
milliseconds on average for each request.

Our third contribution is the security analysis which shows that the pro-
tocols satisfy precise properties expressing software damage containment.
Informally, if an attacker controlled device has been recovered from a com-
promised state to a secure state, then our system can automatically detect
a (persistent) MITM attacker. Therefore the victim will be prompted to
manually revoke the key and generate a new one. We use the Tamarin
prover to prove several core properties of our protocol.

We proceed in the following way. In Section 2, we present the background
and related work. We detail our attacker model in Section 3 and present the
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main idea of our DECIM protocols in Section 4. The implementation of our
messaging protocol is presented in Section 5 in full detail. We analyse the
security of our proposal in Section 6, present the performance evaluations
in Section 7, and conclude in Section 8.

2 Related work

Axolotl protocol As mentioned previously, the Axolotl protocol imple-
mented in Signal [12] uses a ratchet process to handle device compromise
against a non-persistent MITM attacker. Similar security guarantees are
also provided by other messaging protocols; see [14] for a detailed survey.

FlipIt FlipIt is an abstract game-theoretic framework for modelling se-
curity scenarios similar to the attacker model of our paper. In the FlipIt
game [15], the attacker player moves by compromising a system, and the de-
fender player moves by recovering it into a secure state. The FlipIt paper
explores strategies for defender and attacker, based on an abstract notion of
costs associated with moves.

Drifting keys Drifting keys [16] is an approach for detecting device im-
personation when an attacker has obtained a copy of pre-shared secret keys
stored in constrained devices (such as sensors). Roughly speaking, each key
is updated by the sender by appending a random bit. If two inconsistent
keys of the same device are detected by the receiver, then it learns that the
pre-shared keys at the sender side (i.e. the constrained devices) has been
compromised and used by an attacker to impersonate the device.

Certificate transparency Certificate transparency (CT) [18] is a tech-
nique proposed by Google aiming to detect mis-issued public key certificates.
CT achieves this by recording all issued certificates in an append-only Merkle
tree log. CT has been extended to handle revocation [6], and much work
on building transparent systems has been proposed based on the concept of
CT. Examples include ARPKI [19] and PoliCert [20] for transparent PKI,
and CIRT [6] and CONIKS [7] for transparency in messaging systems.

3 Threat model and design goals

Assumptions We assume a role called sender, that sends messages, and
another one called receiver, that receives messages. Users can perform one
or both of those roles. Each user has one or more devices, and can pick any
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t1 t′1 t2 t′2 . . . . . .tn t′n

Figure 1: A device is compromised at time t1, and then restored into a
secure state at time t′1. This cycle is repeated. Thus, the device is in a
compromised state during the intervals {(tj , t′j) | j ∈ {1, 2, 3, . . .}}.

of his/her devices to send a message, and can receive messages on any of
them. We use Sally and Robert to refer to an arbitrary sender and receiver,
respectively.

Threat model The attacker has control over the network and the mes-
saging server. This means he can eavesdrop, modify, insert and suppress
any messages, and as many of them he wants. In this way, he can act
as a persistent MITM. However, we also assume that the parties can oc-
casionally communicate short messages, possibly through an independent,
low-bandwidth and unreliable channel. The attacker has only partial con-
trol of this additional channel — he can intercept, modify and suppress
messages, but not all of them all of the time (occasionally, a message will
get through)1. In other words, we assume that the attacker can block all
communications in one channel, but cannot block all communications in all
possible diverse channels.

In addition, the attacker may compromise any user’s devices at any time.
After compromising a device, the attacker fully controls it, and can retrieve
and store all the data (including secret keys) that are stored on it.

Periodically and routinely, users detect and remove malware on their
devices, upgrade the operating system, and install software patches that
remove known vulnerabilities. This can put the device back into a trustwor-
thy state. The users do not regenerate long-term keys or change passwords
unless evidence of a compromised device has been found.

Thus, we assume that devices are periodically trustworthy. An attacker
compromises the device by exploiting a vulnerability, and sometime later the
device owner restores it into a secure state. This cycle repeats, as illustrated
in Figure 1.

The problem Once a device is compromised, then the victim’s secrets
stored in the device are exposed to the attacker. Performing security updates

1The idea of this secondary channel is to enable the users to detect a misbehaving log
server that shows different versions of the log to different users. It has been used in other
transparent log based systems, such as in CT, CIRT and CONIKS. We indicate how this
works at the end of the section 4.3 on page 6.
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and removing malware is insufficient to prevent the attacker masquerading
as the victim.

Security goals To solve this problem, our system detects key usages by
the attacker. We state our security goal here, and explain how to achieve
the goal in the following sections. In the security statements below, we
assume a parameter ζ, which is a time period set by the user. A shorter
ζ brings greater security. However, devices are automatically unregistered
from the system if they are not used for periods longer than ζ, and have to
be re-registered. Thus, a very short ζ reduces usability. Typically, ζ would
be about two days. We discuss ζ and other system parameters later.

In the next section, we develop two protocols: the basic DECIM protocol
and the full DECIM messaging application. These offer slightly different
guarantees.

• Basic DECIM protocol.
Suppose receiver Robert’s device is compromised during the periods
{(tj , t′j) | j ∈ N}. Suppose a message is sent by sender Sally at time t
from a device in a trustworthy state, and the plaintext is obtained by
the attacker. Robert can detect this attack provided his device

– was well within a trustworthy state when the message was sent;
that is, t′j + ζ ≤ t ≤ tj+1 − ζ for some j.

• Messaging application (many users each with many devices).
Suppose Robert’s devices are periodically compromised, as before: Di

is compromised during the intervals
{(ti,j , t′i,j) | j ∈ N}. Suppose a message is sent by Sally at time t
from a device in a trustworthy state, and the plaintext is obtained by
the attacker. Robert can detect this attack provided, for each of his
devices Di,

– Di was well within a trustworthy state when the message was
sent; that is, t′i,j + ζ ≤ t ≤ ti,j+1 − ζ for some j, or

– Di was in a compromised state, but had not been used by Robert
since t− ζ.

The last condition reflects the fact that one can tell that a device has
been compromised if the device was not being used at the time its key
was used. Later, in Section 4.2, we show the user interface that allows
a user to check this.

As part of our solution, we introduce an auxiliary role called the log main-
tainer. In practice, there can be one or more agents acting as log maintainers.
We do not require that any of these log maintainers are trusted and assume
that the attacker controls them.
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4 Overview of DECIM

We present an overview of two protocols for detecting endpoint compro-
mise. In the first, the participants are a single sender and a single receiver,
assisted by a log maintainer. This situation is too simple to be useful, but
serves to illustrate the core concepts. The second protocol is more involved;
there are multiple senders and receivers, and each of them has multiple de-
vices. This reflects a more realistic situation, and the multiple devices assist
in the detection of attacks.

4.1 The basic DECIM protocol

Our solution involves three roles: senders, receivers, and a log maintainer.
We assume all of these can be compromised. We assume a log maintainer is
capable of receiving data and storing it in an append-only log.

During the bootstrapping phase, the receiver Robert obtains or generates
a long-term signing and verification key pair (skR, vkR), and the sender
Sally obtains an authentic copy of vkR. The log maintainer has a signing
key skL, and Robert and Sally have an authentic copy of the corresponding
verification key vkL. How these keys are securely distributed is not the
subject of this paper; we assume it can be done through PKIs such as
S/MIME [24], PGP [25–27], CIRT [6], or CONIKS [7].

The log maintainer signs and publishes digests of the log. We use ‘digest’
to denote a short data item that uniquely summarises the log (in practice,
it is the root tree hash of a Merkle tree). The maintainer is able to create
cryptographic proofs that given data is present or absent from the log. Data
is never deleted from the log represented by a given digest.

The log maintainer can also create proofs that a given digest represents
an append-only extension of the log represented by a previous digest.

Sally and Robert track the digests issued by the log, all the time checking
the proofs issued by the log that later digests represent extensions of earlier
ones. Sally and Robert also periodically directly exchange the digests they
know about, and request and check proofs of extension of those digests with
respect to those they already have. Our assumption that the attacker cannot
suppress all messages ensures that they are being presented with the same
version of the log.

The transmission part of the basic DECIM protocol then runs as follows
(see Figure 2).

• To prepare for receiving a message, Robert’s device creates an ephemeral
encryption and decryption key pair (ek, dk), and certifies it with his
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Sally Robert

- generate ephemeral (ek, dk)
- create a certificate σ = CertskR

(R, ek)
- sends σ to the log maintainer
for insertion in log

σ

- request from the log maintainer
proofs that σ is present in log

- verify obtained proofs
- encrypt message m using ek

Encek(m)

- use dk to decrypt message
- request proofs from the log maintainer
to check that all keys in log for “Robert”
are genuine

Figure 2: The basic DECIM protocol. Robert has a pair (skR, vkR) of long
term keys for signature signing and verification. He generates an ephemeral
key pair (ek, dk) for encryption, creates the certificate σ = CertskR(R, ek) on
ek, and sends the certificate to the log maintainer for insertion into the public
log. Meanwhile, Robert also sends the certificate to Sally. After receiving σ,
Sally requests from the log maintainer proofs that the certificate is present
in the log. If the proof is valid, Sally sends a message m to Robert encrypted
with ek. Robert requests proofs from the log maintainer to enable him to
verify whether the log contains signatures that he did not generate.

long-term signing key skR. He publishes the certificate CertskR(R, ek)
in the log. Publishing the certificate in the log assures Sally that it is
a valid encryption key belonging to Robert.

• To send a message, Sally’s device retrieves CertskR(R, ek) from the
log along with a proof of its currency in the log. She encrypts the
message with ek and sends it to Robert. Sally will not use a key
whose certificate is not in the log.

• Robert’s device receives the encrypted message and decrypts it.
Additionally, Robert’s device periodically checks (where the period is

determined by the parameter ζ) that all the keys ek′ for which a certificate
CertskR(R, ek′) exists in the log were put there by him. If he finds entries in
the log not corresponding to his actions, then he knows that his long term
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credentials have been disclosed and abused by an attacker.
The basic protocol assumes that Robert is online at the time that Sally

wants to send a message. In the messaging application protocol below, we
generalise this to work when Robert is offline.

Intuitively, our protocol design detects compromise attacks because an
attacker in possession of Robert’s long term key would have to leave ev-
idence of its usage of the key in the log. We give examples of how this
detection works in Section 4.3. We perform a formal analysis of our designs
in Section 6.

Properties of the log The security of the method requires that an attacker
cannot remove information from the log. To achieve this, the log is typically
stipulated to be append-only. It is also a requirement that users of the log
(including Robert) can verify that no information has been deleted from the
log. For this purpose, the log can be organised as a Merkle tree [28] in
which data is inserted by extending the tree to the right. Such a log was
designed and introduced in certificate transparency [18]. The log maintainer
can provide efficient proofs that (A) some particular data is present in the
log, and (B) the log is being maintained in an append-only manner. Proof A
is referred to as proof of presence (PoP) and proof B is referred to as proof
of extension (PoE).

Certificate transparency has been extended to provide proofs that all
data associated to some attribute (e.g. keys associated to a user identity) is
absent from the log, and proofs that some data associated to some attribute
is the latest valid data in the log. The former is referred to as proof of
absence, and the latter as proof of currency [6, 7].

4.2 DECIM Messaging application

The DECIM messaging application generalises the basic DECIM proto-
col, allowing the users to have multiple devices. Sally can choose any of her
devices to send a message, and Robert is able to receive the message on all
of his devices. Although this makes the protocol a bit more complicated, it
also allows us to obtain a stronger security guarantee, because even if one of
Robert’s devices is in an untrustworthy state we are able to leverage security
from the other ones.

As before, we assume a log, with the same capabilities mentioned above.
We also assume that Robert and the log maintainer have long-term signing
and verification key pairs (skR, vkR) (skL, vkL) respectively, and all parties
have authentic copies of the verification keys they need.

The parameters δ, ϵ and ζ The protocol is parameterised by three values:
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• δ is the period between the times at which device registration requests
are processed. It is set by the log maintainer. We expect it to be
typically one hour.

• ϵ is the period between the times at which key update requests are
processed. We refer to such periods as “epochs”. It is also set by the
log maintainer, and is typically one day.

• ζ is the maximum lifetime of a key. It is set by the user. Different
users can choose different values of ζ, subject to the constraint ϵ ≤ ζ.
We expect it to be about two or three days.

The messaging protocol has three main sub-protocols: enrolling, message
transmission, and key updates. We describe these in turn.

Enrolling a device To enroll a device Dℓ, Robert needs to install skR
onto it. We assume that skR is derived from a passphrase that Robert types
into Dℓ. Next, Dℓ needs to create a key pair and publish its certificate in
the log. More precisely:

• Dℓ generates a new ephemeral encryption key pair (ekℓ, dkℓ) and sends
the certificate CertskR(Dℓ, ekℓ, tℓ) to the log maintainer. Here, tℓ is the
key creation time. The key will be used from the current time until
the next epoch beginning, for the purpose of encrypting messages for
Robert’s device.

• After time δ, the log maintainer has inserted the certificate into the
log and sends to Dℓ the list of device certificates CertskR(Di, eki, ti)
for Robert present in the log, together with a proof that the list is
complete, and current in the log.

• Dℓ verifies the proof of currency for CertskR(Dℓ, ekℓ, tℓ). It displays
the table (Di, ti) (for each i) to Robert, so he can check that the
devices mentioned are indeed recently used. If Robert sees a device
mentioned that he has not recently used, it is evidence of an attack
(§ 4.4). Figure 3 presents an example of the envisaged GUI to show
how the information is likely to be presented to Robert.

The device is now ready to be used. When Sally encrypts a message, her
device will obtain all the public parts of the current ephemeral keys for
Robert from the log, and encrypt the messages with each of them.

Remark. The method of displaying on a user’s device the user’s activities
on other devices is well-known (for example, in Gmail, a user can click “last
account activity” to see a table of the sessions open by other devices). A
crucial difference in our protocol is that the displaying device can fully verify
the veracity of the account activity provided by the untrusted log maintainer.

Sending and receiving a message
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Figure 3: An example of envisaged GUI that presents the table (Di, ti) for
i = {1, 2} to Robert. The ticked box against the “key usage proof” indicates
that the proofs about the usage statement (e.g., last update time) have been
cryptographically verified.

• To send a message, Sally retrieves CertskR(Di, eki, ti) (for each avail-
able i) from the log along with proofs of currency. Her device encrypts
a copy of the message by using each received eki according to the spe-
cific end-to-end secure messaging protocol that they both use2. It
sends the encrypted message and together with the encrypted k to
each of Robert’s devices.

• Robert picks up any of his devices, receives the encrypted message,
and decrypts it.

Updating the keys Whenever Robert invokes the messaging app on a
device Dℓ, the device checks to see if it is the first time it has run the
app during that ϵ-long epoch. If so, it generates a new device key which
will become the key for the following epoch. More precisely, on the first
invocation during an epoch:

• Dℓ requests and verifies proof of currency for all of the current epoch’s
device certificates CertskR(Di, eki, ti) for each available i. It verifies
that ekℓ is indeed the one it created and sent the previous epoch; if
this verification fails, it is evidence of an attack (§ 4.4). Dℓ displays
the table (Di, ti) (each i) to Robert, so he can check that the devices

2The design of DECIM is agnostic about the specific end-to-end secure messaging proto-
col used; e.g. it could be PGP, Axolotl, or something else. For simplicity and concreteness,
in the detailed presentation of DECIM in section 5, and also in the Tamarin proofs of
section 6, we encrypt messages by using the hybrid mechanism deployed in PGP and
iMessage.
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mentioned are indeed recently used. If Robert sees a device mentioned
that he has not recently used, it is again evidence of an attack.

• Dℓ next creates a new ephemeral encryption key pair (ek′ℓ, dk
′
ℓ) and

sends the certificate CertskR(Dℓ, ek
′
ℓ, tℓ) to the log maintainer. Here, tℓ

is the key creation time.
• By the next epoch, the log maintainer has inserted into the log all the

device keys thus received. If a device does not send a new key during
an epoch, the old key is retained in subsequent epochs until a period ζ
has elapsed. At that time, keys of devices that did not send new keys
are revoked.

• When a new key becomes valid, Dℓ securely removes the old key in
the device.

In other words, devices change their key every epoch, and if they don’t
do so (because the application is not invoked during a particular epoch) then
their key is reused for a certain period, and then revoked. In this last case,
the device can’t be used until it re-registers.

4.3 Detecting attacks: examples

To provide intuition on how our protocol allows users to detect attacks,
we explain some potential attack detection scenarios. We will present our
formal security analysis in Section 6.

Attacks from a third party
Suppose one of Robert’s devices, say his phone, is infected with malware,

allowing an adversary to misuse all the keys stored on the device. Suppose
the adversary is the messaging service provider acting as a persistent MITM.
The adversary may decrypt messages encrypted with ephemeral keys in that
epoch, and may create new signed ephemeral keys by using the phone’s long
term key and inserting them into the log to perform MITM attacks in future
epochs.

Robert routinely performs malware scanning and software patching, which
may or may not help him regain the control of his phone depending on the
robustness of the malware. It is obvious that one can do nothing for the
epoch in which the adversary has all the ephemeral secrets for decryption.
We focus on the more interesting case, namely, the security of messages
exchanged in future epochs.

If Robert regains control of his phone, and the attacker continues to use
the phone’s long-term key to create ephemeral keys, the phone can detect
this activity via the log, and report it to the user.
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If the adversary remains in full control of the phone, then Robert might
still be able to detect the device compromise by monitoring the long-term
key usage – he notices unexpected usage of phone using the GUI of Figure 3.
The figure shows the GUI displayed on another device of Robert’s. It informs
him that (so far in the current epoch) the keys corresponding to his phone
and his iPad have been active. If Robert has not used his phone in the epoch,
then he learns that it has been compromised. The GUI also confirms that
the proofs about the usage statement have been cryptographically verified.

Attacks on or by the log maintainer Suppose the log maintainer is
malicious or compromised. It may provide fake proofs, or provide no proofs
at all. This is readily detected by client software. It may maintain the log
incorrectly, either by not correctly recording signed ephemeral keys or by
incorrectly recording fake ephemeral keys. These attacks are detected when
the key owner requests a complete proof of presence.

A more interesting attack arises if the log maintainer shows different
versions of the log to different users. A receiver may see a version in which
his ephemeral keys are correctly recorded, while the sender sees a version
in which attacker-owned keys are present instead. This would allow the at-
tacker to play man-in-the-middle attacks, preventing the sender and receiver
ever exchanging information about the log digests they have. In DECIM,
users can detect such attacks by gossiping with their contacts, for example,
through an out-of-band channel as used in Signal [12], or through a gossip
protocol [21–23] as recommended by Google CT [18] and CONIKS [7]. Such
a procedure will ensure that the log maintainer is not misbehaving. We refer
readers to the referenced work for more detail.

4.4 Responding to attacks

If Robert detects unexpected activity on a device, or some verification
fails, this is evidence of an attack. Robert’s response should be to fix the
software on his devices. He should generate a new long-term key, in order
to prevent attacks occurring (and being detected) due to the disclosure of
his current long-term key. The corresponding public key can be distributed
using the method used in the bootstrapping phase. Furthermore, he can
inform Sally that some of her recent messages to him may have been com-
promised.

Robert can also detect failure when he verifies the actions of the log
maintainer. His response is to change to a different provider.
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h(h(h(d1, d2), h(d3, d4)), h(d5, d6))

h(h(d1, d2), h(d3, d4))

h(d1, d2)

d1 := Root(T ′
1)

d2 := Root(T ′
2)

h(d3, d4)

d3 := Root(T ′
3)

d4 := Root(T ′
4)

h(d5, d6)

d5 := Root(T ′
5)

d6 := Root(T ′
6)

Merkle tree T

Figure 4: An example of the log containing six updates {d1, d2, . . . , d6}. The
log is an append-only Merkle tree T whose leaves are ordered chronologically.

5 Detailed messaging protocol

In this section we present our proposal’s details in several parts. We
first present the log structure in Section 5.1. We then turn to describe the
protocol in more detail in Section 5.2. The procedures that ensure that we
detect malicious log maintainers are described in Section 5.3. we consider
privacy concerns in Section 5.4.

5.1 Log structure

The public log is organised as a tree of trees: the top-level tree is append-
only, and its leaves are lexicographically ordered trees.

The top-level tree of the log is implemented by a append-only Merkle
tree [28]. The digest of a log is the root hash value and the size of this
tree. A Merkle tree is a tree in which every node is labelled with the hash
of the labels of its children nodes. Suppose a node has two children labelled
with hash values h1, h2. Then the label of this node is h(h1, h2). Merkle
trees allow efficient proofs that they contain certain data. To prove that
a certain data item d is part of a Merkle tree requires an amount of data
proportional to the log of the number of nodes of the tree. (This contrasts
with hash lists, where the amount is proportional to the number of nodes.) If
a Merkle tree is append-only, i.e. the only supported operation is to append
some data to the tree, then it supports efficient proof that a version of
the tree is extended from a previous version. If items in a Merkle tree are
ordered lexicographically, then the Merkle tree supports efficient proof that
some data is absent from the tree. The sizes of all the above proofs are
proportional to the log of the number of nodes of the tree. More examples
can be found in [6,18]. Table 1 shows methods that a Merkle tree supports.
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Table 1: The methods supported by the Merkle tree.

Method Input Output

Size T The size of the Merkle tree T

Root T The root value of the Merkle tree T

Last T The data stored in the rightmost side leaf of Merkle tree T

PoP (T, d) Proof of Presence: The proof that d is in T

PoC (T, d) Proof of Currency : The proof that d is the last leaf in T

PoA (T, a) Proof of Absence: The proof that any data d having attribute
a is absent from the Merkle tree T . This proof can only work
if items in T are ordered lexicographically according to the
attribute.

PoE (T, dg′) Proof of Extension: The proof that the Merkle tree T is an
extension of another Merkle tree whose digest is dg′. This
proof can only work if T is append-only.

The append-only Merkle tree T (as shown in Figure 4) records the entire
update history. Items in T are stored only in leaves and ordered chronologi-
cally, and each leaf is labelled by the root hash value of another Merkle tree
T ′ (presented in Figure 5). Items in T ′ are also stored only in the leaves,
but ordered according to user identity. Each leaf of T ′ is labelled by users’
identity and a list of ephemeral certificates for different devices of the same
user.

We give some examples based on Figure 4 and 5 to show how the proof
can be done with our log. We will explain how to verify that the log is
maintained correctly — i.e. the log maintainer only appends data in T , and
items in every T ′ are ordered lexicographically — in §5.3.
Example of proof of presence To prove that data d′2 for Bob is in T ′

6

(see Figure 5), the log maintainer only needs to give the data needed to
compute the label of parent node from d′2 to the root of the tree.

PoP(T ′
6, d

′
2) = [w, d′1, h(3,4), h(5,7)]

where w = l · l · r is the path to d′2, and l (resp. r) indicates the path
to the left (resp. right) child. So, given d′2, Root(T ′

6), and the proof
PoP(T ′

6, d
′
2), one can verify the proof by reconstructing the root value hT =

h(h(h(d′1, d
′
2), h(3,4)), h((5, 7))). If hT = Root(T ′

6), then the proof is valid.

Example of proof of currency The proof of currency is the same as the
proof of presence, but there is an extra constraint for the verifier to check,
namely that the path to the root of the lexicographic tree (e.g., the path
from the root to d6 in Figure 4) is of the form r · r . . . · r, i.e., the leaf should
be the rightmost leaf of the tree.
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h(1,7)

h(1,4)

h(1,2)

d′1 := (Alice,
DA,1, tA,1, h(certA,1)
DA,2, tA,2, h(certA,2))

d′2 := (Bob,
DB,1, tB,1, h(certB,1)
DB,2, tB,2, h(certB,2)
. . .
DB,5, tB,5, h(certB,5))

h(3,4)

d′3 d′4

h(5,7)

h(5,6)

d′5 d′6

d′7 := (Robert,
DR,1, tR,1, h(certR,1)
DR,2, tR,2, h(certR,2)
DR,3, tR,3, h(certR,3)
DR,4, tR,4, h(certR,4))

Merkle tree T ′
6

Figure 5: An example of the data structure T ′ recording data in each update.
Items in T ′ are ordered lexicographically. For all a, b ∈ [1, 7], h(a,b) is the
root hash value of a Merkle tree containing data from d′a to d′b. For example,
h(1,2) = h(d′1, d

′
2), and h(1,7) = h(h(1,4), h(5,7)). Each leaf of T ′ is labelled by

(h(ID), (Dj , tj , h(certj))
n
j=1), such that certj is a certificate on (Dj , ekj , tj)

issued by ID, where Dj is the identity of the jth device of ID, ekj is an
(ephemeral) public encryption key, and tj is the issuing time.

Example of proof of extension To prove that the current version of the
log represented by T is an extension of a previous version (Told) containing
four updates (i.e. Root(Told) = h(h(d1, d2), h(d3, d4)) and Size(Told) = 4), the
log maintainer gives h(d5, d6) as the proof. Given the two digests and this
proof, the verifier can verify that T is extended from Told by reconstructing
Root(T ). A well defined algorithm for generating the proof in different cases
is presented in §5.1.2 of [18].

Example of Proof of absence To prove that no certificates for user iden-
tity ‘Bill’ is included in T ′

6, the log maintainer needs to prove that any node
whose label containing Bill is absent from T ′

6, by performing the following
steps.

• Locate node A such that the user identity contained in its label is
lexicographically the largest one smaller than Bill. In our example,
the label of node A is d′1 which contains user identity ‘Alice’.

• Locate node B such that the user identity contained in its label is
lexicographically the smallest one greater than Bill. In our example,
the label of node B is d′2 which contains user identity ‘Bob’.

• Prove that d′1 and d′2 are present in T ′
6, and they are siblings (so no
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node is placed in between of them). The former is proved by using
proof of presence, and the latter one can be verified by checking the
path to d′1 and d′2.

5.2 Messaging protocol details

We recall the defined system parameters in Table 2.

Table 2: System parameters.
Parameter Explanation

δ the period between the times at which device registration
requests are processed. It is set by the log maintainer. (Typ-
ically one hour.)

ϵ the regularity of processing key update requests on the server
side. It is set by the log maintainer. (Typically one day.)

ζ the lifetime of the device ephemeral keys, defined by each
individual user.

5.2.1 Enrolling a device (Figure 6)

We assume that all Robert’s devices have shared his long-term signing
key skR. To enrol a device Dℓ, it generates a new ephemeral certificate, and
publishes it in the log. In more detail, as presented in Figure 6:

• Dℓ generates a new ephemeral key pair (dkℓ, ekℓ) for decryption and en-
cryption, respectively. Then, Dℓ issues a certificate CertskR(Dℓ, ekℓ, tℓ)
on (Dℓ, ekℓ, tℓ) by using skR, where tℓ is the key creation time; and
sends the signed registration request
m1 = (req1, R, dgold,CertskR(Dℓ, ekℓ, tℓ)) to the log, where req1 is the
request identity, R is the identity of Robert, and dgold = (Root(Told), Size(Told))
is the digest of the log that Robert possibly has previously stored (it
is likely to happen if Robert is re-enrolling his device Dℓ).

• After the log maintainer receives the request, it verifies the signature
and the certificate, and that tℓ is in the time interval of the current
update epoch δ. If they are all valid, it stores the request, and issues
a signed confirmation sign{Root(log), Size(log),CertskR(Dℓ, ekℓ, tℓ)}skL ,
where log is organised as T , as explained in §5.1. If dgold is provided,
the log maintainer also generates a proof P of extension that the cur-
rent log is extended from the log represented by dgold, and sends the
proof together with signed confirmation as the message m2 to Robert.
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skR, dgold, σ
old
L

Robert’s device Dℓ

skL, log

Log maintainer

- Generate (dkℓ, ekℓ)
- issue CertskR(Dℓ, ekℓ, tℓ)
- dgold = (Root(Told),Size(Told))

m1 = (req1, R, dgold,CertskR(Dℓ, ekℓ, tℓ))

- verify the received certificate and tℓ
- store m1

- dgnew := (Root(T ),Size(T ))
- σL := sign{dgnew, h(CertskR

(Dℓ, ekℓ, tℓ))}skL

- P1 := PoE(T, dgold)

m2 = (dgnew, σL, P1)

- verify σL and P1

- dgold := dgnew
- σold

L := σL

- remove any expired keys

After δ time

m3 = (req′1, R,Dℓ, dgnew)

- update the log from T to Tnew

- T := Tnew

- Last(T ) := Root(T ′
n+1)

- find d in T ′
n+1 such that R is contained in d

- P2 := PoC(T, Last(T ))
- P3 := PoP(T ′

n+1, d)
- P4 := PoE(T, dgnew)
- md := all data associated to d
- dg′new := (Root(T ),Size(T ))
- mL := (dg′new, Last(T ), {Pi}4i=2,md, t)
- σ′L := sign{mL}skL

m4 = (mL, σ′L)

- verify σ′L and all received proofs
- verify CertskR(Dℓ, ekℓ, tℓ) is in md

- (dgnew, σL) := (dg′new, σ′L)
- display all (Di, ti) to Robert

Figure 6: The protocol for (re-)enrolling a device. In the protocol, if Robert
is re-enrolling his device, then dgold and σold

L are the previously stored digest
and signature received from the log maintainer, respectively.

• Dℓ verifies the received signature and proof, stores the new digest
dgnew with signature σL, and sends the requestm3 containing a request
identity req′1, Robert and the device’s identity (R,Dℓ), and current
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observed digest to the log maintainer after δ time.
• After each period of length δ, the log maintainer updates the log ac-

cording to the list of device enrollment requests received from its cus-
tomers. The list of requests should be in the form

(Ri, (CertskRi
(Di,j , eki,j , ti,j))

P
j=1)

M
i=1

where Ri is the client identity, P is the number of devices that a client
has requested to enroll this update, and M is the total number of
clients who have sent the enrollment request for this update.
To update the log, the log maintainer retrieves the current T ′

n such
that Root(T ′

n) = Last(T ), and creates T ′
n+1 by adding each request to

the appropriate node of T ′
n, where n is the size of the current log. It

then extends T with a new rightmost node T ′
n+1.

In addition, the log maintainer proves that the list of certificates (in-
cluding the ones in the enrollment request) for each participant Ri

is complete, and current in the log. If Ri has previously observed a
digest dgold of the log, then log maintainer also generates a proof of
extension that the current log is extended from the log represented by
dgold. To do so, the log maintainer locates the node labelled with d
for Ri in T ′

n+1, and generates:
– PoP(T ′

n+1, d) that d is present in T ′
n+1;

– PoC(T, T ′
n+1) that the root hash value of T ′

n+1 is the label of the
rightmost leaf in T ; and

– PoE(T, dgold) that the current log is extended from the log repre-
sented by dgold.

So Ri can verify that d — which contains a full list of certificates for
his devices (including the newly enrolled ones) — is present in the
latest update of the log.

• Dℓ verifies the received proofs and signatures. Additionally, it displays
the table (Di, ti) (for all i ∈ [1, P ]) to Robert, so he can check that the
devices mentioned are indeed recently used. If Robert sees a device
mentioned that he has not recently used, it is evidence of an attack
that an attacker who has used his long-term key without authorisation
and has inserted a certificate for him.

The device is now ready to be used. A similar process is used to un-
register a device with the log maintainer.
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skL, log, vkR

Log maintainer

dgold, σ
old
L , vkR, vkL

Sally

skR, dki

Robert’s device Di

- generate random number r
- dgold := (Root(Told), Size(Told))

m1 = (req2, R, r, dgold)

- Last(T ) := Root(T ′)
- find d in T ′ such that R is contained in d
- P1 := PoC(T, Last(T ))
- P2 := PoP(T ′, d)
- P3 := PoE(T, dgold)
- md := all data associated to d
- dgnew = (Root(T ), Size(T ))
- mL := (‘CertResp’, dgnew, Last(T ), {Pi}3i=1,md, t)
- σL := sign{mL, r}skL

m2 = (mL, σL)

- Verify t, σL, all received proofs and certificates
- set dgold := dgnew and σold

L := σL

- extract eki from each received certificate
- create symmetric key k

m3 = ({m}k, {k}eki) for all i

- decrypt {k}eki by using dki
- decrypt {m}k by using k

Figure 7: The protocol for sending and receiving a message. In which, σold
L

is the signature received from the log maintainer in the last session. If any
of the stated verification checks fails, the agent aborts the protocol.

5.2.2 Sending and receiving a message (Figure 7)

To send a message to Robert, Sally’s device retrieves all the current
device certificates for Robert from the log, and encrypts the messages with
each of them. More precisely (as presented in Figure 7), to send a message:

• Sally sends request m1 = (req2, R, r, dgold) to the log, where req2
3 is

the request identity, R is the identity of Robert, r is a random number,
and where dgold = (Root(Told), Size(Told)) is the digest of the log that
Sally received in the last session.

• After receiving the request, the log maintainer locates the leaf whose
label d contains R in the latest update T ′ (that is represented by
the rightmost leaf of T ), and generates the proof P1 that Root(T ′)

3This request corresponds to the ‘CertReq’ in our Tamarin code.
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is current in T , proof P2 that d is in T ′, and proof P3 that the cur-
rent log is an extension of the log that Sally has previously observed.
It then sends m2 to Sally. In particular, m2 is the signed message
(‘CertResp’, dgnew, Last(T ), P1, P2, P3, r,md, t), where ‘CertResp’ is a
tag, dgnew = (Root(T ),Size(T )), md = (R, (Dj , tj , ekj ,Certj)

P
j=1) is

the data associated to d, and t is the time to identify the current
epoch.

• After receiving the message from the log maintainer, Sally verifies if t
corresponds to the current epoch, and verifies the received signature,
proofs, and certificates. If all verifications succeed, she replaces dgold
and σold

L by dgnew and σL, respectively, where σL is the signature from
the log maintainer.
Her device encrypts a copy of the message with a fresh symmetric
key k, and encrypts k with each received eki. It sends the encrypted
message and together with the encrypted k to each of Robert’s devices.

• Robert picks up any of his devices, receives the encrypted message,
and decrypts it.

Note that in the protocol, if there is no certificate for Robert in the
latest update, then a proof of absence that the identity of Robert is not in
the latest update is provided to the user.

5.2.3 Updating the keys (Figure 8)

Devices change their key every epoch w.r.t. ϵ, and if they don’t do so
(because the application is not invoked on a particular day), then their key
will be reused for a certain period (e.g. a few more ϵ), and then will not be
included in the log for the next further update epoch. In this last case, the
device can’t be used for receiving and reading messages until Robert uses
the device again — it will re-register the device automatically. So, after
Robert can use this device again in δ time (e.g. one hour). Note that if
Robert has un-registered the device, then the device will not automatically
re-register itself; and Robert has to re-register it manually in this case.

More precisely, whenever Robert invokes the messaging app on a device
Dℓ, the device checks to see if it is the first time it has run the app during
that epoch w.r.t. ϵ. If so,

• Dℓ creates a new ephemeral key pair (dkℓ, ekℓ), issues a certificate
CertskR(Dℓ, ekℓ, tℓ), which will become the valid key in next epoch,
where tℓ is the key creation time. Then, he sends the signed request
m1 = (req3, R, dgold,CertskR(Dℓ, ekℓ, tℓ)) to the log maintainer, where
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skR, dk
old
ℓ , Certold, dgold, σ

old
L

Robert’s device Dℓ

skL, log

Log maintainer

- Generate (dkℓ, ekℓ) and issue CertskR(Dℓ, ekℓ, tℓ)
- dgold = (Root(Told), Size(Told))

m1 = (req3, R, dgold,CertskR(Dℓ, ekℓ, tℓ))

- verify the received certificate and tℓ
- dgnew := (Root(T ), Size(T ))
- σL := sign{‘Confirmation’, dgnew, h(CertskR

(Dℓ, ekℓ, tℓ))}skL

- Last(T ) := Root(T ′)
- find d in T ′ such that R is in d
- P1 := PoC(T, Last(T ))
- P2 := PoP(T ′, d)
- P3 := PoE(T, dgold)
- store m1

- md := all data associated to d

m2 = (dgnew,md, σL, {Pi}3i=1)

- verify σL, all received proofs, and that h(Certold) is in md

- dgold := dgnew
- σold

L := σL

- remove expired keys
- display all (Di, ti) to Robert

At the end of the epoch w.r.t. ϵ

Update the log similar to the update in Figure 6

Figure 8: The protocol for updating keys. In the protocol, dkoldℓ is the
current valid ephemeral secret key, Certold is the corresponding certificate,
dgold and σold

L are the digest and signature received from the log maintainer
in the last session, respectively.

req3
4 is the identity of update request, dgold = (Root(Told), Size(Told))

is the digest of the log that he observed in the last session.
• After receiving the request, the log maintainer verifies the signature,

time tℓ, and the received certificate. If they are all valid, then it gener-
ates a commitment σL = sign{‘Confirmation’, dgnew, h(CertskR(Dℓ, ekℓ, tℓ))}skL
that it will put the received new certificate in the log by the end of
this epoch. The log maintainer locates the node d for Robert in the
latest update of the log, and generates the proof P1 that the root hash
value of T ′ is the label of the rightmost leaf in T , proof P2 that d is

4This request corresponds to the ‘UpdateReq’ in our Tamarin code.
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present in T ′, and the proof P3 that T is an extension of the log that
Robert has observed in the last session. Note that P1 and P2 together
form the proof that d is the latest update for Robert in the log. The
log maintainer sends the generated signature and proofs to Dℓ.

• Upon receiving the response, Dℓ verifies all signatures and proofs. Ad-
ditionally, it verifies that the hashed certificate (contained in d) for Dℓ

in the latest update is indeed corresponding to the one it created and
sent in the previous epoch. This verification ensures that no unautho-
rised request has been generated and recorded in the current log. (We
will explain in the §5.3 that why we don’t need to require Dℓ to verify
all history certificates for Dℓ in the log are indeed generated by Dℓ.)
If all verifications succeed, Dℓ removes any expired keys stored in Dℓ,
replaces the stored digest of the log with the new one, and displays the
table (Di, ti) (for each possible i) to Robert, so he can check that the
devices mentioned are indeed recently used. If Robert sees a device
mentioned that he has not recently used, it is evidence of an attack.

• At the turn of the epoch, the log maintainer inserts all received update
request into the log. Suppose in the current epoch, the log maintainer
which maintains the log (represented by T of size n) has the tree T ′

n

containing

(Alice, DA,1, tA,1, h(certA,1)

DA,2, tA,2, h(certA,2)),

(Bob, DB,1, tB,1, h(certB,1)

DB,2, tB,2, h(certB,2)

. . .

DB,5, tB,5, h(certB,5)),

. . . . . .

and receives
(Ri, (CertskRi

(Di,j , eki,j , ti,j))
P ′
j=1)

M′
i=1

for some identity Ri and certificates for its devices Di,j , where P ′ is
the number of a user’s devices that have sent a key update request,
and M ′ is the total number of clients who have sent the key update
request in this epoch.

To update the log, the log maintainer performs the following steps:
Step 1) creates a new tree T ′

n+1 by copying and pasting the entire T ′
n;

Step 2) replaces the old certificates with the corresponding new ones
in T ′

n+1;
Step 3) checks if any un-replaced certificate is older than ζ; if there is

any, the log maintainer removes them from T ′
n+1;
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Step 4) extends T with a new rightmost node Root(T ′
n+1).

Similar to the idea explained in §5.2.1, the log maintainer can provide
the proof that the list of certificates (including the ones in the key up-
date request) for Ri is complete, and current in the log; and the proof
that the current log is an extension of the log that Ri has previously
observed.
If a device has not updated ephemeral keys and has been excluded
from the latest update by the log maintainer, then the device will
automatically re-register itself when the owner has used the device
again, so the device will be included in the log and be ready to receive
and decrypt messages in δ time.

5.3 Crowd-sourced verification

Since we want to guarantee some security even when the log maintainer
is not trusted, we need to monitor the log maintainer’s behaviour to see if
the log is maintained correctly. This can be easily verified by allowing any
interested party to download and check the entire log at any time. Parties
can set themselves up as monitors to perform such checks as a public service.
Alternatively or in addition, to avoid having to rely on such monitors, we
can use crowd-sourced verification by breaking the verification work into
independent little pieces, and distribute each piece to different devices.

First, we need to verify that the log update history recorded in T is
maintained in an append-only manner. This is achieved by verifying the
proof of extension performed in the protocols for enrolling a device, updating
the keys, and sending/receiving a message. Hence, there is no need for any
additional verification.

Second, we need to verify that in each update T ′
i , items are ordered

lexicographically according to the user identity. It can be verified by asking
each device to pick a random leaf in an update T ′

i , and verify that the
user identity recorded in its left (or right) neighbour leaf is lexicographically
smaller (resp. greater) than the user identity in the picked leaf.

Third, in our protocol a device only checks its latest certificate in the
log, instead of verifying all certificates recorded in the log. So, it cannot
guarantee that no attacker-generated certificates have been previously in-
cluded in the log. To detect such behaviour, we need to verify that the time
of the key generation for the same device in different updates of the log is
only going forward. To achieve this, each device picks a random leaf for a
user in an update Ti, and verifies that either the record in an update is the
same as the one in the previous update, or it is different and the time in the
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node for the same device of the user in the left (or right) neighbour update
Ti−1 (or Ti+1) is no greater (or no smaller) than the time in the picked leaf,
respectively. Additionally, if the two times are equal, then the hash values
of the certificates should also be equal. A missing associated record in a new
update is evidence of misbehaviour. If no leaf for the user is included in the
neighbour update, then a proof of absence that a node containing the user
identity is not included in the update is provided.

Remark. Note that these checks ensure that the log is maintained cor-
rectly, and the most recently published device key of all user devices are
recorded in the latest log update (i.e. the rightmost leaf of the top level
tree, see §5.1). Any unexpected record is evidence of misbehaviour of the
log maintainer. Thus, to detect the un-authorised usage of the long-term
keys, users only need to check their device records against the records in the
latest log update, as stated in the protocol for enrolling a device and for
updating the keys.

5.4 Privacy considerations

The public log may cause some privacy concerns. For example, depend-
ing on deployment specifics, one may want to hide the user identities con-
tained in a log against potential spammers, the total number of communi-
cations of a user, or the time distribution of a user’s communications, etc.
We provide an informal discussion here, and leave a detailed formal study
on the privacy of transparent log based systems as a future work.

To hide the user identity, the log maintainer can issue a signature on
a user identity, then use a hash value of the signed user identity in the
labels of leaves in each log update, rather than containing the user identity
directly in the labels (see Figure 5). The signature scheme used should be
deterministic and unforgeable, as suggested in [7]. Hence, users that have
the recipient’s address can request the signed user identity from the log
maintainer, and verify the log; but an attacker who has downloaded the
entire log cannot recover the identity of users, based on the unforgeability of
the chosen signature scheme. In this case, the nodes in each update tree T ′

i

will be ordered lexicographically according to the hash value of the signed
user identity. In addition, users can also make the log to be only available
to a fixed set of contacts. To hide the real number of communications
associated to a given client of the log, the client can generate some noise
— for example, the client can make ‘spoof queries’ to the log maintainer
through an anonymous channel (e.g. Tor network).
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6 Security Analysis

We provide all input files required to understand and reproduce our
security analysis at [29]. In particular, these include the complete DECIM
models. The proof assumes that all users see the same log (a gossip protocol
can be used to detect attacks in which different views of the log are presented
to different users). We also assume that each user has only one device.
The detection of some attacks when a user has multiple devices would need
the user’s involvement. A formal study on the user behavior and security
analysis with multiple devices is an interesting future work.

Security properties Our messaging protocol achieves both classical secu-
rity properties as well as novel ones. In a classical sense, Sally obtains the
guarantee that if Robert’s devices are not compromised, then the attacker
will not learn the messages she sends.

The more interesting properties are achieved in the cases where Robert’s
devices get compromised. In this case, we cannot avoid that messages sent
by Sally in the same epoch are also compromised. However, we prove that if
any of Sally’s messages from different epochs are compromised, then Robert
will be able to detect this.

Formal analysis We analyse the main security properties of the protocol
using the Tamarin prover [30]. The Tamarin prover is a symbolic analysis
tool that can prove properties of security protocols for an unbounded num-
ber of instances and supports reasoning about protocols with mutable global
state, which makes it suitable for our log-based protocol. Protocols are speci-
fied using multiset rewriting rules, and properties are expressed in a guarded
fragment of first order logic that allows quantification over timepoints.

Tamarin is capable of automatic verification in many cases, and it also
supports interactive verification by manual traversal of the proof tree. If
the tool terminates without finding a proof, it returns a counter-example.
Counter-examples are given as so-called dependency graphs, which are par-
tially ordered sets of rule instances that represent a set of executions that
violate the property. Counter-examples can be used to refine the model, and
give feedback to the implementer and designer.

Modeling aspects We used several abstractions during modeling. We
model the Merkle hash trees as lists, similar to the abstraction used in [19].

We model the protocol roles S (sender), R (receiver) and L (log main-
tainer) by a set of rewrite rules. Each rewrite rule typically models receiving
a message, taking an appropriate action, and sending a response message.
Our modeling approach is similar to most existing Tamarin models. Our
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modeling of the roles directly corresponds to the protocol descriptions in
the previous sections. Tamarin provides built-in support for a Dolev-Yao
style network attacker, i.e., one who is in full control of the network. We
also specify rules that enable the attacker to compromise devices and learn
their long and short-term secrets.

The final DECIM model consists of 450 lines for the base model, and six
main property specifications, examples of which we will give below.

Proof goals We state several proof goals for our DECIM model, exactly
as specified in Tamarin’s syntax. Since Tamarin’s property specification
language is a fragment of first-order logic, it contains logical connectives
(|, &, ==>, not, ...) and quantifiers (All, Ex). In Tamarin, proof goals are
marked as lemma. The #-prefix is used to denote timepoints, and “E @ #i”
expresses that the event E occurs at timepoint i.

The first goal is a check for executability that ensures that our model
allows for the successful transmission of a message. It is encoded in the
following way.

lemma protocol_correctness:

exists-trace

" /* It is possible that */

Ex d R skR dkR m #i.

/* R received an encrypted message m on device d */

MsgReceived(d, R, skR, dkR, m) @ #i

/* without the adversary compromising any device. */

& not (Ex d2 A ltk dkR #j.

Compromise_Device(d2, A, ltk, dkR) @ #j)"

The property holds if the Tamarin model exhibits a behaviour in which
one of R’s devices received a message without the attacker compromising
any device. This property mainly serves as a sanity check on the model. If
it did not hold, it would mean our model does not model the normal (honest)
message flow, which could indicate a flaw in the model. Tamarin automati-
cally proves this property in a few seconds and generates the expected trace
in the form of a graphical representation of the rule instantiations and the
message flow.

We additionally proved several other sanity-checking properties to mini-
mize the risk of modeling errors.

The second example goal is the core secrecy property with respect to a
classical attacker, and expresses that unless the attacker compromises one of
Robert’s keys, he cannot learn any messages sent by Sally. Note that K(m)
is a special event that denotes that the attacker knows m at this time.

lemma message_secrecy:
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"All R skR ekR m #i.

/* If S sent a message m to R */

( MsgSent(R, skR, ekR, m) @ #i &

/* without the adversary compromising any of Robert’s

devices */

not (Ex #j d sk dkR.

Compromise_Device(d, R, sk, dkR) @ #j)

) ==>

/* then the adversary cannot know m */

(not ( Ex #j. K(m) @ #j) ) "

Tamarin also proves this property automatically.
The above result implies that if Robert receives a message that was sent

by Sally, and the attacker did not compromise his device during the current
epoch, then the attacker will not learn the message.

The final property encodes the unique security guarantees provided by
our protocol. If the attacker compromises Robert’s device in an epoch, he
can use the private ephemeral key to decrypt Sally’s messages in that epoch.
We prove that if he uses the compromised long-term key of Robert to learn
messages sent by Sally in other epochs, then he will be detected once Robert
checks the log.

lemma detect_usage_S_sends:

"All d skR dkR m #i1 #i2 #i3 detectionresult R k.

/* If S sent to R an encrypted message m,

where pk(dkR)=ekR */

( MsgSent(R, skR, pk(dkR), m) @ #i1 &

/* and the adversary knows m */

K(m) @ #i2 &

/* and the ephemeral key used by the sender was

not compromised, i.e., the compromise occurred

in a different epoch */

not (Ex #j sk .

Compromise_Device(d, R, sk, dkR) @ #j ) &

/* and Robert afterwards checks the log */

CheckedLog(d, R, detectionresult, k ) @ #i3

& #i1 < #i3

) ==>

/* then we detect a compromise */

( (detectionresult = ’bad’) ) "

The property states that if Sally sends a message when Robert’s device
is not controlled by an attacker in the current epoch (but might have been
compromised previously), and the attacker learns the message, then Robert
detects the fact that his key was previously compromised when he next
verifies the log.

The above properties are all proven automatically by the Tamarin
prover on a laptop within a few minutes. Overall, the modeling effort was in
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Table 3: The size of messages in different protocols. In which, sizeP is the
size of proofs in the corresponding message, and sizeM is the maximum size
of a message.

Enrolling Fetching keys Updating Crowd-sourced
a device from log the keys verification

Size of request message 1.6 KB 78 B 1.5 KB -
Size of response message 2.5 KB 6.9 KB 2.5 KB 5.9 KB
Size of proof in (response) message 2.2 KB 2.2 KB 2.2 KB 5.3 KB

Total message size 4.1 KB 7 KB 4 KB 5.9 KB

the order of weeks, with several iterations to debug both the abstract model
and the property specifications. The verification process helped us not only
to prove, but also to refine the precise security properties of our protocol.

7 Realization in practice

7.1 Estimating communication cost

To check if deployment might be feasible, we estimate the expected cost
of our protocol design. As an example, we consider the following scenario.
We assume that there are 109 users, each user has 3 devices, the log has been
operating for 100 years, the log update period δ for registration request is 1
hour, and the log update epoch ϵ for certificate update is 1 day.

In this scenario, the size of T will be 100·365+100·365·24 = 912500 < 220,
and the size of each T ′ is 109 which is less than 230. In addition, we assume
that the size of a hash value is 256 bits (e.g. SHA256), the size of a signature
is 64 Bytes (e.g. ECDSA), and the size of a certificate is 1.5 KB.

In addition, we assume that the size of a user (or device) identity is
12 Bytes, and time is in the 64-bit format, a random number is 28 bytes
(recommended by TLS 1.2 [31]), each request identifier is 4 bits, and the
size of a digest of a log is 300 bits.

The size of a proof of presence that some data is in T and is in T ′ will
be at most 640 bytes and 960 bytes, respectively; the size of the proof that
a version of the log is extended from a previous version is at most 640 bytes.
We present the size of messages in the protocol in our example scenario in
Table 3.

From Table 3 we can see that up to 5 KB data are needed to be trans-
ferred for both enrolling a device and updating keys. The protocol for fetch-
ing keys from the log is the most expensive one, as the sender has to down-
load all certificates for different devices of the same users. In our example,
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the sender needs to download 3 certificates, the size of which is already 4.5
KB.

The results of our analysis indicate that the space cost of our system is
acceptable.

7.2 Proof-of-concept log server prototype

To demonstrate the deployment of DECIM in a real-world setting, we
built a proof-of-concept prototype of the log server. We implemented a
full log server implementation with interfaces, and client-side code for (a)
adding users/devices, (b) rotating keys at the end of each epoch, and (c)
sending messages. This involves all the operations to manipulate the log
(consisting of a tree of trees), produce various proofs, and produce and verify
the appropriate signatures. Anticipating a deployment on platforms such as
Google’s App Engine, we implemented our code in Python. We use basic
caching mechanisms for previously computed results.

On a quad-core 4 GHz Intel Core i7 with 32 GB of memory, we obtain the
following times. The times are measured locally and therefore do not include
network latency. Performing 100000 (1e05) enrollment requests from distinct
users takes 1526 seconds, i.e., 15 milliseconds per request on average. When
100000 (1e05) users enroll 3 devices each, enrollment takes 1708 seconds, i.e.,
5.7 milliseconds on average. The delay experienced by the user is therefore
dominated by the network latency of transmitting 4.1 KB (Table 3), which
is certainly less than a second.

When the tree contains 10000 (1e04) entries, the server produces 100000
(1e05) responses to message queries in 14.1 seconds, i.e., 0.14 milliseconds
per message query. Updating a tree by simultaneously adding 10000 (1e04)
entries takes about 1 second, which is mostly spent in creating the leaf
data structures. Once again, the user’s experience is mostly affected by the
network latency, which is small because the data transferred is a few KB.

The memory usage when 100000 (1e05) users enroll one device is 410 MB
(computed using “heapy” for the full process, not just reachable objects). If
they enroll three devices each, memory usage increases to 900 MB.

Thus, even though our proof-of-concept implementation is not yet opti-
mized for efficiency or storage, its performance already indicates our scheme
is feasible.
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8 Conclusion

End-to-end encryption has become popular in the years since the Snow-
den revelations, motivating attackers wishing to intercept messages to in-
stead turn their attention to client end-points. To address this, we have
presented a novel messaging protocol that offers security guarantees even
when an attacker can access all the secret keys in a user’s devices. In partic-
ular, (a) the protocol limits the impact of a compromise, since the attacker
can only learn messages sent in the same epoch without being detected, and
(b) if the attacker uses compromised long-term keys to impersonate users,
then the protocol allows the participants to detect this, and therefore to take
remedial action. Our protocol supports multiple devices per user, and the
multiplicity of devices helps detect attacks by intuitive indicators to users
about which (device) keys have recently been active.

The methods we introduce are not intended to replace existing methods
used to keep keys safe. Existing technologies such as Axolotl ratcheting,
TPMs, smart-cards, and ARM TrustZone are all useful for securing keys.
However, none of these technologies are completely secure. For example,
even if hardware security is used, malware may be able to trigger usages of
the key without having the ability to copy the key. Our methods can also
detect such cases. Thus, DECIM adds an additional layer of security that
allows users to detect when other layers fail.
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