
Systematically Covering Input Structure
Nikolas Havrikov

CISPA Helmholtz Center for Information Security
Saarland Informatics Campus

nikolas.havrikov@cispa.saarland

Andreas Zeller
CISPA Helmholtz Center for Information Security

Saarland Informatics Campus
zeller@cispa.saarland

Abstract—Grammar-based testing uses a given grammar to
produce syntactically valid inputs. To cover program features,
it is necessary to also cover input features—say, all URL
variants for a URL parser. Our k-path algorithm for grammar
production systematically covers syntactic elements as well as
their combinations. In our evaluation, we show that this results
in a significantly higher code coverage than state of the art.

I. INTRODUCTION

Testing programs with randomly generated inputs, or
“fuzzing”, is a cost-effective means to test programs for
robustness: If a program has not been subjected to random
inputs before, the chances are high that some input will cause
the program to fail.

To reach deeper layers of a program, though, inputs must
be syntactically valid because invalid inputs would be rejected
already during initial input processing. To this end, recent
fuzzing approaches [1]–[4] make use of grammars to specify
the language of program inputs. A grammar-based test generator
uses a grammar to expand a start symbol into further symbols
(often selecting from alternatives), which it would repeatedly
expand until only terminal symbols are left. For the grammar
shown in Figure 1, for instance, the Expr start symbol may
expand into an AddExpr and then a MultExpr, which again may
expand into a UnaryExpr, which would eventually become a
string of digits.

While the concept of producing inputs from grammars is
simple, any practical implementation has to struggle with two
problems. The first issue is to ensure an input does not grow
beyond bounds. In Figure 1, if the producer always selects
the last expansion alternative, the result will be an infinitely
long arithmetic expression. A producer thus needs means to
determine which expansion to choose in order to avoid such
growth.

The second issue of producing from grammars is to ensure
input coverage. Intuitively, a high variation in the inputs
(say, operators) induces a high variation in program behavior.
Conversely, if some input element is not present in the input
(say, "+"), the code that processes it will not be executed. It
is thus desirable to cover as many different input elements
and productions as possible. In our expression grammar, this
means to cover all operators and all digits.

How does one maximize coverage? One way, suggested
by Purdom [5] is to ensure that during production, uncovered
production alternatives would be preferred over covered produc-
tion alternatives. In Figure 1, we would first expand AddExpr

Expr → AddExpr;
AddExpr → MultExpr

| AddExpr ("+" | "-") MultExpr;
MultExpr → UnaryExpr

| MultExpr ("*" | "/" | "%") UnaryExpr;
UnaryExpr → Identifier

| "++" UnaryExpr
| "--" UnaryExpr
| "+" UnaryExpr
| "-" UnaryExpr
| DecDigits
| "(" AddExpr ")";

DecDigits → DecDigit+;
DecDigit → "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9";
Identifier → "x" | "y" | "z";

Figure 1: Grammar for JavaScript expressions (simplified)

DecDigit → X0; X2 → "2" | X3; X5 → "5" | X6;
X0 → "0" | X1; X3 → "3" | X4; . . .
X1 → "1" | X2; X4 → "4" | X5; X9 → "9";

Figure 2: A DecDigit rule variant that is hard to cover

into the first alternative (MultExpr), and the next time into the
second alternative. Likewise, once we have covered the "+"
alternative, we’d go for the "-" alternative the next time. Over
time, Purdom’s approach would cover all alternatives.

Unfortunately, there are grammars where neither the random
nor Purdom’s approach help in achieving coverage. This
becomes apparent when we reformulate the DecDigit rules as
shown in Figure 2. Now, the digits are no longer chosen and
produced uniformly. Choosing a DecDigit expansion at random
yields a 50% chance of producing a "0", a 25% chance of
a "1", and a 1/1024 = 0.0977% chance of producing a "9".
Clearly, we would want to cover all terminals quickly, but on
average, it would take 1,024 inputs until we see "9" produced.

Purdom’s approach helps a bit, but is far from perfect; in
the first expansion of X0, it would mark "0" as covered,
then expanding X1 the second time (with a 1/512 chance of
producing a "9"). However, after having both covered "0"
and X1, it would no longer prefer one over the other, still
yielding 50% "0" expansions.

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/288306097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Identifier → Identifier | Character Identifier;
Character → ASCIICharacter | UnicodeCharacter;
ASCIICharacter → ASCIIUpper | ASCIILower | "_";

Figure 3: An Identifier rule that is hard to cover

If Figure 2 feels a bit too pathological, consider Figure 3, list-
ing possible rules for identifiers. Not only does this formulation
result in 50% identifiers consisting of one character only; also,
both Identifier alternatives would be quickly marked as covered
by Purdom’s approach. In other words, our producer would
have no incentive to systematically cover identifier characters
or their categories. The deeper the grammar, the greater the
extent of this coverage problem.

In this paper, we introduce a novel grammar production
algorithm, called k-path, that addresses all these issues:
Input coverage. The k-path algorithm ensures quick coverage

of all grammar features. Specifically, it chooses expansion
alternatives that lead to input elements not covered yet;
applied on Figure 2, its first ten productions consist of
the elements "0" to "9"; on Figure 3, it produces long
identifiers that cover all valid Character elements.

Combination coverage. The k-path algorithm ensures (if
wanted) coverage of combinations of grammar features,
whose context size is controlled by k. Applied on Figure 1,
for instance, it produces additions within multiplications,
multiplications within additions, unary minuses within
parentheses, and all sorts of combinations one would
want to test in a symbolic calculator, for instance.

Growth control. The k-path algorithm effectively limits
growth beyond bounds. If the number or depth of elements
produced exceeds a certain threshold, the k-path algorithm
will always choose alternatives that eventually end in
terminal symbols, thus ensuring a quick closure of
production.

These features are effective. Compared against a state-of-
the-art grammar producer, Grammarinator [2], our tribble
prototype implementing k-path results in a higher code cov-
erage in the same time. These benefits are not limited to
text inputs alone. We show that a number of classical testing
domains (configuration testing, UI testing, reactive systems)
can be encoded as grammars, resulting in k-path systematically
covering all features, interactions, and commands, as well as
their sequences. To the best of our knowledge, k-path is the
first algorithm systematically and universally striving for “deep”
coverage beyond individual production rules.

The remainder of this paper is organized as follows. Sec-
tion II introduces grammars, their elements, and derivations.
Section III details coverage criteria for grammars, including
k-path coverage. Section IV derives the k-path production
algorithm, which systematically satisfies these coverage criteria.
After giving implementation details (Section V), Section VI
evaluates the k-path algorithm, comparing against the Grammar-
inator state-of-the-art producer. Section VII discusses further
applications beyond text inputs, encoding problems such as

Grammar → Production+;
Production → NonTerminal "→ " Alternation ";";
Alternation → Concatenation ("|" Concatenation)*;
Concatenation → Atom+;
Atom →

(
"(" Alternation ")"
| Literal | Reference

)
Quantifier?;

Quantifier → "?" | "+" | "*"
| "{," num "}"
| "{" num ",}"
| "{" num "," num "}";

Figure 4: A grammar for context-free grammars (excerpt)

configuration testing, UI testing, or reactive systems as gram-
mars that can be effectively handled by the k-path algorithm.
After discussing related work (Section VIII), Section IX closes
with conclusion and future work.

II. GRAMMARS AND DERIVATIONS

In this work, we consider test generation based on context-
free grammars. We assume the reader is familiar with the
concept of context-free grammars; for the purpose of precision,
we introduce their syntax, semantics, and composition as used
in this paper.

A. Composition

To name and define the individual elements of the grammars
as used in this paper, we use—well—a grammar that describes
their names and syntax. As detailed in Figure 4, a grammar
consists of productions, each of which expands a nonterminal
into an alternation. The grammar in Figure 1, for instance, has
seven such productions, one for each nonterminal.

An alternation is a sequence of alternatives over non-empty
sequences of concatenations. A concatenation consists of atoms,
which can be parenthesized alternations, literals, or references
(which are essentially nonterminals on the right side of a
production). In Figure 1, an AddExpr nonterminal expands into
either a MultExpr, or a concatenation of another AddExpr, an
operator (plus or minus), and a MultExpr.

Optional quantifiers allow to express that an atom can be
repeated zero or once (?), once or more (+), or zero or more
(*) times; {n,m} indicates at least n repetitions and at most m
repetitions. In Figure 1, DecDigits is a non-empty sequence of
DecDigit literals.

In the remainder of this paper we will collectively refer to
references and literals as symbols. Additionally, we assume
that all grammars have exactly one start symbol: a nonterminal
which no reference refers to. In Figure 1 the start symbol is
Expr, while in Figure 4 it is Grammar.

B. Graph Representation

A grammar can also be seen as a directed graph whose nodes
represent parts of the grammar from Figure 4. Not unlike a tree,
this graph has a “root” at the start symbol of the grammar, and
we will refer to nodes that are connected to a given node as its
children. The children correspond to the derivations available

from the part of the grammar their parent node corresponds
to. Unlike a tree, however, a grammar graph can have cycles
because some nonterminals can be used in multiple derivations.
To illustrate this concept Figure 5 shows an excerpt of the
graph representation of the expression grammar from Figure 1.
A graph is derived from the productions of a grammar by
applying the following rules:

1) Each nonterminal is replaced by the graph representation
of the right hand side of its production.

2) For each alternation a synthetic node + is created. Its
children are the corresponding concatenations.

3) Analogously, concatenations become synthetic ~ nodes.
4) Each quantifier becomes a node (+, ∗, ?, {n,m}) whose

child is the graph representation of the atom the quantifier
is attached to.

5) Literals become nodes with no children.
6) References to nonterminals become nodes that have as

their child the subgraph created by the nonterminal they
refer to. In Figure 5 these connections are represented
by dashed lines so that the underlying tree-like structure
remains clearly visible.

7) All reference and literal nodes (referred to as symbolic
nodes) are assigned a unique id by numbering equally
named elements. This is necessary to distinguish between
equal nodes in different contexts. For example, consider
the literal "+" which occurs both inside the AddExpr
and UnaryExpr productions—in the graph these should
be different nodes, hence they get two different ids: "+"0
and "+"1.

For space reasons, Figure 5 omits synthetic + nodes which
would be the only children of references. Otherwise AddExpr0,
MultExpr0, and UnaryExpr0 would each have one such node
as their only child.

C. Derivation Trees
In this work we use the classical definition of derivation

trees as given in literature [6]. In short, a derivation tree
represents the structure of a string according to a given grammar.
Additionally, we say that each node in the tree is of the type
of its corresponding node in the grammar graph. Further, a
tree node has numbered slots which are said to be filled with
their children. Due to the nature of our grammars, the root of
a derivation tree always has exactly one child slot. Figure 6
shows the derivation tree for the string “x+42” according to
the grammar given in Figure 1.

III. GRAMMAR COVERAGE CRITERIA

When producing strings from a grammar, we want to cover
individual features of the grammar. The intuition of coverage is
that if some feature of the grammar is never exercised during
testing, neither will the code be executed that processes this
very feature; and if code is not executed, it cannot reveal faults
during testing. In Figure 1, for instance, if the generated inputs
miss out the "++" operator, we will not be able to exercise
the associated code. In this section, we introduce coverage
criteria as used in this paper.

A. Symbol Coverage

We start with the (very basic) symbol coverage, stating that
each symbol (i.e. reference or literal) in the grammar should
be encountered at least once:

Definition 1 (Symbol Coverage): A set of strings achieves
symbol coverage if each symbolic node in the graph represen-
tation of the grammar occurs at least once in the set of their
derivation trees.

This definition assumes a (constructive) derivation tree;
however, if the grammar is used for parsing inputs, we can
obtain an equivalent parse tree.

The associated symbol coverage metric then becomes

symbol coverage =
#symbolic nodes in derivation tree
#symbolic nodes in grammar graph

How much symbol coverage does the derivation in Figure 6
achieve? The full grammar consists of 40 symbolic nodes of
which the given derivation covers 13, resulting in a symbol
coverage of 32.5%. Note that nodes with the same id are
counted as only one node.

B. k-Path Coverage

As the next step in coverage metrics, we introduce the
notion of context: We would like to cover symbols not only
individually, but also in the context of other symbols. This is
based on the intuition that some input elements have different
meaning in different contexts, and programs may thus process
them differently. For arithmetic expressions (Figure 1), for
instance, it may be useful to test various combinations of
AddExpr expressions within MultExpr expressions and vice
versa because we could then cover program features like
applying distributive laws.

In principle, one would like to see all combinations of
symbols covered; however, this quickly leads to a combinatorial
explosion. We thus introduce the notion of k-path coverage,
which mandates that all unique symbol paths up to a length
of k be covered.

Definition 2 (k-path): A k-path is a sequence of nodes
connected in the direction of the edges with exactly k symbolic
nodes.
For example, walking along the left edges in the graph in
Figure 5 starting from its root, we end up with the 5-path
Expr0 → AddExpr0 → MultExpr0 → UnaryExpr0 → "+"0.
Note that k-paths need not start at the root and thus the value
of k does not limit the depth of a tree. In fact, a tree must
have at least depth k to contain k-paths.

In the following definition we leverage the fact that the
definition of k-paths applies to both grammar graphs and
derivation trees.

Definition 3 (k-Path Coverage): A set of strings achieves
k-path coverage if each k-path in the grammar graph occurs
at least once in the set of their derivation trees.
The appropriate coverage metric is again defined by the fraction
of possible paths covered.

The case k = 1 is special: 1-path coverage is equivalent to
the symbol coverage as defined above.

Expr0

AddExpr0

~

MultExpr1+

"-"0"+"0

AddExpr1

MultExpr0

~

UnaryExpr1+

"%"0"/"0"*"0

MultExpr2

UnaryExpr0

. . .DecDigits0

+

DecDigit0

. . .

~

UnaryExpr2"+"1

Figure 5: Grammar from Figure 1 represented as a graph (excerpt)

Expr0

AddExpr0

~

MultExpr1

UnaryExpr0

DecDigits0

+

DecDigit0

"2"0

DecDigit0

"4"0

+

"+"0

AddExpr1

MultExpr0

UnaryExpr0

Identifier0

"x"0

Figure 6: Derivation tree representing the string "x+42"
according to the grammar from Figure 1

Let us assume k = 2 and see which 2-paths are covered by
the derivation tree in Figure 6:

1) Expr0 → AddExpr0
2) AddExpr0 → AddExpr1
3) AddExpr0 → "+"0
4) AddExpr0 → MultExpr1
5) AddExpr1 → MultExpr0
6) MultExpr0 → UnaryExpr0
7) UnaryExpr0 → Identifier0

8) Identifier0 → "x"0
9) MultExpr1 → UnaryExpr0

10) UnaryExpr0 → DecDigits0
11) DecDigits0 → DecDigit0
12) DecDigit0 → "4"0
13) DecDigit0 → "2"0

To find all the paths to be covered, we can use the grammar
and determine all distinct sequences of symbols with a length
of k. For Figure 1 and k = 2 we have 126 paths; these
include, for example, encountering Identifier in the context of

all possible unary expressions – a condition which Figure 6
does not satisfy. For k = 3 we already have 526 paths to cover,
of which the same tree only covers 12.

Note that the number of paths grows exponentially with k.
For the grammar in Figure 1, k = 4 already gives us 2333
paths of symbols to be covered; and k = 5 yields 10247 paths.

IV. COVERAGE-DRIVEN GENERATION

Because we can enumerate all possible k-paths, we can also
construct an algorithm that systematically produces a forest of
derivation trees that cover them. Our algorithm for doing just
that is given in Figure 7.

Given k, a grammar, and a depth limit the algorithm begins
by storing all k-paths available into a list P and shuffling it. It
then iterates over this list generating a derivation tree to cover
each k-path.

For each such tree, the algorithm maintains a list Q of child
slots that still need to be expanded. Initially, it only holds the
only child slot of the start symbol.

The loop in Line 9 expands the slots from Q forming an
ever growing tree-front. Having found a node n which is the
first node of the currently targeted path p that has not yet been
used in a derivation, in Line 11 we select and remove from Q
a slot a that enables reaching n. If all nodes in p have already
been used, the choice does not matter and a slot is chosen at
random.

Starting at Line 12 when selecting among available alter-
natives for the chosen slot a, we again select the one getting
us to cover p in the least number of derivation steps. If we
already covered p, one of two strategies is applied depending
on the current tree depth: If there are nodes which lead to
producing k-paths which fit in the given depth limit, choose
one of the least often used, otherwise choose the node with

the smallest possible derivation to complete the current tree r
as quickly as possible.

1: procedure CONSTRUCTKPATH(k, grammar, depth limit)
2: forest← {}
3: P← { all k-paths in grammar }
4: P← shuffled P
5: while P , {} do
6: p← remove next k-path from P
7: r ← the start symbol from grammar
8: Q← { child slot of r }
9: while Q , {} do

10: n← next uncovered node in p, or 7 if all covered
11: a← a slot removed from Q with shortest derivation

path to n if it is not 7, otherwise any.
12: if n is not 7 then
13: m← expansion of a closest to n
14: else
15: C ← expansions of a that fit in the depth limit
16: if C is empty then
17: m← shortest expansion of a
18: else
19: m← element of C with fewest k-paths used

so far
20: Fill slot a with m
21: Remove from P all k-paths ending in m found in r
22: for each admissible child slot b of m do
23: Q← Q ∪ {b}
24: forest← forest ∪ {r}
25: return forest

Figure 7: k-Path Algorithm

Since we have seen in Section III that the number of k-
paths can grow exponentially with k we would like to avoid
having to generate an entire derivation tree for each k-path. In
Line 21 we therefore keep track of k-paths that we happened
to cover while “on the way” to p and remove them from P.
This dramatically reduces the number of trees generated.

We then add to Q the slots of the chosen expansion m, such
that the loop in Line 9 completes the current tree in r , which
will then be added to the forest, which the algorithm returns
after all k-paths in P are covered.

The algorithm avoids boundless growth by construction: it
always takes the shortest derivation route until the targeted
path is covered and closes off peripheral subtrees within the
given depth limit if possible, or with the shortest available
derivations otherwise.

As an example, consider the derivation of a tree when the
next goal to cover is the 3-path Expr0 → AddExpr0 → "+"0
from Figure 5. At this point this path is removed from the
set of the not yet reached targets in Line 6 and stored as p.
Then a new tree root node r is created with type Expr0. In
Line 10 n becomes AddExpr0 and a is filled with an instance
of AddExpr0 as it is the only option at this point. In the next
iteration of the loop n becomes "+"0 and a is the + node
as it is the only child of AddExpr0 (we left this node out in
Figure 5 due to space reasons). The next important step is
when beginning in Line 12 a decision is made regarding which
of the two children of + are admissible in this context since
only one of them can be expanded in the current tree. Again,

this decision is guided by the shortest path to the currently
targeted "+"0 node—in this case the ~ node gets expanded
and its three children AddExpr1, + , and MultExpr1 are then
added to Q. After the "+"0 is added to the tree in the next
iteration, p will become 7 and the algorithm will close off
the two remaining nodes AddExpr1 and MultExpr1, while also
keeping track of 3-paths covered while doing so and removing
them from P.

Note that in our example, we will have additionally covered
the 3-paths Expr0 → AddExpr0 → AddExpr1 and Expr0 →

AddExpr0 → MultExpr1 (and many more on the way down
such as MultExpr1 → MultExpr0 → UnaryExpr0) while only
actively trying to cover the path to "+"0.

V. IMPLEMENTATION

Our tribble prototype comes in about 1,200 lines of code
written in the Scala programming language and only requires a
Java 8 or later runtime to work. The grammars it takes as input
are written using our specifically designed language, which is
a subset of Scala itself.

In fact, the grammar in Figure 1 only needs minor ad-
justments to be readable by tribble: All nonterminals and
references need to be prefixed with ′, the → must be replaced
by :=, and productions are delimited by a comma instead of
a semicolon. Concatenations must be explicitly indicated by ~,
and quantifiers are encoded as calls to the .rep(n,m) method.
Additionally, regular expression shorthands are supported by
means of the .regex method that can be called on strings.

As an example, consider the following small grammar: ′S
:= ′A.rep(2,5) ~ "(b|c)*".regex,

′A := "a".
This grammar produces strings that start with two to five “a”s,
optionally followed by any number of “b”s and “c”s.

Our grammar description language being a valid subset of
Scala enables users of tribble to profit from syntax highlighting
available in all IDEs that support Scala at no development cost
to us.

VI. EVALUATION

We want to study the effects of systematically covering k-
paths compared to grammar-based fuzz testing. We compare
our approach against the state-of-the-art grammar-based input
generator Grammarinator [2], which expects its grammars to
be in the format defined by the ANTLR parser generator [7].
For our experiments we selected the grammars of popular and
well known languages from the popular GitHub repository
hosting a variety of grammars in ANTLR format [8]–[11] and
manually translated them into the format required by tribble
as consistently as possible, i.e. only changing their notation.
We carry out our experimental investigation on open source
projects listed in the leftmost column of Table I. Their selection
consists of the most popular results on Google Search among
open source projects consuming the selected formats.

For the JSON language all our subjects are parsers, except
for some notable exceptions: jackson-databind, genson, gson,
fastjson additionally allow data-binding for automatic (de-
) serialization of JSON objects from and into data classes. The

subjects json-flattener and pojo serve the purpose of flattening
a JSON structure and generating Java source code, respectively.

The subjects for CSV are all parsers capable of data-binding.
However, our tests only engage the part of their functionality
related to parsing because it is impractical to pre-generate data
classes for dynamically generated inputs. The same holds for
the data-binding JSON subjects.

For URL the projects galimatias and jurl are pure parsers,
while autolink and url-detector additionally detect urls inside
arbitrary plain text before parsing them.

Our subjects for the Markdown format concern themselves
with rendering their inputs into HTML outputs for displaying
in a web browser.

Since most of the subjects are libraries, they require a
test harness to execute test cases. For each of the subjects
we implemented a launcher which instantiates the necessary
structures, sets any available options, and feeds an input file
into the main API functions covering the documented use cases.
In cases where the subject is an executable, the launcher is
simply a wrapper around its main method.

Grammarinator requires two parameters: d and n, the
maximum depth and number of the derivation trees to be
generated, respectively. For a fair comparison, we first run
the k-path algorithm with a given k, and take the number
of the generated inputs to be n for a corresponding run
of Grammarinator. We set the depth d to 30 for both
tools because we found this number in the configuration
repository [12] provided by the authors of Grammarinator.
Further, we set the parameter --cooldown to 0.9 and add a
simple_space_transformer as described in the tool’s
paper. Due to randomness, we repeat the invocation of each
algorithm 50 times. We repeat the above setup for several
different values of k to investigate the influence of the path
length.

A. Code Coverage

Table I shows the average branch coverage achieved by each
tool over 50 runs. Since all our subjects are targeting the Java
platform, we use the JaCoCo [13] tool to gather coverage data
by means of offline bytecode instrumentation. The columns
labeled as k-path show the average branch coverage achieved
with files generated by the k-path algorithm with the given value
of k. The k-gram columns show the average branch coverage
for runs of Grammarinator having the same number of files as
runs of k-path with the given k. E.g. if an invocation of 2-path
produced a set of 10 files, the corresponding 2-gram run would
also consist of 10 files. Note that for each k the values in Table I
represent the average of 50 such corresponding pairs rounded
to four decimals. For each pair, the bigger entry is given in bold
font for easy comparison at a glance. To investigate if these
average values, in fact, do represent the average performance
of both approaches, we performed a statistical significance
analysis using the two-sided Mann–Whitney U test [14] as
implemented in the Python SciPy library [15]. In Table I,
the significantly different entries (all but six) are shown in
bold. Further, the subjects listed in Table I are grouped by the

grammar describing the language of their inputs: JSON, CSV,
URL, and Markdown.

Table I shows that for k = 1 the coverage achieved by inputs
generated by the k-path algorithm roughly equates the one
achieved by Grammarinator across all subjects.

When considering only subjects consuming JSON inputs,
Grammarinator still outperforms tribble on all but three
subjects. This is due to the 1-path algorithm not being interested
in actively covering any meaningful combinations and nesting
of JSON arrays and objects, which might trigger additional
behavior in the subjects.

When the context depth k is set to 2, however, this
disadvantage disappears as tribble now covers more code in
all but two subjects. Because this time 2-path actively tries to
cover pairs of elements, its coverage is much higher than that
achieved by 1-path. To produce these additional combinations,
however, more inputs needed to be generated by 2-path (see
Table III) and so Grammarinator also has a higher generation
budget. Still, for Grammarinator this does not always lead to
an increase in coverage. For an example consider the coverage
for the subject argo, whose coverage is 0.4116 for 1-gram and
only 0.3963 for 2-gram.

Setting the context k to 3 further strengthens the performance
of k-path as it now seeking to cover contexts of depth 3. Once
again, there is an improvement over the previous configuration.

Increasing the context depth k to 5 improves the achieved
coverage over the previous configurations, but this time,
Grammarinator is beginning to catch up again. This is due
to contexts deeper than a certain threshold not necessarily
corresponding to explicit variations in the executed code
anymore. For a JSON parser for example, there would not
be much difference between seeing a doubly or triply nested
array in terms of control flow. However, there could still be
some notion of context encoded in the flow of data instead.
For example there could be a counter keeping track of the
current nesting depth used for matching the correct number of
closing brackets. Changes in its state would not be reflected in
code coverage, even though it might still make sense to strive
for testing some of the values the counter can assume.

For k = 2 and k = 3, tribble covers more branches than
Grammarinator on 22/24 and 23/24 subjects.

The advantage of tribble over Grammarinator can be large.
In the cases of autolink and galimatias, tribble achieves about
twice the coverage of Grammarinator, even for 1-path already.
There are no cases in which Grammarinator would outperform
tribble by the same margin.

B. Defect Detection

When generating test inputs, one must not forget why we test
in the first place. During our experiments, we found a number
of exceptions thrown by our test subjects; as all of these are
triggered by system inputs, they all indicate internal errors.
We filter out those exception classes that are defined inside

the subjects’ packages assuming they represent expected user-
facing error behavior. The results are summarized in Table II:
For each subject in which exceptions could be triggered, the
exception class name, its origin, as well as its detection rate
is given for both approaches. The detection rate indicates in
what fraction of runs a given exception was triggered at least
once at the given location.

The location unknown entry in the json-flattener subject
is a result of our test harness failing to provide a stacktrace
for this particular failure. The InvalidSyntaxException
thrown by argo and ParseException thrown by json-
flattener, which are triggered exclusively by Grammarinator
might indicate a bug in its implementation of input generation
rather than in the subjects themselves. A similar effect can be
observed for both exceptions thrown by galimatias, but for
tribble instead.

If we discount the four of these likely non-issues, we see
that in the k = 1 configuration k-path is able to trigger three
exceptions exclusively: Two NullPointerExceptions
and a StringIndexOutOfBoundsException, none of
which should ever be allowed to be thrown into user code as
they all indicate fatal errors of the internal state.

With increasing k the detection rate increases for both
approaches, but it does so for tribble more reliably: There
are only two cases of regression for tribble, both in the txtmark
subject, while there are four for Grammarinator distributed
over three subjects expecting three different input formats.

By the 5-path configuration, out of the 23 exceptions
triggered, 3 are unique to Grammarinator, 8 are unique to
tribble, and the remaining 12 were found by both.

Compared to Grammarinator,
tribble found more unique exceptions.

C. Threats to Validity

Our evaluation is subject to threats to validity.
• In terms of external validity, we have examined 24 subjects

and four grammars, covering a variety of input and
implementation features; while the results are consistent,
we cannot claim generality across all programs and inputs.

• In terms of internal validity, we have taken great care in
validating our findings, notably by using well-established
tools for computing code coverage, and validating gram-
mar coverage during construction. In addition, our tool
chain from raw data to paper is fully automated, avoiding
the risk of human error; all data and tools are available
for external replication and validation.

• Regarding construct validity, the code coverage metrics
as well as the linear regression techniques to establish
correlations are well-established textbook techniques.

VII. BEYOND TEXT INPUTS

The general principle embodied in our approach, namely to
systematically search and explore yet uncovered combinations,

Configuration → OperatingSystem;
OperatingSystem → "linux-" LinuxDB

| "windows-" WindowsDB;
LinuxDB → "mysql-" LinuxServer;
WindowsDB → "mssql-" WindowsServer

| "mysql-" WindowsServer;
LinuxServer → "apache";
WindowsServer → "apache" | "iis";

Figure 8: A grammar for configuration testing

is not limited to grammars and text inputs alone. Actually, as
we will demonstrate in this section, our approach can be used
to solve coverage issues in a large variety of settings. All it
takes is to encode the respective problem as an input language.

A. Configurations

Let us take a look at the following configuration testing
problem. We have built a Web server application that is
supposed to run on a variety of configurations. We do have two
operating systems "linux" and "windows"; two databases
"mysql" and "mssql"; and two web servers "apache"
and "iis". The "mssql" and "iis" components require
"windows" as operating system; "apache" and "mysql"
run on both.

The set of possible configurations can be expressed as
a grammar that produces a triple os-database-server, for
instance "windows-mysql-apache". The grammar in
Figure 8 encodes the possible configurations.

In configuration testing, the typical problem is that there is
a combinatorial explosion of possible configurations. Hence,
as always in testing, one wants to determine a good sample
of configurations that are to be tested. An obvious minimum
is that each component (each OS, each database, each server)
should be covered at least once; a reasonable compromise
is pairwise testing, meaning that every combination of two
components should be covered at least once.

If we run the k-path algorithm with k = 1 on the grammar
in Figure 8, the algorithm ensures that each alternative is taken
at least once, resulting in the set "linux-mysql-apache",
"windows-mssql-apache", "windows-mysql-iis".
This is a minimal set that gives us component coverage.

If we set k = 2, we ensure that every pair of alternatives is
taken at least once. This additionally gets us the configuration
"windows-mssql-iis". (Note that the combination of
"mysql" and "apache" is already covered in the "linux"
variant, above.) These four now cover all pairs, as in pairwise
testing. Setting k = 3 would get us all triples, adding
"windows-mysql-apache" to the set. In all cases, the
k-path algorithm produces a minimal set of productions that
satisfies the given coverage goal.

Obviously, there can always be configuration constraints that
cannot be expressed by a grammar (if they are decidable at
all). But if a grammar does the job, then the k-path algorithm
is a good choice for satisfying common configuration testing
criteria.

Table I: Average Branch Coverage

Subject 1-path 1-gram 2-path 2-gram 3-path 3-gram 5-path 5-gram

argo [16] 0.4116 0.4000 0.4187 0.3963 0.4197 0.4092 0.4242 0.4187
fastjson [17] 0.0364 0.0376 0.0404 0.0374 0.0413 0.0388 0.0431 0.0414
genson [18] 0.0842 0.0866 0.0886 0.0864 0.0902 0.0883 0.0916 0.0905
gson [19] 0.2080 0.2215 0.2264 0.2213 0.2294 0.2266 0.2352 0.2371
jackson-databind [20] 0.0886 0.0926 0.0932 0.0924 0.0938 0.0935 0.0940 0.0952
json-flattener [21] 0.5039 0.6246 0.6828 0.6235 0.7127 0.6609 0.7809 0.7475
json-java [22] 0.1093 0.1377 0.1457 0.1310 0.1661 0.1441 0.1890 0.1733
json-simple [23] 0.4427 0.4695 0.4870 0.4662 0.4931 0.4836 0.5093 0.5062
json-simple-cliftonlabs [24] 0.3355 0.3325 0.3445 0.3301 0.3446 0.3410 0.3478 0.3546
minimal-json [25] 0.4158 0.3970 0.4267 0.3936 0.4163 0.4054 0.4174 0.4166
pojo [26] 0.1246 0.1414 0.1428 0.1423 0.1597 0.1433 0.2112 0.1462

commons-csv [27] 0.3828 0.3773 0.3903 0.3772 0.3984 0.3770 0.4034 0.3799
jackson-dataformat-csv [28] 0.1665 0.1527 0.1666 0.1523 0.1700 0.1532 0.1777 0.1573
jcsv [29] 0.3287 0.3167 0.3337 0.3152 0.3374 0.3201 0.3400 0.3270
sfm-csv [30] 0.0628 0.0686 0.0664 0.0686 0.0675 0.0686 0.0682 0.0686
simplecsv [31] 0.3472 0.3377 0.3482 0.3368 0.3481 0.3395 0.3489 0.3439
super-csv [32] 0.1560 0.1433 0.1589 0.1423 0.1646 0.1439 0.1646 0.1471

autolink [33] 0.4514 0.2861 0.4673 0.2861 0.5716 0.2859 0.6265 0.2889
galimatias [34] 0.0879 0.0343 0.0897 0.0341 0.0875 0.0346 0.0873 0.0356
jurl [35] 0.6790 0.6854 0.6807 0.6872 0.6933 0.6904 0.7095 0.7012
url-detector [36] 0.4057 0.3273 0.4083 0.3244 0.4188 0.3342 0.4352 0.3458

commonmark [37] 0.6678 0.6253 0.6991 0.6322 0.7183 0.6419 0.7335 0.6634
markdown4j [38] 0.6772 0.6817 0.7094 0.6851 0.7162 0.6931 0.7313 0.7129
txtmark [39] 0.6017 0.6144 0.6291 0.6174 0.6348 0.6237 0.6498 0.6413

Values show the fraction of branches covered. All results averaged over 50 runs.
Bold values indicate significantly higher values according to the Mann–Whitney U test [14]. (p < 0.005)

Table II: Exception Detection Rates

Subject Exception Location
Detection Rate

1-path 1-gram 2-path 2-gram 3-path 3-gram 5-path 5-gram

argo [16] argo.saj.InvalidSyntax argo...InvalidSyntaxRuntime$3:60 0% 76% 0% 76% 0% 84% 0% 100%

genson [18] java.lang.NullPointer com...genson.stream.JsonWriter:414 100% 100% 100% 100% 100% 100% 100% 100%

json-flattener [21] ...json.ParseException com...wnameless...Flattener:122 0% 76% 0% 76% 0% 84% 0% 100%
java.lang.NullPointer com...wnameless...Unflattener:393 88% 90% 94% 88% 100% 94% 100% 100%

com...wnameless...Unflattener:409 4% 0% 6% 6% 10% 4% 22% 26%
location unknown 0% 0% 0% 0% 0% 0% 2% 0%

pojo [26] StringIndexOutOfBounds org.jsonschema...NameHelper:46 98% 100% 100% 100% 100% 100% 100% 100%

commons-csv [27] java.io.IOException org.apache.commons.csv.Lexer:281 100% 100% 100% 100% 100% 100% 100% 100%
org.apache.commons.csv.Lexer:288 100% 100% 100% 100% 100% 100% 100% 100%

jackson-csv [28] java.io.CharConversion com.fasterxml...CsvDecoder:429 0% 0% 0% 0% 2% 0% 4% 0%
com.faster...ParserBootstrapper:383 0% 0% 0% 0% 2% 0% 4% 0%

jcsv [29] java.lang.IllegalState com.googlecode...TokenizerImpl:73 100% 30% 100% 22% 100% 46% 100% 78%

sfm-csv [30] java.lang.IllegalState org...$NoColumnCsvWriterDSL:449 100% 100% 100% 100% 100% 100% 100% 100%

super-csv [32] java.lang.NullPointer org...io.AbstractCsvWriter:177 0% 0% 0% 0% 0% 0% 2% 0%
org.supercsv.util.Util:187 34% 0% 38% 0% 76% 0% 52% 0%

galimatias [34] java.net.MalformedURL io.mola.galimatias.URL:527 100% 0% 100% 0% 100% 0% 100% 0%
java.net.URISyntax io.mola.galimatias.URL:509 92% 0% 94% 0% 96% 0% 96% 0%

jurl [35] StringIndexOutOfBounds com.anthony...PercentEncoder:176 100% 0% 100% 0% 100% 0% 100% 0%

markdown4j [38] StringIndexOutOfBounds org...Markdown4jProcessor:53 30% 100% 100% 100% 100% 100% 100% 100%

txtmark [39] StringIndexOutOfBounds com...rjeschke.txtmark.Block:106 8% 34% 8% 30% 6% 62% 6% 98%
com...rjeschke.txtmark.Emitter:282 4% 100% 2% 100% 12% 100% 82% 100%
com...rjeschke.txtmark.Emitter:303 0% 0% 0% 0% 0% 0% 0% 4%
com...rjeschke.txtmark.Line:520 22% 76% 100% 88% 100% 98% 100% 100%

Values show the percentage of runs in which the given exception was detected. Higher percentages are shown in bold.

Table III: Grammars and Sizes

Grammar Rules
Average # of files generated

k = 1 k = 2 k = 3 k = 5

JSON [8] 17 40 35 58 201
CSV [10] 12 42 38 51 221
URL [10] 27 43 45 72 552
Markdown [11] 236 653 980 1,880 11,409

Operating
Systemstart

Linux
DB

Windows
DB

Linux
Server

Windows
Server

End

"linux-"

"windows-"

"mysql-"

"mssql-"

"mysql-"

"apache"

"apache"

"iis"

Figure 9: The grammar from Figure 8 as a finite state automaton
producing valid configurations

B. Graphical User Interfaces

The astute reader may have noticed that the language in
Figure 8 is regular; that is, it encodes a finite-state automaton
in which the states are given by the nonterminal symbols, and
the transitions are given by the terminal symbols. Indeed, the
grammar is an embedding of the finite state automaton shown
in Figure 9 which produces the same configurations.

Since context-free languages are a superset of regular
languages, any finite-state model can be encoded into a
grammar—and the k-path algorithm will produce a minimal
set that covers states (k = 1), transitions (k = 2), or sequences
of k − 1 transitions.

This property is beneficial in any domain where the testing
domain would typically be encoded via finite state models.
When testing a GUI, one models the application as going
through different states of a process, where the transitions
between states are triggered by user interactions.

The model in Figure 10, for instance, represents possible
interactions in a subset of a shopping site. We assume two
actions click(ui-element), which clicks on the given
ui-element, and fill(ui-element, text), which
fills text into the text field given by ui-element. The
finite state automaton thus represents the sequence of possible
interactions.

Again, we can embed this automaton into an equivalent
grammar, as shown in Figure 11. The advantage of the grammar
is that we can easily include productions for text parts such
as Name, City, or CreditCardNumber; these could again be
arbitrary context-free languages.

Shopping
Cart

Enter
Address

Enter
Payment

"click(’Checkout’)" "click(’Payment’)"

"fill(’name’, " Name ")"

"fill(’city’, " City ")"

Figure 10: A FSA for a shopping GUI (excerpt)

ShoppingCart → "click(’Checkout’)" EnterAddress;
EnterAddress → "fill(’city’, ’" City "’)" EnterAddress

| "fill(’name’, ’" Name "’)" EnterAddress
| "click(’Payment’, ’" EnterPayment "’)";

EnterPayment → "select(’Credit Card’)"
"fill(’number’, ’" CreditCardNumber "’)" . . .;

Name → "Walter White" | "Gretchen Schwartz" | . . .;
City → "Albuquerque" | "Amarillo" | . . .;

Figure 11: A grammar for GUI testing (excerpt)

If we feed this grammar into the k-path algorithm with k = 1,
the algorithm again produces a minimal set of interactions that
cover the alternatives, starting with the single sequence

click(’Checkout’)
fill(’city’, ’Albuquerque’)
fill(’name’, ’Walter White’)
click(’Payment’)

In the next steps, k-path would go and cover more names
and cities. As it automatically determines the shortest path
to get there, it would again “click” through Checkout and fill
the next (uncovered) name and city alternatives ("Gretchen
Schwartz" and "Amarillo"). Likewise, if CreditCard-
Number were defined as a series of digits, k-path would cover
one digit after another. And with k = 2 or higher, the algorithm
covers combinations of all these as well. By modeling GUI
exploration as a grammar, and by using the k-path algorithm to
systematically cover it, we can thus integrate textual interaction
and graphical interaction in a single model, allowing us to test
and explore deep user interfaces.

C. Reactive Systems

Interaction with systems need not be limited to user in-
terfaces, but just as well extends to reactive systems. As an
example, consider a mail server using the SMTP protocol [40],
[41]. When sending a mail to a mail server, one sends a series
of commands as in

HELO relay.example.com
MAIL FROM:<bob@example.com>
RCPT TO:<alice@example.com>
DATA
<mail contents>
.

Each of these commands has a specific syntax, and all of
these are formally defined as part of the SMTP standard—as a
grammar. If one combines the above embedding of states
and the grammars for individual commands into one big
grammar, the k-path algorithm again would attempt to cover
all commands, all elements of commands, and all states; and
if k > 1, also all sequences thereof—and of course, all of this
fully automatically.

VIII. RELATED WORK

A. Fuzzing and Test Generation

tribble is a language-based test generator (“fuzzer”), relying
on a language specification to produce syntactically valid inputs
that are set to cover as many program behaviors as possible. The
usage of language models as producers was introduced in 1970
by Hanford in his syntax machine [42]. Now as then, such
producers are mainly used for testing compilers and interpreters:
CSmith [43] produces syntactically correct C programs, and
LANGFUZZ [1] uses a JavaScript grammar to parse, recombine,
and mutate existing inputs while maintaining syntactic validity.
Grammar-based whitebox fuzzing [44], combining grammar-
based fuzzing with symbolic testing, has saved Microsoft
millions of dollars in testing.

None of the above approaches aim for grammar coverage.
Our results, however, indicate that any of these approaches
could be extended with k-path coverage at low cost, guiding
test generation without having to execute the system under test
and yielding additional coverage.

B. Grammar Coverage and Production

The concept of grammar coverage was invented in 1972
with Purdom’s sentence generator [5], which improved over
Hanson’s syntax machine by systematically covering all produc-
tion rules. In 2001, Lämmel introduced context-dependent rule
coverage for grammars [45]. Given a set of words, this “non-
trivial coverage notion” (Lämmel) determines for a rule whether
a set of words covers all contexts the rule can occur in. The
Geno tool by Lämmel and Schulte [46] also gave developers
control over which rules should be exhaustively recombined,
and to which depth. Our k-path approach generalizes over such
context notions and recombinations by introducing context
depth as a single parameter. It is inspired by similar metrics
both on code and finite-state models. On code, its closest
equivalent is the LCSAJ metric, covering all sequences of
branches up to a given length [47]. On finite-state models,
its equivalent is subsequences of transitions of length k, i.e.
all-states, all-transitions, all-transition-pairs, etc. [48].

C. Grammarware: Past and Future

Despite their versatility both as parsers and producers of
program inputs, grammars play only a minor role in software
testing. In 2005, Klint et al. [49] noted a lack of best practices
for “grammarware”, that is, grammars and grammar-dependent
software, as well as a lack of metrics and other quality notions
for testing. In the context of test generation, we find that a
multitude of input languages can be easily described using

grammars, and that grammar-based testing reaches well into
domains not traditionally associated with formal grammars—
file formats, network protocols, command languages, and more.
Recent advances in grammar inference [50]–[52] suggest that
grammars may be inferred from programs or sample inputs,
promising to make grammar-based fuzzing easier than ever.

IX. CONCLUSION

As a formalism for describing the languages of programs
and data, grammars have shown their usefulness again and
again. This paper introduces a coverage metric that is easy to
measure and hence allows for simple assessment of the quality
of test cases. Even more important, grammar coverage is easy
to achieve, using the definitions and coverage-driven generation
algorithm introduced in this paper. Our evaluation shows that
both our metric and algorithm improve the state of the art in
test generation. If one wants to exercise program features to
reveal defects, starting with covering the input features should
be a cost-effective starting point.

In our own future work, we will focus on the following:
Code coverage feedback. Besides grammar coverage, code

coverage may serve as a driver for decisions during test
generation. We are extending tribble with search-based
test generation, where an evolutionary algorithm makes
use of the grammar structure to mutate and recombine
inputs in an evolving population. The challenge here is
how to integrate the two: Should one go for grammar
coverage or code coverage first?

Grammar coverage as predictor for code coverage. Our
results show that aiming for grammar coverage is helpful
for achieving code coverage. One would assume that
there would be strong correlations between individual
language elements and some code in the program under
test—notably, the code that processes such elements, but
also any code that depends on them. Such correlations
could turn grammar coverage into a predictor of code
coverage.

Advanced formats. By construction, context-free grammars
cannot capture situations in which some input fragment
depends on context previously processed; examples in-
clude definitions and uses of identifiers or other references,
checksums and other consistency checks in binary formats,
or program states induced by previous inputs. We are
working on extending tribble with a constraint language
to express such context-dependent features.

Probabilistic testing. Grammar productions may be associ-
ated with probabilities, allowing to control how frequently
individual productions would take place. We plan to
extend tribble and its coverage criteria to include such
probabilistic testing.

We are committed to reproducible and extensible science.
Hence, a replication packages including tribble and all evalua-
tion data from this paper is available as open source at

https://github.com/havrikov/covering-input-structure

https://github.com/havrikov/covering-input-structure

REFERENCES

[1] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”
in Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12). Bellevue, WA: USENIX, 2012, pp. 445–458.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/holler

[2] R. Hodován, Á. Kiss, and T. Gyimóthy, “Grammarinator: a grammar-
based open source fuzzer,” in Proceedings of the 9th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection,
and Evaluation. ACM, 2018, pp. 45–48.

[3] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “Fishing for deep bugs with grammars,” in Proceedings of
NDSS 2019, 2019. [Online]. Available: https://www.ndss-symposium.
org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/

[4] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-
aware greybox fuzzing,” in Proceedings of ICSE 2019,
2019. [Online]. Available: https://2019.icse-conferences.org/event/
icse-2019-technical-papers-superion-grammar-aware-greybox-fuzzing

[5] P. Purdom, “A sentence generator for testing parsers,” BIT Numerical
Mathematics, vol. 12, no. 3, pp. 366–375, Sep 1972. [Online]. Available:
https://doi.org/10.1007/BF01932308

[6] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2006.

[7] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[8] T. Bray, “The JavaScript Object Notation (JSON) data interchange format,”
Internet Requests for Comments, RFC Editor, STD 90, December 2017.

[9] “Url grammar,” https://github.com/antlr/grammars-v4/blob/master/url/url.
g4, 2018.

[10] “Csv grammar,” https://github.com/antlr/grammars-v4/tree/master/csv,
2018.

[11] J. MacFarlane, “Markdown-peg grammar,” https://github.com/jgm/
peg-markdown/blob/master/markdown_parser.leg, 2013.

[12] “Fuzzinator configs,” https://github.com/renatahodovan/
fuzzinator-configs, 2019.

[13] M. R. Hoffmann, “JaCoCo, version 0.8.2,” https://github.com/jacoco/
jacoco, 2018.

[14] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals
of Mathematical Statistics, vol. 18, no. 1, pp. 50–60, 1947. [Online].
Available: http://www.jstor.org/stable/2236101

[15] E. Jones, T. Oliphant, and P. Peterson, “{SciPy}: Open source scientific
tools for {Python},” 2014.

[16] “Argo,” https://sourceforge.net/projects/argo/, 2018, version 5.4.
[17] “fastjson,” https://github.com/alibaba/fastjson, 2018, version 1.2.51.
[18] “Genson,” https://github.com/owlike/genson, 2017, version 1.4.
[19] “Gson,” https://github.com/google/gson, 2017, version 2.8.5.
[20] “Jackson-databind,” https://github.com/FasterXML/jackson-databind,

2018, version 2.9.8.
[21] “json-flattener,” https://github.com/wnameless/json-flattener, 2018, ver-

sion 0.6.0.
[22] “Json-java,” https://github.com/stleary/JSON-java, 2017, version

20180813.
[23] “json-simple,” https://github.com/fangyidong/json-simple, 2014, version

1.1.1.
[24] “json-simple by Cliftonlabs,” https://github.com/cliftonlabs/json-simple,

2018, version 3.0.2.
[25] R. Sternberg, “minimal-json,” https://github.com/ralfstx/minimal-json,

2017, version 0.9.5.
[26] https://github.com/joelittlejohn/jsonschema2pojo, 2017, version 1.0.0.
[27] https://commons.apache.org/proper/commons-csv/, 2018, version 1.6.
[28] “Jackson Dataformat CSV,” https://github.com/FasterXML/

jackson-dataformats-text/tree/master/csv, 2018, version 2.9.8.

[29] “jcsv,” https://code.google.com/archive/p/jcsv, 2012, version 1.4.0.
[30] “Simple Flat Mapper,” https://github.com/arnaudroger/SimpleFlatMapper,

2018, version 6.1.1.
[31] “simplecsv,” https://github.com/quux00/simplecsv, 2018, version 2.1.
[32] “super-csv,” https://github.com/super-csv/super-csv, 2016, version 2.4.0.
[33] “autolink-java,” https://github.com/robinst/autolink-java, 2018, version

0.9.0.
[34] “galimatias,” https://github.com/smola/galimatias, 2018, version 0.2.1.
[35] A. Simon, “jurl,” https://github.com/anthonynsimon/jurl, 2018, version

v0.3.0.
[36] “Url Detector,” https://github.com/linkedin/URL-Detector, 2018, version

0.1.17.
[37] “Atlassian Commonmark,” https://github.com/atlassian/

commonmark-java, 2017, version 0.11.0.
[38] “Markdown4J,” https://github.com/jdcasey/markdown4j, 2016, version

2.2-cj-1.1.
[39] “Txtmark,” https://github.com/rjeschke/txtmark, 2017, version 0.13.
[40] “Simple Mail Transfer Protocol,” RFC 821, Aug. 1982. [Online].

Available: https://rfc-editor.org/rfc/rfc821.txt
[41] D. J. C. Klensin, “Simple Mail Transfer Protocol,” RFC 5321, Oct.

2008. [Online]. Available: https://rfc-editor.org/rfc/rfc5321.txt
[42] K. V. Hanford, “Automatic generation of test cases,” IBM Systems Journal,

vol. 9, no. 4, pp. 242–257, 1970.
[43] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding

bugs in c compilers,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’11. New York, NY, USA: ACM, 2011, pp. 283–294. [Online].
Available: http://doi.acm.org/10.1145/1993498.1993532

[44] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’08.
New York, NY, USA: ACM, 2008, pp. 206–215. [Online]. Available:
http://doi.acm.org/10.1145/1375581.1375607

[45] R. Lämmel, “Grammar testing,” in Proceedings of the 4th International
Conference on Fundamental Approaches to Software Engineering, ser.
FASE ’01. London, UK, UK: Springer-Verlag, 2001, pp. 201–216.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645369.651271

[46] R. Lämmel and W. Schulte, “Controllable combinatorial coverage in
grammar-based testing,” in Testing of Communicating Systems, M. Ü.
Uyar, A. Y. Duale, and M. A. Fecko, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 19–38.

[47] M. A. Hennell, M. R. Woodward, and D. Hedley, “On program analysis,”
Information Processing Letters, vol. 5, no. 5, pp. 136–140, 1976.

[48] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software Testing, Verification and Reliability, vol. 22,
no. 5, pp. 297–312, 2012.

[49] P. Klint, R. Lämmel, and C. Verhoef, “Toward an engineering discipline
for GRAMMARWARE,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 14, no. 3, pp. 331–380, 2005.

[50] M. Höschele and A. Zeller, “Mining input grammars from
dynamic taints,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2016. New
York, NY, USA: ACM, 2016, pp. 720–725. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970321

[51] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program
input grammars,” in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2017.
New York, NY, USA: ACM, 2017, pp. 95–110. [Online]. Available:
http://doi.acm.org/10.1145/3062341.3062349

[52] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning
for input fuzzing,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2017.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 50–59. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3155562.3155573

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://2019.icse-conferences.org/event/icse-2019-technical-papers-superion-grammar-aware-greybox-fuzzing
https://2019.icse-conferences.org/event/icse-2019-technical-papers-superion-grammar-aware-greybox-fuzzing
https://doi.org/10.1007/BF01932308
https://github.com/antlr/grammars-v4/blob/master/url/url.g4
https://github.com/antlr/grammars-v4/blob/master/url/url.g4
https://github.com/antlr/grammars-v4/tree/master/csv
https://github.com/jgm/peg-markdown/blob/master/markdown_parser.leg
https://github.com/jgm/peg-markdown/blob/master/markdown_parser.leg
https://github.com/renatahodovan/fuzzinator-configs
https://github.com/renatahodovan/fuzzinator-configs
https://github.com/jacoco/jacoco
https://github.com/jacoco/jacoco
http://www.jstor.org/stable/2236101
https://sourceforge.net/projects/argo/
https://github.com/alibaba/fastjson
https://github.com/owlike/genson
https://github.com/google/gson
https://github.com/FasterXML/jackson-databind
https://github.com/wnameless/json-flattener
https://github.com/stleary/JSON-java
https://github.com/fangyidong/json-simple
https://github.com/cliftonlabs/json-simple
https://github.com/ralfstx/minimal-json
https://github.com/joelittlejohn/jsonschema2pojo
https://commons.apache.org/proper/commons-csv/
https://github.com/FasterXML/jackson-dataformats-text/tree/master/csv
https://github.com/FasterXML/jackson-dataformats-text/tree/master/csv
https://code.google.com/archive/p/jcsv
https://github.com/arnaudroger/SimpleFlatMapper
https://github.com/quux00/simplecsv
https://github.com/super-csv/super-csv
https://github.com/robinst/autolink-java
https://github.com/smola/galimatias
https://github.com/anthonynsimon/jurl
https://github.com/linkedin/URL-Detector
https://github.com/atlassian/commonmark-java
https://github.com/atlassian/commonmark-java
https://github.com/jdcasey/markdown4j
https://github.com/rjeschke/txtmark
https://rfc-editor.org/rfc/rfc821.txt
https://rfc-editor.org/rfc/rfc5321.txt
http://doi.acm.org/10.1145/1993498.1993532
http://doi.acm.org/10.1145/1375581.1375607
http://dl.acm.org/citation.cfm?id=645369.651271
http://doi.acm.org/10.1145/2970276.2970321
http://doi.acm.org/10.1145/3062341.3062349
http://dl.acm.org/citation.cfm?id=3155562.3155573

