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Abstract: Tauopathies are a disease group characterized by either pathological accumulation or
release of fragments of hyperphosphorylated tau proteins originating from the central nervous
system. The tau hypotheses of Parkinson’s and Alzheimer’s diseases contain a clinically diverse
spectrum of tauopathies. Studies of case records of various tauopathies may reveal clinical phenotype
characteristics of the disease. In addition, improved understanding of different tauopathies would
disclose environmental factors, such as xenobiotics and trace metals, that can precipitate or modify the
progression of the disorder. Important for diagnostics and monitoring of these disorders is a further
development of adequate biomarkers, including refined neuroimaging, or proteomics. Our goal is to
provide an in-depth review of the current literature regarding the pathophysiological roles of tau
proteins and the pathogenic factors leading to various tauopathies, with the perspective of future
advances in potential therapeutic strategies.
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1. Introduction

In medical terminology, tauopathies generally refer to neurodegenerative disorders with
pathological tau protein accumulation in the central nervous system, especially in neurons.
Physiologically, tau is a microtubule-associated protein expressed in neurons. Abnormal fibrillary
tangles are formed by soluble tau proteins accumulated within a cell. Hyperphosphorylated derivatives
of soluble tau proteins can detach from microtubules. Improved understanding of the composition of
pathological tau aggregates will aid clinicians in the future by providing more information, which
will result in improved etiological and clinical diagnosis of overlapping diseases. Some tauopathies
leading to Parkinsonism disorders have been shown to at least partially respond to levodopa therapy.
In contrast, other tauopathies are distinguished by a rapidly or slowly developing dementia, and
may be diagnosed as a frontal lobe impairment or Alzheimer’s disease. Other tauopathies are motor
neuron disorders, which are clinically recognized as amyotrophic lateral sclerosis. An increased
number of tauopathies has been diagnosed in various geographic regions (New Guinea, Guadeloupe,
Guam, etc.). The vast geographic distribution of different tauopathies represents a challenge when
determining the etiological environmental factors of these diseases. The current state of research in
the area of tauopathies supports the significant need for future research to consider environmental
etiologies of post-traumatic and post-apoplectic tauopathies, as well as post-encephalitic symptoms
of Parkinsonism.
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Here, we review the current knowledge concerning tau proteins, tauopathies, and tau that is
presumed to be a pathogenic factor in several neurodegenerative diseases, with the perspective that
increasing insight will lead to new approaches in management and prevention.

2. Functional Roles of Tau Proteins

Under physiological conditions, tau proteins are highly soluble microtubule-associated proteins
“tau” (MAPT). In humans, tau proteins are mainly found in neurons and also, although to a lesser
extent, in non-neuronal cells [1]. The primary function of tau is to ensure that axonal microtubules are
stable. The activity of tau is primarily in the axons’ distal part, whereas other microtubule-associated
proteins (MAPs) operate in dendrites and the proximal portions. Additional functions of tau proteins
include the regulation of microtubule-mediated transport of nutrients [2].

In humans, tau proteins are encoded by the MAPT gene, which consists of 16 exons positioned on
chromosome 17q21 [3]. In human adult brains, six tau protein isoforms (types) ranging from 352 to
441 amino acids are produced. In the two haplogroups (H1 and H2) of the MAPT gene, the gene is
presented inverted. Haplogroup H2 is more common in Europe, although haplogroup H1 is also found
frequently. Haplogroup H1 seems associated with an elevated probability of certain dementias, such
as Alzheimer’s disease. Since both haplogroups are present in Europe, the recombination between
the inverted haplotypes may possibly cause one functional copy of the gene to be missing, leading to
congenital disabilities such as esophageal atresia and congenital heart defect [4].

Tau has 79 possible sites for phosphorylation on multiple serine (Ser) and threonine (Thr)
residues on the most extended tau isoform. Kinases regulate phosphorylation of tau, for instance,
the serine/threonine kinase (PKN). Activation of the PKN causes rapid phosphorylation of tau, which
disrupts microtubule organization [5]. Physiologically, the degree of tau phosphorylation, regardless
of the isoform, declines with age because of increased activity of phosphatases [6]. The phosphatases
play a critical role due to their ability to dephosphorylate phospho-tau.

Pathological aggregation due to hyperphosphorylation of tau in neurons causes neurofibrillary
cellular degeneration. The mechanism behind the propagation of pathological MAPTs from cell to cell
is not yet identified. However, several mechanisms of propagation have been suggested, including
synaptic and also non-synaptic transfer mechanisms [7]. Among the factors that appear to favor
pathological fibrillation and propagation are excessive hyperphosphorylation, together with increased
local levels of zinc ions, which may displace copper from essential locations [8]. These observations
support the presumption that not only genetic defects, but also post-translational impacts due to
environmental factors can promote development of a tauopathy.

Hyperphosphorylation of tau proteins can cause aggregation of tangles that consist of straight
and paired helical filaments, which appear to play an etiological role in different tauopathies, including
frontotemporal dementia and Alzheimer’s disease [9]. Upon misfolding, tau shifts from a soluble
protein under normal physiological conditions to a very insoluble protein. The formation of insoluble
proteins is accompanied by disruption of the cytoskeleton and protein aggregation that contributes to
several neurodegenerative diseases. Due to the formation of apparently toxic tangles [10], insoluble
tau proteins directly affect the breakdown of living cells, which then interrupts nerve synapse activity.
Neurofibrillary tangles are aggregates of tau proteins that block the transport/distribution of essential
nutrients throughout brain cells, and ultimately result in cell deterioration and death [11].

3. Clinical Types of Tauopathies

3.1. The Tau Hypothesis of Alzheimer’s Disease

Most cases of Alzheimer’s disease (AD) are sporadic, and environmental factors may play an
important pathogenetic role in them (Figure 1). The tau hypothesis of AD states that abnormal or
excessive tau phosphorylation is a crucial early event in AD development, resulting in neurofibrillary
tangles (NFTs) [12]. In AD, several tau amino acids are phosphorylated, and pre-NFT phosphorylation
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occurs at serine 119, 202, 409, and at combinations of the three serine sites. In AD, all the six isoforms
of tau may occur in a hyperphosphorylated state of paired helical filaments.
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Figure 1. Schematic representation of a healthy (top) and a diseased (bottom) neuron in a normal brain
and a brain with Alzheimer’s disease (AD). In the healthy neuron, you can see the organized structure
of the microtubules, and the involvement of the tau protein. In the diseased neuron, the microtubules
are disintegrating, and there is a loss of organization and structure of the tau proteins accompanied by
plaque formation and the eventual degeneration of the neuron.

The exact causes of initiation and acceleration of tau accumulation in the absence of mutations
are not yet known, but are thought to result from unregulated phosphorylation, which may be
induced by environmental toxins. In AD, increased activity of cyclin-dependent-kinase 5 (CDK5) has
been reported, and this kinase is associated with neurofibrillary tangles and elevated intracellular
calcium [13,14]. Since selenium compounds can reduce the phosphorylation of tau in cell cultures
as well as in mouse models of AD, it is thought that oxidative stress may be a kinase activator [15].
According to the tau hypothesis of AD, the primary characteristic is the formation of NFTs consisting of
the hyperphosphorylated tau protein. The amyloid hypothesis of AD is characterized by extracellular
plaque formation with an insoluble amyloid (A) β-peptide fragment-42, which consists of the amyloid
core. Comparing the amyloid hypothesis with the tau hypothesis, the tau hypothesis suggests that
intracellular tangles are the first to form, followed by the extracellular plaques. Current evidence
correlates the incidences of severe cognitive deficits with the presence of NFTs, and not amyloids [16,17].

3.2. Parkinson’s Disease

Genetic mutations linked to familial Parkinson’s disease (PD), such as in the Parkin gene and the
gene for LRRK2 (leucine-rich repeat kinase 2), are associated with mitochondrial dysfunction [18,19].
In contrast, the MAPT gene seems not to be involved directly in the etiology of classical PD [20].
The association of familial PD with mitochondrial dysfunction links changes in mitochondrial function
to PD pathogenesis. Although some of the factors that genetically increase the risk of PD development
have been identified, most PD cases are sporadic and dependent upon environmental factors [21].
The essential role of environmental exposure has been strengthened by research on Parkinsonism due to
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MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) [22]. Exposure to environmental/mitochondrial
toxins, including MPTP, rotenone, and paraquat, increases the risk of getting PD [23]. These toxins are
inhibitors of mitochondrial complex I, and cause neuronal death in substantia nigra and Parkinsonism
in experimental models. Inhibition of mitochondrial complex I and/or elevated mitochondrial iron in
susceptible loci cause oxidative stress; that explains the observations of reduced glutathione levels in
these cells [24] and may, as a result, disturb the post-translational balance between phosphorylation
and dephosphorylation of the tau protein. Other environmental toxicants, including manganese, have
been suspected of increasing the risk of oxidative stress and PD development [25,26]. In synaptically
enriched parts of the frontotemporal cortex, phosphorylated tau (Table 1) is considered a characteristic
trait of advanced PD [27]. Tau hyperphosphorylation has been observed to occur parallel to the
presence of α-synuclein aggregation [28], although in advanced PD, intracellular insoluble aggregates
of α-synuclein (Lewy bodies) are the hallmarks. Progression of PD appears to depend on the toxicity of
environmental pollutants. The pollutants include pesticides and metal ions (including iron, manganese,
aluminum, and cadmium) which appear to accelerate the aggregation of α-synuclein and tau [26,29,30].

Table 1. Different types of phosphorylated tauopathies, their location, and their management.

Disease Location Management

Alzheimer’s disease Hippocampus and entorhinal
cortex

Cholinesterase inhibitors,
memantine

Parkinson’s disease Substantia nigra in the basal
ganglia Levodopa

Progressive supranuclear palsy Basal ganglia and brain
stem/spinal cord Levodopa (in some cases only)

Frontotemporal dementia Frontal and temporal lobes Antipsychotics and
antidepressants

Chronic traumatic encephalopathy Sulcus depths No approved therapy

3.3. Progressive Supranuclear Palsy

Tau pathology is thought to be predominant in progressive supranuclear palsy (PSP), which is
clinically a type of atypical Parkinsonism. Clinically, the features are reasonably well defined [31].
However, the early signs are unspecific, which may delay the specific diagnosis, often up to at least
four years after the initial signs of disease. Early symptoms and signs are usually moderately impaired
mobility and slowly developing cognitive deficits. PSP variants have been described, such as a
Parkinson-mimicking form that is responsive to levodopa, and also a more akinetic form dominated by
gait and speech problems [32]. Recently, in northern France, a PSP clustering was reported in a district
around Wattrelos. This district was previously known for its textile dyeing and tanneries during
the 20th century, both processes utilizing chromate and arsenic obtained from the chemical plants
nearby. It was found that the soil in these regions was contaminated with hexavalent chromium [33].
It is known that chromate, which rapidly traverses biological membranes [34], exerts toxic effects
on mitochondria [35,36]. Another cluster with PSP-resembling symptomatology has been described
in a region that was previously active in iron and copper mining in eastern Norway [37]. This
tauopathy was associated with the well-known mitochondrial toxicity of non-complexed iron [38].
The neuropathology of PSP is distinguished by midbrain atrophy and involvement of pallidum and
thalamus, but only modest frontal engagement.

3.4. Examples of Geographic Clusters of Tauopathies

In distinct geographical areas, tauopathies have been found to include amyotrophic lateral
sclerosis/Parkinson–dementia complex (ALS/PDC) of New Guinea, Guam, and the Kii peninsula [39].
Each of the distinct tauopathies exhibits case symptomology and neuropathological changes similar to
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PSP. For several decades, the ALS/PDC had been occurring in native Chamorro families in these areas,
but today the incidence has been substantially reduced. Still, the primary causative factors are unknown.
One hypothesis is that exposure to the non-proteinogenic amino acid β-methylamino-l-alanine (BMAA)
leads to the development of Guam disease. Yet, verification of this mechanism has not been successful.
It has been hypothesized that persons with atypical Parkinsonism living in the French West Indies have
developed the condition due to the ingestion of a tropical plant [40], which contains mitochondrial
toxins, such as isoquinolines and annonacin. In animal models, exposure to the same compounds has
been shown to cause neurodegeneration [41].

Further research into possible mitochondrial toxins in the environment of the Chamorro population
in Guam would be of interest. On Martinique and Guadeloupe islands, the disease-associated pathology
of several patients resembles PSP, although these cases are considered unclassified non-dopa-responsive
Parkinsonism. Reports of two postmortem autopsy cases suggest the disorder was due to a
synucleinopathy with Lewy bodies in the substantia nigra [42].

3.5. Frontotemporal Dementia and Pick’s Disease

In frontotemporal dementia, different mutations in the MAPT gene associated with chromosome
17 cause various clinical presentations [43]. The age at onset can be as low as 20 years, and the disease
may extend well into later life. The deterioration during the disease goes on for at least ten years.
Clinically, the frontal variant of AD is the dominant phenotype. The parkinsonian component may
resemble a classical, although not a dopa-responsive syndrome. Although a motor neuron component
is not considered a usual symptom in cases with MAPT mutations, the K317M mutation is associated
with amyotrophy characterized by fasciculations and motoric denervation. Pick’s disease may be
considered a subtype characterized by circumscribed atrophy of the fronto-parieto-temporal cortex,
with neurons containing Pick bodies, i.e., neuronal accumulation of hyperphosphorylated tau. While
other pathologies causing frontotemporal lobar degeneration are associated with a genetic cause,
the evidence is not conclusive on whether Pick’s disease has a direct genetic cause. However, it is
known to be a hereditary disease, and mutations in the tau gene have been associated with some
cases [44]. Nonetheless, environmental factors appear to modify the symptoms [45].

4. Genetic Factors

Environmental factors, including mitochondrial toxins, appear to play a significant role in the
pathogenesis of the various tauopathies, although genetic alterations have been identified in several of
the disease entities. Although approximately 90% of Alzheimer’s disease cases occur sporadically,
mutated genes coding for either amyloid precursor protein (chromosome 21) or presenilin-1 (PS1;
chromosome 14) or presenilin-2 (PS2; chromosome 1) are found in early-onset familial forms of
AD [46]. Furthermore, many sporadic AD patients are carriers of the e4 allele of the ApoE gene
(apolipoprotein E; chromosome 19) [47]. In addition, today, the genome-wide association studies of
AD are nearing identification of a wide range of genetic loci influencing the risk of AD [48]. Regarding
other tauopathies, the cases with the mutated tau gene (FTDP-17) [38] make up a substantial fraction
of those with corticobasal degeneration or frontotemporal dementia [26]. However, the majority of
patients with Parkinson’s disease, PSP, or Pick’s disease are regarded in the literature as sporadic [35].
Nevertheless, it is known that mutations in the tau gene may affect microtubule construction, resulting
in increased tau self-aggregation. A recent review by Strang et al. [49] discusses the impact of MAPT
mutations on tauopathies and neurodegeneration. Since the initial discovery in 1998 [50], several
families with MAPT mutations and progressive phenotypes similar to PSP have been identified [51].
PARK2 mutations also appear to cause a PSP-like picture. It is also known that LRRK2 gene mutations
can cause familial, autosomal-dominant Parkinsonism. These familial or autosomal-dominant cases
may present as PSP-like Parkinsonism, yet rarely cause PSP-like conditions.

At present, tau haplotype MAPT H1 is the only genetically consistent confirmed risk locus
of PSP [52]. However, genetic research has also identified a risk locus for PSP on chromosome
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11p11-12 [53]. A family from Extremadura in Spain was found to have a locus on chromosome
1q31 [54], but the specific mutation has not been identified [32]. More research on the risk loci and
their associations with PSP is required.

5. Therapeutic and Preventive Possibilities

Although direct corrections of MAPT mutations are not yet possible, defective post-translational
handling of the tau protein can be modified or prevented. Avoiding exposure to hazardous metals and
metal mixtures, as well as to agents with potentially toxic effects on mitochondria is considered important
for the prevention of mutations and tauopathies. In developing the tau pathology, mitochondrial
dysfunction has been thought to be critical. For sporadic PSP, Guadeloupe disease can be used as a
possible model. As discussed above, the intake of Annonaceae plants is a risk factor for developing the
disease and mitochondrial toxins, like isoquinoline alkaloids, are hypothesized as the toxic principle.
Annonaceae plants have been proven toxic in vitro due to potent complex I inhibition [55,56]. After
experimental administration, these compounds enter a rodent’s brain and selectively destroy nigral and
striatal neurons [57]. Beyond the fact that mitochondrial dysfunction plays a role in PSP [58], pilot trials,
either with coenzyme Q10 or with a pyruvate/niacinamide combination, have been proposed [59].

Regarding therapeutic possibilities, increased activity of both glycogen synthase kinase-3
(GSK-3) and GSK-5 result in the hyperphosphorylation of tau at relevant sites [60]. Transgenic
mice overexpressing wild-type GSK-3 were obtained to investigate if GSK-3 inhibition has therapeutic
potential. The genetically modified mice showed histopathological changes (neuronal loss and elevated
tau phosphorylation) and reduced spatial recognition [61]. The histological changes and reduced
spatial recognition in GSK-3-overexpressing mice supports the hypothesis that GSK-3 inhibitors have
therapeutic potential. Furthermore, treatment using lithium functioning as a GSK-3 inhibitor has been
reported to prevent neuropathological alterations in mice with elevated GSK-3 activity [62].

Chronic inflammation plays a crucial pathogenetic role in tauopathies, as inflammation can
promote the development of various tauopathies. Neuroinflammation accompanied by vascular
and/or synaptic dysfunction may be the triggering cause of disease in AD, as well as in other
tauopathies [63]. Elevated TNFα has been reported, and treatment with anti-TNF-agents has been
proposed as a potential therapy [64]. Similar to neuroinflammation in AD and the potential use of
anti-TNF agents, the neuroinflammation in PD is widespread, and TNFα is elevated in both serum
and cerebrospinal fluid [65]. Retrospective studies [66] and meta-analyses [67] indicate that NSAIDs
have disease-modifying potential due to their ability to attenuate the neuroinflammation that can be a
precursor to tauopathy development.

Several other compounds can inhibit the accumulation of tau, including anthraquinones (emodin,
daunorubicin, and adriamycin) and polyphenols [68]. Polyphenols may be “simple” or “complex”.
Simple polyphenols are phenolic acid derivatives, such as rosmarinic acid, and complex polyphenols
can be flavonoids (catechin), tannins (tannic acid), and others, such as stilbenes and resveratrol [69].
Such compounds appear in cell models to relieve the toxicity due to tau aggregation. A significant
level of caution must be used when interpreting the in vitro results for polyphenols and flavonoids.
Poly-ringed structures, such as polyphenols, flavonoids, and others, can fall into a category referred
to as the “pan-assay interference compounds”, or “PAINS.” The PAINS are characterized by having
multiple mechanisms of action, and are known to yield false positives in screening assays due to
their ability to act through multiple nonspecific pathways. Jonathan Beall’s laboratory has been at
the forefront in the research on the PAINS and how to control for the false positives elicited by the
PAINS in high-throughput screening [70–72]. Researchers need to utilize caution when interpreting
results with the compounds that may fall into the PAIN category. In an attempt to discern actual
versus artifact response, Baell and Nissink [70] attempted to develop a “filtering” system to block the
influence of PAIN compounds. The future of compounds which may be considered PAINS should
be viewed with cautious optimism, with the understanding that the mechanisms of their effect may
be much more complex than simple bimolecular interactions. Recent studies on animal models have
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confirmed the ability of anthraquinones and polyphenols to either prevent the accumulation of tau, or
“dissolve” the existing tau aggregates [68,69,73]. Transgenic mice were first developed in the late 1990s
and were instrumental in advancing our understanding of tauopathies and critical for the development
of potential therapies [74]. In the last two decades, there have only been small strides forward in the
development of additional model systems or therapies [75,76].

In addition to the development of better animal models, clinical trials are in need of more accurate
clinical assessments of PSP and other tauopathies. As better assessments are developed with improved
accuracy, the focus must be maintained on the end-points of therapeutic intervention, i.e., the Unified
Parkinson’s Disease Rating Scale (UPDRS) in addition to relevant cognitive examination scales.

6. Conclusions

The present review demonstrates that symptomatic monitoring and early diagnosis of tauopathies,
including sporadic Alzheimer’s disease and classical or atypical Parkinsonism, are possible. To achieve
symptomatic monitoring and early diagnosis, the development of future trials and clinical follow-ups
is clinically important. Results obtained using mouse models, such as those with transgenic mice,
can be utilized for designing trials of novel drugs for clinical therapeutic developments. However,
the extrapolation of murine data to human therapy has proven difficult. Complicating factors may
overlap the etiologies of tauopathies together with the complicated interplay between genetics and the
environment (e.g., Guam disease).

Valid and reliable biomarkers for translational research are required and must be further improved.
At present, a possible quantifiable therapeutic target is the neuroinflammation that accompanies
tauopathies, presumably used together with cognitive scores. Interestingly, several well-known drugs,
including NSAIDs and lithium, can target crucial pathogenic steps. To identify strategies to modify
the development of tauopathies is of imperative importance, although the development of clinically
potent principles may be time consuming.
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