29th European Photovoltaic Solar Energy Conference and Exhibition

LONG-TERM PERFORMANCE OF SWISS PHOTOVOLTAIC (PV) INSTALLATIONS

Eva Schuepbach, Urs Muntwyler, Monika Jost, Thomas Schott

Bern University of Applied Sciences, Engineering and Information Technology, Institute for Energy and Mobility Jlcoweg 1, CH-3400 Burgdorf, Switzerland / Fax +41 344266813 / E-Mail:eva.schuepbach@bfh.ch

ABSTRACT: The long-term performance and stability of photovoltaic (PV) installations have been "hot topics" in Switzerland since the late 1970s, when the first pilot- and demonstration installations for telecommunication purposes were built. When the feed-in-tariff system for PV was invented by the city of Burgdorf (Switzerland) in the 1990s, the nearby Photovoltaic Laboratory (PV LAB) at Bern University of Applied Sciences (BFH) in Burgdorf started monitoring an extended PV-installation network. Today, more than twenty different PV technologies are monitored at more than ten sites, providing valuable information on the stability of PV technology and long-term energy harvesting. The network includes high-altitude sites like Jungfraujoch (3,454 m asl) in the Swiss Alps. Mean energy yields (1994-2013) at Jungfraujoch display a near-constant annual cycle. In contrast, mean annual cycles of energy yields at PV-installations in the Swiss Basin (ca. 500 m asl) are characterized by a maximum in summer and minimum in winter. Winter energy yields from PV-installations at high elevation in the Swiss Alps are hence a research focus in the analysis of data from the monitoring network. Current efforts in a Swiss Competence Center for Energy Research include mounting new technology at Jungfraujoch to compare measured energy yields with data from equipment older than 20 years.

Keywords: Long-Term Monitoring, Reliability, System Performance

1 THE MONITORING NETWORK

In the context of the "Energy Strategy 2050" of the Swiss Government, PV will be the most important new electricity source with 12 TWh in 2050. Considerable investment in this technology is hence expected in the future. All aspects associated with cost/ production ratio, safety, reliability and use of PV installations are, therefore, of outmost importance.

The Photovoltaic Laboratory (PV LAB) at Bern University of Applied Sciences (BFH) in Burgdorf, Switzerland, has been working on these aspects for more than 20 years. Following the invention of the feed-intariff system for PV in Burgdorf in the 1990s, the PV LAB started to set up a monitoring network of PVinstallations in Switzerland. PV-installations added to the network more than 10 years ago include three sites with thin-film modules and the well-known 550 kWp installation at Mont Soleil in the Jura mountains (ca. 1,270 m asl). The latter is jointly monitored with the utility company BKW and the research organisation "Studiengesellschaft Mont-Soleil". In 2005, the PV installation in the football stadium in the capital city of Bern with more than 1.35 MWp was integrated in the network.

After arrival of the new Director of the PV LAB in 2011, Prof. Urs Muntwyler, who has pioneered the field since 1982 [1], another 10 new PV installations were incorporated. Among them is an installation with 37 kWp near the capital city of Bern with Solyndra-PV-modules and a Sputnik S-inverter. Today, more than twenty different PV products and PV technologies are monitored in an extended network of about ten PV-installation sites, providing a comprehensive and valuable data set (Table I).

Some of the PV-installations have now been operated for more than 20 years (Table I) and provide valuable information on the reliability and quality of ageing PV technology and long-term PV measurements. The two newest PV-installations were constructed in 2013 on the BFH Campus in Burgdorf, home of the PV Lab (Fig. 1a,b) and in 2014 at Jungfraujoch (modernizing existing equipment; Fig. 7). **Table I:** PV-installations in the monitoring networkoperated by the PV LAB at BFH Burgdorf, Switzerland.

Site	Subsystem	lat/long	m asl	Module	Inverter	Installatio
Joch	Joch 10	46.55°N,	3'454	Module Siemens M75	ASP TopClass	27.10.1993
	.bch 21	7.98°O		Sunpower	2500/4 GridIII SolarMax 300P	9.2014
	JOCH 21	46.55 ⁻ N, 7.98℃	3 4 5 4	X21 345	Solariviax 300P	9.2014
	Joch 22		3'454	Sunpower	SolarMax 300P	01.09.2014
APH	APH07-1	7.98℃ 47.05℃N,	530	X21 345 Sharp	SMA	8.2007
Burgdorf		7.63°O		NUSOE3	Sunnyboy 3300	
	APH07-2	47.05°N,	530	Sharp	SMA	8.2007
		7.63℃		NUSOE3	Sunnyboy 3300	
	APH07-3	47.05°N,	530		SMA	8.2007
	APH08-1	7.63℃ 47.05℃N.	530	HIP-210NHE5 Solarworld	Sunnyboy 3300 SMA	9.2009
	APHU0-1	47.05 N, 7.63℃	530	SW220 poly	SwiA Sunnyboy 3800	9.2009
	APH08-2	47.05°N,	530	Sunpower SPR215	SMA	9.2009
		7.63°O			Sunnyboy 3800	
	APH08-3	47.05°N, 7.63℃	530	Schott Solar 170 poly	SMA	9.2009
	APH08-4	7.63℃ 47.05°N,	530	Kyocera	Sunnyboy 3800 SMA	9.2009
	711100-4	7.63℃	550	LC175GHT-2	Sunnyboy 3800	3.2003
	APH08-5	47.05°N,	530	Kyocera	SMA	9.2009
		7.63°O		LC175GHT-2	Sunnyboy 3800	
Birg			2'677	Siemens M55	ASP Top Class	21.12.199
EBL	-	7.86°O 47.49°N,	227	Kyocera	4000/6 GridIII SolarMax20	23.09.199
EBL Liestal		47.49 ⁻ N, 7.73℃	321	LA361H51	JUI dI Wax 20	23.09.199
Gfeller		46.96°N,	540	Siemens M55	ASP TopClass	24.06.1992
Burgdorf		7.46°O			Grid III 4000/6	
Mont		47.16°N,	1'270	Siemens M55	ABB	28.04.199
Soleil		6.99℃				
Newtech Burgdorf	NT1	47.04°N, 7.63℃	540	Siemens ST 40	ASP Top Class Spark	17.12.200
	NT2	47.04°N,	540	Solarex Millennia	ASP Top Class	17.12.200
		7.63°O		MST 43-LV	Spark	
	NT3	47.04°N, 7.63℃	540	Uni-Solar US-64	ASP Top Class Spark	17.12.200
Schlossmatt		47.05°N,	540	Siemens M55	Sunways	17.03.1995
Burgdorf	-	7.63℃		-	NT4000	
Tiergarten Burgdorf	Ost	47.06°N, 7.61℃	530	Siemens M55	SolarMax25c	12.01.199
	West	47.06°N,	530	Siemens M55	SolarMax25c	12.01.199
	Mitte	7.61°O 47.06°N.	530	Siemens M55	Edisun 200.	12.01.199
		7.61°O			TopClass 1800,	
					TopClass	
					2500/6 Grid III,	
					TopClass	
					4000/6 GridIII, Fronius IG30	
Stade de	AA1	46.96°N.	560	Kyocera	SolarMax125	16.08.200
Suisse,		7.46°O		KC175GHT-2		
Bern	AA2	46.96°N,	560	Kyocera	SolarMax125	16.08.200
		7.46°O		KC175GHT-2		
	BI1	46.96°N, 7.46℃	560	Kyocera KC-167GH-2	SolarMax125	18.03.200
	BI2	7.46 U 46.96°N,	560	Kyocera	SolarMax125	18.03.200
		7.46°O		KC-167GH-2		
	CI1	46.96°N,	560	Kyocera	SolarMax125	18.03.200
	CI2	7.46°O 46.96°N,	560	KC-167GH-2 Kyocera	SolarMax125	18.03.200
	012	46.96 ⁻ N, 7.46°O	000	Kyocera KC-167GH-2	JUI AIWAX 120	10.03.200
	CI3	46.96°N,	560	Kyocera KC-	SolarMax125	18.03.200
		7.46°O		167GH-2		
	DA1	46.96°N, 7.46℃	560	Kyocera KC175GHT-2	SolarMax125	16.08.200
	DA2	7.46 U 46.96°N.	560	Kyocera	SolarMax125	16.08.200
		7.46℃	000	KC175GHT-2	22.3.1.1.2.0	. 5.00.2001
	DI1	46.96°N,	560	Kyocera	SolarMax125	18.03.2005
		7.46°O		KC-167GH-2		
	DI2	46.96°N,	560	Kyocera	SolarMax125	18.03.2005
Worblenpark		7.46°O 46.97°N.	493	KC-167GH-2 Solyndra	SolarMax 35S	16.08.2011
ttigen		40.97 N, 7.48℃	-33	SL-001-182	Solaliviax 000	. 5.00.201
Localnet		47.05°N,	540	Solarex MSX120	SolarMax 15	18.05.1995
Gsteighof		7.61°O				

Figure 1a: The tracker PV-installation with 4,8 kWp serves as a tracker reference station on the BFH Campus.

Figure 1b: The new solar carport-installation with 2,9 kWp was installed in 2013 on the BFH Campus and serves as a test station for new equipment.

2 LONG-TERM ENERGY YIELDS (1994-2013)

2.1 Jungfraujoch (Swiss Alps)

Some of the PV-installations in the monitoring network are high-alpine sites located in the Swiss Alps, e.g., at Jungfraujoch (Table II; Fig. 2).

Table II. PV-installation at Jungfraujoch.

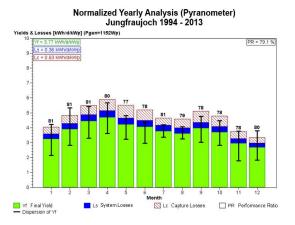
Monitoring Station:	Jungfraujoch (3,454 m asl)	
Orientation:	12 / 27° west	
Tilt:	90°	
Module:	Siemens M75	
Inverter:	ASP top class 2500	
Pgen:	1,152 Wp (nominal)	
Installation:	27 October 1993	

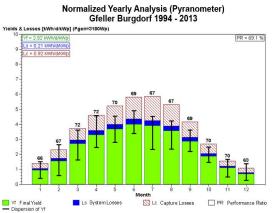
Figure 2: PV-installation at Jungfraujoch (3,454 m asl).

2.2 Gfeller Burgdorf (Swiss Basin)

Many of the sites in the monitoring network are located in Burgdorf, home of BFH and KEV invention in the 1990s. For comparison with Jungfraujoch, the PVinstallation at Gfeller Burgdorf is used (Table III; Fig. 3).

Table III.	PV-installation	at Gfeller Burgdorf.
------------	-----------------	----------------------


Monitoring Station:	Burgdorf (540 m asl)
Orientation:	10° east
Tilt:	28°
Module:	Siemens M55
Inverter:	ASP top class 3000
Pgen:	3'180 Wp (nominal)
	24 June 1992


Figure 3: PV-installation at Burgdorf (540 m asl).

2.3 Annual Cycles of Energy Yields

The mean long-term energy yield (1994-2013) at Jungfraujoch is nearly constant throughout the year (Fig. 4). This performance is due to the high solar irradiation and albedo of the glacier in front of the generator.

Figure 4: Mean annual cycle (1994-2013) of energy yield at Jungfraujoch in the Swiss Alps.

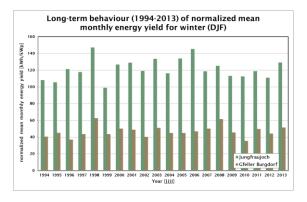


Figure 5: Mean annual cycle (1994-2013) of energy yield at Gfeller Burgdorf in the Swiss Basin.

For comparison, the energy yields at the PV-installation in the Swiss Basin (Gfeller Burgdorf) displays a mean annual cycle with a maximum in summer and minimum in winter (Fig. 5) from 1994-2013.

2.4 Winter energy yields

In addition to the mean seasonal performance, the tong-term records of PV system measurements in the monitoring network also provide valuable estimates on the long-term stability. Fig. 6 evidences the stability of the energy harvesting in winter (December-February) at the Jungfraujoch PV-installation since the beginning of the measurements. For comparisons, the mean energy yield at the Gfeller Burgdorf PV-installation, after years of operation, is also shown.

Figure 6: Mean winter (December-February) energy yields at Jungfraujoch and Gfeller Burgdorf (1994-2013).

3 FURTHER AVENUES

The wealth of data monitored in the PVinstallation network forms an important archive to quantify the role of PV for electricity production in the energy transition strategy of Switzerland. In the coming years, the PV-installation network will be modernised (technology, monitoring system, automated data quality control procedures). An example is the extension of the existing PV-installation at Jungfraujoch. Currently, new Sunpower modules are mounted at the high-alpine site (Fig. 7). On-site tests of new technology and procedures are carried out in the tracker PV-installation and solar carport installed in 2013 in front of the University building (see Fig. 2a-b).

The new technology will allow for comparative studies of measured energy yields with data from equipment older than 20 years. Efforts will also be undertaken towards rigorous data quality control of all measured data as in [2]. Knowhow-transfer will be achieved in an international Workshop on 3-4 October 2014 at BFH Burgdorf (Switzerland) and at Jungfraujoch (www.pvtest.ch).

Much of the work (including dissemination activities) is undertaken within the Swiss Competence Center for Energy Research SCCER FURIES; <u>http://sccer-furies.epfl.ch/</u>), an initiative launched by the Swiss Government. The SCCER FURIES also finances new equipment to test PV inverters at the PV LAB, which has been conducting PV inverter tests for more than 20 years. The expected outcome is a test bench able to simulate the characteristics of three independent sub-arrays with a

total power of about 35kW. For the biggest inverter test bench (100 kWp), certification is aimed at in 2014/15. After certification, the PV LAB at BFH Switzerland will be able to measure in a defined precision and complying with current norms.

Figure 7: Modernising the high-alpine PV installation at Jungfraujoch (3,454 m asl) in autumn 2014 with new Sunpower modules.

4 CONCLUSIONS

Long-term monitoring of PV-installations provides essential information on the performance and lifetime of PV technology and hence stability of energy yields. This information is essential if future investments of the Swiss Government are to be economically viable in the frame of implementation of the "Energy Strategy 2050".

Acknowledgements. We are grateful for funding from the Swiss Federal Office of Energy (SFOE) for the maintenance of this monitoring network. We also acknowledge financing from the Swiss Competence Center for Energy Research (SCCER FURIES).

References

- Muntwyler, U., Praxis mit Solarzellen. Kennwerte, Schaltungen und Tips für Anwender. Franzis-Verlag GmbH München (1986), 132 p., ISBN 3-7723-2041-4.
- [2] Schuepbach, E., Friedli, T.K., Zanis, P., Monks, P.S., Penkett, S.A., State space analysis of changing seasonal ozone cycles (1988-97) at Jungfraujoch (3, 580 m asl) in Switzerland. J. Geophys. Res., (2001), 106 (D17), 20,413-20,427.