MES SIAH Messiah College
COLLEGE Mosaic

Honors Projects and Presentations: Undergraduate

5-6-2003

"Protecting Intellectual Property in a Software Development
Environment”

Jeffrey Woldan
Messiah College

Follow this and additional works at: https://mosaic.messiah.edu/honors

b Part of the Information Security Commons
Permanent URL: https://mosaic.messiah.edu/honors/331

Recommended Citation

Woldan, Jeffrey, "Protecting Intellectual Property in a Software Development Environment™ (2003).
Honors Projects and Presentations: Undergraduate. 331.

https://mosaic.messiah.edu/honors/331

Sharpening Intellect | Deepening Christian Faith | Inspiring Action
Messiah College is a Christian college of the liberal and applied arts and sciences. Our mission is to educate men
and women toward maturity of intellect, character and Christian faith in preparation for lives of service, leadership

and reconciliation in church and society.

www.Messiah.edu One College Avenue | Mechanicsburg PA 17055

https://www.messiah.edu/
https://www.messiah.edu/
https://mosaic.messiah.edu/
https://mosaic.messiah.edu/honors
https://mosaic.messiah.edu/honors?utm_source=mosaic.messiah.edu%2Fhonors%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=mosaic.messiah.edu%2Fhonors%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mosaic.messiah.edu/honors/331?utm_source=mosaic.messiah.edu%2Fhonors%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages

Honors Project: Securing an Open Source IDE
Final Project Report and Summary
Jeffrey Woldan
May 6, 2003

“Protecting Intellectual Property in a Software Development
Environment”

-
Contents
General Discussion .. 3
Outline: Key Conéerns and Solutions.....eeeiience 8
EClIPSE-SPECIfIC FQAUFES ..ottt er ettt et sttt 9
SeCUrity FeatUres OULIINE.c..coiuvuviiieeees ettt et ab e eb e s et ben b ns st 9
Final Progress Report........ccoveiiccsncscsersensecsens .15
ASSUMPLIONS JOF LRE PPOJECL...........ovieeeieeeeeeiie ettt e s b e 16
SAVe AS... INIFOAUCTION ...ttt 17
COMPIIING ECIIPSE ..ottt ettt ettt sttt s 19
Initial Save As ... MOAIfICALION.ccooueuiuiieiiiiieiiii ettt s 20
CIDDOAFA INIFOAUCTION. ..ottt ettt ettt st saees 21
SECUTTEY FFAMEWOTEK ..o viivii ettt et ettt et sb e e eb bbbt a s 26
org.eclipse.swt.dnd. Clipboard MOAIfICATIONSc.cccoriineienaiciiiciii e 34
org.eclipse.swt.custom.StyledText MOAIfICALIONSccoccvciiiiviiiiiii i 40
org.eclipse jface.text. TextViewer MOGIfICALIONS...............cccuiiieeiirviciciciii i 41
org.eclipse.ui.texteditor. AbstractTextEditor Modifications................cccocvviviiimiecciciniiiei e 42
SAVE AS ... REVISTIOU ...ttt s 43
Incorporating Code Modifications into EClPSEcccoovviviniveniivciiniin e 45
Contributing 10 the ECIIPS@ PrOJECE...........ccccvvmiiuiiiiiiciiiiieeiiieiin s v 49
COMCIUSIONS ..evveeeev vttt st b et s s sb bt st en e 54
General ConclUSIONS wcveernscsmmirssimncsasssmeimsnssssesissessssssaessssssssasssssnases 57
APPENAIX corrrrrrresessressississerssssaississsrassnsenssasssssesssssasssssssassssessancas 59
OffliNe RESOUFCEScoeeeeeeeeieteeeieieeete ettt a bbbtttk a s ettt st sn et st a e nenes 59
ORIINE RESOUFCES ...ttt et bbbt e 59
PFOJECE SOUFCES......eovieieiie ettt e st 59

General Discussion

In today’s modern workplace, information theft has become an increasingly
significant problem. The ease of portability and distribution of computer files has been a
valuable tool for businesses, but has also opened the door for dishonest individuals to
steal these files and use the information for their own purposes. Hackers are a threat, as
more and more businesses go online, but the biggest threat of information theft may
actually come from within a company itself. In September 2002, a study was released by
ASIS International, Pricewaterhouse Coopers, and the U.S. Chamber of Commerce titled
“Trends in Proprietary Information Loss.”" It sited former employees and on-site
contractors as two of the most significant risk factors in proprietary information and
intellectual property loss. The study also found that the risk area for information theft
most commonly sited by companies was research and development, which would include
program code developed within a company. Thus software developers, among many
other types of employees, could certainly be a security risk to a company.

It is becoming more important to protect a company’s intellectual property from
theft by those on the inside as well as the outside. So how does a company go about
protecting from insider theft? Let’s assume for the sake of argument that it is
unreasonable to expect to be able to hire only trustworthy, honest people to work at a
company. This is reasonable, as an untrustworthy person would probably not present
themselves as such. In fact, some would argue that because computers make it so easy to

share information, it could cause an otherwise honest person to take advantage of this to

' Trends in Proprietary Information Loss. Sept 2002. Asis International, Pricewaterhouse Coopers LLP, and
US Chamber of Commerce. Available online at http://www.asisonline.org/pdf/spi2.pdf.

use company information for their own purposes. Whether statements such as these are
valid could be debated for some time, but this is not the purpose of this paper. Instead,
we will consider what practical modifications could be made to a workplace computing
environment to prevent this type of insider information theft.

The idea behind modifying a workplace computing environment is to restrict an
employee’s access to files, so that they can access the files they need to do their job, but
to prevent access to them in ways that make them insecure. This immediately establishes
a conflict between convenience and security. For example, it may be convenient for an
employee to take home company information on a floppy disk or CD-R, but this may also
allows them to give this information to anyone they choose. The issue of information
security is not cut-and-dry; instead, a company must make compromises between what
insecurities are reasonable allowances for productivity, and what are excessive risks to
the company’s welfare. Thus, the issue can become quite complex. In this paper,
however, we will simplify this problem by looking at how a particular program could be
modified to create a more secure work environment. We will start by looking at the
security problems posed by this program, and then consider various possible solutions to
these problems. In examining these solutions, we will see the tension that often occurs

between convenience to the user and the issue of securing intellectual property.

The Eclipse project (http://www.eclipse.org) is an open source project to create an
IDE that can be a universal platform for essentially any type of development work. The
program itself is a sort of framework upon which development tools can be implemented.
These are created through plugins specifically designed for Eclipse. For example,

included with Eclipse is a plugin that allows the development of Java code, with many if

not all of the features of commercial Java IDEs. There are many other plugins available,
a significant number of which are created by third-party sources. Because program code
is an important part of intellectual property, it made sense to focus this project on an IDE.
Due to the open source, extensible nature of Eclipse, working with the Eclipse IDE
seemed to make a lot of sense.

Eclipse is written almost entirely in Java. It is built on the SWT GUI toolkit,
which was created by IBM. In fact, a large portion of the code base for Eclipse was
created by IBM, and some of this code is used in their commercial IDE, Websphere.
SWT, which stands for Standard Widget Toolkit, is a GUI toolkit like AWT or Swing,
but independent from both of these. Like the rest of the Eclipse code base, SWT is open
source. Eclipse also includes code from other open source projects, such as the Xerces
XML parser, which is part of the Apache open source project. Since Java code runs on a
virtual machine, the bulk of Eclipse is not its executable file. In fact, all the tiny
executable does is start the virtual machine and load the required java libraries. These
libraries are stored in the form of compressed .jar files. Contained in these files are
compiled .class files, grouped in the .jar files by packages. Because of this, Eclipse is
very modular and conducive to a plugin-dependent design.

Before considering the problem of securing the Eclipse IDE, let me admit that this
project is more of a study in theory than an attempt to create a full-fledged solution for
secure development. My goal in this project is simply to work towards a secure
environment within the Eclipse IDE, without really dealing with security concerns
external to Eclipse. Thus, no matter how secure the program is, as long as the files are

stored in an insecure file system accessible outside Eclipse, it cannot be guaranteed that

they are truly secure. We will touch on the issue of secure files systems and operating
systems, but it is not the focus of this paper. Still, in attempting to make Eclipse a secure
development environment, we face the same issues that we would if we were working
towards a more comprehensive solution, such as one designed on an operating system
level. Thus it is still a valuable project, with considerable practical application. In this
paper, I will discuss the security features necessary to make Eclipse a secure environment.
I'will discuss their importance, as well as their possible effects on user productivity.

First, let’s consider ways that company files could be taken by an employee for
their own use by using the development environment they work in. One way is by saving
files to a floppy disk or burning them to CD. Without security measures in place, this is
probably the most convenient method of information theft available to an employee.
Another method is saving files to public network or internet filespaces. While this may
take more work to set up and access, it certainly a viable option as well. If an employee
can print paper copies of company files, simply taking home these copies is an easy way
to steal information. Also, emailing files would be an easy way to send company
information to computers outside the company. There may be other more obscure
methods for stealing information from within the development environment, but these are
the most obvious, and thus the most important to protect against. When considering these
problems on an application level, we must consider all the ways the application could
allow these insecurities. Beyond that, however, we must also note how the application
could make the files available to other programs with these insecurities. For example, if

the program has the ability to launch other programs, as Eclipse does, this may create

ot

other security holes. While I will attempt to fix only a small portion of these insecurities,

the eventual goal is to remove all of them from the Eclipse environment.

Outline: Key Concerns and Solutions

In considering the problem of securing the Eclipse IDE, we will assume in many
of the proposed solutions that there is some way to store files in a secure location, or at
least a way to mark files as secure, for the purpose of identifying which files should be
protected by Eclipse. If we assume the secure location option, this requires external
operating system or file system support, ensuring that secure files are only accessed by
appropriate programs and in appropriate ways. If we simply mark files as secure, with
some sort of flag, for example, this might mean that the files are not truly secure outside
of the Eclipse environment. This option, however, could possibly be handled within
Eclipse itself by keeping some sort of registry of secure files. It could then check this
registry any time it loaded a file, to see if that file should be secure. Other proposed
solutions do not assume any sort of secure files, and thus are independent of the
computing environment the program is run in. Their effectiveness, however, might still
be compromised if the rest of the development environment was not properly secured, as
previously mentioned. We will also assume in this discussion that Eclipse itself will only
be modified by a system administrator, because if any user can modify Eclipse, they can
easily remove any security features than might have been in place. Prevention these
modifications could be as easy as not giving the user modify rights for the Eclipse
program files.

In the outline below, security problems posed by the Eclipse environment are
listed. Following each problem is a list of possible solutions, with the merits and

problems posed by each solution. They are grouped by the type of insecurity posed.

Before the outline, however, there are several Eclipse features that should be explained

before presenting the vulnerabilities posed by them. They are as follows:

Eclipse-Specific Features

L.

The Eclipse workspace is the set of projects and files which are currently
available for editing in Eclipse. Files can be imported and exported from the
workspace to standard filespace locations. If a file is in the workspace, it is still in
the standard file system. A project/file must be in the workspace to be edited
within Eclipse.

The Eclipse navigator lists the project and files currently in the Eclipse workspace.
It works much like Windows Explorer, as it shows projects and files in a
hierarchical view, and allows drag and drop and copy and paste of files to
different locations within the workspace. It also allows drag and drop and copy
and paste to locations outside the workspace.

Eclipse’s compare changes feature is a robust utility for comparing the differences
between two different files, or even previous versions of the same file. It allows
parts of one file which differ from the other to be copied in place of those

differences, to “synchronize” the two documents.

Security Features Qutline

L

Saving or moving files to a floppy disk/public network or internet filespace

a. Save As... functionality may allow files to be saved to insecure locations

or to removable disks.

Solution i: Completely disable Save As... option. With this feature
disabled, it cannot pose a security threat. It may prevent the user
from moving secure files to other secure locations, however.

Solution ii: Completely disable Save As... for secure files, allow
Save As... for insecure files. This requires identification of
secure files within Eclipse.

Solution iii: Restrict Save As... to only allow saving of secure files
to secure locations, and not to removable drives. This allows
Save As... to be used in secure ways instead of completely
disabling it. This is the most complicated solution, however,
because to do this, Eclipse must be able to identify which

filespaces are secure, and which are not.

b. Export... functionality, which exports files in the Eclipse workspace to
any location in the file system, may allow files to be saved to insecure
locations or removable disks.

Solution i: Completely disable Export... option. This is essentially
the same as Solution i to a., above.

Solution ii: Completely disable Export... option for secure files,
allow it for insecure files. This is essentially the same as
Solution 1i to b, above.

Solution iii: Restrict Export... to only allow saving of secure files to
secure locations, and not to removable drives. This is essentially

the same as Solution iii to a., above.

¢. The Eclipse navigator may allow files to be moved to insecure projects or
insecure locations in the filespace, using its drag and drop or cut and paste
functionality for files.
Solution i: Completely disable drag and drop and cut and paste
functionality within the workspace navigator. This removes

basic drag and drop and cut and paste functionality to all

10

locations, including secure locations. This may be overly
restrictive to the user.

Solution ii: Completely disable drag and drop and cut and paste
functionality within the workspace navigator for secure files.
Allow such functionality for insecure files. This is still fairly
restrictive to the user.

Solution iii: Restrict drag and drop and cut and paste to only allow

moving of secure files to secure locations. Do not allow the moving

of secure files to insecure projects or filespace locations. Allow
insecure files to be moved to secure locations, but the must be
marked as secure once moved. This requires identification of both

secure project and secure filespace locations by Eclipse.

Eclipse’s cut and paste functionality for text may allow information
contained in secure files to be copied into insecure files in the workspace.

Solution i: Completely disable cut and paste within Eclipse. This
would be extremely restrictive to basic productivity.

Solution ii: Restrict cut and paste to only allow pasting within the
file the text had been cut from. This would still be quite
restrictive to basic productivity.

Solution iii: Restrict cut and paste to only allow pasting of secure
text into secure files. This requires identification of secure |
files/projects in the workspace. Allow cut and paste from

insecure locations to all other locations, secure or insecure.

Eclipse’s compare changes features may allow information in secure files

to be copied into insecure files in the workspace and to files in other

insecure locations.
Solution i: Completely disable compare changes functionality. This

may be restrictive to basic productivity.

11

Solution ii: Disable compare changes functionality for secure files,
allow for insecure files. This requires identification of secure
files.

Solution iii: Restrict compare changes to only allow secure files to

be compared with other secure files. This requires identification of

secure files.

Solution iv: Restrict compare changes to allow comparisons of two
secure files to work both ways, but only allow parts of insecure
files to be incorporated into secure files when comparing the two,

not vice versa. This requires identification of secure files.

II. Printing files

a. Eclipse’s printing functionality allows employees access to paper copies
of secure files.

Solution i: Completely disable printing from Eclipse. This is
somewhat restrictive, but possibly not excessively.

Solution ii: Disable printing of secure files from Eclipse, but allow
printing of insecure files. This is less restrictive, but may still be
obstructive to productivity in some cases.

Solution iii: Allow printing, if not considered a large enough
security risk.

Other Solutions: physical security measures could be used (not

enforced by the program itself).

III. Making files available to other insecure programs

a. Eclipse’s cut and paste functionality for text may allow information
contained in secure files to be copied into insecure editors.
Solution i: Completely disable cut and paste within Eclipse. This

) would be extremely restrictive to basic productivity.

12

Solution ii: Restrict cut and paste to only allow pasting within
Eclipse, not to other programs. This could be restrictive to
productivity if other programs are often used in conjunction with
Eclipse.

Solution iii: Restrict cut and paste to allow pasting of secure files in
Eclipse to any file in other secure programs. This requires
Identification of secure programs. It also creates a security hole,
because it does not check if the file being edited in the other
program is secure. Allow cut and paste from insecure files to all
other programs, secure or insecure.

Solution iv: Restrict cut and paste to only allow pasting of secure
files in Eclipse to secure files in other programs. This requires
identification of secure programs, and whether the file it is
editing is secure, which may be impossible without operating
system assistance. Allow cut and paste from insecure files to all

other programs, secure or insecure.

b. Eclipse’s ability to register external editors, using plugin manifest files, for
use with certain file types, and to open the system default editor for a file
type may allow secure files to be edited in insecure editors.

Solution i: Completely disable external editor use within Eclipse.
This may actually be a difficult solution to implement, because
this functionality is highly integrated with Eclipse. Also, it may
be excessively restrictive.

Solution ii: Do not allow the user to register external editors- only
allow the system administrator to register external editors, and
make it is his or her responsibility to ensure they are secure
before registering them. System editors are not Eclipse’s
problem, so do not deal with them. This is probably the easiest

solution to implement, but is somewhat restrictive.

13

Solution iii: Eclipse dynamically checks if external editors are
secure, and only launches them if they are. This requires
identification of secure editors, which may need operating

system assistance. This is the most flexible solution to the

problem.

IV. CD burning/Email

- Since Eclipse has no built in CD burning or email functionality, these should
not be problems. However, it is not impossible that plugins could be created
allowing this type of functionality, or creating other security risks. Thus it is
important that any plugins that are added to Eclipse be checked for any
insecurities they may introduce, and be modified (or simply not used) if such

insecurities exist.

14

Final Progress Report

Over the past academic year, I have worked with Eclipse to implement some of
the security features needed to create a secure development environment. This has
proved a challenging task, because of the complexity of Eclipse, and the various concepts
and tools needed to integrate these features into Eclipse. The first semester of the year I
spent working on understanding various parts of the Eclipse code base, and disabling
Save As... functionality for all editors within Eclipse. Understanding the code was a
complex task, but once I understood the code, this was a fairly simple modification. The
problem with this was that it was overly restrictive to the user, and did not take into
account any of the situations when Save As... should be allowed. Actually implementing
such a restrictive feature modification in a work environment would be inadvisable, as
Save As... is a valuable feature for any type of document editing.

My goal the second semester of the year was to create more flexible, user friendly
security modifications. I spent most of this second semester working with modifying
clipboard functionality within Eclipse. Instead of completely disabling the clipboard, I
have modified it so that secure information can only be copied into secure files, and
where insecure information can freely be copied into any file. This protects secure files
while still allowing a developer to use the clipboard in many ways, instead of the
complete removal of this extremely valuable tool. Thave also revisited my Save As...
modification, enabling it to work with the file’s security setting to determine if Save

As. .. should be disabled for that file.

15

As already mentioned, adding security features often forces a compromise of
convenience to users, and thus the ideal solution minimizes the hindrances it places on
the user while still enforcing strong security. I have tried to be aware of this compromise
and find the best solutions to these problems in the modifications I have completed.
Because the secure file system I assume this program would work with is somewhat
hypothetical, and because of the general complexity of the Eclipse codebase, there are
limits to the flexibility of my solutions, but I believe I have done the best I could given

the time and resources at hand.

Assumptions for the Project

As noted previously, a complete, fool-proof security solution was not the goal of
this project. As such, it is important to note the assumptions upon which I have based my
work. These assumptions detail the type of computing environment I am assuming to be
working within in creating security features. The first assumption is in regards to how
secure files are stored. We assume that secure files are stored in either a secure file
system or some other sort of filespace that protects files from unauthorized usage on an
application-by-application basis. Thus, it makes sense to work to create security
solutions on an application level, because the application must protect a secure file once
it has been given access, and the application need not worry about its security measures
being bypassed by opening the file in an insecure program.

We will also assume that there is no way for an application to tell which
filespaces are secure and which are not. While this would probably not be the case in a

real secure development environment, I do not have such an environment to work with.

16

This means there is no way to determine valid locations for secure documents to be saved,
other than the location they are originally saved in. The next assumption is that other
than files being protected from unauthorized access, there are no other security measures
built into operating environment. This relates specifically to my work on Eclipse’s
interface with the system clipboard. We assume that any information placed on the
system clipboard is available to any application, secure or insecure. Thus, passing secure
data to the system clipboard allows the user to do essentially anything they want with that
data, and should be prevented.

Finally, we assume that there is some way to determine the security setting of a
file at or after load time. The specific method of determining this security setting is not
important. Additional, we assume that we are not concerned with the sharing of
information between various users’ files. We will only have two security classifications
of files: secure and insecure. Since the goal of the project is only to prevent the misuse of
valuable company information, we are not concerned with the sharing of information
within the company, only if that information leaves the company. Thus, the two security
classifications are sufficient for our goals, in that they determine which files need to be
protected. While in some situations keeping various users’ files separate might be

valuable, this type of feature is commonly built into the operating system, and is not the

focus of this project.

Save As... Introduction

I began my work on Save As... in the first semester of this year. For my initial

version of this modification, I simply disabled Save As... for all files edited within

17

Eclipse. This proved to be a complicated enough task, without worrying about marking
certain locations as secure and allowing Save As... to work for those. A large portion of
my work with the code consisted of searching for references to the functionality I wanted
to change. I also had to learn about the design hierarchy of Eclipse to better understand
how the changes I made would affect the functionality. After some searching, I found the
isSaveAsAllowed() method declared in the IEditorPart.java file, which defines the
org.eclipse.ui.IEditorPart interface. This method simply returns a Boolean, indicating
whether Save As... can be performed with that editor.

The IEditorPart interface must be implemented when creating an editor for
Eclipse. Thus all built in editors implement it, and all editors added as plugins must
implement it as well. Since it is an interface, however, the IEditorPart interface cannot
contain any defined methods, only their declarations.
org.eclipse.ui.texteditor. AbstractTextEditor is a base class that implements IEditorPart
and defines many of the methods needed for an editor in default, generic ways. All of
Eclipse’s built in editors extend this class, and simply override or add methods as needed.
This includes Eclipse’s built in text editor, defined in the

org.eclipse.ui.editor.text. TextEditor class.

One of the first solutions I considered was to somehow prevent the overriding of
the isSaveAsAllowed() method in AbstractTextEditor, which is set to return false. I was
unsure of how this would work at first. Idid not know how I would prevent the method
from being overridden, because the ability to override other functionality is a key part of
Eclipse architecture and its plugin-oriented design. Even if there was some way to do

this, I was concerned that it might cause other problems in the program.

18

Compiling Eclipse

At the same time as I was considering the Save As... problem, I was attempting to
compile the Eclipse source code. Iknew that to implement and test any changes, I would
need to compile my solution into a working program. While I was working on the
problem of compiling Eclipse, I was also attempting to compile a sample plugin
discussed in the Eclipse help files. Iwas considering the option of using a plugin to
enforce security features at the time, and I figured I could better understand how plugins
work by creating this sample plugin. This plugin would simply create a window with the
text “Hello World” within the Eclipse environment. [was having problems, however,
with satisfying file dependences for this plugin. I could not figure out why it could not
find the files it needed, nor could I figure out how to add these files to the build path. I
spent some time searching the Eclipse source code and program directory structure to
find where these files were located. Finally, I discovered that the files to satisfy the
dependencies were to be found in the .jar files that compose the codebase of the Eclipse
application itself. I determined how to add these to the build path of the plugin project,
and I was able to compile the plugin and eventually register it for use within Eclipse.
Plugins are registered with plugin manifest files, written in xml, that tell Eclipse how to
use the plugin.

The knowledge gained from creating the sample plugin would come in handy in
compiling the Eclipse source code. First, however, I concerned myself with compiling
the executable that launches Eclipse. I had come across the launchersrc.zip file in the
source code, which contains the source for this executable, written in C. Included in

this .zip file was a build.bat file, which, when ran, executed the commands needed to

19

compile the source code into a working executable. I tried to run the executable and
received an error message indicating that it could not find a library it needed to run,
startup.jar. I found the source code for this library, conveniently stored in startupsrc.zip.
Using what I had learned from compiling the sample plugin, I was actually able to use
my precompiled copy of Eclipse to import the files for the library, satisfy its
dependencies, and export the compiled files to a jar file for the Eclipse executable to use.
[ran the executable again, and it found the startup jar file, but returned another error
message indicating another missing library. I continued this process of compiling

libraries for the runtime.jar and boot.jar libraries.

Initial Save As... Modification

After compiling the three libraries, I decided to save time by simply copying over
the precompiled libraries from my precompiled copy of Eclipse. Iknew how to create
these libraries, and so it was more important to now use this knowledge to make
modifications to the Save As... functionality. Iinitially tried to disable Save As...
simply in the TextEditor class, by changing its isSaveAsAllowed() method to return false.
After compiling my modified copy of workbench.jar, which contains the org.eclipse.ui
package, and placing it in the appropriate directory, I found that I had successfully
disabled Save As... for the standard text editor.

At this point I still did not know how to better ensure that no files could use Save
As..., no matter the Eclipse editor in use. The solution, however, turned out to be fairly
simple. Since essentially all editors extend the AbstractTextEditor class, I decide to try

declaring the isSaveAsAllowed() method in this class as final, and see how this affected

20

-~

the functionality of editors that tried to override this method. In doing this, I found that
editors that attempted to override the method could not be opened, because their classes
could not be instantiated. Instead, a dialog box indicating the attempt to override the
final method was displayed. It turned out that declaring the method as final essentially
enforced this security feature on its own. To make these other editors run, I had to
remove the attempt to override the method from the code, and put recompiled versions of
them in the appropriate libraries.

While this provided one solution to the security issues posed by Save As..., it was
a fairly restrictive solution. Learning enough about Eclipse to make this modification
took most of the first semester, but when I had the chance to revisit Save As... in the
second semester, I knew I could improve on this modification. First, however, I would
work on implementing secure clipboard functionality for Eclipse, and on creating a

security framework to support these security modifications.

Clipboard Introduction

While I did not make any modifications to the Eclipse clipboard in the first
semester of the project, I still spent considerable time learning how modifications might
be made. Ibegan research by searching for locations of code referencing the clipboard in
some way. I found occurrences of the java.awt.datatransfer.Clipboard o.bj ect in the code
which seemed promising at first, but it turned out that this Clipboard object is used for

other purposes in the code.

The Eclipse tools newsgroup, found at news://www.eclipse.org/eclipse.tools,

proved a valuable resource for understand the clipboard functionality of Eclipse. I posted

21

a question regarding the implementation of the clipboard on this newsgroup, and received
a reply indicating that Eclipse’s clipboard functionality is implemented with the SWT
toolkit. I found the SWT source code, which is included with Eclipse. Ispent a
considerable amount of time at the end of the first semester searching the code to see how
the clipboard is incorporated into the editors in Eclipse.

My main goal the second semester of the year was to modify the Eclipse
clipboard to protect information in secure files modified within Eclipse, without disabling
the use of the clipboard. In doing this, my research focused on the Standard Widget
Toolkit (SWT). The SWT toolkit is a powerful and flexible package, which allows the
creating of widgets that appear and function like native system widgets. This is done by
using native widgets as often as possible. This means that while the actual
implementation of SWT varies from operating system to operating system, the SWT API
remains the same. There are versions of SWT (and Eclipse) for Windows, Linux, Solaris,
and Mac OSX, among others. Where native implementations of SWT widgets are not
available, they are emulated for that operating system. This allows Development in SWT
to be portable while creating an application that seems system-specific.

The org.eclipse.swt.dnd.Clipboard object provides the standard SWT interface to
the clipboard. The Clipboard class itself does not make native system calls, but makes
calls to a system specific object, which contains native methods implemented with JNIL
In windows, the org.eclipse.swt.internal.ole.win32.COM object provides this
functionality. JNI (Java Native Interface) provides an interface to the SWT native library
(a.DLL in windows), which is written in C. The Clipboard object provided two

methods that allow data to be passed to and from the Clipboard: setContents(Object][]

22

data, Transfer[] dataTypes) and getContents(Transfer transfer). I focused on trying to
understand these methods, so that they could be modified. However, I found their
references to the COM object confusing, as they seemed to reference specific memory
locations and not pass the clipboard information as parameters to these methods.

I considered at one point not modifying the Clipboard object, and instead
modifying only the org.eclipse.swt.custom.StyledText object. This is a text widget which
is used by the editors in Eclipse, forming the area in which files are displayed and edited.
This object has cut, copy, and paste methods built in, which access the Clipboard object.
The reasoning behind modifying StyledText instead of the Clipboard class was that by
modifying the Clipboard class itself, I might affect other text widgets in Eclipse, such as
those in preference dialogs. I did not know if StyledText was the only class accessing the
Clipboard, and I was afraid that if I modified the Clipboard class it might create problems
for other parts of Eclipse.

Before I started to modify any Eclipse or SWT code, I created sample program to
better understand the usage of the clipboard object, and to test possible clipboard
solutions. My first test program used the java.awt.datatransfer.Clipboard class, mainly to
see if I might be able to use this clipboard class as part of my solution. One interesting
feature of the java.awt.datatransfer.Clipboard class is that it can reference the system
clipboard, but it can also reference a local clipboard internal to the application it is used
in. The org.eclipse.swt.dnd.Clipboard object did not have this feature- it automatically
interfaced with the system clipboard. In this first test program, I created two
java.awt.datatransfer.Clipboard objects, one that referenced the system clipboard, and one

that provided a local clipboard for the program. In this program, the user can type text in

23

a text box, and then, using buttons in the application window, select either the system or
local clipboard, and then copy, cut and paste using that clipboard. The program
functioned as expected, and data placed on the local clipboard was not available to other
applications.

I also created a second test program to try using the SWT classes in conjunction
with the java.awt.datatransfer.Clipboard class. In the second program, I used a
java.awt.datatransfer.Clipboard object as the local clipboard, and an
org.eclipse.swt.dnd.Clipboard object as the system clipboard. I also used SWT widgets
to create this second program interface, where I used AWT widgets for the first, and
created a more understandable user interface, that displays the currently selected
clipboard’s contents in one text box while allowing text to be edited in another. This test
was successful as well, with the AWT clipboard serving as a local clipboard unavailable
to other applications.

At this point, I realized that a possible method to avoid breaking parts of Eclipse
through my modifications was to leave the original classes intact and create subclasses of
those classes that needed to be modified. Because all original classes would be
unchanged, they would perform exactly as expected, but the new subclasses would
implement the desired security features. For example, the Clipboard class would be
extended by a SecureClipboard class, and the StyledText object would be extended by a
SecureStyledText class, and so on. I began my modifications this way, but soon realized
that this method made things quite complicated. For example, when used within an
Eclipse editor, the StyledText object is wrapped in an

org.eclipse.jface.text.source.SourceViewer class. Thus, the SecureStyledText class

24

should be wrapped in a SecureSourceViewer class. However, the number of classes that
reference SourceViewer is large, and the number of secure classes to add to Eclipse
increased greatly as I continued up the code hierarchy. Another problem with this
strategy was that some of the methods I needed to override were declared private, and
thus I could not call those superclass methods. It seemed pointless to rewrite these
methods for my secure classes, but I didn’t want to change the access levels to these
methods either, because this meant I would be modifying the original classes and creating
new secure ones as well. Overall, this strategy seemed to create more problems than its
resulting benefits warranted.

After reconsidering my options, I decided to add security functionality to existing
SWT and Eclipse classes. The goal in doing this was to make this security functionality
invisible to calling classes that did not want to access it, thus ensuring that these classes
would continue to work as expected, but to provide the ability to activate security
functionality when desired. There were several benefits to this approach: First, there
were far fewer classes to modify, because many classes involved in an Eclipse editor do
not need to directly deal with security, but access classes that need security features. By
retaining the original class names, references to the modified classes often remained the
same. Secondly, working within the original classes, I had access to all fields and
methods of those classes, even private members. Also, by modifying the original classes,
the security features are more highly integrated into Eclipse, and expanding this security

to other aspects of the program becomes easier as well.

25

Security Framework

Before I could implement these security features, I needed to decide how to
implement a security framework to support them. This framework would provide the
security settings of files to the various secure classes within Eclipse, thus allowing them
to handle those files appropriately. At the suggestion of my project advisor, I researched
the java.security packages to ascertain whether they would be valuable in enforcing these
security settings. I had begun to create my own classes to do this, but it seemed
unnecessary to write code that provided similar functionality to already existing classes.
Additionally, the Java security classes seemed to provide more powerful security features
than any I might create.

As I researched the java.security classes, I hoped to file a way to assign
permissions directly to the files to be edited in Eclipse. Unfortunately, this type of
permission assignment is not part of the java.security classes. However, the java.security
package does depend heavily on permission objects. There are many types of
permissions included as part of the java.security package, some of which can be
automatically checked by the virtual machine, if so enabled. These permissions range
from file permissions like read, write and execute, to run time permissions such as
creating a class loader, to security permissions like setting or modifying the current
security policy. These permissions are enforced by running a program under a security
manager. This can be done in the code itself, but can also be declared as a command line
parameter. The security manager automatically loads the default java security policy

and java.policy file in the user’s home directory, but can also load a specified policy file.

26

A policy file allows you to set java permissions. Permissions are assigned based
on three possible criteria: the codebase (or the location from which the code is being
loaded), the signature on the code, and the principal (or user) loading the code. The
codebase is a URL representing is a directory or .jar file. Code is signed using a private
key, which creates hash values for individual files. Signed files are stored in a jar file,
with their signatures stored in another file within the .jar. Principals can be user names in
various operating systems, including Windows and Linux. Any or all of these criteria can
be used when assigning permissions to files.

Assigning permissions based on codebase or principal is as simple as stating their
values in the policy file, but assigning permissions based on file signatures is slightly
more complicated. First, a key must be created, which will be stored in a keystore. A
java keystore is a file that stores private and public keys. The keytool command line tool
allows a user to create a keystore and add keys to it. Keystores and individual keys each
have a password to access and use them, and keys store identifying information about the
owner of the key. Once you have created a key, you can now sign the contents of .jar
files, using the jarsigner command line tool. When using this tool, you specify the
desired keystore, key, and the passwords for each, as Well as the jar file to be signed.
The jarsigner tool then creates the signed .jar file using the specified key. If you intend
to share this signed code, you must export a public key from the keystore to pass along as
well, using the keytool. The person you are sharing the code must then import the key,
again using the keytool to import the public key into their own keystore.

There are many permission classes included as part of Java, and many of these are

automatically checked when running a program under the default security manager.

27

™

However, there was no built in permission class that did exactly what I needed it to do.
Fortunately, a user can create their own permissions by extending existing permission
classes. These user-created permission classes are not checked automatically, but are
checked by calling the AccessController.checkPérmission(Permission permission)
method. AccessController is a final class, with static methods for checking and changing
the current security context. checkPermission(Permission permission) checks if that
permission is allowed by the policy file in effect. This method throws an
AccessControlException if the permission is not granted for the current security context.
Using a try/catch block, the checkPermission method can control how the program reacts
based on whether the security is granted.

I would eventually create two permissions classes, which I added to the
org.eclipse.swt.security package. This was a package I added to SWT to contain any new
security classes not based off existing SWT classes. These permissions were
SecureClipboardPermission, and SecureSaveAsPermission, intended to be checked when
clipboard access and Save As... operations were performed, respectively. These
permission classes extend the java.security.BasicPermission class. These classes’
constructors, like all permissions, take a String as an argument, which helps to refine the
permissions being granted. This being the case, I decided to pass the security setting of
the files as a parameter to the permissions. |

I created an org.eclipse.swt.security.Security class to store the String constants
that would be parameters for the permission classes I created. [created two String
constants, STANDARDSECURE and STANDARDINSECURE. These constants

correspond to secure and insecure files, respectively. I decided to have only these two

28

security settings for files, because I wasn’t dealing with various levels of security.
However, for more complex security classification of files, with various security levels,
more constants could be added and enforced in the policy file. By declaring constants for
these settings, it means the actual values of the constants can be easily changed without
having to the change references to the constants.

The next question was how to pass permissions, or rather, how to obtain the
permissions for files and enforce those permissions. First, I dealt with passing
permissions within Eclipse. I debated signing only specific files, and giving those signed
files the appropriate security permissions. When a file was loaded into an Eclipse editor,
a factory method would then be called, checking the permission of the file and loading it
into the appropriate class. A factory method has the effect of allowing of any of a set of
classes all satisfying a single interface to be chosen for creation at runtime. This would
have the effect of allowing secure files to be loaded into a signed class, where insecure
files would be loaded into an unsigned class. Otherwise, these clésses would be
functionally the same. When Java permissions are checked, they are recursively checked
for all calling classes. If a class in the calling chain did not have the permission being
checked, an AccessControlException would be raised. Thus, even if this class is not
directly accessing secure features, as long as it is in the calling chain, its given
permissions are checked.

I decided against this solution, however, because I did not see any particular class
as lending itself to such an implementation. It also seemed overly complicated and
unnecessary because it did not provide more security than the simpler method I decide to

use instead. In this method, security settings are passed using the String constants

29

declared in the org.eclipse.swt.security.Security class. When files are loaded into an
Eclipse editor, a permission String is set for that file, and then that string is passed to
classes that need this setting. I decided to pass the security String instead of actual
permissions because there are multiple permissions for each file, and instead of trying to
pass all of them, a single string indicating the setting for all those permissions is simpler.
Using Strings to pass security settings may seem less secure than assigning permissions
solely by file signature, but this method uses both the String and the file signature to
enforce the security. The permissions are still assigned in the policy file based on the file
signature, which means that the files accessing these security features must be signed.
That way, unless a user has access to the private key and password used to sign the files,
they cannot change the way the security Strings are passed or the way the security
features are accessed.

In addition to passing permissions within Eclipse, the security framework
required a method to load the security settings of files into Eclipse. In an actual secure
development environment, this would involve interfacing with the secure filespace to
obtain these settings. Since we are not working with an actual secure filespace, I needed
a stand in solution that would substitute for the secure filespace. In doing this, I wanted
to ensure that an interface to an actual secure filespace could be added as needed. To do
this, I started by creating an ISecurityRegistry interface, with only one method,
getSecurity(IEditorInput input). This method takes an IEditorInput, which is a wrapper
class that presents a document to an editor, and returns the security setting for that
document. To implement this interface, I decided to use a simple text file to serve as a

registry, storing security information on the files edited by Eclipse.

30

FileSecurityRegistry implements ISecurityRegistry using such a text file registry.
The file format contains one entry per line, placing the path of the file on the line,

followed by that file’s security setting. An example of the registry file is shown below:

/test/secure.txt STANDARDSECURE
/test/mytest.java STANDARDSECURE
/test/ancthertest.xml STANDARDSECURE

These security settings correspond to the constants declared in
org.eclipse.swt.security.Security. Like references to these constants in the Eclipse code,
the value of the constants can then be changed without having to change the security
registry file. To implement this functionality, I used the java reflection classes. To
retrieve the value of the constant listed in the registry file, for example, I had to create an
instance of the org.eclipse.swt.security.Security class. Ithen had to call the getClass()
method on that object to retrieve a Class object. This gave me access to the
Class. getField(String field) method, which retrieves a Field object with the name given
by the String parameter, if such a field exists. Given that Field object, I called the

Field.get(Object object) method, which returns the value of that field for the given object,

again if that field exists for the object. The code for this is shown below:

/**

* Retrieves the security of an IFilefditorInput.

ram input the file input to be checked
turn the security setting String for the input.

&

*/
private String getSecurity(IFileEditorInput input) {
try {

// create the BufferedReader object.
registryBuffer = new BufferedReader (new FileReader (registryPath));

// retrieve the path of the file being checked.
IFile file = input.getFilel();

31

—~ IPath path = file.getFullPath();
! 4 - - String pathString = path.toString();

/*
* read through the registry until the editor file is found,
* or until the end of the registry is reached.
*/

while (registryBuffer.ready()) {

// tokenize a line
registrylLine = new StringTokenizer (registryBuffer.readLine());

// check if the path matches the editor file.
if (registryLine.nextToken () .equals (pathsString)) {

/*
* if the path matches, get next token, and obtain the
* value of the field in the Security class where
* the field name matches that token.
*/
return (String) securityObject.getClass ().
getField (registryLine.nextToken()) .

get (securityObject);

}
}
)

catch (IOException e) {
// continue to default case

catch (NoSuchFieldException e) {
// continue to default case

catch (IllegalAccessException e) {
// continue to default case

}
/ *
* if there is a problem retrieving the security setting,
* yeturn the default security setting.
*/
return defaultSecurity;
You will notice that this is a private method which takes an [FileEditorInput.
IFileEditorInput extends IEditorInput, and is used if the input is a file. Thus, in
FileSecurity. getSecurity(IEditorInput input), we check if the input is a IFileEditorInput,

and if so, call the private method above. If it is not a IFileEditorInput, then it is not a file,

and there is currently no implementation to check its security.

32

This implementation opens the possibility for several different exceptions to be
thrown. The first is an IOException, thrown if the registry file can not be accessed for
some reason. The second is a NoSuchFieldException, which is thrown if the field
requested by Class.getField(String field) does not exist. Third, an
IllegalAccessException is thrown by Field.get(Object object) method if that field does
not exist for the object. In addition to these exceptions, if there is no security setting
listed for the file in the registry, this must be handled, and we must also return a value
even if the IEditorInput is not a file. To handle all of these situations, a default return
value was needed. I created a String field, defaultSecurity, to be returned in these cases.

I decided to set this field’s default value to Security. STANDARDINSECURE. By doing
this, only secure files need to be listed in the registry file. The disadvantage of this is that
if the registry became corrupted, secure files could be assigned an insecure security
setting. The logic behind this choice, however, is that a greater number of insecure files
exist on the system than secure files, and marking them all as such would be an excessive
amount of work. This could be changed depending on the security level desired. Making
the default security setting Security. STANDARDINSECURE is more convenient to the
user, but making the default setting Security. STANDARDSECURE would offer a higher
level of backup security, in case of a problem with the security registry. To make this
easier to change, I added a setDefaultSecurity(String security) method to
ISecurityRegistry and FileSecurityRegistry so that the default security could be changed
without editing the class.

Since FileSecurityRegistry is intended as a temporary solution, I created a factory

class to return this object, RegistryManager. RegistryManager has a getRegistry method,

33

which returns an implementation of ISecurityRegistry. In its current implementation, it
simply returns a FileSecurityRegistry. The value of this is that there are no direct
references to FileSecurityRegistry in the code, and thus a new security registry could be
implemented by simply creating a new class implementing ISecurityRegistry and
modifying RegistryManager.getRegistry() to return that class. This class also currently
contains a string constant which points to the location of the registry file, and is passed to
the FileSecurityRegistry constructor. This also hides the implementation of
ISecurityRegistry from the rest of Eclipse.

For these security classes, I created a new package, org.eclipse.security. Ichose
not to place them in the org.eclipse.swt.security package because these classes provide
higher level security functionality, designed to work at a higher level than SWT. For
example, IEditorInput and IFileEditorInput are not parts of SWT but are instead declared
in org.eclipse.ui. Creating references to IEditorInput within SWT would create a
dependency that should not exist for such a toolkit. I also decide to name the registry file
eclipse.registry, and to place this file in the org.eclipse.security package folder, storing

the file closely to the class that accesses it.

org.eclipse.swt.dnd. Clipboard Modifications

With a security framework in place, I focused again on clipboard modifications.
When I began to look into modifying the org.eclipse.swt.dnd.Clipboard object, I was
concerned by the fact that the clipboard used direct memory access to pass information to
and from the system clipboard. However, I realized that as long as I did not change the

existing code, I could add other code to modify when data was passed or retrieved from

34

the system clipboard. The key modifications to the clipboard class were in the

getContents(Transfer transfer) and setContents(Object[] data, Transfer[] dataTypes)

methods, which retrieve and send data to the system clipboard, respectively. Iknew that

I needed to modify both how the Clipboard class interacted with the system clipboard,

and also how the Clipboard class interacted with the rest of Eclipse. My goal was to

make these changes to clipboard functionality as transparent as possible- that is, those

changes should only be evident to the user when necessary enforce security. Thus, I

outlined the following expected behaviors for the secure clipboard.

II.

I11.

Iv.

VL

When copying data from insecure documents within Eclipse, that data
should be passed to the system clipboard, making it available to all
applications.

Pasting data from insecure documents, regardless of the target
document’s security, should be allowed, occurring as a standard paste.
When copying data from secure documents, that data should not be
passed to the system clipboard, but instead stored within the secure
clipboard in Eclipse. The system clipboard should be cleared when
secure data is on the Eclipse clipboard, to preserve the appearance to the
user of a single clipboard, which is inaccessible to other applications
when secure data is stored on it.

Pasting data from secure documents into secure documents within
Eclipse should occur as a standard paste.

Pasting data from secure documents into insecure documents within
Eclipse should not be allowed.

When data is copied to the system clipboard from any other application,
which is assumed to be insecure, this data should be available for

pasting into both secure and insecure documents in Eclipse, occurring as

a standard paste.

35

Before I handled these various cases, I needed to allow security constants to be
passed to the clipboard. I did this by adding two new methods, getContents(Transfer
transfer, String security) and setContents(Object[] data, Transfer[] dataTypes, String
security), which added an additional string parameter to the methods already part of the
Clipboard class. The original getContents(Transfer transfer) and setContents(Object[]
data, Transfer[] dataTypes) were then renamed as internalGetContents(Transfer transfer)
and internalSetContents(Object[] data, Transfer[] dataTypes). This way, the new
getContents and setContents methods could call these methods when they wanted to
interact with the system clipboard. In the new getContents and setContents methods, I
used the AccessController.checkPermission(Permission permission) method to check the
security parameter passed to the method, and defined the following functionality,

corresponding with the outline of expected behavior above.

L. Copying from insecure documents - When the setContents method is
called with the Security. STANDARDINSECURE parameter, the
Object[] and Transfer[] parameters are saved in the private fields
Object[] saveData and Transfer[] saveTransferAgents within the
Clipboard class. Immediately afterwards, the
SecureClipboardPermission is checked, and an
AccessControllerException is thrown. In the catch block, a call is made
to internalSetContents, which passes the data to the system clipboard.

I Pasting from insecure documents - When the getContents method is
called with any security parameter, internalGetContents is called and the
data is stored in a local variable. If there is data on the system clipboard,
this data is returned. Since in case I insecure data is passed to the

system clipboard, this data would be returned.

36

111 Copying from secure documents - When the setContents method is
called with the Security. STANDARDSECURE method, the Object[]
and Transfer[] parameters are save as in case I, but no exception is
thrown, and the entire try block is executed. This code passes a null
object to the system clipboard, so it appears to the user that the secure

data simply cannot be retrieve in other programs.

]

Pasting from secure documents to secure documents - When the
getContents method is called with the Security. STANDARDSECURE

parameter, internalGetContents is called and stored as in case II. No

el
<

exception is thrown, and the entire try block is executed. If there is no
data on the system clipboard, an attempt is made to retrieve the
appropriate data from the private field saveData, using
saveTransferAgents to find the right data type. This data is returned,
unless the appropriate data type cannot be retrieved, in which case the
null object on the system clipboard is returned.

V. Pasting from secure documents to insecure documents - This is
handled by case II. When the AccessControlException is thrown, the
system clipboard data is returned instead of the data stored in the
saveData field.

VL Pasting from other applications - As noted in case IV, even if no
exception is thrown, the system clipboard contents are retrieved and
checked. Ifthe data on the system clipboard is not a null object, this
means that data has been placed on the system clipboard since the time
secure data was copied to the clipboard, and this data is returned,

whether or not the document being pasted into is secure.

The code for these methods is as follows:

Added 4-9-2003 by Jeff Woldan to replace original getContents method
Adds an additional parameter for the security settings with which

the clipboard object is being accessed.
original getContents method renamed to internalGetContents.

@see org.eclipse.swt.dnd.Clipboard

37

o

* #internalGetContents (org.eclipse.swt.dnd.Transfer)
*/

public Object getContents (Transfer transfer, String security) {

// call the original getContents method to get system clipboard

// contents.
Object systemData = internalGetContents (transfer);

// create permission object to be checked
SecureClipboardPermission scPermission =
new SecureClipboardPermission(security);

try {
// check permission, and if no exception is thrown,

// check the system clipboard contents.
AccessController.checkPermission (scPermigsion) ;

// if the system clipboard contents are null,
// return the data on the local secure clipboard.
if (systemData == null) {
// match type requested with type stored on clipboard.
for (int i = 0; i < saveTransferAgents.length; i++) {
if (transfer.getClass()
== saveTransferAgents[i].getClass()) {
return saveDatalil;

}
)

// if the system clipboard contents are not null, return this data.
} else {
return systembData;
!
}

catch (AccessControlException e) {
// insecure data request. do nothing, continue on...

}

// if an exception is thrown, return the system clipboard contents.
return systemData;

Added 4-9-2003 by Jeff Woldan to replace original setContents method
Adds an additional parameter for the security settings with which
the clipboard object is being accessed.

original setContents method renamed to internalSetContents.

@see org.eclipse.swt.dnd.Clipboard#

internal8etContents (java.lang.Object [],
org.eclipse.swt.dnd.Transfer[])

* % %k ¥ X X X

*/
public void setContents (Object[] data, Transfer[] dataTypes, String
security) {

// this "if block" copied from
// internalSetContents (Object[] data, Transfer[] dataTypes) method.

if (data == null
|| dataTypes == null

38

N

|| data.length != dataTypes.length) {
DND.error (SWT. ERROR__INVALID_ARGUMENT) H

)

// save data and dataTypes to "local clipboard®
saveData = data;
saveTransferAgents = dataTypes;

// create permission object to be checked

SecureClipboardPermission scPermission =
new SecureClipboardPermission(security);

try {
// check permission, and if no exception is thrown,

// pass a null string to the system clipboard.
AccessController.checkPermission (scPermission);
internalSetContents (

new Object[] { null },
new Transfer[] { TextTransfer.getInstance()});

catch (AccessControlException e) {
//if an exception is thrown, send data to the system clipboard.

internalSetContents (data, dataTypes);

}

To preserve the original functionality of the clipboard object, I also replaced the
original getContents(Transfer transfer) and setContents(Object[] data, Transfer[]
dataTypes) methods. These methods would then call the getContents and setContents
methods with the extra Security.STANDARDINSECURE parameter added on. By doing
this, any classes accessing these methods without a security parameter would be
classified as insecure access, thus giving the same functionality as originally expected
from the clipboard before my modifications. In other words, this ensures backwards

compatibility for code not making use of these security features.

39

org.eclipse.swt.custom.StyledText Modifications

Several classes needed to be modified to work with the security features of
Clipboard class. The most important of these was the org.eclipse.swt.custom.Styled Text
class. As previously discussed, this class provides the text widget for Eclipse editors, and
directly interfaces with the clipboard class for its cut, copy, and paste functionality. I
decided to use the StyledText object to store the security setting for a given editor, which
it would pass to the Clipboard object every time it called getContents or setContents. To
do this, I added a private String field, mySecurity, to the StyledText object. To set this
mySecurity field, I modified the StyledText constructor to receive an extra String
parameter as its security setting, and set mySecurity to this String in the constructor.

To preserve the original functionality of StyledText, I replaced the original
StyledText constructor. This constructor calls the modified StyledText constructor, with
the default Security. STANDARDINSECURE as its security parameter. Much like with
the Clipboard object, my intention was to ensure backwards compatibility with Eclipse
classes unaware of the StyledText object’s security features. I also added a completely
new method to StyledText, the setSecurity(String security) method. This method allows
the mySecurity field of the StyledText object to be set after creating the object. I
originally included this feature for testing and demonstration purposes, and intended to
remove it before my final solution, because I saw it as a security hole to allow the
security setting of an editor to be changed.

After researching the code that creates and accesses the StyledText object,
however, I realized that this setSecurity method would be more important than I thought.

The problem is that in AbstractTextEditor, the default editor class, ISourceViewer object

40

that wraps the StyledText object is declared before any file is loaded into the editor. This
means it is impossible to determine the security setting the StyledText object should have
when it is created. In fact, not only was setSecurity essential to my modifications, I also
added a getSecurity() method so that the security setting of the object could be returned

for other security features.

ore.eclipse.jface.text TextViewer Modifications

The next class I needed to modify was the org.eclipse.jface.text. TextViewer class.
TextViewer provides the implementation for the org.eclipse.jface.text.ITextViewer
interface. ITextViewer is extended by org.eclipse.jface.text.source.ISourceViewer, and
TextViewer is extended by org.eclipse.jface.text.source.SourceViewer, SourceViewer
being the implementation of ISourceViewer. This is important because an
ISourceViewer object serves as a wrapper class for the internal implementation of the
AbstractTextEditor class. Included as part of TextViewer, and by extension
SourceViewer, is the StyledText object for the editor. Since the StyledText object
originates in TextViewer, I decided it made sense to modify TextViewer and
ITextViewer, which would indirectly add this functionality to SourceViewer and
ISourceViewer, as opposed to directly modifying those classes. Specifically, I needed to
add methods to pass security settings to the StyledText object.

As with the StyledText object, I initially thought that I would pass the security
settings in the object constructor, and added two constructors that added an additional
security parameter to the original constructors. After realizing this would not work, I

added the setSecurity(String security) and getSecurity() methods. The setSecurity and

41

getSecurity methods simply call the corresponding method for the StyledText object. I
did not remove the constructors I added, however, because they are in no way harmful to

the functionality of the code, and might be useful for additional security features.

ore.eclipse.ui.texteditor. AbstractTextEditor Modifications

To complete the clipboard security feature, I needed to modify
org.eclipse.ui.texteditor. AbstractTextEditor Modification to retrieve the security setting
for a file from an ISecurityRegistry object, and pass that setting to ISourceViewer, and
indirectly, its StyledText object. After examining the class, I found that the
initializeSourceViewer(IEditorInput input) method takes an IEditorInput parameter and
initializes the ISourceViewer with the document content. This seemed like the perfect
place to add the initialization of security settings. The security settings are obtained by
calling RegistryManager.getRegistry() to obtain an ISecurityRegistry object, and then
calling ISecurityRegistry.getSecurity on the IEditorInput object. The results of this are
then passed to the ISourceViewer.setSecurity method. The code I added is as follows,

input is the IEditorInput object, fSourceViewer is the ISourceViewer object:

/* Added 4-18-2003 by Jeff Woldan

* gets an instance of ISecurityRegistry, retrieves the

* gecurity setting for input, and passes that security

* getting to fSourceViewer.

*/

ISecurityRegistry registry = RegistryManager.getRegistry();
fSourceViewer.setSecurity (registry.getSecurity (input));

Since all of Eclipse’s built in editors extend AbstractTextEditor, this modification

had the effect of incorporating this security feature into all of Eclipse’s editors, including

42

the standard text editor and java code editor. This security modification also worked with
a 31 party XML editor I had added to the program. While the source code for that editor

was unavailable, it apparently still extends AbstractTextEditor, and thus its functionality

was modified as well.

Save As... Revisited

After completing my modifications to the Clipboard, I returned to my Save As...
modifications to improve upon what I had done first semester. With my security
framework in place, and the security setting of an editor being stored in the StyledText
object, I planned to modify fhe isSaveAsAllowed() method of AbstractTextEditor to
return a value based on the security setting of the editor. However, as I examined some
of the classes that extend AbstractTextEditor, I realized a problem with this modification.
The org.eclipse.ui.texteditor.StatusTextEditqr class extends AbstractTextEditor, and
expects isSaveAsAllowed to always return false. I could find no real documentation on
this class, and so I was unsure of its use, but I didn’t want to cause unexpected side
effects by changing the functionality of a class I didn’t understand. Instead, I decided to
implement my solutions in the classes of specific editors.

This was not a problem for the two key editors in Eclipse, the standard text editor
and the java editor. The text editor is implemented by the
org.cclipse.ui.editors.text. TextEditor class, and the java editor is implemented by the
org.eclipse.jdt.internal.ui javaeditor. CompilationUnitEditor class. Both define
isSaveAsAllowed to be true by default, but it proved fairly simple to modify these

methods. In these methods, the ISourceViewer.getSecurity() method is called to get the

43

security String for the object, and then AccessController.checkPermission method is
called on a SecureSaveAsPermission object, constructed with the security String. If no
exception is raised, isSaveAsAllowed() returns false, but if an AccessControlException is
raised, it returns true. This way, Save As... is disabled only for secure files, and insecure
files have full Save As... functionality. The code for the changes to these two files is

essentially the same, and is as follows:

* Modified 4-23-2003 by Jeff Woldan
* to only allow save as if the document is insecure.

* @see TEditorPart#fisSavedsAllowed ()

*/
public boolean isSaveAsAllowed()

//retrieve the ISourceViewer Object.
ISourceViewer sourceViewer = getSourceViewer () ;

/‘k
* create a SecureSaveAsPermission Object, retrieving
* the security parameter from the ISourceViewer object.
*/
SecureSaveAsPermission ssaPermission =
new SecureSaveAsPermission(sourceViewer.getSecurity());

try {
//Check permission, if no exception is raised, return false;

AccessController.checkPermission (ssaPermission) ;
return false;

)

catch (AccessControlException e) {
//do nothing, continue on...

}

//If an exception is raised, return true.
return true;

44

Incorporating Code Modifications into Eclipse

After modifying all of this code, it had to be added to the Eclipse application.
After my work modifying Save As... functionality the first semester, most of the
additions were easy to make. For most of the packages I had modified, it simply
involved recompiling the package, exporting a jar file for the package, and replacing the
old .jar file in the Eclipse plugins directory with the new jar file. There were a few
complications, however. The first of which was that some of these packages required
certain resource files to be included in the package, to provide dialog and labels. These
files were not included with the source code, so I had to go through the old jar files and
copy the resource files into the new package. The worst of these was the
org.eclipse.jdt.ui package, which included 42 such files.

All but one of my modifications were part of an existing package. For
org.eclipse.security, the one package that was not, I had to create its own plugin directory
and plugin manifest file. I followed the form of other plugins, and created a directory
named org.eclipse.security 2.1.0 in the plugins directory. In addition to the jar file and
the file registry I created, two other files are included in this directory. The plugin.xml
file is the plugin manifest; this file makes the plugin available to Eclipse. It includes the
plugin name, the name of the .jar file where the plugin code is located, the package
prefixes for the plugin, and a list of other plugins it is dependent on. Ibased my plugin

manifest file off other plugin manifests that seemed similar. The contents of the file are

shown below:

<?xml version="1.0" encoding="UTF-8" 7>

<plugin id="org.eclipse.security" name="%pluginName" version="2,1.0"
provider-name="%providerName">
<runtime>

45

<library name="security.jar">
<export name="*" />
<packages prefixes="org.eclipse.security" />
</library>
</runtime>
<requires>
<import plugin="org.eclipse.core.resources” />
<import plugin="org.eclipse.core.runtime" />
<import plugin="org.eclipse.ui.workbench" />
<import plugin="org.eclipse.swt" />
</requires>
</plugin>
Tn addition to the plugin manifest, I created a plugin.properties file. This file lists
values of variables in the plugin manifest file. It is standard to use the %pluginName
and %providerName variables in the plugin manifest, and the plugin.properties file
simply defines these variables. Some plugin.properties files are much more complicated,

but this was all that was required for this plugin. The contents of the file are shown

below:

pluginName= Eclipse Security Support
providerName= Jeff Woldan

I also had to modify the plugin manifest file for the
org.eclipse.ui.workbench. texteditor package, which includes the AbstractTextEditor class.
My modifications had made it dependent on the org.eclipse.security package, so I added
an <import plugin="org.eclipse.security" /> declaration to the file in the <requires™> block.

After adding the modifications to Eclipse, I had to enable the security features I
had implemented. This involved modifying the code for the Eclipse éxecutable, to load
the security manager and the eclipse security policy file. The source code for the
executable was provided, so changing this was just a matter of finding the code where the

JVM is called and modifying it. After searching through the source code, I found an

46

array called reqVMarg that declared to list the arguments passed to the virtual machine. I
followed the format of the other parameters, where a literal string was preceded

immediately by an L, and modified the declaration as follows:

static wchar_t* reqVMargl[] = { L"-cp", startupJdarName, L"-
Djava.security.manager", L"-Djava.security.policy=eclipse.policy",

L"org.eclipse.core.launcher.Main", NULL };

By adding the -Djava.security.manager and -Djava.security.policy=eclipse.policy
parameters, the JVM would then be called with these security features loaded. At this
point, I had decided to name the policy file for Eclipse eclipse.policy, and place it in the
directory with the Eclipse executable, where no path would be needed to specify its
location.

Next, I had to sign files and assign permissions. First, I generated a key named
eclipseFiles in the eclipsestore keystore, using keytool. I set the key and keystore
password to “honors.” Obviously, in a real security solution, a more complicated
password would be chosen, and would not be shared with users. With my key created, I
signed every .jar file that comprises Eclipse with the eclipseFiles key, using jarsigner. It
was probably not necessary that every file be signed, because some file need no special
permissions to run, but this seemed easier than determining which ones needed a
signature. Finally, I modified the eclipse.policy file using policytool, to add the
permissions needed to run Eclipse with security features enabled. While I was originally
concerned I would have to add an exorbitant number of permissions to allow Eclipse to

function normally, this proved to not be the case. The default security manager runs code

47

under the “sandbox” model, which basically allows the code to do whatever it wants as
long as it does not affect other parts of the environment. This meant that permissions |
had to grant were those allowing access to external resources, such as the SWT dil
containing its native calls, and also access to files to be edited. While I'used policytool to
modify the file, it is a standard text file that can be read and modified with a text editor.

The complete file contents are shown below:

/* AUTOMATICALLY GENERATED ON Wed Apr 23 22:26:49 EDT 2003*/
/* DO NOT EDIT */

keystore "file://C:/temp/Eclipse/eclipsestore";

grant signedBy "eclipseFiles" {

permission java.lang.RuntimePermission "loadLibrary.swt-win32-2128",
signedBy "eclipseFiles";

permission org.eclipse.swt.security.SecureClipboardPermission
r"StandardSecure", signedBy "eclipseFiles";

permission java.io.FilePermission nc:\\temp\\Eclipse\\workspace\\-",
"read, write, delete, execute";

permission java.lang.RuntimePermission "getProtectionDomain", signedBy
"eclipseFiles";

permission java.io.FilePermission ne:\\temp\\Eclipse\\plugins\\-",
"execute", signedBy "eclipseFiles";

permission java.lang.RuntimePermission rcreateClassLoader", signedBy
"eclipseFiles";

permission java.lang.RuntimePermission "*", signedBy teclipseFiles";

permission java.io.FilePermission ne:\\temp\\Eclipse\\eclipse.exe",

"execute';

permission java.io.FilePermission "<<ALL FILES>>", "read", signedBy
"eclipseFiles";

permission java.util.PropertyPermission "*", '"read, write", signedBy
"eclipseFiles";

permission java.io.FilePermission nc:\\temp\\Eclipse\\workspace",
"write", signedBy "eclipseFiles";
permission org.eclipse.swt.security.SecureSaveAsPermission
"StandardSecure", signedBy "eclipseFiles";
}i

After completing modifications to the eclipse.policy file, Eclipse was ready to run

with my security features enabled.

48

Contributing to the Eclipse Project

One of my goals for this project was to contribute to the Eclipse project in some
way. In the first semester of the project I did this by submitting a bﬁg fix. The fix I
ended up working on was not related to security issues, but it was valuable just making a
contribution to the Eclipse project. In doing so, I hoped to learn more about working
within the open source community, and perhaps gain respect from the Eclipse community.
By gaining such respect, the hope was that any security-related modifications I suggested
might be taken more seriously. The first step in fixing a bug in Eclipse was to choose a
bug. This required searching the Eclipse Bugzilla database. To narrow my search, I
decided to focus on those bugs marked as “help wanted,” indicating a request for help
from the open source community. This seemed like a good place to start, and gave me a
more manageable list of bugs to look over. I set aside several possible bugs that sounded
both interesting and doable, and finally narrowed it down to one. The description for

this bug can be found at the following site

http:/dev.eclipse.org/bugs/show_bug.cgi?id=2273. The basic idea behind this bug is that

an external editor can be registered with Eclipse for editing certain file types using a
plugin manifest file. Unfortunately, as currently designed, Eclipse simply calls the
external editor using the command specified in the plugin manifest, and tacks the name of
the file to be opened to the end of the command. This could create problems for editors
where, for example, option flags must follow the file name. Currently there is no support
for this. The idea suggested by this bug report is to use %f as a file name placeholder in

the command specified in the plugin manifest. This would allow the file name to be

placed anywhere in the command.

49

Once I had decided on this bug, I began research to find the code that would need
to be modified. Istarted by looking for the plugin parsing code, so I could find how the
plugin information is stored. Iposted a message on the Eclipse newsgroup regarding this,
but received no reply. I also did some research on XML to better understand the plugin
manifest file, and to learn if the manifest template could be modified to better
accommodate the change in command format. After learning more about XML and how
DTD descriptions work, I decided against modifying the plugin structure. After more
research, I determined that Eclipse uses the Xerces XML parser, which is part of the
Apache open source project. Since it used this type of generic parser, it didn’t seem to
make sense to modify this either. At this point I tried to focus on finding the part of the
code where the plugin information was parsed and used in the program. I ended up
finding this by simply searching for files with the words external editor in them, and
coming across org.eclipse.ui.internal.misc.ExternalEditor. This turned out to be the class
where the method to load a file in the external editor is found, and would be part of the
code I would modify. After researching the data types used in that class, I determined
that org.eclipse.ui.internal.registry. EditorDescriptor is the class that defines the data type
where the editor information is stored, and that EditorDescriptor.getFileName() returns
the cvomrnand to load the editor, which is stored in a string. I decided that %f would work
well as a placeholder, because it was both intuitive and would not otherwise be used in an
editor command. I needed to either modify this method, create another method to handle
the %f placeholder, or simply handle the results of getFileName() differently.

My initial thoughts on solving this problem were to simply modify the

EditorDescriptor. getFileName() method to return the command with the file name

50

inserted in the appropriate place. Thus all changes could be internal to EditorDescriptor,
and the ExternalEditor class would not need to be modified. The immediate problem
with this idea was that getFileName() takes no parameters, and there would be no way
replace the %f placeholder with the actual name of the file without other changes. I
could have simply modified ExternalEditor to replace the %f in the string returned by
getFileName(), but I needed to create a uniform and consistent solution, so the fix would
be of the quality that could be incorporated into the Eclipse code base. Thus while it
would be a quick fix for the problem, it might create other problems, for example, if
getFileName() were called elsewhere. It also meant that getFileName() would return a
currently unexecutable command when it contained the %f placeholder, and this just
seemed like bad coding practice. I decided instead that the file placeholder should be
handled internally in EditorDescriptor. This meant that the file name would need to be
passed as an argument to the method that would return the appropriate command, with
the file name inserted.

I decided the best way to handle this was to create a new method,
EditorDescriptor.getCommand(String aFile). I could have overloaded getFileName() to
work with a file name parameter, but since the functionality differed I decided it made
more sense to create another separate method. This method takes the name of the file to
be opened and returns the command to open that file. Idesigned it to handle both
commands containing the placeholder and those not cont‘aining it, to make it backwards
compatible. The method works as follows. It searches the command string (stored in
EditorDescriptor) for a %f placeholder, and if found, it replaces it with the actual file

name. It will actually replace all the occurrences of %f with the file name, if for some

51

reason the file needed to be mentioned more than once in the command. It will not
support opening multiple files with one call, but this was never supported by Eclipse, so
it is not a problem. If %f is not found in the string, the file name is simply appended to
the end of the string. The result is returned, and then can be called as-is. I modified
EditorDescriptor.getFileName() as well. For tradition commands (with no %f
placeholder), it works the same as always. For commands with a %f placeholder,
getFileName() returns the first word in the string, which should be the name of the
program without any placeholders or other options. Thus if getFileName() is called on an
external editor that is accessed by a command containing the %f placeholder, it will still
return a usable file name. It might be possible that this would not work in some cases,
but I believe it is the best solution. To account for a more complicated command where
the first word in the string is not the editor file name, there would need other information
listing the file name separate from the command to call it. This information is not
provided in the plugin manifest, so it is not really an option. I originally thought of
having getFileName() return the command up to the %f placeholder, to allow any flags
appearing before the placeholder to be included in the command, but I decided against
that, because it did not see why the flags before the placeholder should be included and
not those after the placeholder. On the other hand, it did not make sense to include
everything but the placeholder, because this might place flags in places that would not
make sense when called. Itook considerable time choosing the way I wanted to
implement this feature, and I believe I picked the best compromise between a hack fix

and rewriting excessive amounts of the Eclipse code base, neither of which would be

acceptable to the Eclipse project.

52

After modifying EditorDescriptor, I had to modify ExternalEditor to use the new
getCommand method. This ended up being somewhat more complicated than I expected
at first, because ExternalEditor uses the results of the getFileName() method to retrieve
the absolute path of the editor, which it then uses to call the program. To solve this, I
took the absolute path, removed the last occurrence of the file name of the program to
open, and appended the results of getCommand(path), where path is the file name, to the
path. I made sure it only removed the last occurrence, because the file name could also
appear as a directory, earlier in the path. This is somewhat awkward, but is the best
option without excessive modifications to other code.

I was able to submit my bug fix by creating an attachment to the bug report

(http://dev.eclipse.org/bugs/show_bug.cgi?id=2273). This automatically sends an email

to the bug reporter notifying him or her of the attachment. Isimply included the two files
I modified, and gave instructions as how to apply them. Ireceived a response to my file
submission fairly quickly. Unfortunately, it turned out I was working with a somewhat
older version of Eclipse. Ihad version 2.0.1, which I had downloaded at the beginning of
the semester. The newest version, 2.1.0, actually had one major difference. The
ShellCommand class, part of SWT, which was previously used to invoke a command line
call. Apparently if it threw an exception, it was not caught in time, and thus was replaced
by the Runtime.getRuntime().exec(String []) method that is built into Java. I had to
modify my fix to work with this newer version of the code, and resubmit it. When
another user working on the project reviewed it, the comment I received concerned the
use of %f as a file placeholder. This user was concerned that %f would not be a valid

flag in some operating systems. I was unsure as to whether this was the case or not, so I

53

did not respond to this comment. I later received notice through Bugzilla that this bug
was not a high concern of the Eclipse UI team, and would not be addressed until more
pressing bugs were taken care of. This was fine with me, because I wanted to focus on
security modifications in the second semester of the project.

After completing my security modifications, I planned to submit my work to
those in the Eclipse community who might be interested. I did this by posting an email to

the general development mailing list of the Eclipse project, eclipse-dev(@eclipse.org. In

this email, I gave a brief description of the work I have done, and said that anyone who
was interested could contact me to get copies of the files and documentation for the
project. Ihave no expectation that my work would be incorporated as part of the Eclipse
code base, but I figured there might be individuals who would want to see what I had
done as a possible way of implementing these types of features. My most ambitious
objective would be that someone would see my work as a start of a more comprehensive

security framework for Eclipse.

Conclusions

The security features and security framework I implemented this year are only a
start to the features needed for a fully secure IDE. However, they are significant in their
integration within exist Eclipse and the model they provide for other security features.
Neither solution is perfect, but given the resources and time I had to do this project, I

believe they represent an impressive accomplishment.

While my initial solution to Save As... was quite restrictive, the work I did for

that modification provided a strong background for my work in the second semester.

54

When revisited, I improved upon the solution greatly, simply using the security
framework I had created. If I were to improve upon this security feature, the next step
would be to identify secure file locations and allow secure files Save As... functionality
to those locations. This would probably involve modifying the Save As... dialogs, which
is not a part of the code that I dealt with.

While the security framework I implemented is not extremely complicated, it
provided the functionality needed for the security features I implemented, and could be
easily expanded to add greater functionality and support other security features. To add
support for other features, the most obvious step would be adding new security
permissions, which could be checked by those features. It should be fairly simple to
incorporate interaction with another type of security registry, using the ISecurityRegistry
interface. However, the most important improvement to the security framework would
be to incorporate it into the lower level file-loading features of Eclipse. For example, by
the time an editor receives an IEditorInput object, the file has most likely already been
opened by Eclipse. Depending on the implementation of a secure filespace/registry, it
might be necessary to retrieve security settings when the file is opened. Implementing
this lower level functionality would be the next step in improving the security framework.

My modifications to Eclipse’s interface with the clipboard are my most
comprehensive.. It takes its flexibility a step farther than my Save As... modification, by
allowing secure files to use the clipboard in secure ways, instead of completely disabling
this functionality. Assuming there are no other secure applications in the development
environment, this is the ideal solution to this security hole. However, in a real secure

development environment, there would be other secure applications. The next step in

55

improving the clipboard security features would be allowing pasting between applications
for secure files. This, however, would most likely require operating system level
functionality for passing security settings, and for establishing “trust” between
applications. This is beyond the scope of the work I’ve done, but would be an interesting
extension to the project.

Considering the magnitude of the task at hand, the progress I made on developing
a secure IDE was considerable. While these features only comprise a few pieces in a
fairly large puzzle, they are each formidable accomplishments on their own. In addition,
I valued the opportunity to contribute to the Eclipse project and learn more about working
on an open source project. Overall, the work I have done supports the idea of using

Eclipse as a secure IDE and the viability of such security features.

56

General Conclusions

The problem of security in a development environment is not an easy one. In
different situations, the security needs of a company may vary greatly. Not only that, but
certain resources, whether they are physical or software safeguards, may not be available
or affordable to all companies. Thus in addition to the conflict between security and
convenience to users, there is also the conflict between security and cost. When
developing security related software, there are similar concerns. The most foolproof
solutions are often the most restrictive to users. By simply disabling any feature that
might create a security hole, there can be no security hole in that feature. This, however,
could be quite restrictive to productivity. The most user friendly solutions that still
provide maximum security modify features so that they can be used in any secure way,
but no insecure ways. Ensuring that this occurs can be a daunting task for a software
developer, because these solutions must account for all possible insecurities while still
enabling all other uses. Sometimes however, these types of solutions are not an option,
because the time‘or resources required may not be available.

There are other modifications that may allow some functionality of features while
preventing that feature from being used in all insecure ways as well as some secure ways.
As seen in the security features outline, often these solutions are easier to implement than
those that allow maximum secure functionality. Another option is to plug the largest or
most problematic security holes, and leave smaller ones open, considering them a

reasonable risk. In some cases these solutions may be the best for the situation at hand.

57

In working with Eclipse, I have outlined many options for securing it. While any
of these solutions might be acceptable for a particular development environment, many
would not be satisfactory for a commercially viable IDE. We’ve already stated that
Eclipse, no matter how well secured, is not a comprehensive security solution on its own.
If it were to be packaged as part of a system-wide security solution, however, the secﬁrity
features we would need to implement would be those that offer the best security while
still being as user-friendly as possible. These features should be highly configurable as
well, so the security could be tailored to a site’s individual needs. In doing this, a secure
development product could be created.

I believe Eclipse holds considerable promise as part of a secure development
environment. The extensible, open source nature of Eclipse makes it the ideal platform
for implementing a secure development solution at low cost. Its extensible nature also
shows promise for implementing secure interactions with other parts of the development
environment. Eclipse’s many features and the ability to add new features as plugins
indicates it is robust enough for use as the sole IDE in a secure development environment.
While it would be considerable work to modify, any security solution is complicated, and
using Eclipse would be much easier than creating an entirely new IDE. The work I have

done provides a strong contribution to the features needed to create such a solution.

58

Appendix

Offline Resources

Included with this report is a CDR containing a modified copy of Eclipse, along with the
complete source code for Eclipse. Instructions for installing and running Eclipse, and

links to copies of the modified files can be found in the README.htm file.

Online Resources

http://webstu.messiah.edu/~jw1197/honorsprojects

Webpage for the first semester of the project

http://webstu.messiah.edu/~jw1197/honorsprojects2

Webpage for the second semester of the project

The existence of these pages is subject to the existence of my Messiah College webspace,
which could be deleted at any time after graduation. No replacement location for this

information has yet been established.

Project Sources

e hitp://www.eclipse.org - The Eclipse project home page.

o http://www.ec]ipse.or(g/documentaﬁon/html/plug,ins/org.eclipse.platform.d

oc.isv/doc/guide/swt.htm - Summary information on SWT.

o hitp://www.eclipse.org/articles/Styled Text%202/article2.html - Discussion

of SWT’s implementation of native system calls.

59

TN

http://www eclipse.org/articles/Styled Text%20 1 /articlel.html,

http://www.eclipse.org/articles/Styled Text%202/article2.html -

Explanations of the functionality of the StyledText object.

lmp://www,ec.lipse.orq/documentation/htm'l./plugins/org.ec‘l.ipse.p]at'[’orm.d

oc.isv/doc/reference/api/ - Eclipse platform APIL

http://www.eclipse.org/articles/Article-AP1%2Quse/eclipse-api-usage-

rules.html - How to use the Eclipse API.

http://www.ec]ipse.oryartic]es/Understandilm%2OLavouts/Understandin2

%20Layouts.htm - An explanation of widget layouts in Eclipse.

http://www.eclipse.org/eclipse/fag/eclipse-fag.html. - Eclipse project FAQ.

e http://dev.eclipse.org - Eclipse development resources.

O

O

http://dev.eclipse.org:8080/help/help.jsp - Eclipse program help files.

http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-

home/dev.html - SWT development resources.

http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-swt-

home/fagq.html - SWT FAQ.

http://dev.eclipse.org/viewcys/index.cgi/~checkout~/platform-swit-

home/snippits/snippet94.html - Example code accessing the clipboard

through SWT.

e http://eclipsewiki.swiki.net/ - The Eclipse Wiki Wiki web.

e hitp://java.sun.com — Java home page

o

http://iava.sun.com/docs/books/ini/ - Online text on Java Native Interface

(IND).

http://java.sun.com/j2se/1.4.1/docs/api/ - Java 1.4.1 APL

http://iava.sun.com/i2se/1.4/docs/guide/security/index.html - Java security

enhancements documentation.

http://iava.sun.com/i2se/1.4/docs/guide/security/spec/security-

spec.doc.htm] - Java platform security architecture.

60

\!!

hitp://java.sun.com/i2se/1.4/docs/guide/security/permissions.html - Java

permissions.

http://java.sun.com/j2se/1.4/docs/guide/security/doprivileged.html - Java

API for privileged blocks.
http://developer.java.sun.com/developer/TechTips/1999/tt0414.html -

Example code accessing the clipboard through AWT.

http://java.sun.com/docs/books/tutorial/securityl.2/TOC html - Tutorials

and examples of Java security.

http://java.sun.com/docs/books/tutorial/reflect/index.htm] - T utorial on

Java reflection classes.

e hitp://www.javaworld.com — Articles and tutorials on Java.

o

http://www.javaworld.com/javaworld/javaqa/2001-05/02-ga-0511-

factory.html - Discussion of factory methods.
http://www.javaworld.com/javaworld/javaqa/2000-12/01-qa-1208-

abstract.html - An example of a factory method.

61

	"Protecting Intellectual Property in a Software Development Environment"
	Recommended Citation

	tmp.1583503322.pdf.xmKsQ

