ХИМИЯ И ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ

УДК 546.719

АНОДНОЕ РАСТВОРЕНИЕ РЕНИЯ В СМЕСИ МЕТАНОЛА И АЦЕТИЛАЦЕТОНА

О.В. Петракова, аспирант, Д.В. Дробот, заведующий кафедрой кафедра Химии и технологии редких и рассеянных элементов им. К.А. Большакова МИТХТ им. М.В. Ломоносова e-mail: ola-la-la13@yandex.ru

сследованы процессы комплексообразования при анодном растворении рения в смеси Одонорных лигандов – метанола и ацетилацетона. Предложена схема термического разложения полученных продуктов и установлена зависимость фазового состава продуктов термического разложения от температуры.

The processes of complexing have been investigated for anodic dissolution of rhenium in a mixture of methanol and acetylacetone. A scheme of thermal decomposition of the obtained products has been suggested, and the temperature dependence of the phase composition of thermal decomposition products has been determined.

Ключевые слова: рений, алкоксопроизводное, ацетилацетонат, электрохимический синтез, термическое разложение.

Key words: rhenium, alkoxo derivative, acetylacetonate, thermal decomposition, electrochemical synthesis.

Введение

Перспективным направлением в технологии получения новых функциональных материалов на основе рения с заданным составом, свойствами и размерными характеристиками является использование его оксоалкоксопроизводных, в частности, оксометилатов, в качестве соединений – предшественников [1].

В литературе имеются сведения о методах синтеза и свойствах оксометилатов рения: $Re_2O_3(OMe)_6$, $Re_4O_{6-y}(OMe)_{12+y}$, $Re_4O_2(OMe)_{16}$, $Re_4O_6(OMe)_{12}$. Комплекс $Re_2O_3(OMe)_6$ получен при взаимодействии $ReOCl_4$ и метанола в присутствии третичных аминов [2]. Анодное растворение металлического рения в метаноле приводит к образованию смеси $Re_2O_3(OMe)_6$ и содержащих рений в формальной степени окисления (5+) оксоалкоксидов, которые при хранении или нагревании образуют нерастворимый и стабильный на воздухе $Re_4O_{6-y}(OMe)_{12+y}$. Последний можно получить также взаимодействием Re_2O_7 и метанола [3].

Анодное окисление металлического рения при высоких значениях плотности тока (≥ 0.8 A/cm^2) сопровождается образованием производного рения(V) – $Re_4O_2(OMe)_{16}$, в то время как по мере уменьшения силы тока до $0.07 - 0.10 A/cm^2$ образуется комплекс рения(VI) – $Re_4O_6(OMe)_{12}$ [4, 5]. В процессе анодного окисления металлического рения в метаноле в ячейке с разделенными катодным и анодным пространствами образуется $Re_4O_6(OMe)_{12}$, а без разделения катодного и анодного пространств – $Re_4O_2(OMe)_{16}$ [6].

Сведений об анодном растворении рения в смеси метилового спирта и ацетилацетона обнаружить в литературе не удалось. Разнолигандные метоксо-ацетилацетонатные комплексы рения, которые могут обладать уникальными физико-химическими свойствами, не получены, и это обстоятельство послужило отправной точкой для постановки настоящей работы. Выбор второго лиганда, ацетилацетона (acac), обусловлен тем, что он является бидентатным, хелатообразующим лигандом, а его элементный состав представлен углеродом, кислородом и водородом, что важно с позиций последующего использования предполагаемого комплекса в качестве прекурсора. В литературе ацетилацетонат рения(VI) описан состава Re₂O₅(acac)₂, полученный в виде серо-зеленого мелкокристаллического порошка при взаимодействии Re₂O₇ с ацетилацетоном в среде углеводородного растворителя (гексана или толуола). Указанное вещество обладает значительной летучестью при пониженном давлении [7].

Цель данной работы состоит в выявлении возможности замещения монодентатных лигандов MeOH в оксометилате рения на бидентатный ацетилацетон и установлении влияния природы лигандов на свойства продуктов термического разложения (или иного воздействия на исходный комплекс).

Экспериментальная часть

Метанол (Merck KGaA, чистота ≥99.5%, вода ≤0.1%) обезвоживали кипячением в присутствии стружек металлического магния с последующей перегонкой с дефлегматором. Ацетилацетон обезвоживали при помощи цеолитов NaY, предварительно прокаленных до температуры 300°С под вакуумом. Хлорид лития для проведения электролиза в смеси метанола и ацетилацетона обезвоживали следующим образом: необходимое для проведения одного синтеза количество LiCl помещали в запаянную с одного конца трубку из пирекса, подсоединяли к роторному вакуум-насосу (Р~1.3 Па) и нагревали при непрерывной откачке воздуха до 80÷90°С в течение 1 ч, затем температуру доводили до 180÷200°С в течение

Вестник МИТХТ, 2010, т. 5, № 3

40÷60 мин и после охлаждения отпаивали при работающем насосе. Запаянные трубки вскрывали непосредственно перед синтезом в сухом боксе. Вследствие чувствительности алкоксопроизводных рения к влаге и кислороду воздуха все операции, связанные с синтезом, анализом и изучением свойств комплексов, проводили в «сухом» боксе в атмосфере азота. Для синтезов брали смеси лигандов метанол-ацетилацетон в различных мольных соотношениях, но получить и выделить комплекс в твердую фазу без удаления растворителя удалось только при мольном отношении метанол : ацетилацетон 44:1. При соотношении метанол : ацетилацетон 6:1 твердый продукт не был выделен.

Синтез проводили в ячейке с неразделенным катодным и анодным пространствами (рис. 1). Катодом служила пластинка из платины площадью 3.5 см², анодом – штабик металлического рения (чистота 99.99%, ТУ 48– 19–92–88) с поперечным сечением 0.5×0.5 см.

Рис. 1. Электрохимическая ячейка для синтеза алкоксопроизводных: 1 – осушитель (P₂O₅); 2 – обратный холодильник; 3 – охлаждающая вода; 4 – электрод сравнения (Pt – проволока); 5 – катод; 6 – анод; 7 – мембрана из пористого стекла; 8 – термометр.

Содержание С, Н в выделенных продуктах определяли методом элементного анализа на приборе Heraeus CHN–O–RAPID. Абсолютная погрешность анализа ~0.2%. Анализ на содержание Re проводили гравиметрически, осаждая рений в форме перрената нитрона [8].

Рентгеновские исследования порошков (излучение Со K_{α}) проводили на дифрактометре ДРОН–3М. Параметры съемки на дифрактометре: шаг 0.05°, экспозиция на точку съемки 2÷4. ИК спектры образцов между пластинами КВг регистрировали на приборе EQUINOX 55 Bruker Germany. Термический анализ (ТГА) на

воздухе проводили на дериватографе Q-1500 D (F. Paulik, J. Paulik, L. Erdey; МОМ, Венгрия). Навеска образца – 141.5 мг (погрешность взвешивания \pm 0.4 мг). Температуру измеряли термопарой платина-платинородий (ПП-1) с погрешностью \pm 2° C в интервале температур от 22 до 420°C.

Синтез 1. Анодное растворение металлического рения проводили в смеси метанола и ацетилацетона (объем метанола 75 мл, объем ацетилацетона 5.54 мл, мольное отношение метанол : ацетилацетон = 44 : 1) в присутствии фонового электролита Lice (0.,0125 моль/л). Мольное отношение рений : ацетилацетон -1:2.7. Продолжительность процесса составила 28 ч. Параметры электрохимического процесса: U = 40 - 100 B, I = 170 - 210 мА. В результате электрохимической реакции в раствор перешло 3.83 г рения. Цвет электролита первоначально был желтым, затем темно-зеленым, а в конце процесса темно-красным. Через 2 суток после окончания электролиза образовывались темные иглообразные кристаллы (продукт I) (рис. 2) с фиолетовым оттенком и блеском. Кристаллы извлекали из электролита и сушили в боксе в атмосфере азота. Кристаллы продукта (I) устойчивы на воздухе.

Рис. 2. Фото кристаллов продукта (I).

По данным химического анализа (ХА) для продукта (I): найдено, %: Re 60.2, C 12.2, H 2.8. Вычислено для Re₄O₆(OMe)₁₂, %: Re 61.4, C 11.9, H 3.0; для Re₄O₂(OMe)₁₆, %: Re 58.5, C 15.1, H 3.8.

ИК спектр продукта (I): $v(C-O) = 1158 \text{ см}^{-1}$, $v(Re=O) = 964 - 1019 \text{ см}^{-1}$, $v(Re - O) = 722 - 781 \text{ см}^{-1}$, $v(Re - O(R)) = 427 - 596 \text{ см}^{-1}$.

Синтез 2. Анодное растворение металлического рения проводили в смеси метанола и ацетилацетона (объем метанола 37.5 мл, объем ацетилацетона 37.5 мл, мольное отношение метанол : ацетилацетон = 6:1) в присутствии фонового электролита LiCl (0.0125 моль/л); мольное соотношение рений : ацетилацетон – 1:19, в электрохимической ячейке с неразделенными катодным и анодным пространствами (аналогично первому синтезу). Продолжительность опыта составила 27 ч. Параметры электрохимического процесса: U = 60 – 130 В, I = 130 – 220 мА. В результате электрохимической реакции в раствор перешло 3.66 г рения. Цвет электролита из ярко-желтого изменялся до оранжево-желтого, затем желто-зеленого, а в конце процесса электролит приобрел насыщенновишневый цвет и стал вязким. В результате выкристаллизовалось небольшое количество фиолетово-черных призматических кристаллов, которые расплывались при извлечении из электролита.

Результаты и их обсуждание

Из данных РФА следует (табл. 1), что кристаллизующийся продукт (I) представляет собой смесь фаз: известные оксометилаты рения

Вестник МИТХТ, 2010, т. 5, № 3

Re₄O₂(OMe)₁₆ и Re₄O₆(OMe)₁₂ [4, 5] и новая фаза. Внешний вид кристаллов комплексов Re₄O₂(OMe)₁₆ и Re₄O₆(OMe)₁₂ чрезвычайно схож: оба комплекса кристаллизуются в триклинной сингонии. При индицировании дифрактограммы продукта (I) (табл. 1) полученного при анодном растворении рения в смеси метанола и ацетилацетона, установлено, что есть отражения (помечены * в табл. 1) с достаточно сильной интенсивностью, которые не принадлежат рентгенограммам комплексов Re₄O₆(OMe)₁₂ и Re₄O₂(OMe)₁₆. Они привероятно, наллежат новой фазе. разнолигандному комплексу. Отличие в интенсивностях отдельных отражений является косвенным доказательством того, что получена смесь трех фаз. Судя по данным химического анализа, содержание комплекса Re₄O₆(OMe)₁₂ в смеси превышает содержание Re₄O₂(OMe)₁₆.

Таблица 1. Индицирование дифрактограммы продукта (I), полученного анодным растворением рения в смеси метанола и ацетилацетона

Экспериментальные				Данные [2] для комплекса				Данные [2] для комплекса				
данные				$\text{Re}_4\text{O}_6(\text{OMe})_{12}$				$\text{Re}_4\text{O}_2(\text{OMe})_{16}$				
20°	I/I ₀ , %	d _{эксп} , Å	h	k	1	I/I ₀ , %	d _{эксп} , Å	h	k	1	I/I ₀ , %	d _{эксп} , Å
11.3	39	9.092	0	1	1	12	9.118	0	1	1	12	9.165
11.9	58	8.635	0	1	-2	53	8.588	0	1	-2	90	8.630
14.1	62	7.293						-1	0	-1	28	7.284
15.3	100	6.724	1	1	0	100	6.707	1	1	0	66	6.707
20.5	22	5.031						1	1	-2	8	5.039
21.8*	11	4.734										
22.5	22	4.588	0	2	2	14	4.564					
23.5	34	4.396	1	-3	2	16	4.385					
30.3	16	3.4251	0	1	-5	23	3.427	1	4	-1	11	3.4335
31.0*	9,6	3.3496										
33.0	13	3.1518						1	4	-4	7	3.1866
34.2	11	3.0443	0	2	4	6	3.0329	0	2	4	6	3.0329
36.2	12	2.8813	2	-4	1	5	2.8711	2	-4	1	11	2.8667
37.3*	11	2.7992										
37.7	56	2.7706	2	-3	-2	9	2.7757	2	-3	-2	9	2.7715
41.1*	11	2.5501										
46.7*	16	2.2585										
49.0	28	2.1586	0	6	-7		2.1536	1	7	-4	14	2.1536
50.4	13	2.1024						3	0	4	9	2.1151
52.3	20	2.0311	0	3	6	5	2.0251	1	-6	7	10	2.0749

На основе данных РФА вычислены параметры кристаллической решетки для $Re_4O_6(OMe)_{12}$ по методу МНК. При сравнении этих параметров с данными для монокристалла (табл. 2) оказалось, что кристаллическая решетка искажена. Это может быть обусловлено, с одной стороны, качеством кристаллов, с другой стороны, не исключено, что в указанном комплексе часть метильных лигандов замещается на ацетилацетонатные с сохранением структурного мотива.

Получены ИК спектр суспензии кристаллов продукта (I) в вазелиновом масле и ИК спектр электролита над кристаллами, который

приведен на рис. 3. В ИК спектре электролита над кристаллами продукта (I) имеется полоса поглощения при 909 см-1, относящаяся к колебаниям кратной связи Re=O, которой нет в ИК спектрах кристаллических комплексов Re₄O₆(OMe)₁₂ и Re₄O₂(OMe)₁₆. В то же время в спектре ацетилацетоната Re₂O₅(acac)₂ ИК имеется полоса поглощения 907 см⁻¹ [7]. Указанный факт свидетельствует о том, что в электролите над продуктом (I), вероятно, присутствует комплекс рения, лигандное окружение которого представлено метанолом и ацетилацетоном.

Вестник МИТХТ, 2010, т. 5, № 3

Параметр	Данные для монокристалла Re ₄ O ₂ (OMe) ₁₆ [4]	Данные для монокристалла Re ₄ O ₆ (OMe) ₁₂ [3]	Расчет параметров по МНК для комлекса Re ₄ O ₆ (OMe) ₁₂
a, Å	7.892(1)	7.893(8)	7.88(1)
b, Å	15.999(2)	15.994(2)	16.12(10)
c, Å	17.501(3)	17.501(1)	17.473(55)
a,°	113.39(1)	113.434(2)	113.33(13)
β,°	93.04(1)	93.048(2)	92.12(73)
γ. °	92.76(1)	92.736(2)	93.10(85)
V, Å3	2019(1)	2020.1(6)	2030(31)

Таблица 2. Параметры элементарной ячейки для комплекса Re₄O₆(OMe)

Рис. 3. ИК спектр электролита над продуктом (I)

Рис. 4. Термограммы нагревания продукта (I). Т_{max} = 420°С.

Исследованы термические свойства продукта (I) в интервале температур от 22 до 420°С (рис. 4). На кривой ДТG отмечены эффекты при 132 и 400°С, на кривой потери массы – эффект потери массы 17% в интервале температур от 100 до 160°С. Остаток от разложения продукта (I) при t = 277°С представлял собой $\text{ReO}_{3\kappa\gamma\delta}$.В табл. 3 сопоставлены литературные данные по термическому разложению комплексов $\text{Re}_4\text{O}_6(\text{OMe})_{12}$ и $\text{Re}_4\text{O}_2(\text{OMe})_{16}$) на вооздухе [6] с полученными

Вестник МИТХТ, 2010, т. 5, № 3

экспериментальными данными, которые удовлетворительно согласуются. При t = 420° C остаток от разложения продукта (I) представлял собой смесь ReO₃, ReO_{2poM6} и ReO_{3rekc} (фаза высокого давления) (рис. 5, табл. 4, 5).

разложения продукта (I) при t = 420° C есть некоторое количество линий, корректное отнесение которых не представляется возможным.

Кроме того, на дифрактограмме остатка от

Рассчитаны параметры элементарной ячейки для $\text{ReO}_{3_{KY6}}$ по методу МНК: $a_{pac4} = 3.752$ Å, $a_{3\kappacn} = 3.748$ Å.

	T 7		9				
	у словия эксперимента		Стадии разложения		Pa	Фазовый	
Образец	t _{max} , °C	₩ _т , °С/мин	t, °C	–Δm, %	-Δm, %	для продукта	состав
$\frac{\text{Re}_4\text{O}_2(\text{OMe})_{16}}{[6]}$	200	5	87÷146	24.2	26.4	ReO ₃	ReO ₃
Re ₄ O ₂ (OMe) ₁₆ [6]	200	2.5	93÷135	24.0	26.4	ReO ₃	ReO ₃
$Re_4O_2(OMe)_{12}$ [6]	200	5	90÷134	20.1	22.8	ReO ₃	ReO ₃
$Re_4O_2(OMe)_{12}$ [6]	200	2.5	95÷132	19.2	22.8	ReO ₃	ReO ₃
продукт (I)	277	5	89-166	17.0			ReO ₃

Таблица 3. Результаты исследования процессов термического разложения оксометилатов рения

гис. 5. дифрактограмма кео₃, полученного после термического разложения продукта (1) при (–277 проиндицированная, согласно данным ICDD–JCPDS, No. 33–1096

Таблица 4. Индицирование дифрактограммы ReO_{3куб}, полученного после термического разложения продукта (I) при t =420°C

3	Эксперимента	альные данные	;	Данные ICDD-JCPDS, № 33–1096				
2 Θ°	I/I ₀ , %	d _{эксп} , Å	h	k	1	d, Å	I/I ₀ , %	
27.6	100	3.753	1	0	0	3.760	85	
39.4	94	2.655	1	1	0	2.654	80	
48.8	13	2.167	1	1	1	2.166	25	
57.0	40	1.876	2	0	0	1.875	50	
64.5	26	1.678	2	1	0	1.677	100	
71.5	34	1.532	2	1	1	1.531	55	

	Эксперии	ментальные д	анные	Данные ICDD-JCPDS, № 09–0274						
N⁰	20°	I/I ₀ , %	d _{эксп} , Å	h	k	1	d, Å	I/I ₀ , %		
1	28.4	10	3.649	1	1	0	3.659	100		
2	37.0	27	2.821	1	1	1	2.864	100		
3	43.1	14	2.437	2	0	0	2.405	80		
4	46.3	22	2.277	0	0	2	2.299	80		
5	55.2	12	1.932	1	1	2	1.947	80		
6	57.9	25	1.849	2	2	0	1.830	10		
7	61.6	20	1.748	1	3	0	1.752	30		
8	63.3	17	1.706	2	2	1	1.701	100		
9	71.2	37	1.538	3	1	0	1.542	50		
10	75.5	16	1.462	3	1	1	1.462	50		
11	77.3	15	1.433	2	2	2	1.432	10		
12	78.3	10	1.419	1	1	3	1.415	50		

Таблица 5. Индицирование дифрактограммы ReO_{2poм6}, полученного после термического разложения продукта (I) при t =420°C

Рассчитаны параметры элементарной ячейки для $\text{ReO}_{2\text{ром6}}$ по методу МНК: $a_{\text{расч}} = 4.815$ Å, $b_{\text{расч}} = 5.651$ Å, $c_{\text{расч}} = 4.594$ Å; $a_{\text{эксп}} = 4.809$ Å, $b_{\text{эксп}} = 5.643$ Å, $c_{\text{эксп}} = 4.600$ Å.

Продукт (I)
$$\xrightarrow{U_2}$$
 ReO₃ $\xrightarrow{T \sim 420^{\circ}C}$ ReO₃

Таким образом, при термическом разложении полученного анодным растворением рения в смеси метанола и ацетилацетона продукта (I) при температуре 420°С, образуется смесь оксидов Re(VI) (кубическая и гексагональная фазы) и Re(IV), а при разложении комплекса, полученного анодным растворением рения в метаноле, образуется $ReO_{3\kappa v 0}$ [5].

Выводы

Впервые осуществлено анодное растворение рения в смеси лигандов – метанола и ацетилацетона. Показано, что образовавшийся твердый продукт (I) представляет собой смесь трех фаз, а именно $\text{Re}_4\text{O}_6(\text{OMe})_{12}$, $\text{Re}_4\text{O}_2(\text{OMe})_{16}$ и разнолигандный комплекс рения. Методом установлено, спектроскопии ИК что в электролите над твердым продуктом **(I)** присутствует комплекс рения, содержащий

На основе полученных данных о термических свойствах продукта (I) можно предложить следующую схему термического разложения данного продукта:

связь Re=O. Методами XA, ИК спектроскопии, РФА и DTG установлены состав продукта (I) и остатка от его термического разложения на воздухе. Разложение (I) в окислительной атмосфере при 420°С приводит к получению в конденсированной фазе оксидов Re(VI) и Re(IV). Установлено, что, помимо кубического оксида рения(VI), возможна стабилизация в условиях эксперимента (P \approx 1 атм, t \approx 420°C) гексагональной модификации оксида рения(VI) - фазы высокого давления [9]. При добавлении небольшого количества хелатообразующего лиганда (мольное отношение $n(CH_3OH):n(ацетилацетона) =$ 44:1) в реакционную смесь гетеролигандный комплекс достаточном В количестве не образуется.

Работа выполнена при поддержке гранта РФФИ (проект 06–03–32444).

ЛИТЕРАТУРА:

1. Получение структур и свойств наноматериалов на основе редких элементов III–VII групп / Д. В. Дробот, П. А. Щеглов, Е. Е. Никишина, Е. Н. Лебедева // Неорган. материалы. – 2007. – Т. 43, № 5. – С. 1–9.

2. Edwards, P. G. Improved syntheses of tetrachloro-oxorhenium(VI) and chlorotrioxorhenium(VII). Synthesis of alkoxo- and dialkylamido-rhenium compounds. The crystal and molecular structures of di- μ -methoxo-tetramethoxo- μ -oxo-dioxorhenium(VI) (Re–Re), bis[lithium pentaisopropoxo-oxorhenate(VI)–lithiumchloride–tetrahydrofuran(1/1/2)], and *trans*-tetraphenoxobis(trimethylphosphine)rhenium(IV) / P. G. Edwards, G. Wilkinson // J. of the Chemical Society: Dalton Transactions. – 1980. – Nº 12. – P. 2467–2475.

3. Seisenbaeva, G. A. Heterometallic alkoxide complexes of variable composition – a new way to ultrafine powders of metal alloys / G. A. Seisenbaeva, V. G. Kessler, A. V. Shevelkov // J. Sol-Gel Science and Technology. – 2001. – Vol. 19, N 1. – P. 285–288.

4. Электрохимический синтез и физико-химические свойства оксометилата рения(V) Re₄O₂(OMe)₁₆ / В. Г. Кесслер, А. В. Шевельков, Г. В. Хворых, Г. А. Сейсенбаева, Н. Я. Турова, Д. В. Дробот // Журн. неорган. химии. – 1995. – Т. 40, № 9. – С. 1477–1479.

5. Homo- and hetero-metallic rhenium oxomethoxide complexes with a $M_4(\mu-O)_2(\mu-OMe)_4$ planar core – a new family of metal alkoxides displaying a peculiar structural disorder. Preparation and X-ray single crystal study / G. A. Seisenbaeva, A. V. Shevelkov, J. Tegenfeldt, L. Kloo, D. V. Drobot, V. G. Kessler // J. of the Chemical Society: Dalton Transactions. – 2001. – No 19. – P. 2762–2768.

6. Щеглов, П. А. Моно-, би- и триметаллические оксоалкоксопроизводные рения (синтез, свойства и применение) : дис. . . канд. хим. наук : 05.17.02 : защищена 25.12.02 / Щеглов Павел Александрович. – М., 2002. – 198 с.

7. Kessler, V. G. Rhenium and Rhenium alloys / V. G. Kessler, G. A. Seisenbaeva, D. V. Drobot // Proceeding of the International Symposium, Orlando, Florida, USA, 10 - 14 Feb. 1997. – Ed. B. D. Bryshkin, Publ. TMS, 1997. – P. 167.

8. Практическое руководство по неорганическому анализу / В. Ф. Гиллебранд [и др.]; пер. с англ.: под ред. Ю. Ю. Лурье. – М. : Химия, 1966. – 1112 с.

9. Dyuzheva, T. I. New high-pressure phases of ReO_3 / T. I. Dyuzheva, N. A. Bendeliani, S. S. Kabalkina // J. of the less common metals. – 1987. – Vol. 133. – P. 313–317.