ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

УДК 66.048:625.544.353

ВЫБОР ПОТЕНЦИАЛЬНЫХ РАЗДЕЛЯЮЩИХ АГЕНТОВ ДЛЯ ЭКСТРАКТИВНОЙ РЕКТИФИКАЦИИ СМЕСИ ЦИКЛОГЕКСАН – БЕНЗОЛ

В. М. Раева, старший научный сотрудник, А. Ю. Себякин, студент А. Ю. Сазонова, студент, А. К. Фролкова, профессор кафедра Химии и технологии основного органического синтеза МИТХТ им. М. В. Ломоносова e-mail: raevalentina@yandex.ru

ассмотрены подходы к формированию множества потенциальных разделяющих агентов экстрактивной ректификации промышленной азеотропной смеси циклогексан – бензол, базирующиеся на анализе концентрационных зависимостей различных избыточных термодинамических функций.

The approaches to the formation of a set of possible entrainers for extractive distillation of the binary mixture benzene – cyclohexane are considered. The approaches are based on the analyses of concentration dependence of different excess thermodynamic functions.

Ключевые слова: циклогексан, бензол, разделяющий агент, экстрактивная ректификация, избыточные термодинамические функции, избыточная энергия Гиббса, селективность, относительная летучесть. Key words: benzene, cyclohexane, entrainer, extractive distillation, excess thermodynamic functions, excess Gibbs energy, selectivity, relative volatility.

Для разделения бинарных смесей с относительными летучестями компонентов близкими к единице ($\alpha_{ij} \rightarrow 1$) и азеотропных смесей $(\alpha_{ii} = 1)$ широко используется экстрактивная ректификация (ЭР). Данный метод заключается в добавлении в разделяемую смесь специально подобранного разделяющего агента (РА), который избирательно меняет относительную летучесть компонентов, что приводит к направленному преобразованию фазовой диаграммы исходной смеси. Общие требования к разделяющим агентам, а также традиционные способы их выбора изложены в [1]. В настоящей работе обсуждаются некоторые аспекты выбора потенциальных разделяющих агентов для ЭР азеотропной системы циклогексан (1) – бензол (2). Подходы к выбору разделяющих агентов для смесей углеводородов подробно рассмотрены в работах [2, 3].

Основным физико-химическим критерием выбора РА является селективность *S*. Ее определяют из данных парожидкостного равновесия (ПЖР) трехкомпонентной системы *i-j-PA*:

$$S = \frac{\alpha_{ij}^{\rm PA}}{\alpha_{ij}}, \qquad (1)$$

где α_{ij}^{PA} – относительная летучесть исходных компонентов в присутствии агента. Селективность РА оценивается для состава исходной смеси *i-j* при определенной концентрации разделяющего агента. *S* связана с эффективностью работы комплекса экстрактивной ректификации. Чем выше *S*, тем меньшее число ступеней разделения требуется для достижения заданного качества продукта в колонне экстрактивной ректификации, тем меньше расход разделяющего агента и, соответственно, меньше энергозатраты на его регенерацию. Эмпирически установлено, что использование РА может

быть эффективно, если $S \ge 2$. Из ряда традиционных растворителей выбирают вещество с максимальным значением селективности (1).

Определенные проблемы возникают на этапе формирования множества потенциальных разделяющих агентов, для которых позднее будет оцениваться селективность. Расчетные и, в большей степени, натурные эксперименты по исследованию фазовых равновесий многокомпонентных смесей требуют значительных временных и материальных затрат. Поэтому важно ограничить круг рассматриваемых потенциальных разделяющих агентов. Последние в большинстве случаев отбираются по известным эмпирическим критериям, которые различным образом можно связать с межмолекулярными взаимодействиями (ММВ) в растворах. Селективность разделяющего агента в значительной степени определяется избирательностью взаимодействия его молекул с молекулами веществ разделяемой смеси. Принято считать, что чем больше различия в ММВ бинарных растворов і-РА и ј-РА, тем эффективнее разделяющий агент.

Предварительная оценка селективности потенциального РА проводится по данным о коэффициентах активности компонентов исходной смеси при их бесконечном разбавлении разделяющим агентом:

$$S'_{ij} = \frac{\gamma_i^{\infty}}{\gamma_j^{\infty}}.$$
 (2)

Сегодня это самый распространенный прием оценки эффективности потенциального РА в экстрактивной ректификации и экстракции. Ниже в качестве примера приведены значения селективности традиционных промышленных (табл. 1) и альтернативных, в том числе ионных жидкостей (табл. 2) [4-6], разделяющих агентов для экстрактивной ректификации азеотропной системы циклогексан–бензол. Как видно, при повышении температуры селективность РА падает, что необходимо учитывать при переходе к условиям реального процесса ЭР.

Таблица 1. Селективность традиционных растворителей при разделении смеси пиклогексан (1) – бензол (2) [3].

1	()	· · () [-]:
Разделяющий агент	S' ₁₂	Т, К
Диметилсульфоксид	9.2	303.15
N, N'-Диметилформамид	8.0	304.15
<i>N</i> -Метилпирролидон	7.9	303.15
N Dom www.ondowww	11.2	297.65
м-формилморфолин	6.5	328.15
Триотинацион	7.7	302.65
гриэтилентликоль	6.1	323.15
	6.5	321.15
диэтиленгликоль	5.8	340.15
	13.9	303.15
Сульфолан	12.0	323.15
	9.5	336.65
		(a)

Примечания: S₁₂'оценена по формуле (2).

Отражением различных по своей природе межмолекулярных взаимодействий в растворах

являются избыточные термодинамические функции. Для формирования множества потенциальных РА нами предложено использовать плоскость энергетического баланса (ПЭБ), которая является графическим отражением термодинамической классификации бинарных жидких растворов (рис. 1, табл. 3) [7]. Основу классификации составляет фундаментальное уравнение, связывающее концентрационные зависимости избыточных термодинамических функций, изменение которых сопровождает процесс образования раствора конкретного состава:

$$\Delta g^{E}(x) = \Delta h^{E}_{F}(x) - T \Delta s^{E}(x), \qquad (3)$$

где Δg^{E} , Δh^{E} , Δs^{E} – избыточные молярные энергия Гиббса, энтальпия и энтропия.

Плоскость энергетического баланса учитывает все возможные классы бинарных растворов и закономерности изменения избыточных функций при варьировании температуры, а также в рядах гомологичных систем. Использование данной классификации позволяет прогнозировать «поведение» бинарных растворов при недостатке экспериментальной информации [8, 9] и проверять адекватность расчетных значений, полученных на основе различных моделей [10].

Таблица 2. Селективность альтернативных растворителей	при разделении смеси циклогексан (1) -
	бензол (2).

					e moon (=):
Разделяющий агент	γ_1^{∞}	γ_2^{∞}	S' ₁₂	Т, К	Ист.
1 Foreign 2 women ungeboor his	5.50	0.674	8.16	298.15	
1-1 ексил-5- метилимидазол-онs- (трифторометилсульфонил)имил	5.06	0.687	7.365	313.15	[4]
(трифторометилсульфонил)имид	4.63	0.700	6.614	333.15	
	33.7	2.22	15.18	313.15	
Г-ЭТИЛ-Э-МЕТИЛИМИДАЗОЛ трифторметаносущ фонат	31.7	2.24	14.15	323.15	[5]
трифторметаносульфонат	29.8	2.27	13.13	333.15	
	12.56	1	12.56	298.15	
Хинолин	10.72	0.7852	13.65	313.15	[6]
	24.044	2.427	9.91	333.15	

Рис. 1. Плоскость энергетического баланса – графическое представление классификации бинарных растворов: Ia, Ia/II, II, II/III, III – области расположения гомогенных и гетерогенных растворов; Iб, Iб/VI, VI, VI/V, V, V/IVa, IVa, IVa/IVб, IVб, IVб/III – только гомогенные смеси.; Δc_p^E – избыточная молярная теплоемкость.

При выборе потенциальных РА будем ориентироваться на изменение характеристик растворов в системах *i*–РА и *j*–РА по сравнению с разделяемой смесью *i–j*. Вероятно, более эффективными будут РА, в которых составляющие *i*–РА и *j*–РА имеют, в первую очередь, противоположные отклонения от идеального поведения.

Максимальных различий можно ожидать в растворах-«антиподах» (например, Іб и ІVб, ІІ и V и др.), где знаки всех избыточных функций противоположны (табл. 3). Это примеры группы А в табл. 4. Меньший эффект следует ожидать от применения агента, который образует смеси *i*–PA и *j*–PA, отличающиеся знаками двух или одной термодинамических функций (группа Б в табл. 4). Группы A и Б сформированы по качественному признаку: максимальные различия в характере MMB в растворах. Группа B включает растворы, характеризующиеся одноименными отклонениями от идеального поведения. В

Вестник МИТХТ, 2011, т. 6, № 1

примерах № 7-9 направление «перемещения» по плоскости энергетического баланса раство-

ров, образованных с участием потенциального РА, одинаково (рис. 1).

Таблица 3. Термодинамические характеристики наиболее распространенных классов бинарных

							pac	створов [/].		
Класс		Знаки изб	быточных		Соотношение	Соотношение Коэффициенты активности				
пастрора	термс	динамич	еских фун	нкций	избыточных	избыточных компонентов				
раствора	Δg^{E}	Δh^E	Δh^E	Δc_p^{E}	величин	γ_i	ln _{Yi}	∂lnγ/∂T		
Ιб	>0	>0	>0	< 0	$\Delta h^E > T \Delta s^E > \Delta g^E$	>1	>0	<0		
Ia/Iб	>0	>0	>0	0	$\Delta g^E = T \Delta s^E$	>1	>0	<0		
Ia	>0	>0	>0	> 0	$\Delta h^{E} > \Delta g^{E} > T \Delta s^{E}$	>1	>0	<0		
Ia/II	>0	>0	0	> 0	$\Delta g^E = \Delta h^E$	>1	>0	<0		
II	>0	>0	<0	> 0	$\Delta g^E > \Delta h^E$	>1	>0	<0		
II/III	>0	0	< 0	> 0	$\Delta g^{E} = T\Delta s^{E} $	>1	>0	0		
III	>0	< 0	<0	> 0	$ \Delta \tilde{h}^E < T\Delta s^E $	>1	>0	>0		
III/IV6	0	< 0	<0	> 0	$ \Delta h^E = T\Delta s^E $	1	0	>0		
IVб	<0	< 0	<0	> 0	$ \Delta h^{E} > T\Delta s^{E} > \Delta g^{E} $	<1	<0	>0		
IV6/IVa	<0	< 0	0	0	$ \Delta g^{E} = T\Delta s^{E} $	<1	<0	>0		
IVa	<0	0	0	< 0	$ \Delta h^{E} > \Delta g^{E} > T\Delta s^{E} $	<1	<0	>0		
IVa /V	<0	0	0	< 0	$ \Delta g^{E} = \Delta h^{E} $	<1	<0	>0		
V	<0	0	>0	< 0	$ \Delta g^E > \Delta h^E $	<1	<0	>0		
V/VI	<0	0	>0	< 0	$ \Delta g^E = T \Delta s^E$	<1	<0	0		
VI	<0	>0	>0	< 0	$\Delta h^E < T \Delta s^E$	<1	<0	<0		
VI/I6	0	>0	>0	< 0	$\Delta h^E = T \Delta s^E$	1	0	<0		

Примечание: *i*=1, 2.

Таблица 4. Возможные наборы классов бинарных растворов в трехкомпонентной экстрактивной системе.

N⁰	Группа	Исходная смесь <i>i–j</i>	Раствор і–РА	Раствор <i>ј</i> -РА
1		Ia	V	II
2	А	I6/VI	VI	III
3		V	Ia	ΙVδ
4		II	Ia	III
5	Б	II	Ia-II	III
6		VI	Іб	V
7		IVa	V	IVб
8	В	II	II	Ia-II
9		II	II	II

В случае систем циклогексан – бензол – РА имеющаяся экспериментальная информация для анализа уравнения (3) недостаточна. Исходная смесь при 298÷313 К относится к классу Іб. Точное положение растворов исходный компонент -РА определено для ограниченного числа систем: (№ 3-5, 10-13 в табл. 5). При использовании других РА можно ориентироваться на результаты прогноза или анализировать характер отклонения систем циклогексан-РА и бензол-РА от идеального. Значения избыточной молярной энергии Гиббса Δg^E , характеризующие неидеальность жидкой фазы, связаны с различным соотношением ММВ одноименных и разноименных молекул и находят отражение в величинах коэффициентов активности компонентов:

$$\Delta g^{E} = RT \left(x_{1} \ln \gamma_{1} + x_{2} \ln \gamma_{2} \right). \tag{4}$$

При отсутствии данных парожидкостного равновесия значения избыточной молярной

энергии Гиббса рассчитываются с помощью математических моделей (столбцы № 5, 8 в табл. 5). В данной работе для этих целей использовано уравнение NRTL.

Для эффективного разделения бинарные растворы базовых компонентов с разделяющим агентом в соответствии со сформулированным ранее предположением должны быть «антиподами», т.е. характеризоваться противоположными знаками всех избыточных термодинамических функций. Этому критерию соответствует только 1,1,2,2-тетрахлорэтан (№ 12 в табл. 5). Противоположный характер отклонений от идеального поведения наблюдается, например, в смесях циклогексана и бензола с н-додеканом и этилбензолом (№ 3, 7 в табл. 5). Расчетные значения избыточной энергии Гиббса приведены на рис. 2. Согласно рекомендациям, приводимым в литературе, это должно обеспечивать необходимый экстрактивный эффект при их использовании в качестве РА. Однако только в присутствии l, l, 2, 2-тетрахлорэтана величины α_{12} для азеотропного состава (0.454 мольн. д. циклогексана) при определенных расходах РА, согласно (1), удовлетворяют критерию *S*>2 (рис. 2a). Следовательно, разный характер отклоне-

ния бинарных систем исходный компонент–РА от идеального поведения не является достаточным критерием при выборе разделяющего агента. По-видимому, необходимо искать количественные оценки.

Рис. 2. Избыточная энергия Гиббса (Дж/моль) растворов бензола и циклогексана с потенциальными разделяющими агентами при 298.15 К и диаграммы изолиний относительной летучести α₁₂ в присутствии потенциальных разделяющих агентов при 760 мм рт.ст.: а) *1,1,2,2*-тетрахлорэтан;б) *н*-додекан; в) этилбензол. Здесь и далее • • • бензол – РА

No	Разлениющий эгент	тк	Циклогек	Циклогексан – РА		Бензол – РА		
JI≌	тазделяющий агент	экспер. расчет		г, к	экспер.	расчет		
1	2	3	4	5	6	7	8	
1	н-Гексан	298.15	Ia-Iб		298.15		>0	
2	н-Октан	298.15	Іб		298.15	Іб	>0	
3	<i>н</i> -Додекан	298.15	VI		298.15	Іб		
4	<i>н</i> -Тетрадекан	298.15	VI	<0	298.15	Іб		
					323.15	Iб-VI		
5	н-Гексадекан	298.15	VI		298.15	Iб-VI	—	
6	Толуол	298.15		>0	273.15	Iб-VI	—	
7	Этилбензол	298.15	Ι	>0	298.15	VI	<0; ≈0	
8	Изопропилбензол	298.15		>0	298.15		><0	
9	Стирол	298.15		>0	298.15		><0	
10	Тетрахлорметан	298.15	Іб		283.15	II		
					313.15	Ia		
11	1,2-Дибромэтан	298.15	Ia		293.15	Ia	—	
12	1,1,2,2-	303.15	Iб-Ia		303.15	IVб		
	Тетрахлорэтан							
13	Тетрахлорэтилен	303.15	Іб		298.15	Іб		
14	Нитробензол	298.15		>0	298.15		>0	
15	Анилин	308.15	Ia		298.15		>0	
16	<i>N,N'</i> -диметилформамид	298.15	Ia		298.15	<i>Іб</i> , <i>VI</i>	—	
17	Диметилсульфоксид	298.15		>0	293.15,	II		
					298.15			
18	Диметилацетамид	298.15		>0	298.15		>0	

Таблица 5. Избыточные функции бинарных растворов циклогексана и бензола с потенциальными разделяющими агентами [2, 11-19].

Примечания: VI, Ió, I – прогноз.

Рассмотрим экстрактивные системы, с участием *н*-октана, тетрахлорэтилена, тетрахлорметана и 1,2-дибромэтана, входящие в группу Б (табл. 4), а также — изопропилбензола и стирола, классы растворов которых с циклогексаном и бензолом не определены (табл. 5).

н-Октан и тетрахлорэтилен (№ 2, 13 в табл. 5) с обоими компонентами разделяемой смеси образуют растворы того же класса, что и исходная смесь - Іб. Максимальная разность величин избыточной энергии Гиббса в бинарных составляющих экстрактивной системы $\Delta(\Delta g^E) < 150$ Дж/моль (рис. 3 а, б). Относительные летучести также невелики (рис. 4 а, б), что не позволяет рекомендовать эти вещества в качестве РА. Неэффективными по этой же причине будут тетрахлорметан (№ 10 в табл. 5), а также изопропилбензол и стирол (№ 8, 9 в табл. 5). Для веществ, представленных на рисунках Зв-д и 4в-д, для азеотропного состава разности $\Delta(\Delta g^{E})$ не превышают 300 Дж/моль, а значения $\alpha_{12} << 2$. В случае диметилацетамида (№ 18 в табл. 5) максимальная разность значений избыточной энергии Гиббса $\Delta(\Delta g^E)$ составляет ≈700 Дж/моль, при этом для азеотропного состава значения $\alpha_{12} \rightarrow 2$ (рис. 3e, 4e).

Приведенные выше примеры показывают наличие количественной взаимосвязи между разностью величин избыточной энергии Гиббса в бинарных смесях исходный компонент – РА при 298.15 К и значениями относительной летучести разделяемых веществ, а следовательно, и селективностью РА в изобарических условиях. Следовательно, формирование множества потенциальных разделяющих агентов для экстрактивной ректификации можно осуществлять по результатам анализа концентрационных зависимостей избыточной энергии Гиббса растворов исходный компонент – РА.

В результате такого анализа для разделения смеси циклогексан – бензол предложены 1,1,2,2-тетрахлорэтан (рис. 2а), анилин и нитробензол (рис. 5), а также диметилсульфоксид и диметилформамид (рис. 6), которые традиционно используются в промышленности в качестве разделяющих агентов. В случае 1,1,2,2-тетрахлорэтана $\Delta(\Delta g^E) \approx 1000$ Дж/моль, для ароматических веществ $\Delta(\Delta g^E) > 1000$ Дж/моль, значения S=2 наблюдаются уже при соотношении потоков РА и исходного питания 1:1 (рис. 5). Для промышленных разделяющих агентов максимальные разности $\Delta(\Delta g^E) \rightarrow 1500$ Дж/моль (рис. 6), причем этим значениям соответствуют более высокие по сравнению с предыдущей парой РА значения относительной летучести и селективности (рис. 6).

Таким образом, по результатам анализа концентрационных зависимостей избыточной энер-

«Вестник МИТХТ», 2011, т. 6, № 1

гии Гиббса при 298.15 К в множество потенциально эффективных разделяющих агентов включены вещества, для которых максимальная разность $\Delta(\Delta g^E)$ превышает 1000 Дж/моль.

Рис. 3. Избыточная энергия Гиббса (Дж/моль) растворов бензола и циклогексана.

(e)

Рис. 4. Диаграммы изолиний относительной летучести α₁₂ в присутствии потенциальных разделяющих агентов при 760 мм рт.ст.: а) *н*-октан; б) тетрахлорэтилен;
в) тетрахлорметан; г) изопропилбензол; д) стирол; е) диметилацетамид.

Рис. 5. Избыточная энергия Гиббса (Дж/моль) растворов бензола и циклогексана с разделяющими агентами при 298.15 К и диаграммы изолиний летучести циклогексана относительно бензола при 760 мм рт.ст.: а) анилин; б) нитробензол.

Обоснованность выбора разделяющего агента из сформированного множества потенциальных РА должна подтверждаться результатами расчета экстрактивной ректификации. Расчеты проведены с использованием программного обеспечения кафедры химии и технологии основного органического синтеза МИТХТ им. М.В. Ломоносова. В расчетном эксперименте варьировали при прочих закрепленных параметрах: соотношение количеств разделяющего агента и исходного питания (РА:F₀), эффективность колонны N, уровни ввода разделяющего агента и исходного питания (N_{PA}/N_F), флегмовые числа R. Во всех режимах рассмотрено разделение смеси циклогексан (1)-бензол (2) состава х₁=0.454 мольн.д. (азеотропный состав при 760 мм рт.ст.). В дистиллате ожидается вылеление циклогексана.

Результаты расчета колонны экстрактивной ректификации с эффективными РА представлены в табл. 6. Ее данные позволяют проиллюстрировать влияние различных параметров на результат разделения в колонне экстрактивной ректификации. При использовании анилина, нитробензола или *1,1,2,2*-тетрахлорэтана (режимы № 1-7, 25-28) возможно получение в колонне экстрактивной ректификации циклогексана первого сорта (ГОСТ 14198-78).

Диметилсульфоксид начинает разлагаться при атмосферном давлении ниже температуры кипения, поэтому ректификацию целесообразно проводить при пониженном давлении. Это благоприятно сказывается и на относительной летучести базовых компонентов (табл. 6, режим № 22). При этом возможно получение технического циклогексана первого сорта (ГОСТ 14198-78).

Рис. 6. Избыточная энергия Гиббса (Дж/моль) растворов бензола и циклогексана с промышленными разделяющими агентами при 298.15 К и диаграммы изолиний летучести циклогексана относительно бензола при 760 мм рт.ст.: а) диметилформамид; б) диметилсульфоксид.

Диметилформамид также разлагается при атмосферном давлении ниже температуры кипения, поэтому ректификацию следует проводить при пониженном давлении (режимы № 4-10 в табл. 7). Разность величин избыточной энергии Гиббса $\Delta(\Delta g^E)$ для эквимолярного состава бинарных растворов исходный компонент - РА составляет 1000 Дж/моль, т.е. ДМФА является эффективным разделяющим агентом. Уже при расходе РА:F₀=1.5:1 бензол в дистиллате отсутствует (режимы № 2, 3 в табл. 7). Однако в бинарной системе циклогексан-ДМФА в широком диапазоне давления существует тангенциальный азеотроп, поэтому получение циклогексана товарного качества невозможно.

Как уже отмечалось, в случае диметилацетамида обсуждаемая разность $\Delta(\Delta g^E) \approx 700$ Дж/моль, значения селективности $S \ge 2$ реализуются при больших расходах (рис. 4е). Поэтому требуемое качество продукта достигается в режимах, которые не могут быть рекомендованы для промышленности (№ 17, 18 в табл. 7).

В ходе исследования установлена коливзаимосвязь между разностью чественная величин избыточной энергии Гиббса в бинарных смесях исходный компонент - РА при 298.15 К и селективностью РА в изобарических условиях. По результатам анализа концентрационных зависимостей избыточной энергии Гиббса растворов исходный компонент - РА при 298.15 К сформировано множество потенциально эффективных разделяющих агентов для экстрактивной ректификации азеотропной смеси циклогексан – бензол. Для того, чтобы разделяющий агент был эффективным, максимальная разность величин избыточной энергии Гиббса $\Delta(\Delta g^E)$ бинарных смесей циклогексан – РА и бензол – РА должна составлять не менее 1000 Дж/моль. Обоснованность выбора потенциально эффективных разделяющих агентов подтверждена расчетами процесса экстрактивной ректификации.

«Вестник МИТХТ», 2011, т. 6, № 1

Таблица 6. Результаты расчета экстрактивной ректификации смеси циклогексан (1) – бензол (2) азеотропного состава с эффективными разделяющими агентами.

No	D	Ρ Λ·Ε.	a	N	N _{PA}	P		Дист	иллат			К	уб	
112	1	171.10	u_{12}	14	$/N_{\rm F}$	К	x ₁	x ₂	X _{PA}	t	X ₁	x ₂	X _{PA}	t
							Разделяю	щий аген	т – анили	1H				
1	760	1 49.1	23	81	5/48	3	0 9955	0.0005	0.0040	80 87	0.0010	0 2686	0 7 3 0 4	116.58
2				67	5/43	3.5	09954	0.0008	0.0038	80.86	0.0010	0.2685	0.7304	116.58
3		3.71:1	2.8	40	6/27	2.3	0.9954	0.0014	0.0032	80.84	0.0005	0.1281	0.8714	138.10
						Par	влеляющи	ий агент -	- нитробе	НЗОЛ				
4	760	2 15.1	27	50	7/33	23	0 9959	0.0038	0.0003	80.73	0.0007	0 2019	0 7974	126 32
5	/00	2.10.1	2.7	50	1155	2.4	0.9964	0.0033	0.0003	80.75	0.0006	0.2019	0 7974	126.32
6		2.81:1	2.9	40	5/27	2.1	0.9957	0.0028	0.0015	80.78	0.0006	0.1624	0.8370	134.19
7						2.5	0.9965	0.0021	0.0014	80.79	0.0005	0.1625	0.8370	134.20
					ŀ	разлеля	яюший а	гент – ли	метилсул	ьфоксил				
8	760	2.5.1	4 38	40	6/29	3	0 9920	0.0001	0.0079	80.80	0.0012	0 1800	0 8180	112 75
9	,	2.0.1		45	7/31	2.5	0.9930	0.0001	0.0069	80.80	0.0011	0.1800	0.8190	112.8
10		3.5:1	4.86	40	6/29	2.65	0.9930	0.00004	0.00696	80.80	0.0008	0.1360	0.8632	120.7
11				45	7/31	2.5	0.9926	0.00002	0.0074	80.80	0.00083	0.1360	0.8633	120.7
12		4:1	5.02	40	6/29	2.4	0.9920	0.00003	0.0078	80.77	0.00074	0.1210	0.8780	124.1
13				45	7/31	2.0	0.9910	0.00003	0.0086	80.78	0.00085	0.1210	0.8780	124.0
14	500	2.5:1	4.63	40	6/29	2.65	0.9950	0.00010	0.0049	67.40	0.0009	0.1800	0.8191	97.10
15				45	7/31	2.63	0.9950	0.00007	0.00493	67.40	0.0007	0.1800	0.8193	97.10
16		3.5:1	5.18	40	6/29	2.66	0.9950	0.00005	0.00495	67.40	0.0006	0.1360	0.8634	104.5
17				45	7/31	2.61	0.9950	0.00003	0.00497	67.40	0.00055	0.1360	0.86345	104.5
18		4:1	5.34	40	6/29	2.05	0.9930	0.00068	0.0070	67.40	0.00071	0.1210	0.8780	107.35
19				45	7/31	2.0	0.9930	0.00009	0.0068	67.40	0.00068	0.1210	0.8780	107.4
20	400	3.5:1	5.34	40	6/29	2.65	0.9958	0	0.0042	60.70	0	0.1360	0.8640	96.30
21	250	2.5:1	5.69	45	7/31	2.65	0.9950	0	0.00475	67.40	0.00071	0.1800	0.8190	97.10
22		3.5:1	5.70	45	7/31	3.5	0.9980	0	0.002	47.70	0.0002	0.1360	0.8638	80.30
					Р	азделя	ющий аг	ент – 1,1,	2,2-тетра	хлорэтан	I			
23	760	4:1	2.39	50	11/30	2	0.9464	0.0435	0.0101	80.49	0.0054	0.1158	0.8789	133.29
24				50	11/30	4	0.9948	0.0033	0.0018	80.77	0.0005	0.1198	0.8797	134.15
25				55	11/33	4	0.9967	0.0014	0.0018	80.80	0.0003	0.1200	0.8797	134.18
26		5:1	2.44	50	11/30	4	0.9962	0.0018	0.0020	80.80	0.0003	0.0983	0.9014	136.15
27					11/22	4.7	0.9966	0.0017	0.0017	80.79	0.0003	0.0983	0.9014	136.15
28				55	11/33	4	0.9973	0.0007	0.0020	80.81	0.0002	0.0984	0.9014	136.17
		Таблиі	1a 7. F	езу.	пьтаты]	расчет	а экстра	ктивной	ректифин	кации см	еси цик.	логексан	н (1) — бе	нзол
					(2) азео	отропног	о состава	а с потен	циальнь	іми разд	еляющи	ми агент	гами.
№	Р	PA:F ₀	α12	Ν	N _{PA}	R		Дист	иллат			K	уб	
		0	12		$/N_{\rm F}$		X ₁	x ₂	X _{PA}	t	X ₁	x ₂	X _{PA}	t
					Pa	зделян	ощий аге	нт <i>— N,N'</i> -	диметил	формами	іД			
1	760	1:1	2.88	45	2/39	3	0.9330	0.0038	0.0635	79.04	0.0194	0.354	0.6266	102.45
2		1.5:1	3.42	45	2/39	3	0.9410	0	0.0586	79.04	0.0129	0.268	0.719	108.63
3	- 00	2:1	3.81	45	2/39	3	0.9430	0	0.0570	79.05	0.0100	0.215	0.7740	113.1
4	500	2:1	3.97	45	2/39	3	0.9520	0	0.0480	66.0	0.0084	0.216	0.7756	98.7
5	200	2.1	4 2 2	45	2/39	4	0.9520	0	0.0480	66.03	0.0080	0.216	0.7760	98.65
6	200	2:1	4.32	45	2/39	3	0.9690	0	0.0315	41.1	0.0060	0.216	0.7/80	/0.8
/		2.5:1	4.65	40	2/35	2.65	0.9590	0.0050	0.0360	41.05	0.0060	0.180	0.8140	/3.30
8		2 5.1	5.07	45	2/39	2.05	0.9050	0	0.0350	41.04	0.0052	0.180	0.8150	/ 3.09
9		5.5.1	3.07	40	2/33	2.03	0.9300	0	0.0440	41.0	0.0030	0.130	0.8390	78.0
10				40	2/33	Deeme	0.9000	0	0.0400	41.01	0.0040	0.130	0.8000	/0.23
11	760	2 5.1	1 74	40	5/26	газдеј 6	зющии 8 0 0 1 0 <i>с</i>	$n cht - \beta$			0.0120	0 1604	0.0106	107 2
11	/00	2.3.1	1./4	40	3/20	0	0.9180	0.0/38	0.0704	0U.1 80.2	0.0120	0.1094	0.0100	12/.3
12		5.1 ∕⊡	1./0			0	0.9329	0.0038	0.008/	00.3 80.45	0.0083	0.14/3	0.0440	131.3
13		4.1	1 79		- (2.0	0	0.942/	0.04/0	0.009/	80.43 80.3	0.0004	0.1303	0.0031	134.3
1/1			1.12	45	7/28	6	11 9747				/			1.04.0
14		∆ 5·1	1 80	45	7/28	6	0.9535	0.0457	0.0028	80.5	0.0032	0 1173	0.0050	137 /
14 15 16		4.5:1 6:1	1.80 1.81	45	7/28	6 6 6	0.9535 0.9606 0.9756	0.0437	0.0028	80.5 80.4	0.0039	0.1173	0.8788	137.4 144 7
14 15 16 17		4.5:1 6:1 20:1	1.80 1.81	45 50	7/28 9/32	6 6 6 8	0.9535 0.9606 0.9756 0.9957	0.0437 0.0362 0.0202 0.0023	0.0028 0.0032 0.0042 0.0020	80.5 80.4 80.6 80.8	0.0032 0.0039 0.0017 0.0267	0.1173 0.0823 0.0002	0.8788 0.9160 0.9731	137.4 144.7 158.4

ЛИТЕРАТУРА:

1. Коган В.Б. Азеотропная и экстрактивная ректификация. – Л.: Химия, 1971. 439 с.

2. Биттрих Г.-Й., Гайле А.А., Лемпе Д. Разделение углеводородов с использованием селективных растворителей. – Л.: Химия, 1987. 224 с.

3. Гайле А.А., Сомов В.Е., Варшавский О.М., Семенов Л.В. Сульфолан. – СПб: Химиздат, 1998. 143 с.

4. Letcher T.M.; Marciniak A., Domanska M. Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)-imide using g.l.c. at T = (298.15, 313.15, and 333.15 K) // J. Chem. Thermodynamics. 2005.V. 37. N 12. P. 1327–1331.

5. Olivier E., Letcher T.M. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate using qas-liquid chromatography at T = (313.15, 323.15, and 333.15 K) // J. Chem. Thermodynamics. 2010. V. 42. N 1. P. 78–83.

6. Gonzales J.A. Domanska U., Zawadzki M. Thermodynamics of organic mixtures containing amines. VIII. Systems with quinoline // J. Chem. Thermodynamics. 2008. V. 40. N 8. P. 1261–1268 .

7. Серафимов Л.А., Фролкова А.К. Общие закономерности и классификация бинарных жидких растворов в терминах избыточных термодинамических функций: метод. указания. – М.: А/О Росвузнаука. 1992. 40 с.

8. Серафимов Л.А., Фролкова А.К., Раева В.М. Термодинамический анализ полного пространства избыточных функций смешения бинарных растворов // Теорет. основы хим. технологии. – 1996. – Т. 30, № 6. – С. 611-617.

9. Раева В.М., Фролкова А.К. Концентрационные зависимости избыточных молярных теплоемкостей бинарных растворов // Вестник МИТХТ. 2009. Т. 4. № 4. С. 31–39.

10. Раева В.М., Ключиков С.К., Фролкова А.К., Серафимов Л.А. Ограничения модели Вильсона при описании избыточных молярных теплоемкостей бинарных растворов // Журн. физ. химии. 2009. Т. 83. № 5. С. 1–11.

11. Смирнова Н.А. Молекулярные теории растворов. – Л.: Химия, 1987. 336 с.

12. Белоусов В.П., Панов М.Ю. Термодинамика водных растворов неэлектролитов. – Л.: Химия, 1983. 266 с.

13. Garcia Villaluenga J.P., Tabemohammadi T.-M. A review on the separation of benzene/cyclohexane mixtures by pervaporation processes // J. Membrane Science. 2000. V. 169. № 2. P. 159–174.

14. Rubio R.G., Renuncio J.A., Peña M.D. Vapor-liquid equilibria for *n*-tetradecane–benzene mixtures // J. Solution Chemistry. 1982. V. 11. N 11. – P. 823–830.

15. Rubio R.G., Renuncio J.A., Peña M.D. Vapor-liquid equilibrium measurements on benzene + n-decane systems at 298.15 and 323.15 K // Int. J. Thermophysics. 1982. V. 3. N 4. P. 325–334.

16. Miksch G., Liebermann E., Kohler F. Freie Mischungsenthalpie der Mischung von 1,2-Dichloräthan mit Cyclohexan // Monatshefte für Chemie. 1969. V. 100. N 5. P. 1574–1582.

17. Libermann E., Assion A., Baumert T., Seyfried V. Zur Thermodynamik der Mischungen von 1,2-Dibromäthan mit Benzol und Cyclohexan: Aktivitätskoeffizienten und Freie Mischungsenthalpie aus Bestimmungen der Schmelzkueve // Monatshefte für Chemie. 1968. V. 99. N 6. – P. 2514–2525.

18. Garriga R., Perez P., Gracia M. Total vapor pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with cyclohexane at nine temperatures // Fluid Phase Equil. 2004. V. 216. N 2. – P. 285–292.

19. Garriga R., Perez P., Gracia M. Total vapor pressure and excess Gibbs energy for binary mixtures of 1,1,2,2-tetrachlorethane or tetrachloroethene with benzene at nine temperatures // Fluid Phase Equil. 2005. V. 227. N 1. P. 79–86.