3/2006 «Вестник МИТХТ»

Химия и технология органических веществ

О.В. Носкова, *А.В. Чураков, *Л.Г. Кузьмина, **Дж. А.К. Ховард, Л.Ю. Аликберова, С.М. Пестов *Институт общей и неорганической химии им. Н.С. Курнакова, РАН, **Chemistry department, Durham University

УДК: 532.783:548.737

етодом РСА при 120,0 К и 296,0 К п-этоксифенил-п'пентилбензоат (1), обладающий мезофазой. Установлено взаимное расположение и наличие сопряжения бензольных колец и карбоксильной группы и ориентация бензольных колец соседних молекул.

введение

Ранее проведено исследование структуры двух соелинений nбутилоксифенил-п'-гексилокси-бензоата и пгексилоксифенил-п'-бутилоксибензоата из класса ароматических сложных эфиров, которые обладают жидкокристаллическими свойствами [1]. В продолжение этих исследований в настоящей работе мы описываем результаты исследования структуры нового представителя этого соединений. Поскольку класса ЭТИ исследования имеют конечной целью создание модели структурного перехода от кристаллической фазы в нематическую, представляло особый интерес изучить структуру данного соединения не только при низких температурах, но также и при температуре. Поскольку комнатной температура плавления соединения невысока (62,6°С), мы предполагали на основе качественного сопоставления эллипсоидов тепловых колебаний атомов прийти к заключению о том, какие из молекулярных фрагментов приобретают большую подвижность при плавлении.

РЕНТГЕНОСТРУКТУРНОЕ ИССЛЕДОВАНИЕ

Бесцветные монокристаллы *п*этоксифенил-*n*'-пентилбензоата (1), обладающего нематической мезофазой в узком интервале температур, выращены из раствора этилацетата. Температуры

МОЛЕКУЛЯРНАЯ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МЕЗОМОРФНЫХ АРОМАТИЧЕСКИХ СЛОЖНЫХ ЭФИРОВ. II. СТРОЕНИЕ *п*-ЭТОКСИФЕНИЛ*п*'-ПЕНТИЛБЕНЗОАТА

фазовых переходов (К 62.6 N 63.3 I) определены методом ДТА [2] и находятся R хорошем соответствии с ранее полученными данными: К 63.0 N 63.4 I [3]. Параметры кристаллической ячейки, детали рентгеноструктурного эксперимента, а также расшифровки И уточнения температурах структуры при двух приведены в табл. 1. Монокристалл, имеющий форму плоской иглы, покрыли перфторированным маслом и поместили дифрактометр с координатным на детектором Bruker **SMART** CCD (излучение MoK_{α}) при температурах 296,0 K. 120,0(2) K И Сканирование экспериментальных отражений проводилось в режиме 15 сек. на ступень в обоих случаях.

Структура расшифрована прямыми уточнена метолом метолами И наименьших квадратов (МНК) по F^2 . В разностном синтезе выявлены все атомы Окончательное уточнение водорода. структур МНК проведено в полноматричном приближении анизотропном для всех неводородных атомов. В низкотемпературном эксперименте атомы водорода уточнялись приближении, изотропном а В R эксперименте при комнатной температуре -«наездника». Bce расчеты по схеме выполнены по программам SHELXS-86 [4] и SHELXL-97 [5].

Координаты атомов и другие экспериментальные данные депонированы в ССDС под регистрационным номером 231674 и 231675 для двух температур. Копия данных имеется в свободном доступе. Координаты неводородных атомов для низкотемпературного эксперимента приведены также в табл. 2

Формула соединения	$C_{20}H_{24}O_3$	C ₂₀ H ₂₄ O ₃
Молярная масса (кг/кмоль)	312,39	312,39
Сингония	Триклинная	Триклинная
Пространственная группа	P 1	P 1
<i>a</i> , Å	5,5131(3)	5,5313(8)
<i>b</i> , Å	12,0565(6)	12,0568(18)
<i>c</i> , Å	14,2550(6)	14,521(2)
α, град	112,000(2)	108,721(7)
β , град	93,797(2)	93,660(7)
ү, град	97,094(1)	95,477(6)
$V, Å^3$	865,25(7)	908,4(2)
Ζ	2	2
ρ (выч.), г/см ³	1,199	1,142
F(000)	336	336
$\mu(MoK_{\alpha}), \text{ mm}^{-1}$	0,079	0,075
Размер кристалла, мм	0,44 x 0,10 x 0,06	0,44 x 0,10 x 0,06
Температура, К	120,0(2)	296,0(2)
Излучение, Å	Mo K _α (0,71073)	Mo K _α (0,71073)
Тип/область сканирования	$\infty / 1.55 - 22.02$	$\infty / 1.49 - 28.99$
по <i>θ</i> , град.	071,55-28,98	071,49-20,99
Интервалы индексов	$-7 \le h \le 7, -16 \le k \le 12,$	$-7 \le h \le 7, -16 \le k \le 14,$
отражений	- 19 ≤ 1 ≤ 19	- 19 ≤ 1 ≤ 15
Измерено отражений	6223	5315
Независимых отражений	4346 [R(int) = 0.0241]	4346 [R(int) = 0.0335]
Отражений с <i>I</i> >2σ(<i>I</i>)	4034	4136
Переменных уточнения	305	208
R -факторы по <i>I</i> >2σ(<i>I</i>)	$R_1 = 0,0549, wR_2 = 0,1514$	$R_1 = 0,1207, wR_2 = 0,3460$
По всем отражениям	$R_1 = 0,0733, wR_2 = 0,1660$	$R_1 = 0,1852, wR_2 = 0,3811$
Добротность по F^2	1,132	1,167
Остаточная электронная плотность, min/max, e/Å ³	0,414 / -0,245	0,509 / -0,327

Таблица 1. Кристаллографические параметры и параметры расшифровки и
уточнения структуры 1.

Таблица 2. Координаты неводородных атомов (×10⁴) и их эквивалентные изотропные температурные факторы (×10³, Å²) для структуры 1.

	температурные факторы (×10°, А) для структуры І.)ы І.			
Атом	x	у	Z	$U_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	Атом	x	У	Z	$U_{ m 2KB}$
O(1)	11099(2)	1882(1)	2059(1)	30(1)	C(10)	9358(3)	2520(1)	-583(1)	21(1)
O(2)	7386(2)	995(1)	1126(1)	24(1)	C(11)	7665(3)	3323(1)	-435(1)	19(1)
O(3)	7539(2)	4106(1)	-925(1)	23(1)	C(12)	5909(3)	3356(1)	241(1)	21(1)
C(1)	9272(3)	1137(1)	1852(1)	20(1)	C(13)	5865(3)	2593(1)	769(1)	22(1)
C(2)	8744(3)	256(1)	2346(1)	19(1)	C(14)	9247(3)	4079(1)	-1652(1)	23(1)
C(3)	10558(3)	249(1)	3075(1)	22(1)	C(15)	8622(4)	4948(2)	-2134(1)	31(1)
C(4)	10141(3)	-544(1)	3569(1)	24(1)	C(16)	7526(3)	-2236(2)	3866(1)	27(1)
C(5)	7933(3)	-1350(1)	3346(1)	21(1)	C(17)	5270(3)	-2148(1)	4443(1)	23(1)
C(6)	6133(3)	-1332(2)	2614(1)	25(1)	C(18)	5010(3)	-3034(1)	4978(1)	23(1)
C(7)	6520(3)	-540(1)	2117(1)	22(1)	C(19)	2885(4)	-2909(2)	5610(2)	40(1)
C(8)	7566(3)	1801(1)	616(1)	20(1)	C(20)	2677(5)	-3749(2)	6183(2)	45(1)
C(9)	9301(3)	1753(1)	-50(1)	22(1)					

МОЛЕКУЛЯРНАЯ СТРУКТУРА

Строение молекулы при низкой температуре и нумерация атомов даны на рис. 1. Длины связей и валентные углы в ней приведены в табл. 3. Строение молекулы при комнатной температуре представлено на рис. 2. Сопоставление двух рисунков показывает, что с ростом температуры увеличиваются размеры тепловых эллипсоидов всех атомов. Однако наиболее отчетливо этот эффект проявляется У атомов алифатических фрагментов. Тепловое движение алифатических концевых атомов фрагментов становится сильно анизотропным, тогда как эллипсоиды тепловых колебаний бензольных колец близки к сферам.

Рис. 1. Молекулярная структура в тепловых эллипсоидах при 120 К.

Рис. 2. Молекулярная структура в тепловых эллипсоидах при 296 К.

В молекуле исследованного соединения, как и в молекулах двух ранее изученных нами жидкокристаллических сложных ароматических эфиров [1], плоскость одного бензольного кольца практически копланарна плоскости карбоксильной группы (двугранный угол составляет 3.5°), тогда как плоскость второго бензольного кольца развернута по отношению к плоскости этой группы на большой угол. В данной молекуле этот угол равен 65,9°.

Копланарность карбоксильной группы бензольного кольца C(2)...C(7)И эффектом обусловлена сопряжения, которое осуществляется вопреки сильным стерическим отталкиваниям между ортоатомами водорода бензольного кольца и соответствующими атомами кислорода. Электронное влияние сложноэфирной группы сказывается и на распределении длин связей в рассматриваемом бензольном кольце, в котором наблюдается небольшое, но систематическое (в сторону пара-хиноидной структуры) возмущение длин связей. Действительно, связи С(3)-С(4) и С(6)-С(7) систематически укорочены (1,392(2) Å обе). Остальные длины связей в этом кольце изменяются в пределах 1,396(2) – 1,399(2) Å.

В карбоксильной группе формально ординарная связь C(1)-O(2) имеет длину 1,364(2) Å, а формально двойная связь C(1)=O(1) – 1,203(2) Å. Длина связи C(1)-C(2) составляет 1,491(2) Å. Эти значения соответствуют обычным для ароматических сложных эфиров [6]. Обычным также является и искажение валентных углов при ключевом атоме C(1) сложноэфирной группы [O(1)-C(1)-O(2) 123,8(1), O(1)-C(1)-C(2) 125,3(1), O(2)-C(1)-C(2) 110,9(1)°] [6, 7].

Связь	d	Связь	d
O(1)-C(1)	1,203(2)	C(6)-C(7)	1,392(2)
O(2)-C(1)	1,364(2)	C(8)-C(9)	1,383(2)
O(2)-C(8)	1,413(2)	C(8)-C(13)	1,389(2)
O(3)-C(11)	1,373(2)	C(9)-C(10)	1,399(2)
O(3)-C(14)	1,440(2)	C(10)-C(11)	1,396(2)
C(1)-C(2)	1,491(2)	C(11)-C(12)	1,404(2)
C(2)-C(3)	1,396(2)	C(12)-C(13)	1,390(2)
C(2)-C(7)	1,397(2)	C(14)-C(15)	1,512(2)
C(3)-C(4)	1,392(2)	C(16)-C(17)	1,528(2)
C(4)-C(5)	1,397(2)	C(17)-C(18)	1,527(2)
C(5)-C(6)	1,399(2)	C(18)-C(19)	1,513(2)
C(5)-C(16)	1,516(2)	C(19)-C(20)	1,520(2)
Угол	ω	Угол	ω
C(1)-O(2)-C(8)	117,7(1)	C(9)-C(8)-C(13)	121,6(1)
C(11)-O(3)-C(14)	117,6(1)	C(9)-C(8)-O(2)	120,7(1)
O(1)-C(1)-O(2)	123,8(1)	C(13)-C(8)-O(2)	117,6(1)
O(1)-C(1)-C(2)	125,3(1)	C(8)-C(9)-C(10)	119,5(1)
O(2)-C(1)-C(2)	110,9(1)	C(11)-C(10)-C(9)	119,5(1)
C(3)-C(2)-C(7)	119,6(1)	O(3)-C(11)-C(10)	124,5(1)
C(3)-C(2)-C(1)	117,7(1)	O(3)-C(11)-C(12)	115,3(1)
C(7)-C(2)-C(1)	122,7(1)	C(10)-C(11)-C(12)	120,2(1)
C(4)-C(3)-C(2)	119,9(1)	C(13)-C(12)-C(11)	119,9(1)
C(3)-C(4)-C(5)	121,2(1)	C(8)-C(13)-C(12)	119,2(1)
C(4)-C(5)-C(6)	118,1(1)	$O(\overline{3})-C(14)-C(\overline{15})$	107,3(1)
C(4)-C(5)-C(16)	120,8(1)	$C(\overline{5})-C(16)-C(\overline{17})$	115,2(1)
C(6)-C(5)-C(16)	121,0(1)	C(18)-C(17)-C(16)	112,7(1)
C(7)-C(6)-C(5)	121,3(1)	C(19)-C(18)-C(17)	113,7(1)
C(6)-C(7)-C(2)	119,8(1)	C(18)-C(19)-C(20)	114,1(1)

Таблица 3. Длины связей d (Å) и валентные углы ω (град) в молекуле.

второго Большой разворот бензольного C(8)....C(13)кольца ПО отношению к сложноэфирной группе свидетельствует об отсутствии сопряжения между этими фрагментами молекулы. При этом длина связи O(2)-C(8), равная 1,413(2) Å, увеличена по сравнению с длиной формально ординарной связи О(2)-С(1) сложноэфирного фрагмента, в котором существует значительная делокализация π -электронной плотности по фрагменту O=C---O.

Длины связей С-С во втором бензольном кольце С(8)...С(13) варьируют в пределах 1,383(1) – 1,404(2) Å, причем не обнаруживается никакой систематичности в их изменении, что свидетельствует о слабом электронном влиянии заместителей этого кольца на его геометрию.

Боковая O(3)-C(14)-C(15)цепь практически копланарна плоскости бензольного кольца C(8)...C(13). Торсионный угол С(11)-О(3)-С(14)-С(15) (176,1°) соответствует транс-конформации этого фрагмента. Такая ориентация, повидимому, обусловлена участием неподеленной электронной пары атома кислорода O(3), находящейся на *p*-орбитали взаимодействии π*-системой во с бензольного кольца. Вывод об *sp*²-гибридном состоянии атома кислорода можно сделать на основании величины его валентного угла, равного $117,6(1)^{\circ}$, а также длины связи O(3)-C(11), равной 1.373(2) Å. Последняя оказывается короче, чем связь О(2)-С(8), соответствующая отсутствию сопряжения неподеленной электронной пары атома O(2)с кольцом С(8)...(13), a sp^3 гибридизации атома кислорода обычно соответствуют углы, близкие к 111 - 113° [6, 7] наблюдающиеся в простых алифатических эфирах, включая краун-эфиры.

Алифатический заместитель первого бензольного кольца C(16)...C(20) имеет конформацию плоского зигзага.

Торсионные углы вокруг связей C(16)-C(17) –178,1°, C(17)-C(18) 176,3° и C(18)-C(19)–177,5° соответствуют транс конфигурации. Этот почти плоский фрагмент повернут к плоскости бензольного кольца C(2)...C(7) на угол 58,4°.

Рис. 3. Общий вид кристаллической упаковки в проекции вдоль оси а.

КРИСТАЛЛИЧЕСКАЯ УПАКОВКА

На рис. 3 показана упаковка молекул в кристалле в проекции вдоль самой короткой оси *а*. Отчетливо видно, что молекулы в кристалле ориентированы своими длинными осями вдоль диагонали *bc*. Бензольные кольца контактируют с одной стороны с бензольными кольцами соседних молекул, а с другой - с алифатическими фрагментами соседних молекул.

В кристалле отсутствует стопочная укладка ароматических фрагментов, что хорошо видно на рис. 4, где фрагмент кристаллической упаковки показан в проекции на плоскость кольца С(8)...С(13) одной из молекул. Молекулы в ряду А, В, С, а также D, E, F связаны между собой трансляцией вдоль оси а. Пары молекул А – D, В – Е и С – F собой связаны между центрами симметрии.

Отметим кажущееся сближенным расположение одноименных атомов кислорода типа O(2) молекул, объединенных центрами симметрии

[O(2A)...O(2D), O(2B)...O(2E), или O(2C)...O(2F)]. Однако расстояние между ними, равное 3,813 Å, слишком велико, чтобы предположить существование слабого специфического взаимодействия.

Иначе обстоит дело с взаимным расположением ароматических колец пары центросимметрично связанных молекул. В силу указанной симметрии взаимного расположения этих молекул, двугранный угол между плоскостями близко расположенных колец соседних молекул в точности равен двугранному углу между бензольными кольцами в самой молекуле, то есть составляет 62,5°. близкое к перпендикулярному Такое взаимное расположение бензольных колец двух соседних молекул, согласно неэмпирическому квантовохимическому расчету, отвечает минимуму энергии [8]. Стабилизация такой геометрии обусловлена слабым взаимодействием С-Н..., которое рассматривается как слабая водородная связь между С-Н группой, являющейся слабой кислотой, и

являющейся слабым π-системой. основанием [9]. Эта геометрия благоприятна И аттрактивного для квадруполь-квадрупольного взаимодействия [10]. Все эти специфические взаимодействия, определяющие тип упаковки молекул в кристалле являются слабыми. Соответствующие межмолекулярные контакты соответствуют суммам ван-дер-ваальсовых радиусов. В частности, например, расстояния от атома C(7A) и атома водорода при нем до плоскости бензольного кольца C(8D)...C(13D), равные 2,88 и 3,57 Å, соответственно близки к величинам ван-дер-ваальсовых контактов.

Авторы выражают признательность РФФИ (проект 01-03-32474) и Royal Society of Chemistry (RSC Journal Grants for International Authors для Л.Г.К) за финансирование данной работы.

Рис. 4. Фрагмент кристаллической упаковки, показывающий взаимную ориентацию соседних молекул; буквенный символ в номере атома обозначает принадлежность атома к разным молекулам (типа A, B, ...F).

ЛИТЕРАТУРА:

1. Носкова О.В., Чураков А.В., Кузьмина Л.Г., Ховард Дж.А.К., Молочко В.А., Пестов С.М. //Кристаллография. 2003. Т. 48. № 4. С. 687.

2. Молочко В.А., Болотин Б.М., Курдюмов Г.М. /В кн.: Иваново: Ив.ГУ. 1976. с. 111.

3. Neubert M.E., Carlino L.T., Fishel D.L., D'Sidocky R.M. //Mol. Cryst. Liq. Cryst. 1980. V. 59. P. 253.

4. Sheldrick G.M. //Acta Crystallogr. A. 1990. V. 46. P. 467.

5. Sheldrick G.M. SHELXL-93 - Program for the Refinement of Crystal Structures. University of Guttingen. Germany. 1997.

6. Allen F.H., Kennard O., Watson D.V. et al. //J. Chem. Soc. Perkin Trans. II. 1987. P. S1.

- 7. Allen F.H., Kennard O. //Chem. Des. Aut. News. 1993. V. 8. P. 1.
- 8. Müller-Dethlefs K., Hobza P. //Chem. Rev. 2000. V. 100. P. 143.

9. Takahashi H., Tsuboyama S., Umezawa Y. et al. //Tetrahedron. 2000. V. 56. P. 6185.

10. Hobza P, Selzle H.L., Schlag E.W. //Chem. Rev. 1994. V. 94. P. 1767.