Вестник МИТХТ, 2009, т. 4, № 5

ХИМИЯ И ТЕХНОЛОГИЯ НЕОРГАНИЧЕСКИХ МАТЕРИАЛОВ

УДК: 546.719

СИНТЕЗ И СВОЙСТВА КОМПЛЕКСА РЕНИЯ С *п*-БУТАНОЛОМ И *i*-БУТАНОЛОМ

О.В. Петракова, аспирант, Д.В. Дробот, заведующий кафедрой, П.А. Шеглов, старший научный сотрудник

кафедра Химии и технологии редких и рассеянных элементов им. К.А. Большакова МИТХТ им. М.В. Ломоносова

e-mail: trrere@mail.ru

Э лектрохимическим методом получены комплексы рения с п-бутанолом и iбутанолом. Разложение комплекса с п-ВиОН в окислительной атмосфере при 412°C приводит к получению в конденсированной фазе оксидов Re(VI) и Re(IV).

Ключевые слова: рений, алкоксид, термическое разложение, электрохимический синтез, оксидная фаза

Введение.

В последнее время значительно возрос интерес к химии соединений рения и получению новых материалов на его основе. Этот интерес обусловлен уникальными и важными для практического применения свойствами соединений рения. В частности, сплавы рения с другими тугоплавкими металлами характеризуются сочетанием полезных механических свойств (прочности, твердости, износостойкости, пластичности) с устойчивостью к действию высоких температур (1500-2000°С) и агрессивных сред, что делает указанные материалы незаменимыми для изготовления ответственных деталей механизмов (детали ракетных двигателей и газовых турбин) и конструкций [1]. Значительное количество рения и его соединений используют в производстве катализаторов, обладающих высокой активностью и селективностью в разнообразных реакциях органического и элементоорганического синтеза. Практический интерес вызывают оксидные соединения рения благодаря их особым физико-химическим свойствам, а также тому, что они являются исходными материалами для получения металлов и сплавов. Одним из перспективных направлений в синтезе новых функциональных материалов на основе рения с заданными гранулометрическим составом и свойствами является использование его оксоалкоксопроизводных [2]. Основная идея заключается в получении металлических и оксидных ультрадисперсных порошков термическим разложением моно- и полиметаллических оксоалкоксопроизводных [3].

Целью работы являлется разработка метода электрохимического синтеза комплексов рения с *n*-бутанолом и *i*-бутанолом, исследование их физико-химических свойств, а также попытка установления влияния природы лиганда на свойства алкоксокомплексов рения общей формулы Re_xO_y(OR)_z (R = Me, Et, Pr, *n*-Bu, *i*-Bu).

Экспериментальная часть.

Вследствие чувствительности к влаге и кислороду воздуха алкоксопроизводных рения все операции, связанные с синтезом, анализом и изучением свойств комплексов рения с *п*-бутанолом (I) и *i*-бутанолом (II), проводили в «сухом» боксе в атмосфере азота. nбутанол (ЧДА, ГОСТ 6006-78) и і-бутанол (ЧДА, ГОСТ 6016-77) обезвоживали кипячением в присутствии натрия или Li[AlH₄] с последующей перегонкой с дефлегматором. Хлорид лития, использованный в качестве фонового электролита при проведении электролиза в *п*-бутаноле и *i*-бутаноле, обезвоживали следующим образом: необходимое для проведения одного синтеза количество LiCl помещали в запаянную с одного конца трубку из пирекса, подсоединяли к роторному вакуум-насосу (Р~1.3 Па) и нагревали при непрерывной откачке до 80÷90°С в течение 1 ч, затем температуру доводили до 180÷200°С в течение 40÷60 мин и после охлаждения отпаивали конец трубки при работающем Запаянные трубки вскрывали насосе. непосредственно перед синтезом в сухом боксе.

Для синтеза комплекса рения с *n*бутанолом (**I**) использован электрохимический метод. В 75 мл *n*-бутанола растворяли 0.354 г LiCl (концентрация фонового электролита 0.1 моль/л). Электролит переносили в водоохлаждаемую ячейку (рис. 1). В процессе использовали электрохимическую ячейку с неразделенным катодным и анодным пространством. Данные по синтезам комплексов рения с *n*-бутанолом (**I**) и *i*-бутанолом (**II**) сведены в табл. 1.

Рис. 1. Электрохимическая ячейка для синтеза алкоксопроизводных: 1 – осушитель (P₂O₅); 2 – обратный холодильник; 3 – охлаждающая вода; 4 –катод (Pt); 5 – анод (Re); 6 –термометр.

Таблица.	 Параметры электрохими 	ического синтеза ком	иплексов рения с <i>n</i> -6	бутанолом (I)
и <i>і</i> -бута	анолом (II), C _{LiCl} = 0.1 мол	њ/л, t ~ 20 ⁰ С, анод – 1	штабик Re, катод –	пластинка Pt.

Комплекс	Электролит	I, mA	U, B	Время процесса, ч	Масса растворенного Re, г	Примечание
Комплекс Re c <i>n</i> -бутанолом (I)	<i>п-</i> бутанол	100-200	130-160	16	1.4	электролит желтоватый, затем темно-коричневый
Комплекс Re c <i>n</i> -бутанолом (I)	<i>п-</i> бутанол	30-80	150-200	48.5	2.6	электролит желтоватый, затем темно-коричневый
Комплекс Re c <i>i</i> -бутанолом (II)	і-бутанол	30-80	150-200	55	1.8	электролит серый, желтовато- коричневый, черный

В процессе анодного растворения сила тока в электролите сначала снижалась с 80 мА до 30 мА, а затем возрастала до 70 мА. На последней стадии процесса наблюдали образование вещества темно-коричневого цвета, имевшего вязкую консистенцию. Попытки удалить растворитель при помощи фильтровальной бумаги из пробы полученного комплекса не удавались. С течением времени комплекс «расплывался» в бюксе. Эксперимент, заключавшийся в анодном растворении рения в п-бутаноле, проводили два раза с целью исследования влияния условий синтеза на состав конечного продукта. Результаты химического и термического анализа полученных продуктов синтезов воспроизводились.

Для синтеза комплекса рения с *i*бутанолом (II) использовали электрохимический метод (табл. 1). В 100 мл *n*-бутанола растворяли 0.425 г LiCl (концентрация фонового электролита 0.1 моль/л). В процессе использовали ячейку с неразделенным катодным и анодным пространством. По окончании опыта выпадало очень малое количество мелкодисперсного осадка.

Анализ на содержание С, Н выполняли методом органического микроанализа на приборе Heraeus CHN–O–RAPID. Погрешность анализа составляла ~0.2%. Анализ на содержание Re проводили гравиметрически в форме перрената нитрона [4]. По данным химического анализа установили, что %: С 39.99, Н 5.45, Re 13.56. Средняя величина соотношения элементов в комплексе (I) составляла (ат. %) Re:C:H = 1:46:75.

Комплекс (I) промывали гексаном, сушили под вакуумом и получали комплекс (III). По данным химического анализа установили, что %: С 17.44, Н 3.91, Re 29.86. Средняя величина соотношения элементов в комплексе (III) составляет (ат. %) Re:C:H = 1:9:24.4.

Вестник МИТХТ, 2009, т. 4, № 5

Рентгеновские исследования порошков комплексов (I) и (III) (излучение Cu K_{α}) проводили на дифрактометре ДРОН–3М. Параметры съёмки на дифрактометре: шаг 0.05°, экспозиция на точку съёмки 2÷4. По данным РФА продукты рентгеноаморфные.

ИК спектры образцов между пластинами KRS-6 регистрировали на приборе EQUINOX 55 Bruker Germany. ИК-спектр комплекса (I): v (O-H) = 3338 см⁻¹, v (C-O) = 1072-1114 см⁻¹, v (C-H) = 2873-2959 см⁻¹, v (Re=O) = 953-1044 см⁻¹, v (Re – O) (мостик.) = 628 - 904 см⁻¹, v (Re – O(R)) = 516 см⁻¹. ИК-спектр комплекса (**II**): v O-H = 3340 см⁻¹, v C-O = 1003-1114 см⁻¹, v C-H = 2873-2957 см⁻¹, v Re – O (мостик.) = 670 - 905 см⁻¹.

Термический анализ (ТГА) на воздухе проводили на дериватографе Q–1500 D (F. Paulik, J. Paulik, L. Erdey; МОМ, Венгрия). Навески образцов составляли 120÷250 мг (погрешность взвешивания \pm 0.4 мг). Температуру измеряли термопарой платина–платинородий (ПП-1) с погрешностью \pm 2° C в интервале температур от 22 до 412°C. Термограмма нагревания комплекса (I) представлена на рис. 2.

Рис. 2. Термограмма нагревания комплекса (I). T_{max} = 412 °C.

Результаты и их обсуждение.

Как следует из данных химического анализа, атомное соотношение Re:С в комплексе рения с *n*-бутанолом, промытом в гексане, упало с 1:46 до 1:9. Это позволило сделать вывод, что комплекс (I) являлся сольватированным, и в процессе промывки комплекса гексаном происходило удаление сольватированных молекул *n*-бутанола. Достаточно низкое содержание углерода-водорода в комплексе, промытом в гексане, указывает на то, что, по всей вероятности, происходили процессы частичного гидролиза комплекса следами влаги, а также восстановление рения в комплексе (**III**) до более низкой степени окисления молекулами спирта.

Комплекс рения (I)	Комплекс рения (II)	$Re_4O_4(OEt)_{12}$	Re ₄ O ₆ (OPr-i) ₁₀	Отнесение			
		1167	1165				
		1154	1140				
1072	1114	1082	1114	$v (C - O) + \delta (C - H)$			
1031	1042	1005	1020				
	1003						
953		979	965	v (Re=O)			
	905	906	926	v (Re – О) (мостик.)			
	819	865	840	v(C-C)			
738			755	$v(\text{Re} - \Omega)(\text{MOCTUR})$			
628	670		614	V (ICC - O) (MOCTUR.)			
	494	461	452	ν (M – ORмост, конц) +δ (C-C)			

Таблица. 2. Сопоставление ИК-спектров оксоалкоксокомплексов рения [5, 6].

В ИК-спектре комплекса (I) отмечены полосы поглощения, отнесенные к колебаниям мостиковых связей Re-O. Это позволяет полагать, что структуру (I), возможно, следует рассматривать как продукт ассоциации мономерных форм. В табл. 2. сопоставлены данные ИК-спектров комплекса (I), оксоэтилата рения и оксоизопропилата рения. Как видно из таблицы, во всех ИК-спектрах рассмотренных комплексов присутствуют колебания v (C - O) + δ (C - H), v (Re=O).

Из сходства ИК-спектров комплексов можно заключить, что полученный комплекс (I) действительно является новым оксоалкоксокомплексом, в структуре которого присутствуют фрагменты, характерные для структур оксоэтилата и оксоизопропилата рения.

На кривой DTG (рис. 2) полученного оксоалкоксобутилата рения отмечены термические эффекты при 115, 125, 160, 242 и 412°С. На кривой потери массы отмечен эффект потери массы 83% в интервале температур от 44 до 185°С. Остаток от разложения представлял собой смесь оксидов ReO_{3куб.} и ReO_{2ромб}, что подтверждено методом рентгенофазового анализа. На дифрактограмме образца присутствовали отражения, принадлежащие, вероятно, фазе высокого давления ReO3гексаг (табл. 3), и две линии в области малых углов, принадлежащие фазе «Re₃O₁₀», описанной в [7]. Следует указать, что в системе рений-кислород фаза такого состава не образуется и получена, вероятно, в условиях, далеких от равновесия. Термическое разложение комплекса (I) проводили в политермическом режиме, и, следовательно, образование метастабильных фаз исключить нельзя. Поскольку фазовый состав продукта термического разложения комплекса (I) представлен суммой оксидов рения (IV, VI) и фазы «Re₃O₁₀», однозначное отнесение некоторых рефлексов затруднено.

термическом разложении комплекса (1).										
Образец после		ReO	2ромб,	ReO3куб,		ReO ₃ гексаг,		Re ₃ O ₁₀ , PSC		
термического		ICDD	ICDD-JCPDS, ICDD-JCPDS		–JCPDS,	ICDD-JCPDS,		tI40/11S, No.		
разложения		No. C	No. 09–0274 No. 33–1096		No. 41-0967		41-0967			
I/I ₀ , %	2 Θ°	d, Å	I/I ₀ , %	d, Å	I/I ₀ , %	d, Å	I/I ₀ , %	d, Å	I/I ₀ , %	d, Å
100	15.75	6.533	, 0		, 0		, 0		23	6.686
36	17	6.056								
18	27.65	3.746			85	3.760				
16	28,1	3.687							100	3.656
15	28.15	3.681	100	3.659						
7	28,9	3.587								
7	30.35	3.420					100	3.390	48.5	3.376
14	31,7	3.277							33.5	3.208
31	34.35	3.031								
6	39.55	2.646			80	2.654				
39	48.35	2.186			25	2.166	8	2.152	1.5	2.279
7	52.5	2.024	10	2.074			8	2.004	13.5	2.045
6	64.55	1.676	80	1.662	100	1.677			4.5	1.671
8	66.05	1.642	80	1.637					17	1.635

Таблица 3. Результаты индицирования дифрактограммы образца, полученного при терминеском раздожении комплекса (Д)

Анализ совокупности экспериментальных и литературных данных позволил выделить два существенных факта: термическое разложение комплекса (I) на воздухе (в окислительной атмосфере) до температуры ~ 412° С сопровождалось образованием оксидов Re(IV) и Re(VI). Их окисление до легколетучего Re₂O₇ не происходило. Исходный прекурсор стабилизировал оксиды рения в низших степенях окисления; фазовый состав продукта термического разложения рассматриваемого прекурсора был представлен, в том числе, гексагональной модификацией ReO₃, которая описана как фаза высокого давления. К аналогичному выводу пришли авторы [5], описавшие фазовый состав продукта термического разложения Re₄O₄(OEt)_{12.}

Для выяснения стадийности процесса термического разложения комплекса рения с *n*-бутанолом (I) образец нагревали на воздухе до t = 185°C. Выбор температуры отжига базировался на результатах DTG исходного комплекса: температуре 185°C соответствовала максимальная потеря массы 83% от исходной величины при общей потере массы до 412°C, равной 89%. Полученный продукт

Вестник МИТХТ, 2009, т. 4, № 5

охарактеризовывали методом РФА (табл. 4.). На дифрактограмме не обнаружены отражения, соответствующие данным по какимлибо оксидным фазам рения.

	термическом разложении комплекса (1) при $t_{max} = 185^{\circ}$ C								
Экспериментальные данные			Экспериментальные данные						
2 Θ°	I/I ₀ , %	d, Å	2 Θ°	I/I ₀ , %	d, Å				
11.5	35	8.935	52.7	16	2.017				
12.5	22	8.222	58.8	19	1.823				
13.5	20	7.616	61.8	12	1.743				
15.2	22	6.768	62.9	12	1.716				
16.9	47	6.092	66.9	12	1.624				
21	67	4.912	70.9	11	1.543				
28.4	100	3.649	77	10	1.438				
32.4	30	3.208	78.4	11	1.416				
38.8	16	2.694							

Таблица. 4. Результаты рентгенофазового анализа интермедиата, полученного при термическом разложении комплекса (I) при t_{max} = 185°C.

Из полученных данных следует, что в интервале температур 125-185°С происходило отщепление сольватированных молекул *n*-ВиОН и частичная деструкция несольватированного комплекса. На кривой ДТG отмечены слабые эффекты (115°С, 125°С и т.д.), которые свидетельствуют о многоступенчатости процесса разложения и параллельном протекании нескольких процессов. Выше 185°С комплекс являлся термически нестабильным и разлагался с образованием интермедиатов вплоть до получения суммы оксидов рения, содержащих металл в различных формальных степенях окисления. Это подтверждает термограмма нагревания комплекса (**I**), предварительно промытого в гексане и досуха высушенного под вакуумом при комнатной температуре (рис. 3). На ней отсутствует эндоэффект при t = 125° C, зафиксированный на термограмме нагревания сольватированного комплекса, что свидетельствует о том, что после промывания в гексане, комплекс перестает быть сольватированным. На кривой ДТG отмечены термические эффекты при 307.5, 365, и 405°C. На кривой потери массы отмечен эффект потери массы 16% в интервале температур от 40 до 155°C. Дальнейшая потеря массы, вероятно, связана с переходом в паровую фазу продуктов диспропорционирования ReO₃, образовавшегося при разложении комплекса.

Рис. 3. Термограмма нагревания образца, полученного после промыва в гексане комплекса (I), $t_{max} = 415$ °C.

Можно предположить, что процесс термического разложения комплекса (I) в этих условиях описывается схемой:

Параллельно с процессом отщепления сольватированных молекул *n*-BuOH происходило термическое разложение несольватированной части.

При сопоставлении термических свойств нового алкоксокомплека рения с *n*-бутанолом и других алкоксокомплексов рения видно, что в ряду:

 $t_{\text{pasn}}(\text{Re}_4\text{O}_6(\text{OMe})_{12}) = 90-134 \text{ °C},$ $t_{\text{pasn}}(\text{Re}_4\text{O}_4(\text{OEt})_{12}) = 250-450 \text{ °C},$ $t_{\text{pasn}}(\text{Re}_4\text{O}_6(\text{OPr}^i)_{10}) = 177-400 \text{ °C},$

 $t_{\text{разл}}(\text{комплекс (III})) = 155-405 \ ^{\circ}\text{C}$

не наблюдается закономерности между температурой разложения комплексов и длиной углеводородного радикала в алкоксогруппе.

Выводы.

Впервые электрохимическим методом (анодное растворение рения в безводных *n*бутаноле и *i*-бутаноле) получены комплексы (I) и (II). Методами ХА, ИК-спектроскопии, РФА и DTG установлены состав прекурсоров и продуктов их термического разложения в среде воздуха. Выполнен сопоставительный анализ ИК-спектров тетраядерных комплексов рения с EtOH, *i*-PrOH, *n*-BuOH. Термическое разложение (I) на воздухе при ~ 185°С сопровождалось протеканием параллельных процессов: удалением сольватированных молекул *n*-BuOH и деструкцией собственно оксобутоксопроизводного рения. Разложение (I) в окислительной атмосфере при 412°C приводило к получению в конденсированной фазе оксидов Re(VI) и Re(IV). Установлено, что помимо кубического оксида рения (VI), возможна стабилизация в условиях эксперимента (Р≈0.1 МПа, t≈412°С) гексагональной модификации оксида рения (VI) – фазы высокого давления.

Работа выполнена при поддержке гранта РФФИ (проект 06-03-32444).

ЛИТЕРАТУРА:

1. Tuffias, R. H. Rhenium and Rhenium alloys / R. H. Tuffias, R. B. Kaplan, M. A. Appel // Proceeding of the Int. Symposium, Orlando, Florida, USA, 10 – 14 Feb. 1997. – Ed. B.D. Bryshkin, Publ. TMS, 1997. – P. 275.

2. Ряшенцева, М. А. Рений и его соединения в гетерогенном катализе / М. А. Ряшенцева, Х. М. Миначев. – М. : Наука, 1983. – 248 с.

3. Получение структур и свойств наноматериалов на основе редких элементов III-VII групп / Д. В. Дробот, П. А. Щеглов, Е. Е. Никишина, Е. Н. Лебедева // Неорган. материалы. – 2007. – Т. 43, № 5. – С. 1–9.

4. Практическое руководство по неорганическому анализу / Гиллебранд В. Ф. [и др.] – М. : Химия, 1966. – 1112 с.

5. Electrochemical synthesis, structural characterization, and decomposition of rhenium oxoethoxide, $Re_4O_4(OEt)_{12}$. Ligand influence on the structure and bonding in the high-valent tetranuclear planar rhenium alkoxide clusters / O. A. Nikonova, K. Jansson, V. G. Kessler, M. Sundberg, A. I. Baranov, A. V. Shevelkov, D. V. Drobot, G. A. Seisenbaeva // Inorganic Chemistry. – 2008. – Nº 47. – P. 1295–1300.

6. The electrochemical synthes and X-ray single crystal study of $\text{Re}_4\text{O}_6(\text{OPr-i})_{10}$ – a new Rhenium (V,VI) cluster with an unprecedented arrangement of metal-metal bonds / P. A. Sheglov; G. A. Seisenbaeva, D. V. Drobot, V. G. Kessler. // Inorg. Chem. Commun. – 2001. – Nº 4. – P. 227–229.

7. Щеглов, П. А. Р-Т-х диаграмма состояния системы рений-кислород / П. А. Щеглов, Д. В. Дробот // Изв. вузов. Цветная металлургия. – 2000. – № 3. – С. 23–27.