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THE TWO-FLUID EXTENDED MODEL OF SUPERFLUID HELIUM

LUCA GALANTUCCI a , MICHELE SCIACCA b c ∗ AND DAVID JOU d e

ABSTRACT. In this paper we perform the first numerical comparison between the two
main existing models of superfluid helium: the two-fluid model proposed by Landau
and the one-fluid extended model proposed from the extended thermodynamics. The
numerical experiments in this paper regard the profiles of the so-called normal and superfluid
components in 2D counterflow turbulence.

1. Introduction

Superfluid helium exhibits some peculiarities, which make it different from classical
fluids. One of most interesting behaviour of superfluid helium is heat transfer in counterflow
experiments, characterized by no net matter flow but only heat transport. There, a low heat
flux inside the channel, less than a critical value (q < qc), makes the temperature gradient so
small that it cannot be measured, so indicating that the superfluid helium has an extremely
high thermal conductivity (Tisza 1938; Landau 1941; London 1954; Khalatnikov 2018).

In the middle of the previous century, Landau and Tisza proposed the two-fluid model,
which sees superfluid helium made by two components, the normal component (a classical
viscous fluid leading the whole entropy of superfluid helium) and the superfluid component
(a viscousless fluid) (Tisza 1938; Landau 1941). The two-fluid model is the most famous and
most used model nowadays even though Landau himself observed that the two-fluid model
is not completely satisfactory from a theoretical point of view because the two components
cannot exist separately. For this reason some authors (Putterman 1974; Lebon and Jou
1979; Atkin and Fox 1984) showed that the results of the theory can be established also
through the use of the conventional variables of a single fluid, but assuming the existence of
a further vector field which can be related to the velocity of the superfluid component vs

i in
the two-fluid model.

Recently, the one-fluid extended model of superfluid helium has been proposed (Mon-
giovì 1991, 1992, 1993a,c, 2000; Mongiovì et al. 2018), which is based on the framework
of Extended Thermodynamics (E.T.) (Mueller and Ruggeri 1998; Lebon et al. 2008; Jou
et al. 2010, 2011). This model describes the anomalous behaviour of liquid helium II as
well, and the relative motion between normal and superfluid components is described by an
internal variable, that macroscopically can be put in relation with the heat flux.
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A4-2 L. GALANTUCCI ET AL.

As a first comparison between these two models, the one-fluid extended model sees only
a single fluid, rather than two physically different fluids, with the dynamics of the heat
flux (whose relaxation time is very long) as a further internal degree of freedom arising
from the relative motion of the two fluids. The two fields v and q (the barycentric velocity
and the heat flux) used in the one-fluid extended model are directly measurable, whereas
the two fields vn and vs (the velocities of the normal component and of the superfluid
component, respectively) in the two-fluid model are only indirectly measured, usually
from the measurements of q and v. In contrast, the two-fluid model has a more explicit
microscopic view of what is going on in the physical process. For the sake of completeness,
a brief microscopical interpretation of the one-fluid model has been carried out in the recent
review paper (Mongiovì et al. 2018).

In the framework of the one-fluid extended model the two fundamental variables are the
velocity v and the heat flux q, apart from the density ρ and the temperature T related to the
internal energy of the fluid. In this model two fields, with the dimensions of velocity naturally
arise, which we set u(n) and u(s): the first can be interpreted as the normal component speed
and the second as the superfluid component speed (Mongiovì et al. 2018), which we can
still call two-fluid extended model. The two-fluid version of the one-fluid extended model
allows a better comparison between the two existing models and the experiments. For
instance, the two-fluid extended model allows that an amount of entropy can be carried by
the superfluid component, as stated by Putterman (1974).

According to the two-fluid model, counterflow experiments are characterized by a flow
of the normal component, carrying the entropy and temperature out from the heater, and by
a flow of the superfluid components counterflowing in the opposite direction and towards
the heater, in such a way that the average mass flow accross any transversal section of
the channel is zero. In terms of the one-fluid extended model, instead, the counterflow
experiments are characterized by the motion of the heat flow with a null average barycentric
velocity across any transversal section of the channel.

In these experiments, when the heat flux exceeds a critical value qc, vortex filaments
appear with a quantized circulation κ = h/m4 (with h the Planck constant and m4 the mass
of 4He atom, with κ ≃ 9.97 10−4cm2/s) (Vinen 1957a,b,c, 1958).

In (Jou and Sciacca 2013) the critical value qc for the appearance of quantum turbulence
(tangle of quantized vortices) is related to a critical value of a quantum Reynolds number
Reyq defined as Reyq =

q
ρsT

d
κ

, with d the diameter of the tube and ρs the entropy density
per unit volume. The critical value of Reyq depends on temperature and it is of the order of
102.

The presence of quantized vortices produces a damping force: the mutual friction force.
It is microscopically seen to be the result from the collision of the quasiparticles (phonons
and rotons) with the array of vortex lines (Donnelly 1991; Barenghi et al. 2001; Nemirovskii
2013). Thus, it is a function of the direction of the quasiparticles drift velocity with respect
to the vortex line: maximum when the direction is perpendicular to the vortex line and
minimum when it is parallel to the line.

The paper is organized as follows: Section 2 deals with the mathematical model used in
the paper, in particular in subsection 2.1 we recall some details which lead the one-fluid
extended model to the usual two-fluid model, and in subsection 2.2 we consider the 2D
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model applied to a counterflow channel; Section 3 is devoted to the numerical results and
Section 4 to the Conclusions.

2. The mathematical model

In this section we briefly recall the main fields of the two models, the one-fluid extended
model proposed by using Extended Thermodynamics and the two-fluid model proposed by
Tisza and Landau.

2.1. From the one-fluid extended model to a two-fluid model. In terms of the Extended
Thermodynamics, the fundamental fields needed to describe the dynamical behavior of
helium II are the two scalar fields ρ and T and the two vector fields v and q.

The field equations of helium II, in the presence of dissipation and in the absence of the
fluxes of higher order, are (Mongiovì 1993b; Mongiovì et al. 2018)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̇ +ρ∇ ·v = 0

ρ v̇+∇p−∇ ·Pv = 0

ρε̇ +∇ ·q+ p∇ ·v−Pv : ∇v = 0

q̇+ζ ∇T +ζ ∇ ·Pq = σq

(1)

where p is the pressure, ε is the energy density, ζ = λ1/τ1 with λ1 thermal conductivity and
τ the relaxation time, that characterizes the second-sound velocity V2, given by V 2

2 = ζ

ρcV
and Pv and Pq given by:

Pv = λ0
[︁
∇ ·v−β

′T ∇ ·q
]︁

U+2η [⟨∇v⟩−βT ⟨∇q⟩] , (2)

Pq = λ0β
′T 2 [︁

∇ ·v−β
′T ∇ ·q

]︁
U+2ηβT 2 [⟨∇v⟩−βT ⟨∇q⟩] . (3)

where coefficients β and β ′ are negative and take into account of the dissipation of thermal
origin and ⟨. . .⟩ stands for the deviatoric part of the tensors.

The production term σq in the turbulent regime is

σ
q =− 1

τ1
q−KLq (4)

where K = 1
3 κBHV , BHV being the dimensionless Hall-Vinen friction coefficient (Vinen

1957b), and L is the vortex line length per unit volume.
From the one-fluid extended model, an extended two-fluid model naturally arises. Indeed,

consider the propagation of harmonic plane waves of the fields U = (p,T,vi,qi) having the
form:

U = U0 + Ũ ei(Kn jx j−ωt) (5)

where U0 = (p0,T0,0,0), Ũ = (p̃, T̃ , ṽi, q̃i), ω the angular frequency, and K = kr + iks
is the complex wave number. The oversigned-tilde quantities denote small amplitudes
whose products can be neglected. Inserting (5) in the linearized field equations (1), we can
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investigate on the propagation of the longitudinal and transversal modes (Mongiovì 1993b).
In particular, the analysis of the transversal mode leads in a direct way to a two-fluid model.

In the first transversal mode, the vector field:

u(n) = v−βT q (6)

is almost zero, whence in the second transversal mode the vector

u(s) = v+
βT

P−1
q (7)

(with P = 1+ρβ 2T 3ζ ) is almost zero. Thus, the first transverse mode corresponds to a
very slow relaxation involving only u(s), the second mode corresponds to perturbations of
u(n) which are attenuated within a small number of wavelenghts.

From (6) and (7) we find

v =
P−1

P
u(s)+

1
P

u(n), q =
1

βT
P−1

P
[u(s)−u(n)]. (8)

The first relation (8) suggests the introduction of two scalar fields, ρ(s) and ρ(n), asso-
ciated with u(s) and u(n), which can be interpreted as the “densities” of the superfluid and
normal components in helium II. Specifically, they are given as

ρ(s)

ρ
=

P−1
P

,
ρ(n)

ρ
=

1
P
. (9)

Examining the "convective" terms of the entropy flux JS; from equation of entropy flux
it follows that

s(s) = s+
1

ρβT 2 = s
ρ(s)

ρ

(︃
1− β ∗

β

)︃
, s(n) = s− ρ(s)

ρ(n)ρβT 2
, (10)

can be interpreted as the entropy of the superfluid and of the normal component, respectively
(Mongiovì et al. 2018).

The small entropy s(s) carried by superfluid component influences many dynamical and
thermodynamical properties of liquid helium II, as for instance speeds and attenuations
of the first and second sounds. From (9) and (10), taking in mind β ∗ :=−(ρsT 2)−1 one
deduces

ss

s
= 1− β ∗

β
(11)

which implies that the superfluid entropy influences only quantities depending explicitly on
parameter β .

Using relation (11) one obtains:

u(n) = v+
1

ρ(s− ss)T
q, u(s) = v− s− ss

ζ
q. (12)
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Note that if s(s) = 0, namely, β takes the particular value β ∗ := −(ρsT 2)−1 then the
entropy flux will depend only on the u(n) and the fields u(n) and u(s) coincide with vn and
vs:

u(n) = v+
1

ρT s
q = vn, u(s) = v− s

ζ
q = vs (13)

and if we put

ζ = ρ
ρs

ρn
T s2 (14)

the linearized equations of the one-fluid model, in the absence of dissipative phenomena,
are identical with those of the original Landau two-fluid model (Mongiovì 1991).

Note that from the above expressions, the superfluid entropy modifies the speeds of
normal and superfluid components, and in particular one concludes that:

u(n) = vn +
1

ρsT

(︃
1

1− ss
s
−1
)︃

q, u(s) = vs +
ss

ζ
q. (15)

Note that the presence of small amount of entropy associated to the superfluid component
modifies the velocities u(n) and u(s) in such a way they assume values higher than the
corresponding ones in the usual two-fluid model.

In counterflow experiments, the further condition v = 0 (where v is the averaged value
of the velocity field v accross the channel) implies that expressions (12) become q =

ρ(s− ss)T u(n) and ss
ζ

q =− ss
s−ss

u(s), and hence that

u(s) =
(︂

1− ss

s

)︂
vs and u(n) =

s
s− ss

vn (16)

If ss = 0.02s (Putterman 1974) then u(s) = 0.98vs and u(n) = 1.02vn.
As shown in Mongiovì (2001), neither the velocity nor the attenuation of first sound

depend perceptibly on ss. In contrast, the presence of entropy associated with superfluid
component seems to influence second sound velocity and attenuation. In fact, one can write:

V 2
2 =

ρ(s)

ρ(n)

T
cV

(s− ss)
2 . (17)

Note that equation (17) allows us to determine the small entropy ss associated to superfluid
component, only if the quantity ρ(s)/ρ(n) can be calculated independently.

Relations (8) can be written (Mongiovì 2001; Mongiovì et al. 2018)

v =
ρ(n)

ρ
u(n)+

ρ(s)

ρ
u(s), (18)

q = ρ
(s)T (s− ss)(u(n)−u(s)). (19)

with ρ(n)

ρ
= ζ

ζ+ρT (s−ss)2 and ρ(s)

ρ
= ρT (s−ss)

2

ζ+ρT (s−ss)2 , which also show the role of ss. The

presence of the superfluid entropy modifies the ratios ρ(n)

ρ
and ρ(s)

ρ
in such a way that

ρ(n) ≥ ρn and ρ(s) ≤ ρs, because ρ

ρ(n) = 1+ ρT s2

ζ

(︁
1− ss

s

)︁2 ≤ 1+ ρT s2

ζ
= ρ

ρn
and hence
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ρ(n) ≥ ρn. The second conclusion follows from the relations ρ(n)+ρ(s) = ρ = ρn +ρs.
Moreover, if ss = 0.02s then ρ

ρ(n) = 1+
(︂

ρ

ρn
−1
)︂(︁

1− ss
s

)︁2
= 1+0.96

(︂
ρ

ρn
−1
)︂

and ρ

ρ(s) =

1+
(︂

ρ

ρs
−1
)︂

1

(1− ss
s )

2 = 1+1.04
(︂

ρ

ρs
−1
)︂

.

In terms of s− s(s) and assuming β = β ′, the two latter equations in system (1) become:

∂

∂ t
u(n)+(v ·∇)u(n) =− 1

ρ
∇p− ρ(s)

ρ(n)
(s− s(s))∇T +

λ0

ρ(n)
∇(∇ ·u(n))+

+
η

ρ(n)
∇

2u(n)+
1
τ1

ρ(s)

ρ
(u(s)−u(n)), (20)

∂

∂ t
u(s)+(v ·∇)u(s) =− 1

ρ
∇p+(s− s(s))∇T − 1

τ1

ρ(n)

ρ
(u(s)−u(n)), (21)

where we have considered the relation (14) with (s− s(s)) instead of s.
Neglecting terms proportional to 1/τ1 (because τ1 is very high in superfluid helium) in

the equations (20) and (21) we have

∂u(n)

∂ t
+(v ·∇)u(n) =− 1

ρ
∇p− ρ(s)

ρ(n)
(s− s(s))∇T +

λ0

ρ(n)
∇(∇ ·u(n))+

η

ρ(n)
∇

2u(n), (22)

∂u(s)

∂ t
+(v ·∇)u(s) =− 1

ρ
∇p+(s− s(s))∇T, (23)

Instead, in the usual Landau-Tisza two-fluid model we have

∂

∂ t
vn +(vn ·∇)vn =− 1

ρ
∇p− ρs

ρn
s∇T +

λ0

ρn
∇(∇ ·vn)+

η

ρn
∇

2vn, (24)

∂

∂ t
vs +(vs ·∇)vs =− 1

ρ
∇p+ s∇T, (25)

which differ from equations (22) and (23) for the entropy of the superfluid component s(s)

and for the velocity v, instead of vn and vs, in the convective term. Note that expressions
(22) and (23) are found after neglecting nonlinear terms of higher order, which may not be
negligible in general, and which make the two-fluid extended model more exhaustive than
the usual two-fluid model.

A further difference between the hydrodynamical model, the two-fluid model, and the
thermodynamical one, the one-fluid extended model, occurs at very low temperature (less
than 1 K), when the density of the quasiparticles (rotons and photons) inside superlfuid
helium is practically null. This means that the dynamics of these quasiparticles at very low
temperature becomes ballistic and the two-fluid model cannot be used more for superfluid
helium. The one-fluid extended model is instead valid in the ballistic regime, and hence at
very low temperature (Sciacca et al. 2014).
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2.2. The 2D model. In this subsection we follow the general lines of the paper (Galantucci
et al. 2015), which considers an infinitely long two–dimensional channel of width D,
with x and y the directions along and across the channel, respectively (−D/2 ≤ y ≤ D/2
and periodic boundary conditions imposed at x = 0 and x = Lx). More details about the
numerical code can be found in (Galantucci et al. 2011; Galantucci et al. 2015). Our
numerical experiments will be applied to a counterflow channel (heat flow without mass
flow) in terms of the two-fluid extended model (22) and (23) obtained from the one-fluid
extended model.

The calculation will mainly regard the dynamics of the vortex points over the channel
(which correspond ideally to the dynamics of the vortex lines in three-dimensions) and
the dynamical equation for the normal component. The velocity field of the superfluid
component will be instead obtained by means of the superfluid field generated by all
vortex points and the counterflow condition ρ(n)u(n) + ρ(s)u(s) = 0, where · · · indicates
channel-averaged quantities.

More in details, the dynamics of the normal component is given by equations ∇ ·u(n) = 0
and

∂u(n)

∂ t
+(v ·∇)u(n) =− 1

ρ
∇p− ρ(s)

ρ(n)
(s− s(s))∇T +

η

ρ(n)
∇

2u(n)+
1

ρ(n)
Fns, (26)

where the mutual friction term Fns has been considered because of the interaction between
the normal component and the quantized vortices (Vinen 1957b).

Quantum vortex lines in a two-dimensional channel are described by N vortex–points of
circulation κ (half of them have positive circulation and half have negative circulation) and
position r j(t) = (x j(t),y j(t)), where j = 1, . . .N.

They move according to the following equation proposed by Schwarz (1988)

dr j

dt
= u(s)

0 (r j, t)+u(s)
i (r j, t)

+α s′j ×
(︂

u(n)(r j, t)−u(s)
0 (r j, t)−u(s)

i (r j, t)
)︂

+α
′
(︂

u(n)(r j, t)−u(s)
0 (r j, t)−u(s)

i (r j, t)
)︂

(27)

where s′j is the unit vector along vortex j (in the positive z direction if the quantum of
circulation is Γ j = κ and in the negative z direction if instead Γ j = −κ), α and α ′ are
mutual friction coefficients, depending on the temperature, (Barenghi et al. 1983), the field
u(n)(r j, t) is the normal fluid velocity at position r j, u(s)

i (r j, t) = ∑k=1...N u(s)
i,k (r j, t) is the

superfluid velocity field induced by all N vortex–points at r j and u(s)
0 = (u(s)0x ,0) is the

superfluid flow which enforces the counterflow condition ρ(n)u(n)+ρ(s)(u(s)
0 +vsi) = 0 at

each channel cross-section (for futher details see Galantucci et al. (2015)). This means that
we do not need to solve equation (25) to find the superfluid velocity u(s) in a point r, but it is
given by the sum of the contribution of each vortex point u(s)

i (r) and a constant contribution
u(s)

0 , satisfying the counterflow condition ρ(n)u(n)+ρ(s)(u(s)
0 +vsi) = 0.
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The creation and the destruction of vortices in our two–dimensional model is achieved
by a "numerical vortex reconnection" procedure described, tested and employed in our
previous papers (Galantucci et al. 2011; Galantucci and Sciacca 2012, 2014; Galantucci
et al. 2015; Galantucci et al. 2017): a couple of vortex points is removed and then randomly
re-inserted in the channel when the distance between the two vortex points of opposite
circulation becomes smaller than a critical value ε1 or when when the distance between a
vortex point and a channel wall is less than ε2 = 0.5ε1 (refer to Galantucci et al. (2015) and
Supplementary Material in Galantucci et al. (2017) for further insight on this numerical
reconnection model).

The dynamical state of the normal fluid is investigated by applying the vorticity-stream
function formulation to (26) equations, obtaining the following set of equations

∇
2
Ψ =−ωn , (28)

∂ωn

∂ t
+

(︄
ρ(n)

ρ

∂Ψ

∂y
+

ρ(s)

ρ
(u(0xs)+u(s)0x

)︄
+

(︃
−ρn

ρ

∂Ψ

∂x
+u(s)iy

)︃
∂ωn

∂y
=

vn∇
2
ωn +

1
ρn

(︄
∂ ˜︁Fy

∂x
− ∂ ˜︁Fx

∂y

)︄ (29)

where ˜︁Fns = (˜︁Fx, ˜︁Fy) is the mutual friction force and the stream function Ψ and the normal
vorticity ωn are defined as follows: u(n) = (∂Ψy,−∂Ψx) , ωn = ∇×u(n).

The Cauchy-Dirichlet problem associated to (28) and (29) is:

u(n)(x,±D/2) = 0 ∀t; u(n)(x,y)|t=0 =
(︁
−Vn0

[︁
1− (2y/D)2]︁ ,0)︁

together with the counterflow condition

ρ
(n)⟨u(n)⟩+ρ

(s)⟨u(s)
0 +u(s)

i ⟩= 0. (30)

For the mutual friction force Fns we use the coarse–grained theoretical framework
proposed by Hall and Vinen (Hall and Vinen 1956), at lengthscales larger than the average
inter-vortex spacing ℓ. For this reason, we distinguish between the fine (∆x,∆y) grid where
u(n) is numerically determined, and the coarser (∆X ,∆Y ) grid on which we define the
mutual friction ˜︁Fns given by Hall and Vinen’s proposal

˜︁Fns = αρs
ˆ︁˜︁ωs ×

[︂ ˜︁ωs ×
(︂˜︁u(n)−˜︁u(n)

)︂]︂
+α

′
ρs ˜︁ωs ×

(︂˜︁u(n)−˜︁u(n)
)︂
, (31)

where ˜︁· symbols indicate coarse–grained averaged quantities, i.e. quantities averaged over
coarse grid-cells. After the mutual friction force ˜︁Fns is computed on the coarse grid we
interpolate it on the finer grid via a two–dimensional bi–cubic convolution kernel (Keys
1981).

The complete list of parameters employed in our simulation and the physical relevant
quantities are reported in Tables 1 and 2, expressed in terms of the following units of
length, velocity and time, respectively: δc = D/2 = 1.0 × 10−1 cm, uc = κ/(2πδc) =
1.59×10−3 cm/s, tc = δc/uc = 62.79s. Hereafter all the quantities which we mention are
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D 2 T 1.7K
Lx 6 ρs/ρn 3.373
N 3072 ℓ 6.25×10−2

TABLE 1. Physical and numerical parameters employed in the simula-
tions in dimensionless units

Fine grid Coarse grid
nx 192 Nx 48
ny 64 Ny 16
∆x 3.125×10−2 ∆X 0.125
∆y 3.125×10−2 ∆Y 0.125

TABLE 2. Number of grid–points and spacings in dimensionless units of
the grids employed in the simulations

dimensionless, unless otherwise stated. The parameters employed in the present simulations,
in particular the channel width D, the average inter-vortex spacing ℓ (determined by the
number of vortex points N) and the normal fluid volume flow-rate (imposed by the parameter
Vn0), have been chosen in order to make at least qualitative comparisons with the recent
experimental superflow studies performed in Prague (Babuin et al. 2012; Babuin et al. 2015;
Varga et al. 2015).

For further numerical details concerning the numerical model employed in order to
perform the simulations (integration methods, timesteps, grids characteristics) please refer
to (Galantucci et al. 2011; Galantucci and Sciacca 2012, 2014; Galantucci et al. 2015;
Galantucci et al. 2017).

3. Results

In this section we present the numerical results obtained by means of the two models, the
usual (Landau) and the extended two-fluid models, using the vortex-line density investigated
in Galantucci et al. (2017). The aim of our numerical simulation is first, in Subsection 3.1,
to compare the results of the two models and second, in Subsection 3.2, to investigate low
viscosity effects by means of the two-fluid extended model.

3.1. Comparison with the usual two-fluid model. In this subsection we consider Helium
II counterflows studied by means of the two-fluid models with the parameters reported
in Table 1 and 2. The choice of these parameters aims to support our previous results
(Galantucci et al. 2015), which have been performed with different parameters, and to make
our numerical simulations more consistent with the recent experiments (Babuin et al. 2012).

In Fig. 1 and 2 the numerical results with the usual and the extended two fluid model
are reported, respectively. The figure on the left shows the profile of the velocity of the
superfluid (red line) and normal fluid (blue line) components. The latter is compared with
the parabolic profile of the Poiseuille flow (blue dotted line). Even though our simulations
are bidimensional, both the models mimic succesfully the experiments (Marakov et al.
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2015). In our simulations, we have not taken into account of the superfluid entropy, which,
according to Putterman (Putterman 1974), is extimated of about ss = 0.02s. Taking into
account this value of ss we find that the value of the two velocity have to be modified of
the order of u(s)

ss ̸=0 = 0.98u(s) and u(n)
ss ̸=0 = 0.98u(n), as reported below equation (16). The

presence of the superfluid entropy changes the profile of the two components making the
normal component a little bit closer to the results of the experiments.

FIGURE 1. Numerical results for the usual (Landau) two fluid model: (left) the
profile of superfluid component vs (red line), the normal component vn (blue
line) compared with the Poiseuille profile (blue dotted line), the flat superfluid
component vs in the absence of vortices (red dotted line) and the counterflow
velocity vns = vn −vs (green line); (middle) the number of vortex points per unit
area in the channel (green dotted line), the number of positive vortex points per
unti area (red line), the number of negative vortex points per unit area (black dotted
line) and the polarization p (purple line); (right) the distribution of the positive
(red) and negative (black) vortex points inside the channel when a statistically
steady state has been achieved.

From a rough comparison between the results shown in Fig. 1 and 2, we do not notice
a strong difference between the results of the two models, apart from that reported above.
The explanation is found in the strength of the terms of the equations (22) and (24), in

particular in the strength of the term
(︂

ρ(s)

ρ(n) u(s) ·∇
)︂

u(n), which is absent in equation (24).
For this reason in the next subsection we consider a numerical experiment with lower normal
viscosity, which makes this term more relevant.

3.2. Numerical results with low viscosity. In this subsection, we perform a numerical
experiment employing the two-fluid extended model with the same parameters as in the
previous paragraph, apart from the viscosity which is set equal to 1/5 of its real value (used
in the previous simulations).

The numerical results are shown in Fig. 3. The smaller amount of the viscosity makes
the other terms of the equation (22) consequently stronger. Note the net separation of the
vortex points in the Fig. 3 (right), caused by the mutual friction force.

4. Conclusions

In this paper we have performed the first numerical comparison between the two existing
models of superfluid helium: the usual two-fluid Landau model and the extended two-fluid
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FIGURE 2. Numerical results for the extended two fluid model: (left) the profile
of superfluid component u(s) (red line), the normal component u(n) (blue line)
compared with the Poiseuille profile (blue dotted line), the flat superfluid compo-
nent u(s) in the absence of vortices (red dotted line) and the counterflow velocity
u(ns) = u(n)−u(s) (green line); (middle) the number of vortex points per unit area
in the channel (green dotted line), the number of positive vortex points per unit
area (red line), the number of negative vortex points per unit area (black dotted
line) and the polarization p (purple line); (right) the distribution of the positive
(red) and negative (black) vortex points inside the channel once a statistically
steady state has been achieved.

FIGURE 3. Numerical results for the extended two fluid model with low viscosity
(1/5 of the above case): (left) the profile of superfluid component u(s) (red line),
the normal component u(n) (blu line) compared with the Poiseuille profile (blue
dotted line) and the counterflow velocity u(ns) = u(n)−u(s) (green line); (middle)
the number of vortex points per unit area in the channel (green dotted line), the
number of positive vortex points per unit area (red line), the number of negative
vortex points per unit area (black dotted line) and the polarization p (purple line);
(right) the distribution of the positive (red) and negative (black) vortex points
inside the channel once a statistically steady state has been achieved.

model obtained from the one-fluid extended model. The extended model is more general
than the usual model because it predicts that the superfluid component carries a small
amount of entropy and it is more thermodynamically consistent.

The numerical simulations performed in this paper first consider the two models with
vortex-line densities consistent with Galantucci et al. (2017) and second employs the two-
fluid extended model at very low viscosity. The results obtained from both models with
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the same parameters agree with the experiments performed in Marakov et al. (2015). We
have also emphasized that the profiles of the two components of superfluid helium have
to be modified if we assume that the superfluid component can carry some amount of
entropy, as reported in Putterman. In particular, the average velocity change according with
u(s)

ss ̸=0 = 0.98 u(s) and u(n)
ss ̸=0 = 1.02 u(n), making the results closer to the experiments.

On the other hand, the low viscosity case considered in Subsection 3.2 emphasizes that
the smaller viscosity makes the inertial and the mutual friction terms stronger causing the
results shown in Fig. 3. In particular, the mutual friction term moves the vortex points apart
with a resulting vanishing magnitude in the middle of the channel and very large in the
proximity of the walls. This produces the observed normal fluid velocity profile, given
that the normal fluid volume flow rate is constant, being determined by the constant heat
released by the heater.

Furthermore, the inertial term contributes to the steepness of the profile of the normal
component because nonlinearity becomes stronger than the viscous term, which fosters the
leveling of the velocity profile.
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