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age Stand age (years) 

ASP Aspect (degrees) 

BA Stand Basal area (m2 / ha) 

CAI Current annual increment (m3.ha-1 year-1) 

CCF Crown competition factor 

CF Conversion factor 

Dq Stand mean diameter (cm) 

Dq dead Quadratic mean diameter of dead trees in each stand(cm) 

depth soil depth in stand (cm) 

D100 Stand top diameter (cm) 

ELEV The elevation above sea level (m) 

GY Gross yield (m3.ha-1) 

G100 Top basal area per hectare (m2.ha-1)          

H Mean stand height (m) 

H dead Mean height of dead trees in each stand(m) 

H100 Stand top height (m) 

     (𝑡 ) Dominant height at age t1 (m) 

     (𝑡 ) Dominant height at age t2(m) 

      Potential stand top height increment (m) 

MAI Mean annual volume increment (m3.ha-1 year-1) 

n Number of trees per plot 

n100 Top trees per hectare 

N The number of trees per hectare 

Ndead The number of dead trees dead per hectare 

OGV Other geo-climatic variation 

P The period between inventories in years 

SI Site index (m) 

SDI Stand density index 

Sl Slope (%) 

V Stand Volume in current inventory (m3. ha-1) 
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Vdead Stand volume of dead trees in each stand(m 3 ha-1) 

V (t) Volume of the growing stand in current inventory(m 3 ha-1) 

V (t-p) Volume of the growing stand in previous inventory(m 3 ha-1) 

Statistical acronyms and abbreviations 

    Intercept, 

 ̅ Model Bias 

e Euler's number 

k Number of variables in the equation 

L Value of the maximum likelihood function 

       Value of the maximum likelihood equation of logistic regression 

model with no predictors 

 

   Value of the maximum likelihood equation of analyzed model with 

specified coefficients 

ln natural logarithm 

   Model Accuracy 

q Number of observations 

RE     Relative error coefficient 

RMSE Root mean square error 

ROC Receiver-Operating-Characteristic 

    
  Adjusted R-squared 

    
      McFadden‟s coefficients of determination  

  
         Nagelkerkle‟s coefficients of determination  

       R-squared 

   Model Precision 

Sig Significance 

Std Err Standard error 

VIF Variance Inflation Factor 

  Independent variables 

   to    the independent variables 

   Continuous random variable 

X2 Value of Pearson‟s chi square statistics 

 ̂              Fitted value 

     Observed value 

 ̅ Average value of observations 

  Mathematical constant (Pi) 
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SUMMARY 

Introduction and objectives: The correct assessment of resources is a key condition for en-

suring the sustainable supply of forest resources. In Syria, sustainable forest management is 

limited, because there is practically not enough knowledge on how to determine an annual 

growth, how future developments can be predicted, how the site productivity and the optimal 

rotation age can be accurately estimated, or which thinning regime is best suitable. 

To cover these gaps and to answer the questions, objective of the work is to develop an indi-

vidual-tree growth model based on real-time series. 

Methodology and results: The study analyzed existing inventory data that came from 61 

plots (51 for modeling and 10 for validation). The data used to develop the individual tree 

growth model could be categorized into four groups:  

Measured and calculated individual trees, variables describing the growth, measured plot var-

iables, calculated stand variables.e.g. Stand basal area, stand volume, mean stand height…. 

Plot-wise equations for tree height, crown diameter and crown length were used to model the 

missing data values. 

The also analyzed the factors affecting the individual tree growth: competition and the site 

index. 

The study analyzed the competition using a set of distance-dependent and independent com-

petition indices. The results found it that distance-independent and dependent competition 

indices have a consistent negative impact on tree basal area increment. On another hand, 

competition stimulates a little the height increment before start decreasing as competition in-

creases. The best distance-independent indices were candidate for further modeling. 

Site index which is a measure of potential site productivity and it is defined in this work as 

stand dominant height at given age. The study tested 10 equations. Sloboda equation was con-

firmed as most appropriate for site index characterization of Pinus brutia stands in Syria. 

Then, the study tested the statistical models for describing the important life processes of sin-

gle trees which consists of growth and mortality equations.  

Growth equations included diameter increment, height increment, crown ratio and generalized 

height-diameter equation. 

The study developed diameter increment equation as function of tree size, site characteristics 

(site index and geo-climatic variation OGV), and competition variables. The equation showed 

good performance for explaining the variations in diameter increment, where the coefficient 

of determination (R2) was 0.58. One supplementary equation for diameter increment equation 

was fitted without geo-climatic variation (OGV) and showed similar performance.  
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The study developed two individual tree height increment equations: linearized height incre-

ment in similar way to that developed to diameter increment, and the second equation is Mod-

ifier-Potential height increment by achieving Nagel‟s equation (1999). Modifier-Potential 

height increment is more desirable to be applied in pure even stands of Pinus brutia forests 

because it gave better results than linearized height increment, and requires less information. 

The study also developed the crown ratio equation using tree size, competition, and site varia-

bles. The exponential equation performed best. 

Concerning the height-diameter relationship, the study tested 4 equations. The equation pro-

posed by Mirkovich (1958) provides more satisfactory results as compared to the other tested 

equations. 

Finally, the study developed the mortality equation as function of stand variables, competition 

and site variables and could be applied deterministically or stochastically. 

The study implemented the forest simulation PINUS-SYRIA in NETLOGO. The simulation 

model allowed us to simulate the behavior of the individual-tree growth mortality dynamics 

under different conditions (site characteristics and competition) which allowed deep under-

standing of dynamic of Pinus brutia stands in Syria, and it showed that stochastic and deter-

ministic simulations of mortality equation yield different results for the same single-tree mod-

el and the same initial conditions. The model applied forest management scenarios to suggest 

the optimal rotation age and most appropriate thinning regime. Thinning improved the growth 

rates for diameter at breast height, tree height and tree volume, the improvement on diameter 

increment is clearer than on height increment, and optimal rotation age was determined upon 

site index and density. Finally, the study tested the individual-tree growth model by using 

independent data and applying the global sensitivity analysis.  

Conclusions: The PINUS-Syria Model can be applied effectively in several aspects of forest 

management. Firstly, it can be used for sustainable forest management as determining the 

rotation length in the absence of thinning and simulating the effect of different scenarios of 

thinning regimes on the stand development.   

Based on the simulation results, this study suggests one thinning scenarios with heavy intensi-

ty in good and very good sites, and one or two thinning with moderate, heavy or very heavy 

thinning in medium and poor sites depending on the density.  
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ZUSAMMENFASSUNG 

Einleitung und Ziele: Die korrekte Bewertung von Ressourcen ist eine wichtige 

Voraussetzung für die die nachhaltige Nutzung natürlicher Ressourcen. In Syrien ist die 

nachhaltige Waldbewirtschaftung eingeschränkt, da praktisch nicht genügend Wissen darüber 

vorhanden ist, wie der jährliche Zuwachs ermittelt werden soll oder wie zukünftige 

Entwicklungen, wie z.B. die Produktivität des Standortes oder die optimale Umtriebszeit, 

prognostiziert werden können oder welche Bestandesbehandlung am besten geeignet ist. 

Die vorliegende Arbeit soll einen Beitrag zur nachhaltigen Bewirtschaftung von Brutia-

Kiefernbeständen leisten, indem ein auf Zeitreihen basierendes Wachstumsmodell auf 

Einzelbaumebene entwickelt wird. 

Methodik und Ergebnisse: 

Diese Dissertation kombiniert Inventurdaten von Waldmessungen, empirischer Wachstums- 

und Ertragsmodellierung (61 Probeflächen) sowie Computersimulationstechniken zur 

Realisierung der Zielstellungen. 

Im ersten Schritt mussten Inventurdaten erstellt und anschließend für die Modellierung 

ausgewertet werden. Zu diesem Zweck besteht die Datenbank aus zwei Teilen: 

Modellierungs- (zur Erstellung des Einzelbaumwachstumsmodells) und Validierungsdaten 

(zur Bewertung des Einzelbaumwachstumsmodells). 

Der zweite Schritt der Analyse der Daten bestand darin, je Untersuchungsfläche eine 

Gleichung für die Baumhöhe, den Kronendurchmesser und die Kronenlänge zu berechnen.  

Dieser Schritt ist notwendig, um fehlende Datenwerte zu modellieren.  

Der nächste Schritt bestand darin, die Faktoren zu untersuchen, die das Wachstum einzelner 

Bäume beeinflussen: Der Einfluss der Konkurrenz und Schätzung des potentiellen Standort-

Leistungsvermögens., der durch den Standortindex dargestellt wurde. 

Zur Abschätzung der Effekte von Konkurrenz um Wuchsraum auf den Grundflächen- und 

Höhenzuwachs von Einzelbäumen wurden distanzabhängige und distanzunabhängige Indizes 

analysisert. 

Bei der Untersuchung des Konkurrenzeinflusses konnte festgestellt werden, dass 

distanzabhängige und -unabhängige Indizes mit einer Ausnahme einen konstant negativen 

Einfluss auf den Grundflächenzuwachs hatten. Reineke-Index, BAL-Index, CCF, BA und 

BAL / d1.3 lieferten die besten Ergebnisse  und waren die Kandidaten für die weitere Analyse 

zur Modellierung der Durchmesser-Zuwachs-Gleichung. Auf der anderen Seite hat die 

Konkurrenz einen ähnlichen Effekt auf den Baumhöhenzuwachs. Reineke-Index, BAL-Index, 
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BA und BAL / d1.3 waren auch hier die Kandidaten für die Modellierung des linearisierten 

Höhenzuwchses. 

Standortindex, der ein Maß für die potenzielle Standortproduktivität darstellt und in dieser 

Arbeit als standdominante Höhe in einem bestimmten Alter definiert wird. Die Studie testete 

10 Gleichungen. Die Sloboda-Gleichung wurde als am besten geeignet für die 

Standortindexcharakterisierung von Pinus brutia-Beständen in Syrien bestätigt. 

Nach der Untersuchung der Konkurrenz und der Entwicklung des Standortindexes 

entwickelte die Studie die Durchmesserzuwachsgleichung als Funktion der Baumhöhe, der 

Standortmerkmale (Standortindex und  geoklimatische Variation OGV) und der 

Konkurrenzvariablen. Die Gleichung zeigte eine gute Eignung zur Prognose der Variationen 

im Durchmesserzuwachs, wobei das Bestimmtheitsmaß (R2) 0,58 betrug. 

Eine ergänzende Gleichung für die Durchmesserzuwachsgleichung wurde ohne 

geoklimatische Variation (OGV) angepasst und zeigte eine ähnliche Eignung. 

In der Studie wurden zwei Baumhöhezuwächse entwickelt: linearisierter Höhenzuwach als 

Funktion der Baumhöhe, der Standortmerkmale (Standortindex und geoklimatische 

Schwankungen) und Konkurrenzvariablen, wobei das Bestimmtheitsmaß   

(R
2
) 0.36 betrug. Für die zweite Gleichung gilt der Modifier-Potential-Höhenzuwachs mit 

einem Bestimmtheitsmaß (R
2
) von 0.54. Der Höhenzuwachs des Modifikatorpotentials ist für 

gleichaltrige Reinbestände der Brutia-Kiefer geeigneter, da er bessere Ergebnisse  als der 

linearisierte Höhenzuwachs liefert und weniger Informationen benötigt. 

Darüber hinaus wurde der Kronenanteil unter Verwendung von Baumhöhe-, Konkurrenz- und 

Standortvariablen berechnet, wobei diese üblicherweise für homogenere Bestände verwendet 

werden. Die Exponentialgleichung lieferte die besten Ergebnisse unter den getesteten 

Funktionen und erfüllte die Annahmen der nichtlinearen Regression. 

In Bezug auf die Höhe-Durchmesser-Beziehung haben die Kandidaten der Höhen-

Durchmesser-Gleichungen ein bis vier Parameter. Für alle Gleichungen wurden die Parameter 

ermittelt und es wurde festgestellt, dass alle Gleichungen  signifikant (bei einem 

Signifikanzniveau von 0.05) am besten für die Daten geeignet waren. 

Die von Mirkovich (1958) vorgeschlagene Gleichung liefert die besten Ergebnisse. 

Die Gleichung für die Mortalität war die letzte in dieser Studie entwickelte Funktion. Die 

Variablen für die Baumhöhe, die Konkurrenz und Variablen auf Bestandesebene wurden 

getestet und anschließend bei der Erstellung der beiden Mortalitätsgleichungen ausgewählt, 

die mithilfe der logistischen Regressionsanalyse abgeleitet und analysiert wurden. Es wurden 
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drei Grenzpunkte (der Abfangpunkt für Sensitivität und Spezifität, die durchschnittliche 

beobachtete Sterblichkeitsrate und eine Zufallszahl) verwendet. 

Nach der Entwicklung der Wachstums- und Mortalitätsgleichungen wurde NETLOGO für die 

Simulation des entwickelten Einzelbaumwachstumsmodells verwendet. 

Schlussfolgerungen: Das PINUS-Syrien-Modell kann in verschiedenen Aspekten der 

Waldbewirtschaftung effektiv angewendet werden. Erstens kann es für eine nachhaltige 

Waldbewirtschaftung verwendet werden, um die Rotationslänge ohne Ausdünnung zu 

bestimmen und die Auswirkungen verschiedener Szenarien von Ausdünnungsregimen auf die 

Standentwicklung zu simulieren. Basierend auf den Simulationsergebnissen schlägt diese 

Studie ein Ausdünnungsszenario mit hoher Intensität an guten und sehr guten Standorten und 

ein oder zwei Ausdünnungen mit mäßiger, schwerer oder sehr starker Ausdünnung an 

mittleren und schlechten Standorten vor, abhängig von der Dichte. Zweitens kann das PINUS-

Syrien-Modell verwendet werden, um Schüler in Waldwachstum und -modellierung zu 

unterrichten, und es kann auch verwendet werden, um Personen zu schulen, die für 

Entscheidungen über die Waldbewirtschaftung verantwortlich sind. 

Die Modellausgabe, die aus Diagrammen und Tabellen besteht, kann Waldverwaltern eine 

Vielzahl von Informationen und Visualisierungen zur Verfügung stellen, um sie bei der 

objektiven Planung zu unterstützen. 
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1 INTRODUCTION 

1.1 Background 

Pinus brutia Ten., commonly known as Turkish red pine, Brutia pine or Calabrian pine, is a 

coniferous tree species dominating the forests of the eastern coast of the Mediterranean sea 

which constitute one of the most important coniferous ecosystems in the Mediterranean re-

gion. These forests cover about 5,800,000 ha in Turkey, 175,000 ha in Cyprus, 196,000 ha in 

Greece, 55,000 ha in Syria and 17,000 ha in Lebanon (Pantelas, 1986; Schiller and Mendel, 

1995; Skordilis and Thanos, 1997; Barbéro et al., 1998; Quézel, 2000; IPGRI, 2001; 

Dalsgaard, 2005; MFWA, 2012). Of the 145,000 ha coniferous forests in Syria (Nahal, 2012), 

Pinus brutia forests are the most important and abundant species. They are concentrated par-

ticularly in the Baer-Bassit region on the western slopes of the coastal area, in Jiser Al-

Shoghour hills, small spots in Wastani Mountains, some locations on the eastern slopes of the 

Coastal Mountains and in the southern part of Al-Akrad Mountain (Nahal, 1977).  

Pinus brutia is an ecologically flexible species. It is distributed in the humid, sub-humid and 

semi-arid bioclimatic zones (Nahal, 1977; Quézel, 1985). It grows on brown soils, including 

Serpentine, Amphibolites and Gabbro, which are derived from green rocks, Rendzina and 

calcareous soils. The elevation range varies from 0 up to 1,600 m above sea level (Zohary, 

1973). The mean rainfall in the natural distribution area of Pinus brutia is between 400 mm 

and 2000 mm and the mean annual temperature varies between 10-12 °C and 20-25 °C. The 

forests are fragile, instable and suffer from frequent degradation (Palahi et al., 2008a). For 

many years, they have been subject of deforestation and over-exploitation (Nahal, 1977). 

Climate change, intensive use of wood for timber and firewood, overgrazing, as well as re-

peated forest fires (Central Bureau of Statistics, 2002) are the common drivers of this inces-

sant deforestation. Nonetheless, these Pinus brutia forests are valued for multiple objectives 

in most cases. They are used for hunting, as a source of firewood and construction materials 

and for the collection of various non-wood forests products such as resin, honey, mushrooms, 

as well as the environmental importance e.g. soil protection, water regulation and providing 

various services (Nahal and Zahoueh, 2005). In the same manner, the increasing demand for 

different equations and products of forests has led to continuing pressures and changes upon 

forest areas. Only a forests management system, which put the sustainable use of the forest 

resources as a priority can put an end to this situation. 

In 2007, the Syrian government issued a new law of forest policy, which considers imple-

menting sustainable forest management policy and practices indispensable (Forest Legisla-
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tion, 2007). The Ministry of Agriculture focused on the forest protection and plantation with 

priority of the environmental perspectives accompanied with establishing the permanent plots 

to estimate correct assessment of resources. This is considered one of the main points high-

lighted by this forest policy and law. The correct assessment of resources, e.g. current stock 

levels, is a key condition for ensuring the sustainable supply of forest resources. In Syria, sus-

tainable forest management is limited, because there is practically not enough knowledge on 

how to determine an annual growth, how future developments can be predicted, how the site 

productivity and the optimal rotation age can be accurately estimated, or which thinning re-

gime is best suitable. To date, only a few Pinus brutia stands are properly thinned, partly due 

to the lack of science-based information. Past management of forests was based on experience 

and simple calculations, which in turn propagated errors that resulted in serious ecological 

and economic damages (Nahal and Zahoueh, 2005). Therefore, in view of the economic and 

environmental importance of Pinus brutia stands in Syria, with more than 55,000 hectares 

planted, there is a need for a management system that enables reliable growth and yield pre-

dictions to support proper planning and management.  

The work has an intent to provide a contribution to the sustainable management of Pinus  

brutia stands by developing an individual-tree growth model based on real-time series (long-

term observation). Its main purpose is to simulate future forest management scenarios 

(Weiskittel,2011).  Because they provide detailed information on manifold output variables, 

individual tree growth models have the ability to predict future yields and to explore silvicul-

tural options and management options and silvicultural alternatives.  For example, foresters 

may want to know the long-term effect on both the forest and on future harvests, forecasts of 

the nature and timing of future harvests, and estimates of the maximum sustainable harvest.  

With a growth model, they can examine the likely outcomes, both with the intended and alter-

native cutting limits, and can make their decision objectively (Vanclay, 1994). 

1.2   Forest growth and yield models 

Growth models have a major role in forest management and in shaping the forest policy, so in 

the following, the definition of the growth model, its purpose and its classifications will be 

presented. Vanclay (2003) states that a model is an abstraction or a simplification of some 

aspect of reality. In this sense, growth and yield models are considered a brief way to repre-

sent growth and yield relationships. Vanclay (1994) defines a forest growth and yield model 

as a model which draws the status of the forest at some future time. Hasenauer (1999) refers 

that a growth and yield model may consist of a series of mathematical equations which gener-
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ally allow forest managers to predict the growth and yield of a forest stand under different 

conditions.  

In general, researchers consider a forest growth model as an attempt to quantify the growth of 

a given forest. These models are commonly used for two essential purposes: (1) to estimate 

the future status of a forest, and (2) to choose and check the effect of alternative silviculture 

treatments (Weiskittel et al., 2011).  

Forest growth and yield models can be classified into four main models: empirical models, 

physiological models, ecological models, and hybrid models.  

I. Empirical models are the most commonly applied in forestry. They are normal-

ly derived by executing a set of processes such as observing, recording and 

generalizing how forest stands respond to different conditions e.g. soil and 

climatic variations, or competition (Tomé and Verwijst, 1996). Empirical 

models are mainly used to predict wood production and to simulate different 

forestry management treatments on the short and long-term. They can be di-

vided into whole stand level and the individual-tree level. The models, which 

only are based on stand-level information, are called whole stand models.  

Pretzsch et al. (2007) divided the whole stand growth models, based on their 

concept and structure, into three groups: Differential equation models that pre-

dict the change of stem number, basal area and volume within a given diameter 

class dependent upon initial stand characteristics (Clutter and Bennett,1965; 

Pretzsch et al, 2007); distribution prediction models that have characterized the 

condition of a tree population by its diameter and height distribution and de-

scribed stand development by extrapolation of these frequency distributions 

(Bailey, 1973; Pretzsch et al, 2007), and stochastic evolution models that as-

sume that stand development evolves from an initial frequency distribution, 

e.g. from diameter distribution known from forest inventory, and predict indi-

vidual stem dimensions rather than mere distributions of tree properties (Kou-

ba, 1973; Pretzsch et al, 2007). While the models, which are based on individ-

ual-tree data and use single trees as a cornerstone to predict yield, are called 

single tree growth models. In forestry, single tree growth models usually in-

clude a system of equations which predict the increment, the mortality rate, 

crown ratio, and the ingrowths in a stand based on single tree data like tree di-

ameter or basal area, height, and crown.  
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II. Process-based models (Physiological) models are photosynthesis-based. Pro-

cess models predict the behavior of a system such as a forest stand based on a 

set of functional components and their interactions with each other and the sys-

tem environment (Matala, et al., 2003). In these models emphasis is on under-

standing the nature of processes of growth such as light interception, photosyn-

thesis, respiration and evapotranspiration, and modelling these processes as a 

function of the physical environment (Larocque, 2002). In spite of attempts to 

explain the the changing phenomenon, it does not accurately describe the for-

est tree and stand structure, and that makes it less correlated with respect to 

practical forestry if compared with the empirical models (Kimmins, 1988).  

III. Ecological models (succession or gap) models are used to simulate the dynam-

ics of forest ecosystems (Larocque, 2002). These models imply that the death 

of dominant tree results in a gap, and thus improve the growth conditions of 

understory trees and natural regeneration occurs.  With growing trees succes-

sively, the gap will close again and a new overstorey develops.  The process is 

repeated with further deaths of dominant trees (Evans, 2001).  The gap models 

are a clear representation of key ecological processes in contrary to the empiri-

cal models which predict the potential growth which mainly affected by com-

petition and site characteristics. 

IV. Hybrid models are new approaches that combine both process-based and em-

pirical models for predicting forest yield and growth (Waterworth et al., 2007).  

The model, the study will achieve it (PINUS-SYRIA), must provide detailed information 

about each individual-tree dimensions in a stand and sum the resulting individual-tree esti-

mates to produce stand level values, it must be usable with data available, it should be suffi-

ciently flexible in terms of stand management, able to offer the possibility to calibrate the 

model with data from standard research plots, and to be flexible as possible to a broad range 

of coniferous species, and describe accurately the forest tree and stand structure, and test al-

ternative silviculture treatments. From the criteria defined here and considering the models 

already discussed above, the suitable model approach for this study is the empirical model, in 

particular, the single-tree model that encompasses in this research five dynamic submodels 

(Figure 1-1): tree diameter,  height increment,  natural mortality equation, tree crown ratio, 

height-diameter relationship, and that will not be possible unless studying the main factors on 

growth which are the site productivity and competition that will be  highlighted in detail in the 

following subsections along with evaluation and application of the model. 
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                                          Figure 1-1: Flowchart of proposed single-tree growth model components 

1.2.1 Site productivity 

The classification of forest stands regarding its productivity is an important question for forest 

managers. This classification is also an indispensable component for the modeling growth and 

yield over time. It enables foresters to predict the maximum potential productivity which can 

be produced from particular sites under given conditions at a specified age (Vanclay, 1994). It 

can also be used for the process of stratifying the forest land for purposes of forest inventory 

(García, 1983). Different environmental conditions (rain, soil, slope, and aspect) lead to dif-

ferent wood productions obtainable from stands among sites. 

Earlier, in the eighteenth century the site classification was based on standing volume 

(Pretzsch, 2009). With the change to more intensive management concepts in the nineteenth 

century, stand mean height is introduced as an alternative to the former indicator, because it is 

less dependent on stand density and thinning (Pretzsch, 2009). This concept was used to clas-

sify the productivity sites into seven classes in Al-Bayer and Al-Basit region in northern Syria 

(Nahal, 1982). In the mid-twentieth century with the intensification of thinning from below, 

which greatly influenced the mean height, the reference height measure was switched to top 

height (dominant height) as an indicator of site quality (Pretzsch, 2009), where top height is 

affected by site rather than density effects (Gadow and Hui, 1999).  

Input data 

Studying the factors on growth 

 Diameter increment 

 Height increment 

 Crown ratio 

 Height-diameter 

relationship 

 Mortality 

 

Application of the model 

Evaluation of the model 

Singl-tree growth 



INTRODUCTION 

 

6 

 

Site index often represents the relationship between top height and age of upper-story trees, 

and is defined as the average height of a specified number of dominant trees (and co-dominant 

or the largest and tallest trees per unit area) at an index age. The site index became the most 

commonly used measure of site productivity, which is applicable only to an even-aged stand 

of uniform development. 

Three main methods are commonly used to fit site index curves: (1) guide curve, (2) parame-

ter prediction, and (3) differential equation methods (Clutter et al., 1983). The guide curve 

represents the height development for the average site index in the data. It is used to generate 

a set of anamorphic site productivity index curves.  In all site classes, heights at all  

ages are normally supposed to be proportional to that of the guide curve (Burkhart and Tome, 

2012), and it is usually used when only temporary plots are available. The parameter  

prediction method is based on fitting a growth function tree-by-tree or plot-by-plot and linking 

the parameters of the fitted curves with the site index. The differential equation approach can 

be applied to any height-age equation to produce families of anamorphic or polymorphic 

curves (Burkhart and Tome, 2012). This method requires permanent plots or stem analysis 

data.  

Data used for site index modeling can be derived from three sources:  

(1) Measurement of height and age on temporary plots. Site index has been developed in this 

case by measuring height-age pairs in stands of different site qualities and ages. This method 

is considered inexpensive and should represent the full range of ages and heights in the forest  

(Burkhart and Tome, 2012). 

(2) Measurement of height and age over time on permanent plots (Garcia, 2004; Dieguez-

Aranda et al., 2005). Despite this method is expensive and it requires many years, site index 

curves from remeasurement plots are generally preferred because it provides good dynamic 

data (Burkhart and Tome, 2012). 

(3) The reconstruction of height/age through stem analysis. Stem analysis can be carried out 

by making intermodal measurements for trees that have a determinate growth pattern, or split-

ting the main stem along the pith so the heights at different ages can be measured directly or 

by taking cross-sectional cuts at given heights and rings counted to determine tree age at that 

height (Burkhart and Tome, 2012). This method is expensive but it is possible to be carried 

out immediately and offers good dynamic data (Suliman, 2013; Garcia, 2004 ).   

1.2.2 Competition  

 In order to access and acquire the main resources required for growth, a tree has to compete 

with other individuals; this process is called the competition. Competition is "an interaction 
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between individuals, leading to a reduction in the survivorship, growth, and reproduction of 

the competing individuals concerned" (Begon et al., 1996), and according to Allaby (2006) 

„an interaction between individuals of the same species, or between different species popula-

tions at the same trophic level, in which the growth and survival of one or all species or indi-

viduals are affected adversely". 

There are various criteria to classify competition, which can all be divided in four different 

subtypes (Figure 1-1): 

A) The mode of competition:  

(1) Aboveground: competition for light, and 

(2) Belowground: competition for water and nutrients (Mudrák et al, 2016).  

B) Species competition:  

(1) Inter-specific competition between trees of different tree species  

(2) Intra-specific competition, between members of the same species. 

C) The symmetry of competition:  

(1) One-sided competition / asymmetric competition; if the division of resources be-

tween the individuals is not proportional to their size resources (Weiner, 1990). 

(2) Two-sided competition / symmetric competition between two individuals; occurs 

when both individuals use a number of resources proportional to their size. If one plant 

accounts for 30% of the biomass of the population, it also uses 30% of the resources.  

To further complicate the matter, there is controversy about a mix of both 

models of competition. Namely, there are studies that suggest that aboveground com-

petition is dominated by asymmetry, whereas belowground competition would func-

tion more symmetrically (Weiner, 1990; Schwinning and Weiner, 1998). 

D) Tree position: Competition indices could be classified as  

(1) Distance-independent (non-spatial), and  

(2) Distance-dependent (spatial) (Munro, 1974; Wykoff et al., 1982).  

Distance-independent indices do not require individual-tree coordinates, while dis-

tance-dependent indices do. In addition, sometimes “semi-distance-independent indi-

ces” are applied (Lederman, 2010). 

Many papers studied the degree of the effect of distance-dependent and distance-independent 

competition indices on predicting tree growth.  There are three different points of view rec-

orded in answering which approach is better to predict tree growth. 
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                        Figure  1-1: Schematic overview of different types of competition  

1) The first one is that that distance-independent competition indices are superior over more 

advanced distance-dependent competition indices (Castagneri et al.,2008).  Supporters of this 

viewpoint see that distance-independent indices are easy to calculate and less demanding in 

data and computer time (Tomé and Burkhart., 1989) and that the initial tree size alone can 

explain the variation (Mitsuda and Yoshida, 2007).  

2) The second viewpoint is the distance-dependent competition indices improve the estimates 

of individual-tree growth when compared with the distance-independent indices (Cole and 

Lorimer, 1994; Biging and Dobbertin, 1995).   

Pretzsch (2009) indicates that “if stem coordinates and stem and crown size are known, then 

position-dependent indices may be used for a more detailed characterization of resource 

availability”. Distance-dependent indices would also be more reliable in mixed forests with 

much more diversity (Pretzsch, 2009).  

3) The last viewpoint found that there is no difference between  distance-dependent indices of 

competition and distance-independent ones (Martin and Ek,1984; Cole and Lorimer,1994; 

Wimberly and Bare,1996), that is noticed in particular in pure stands  (Daniels et al., 1986; 

Biging and Dobbertin, 1995; Rivas et al.,2005).  To complete the cycle of discussion about 

this point, some researchers attribute the superiority of distance-independent indices to dis-

tance-dependent ones to some limitation of distance-dependent indices (Weiskittel et al., 

2011):  1) distance-dependent tree models are often difficult to use because they require a map 

of the stand, which is not only very costly but also impracticable in a routine management 

context (Munro, 1974; Wimberly and Bare, 1996), furthermore the distance-dependent indices 

generally need to apply the edge correction method, 2) Distance-dependent indices mainly 

generally take the one-sided competition into account and ignores below-ground competition 

(Larocque, 2002).  

Due to the general lack of obtaining all the data needed for distance-dependent competition 

indices, distance-independent competition indices for modeling the individual-tree growth 

model will be sufficient in this study, this trend is supported by Weiskittel et al (2011), and the 

Types of Competition 

Mode of Competition Species Competition Symmetry of Competition Position of trees 

Above 

ground 

Below 

ground 

Inter-

specific 

Intra-

specific 

Two-

sided 

One-

sided 

Spatial Non-spatial 
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study will provide an analysis of distance-dependent competition indices based on the data 

available as a step toward broader studies in the future. 

To sum it up: The part defined the competition and classified it according to 1) The mode of 

competition 2) Species competition 3) Symmetry of competition,4) spatial and non-spatial 

competition. Comparisons between distance-dependent and independent competition indices 

did not give an advantage  to approach over another. 

1.2.3 Individual-tree diameter increment 

Diameter increment equations are a fundamental component of forest growth and yield 

frameworks since the diameter is the primary determinant of stem volume. 

Single-tree growth may be modeled as basal area increment or as diameter increment. It has 

been discussed that it is more suitable to model basal area increment than diameter increment, 

as basal area increment would resemble the individual-tree volume growth more closely than 

diameter increment does (Hökkä and Groot, 1999). However, tree diameter increment and 

basal area increment are related mathematically, and if any differences in the goodness of fit 

have appeared, that is attributed to differences in the error structure and a developed function-

al relationship, rather than the superiority of one sub-model over the other (Vanclay, 1994). 

Empirical studies have not offered any evidence of differences in estimation precision be-

tween the diameter increment and basal area increment equations (West, 1980), and there 

were also no differences found between the two approaches for short-term simulations (<10 

years) (Russel et al., 2011). Nevertheless, many authors have used diameter increment (e.g. 

Cole and Stage, 1972; Dolph, 1988; Wykoff, 1990; Dolph, 1992; Palahi et al., 2003; Calama 

and Montero, 2004; Trasobares and Pukkala, 2004; Zhao et al., 2004; Carus, 2004; Uzoh and 

Oliver, 2008; Palahi et al., 2008; Shater et al., 2011; Assaf et al., 2012), and only a few basal 

area increment (e.g. Opie, 1968; Mailly et al., 2003). Individual-tree diameter or basal area 

increment is often modeled using one of the following two approaches: 

1) A potential/modifier model (maximum potential increment multiplied by a modifier). 

Potential modifier is a method to determining individual-tree growth. This method assumes 

that the potential diameter increment is obtained usually from potential diameter-age curves 

of dominant trees of a given site (Pretzsch, 2009). The potential diameter increment represents 

the growth of a tree in the absence of competition, then the actual diameter tree growth is ob-

tained by multiplying the potential increment by a modifier which reduces the potential 

growth, represents the competition state of the individual-tree. Many studies used the poten-

tial/modifier model (Wensel et al., 1987; Soares and Tome, 2002) and the potential/modifier 

model is adopted in most ecological gap models (Bugmann, 2001). 
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2) A composite model (a unified equation that predicts realized increment directly), which 

models tree growth directly as a function of individual-tree and stand characteristics. Many  

authors have used this approach (Dolph, 1988; Hann and Larsen, 1991; Monserud and Sterba, 

1996; Hökkä et al., 1997; Zhao et al., 2004). The differences between the two methods are 

mostly semantic because they both result in a reasonable model behavior (Wykoff and Men-

sured, 1988). In such a composite model, the independent variables are divided into three 

classes of covariates: tree size, competition, and site (Wykoff, 1990). Each model uses a set of 

independent variables (tree and stand variables) to predict diameter increment (Table 1-1). 

Table ‎1-1:Stand variables used in developing diameter increment equations in forestry literature 

Stand Variable 

Variables Reference 

Stand basal area 
 Ritchie andHann, 1985; Dolph, 1988; Pukkala, 1989;  

  Hann and Larsen, 1991; Cao, 2000; Andreassen and    

  Tomter, 2003; Palahi et al., 2003; Carus , 2004 

Quadratic mean diameter  Pukkala, 1989; Andreassen and Tomter, 2003 

Stand density index  Uzoh and Oliver, 2008; Berrill et al., 2013 

Site index 

 Ritchie and Hann, 1985; Wykoff, 1990; Monserud and 

  Sterba, 1996, Pretzsch et al., 2002; Andreassen and    

  Tomter, 2003; Palahi et al, 2003; Uzoh and Oliver,  

  2008;  Shater et al., 2011; Carus ,2004; Assaf et al., 
  2012 

Physiographic and topographic varia-

bles like elevation, slope, and aspect 

and soil depth 

 Wykoff, 1990; Monserud and Sterba., 1996; Shater et   

al., 2011; Assaf et al., 2012 

Tree Variables 

Variables Reference 

Basal area of trees larger than the sub-

ject tree 
 Wykoff, 1990; Shater et al., 2011; Assaf et al., 2012 

Crown dimensions  Pretzsch et al., 2002; Schröder et al., 2007 

Tree basal area  Pukkala., 1989; Andreassen and Tomter, 2003 

Crown ratio  Ritchie and Hann, 1985; Dolph, 1988; Wykoff, 1990;   

  Hann and Larsen, 1991; Monserud and Sterba, 1996 

Diameter at breast height and squared 

diameter at breast height 

 Monserud and Sterba, 1996; Carus,2004; Assaf et al., 

 2012 

Natural logarithm of diameter at breast 

height 
 Wykoff, 1990; Shater et al., 2011 

Reverse of diameter at breast height  Zhao et al., 2004 
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1.2.4 Individual-tree height increment  

     Besides a sub-model for diameter increment, a sub-model predicting individual-tree height 

increment should be included in an individual-tree growth model (Wykoff, 1986; Hester et 

al., 1989). Compared with the modeling of diameter increment, which requires the simply-to- 

measure diameter at breast height as input, modeling height increment is more difficult be-

cause it is not easy at all to obtain good height increment data (Hasenauer and Monserud, 

1997).. There are three options to obtain height increment data for modeling purposes: 

(1) Stem analysis of felled trees. Stem analysis is the common procedure in forestry by which 

the past growth can be determined by directly measuring the accumulated stem increments of 

height and diameter. This method is accurate but it has some critical shortages as trees must 

be felled. Therefore, it is not practical or appropriate on permanent sample plots. Moreover, it 

is quite time-consuming and expensive (Hasenauer and Monserud, 1997). 

(2) Re-measured heights of trees. This method is equally time-consuming and difficult, espe-

cially in mountainous terrain and in dense forest stands. Height measurement may lead to 

large errors relative to the increment especially for relatively slow growing species found in 

boreal and most temperate forests (Hasenauer and Monserud, 1997). Some height increment 

equations used this method based on re-measured trees heights in permanent plots (Burkhart 

et al., 1987; Pretzsch, 1992; Hasenauer, 1994). 

(3) Heuristic functions of diameter. Growth and yield modelers develop a height increment 

equation based on heuristic functions of diameter instead of measuring all tree heights. Repre-

sentative trees are selected and both tree height and diameter at breast height (d1.3) are ob-

tained. Then, a height-diameter equation is developed. Heights for other trees, of which only 

d1.3 measured, are predicted based on the height-diameter relationship (Curtis, 1967; Curtis et 

al., 1981; Wykoff et al., 1982; Nagel, 1994, 1995; Hasenauer and Monserud, 1997; Linkiv-

icius, 2014).  

Two different modeling approaches for height increment have been commonly used in litera-

ture: (1) The realized height increment approach, which is parallel approach used for predict-

ing the diameter increment (Lemmon and Schumacher, 1962; Beck, 1974; Wykoff et al., 

1982; Dolph, 1992; Hasenauer and Monserud, 1997; Uzoh, 2001; Uzoh and Oliver, 2006). An 

advantage of this approach is, “that the competition is estimated correctly because it doesn't 

depend‎on‎possibly‎wrong‎growth‎potentials‎out‎of‎improperly‎selected‎yield‎tables” (Nacht-

mann, 2006). The main shortage is the unsuitable mathematical methods for predicting may 

cause unreasonable tree height increments (Nachtmann, 2006). 
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(2) The potential height increment equations with modifiers is more common in literature 

(Hegyi, 1974; Burkhart et al., 1987; Wensel et al., 1987; Hann and Ritchie, 1988). The poten-

tial height increment obtained by the dominant tree height increment which represents the 

growth in the absence of competition. To estimate the potential height increment (dominant 

tree height increment), both age-dependent and independent approaches are used. The age-

dependent approach is applicable to even-aged, homogeneous stands only (Weiskittel et al., 

2011). The potential height increment is then reduced by competition indices (modifier) to get 

the individual-tree height increment. Clear differences were noticed in the way that research-

ers introduce the modifier to reduce potential tree growth to the single tree growth. 

Arney (1972) employed live crown length and total height ratio as modifiers. Ritchie and 

Hann (1986) used the function of tree height, dominant stand height ratio and crown ratio. 

Wensel et al. (1987) used the tree crown ratio as modifier to adjust potential height increment. 

Nagel et al (2002), Schröder (2004) and Nachtmann (2006) employed the ratio between stand 

top height and tree height to develop the height increment model. Pretzsch et al (2002) 

achieved their study by using crown surface area. Nunifu (2009) used basal area of trees larg-

er than the subject tree, total tree height, dominant tree height, stand density as variables in the 

modifier. The disadvantage of this approach is that a wrong potential tree height increment 

(dominant tree height increment is not equivalent to the tree height increment in the yield ta-

ble) leads to a wrong competition impact, that is why the potential tree height increment is 

always reduced by competition indices, but it nevertheless gives reasonable predictions for 

height increment (Nachtmann, 2006). In this thesis, both approaches will be tested which may 

help to determine which approach is more suitable for even-aged stands. 

1.2.5 Individual-tree mortality  

Mortality is an essential component of models predicting growth and yield of trees, and stand 

development patterns. It is one of the most difficult processes to model because of a variety of 

factors such as environmental, physiological, pathological, and entomological factors, as well 

as some random events (Adame et al., 2010). For this complexity, it is considered one of the 

least understood processes in forest modeling (Hamilton, 1986). 

Two major categories of natural mortality can be distinguished: regular and catastrophic (ir-

regular) mortality (Lee, 1971). Regular mortality, or self-thinning, can be described as densi-

ty-dependent and occurred by competition for light, water, and soil nutrients within a stand 

(Lee, 1971; Peet and Christensen, 1987), the probability  of individual-tree mortality increases 

with competition (Teck and Hilt, 1990). Irregular mortality, on the other hand is independent 

of stand density. It occurs because of external events or hazards such as wind, snow, wildfire, 
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landslides or pest and disease outbreaks (Vanclay, 1994), where the probability of survival is 

very low at the tree and stand level but not necessarily at the landscape level (Alenius et al., 

2003). Generally, most growth and yield models focus only on regular mortality (Amateis et 

al., 1997; Monserud and Sterba, 1999; Weiskittel et al., 2011). 

Forest survival following a mortality event is usually modeled at the whole stand or at the 

individual-tree level. Whole-stand survival models predict the future trees per unit area when 

an initial number of trees and corresponding age are given. They have been applied in pure 

and mixed stands (Bailey et al., 1985; Eid and Øyen, 2003) and appear to be more effective 

for early stand age (Amateis et al., 1997). Forest survival modeling at the individual-tree level 

is more common (Hamilton and Edwards, 1976; Buchman, 1979; Hamilton, 1986; Vanclay, 

1995; Monserud and Sterba, 1999). According to Schröder et al (2007), the mortality likeli-

hood functions modify the values of probabilities of natural tree mortality ranging from 0 to 1 

into likelihood values generating mortality as observed in the field for given intervals of prob-

ability of natural tree mortality. The most common methodology for estimating individual-

tree mortality is statistical. Researchers widely used weighted nonlinear regression or multi-

variate maximum likelihood procedure to estimate the parameters of a flexible nonlinear func-

tion which is bounded by 0 and 1. A dead tree is expressed by 1 and a live tree  

is expressed by 0 (Neter and Maynes, 1970). The most popular is the logistic, Weibull, Gam-

ma, Richards‟s function, Exponential and the Normal (Richards, 2010). 

Mortality sub-models can be applied either deterministically or stochastically, like in many 

statistical models, or these two methods may be combined in one model (Table 1-2). A deter-

ministic model provides the expected growth, whereas a stochastic model attempts to illus-

trate the natural variability of the growth by including random components (Vanclay 1994).  

Some researchers found that there was no practical difference in mean stand values for a 

number of trees, basal area, volume, or diameter distributions (Weber et al., 1986; Vanclay, 

1991). 

Table ‎1-2: Developed individual-tree mortality based on deterministic and stochastic approaches 

Deterministic Stochastic Combination 

Staebler, 1953; Lee, 

1971;  

Monserud, 1976; Hamilton, 1986; 

Avila and Burkhart, 1992; Vanclay, 

1995; Yao et al., 2001; Zhao et al., 

2007 

Woollons, 1998; Eid and Øyen, 2003; 

Zhao et al., 2007; Adame et al,2010 

 

In relation to competition, individual-tree mortality sub-models are divided into distance in-

dependent and distance-dependent sub-models (Pukkala, 1988; Vanclay, 1994). Mortality is  
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dependent on tree size, vigor, species, stand density, species composition, site quality, and 

available growing space (Peet and Christensen, 1987; Oliver and Larson, 1990). So the selec-

tion of better predictors requires more efforts, especially when building individual-tree mor-

tality to estimate the mortality from a range of variables (Guan and Gertner, 1991). In litera-

ture the mortality usually is a function of three groups of factors (Table 1-3):  

(I) Size-related variables such as diameter at breast height or tree height,  

(II) Growth-related variables such as competition and measures of stand density 

(Monserud and Sterba, 1999; Eid and Tuhus, 2001; Bigler and Bugmann, 2003),  

(III) Stand variables such as Stand basal area, Mean stand height,..etc 

Table ‎1-3:Most commonly variables used in individual-tree moertality equation representing tree, competition 

and stand level variables 

Tree Variables 

Variables Reference 

Diameter at breast height 

 Monserud, 1976; Hamilton and Edwards, 1976; Wykoff et al.,1982; Hamilton,    

1986; Wykoff, 1986; Hann and Wang, 1990; Crow and Hicks, 1990; Vanclay, 

  1991; Dursky, 1997, Murphy and Graney, 1998; Monserud and Sterba, 1999; 

    Zhao et al., 2004; Bravo-Oviedo et al., 2006; Schröder et al., 2007 

Transformations of diameter 

at breast height 

 Wykoff et al., 1982; Hamilton, 1986; Monserud and Sterba, 1999; Palahi et    

  al., 2008 

Tree height   Hamilton and Edwards, 1976; Dursky, 1997; Schröder et al., 2007 

Diameter increment and basal 

area increment 

  Monserud, 1976; Hamilton, 1986; Wykoff, 1986; Yao et al., 2001; Pretzsch et 

al., 2002; Montero et al., 2002; Schröder et al., 2007 

Predicted diameter increment/ 

basal area increment) divided 

by diameter at breast height 

 Hamilton, 1986; Pretzsch et al., 2002 

Crown ratio  Hann and Wang, 1990; Monserud and Sterba, 1999 

Tree diameter at breast height 

and tree height ratio 
 Schröder et al., 2007 

Competition 

Basal area of trees larger than 

the subject tree 

  Hann and Wang, 1990; Murphy and Graney, 1998; Monserud and Sterba, 

1999; Montero et al., 2002; Palahi and Grau, 2003 

Tree diameter and quadratic 

mean diameter ratio 
 Hamilton, 1986; Wykoff, 1986; Misir et al., 2006 

Tree height and mean stand 

height ratio 
 Avila and Burkhart,1992 

Ratio of the height of the 

subject tree and the top stand 

height 

 Palahi and Grau, 2003 

Stand Variable 

Stand basal area 
 Zhao et al., 2004; Bravo-Oviedo et al., 2006; Misir et al., 2006; Palahi et al.,  
 2008 

Site index  Murphy and Graney, 1998; Bravo-Oviedo et al., 2006; Misir et al., 2006 

Mean stand age  Jurkonis, 2004; Juknys et al., 2006 

Mean stand height  Lynch et al., 1998 

 

To conclude: There are two kinds of natural mortality: Regular and Irregular mortality, two 

approaches are applied statistically to model the mortality: deterministic models are applied to 
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model mortality at stand level and stochastic models at individual-tree level.  Tree and stand 

level variables are used in building the mortality equation representing the tree size and com-

petition. 

1.2.6 Individual-tree crown ratio  

Crown ratio, which is the ratio of live crown length to the total height of the tree, is an im-

portant variable that is commonly involved in growth and yield models used as decision-

support tools in forest management (Daniels and Burkhart, 1975; Monserud, 1975; Shifley, 

1987; Wykoff, 1990; Hasenauer, 1994). It is an important measure of tree vigor (Assmann, 

1970; Spurr and Barnes, 1980; Valentine et al., 1994). Some researchers referred that crown 

ratio can be considered an indicator for competition and probability of survival. Crown 

measures are also important for evaluating the wood quality of tree (Abetz and Unfried, 

1983), and it is an advantage to the management of many non-timber resources including 

wildlife habitat and recreation (Mcgaughey, 1997). Dense and large crowns are correlated 

with actual and predicted growth rates (Kozlowski et al., 1991). Predictions of tree crown 

ratio have been based on the allometric relationship between stand and tree variables, and 

finding this relationship allows forest managers to accurately predict tree crown ratio in future 

with less possible effort (Temesgen et al., 2005). Many researchers have developed crown 

ratio equations based on logistic functions (Hasenauer and Monserud, 1996; Temesgen et al., 

2005), an exponential function (Dyer and Burkhart, 1987) or Chapman Richard function (Soa-

res and Tome, 2007; Adesoye and Oluwadare, 2008). Most of these models were developed 

for either even aged single species stands or multi-species stands comprising trees of different 

ages. 

1.2.7 Height-diameter relations  

The height-diameter relationship is commonly used in forest inventories to estimate the 

heights of trees for which only diameter was measured. The height-diameter relationship is a 

common precursor when using inventory and sample plot data to calculate volume and other 

stand attributes, e.g. site index, growth, yield and biomass. 

A height-diameter relationship is obtained by the relationship between tree heights and their 

corresponding diameters. Diameter at breast height is measured easily and accurately for all  

trees in a stand, whereas tree height is relatively difficult, time-consuming and costly, and 

these factors often result in inaccurate measurements (Sharma and Parton, 2007).  

This relationship can be expressed in mathematical functions. Most papers use generalized 

diameter-height relations; and at least 30 different functions have been used to describe the 
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relationship. Korsun (1935), Michailow (1943), Assmann (1943), and Freese (1964) have 

developed some of the more important functions.  

Every forest stand has its own height curve. The relationship between tree diameter and tree 

height differs among stands, related to site index, stand density, tree species, tree age, stand  

structure, competition and time (Curtis, 1967; Pretzsch, 2009). Because of these factors, 

height-diameter relationships are often not easy to describe (Oliver and Larson, 1990; 

Temesgen and von Gadow, 2004), so the best alternative is to develop a generalized height-

diameter relationship, which includes stand variables as predictors such as dominant height, 

quadratic mean diameter, dominant diameter, number of trees per hectare, stand basal area, 

etc. (Temesgen and von Gadow, 2004; Sharma and Parton, 2007). 

1.2.8  Model evaluation  

After shedding the light on the factors influencing on growth and components of the individu-

al-tree growth model, it is necessary to discuss some points related to the model evaluation. 

Model evaluation (or model validation) is an important part of forest growth modeling that 

answers how closely the model's behavior fits the real world, and to what extent logically and 

biologically the model agrees with actual forest growth (Zhao, 1999). While evaluation and 

validation are often used synonymously in forest growth modeling, Pretzsch (2009) deeply 

explained the difference between the two terms. Pretzsch (2009) considered the evaluation to 

mean checking the efficiency and success of a model being tested; it includes qualitative as 

well as quantitative examinations of the model (Soares et al., 1995). Similarly, validation is 

one aspect of evaluation, which is defined only by quantitative comparisons of model simula-

tions to actual growth behavior (Pretzsch, 2009).  

The qualitative evaluation examines the biological aspects of every single module and the 

logical structure of the model as a whole, and whether it is compatible with current under-

standing of biological processes and the expected response of a forest to various silvicultural 

treatments (Vanclay, 1994; Zhao, 1999; Gadow and Hui, 1999). In other words, the model 

properties should be examined for consistency. Some researchers included other aspects; for 

example, the estimated parameter values and signs should agree with the normal understand-

ing of growth processes, approaches to parameter estimation should comply with the theories 

of statistical assumptions and predict sensible responses to management actions  

 (Vanclay, 1994). After the qualitative evaluation is carried out, models can be evaluated 

quantitatively.  

Quantitative examination should include a characterization of errors in terms of their magni-

tude and the distribution of residuals against the predictions, observations or other variables in 
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the model by using graphical analysis (Vanclay, 1994; Soares et al., 1995; Zhao, 1999; 

Gadow and Hui, 1999), in addition to other tests for the model ,e.g.  bias, precision, root mean 

square error. Furthermore, there is a sensitivity analysis, which aims to investigate 

how input factors affect the outputs of the model (i.e., usually output), in other words, the 

sensitivity analysis explores how sensitive a model‟s outputs are to changes in parameter val-

ues (Railsback and Grimm, 2012). 

Sensitivity analysis procedures can be categorized as local sensitivity and global sensitivity 

analysis depending upon how parameter values are perturbed. Local sensitivity analysis per-

turbs one parameter at a time in a small range (Railsback and Grimm, 2012), while Global 

sensitivity analysis perturbs multiple parameters simultaneously over a large range (Railsback 

and Grimm, 2012). 

1.2.9 Thinning treatment 

The developed forest growth model can be applied effectively in several aspects of forest 

management. for example, to simulate the effect of different scenarios of thinning regimes on 

stand development, and this is what will be worked on in this thesis, therefore it is important 

to shed light on thinning treatments. 

A thinning could be defined as a cultural treatment made to enhance forest health, to improve 

the growing space for production of maximum volume and stand quality by reducing the 

competition, and to provide an intermediate financial return (Evans and Turnbull, 2004). If 

the stand remains un-thinned, the growth rate slows down, stagnation develops, and many 

dead trees eventually occur.  

Thinning intensity includes various correlated aspects, namely: The timing of the first thin-

ning, the proportion of trees removed, how frequently it is done and the timing of the last 

thinning (Piper, 2008). Thinning has different impacts on the mean height and diameter of the 

residual stand.  

Four distinct methods of thinning were introduced in forestry literature:  

1) Thinning from above (Crown thinning) is a commercial thinning which removes dom-

inant and co-dominant trees from the canopy to favor residual trees in the same classes 

(Graham et al,1999).  

2) Selection thinning removes dominant height trees to favor the smallest trees (Graham 

et al,1999). 

3) Thinning from below is a noncommercial thinning which was applied by cutting on a 

diameter basis, removing the smallest sizes, leaving large trees (Marquis and Ernst, 

1991).  
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4) Free thinning releases selected trees while not treating the rest of the stand. 

Regarding with the thinning of Pinus brutia forests, it is often carried out as an operational 

practice of plantation management (Carus and Catal, 2009) using different methods. In Syria 

and Turkey and where even-aged stands exist, thinning from below are used (Boydak, 2004). 

Selective cutting or thinning from above with the aim of harvesting the dominant and most 

profitable trees (Pantelas, 1986) are used in Cyprus and Lebanon. 

1.3  Individual-based simulation tools  

Individual-based modeling (IBMs) (in social science also referred to as Agent-based models) , 

has gained increasing attention in the last two decades. IBMs are “models where individuals 

or agents are described as unique and autonomous entities that usually interact with each other 

and their environment locally” (Railsback and Grimm, 2012). IBMs are applied when one or 

more of the following single-level aspects are considered necessary in order to explain the 

system-level behavior: heterogeneity among individuals, local interactions, and adaptive be-

havior based on decision making (Grimm, 2008). 

IBMs have become a substantial tool in social, ecological and environmental sciences (Gil-

bert, 2007; Thiele et al., 2011; Railsback and Grimm, 2012), and “could augment traditional 

deductive and inductive reasoning as discovery methods” (Axelrod, 1997). 

IBMs have a long history in forest modeling where an understanding the development and 

function of forests is a significant research challenge. They have proven to be an effective 

approach toward understanding key factors that influence or control the long-term behavior of 

a system of interest owing to “new software tailored to IBM analysis and increases in compu-

ting power” (Grimm and Railsback, 2005). 

Despite the excellent empirical studies related forest which have been carried out, for example 

in tree growth, climate, and vegetation composition over time, it is still limited to much short-

er time intervals, which makes it difficult to predict forest development and to explain which 

causes resulted in this development. On the other hand, long-term monitoring of forests is 

labor intensive and requires great commitment over long periods of time from individuals and 

institutions (Botkin, 1993). To address these points and answer different types of forest re-

search questions, forest researchers often turned to simulation modeling (Bugmann, 2001) 

which is a useful approach to address the limitations of empirical models, and an important  

tool allows to understand the dynamics of forests and address different types of complex for-

est research questions. 

A wide variety of modeling frameworks has been developed in forestry literature based on 

individuals that represent changes in forest structure and composition. Most models can be 
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readily classified into some of general model classes for example empirical, gap model and 

process-based (Taylor et al. 2009). Table 1-4 provides a few examples of models in each of 

the major model classes. 

Table ‎1-4: Examples of the models used in forestry in each of the major model classes 

Model                                                                          Class Relevant citations 

BWINpro Empirical Nagel (2003) 
BWINPro-S Empirical Schröder ( 2004) 

SILVA Empirical Pretzsch (2002) 

CACTOS Empirical Wensel et al 1986 

JABOWA Gap model Botkin et al. (1972) 

FORET Gap model Shugart and West (1977) 

FORMIND Gap model Armstrong et al ( 2018) 

FORTNITE Gap model Aber et al (1978) 

SOEL Gap model Kellner and Swihart (2017) 

ZELIG Gap model Urban ( 1990) 

BALANCE Process-based Grote and Pretzsch (2002) 

SORTIE Process-based Pacala et al ( 1996) 

 

Understanding the development and function of forests is a significant research challenge, and 

this motivated the researchers to develop a  wide variety of simulation models has been de-

veloped in forestry literature. Simulation experiments with forest models address the limita-

tions of empirical models, and the tool allows to understand the dynamics of forests and ad-

dress different types of complex forest research questions. 

In the following sub-section, thinning treatments which are considered one of the most im-

portant applications of developing the individual-tree growth model will be discussed. 

1.4  Objective and research questions of this thesis 

For making sustainable forest management plans, forest managers require much information 

about tree growth, mortality and how these processes are affected by alternative silviculture 

treatments on the short and long term. To clear these issues, this study presents a new forest 

growth model based on individual-trees using real time series in the Mediterranean region. In 

this region, information on height increment is scarce, none of the existing publications has 

addressed the crown ratio. Studies that address diameter increment based on real time series 

data are virtually nonexistent. Only one paper developed an individual-tree mortality equation 

for Pinus brutia in the Mediterranean Sea region (Palahi, 2008 b). In terms of estimating the 

site productivity, this thesis presents for the first time a site index equation based on data 

comes from long-term observation (Amaro et al., 1998). 

So the objective of the study is to develop a distance-independent individual-tree growth 

model based on real time series of even-aged Pinus brutia stands in the coastal region of Syria 
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designed to simulate management regimes in these forests. Thereby, such a model would sup-

port decision makers and foresters to improve forest management in Syria. 

The research questions of this study are categorized in three groups of questions, related to 

growth, mortality and the simulation of tree growth.  

Growth:  

- How does the growth of Pinus brutia (diameter, height, crown ratio) develop over 

time under different site conditions?  

- How does competition affect growth of Pinus brutia?  

Mortality: 

- How does the probability of mortality develop over time and how does it respond 

to competition, different densities and different site indices?  

Simulation of the individual-tree growth model is necessary to overcome the limitation of 

empirical models to predict the general behavior in the medium and long-term, and the diffi-

culty of simulating the effects of alternative management practices in the field. It allows de-

veloping long-term strategies for forest management and ensuring resource sustainability in 

Syria by creation of scenarios, compare outcomes, test competing alternatives and find forest 

management options that best meet the objectives of the decision makers for even-aged stand 

dynamics. 

In addition to investigating and evaluating the behavior of the individual-tree growth mortali-

ty dynamics under different conditions (site characteristics, competition), the simulation mod-

el allows us to address the following questions: 

- Stochastic or deterministic single-tree models: is there any difference in growth 

predictions for the same single-tree model and the same initial conditions? 

- What is the optimal rotation age when wood production is maximized in the ab-

sence of thinning in stands under different site index values?  

- What is the impact of thinning on tree growth? What are the appropriate timing, 

intensity, and type of thinning of Pinus brutia stands?  
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2 MATERIAL AND METHODS 

This main section of the present work comprises the methodological approach through which 

the points formulated in the objective are to be fulfilled. In addition to sections that help to 

understand, the main focus is on the methodology for data collection and analysis that is fol-

lowed by data modeling of the growth for  Pinus brutia. 

2.1 Study area and sites 

This study is based on data collected from study sites in Syria, which geographically belongs 

to the latitude 32°,61 - 37°,07 'N and longitude 35°,79 - 40°,91 'E. The coastal region, where 

the study area is situated, is located in west of Syria on Mediterranean Sea (Figure 2-1 A, B). 

The region can be viewed as a major source of natural resource, as well as “transitional” in 

character, being the link between the Mediterranean Sea with arid zones of the interior Syria 

and the Arab world. The coastal region comprises three regions: the coastal plains, covering 

the seashore up to 300 m height, the Coastal Mountains, and the Baer and Bassit Mountains.  

Administratively, the coastal region is divided into two provinces: Latakia, which occupies 

the northern part of the coastal region with 2,300 km
2
 total area, and Tartous, which is in the 

south, with area of 1,900 km
2
. 

The coastal region has 190 km of coastline and covers 2% of the national territory and con-

tributes about 11% to the Gross Domestic Product (Annual agricultural static‟s abstract, 

2003). In general, the coastal region accounts for 38.7% of the Syrian forests, mainly conifer-

ous forests. 
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Figure 2-1: A: Distribution of coniferous forests in the coastal region; B: Major regions and sub-regions of Syria, the coastal region is located in the west of Syria 
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With regard to climate, the Mediterranean climate dominates the entire study area. The coastal 

areas have a mild climate, with four distinct seasons in the year.  

Characterizing the rainfall pattern in this region is the irregular distribution of precipitation 

over the year. The annual precipitation in the coastal region (Tartous and Latakia) varied be-

tween minimum 600 mm and 1200 mm maximum  during the past 10 years (Figure 2-2), 

(Figure 2-3). The annual dry period is usually less than four months (between June and Octo-

ber).  

 

 

Figure ‎2-2: Rainfall in Tartous and Latakia During the past 10 years (Drought and Natural Disasters Fund Direc-

torate.,2016) 

 

 

Figure ‎2-3: Generalized map of the agro-ecological zones of Syria (Annual agricultural static‟s abstract, 2003). 

When going from rainfall to temperature in the coastal region, it is easily noticed that the hot-

test month is August and the coldest month is January (Drought and Natural Disasters Fund 

Directorate, 2016). The mean annual temperature ranges between 14 and 16 ºC at the top of 
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coastal mountains chain. The mean annual temperature is affected by the altitude, and de-

creases gradually as altitude increases: ''Banias 20°C (7 m), Safita 17.8°C (350 m), Mashta 

Al-Holw 15.4°C (500 m) Qadmous 14.3°C (750 m) and Slenfah 12.6°C (1100 m) '' (Annual 

agricultural static‟s abstract, 2003). The mean temperature during the past 10 years was 19.8 

for Tartous and 19.7 for Latakia (Figure 2-4) (Drought and Natural Disasters Fund Direc-

torate, 2016).  

Snow falls over the region where the altitude exceeds 1100 m above sea level, and the part 

with an altitude of 800-1100 m above sea level are subject to both rain and snow. 

 

 

Figure ‎2-4: The mean temperature during the past 10 years for Latakia and Tartous (Drought and Natural Disas-

ters Fund Directorate, 2016). 

According to the topographical map of Syria (Figure 2-5), the elevation in the coastal region 

ranges between 0 – 1600 m. The coastal mountains are parallel to the coast with an altitude 

ranging from 1100 – 1600 m; elevation from 0 to 200 m is observed in coastal plains, which 

mainly are along the Mediterranean coast. The other elevations are dispersed between the 

coastal mountains and the coastal plains. 

With taking all these variations above into account, 61 plots were established for the first time 

in 2008 by the Department of forestry of the Syrian Ministry of Agriculture in the coastal re-

gion, where most Pinus brutia forests of the country exist (Figure 2-5).  

These plots were selected in this study so as to capture the whole range of variation across 

sites, stand ages and stand density. These plots were re-measured between March - May 2016. 

All plots were of circular shape, except for five plots which were rectangular 12, 19, 25, 44, 

and 49. The plots area varied from 69.99 m
2
 to 1963.49 m

2
; this variation has stemmed from 

the stand density, so that about 50 –75 trees were measured in most plots. All trees in each 

plot were numbered in strictly clock-wise direction to allow for easy recognition in future 

measurements.  
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The study used 51 plots to represent the analysis data (grey circles) and 10 plots to represent 

the validation data (red circles) (Figure 2-5).  
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2.2 General research framework  

This thesis combines inventory data of forest measurements, empirical growth, and yield 

modeling and computer simulation techniques in the realization of study objectives (Figure 2-

6).  

The first step is collecting the data from the field, and then the creation and subsequent evalu-

ation of inventory data to be used for modelling. For this purpose, the database consists of two 

parts: modeling (to construct the individual-tree growth model) and validation data (to evalu-

ate the individual-tree growth model) (Section 2.3). Then, analyzing the data was to fit a plot-

wise equation for tree height (Height curves), crown diameter (Crown diameter curves) and 

crown length (Crown length curves) (Section 2.4). This step is necessary to model missing 

data values, before moving to calculate tree and stand variables. By implementing this step, 

the data preparation will be complete for further tasks. The next step was studying the factors 

that affect individual-tree growth: competition and site productivity represented by the site 

index. 

The competition will be analyzed by using a set of distance-dependent and independent com-

petition indices (Section 2.5.1). The best one of distance-independent competition indices will 

be selected for further modelling.   

Site index, which is a measure of potential site productivity, will be developed by testing eight 

biological growth equations (Section 2.5.2). The candidate equations are divided into two 

equal groups: 1) First group includes four equations based on the differential equations, and 2) 

the other group is based on the well-known height-age equations.  

The fourth research step concerns the modelling of individual-tree growth, which consists of 

two processes: the growth and mortality (Section 2.6).  

The growth includes four equations:  

• The diameter at breast height increment  

• Tree height increment: Linearized and potential-modifier height increment 

• Crown ratio   

• Generalized height-diameter relationship 

The common statistical approaches will be used to describe theses equations in a compatible 

and appropriate way at each step. 

The fifth research task is to implement the simulation of the developed individual-tree growth 

model in NETLOGO program (Section 2.7). 

The last task will be evaluating the simulation model by applying the validation data, and by 

implementing the sensitivity analysis (Section 2.8). 
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Figure ‎2-6: Overall framework showing the steps of research starting from the data inventory until the validation 

of growth and yield model. The terminal shape is used for start and end; The parallelogram is used for inventory 

data; The rectangle is used for the processes. 
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2.3 Data collection 

2.3.1 Tree level variables  

 The study measured the data for the first time in 2008. The procedure for remeasurements 

was carried out for the second time in 2016 and it included two steps:  

 For each tree  

- Status of tree (live or dead)  

- Diameter at breast height ( 1.3), which was measured by using circumference tape.  

For each plot  

The study measured the tree height (h), height to crown base and crown diameter (CD) only 

for sample trees within each plot. It counted the trees in clock-wise direction and selected 

each 6th or 7th tree in the plot (depending on the tree density of the plot) as a sample tree. 

Each plot had from 10 to 11 sample trees, i.e. 663 sample trees for all plots (Modelling and 

validation). This sampling procedure followed a common approach in forestry, which is 

called systematic sampling. 

During the period between two inventories 2008 and 2016, some sample trees had died, per-

haps because of competition or old age where no evidence for other reasons was recorded, for 

example cutting, lightening catastrophic wildfires, insect outbreaks, etc.  In this case, the 

study selected the next standing tree on the list as the sample tree.  

The study measured the tree height (h) and height-to-crown base by using Haglöf Electronic 

Clinometer (Figure 2-7 A). Total tree height is defined to be the perpendicular distance be-

tween the ground level and the level of the top of a tree. The base of the live crown is defined 

as the point of insertion of the lowest live branch in at least three of the four horizontal quad-

rants defined around the stem of the tree (Hasenauer and Monserud, 1996). 

The study measured crown diameter (CD) by recording the two crown diameter by tape 

measure only for sample trees; one being the horizontal diameter of the axis of the crown 

which passes through the center of the tree and the second being perpendicular to the first 

(Figure 2-7 B). The arithmetic mean crown diameter was calculated from these two field 

measurements to the nearest 0.01 centimeter and averaged. 

It is worthy to mention that the study measured the diameter at breast height and tree heights 

for both inventories while crown measurements were measured only for second inventory. 

 



MATERIAL AND METHODS 

29 

 

 

Figure ‎2-7: A: tree height is defined as the vertical distance from ground level to the highest green point on the 

tree; B:  measuring the crown diameter, which is calculated as average of horizontal and perpendicular diameter 

2.3.2 Stand level variables  

 In 2008 inventory, the study recorded the stand age by following two steps:  

(1) By the Syrian ministry of agriculture records; (2) After the plots were selected, the study 

measured the ages of five dominant trees in each plot by using Haglöf increment borer, where 

the teamwork took the samples at stump height of the tree trunk and counted the rings in the 

core sample, as the study calculated the stand age for the last inventory 2016 by adding eight 

years (Figure 2-8). 

 

 

Figure ‎2-8: Cumulative Frequency of stands age measured in 2008 for brutia pine in study area 

The teamwork in the field recorded the additional following variables in each plot: altitude, 

slope, aspect, parent rock type (each type was coded), and soil depth (five measurements in 

different parts of the plot, one in the plot center and four around it) (Table 2-3).  
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Table ‎2-1: Characteristics of plots used in the modeling (shown first 6 plots) (See appendix 1 for all plots)and 

validation plots 

Plot 
Size  

m2 

Age in years 

2008 

Elevation 

 m 

Aspect 

degree 

Slope 

     % 

Soil depth 

cm 

1 706.8 54 375 330 45 44.4 

2 452.3 66 548 330 30 23.4 

3 1963.4 41 454 180 11 26.8 
4 907.9 40 475 180 11 26.2 

5 907.9 39 485 210 5 30 

6 804.2 25 934.2 225 10 44.2 

Validation plots 

14 201     45 561 120 15 34.6 

15 314.1     40 582 60 18 38.6 

30 804.2     93 643 330 10 21.8 

40 380.3     34 851 160 9 44.6 

46 380.3     33 47 275 3 14.8 

59 706.5     102 195.9 170 35 23.8 

61 452.8     98 801 245 25 37.8 

62 69.9     37 758 170 21 48 

63 452.8     39 743 60 15 31.6 
64 452.8     36 487 200 30 29.2 

                Where: Size: Size of plot, Age: stand age 

2.4 Data preparation 

2.4.1 Height, crown diameter and crown length curves 

 Height curves 

In all plots, the study took the measurement of tree height (h) only for sample trees (Section 

2.3.1). The study used the measured heights and diameters at breast height of sample trees to 

estimate the height of other un-measured trees in the plot.  

For this purpose, the formula proposed by Michailow equation was applied (Michailow, 

1943)  

                                                              
  
    

                                                               (1) 

 h               =    Tree height in m 

d1.3                  =   Tree diameter at the breast height in cm 

a0 , a1            =    Regression coefficients 

e                =     Euler's number  

As Van Laar and Akça (2007) and Yuancai and Parresol (2001) have suggested, the fitted 

curves should satisfy specific criteria. These criteria include (1) monotonic increment, which  

means that height increases as diameter increases; (2) inflection point: the point where the 

curve changes its direction; and (3) asymptote which means that when the diameter goes to 

infinity. Additionally, height curves must be plausible, steadily angling upward to the right of 

the Y-axis and becoming flatter; the study investigated this issue in detail.  
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Sometimes, due to measurement errors, curves do cross each other. To solve this problem, 

and in order to smooth height curves, the tree height-diameter ratio was found and all outliers 

were determined and eliminated from data of some plots. 

 Crown diameter curves  

In order to calculate the crown competition factor (CCF), which is used in this study (Section 

2.3.1), the missing crown diameter values were determined. As height, the measurement of 

crown diameter (CD) was only taken for sample trees (Section 2.3.1). In each plot, sample 

trees were used to calculate the crown diameter of other trees, which were not measured by 

using nonlinear regression equations. 

 Crown length curves  

Crown length (cl) is calculated as a difference between tree height and height to crown base. 

The formula presented in Equation 2 completes the crown length values for the un-measured 

trees.  

                                                          ( )                                                                  (2) 

Then, crown ratio is calculated as: 

                                                     
  

 
                                                                                          (3) 

cl = crown length (m)  

h = tree height (m) 

2.4.2  Calculation of tree variables 

 Tree height for the un-measured trees (h) 

After fitting Michailow equation for each plot in both inventories based on measured heights 

and diameters, height for each tree was calculated as shown in Equation 1. 

 Tree basal area (ba) 

The basal area of a tree is defined as the cross-sectional area (usually in m
2
) of a single tree at 

breast height (Figure 2-9). 

 

Figure ‎2-9: Tree basal area 

Tree basal area 
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Basal area is useful for making stand comparisons and a guide or indicator of thinning timing 

and intensity. It was calculated as follows (Husch et al, 2003 ; Pretzsch, 2009): 

                                                  (
    

 
   )⁄

 
                                                                    (4) 

ba   = tree basal area(m2) 

d1.3 = Diameter at breast height (cm) 

    = mathematical constant (Pi) 

 Form factor (𝑓1.3)  

Following an application of the Michailow equation and tree height calculation, the tree form 

factor was calculated, as required to calculate tree volume. 

Form factor in this study was calculated using the following equation developed by Ali and 

Shater (2014)            

             𝑓1.3     =    489.71 /  (114.05 +  d1.3)  +  4.31 /  (    
 ) - 3.9 - d1.3   + 1.023   d1.3 + 0.138 /  (ln (d1.3    

(  )))                                                                                                                                                                     (5) 

𝑓1.3   =   Form factor at breast height 

d1.3    =  Tree diameter at breast height (cm)                   

h      =   Tree Height (m) 

 

 Tree volume (𝑣i)  

It was calculated by using the following equation (Husch et al, 2003 ; Pretzsch, 2009):  

                                                 
      

        

     
                                                                   (6) 

vi     =     Tree stem volume (m3)                                  

 h      =    Tree Height (m) 

f1.3     =     Form factor, h: Tree Height (m) 

 Tree periodic mean annual diameter increment (I 1.3): It was obtained by the differ-

ence between two successive diameters at breast height measurements (2008 and 

2016) (Figure 2-10). 



MATERIAL AND METHODS 

33 

 

 

Figure ‎2-10: Measuring the diameter increment 

                                                 
    ( )     (   )

 
                                                             (7) 

I 1.3                       =       Periodic mean annual tree diameter increment (cm) 

 1.3(t)              =       Tree diameter at breast height in current inventory (cm)  

  1.3 (t-p)         =       Tree diameter at breast height in previous inventory (cm)  

p                     =        The length of period between inventories (years)  

 

 Periodic mean annual tree height increment (Ih) 

It was obtained by the difference between two successive height measurements (2008 and 

2016) (Figure 2-11). 

 

 

Figure ‎2-11:  Measuring tree height increment between two inventories, the period (p) in this study 8 years, h = 

tree height; t = age 

 

                                                   
 ( )  (   )

 
                                                                      (8) 

Ih              =       Periodic mean annual tree height increment (m) 

h (t)            =     Tree height in current inventory (m)  

h (t-p)        =      Tree height in previous inventory (m) 

 p               =      The length of period between inventories (years)  
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2.4.3 Calculation of stand level variables  

In most analyses of forest inventory data, measurements are usually summarized and ex-

pressed on per unit area basis. The unit used in this study is hectare. For this purpose, the ratio 

between one hectare (10000 m
2
) and the actual plot size was calculated to generate a conver-

sion factor. 

                                                     
     

 
                                                                                 (9) 

A    = Plot size (m2) 

CF = Conversion factor  

The thesis calculated all stand level variables (basal area, volume, etc.) per hectare (Table 

2.2). 

In each plot where dead trees were recorded, the following variables were calculated: 

The number of dead trees (removed) per hectare (Ndead), mean height of dead trees in each 

stand (H dead), quadratic mean diameter of dead trees in each stand (Dq dead), stand basal area 

of dead trees in each stand (BAdead) and stand volume of dead trees in each stand (Vdead) 

(Pretzsch, 2009; Linkevičius, 2014). 

The same equations, used for calculating N, H, Dq, BA, V (Tabl 2-2) were applied to calcu-

late these variables for dead trees (removed). 
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Table ‎2-2: Calculated stand variables in the study 

Stand Variable Unit Description Equation Reference 

Number of trees 

per hectare (N) 

 

Tree.ha-1 
It is an appropriate term 

to describe stand density 

in stands 

       

(Husch et al, 2003 ; 

Pretzsch, 2009) 

 

Stand basal area 

(BA) 

 

m2.ha-1 

The stand basal area is 

cross-sectional area of all 

stems in a stand meas-

ured at breast height 

      
 ∑      

  
   

 
 

 

Stand volume 

(V) 

 

m3.ha-1 

It is sum of all trees vol-

umes in a stand and 

measured with cubic 

meter per hectare 

  
∑ 𝑣 
 
 

 
 

 

Quadratic mean 

diameter (Dq) 
cm 

It is the measure of aver-
age tree diameter con-

ventionally used in for-

estry, rather than arith-

metic mean diameter. 

   √
∑      

  
 

 
 

 

Number of top 

trees (n100) 
Tree  

           
 

Top basal area 

per hectare 

(G100) 

m2.ha-1 
The basal area of the 100 

thickest trees per hectare. 

     
 

            
 ∑     

 

      

   

 

 

Stand top diam-

eter (D100) 
 

cm 
The diameter of the 100 

thickest trees per hectare. 

     √
 

 
     

 

      

 

Mean stand 

height(H) 

m It is useful target variable 

for the early analysis and 

evaluation of silvicultural 

trials 

       
(
  
  
   ) 

 

(Michailow, 1943) Top stand 

height(H100) 

m Top height is less affect-

ed to thinning. it is  

defines as mean height of 

the biggest trees per 

hectare 

          
(
  
    

   ) 

 

N             =        Number of trees per hectare                      V      =    Stand volume (m 3. ha-1) 

vi             =       Tree stem volume (m3)                             n        =    Number of trees per plot 

A             =        Plot size in m2                                         CF     =    Conversion factor  

BA          =        Stand basal area in (m2. ha-1)                    Dq     =    Quadratic mean diameter (cm) 

D100            =         Top stand diameter (cm)                         d1.3       =     Diameter at breast height (cm) 
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G100             =         Top basal area per hectare (m2.ha-1)                 =     Mathematical constant (Pi) 

n100         =         Top trees per hectare                           H100   =     Top stand height(m) 

H            =          Mean stand height (m)                                       

 

Finally, the study described the total stand, which was calculated as the sum of growing and 

dead trees, using gross volume yield (GY), periodic annual volume increment (CAI) and the 

mean annual volume increment (MAI) (Table 2-3). 

Table ‎2-3: Variables of total stand(remaining and removed trees) 

GY           =         Gross volume yield in the current inventory (m 3.ha-1) 

Vdead             =         Stand volume of dead trees in each stand (m3 ha-1) 

V (t)         =         Volume of the growing stand in current inventory (m 3 ha-1) 

 V (t -p)       =         Volume of the growing stand in previous inventory (m 3 ha-1) 

 p             =         The time between inventories in years; MAI: mean annual volume increment,  

CAI         =         Periodic annual volume increment (m 3.ha-1) 

2.5 Studying the factors that affect individual-tree growth 

2.5.1 Competition Analysis  

The research studied the impact of competition on basal area increment and height increment 

by using distance–independent and distance-dependent competition indices.  

Distance-independent competition indices included all trees in all plots while the distance-

dependent competition did not. 

For studying the distance-dependent competition, two main steps were carried out as follows:  

 Identifying the competitors 

 The study used the Fixed Radius Method (Hegyi, 1974; Mohammed and Röhle, 2011) by 

drawing a circle around the local tree j with a fixed radius and count those neighbors i = 1. . . 

n as competitors (Figure 2-12). Fixed radius in this study is half-height of the local tree,   1.3 

and height of local trees were measured (Appendix 2).  

Variable Unit Equation Reference 
Gross yield (GY) m3/ha     (𝑡)        

(Pretzsch, 2009; 
Linkevičius, 2014) 

Periodic annual volume incre-

ment (CAI) 
m3/ha/year     

 ( )   (   )   (    )

 
 

 

Mean annual volume incre-

ment(MAI) 
m3/ha/year MAI=
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Figure ‎2-12: The studying of competition by fixed radius method 

 Tree mapping 

Position of each competing tree was measured by the distance and the azimuth from the local 

tree. The study measured the distance with tape and the azimuth with compass (Appendix 3). 

From this data, tree coordinates x-coord and y-coord were established in a way that allows to 

draw the positions of competitor trees in each plot by employing the following equations:: 

                                𝑦- 𝑜𝑜𝑟 = 𝑖𝑠𝑡× 𝑜𝑠𝜃                                                                          (10) 

                               𝑥- 𝑜𝑜𝑟 = 𝑖𝑠𝑡×𝑠𝑖 𝜃                                                                            (11) 

dist: distance from the center of plot to target tree in m; θ=azimuth of the tree  

Then, several widely used distance-dependent competition indices and the distance independ-

ent competition indices were calculated and compared based on their relationship with an in-

dividual-tree growth, in particular, diameter increment and height increment. The group of 

distance-independent competition indices included the following indices: Hegyi 1974 which 

was developed in Canada for pine stands. It uses diameter at breast height. Crown Competi-

tion Factor (CCF) of Krajicek et al. (1961). Asymmetric or one-sided competition can be rep-

resented by including only trees larger than the subject tree when computing the index. Basal 

area of trees larger than the subject tree (BAL), the index developed by Wykoff et al (1982) 

basal area of trees larger than the subject tree (BAL index) and modified BAL index which is 

the basal area of trees larger than the  subject tree divided by diameter at breast height repre-

sent this type, and the ratio of BAL and basal area of the stand (BAL/BA) (Jutras et al., 2003; 

Weiskittel, 2011). 

The study introduced the BAL index by Wykoff et al. (1982). It is commonly used as dis-

tance-independent competition measure in individual-tree growth models (Wykoff, 1990; 

Teck and Hilt, 1991; Quicke et al., 1994; Monserud and Sterba, 1996). BAL is an effective 

measure that simultaneously considers the relative dominance of a tree and stand density. It is 
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referred to as overtopping basal area, suggesting the nature of a kind of competition index, 

and directly related to the available light, since with increasing BAL, there is less light availa-

ble for smaller trees. BAL describes a tree‟s competition status more accurately than other 

distance independent competition indices (Wykoff, 1990). BAL for the largest tree is 0 and 

for all smallest tree equals the stand basal area minus the  basal area of the subject tree. The 

index developed by Schröder and Gadow 1999 (  *
    

  
+    ), stand density index (SDI) 

developed by Reineke (1933) that describes the relative density in even-aged stands, and it is 

proxy for the availability of space for water and soil nutrients within stand (Lee, 1971; Peet 

and Christensen, 1987), and the ratio of the height of subject tree to the dominant height of the 

sample plot (h/H100) (Avila and Burkhart, 1992; Zhang et al., 1997) and stand basal area (BA) 

(MA and Lei, 2015) (Table 2.4).      

Table ‎2-4: The tested distance-independent competition indices 

Index and Source Equation 

Hegyi (1974) 
 

∑
     
     

 

   

 

Crown Competition Factor (CCF) cited in 

Krajicek et al. (1961) 
∑(  

   
 

 
)  

 

   

 

BAL Wykoff et al (1982) ∑
           

 

 

 

 

 

Schröder and Gadow (1999) (  [
    
  

]   ) 

Reineke(1933) (SDI)                          

Cited in Hamilton,1986 BAL/d1.3i 

Cited in (Jutras et al., 2003) BAL/BA 

MA and Li (2015) BA 

          d1.3    =      Diameter at breast height                         A      =        Plot size (m
2
) 

          CD   =      Crown diameter (m)                                 RS   =       Relative spacing index of plot  

          BA   =       Basal area of the plot (m2 /ha)                  i      =       Subject tree 

          Dq    =     Quadratic mean diameter (cm)                   SDI   =      Stand density index       

          BAL =      Basal area of trees larger than the subject tree (m 2 /ha)   

          N    =        Number of Trees per ha                            j=competitor  

 

In terms of distance-dependent competition indices, several indices were tested (Ta-

ble2-5). Heygie (1974) index is relatively simple to compute the size-distance ratio index 

using diameter at breast height and between-tree distance. The study modified the Heygi in-
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dex 2 by Lee and Von Gadow (1997) where the same calculation can be made using tree basal 

area rather than diameter at breast height. Braath index is size-ratio competition index derived 

from the hypothesis that the competitive effect of a neighbor tree increases with increasing 

size and proximity (Tome and Burkhart, 1989). Martin and Ek (1984)‟index is size-ratio index 

uses the diameter at breast height for both the neighbor and the cored trees. Rouvinen and 

Kuuluvainen (1997) indices are also size-ratio indices but employ sums of subtended angles.  

They developed four indices. First one is the sum of horizontal angles originating from the 

cored tree center and spanning the diameter at breast height of each neighbor tree. The second 

one is the sum of the horizontal angles multiplied by the ratios of the diameters at breast 

height of the neighbor and the cored trees. The third one sums vertical angles taken from the 

cored tree‟s base to the slope-adjusted top of each neighbor tree. Similar to the second one, 

the fourth one incorporates the ratios of heights between the cored tree and its neighbors. 

Table ‎2-5:The tested distance-dependent competition indices 

Index and Source Equation 

Heygi (1974) 
∑

           
 𝑖𝑠𝑡    

 

   
                 

 

Heygi (1974) and cited in Piper (2008) 
∑

       
 𝑖𝑠𝑡    

 

   
                 

 

Martin adn Ek (1984) 
∑

  
  
     ((    𝑖𝑠𝑡  ) (     ))

 

   
                 

 

Braath (1980) ∑  

 

   

 (   𝑖𝑠𝑡  ) 

Rouvinen and Kuuluvainen (1997) ∑        (       𝑖𝑠𝑡  )
 

   
 

Rouvinen and Kuuluvainen (1997) ∑ (          )       (       𝑖𝑠𝑡  )
 

   
 

Rouvinen and Kuuluvainen (1997) ∑        (    𝑖𝑠𝑡  )
 

   
 

Rouvinen and Kuuluvainen (1997) ∑ (    ) 𝑟 𝑡   (    𝑖𝑠𝑡  )
 

   
 

         BAL      =      Cumulative basal area of larger trees   m2         j           =       Competitor 

         ba          =       Tree basal area  m2                                        i            =       Subject tree 

        d1.3             =       Diameter at breast height  cm                         h           = Tree height  m   

        distij      =        Horizontal distance from the ith neighbor tree to the cored tree (m) 

Then to refer the strength of competition on basal area and height increment, some steps were 

carried out: 

1)  The study aaplied the competition indices in each plot. 
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2)  The study constructed the relationship between basal area increment and d1.3 of the central 

trees. 

3)  The study calculated the ratio between the actual basal area increment and predicted basal 

area increment. This ratio is called the relative basal area increment. 

4) The correlation between all tested competition indices and relative basal area was calculat-

ed. 

5) The study conducted regression analysis between relative basal area increment and compe-

tition indices. So, the indices with the best performance are the best indices. 

The study applied the same procedure for height increment.  

Analysing the competition was carried out with R 3.4.0 (R Development Core Team, 2017). 

2.5.2 Developing the site index 

2.5.2.1  Fitting the site index equation  

  The study calculated top height in each plot as the height corresponding to the top diameter 

according to the height curve (Michailow, 1943) as shown in Table 1 above. If H100 (t) is the  

mean height of the dominant trees at stand has age (t), where dominant (top) tree is mean 

height of the 100 highest trees per ha (Assmann, 1970), the site index is then defined as domi-

nant height at a given age.  

The most important desirable characteristics of site index equations are: (1) a logical behavior 

(height should be zero at age zero and equal to site index at reference age), (2) a sound theo-

retical basis, (3) polymorphism, (4) asymptote (5) existence of an inflection point and (6) 

base-age invariance (Bailey and Clutter, 1974; Elfving and Kiviste, 1997; Goelz and Burk, 

1992). These requirements may not be achieved in some cases. 

The difference equation method was used to model the dominant height growth of Pinus bru-

tia forests (Borders et al, 1988). By definition, difference equations mean the discrete-time 

analogue type of differential equations. The use of difference equations is more appropriate 

when the data comes from long-term observation or stem-related data (Amaro et al., 1998).  

The difference equation method is based on the fact that observations of the same plot or 

dominant tree should belong to the same site index curve. The study developed a difference 

algebraic form of height-age relation (or differential equation), where H100 (t2) is expressed as 

a equation of the re-measurement age (t2), the initial age (t1) and the height at the initial meas-

urementH100 (t1). 

A total of 10 algebraic difference equations from those most commonly used in forest re-

search were selected for evaluation (Table 2-6). An algebraic difference approach has been 
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used since it shows better properties and performance than other approaches (Cieszewski, 

2002). 

The equations were classified into two groups depending on the approach used to derive 

them: (1) Equations from differential equations:  Amateis and Burkhart (1985), , McDill-

Amateis equations (McDill and Amateis, 1992), Sloboda equation (1971) (Von Gadow and 

Hui, 1999; Kändler and Cullmann, 2016 and Hein, 2003), (2) Equations from height-age 

equations: Korf (1939) (Kitikidou et al, 2011), Schumacher equation (Schumacher, 1939), 

Hosffeld equation (Bailey and Clutter,1974), Hossfeld I(Kiviste et al.,2002), Strand equation 

(Strand,1964), Korf I equation  and King-Prodam equation (Sharma,2013).  

 The study estimated the parameters using the Levenberg-Marquardt algorithm (Moré, 1977) 

in a nonlinear least square regression analysis. Then, the study fitted the difference equations 

using the non-linear least squares technique. After that, it was possible to estimate the site 

index and constructing site index curves. 

2.5.2.2 Selection of reference age for site index 

The implementation of the site index equation requires determining the reference age, which 

will result in reliable predictions of height at other ages (Stankova and Diéguez-Aranda, 

2012). The reference age should be close to the rotation age (Goelz and Burk1992). The refer-

ence age could be selected as young as possible, in order to help in earlier decision making of 

the silvicultural treatments to be applied to the stand (Diéguez-Aranda et al 2005). In order to 

address this consideration, different reference ages and their corresponding observed heights 

were used to estimate heights at other ages for each tree.  The predictions were compared with 

the observed heights, and finding the age which had the lowest relative error. The relative 

error in predictions (RE %) proposed by Diéguez-Aranda et al (2005) was calculated as fol-

lows: 

                            
√∑  ( 𝑖  ̂ )

  (   ) 
   

 ̅
                                                                           (12) 

Where:        =    Observed value                                                      𝑖                       

RE %      =      relative error coefficient            q  =  Number of observations 

 ̂             =    Fitted value                                 ̅      =    Average value of observations      
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Table ‎2-6: Algebraic difference equations used in the study 

Name Height-age equation Algebraic difference approach model and reference 

Korf (1939) 
            (   𝑡

  )⁄  

Solved by b1     (𝑡 )=   
    (  )

  

(    )⁄   

 

Schumacher (1939)           (
 

𝑡  
)     (𝑡 )         (𝑡 𝑡     (    (𝑡 )   ))⁄  

Hossfeld      
  

     𝑡
   

     (𝑡 )     

    (𝑡 )    
         (𝑡 )  𝑡 

   

  
𝑡 
       (    (𝑡 )    )
         (𝑡 )  𝑡 

   

 

Korf I 
            (   𝑡

  )⁄  

Solved by b2 

    (𝑡 )         (
   

𝑡 

   ( 
  

  (
    (  )
  

)
    (  )

) 

King-Prodan      
   

       
  

 solved by b2 

    (𝑡 )  
𝑡 
  

      (

𝑡 
  

    (𝑡 )
   

   𝑡 
  

)  (

𝑡 
  

    (𝑡 )
   

   𝑡 
  

)  𝑡 
  

 

Hossfeld I (Kiviste et al.,2002)      
  

            
 
 solved by b1 

    (𝑡 )  
𝑡 
 

   𝑡  (
𝑡 

    (𝑡 )
 
  
𝑡 
    (𝑡  𝑡 ))

 

Strand (1964)      (
𝑡

      𝑡
)   

    (𝑡 )  (
𝑡 

(𝑡  (    (𝑡 )
 
 
     ) (     𝑡 ))  𝑡  (      (𝑡  (    (𝑡 )

 
 
     ) (     𝑡 )))

)   

 

Name Differential equation Algebraic difference approach model and reference 

Amateis and Burkhart (1985) 

   (    )

 (
 
𝑡
)

      (    )       (    )   𝑡     (𝑡 )      (   (    (𝑡 ))  (
𝑡 
𝑡 
⁄ )

  
    (   (

 
𝑡 ⁄
  𝑡 ⁄

))) 

Sloboda (1971) 
     

 𝑡
    

    

𝑡  
    (

  

    
)     (𝑡 )     (

    (𝑡 )

  
) 
 
  
    

 (  
(    )   

(    )

 

McDill and Amateis (1992) 
     

 𝑡
 (  

    

  
)     

    

𝑡
)     (𝑡 )     (  (  

  

    (𝑡 )
)  (

𝑡 
𝑡 
⁄ )  ) 

 

    (𝑡 ) and     (𝑡 ) = dominant height (m) at age t1 and t2 (years) respectively; ln =natural logarithm b0, b1, b2 = parameters to be estimated 
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2.6 Individual-tree growth model 

After preparation the data and analyzing the factors that affect the growth, the study paved the 

way to develop the individual-trre growth model which consists of growth(diameter incre-

ment, height increment, crown ratio and generalized height-diameter relationship) and mortal-

ity equations. 

2.6.1 Development of diameter increment equation 

     The study modeled the individual-tree growth based on diameter increment. The predicted 

dependent variable was the diameter increment. This was obtained as a difference between 

two successive diameter measurements 2008 and 2016 divided by eight years. 

The purpose was to develop the following equation for the future annual diameter increment  

                       𝑓 (𝑡𝑟   𝑠𝑖𝑧 ;  𝑠𝑖𝑡 ;   𝑜 𝑝 𝑡𝑖𝑡𝑖𝑜 )                                                        (13) 

I 1.3: future annual diameter increment (cm). 

The study tested a set of variables representing tree size, competition and site: 

I. Tree size 

The thesis tested squared diameter at breast height, inverse of diameter at breast height, natu-

ral logarithm of diameter at breast height, squared root of diameter at breast height, inverse of 

tree height, natural logarithm of tree height and squared tree height.  

II. Site effects  

The research included the site characteristics in this equation to give some site specificity 

(Stage, 1976; Wykoff, 1990; Monserud and Sterba, 1996). Elevation, soil depth, aspect times 

slope (geo-climatic variation (OGV), site index and their transformations were tested for site 

effects variables.  

The tree age has generally been considered an important variable for individual-tree growth 

model, but in even-aged forests, the effect of the site quality on tree growth is generally ac-

counted for by the site index (Lee, 1996; Schröder 2000), where site index is derived from the 

stand age and dominant height (Schröder 2000). 

The other geo-climatic variation (OGV) were also tested because they generally have indirect-

ly effect by influencing moisture, temperature, light, and other chemical and physical agents 

of the site, and provide more flexibility and biological interpretability (Weiskittel et al, 2011). 

III. Competition effects 

The study analyzed the effect of the competition on diameter increment by using distance 

independent competition indices, and using the the best indices in the competition analysis in 

the variables selection process.  
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Then, the linearized diameter growth sub-model was as follows  

  (     )           𝑟   𝑠𝑖𝑧                      𝑜 𝑝 𝑡𝑖𝑡𝑖𝑜  𝑖   𝑥                                       (14) 

OGV: The other geo-climatic variation;        ,          are regression coefficients, 

The thesis used Snowdon correction factor in the equation to remove bias from back-

transformed predictions and was calculated as sum of predicted values divided by sum of real 

values (Snowdon 1991). 

The study carried out the variable selection process by applying stepwise regression analysis 

which was implemented in SPSS 22 Release (Aug13, 2013) with different combination of 

variables that represent the tree size and site and competition. In this process non-significant 

variables were removed. Further, to evaluate the developed equation, there are a set of as-

sumptions for multiple linear regressions that have to be satisfied:  

1. A Linear Relationship between the outcome variable and the independent variables.   

2. No Multicollinearity: This assumption assumes that the independent variables are not 

strongly correlated with each other.  

 Multicollinearity is checked against 3 key criteria: 

- Correlation matrix: When computing the matrix of Pearson's Bivariate Correlation among all 

independent variables, the correlation coefficients need to be smaller than 0.8. 

- Tolerance: The tolerance measures the influence of one independent variable on all other 

independent variables; the tolerance is calculated with an initial linear regression analysis. 

Tolerance is defined as T = 1 – R² With T < 0.2 there might be multicollinearity in the data 

and with T < 0.01 there certainly is. 

- Variance Inflation Factor (VIF): The variance inflation factor of the linear regression is de-

fined as VIF = 1/T. Similarly, with VIF > 10 there is an indication for multicollinearity to be 

present (Myers, 1990; Hair et al., 2013). 

3. The homoscedasticity: the variance for the error term is the same for all observations.  

4. The error term is normally distributed.  

5. The expected value of the error term is 0.  

6. The error term is uncorrelated across observations. 

2.6.2 Development of height increment equation 

2.6.2.1 Development of linearized height increment equation  

The predicted dependent variable was the height increment. This was obtained as a difference 

between two successive height measurements 2008 and 2016 divided by eight years. 
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A height increment equation is a function of different variables representing tree size, compe-

tition and site conditions (Monserud and Hasenauer, 1997; Uzoh and Oliver, 2006; MA and 

Li., 2015). The variables are the same to that used in modeling the diameter increment. 

Multiple linear regression analysis was used to develop a linearized height increment equa-

tion. Because of desirable properties with the error structure (e.g., homogeneous variance), a 

logarithmic model for height increment was chosen (Stage, 1976; Uzoh and Oliver, 2006): 

                                   (  )    𝑓 (𝑡𝑟   𝑠𝑖𝑧  𝑠𝑖𝑡   𝑜 𝑝 𝑡𝑖𝑡𝑖𝑜 )                                      (15) 

 Ih:  future annual height increment (m). 

The variable selection process was carried out in similar way to that had been mentioned in 

2.6.1, and the equation was evaluated by linear regression analysis assumptions which were 

explained also in 2.6.1. 

2.6.2.2 Development potential modifier height increment 

The potential- modifier approach is more commonly used for predicting height increment in 

even-aged stands due to available dominant height equations (Weiskittel et al., 2011). The 

potential height increment in this study was obtained by the dominant tree height increment, 

which is reduced by competition indices (modifier) to get the individual-tree height incre-

ment. 

The research achieved modelling of the potential- modifier height increment (Ih) by using 

Nagel (1999) equation.  

Nagel (1999)  equation consists of two parts, the first is the potential stand top height incre-

ment (  𝑝𝑜𝑡)  and the second is the modifier, which is presented by the ratio between stand top 

height (dominant height H100) and tree height in each plot (  
    

 
). 

                                 (
     

    
)     (

    

 
)
  
                                                          (17) 

             =     Tree height increment 

         =     Potential stand top height increment  

 h          =     Tree height in m,  

 H100        =     Stand top height (dominant height) (m) 

                             
 

In the even-aged stands like the case of this study, the potential modifier method assumes that 

the resulting potential dominant height increment is the same for all trees in each plot as all 

 trees have the same age. To calculate the potential stand top height increment(     ), the age 

dependent approach calculates the dominant height for the start and end of a growth  

period using dominant-height increment equation. By deriving developed site index, dominant 
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height for each inventory was calculated by employing the site index and stand age as inde-

pendent variables. Then, the difference between the dominant height for each inventory  is the 

potential dominant height increment, which was used later to estimate the potential height 

increment. 

                                              (𝑡 )      (𝑡 )                                                            (18) 

  𝑝𝑜𝑡             The potential top height increment 

 H100 (t2)    =   dominant height at age t2  

H100 (t1)     =   dominant height at age t1    

To determine the modifier, the potential modifier method assumes also that trees below the 

dominant height are shorter solely because of competition (Hann and Ritchie., 1988), then, in 

order to predict the height increment for each tree in the plot, the predicted potential dominant 

height increment was adjusted by using a modifier. The work used the ratio between stand top 

height (dominant height H100) and tree height in each plot (
    

 
) as a modifier. This modifier 

was suggested by Nagel et al. (2002). 

Further, the potential modifier height increment equation should satisfy regression assump-

tions by checking the two tests: 

1) Multicollinearity of independent variables which was evaluated by producing Correlation 

matrix of independent variables. 

2) The homoscedasticity: the variance for the error term is the same for all observations. 

 Additionally, to compare equations (potential modifier height increment and realized height 

increment) adjusted R-square was used. Adjusted R-square shows the proportion of the total 

variance that is explained by the model. It is calculated asshows: 

                                            
    

(    ) (   )

     
                                                                      (  ) 

    
  = Adjusted R-squared 

      = R-squared 

k      = Number of variables in the equation 

q      = Number of observations 

2.6.3 Development of individual-tree crown ratio 

Crown ratio (CR), is the ratio of live crown length to the total height of the tree. The thesis 

computed the crown length by subtracting the height to crown base from the total height in 

the sample trees, then crown length values were completed by finding the relationship be-

tween crown length in each plot and tree height as explained in section (2.3.1). 
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The tree crown ratio equation is function of tree size, competition measures, and site factors 

(Hasenauer and Monserud, 1996). 

The tested models in this study to develop the crown ratio are: Logistic, Chapman-Richard 

and Exponential models (Table 2-7) 

Table ‎2-7: Testing tree crown ratio equations 

Model Model form Reference 

 𝑟  (      (   ))   Logistic Hasenauer and Monserud, 1996 

 𝑟  (      (   ))   Logistic Popoola and Adesoye, 2012 

 𝑟      (   ) Exponential Leites et al., 2009 

 𝑟  (      (     )) 
 
  

Richards Popoola and Adesoye, 2012 

Where                   

   : Intercept,                                       : Independent variables 

Crown ratio values range from 0 (no crown, dead or defoliated) to 1 (crown extends over the 

entire tree bole). 

To select a proper set of variables for the linear combination, the work considered the follow-

ing variable groups for tree size, competition measures, and site factors. 

The first group includes squared diameter at breast height, inverse of diameter at breast 

height, natural logarithm of diameter at breast height, squared root of diameter at breast 

height, inverse of tree height, natural logarithm of tree height and squared tree height.  

The second group includes elevation, soil depth, aspect times slope (geo-climatic variation 

OGV), site index and their transformations.  

The third group includes the distance independent competition indices which were tested to 

represent the competition variables. 

The multiple linear regression equation for the independent variables was given as follows: 

                                                                                (20) 

 Where 

   : intercept,       …    :  parameters,     to    : the independent variables 

The study evaluated equation 20 by linear regression analysis defined in (section 2.6.1). 

The research fitted equation to the data obtained in the study; then inserted into equation listed 

in Table 2-8 for estimating the parameters. The work used the parameter estimates from the 

linear least squares fit as starting parameters. 
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The study evaluated nonlinear equation by applying a nonlinear regression analysis (See sec-

tion 2.6.2). 

2.6.4 Generalized height- diameter equation 

The study tested four equationss to model height-diameter relationship (Table 2-8). These 

tested equations used dominant height and dominant diameter at breast height as stand varia-

bles. The data used to build the generalized height- diameter equation came from 1326 sample 

trees from two inventories; all sample trees in the sample plots had their diameter at breast 

height and height.The research used 1115 sample trees for modeling while 212 sample trees 

were used for validation. The study fitted the candidate equations by using nonlinear regres-

sion analysis. 

Table ‎2-8: Candidate equations to model the general height-diameter relationship for Pinus brutia.Ten 

Author Equation 

Harrison et al. (1986) 
         (       

       )(    
       
    ) 

Hui and Gadow (1993)                          
       

       
  

 

Mirkovich (1958) 
      (                  )   

   
     

Stoffels and Van Soest modified (1953) 
              (     (

    
    

)  ) 

Where: 

h= total height (m)                              d1.3 = diameter at breast height (cm); 

     = dominant height (m)                          = dominant diameter (cm)  

  ,   ,       = parameters                  e= Euler‟s constant  

2.6.5 Development of individual-tree mortality equation                                        

The work modeled the possibility of a tree dying in the next year by using logistic function 

(Equation 16), which is widely applied for tree mortality, tree mortality ranges between 0 and 

1. The data used for mortality modelling records for 72 dead and 3004 live trees from 51 

plots. 

                     
 

    (                      )
                                                                         (21) 

Pi      = The probability of tree mortality 

 b0–bn = Parameters to be estimated  

x1–xn = Explanatory variables 

The candidate variables for the mortality equation were numerous and diverse. As Pedersen 

(2007) pointed out, “test statistics and a basic understanding of how forest ecosystems func-

tion and how factors contributing to mortality are expressed, play an important role in select-

ing‎ the‎ appropriate‎ predictor‎ variables”. Numerous studies have revealed many variables 
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that are important for mortality predictions. To develop the natural mortality models, the re-

search applied the tree size variables, competition variables and stand level variables.  

The tree size variables were: tree diameter at breast height (d1.3) and its transformations (natu-

ral logarithm of d1.3, d1.3
-1

, d1.3
2
), tree basal area (ba), tree height (h). Additionally, one deriva-

tive variable was checked, h/ d1.3.  

The competition variables tested to select the best index for predicting the individual-tree 

mortality equation included the following indices: basal area of trees larger than the subject 

tree divided by stand basal area, stand density index, diameter at breast height divided by 

stand age, basal area of trees larger than the subject tree divided by diameter at breast height, 

ratio of the tree height and stand top height, squared diameter at breast height divided by stand 

basal area, basal area of trees larger than the subject tree times squared diameter at breast 

height, basal area of trees larger than the subject tree, diameter at breast height divided by 

stand age. 

Stand level variables used for the analysis were: stand age, mean stand height (H), quadratic 

mean diameter (Dg), top height (H100), site index (SI) and basal area of stand per hectare 

(BA).  

When analyzing each variable, The work conducted a univariate analysis and variables with a 

significance level lower than 0.25 were used in multivariable analysis (Hosmer and Leme-

show, 2000).  

The second step, the research verified the importance of each variable included in the equa-

tion by applying Wald statistics and comparison of each estimated coefficient with the coeffi-

cient from the equation that contains only this variable. Variables that do not meet these crite-

ria were removed and new equation was fit.  

Third and last step, the study checked correlations among the variables used in the equation. 

Also, the equation was evaluated by the means of logistic regression analysis:  

1) Checking the statistical significance of the model and its estimated parameters. There 

should be no high inter-correlations (multicollinearity) among the predictors.  This can be 

assessed by a correlation matrix among the predictors. Tabachnick and Fidell (2012) sug-

gest that as long correlation coefficients among independent variables are less than 0.90 

the assumption is met. 

2) The Pearson chi-square is calculated as follows: 

                                             (  )      (  )                                                                 (22) 

X2      = Value of Pearson‟s chi square statistics 

      = Value of the maximum likelihood function of logistic regression model with no predictors 
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     = Value of the maximum likelihood function of analyzed model with specified coefficients 

Large chi-squared values provided evidence of lack of fit. When the chi-squared values we 

calculated are less than the critical chi-squared values with significant level p = 0.05, it means 

there is no significant difference between the probability of observed and predicted dead trees. 

3) Estimating the following parameters: log likelihood function values, the Nagelkerkle and 

McFadden‟s coefficients of determination and areas under the ROC curves. 

The Nagelkerkle R
2
 and the McFadden R

2
 are recommended (Allison, 2014), which were pre-

sented in this study (Allison, 2014). 

    McFadden‟s R
2
 is defined as fllows:  

                              
       (  )    (  )                                                                        (23) 

   The Nagelkerkle R
2
 is : 

                                       
  

  (     )
 
 

  (  )
 
 

                                                                                     (24) 

    
 
    =   McFadden‟s coefficients of determination  ; q        =     Number of observations 

  
 
       =   Nagelkerkle‟s coefficients of determination  

 L0        =   Value of the maximum likelihood function of logistic regression model with no predictors  

LM      =    Value of the maximum likelihood function of analyzed model with specified coefficients  

The log-likelihood function is defined to be the natural logarithm of the function. 

          (𝜃)      (𝜃)  ∑    𝑓(
  

 
)

 
                                                                                     (25) 

L    =    Value of the maximum likelihood function           q    =   Number of observations 

𝜃     = An unknown parameter                                                              =   Continuous random variable 

The log-likelihood function is used throughout various subfields of mathematics, both pure 

and applied, and has particular importance in fields such as likelihood theory. 

The larger the Log likelihood function value the worse adapted is the model.  

 The area under the receiver operating characteristic (ROC) curve was calculated  

for the mortality model. It is a threshold independent measure of model discrimination, where 

a value of 0.5 suggests no discrimination, 0.7–0.8 suggests acceptable discrimination, and 

0.8–0.9 suggests excellent discrimination (Hosmer and Lemeshow, 2000). 

The predicted and observed mortality were then compared by visually studying deviations 

over the explicatory variables included in the model. A threshold can be used to assign mor-

tality. If the estimated probability of mortality exceeds the threshold then the tree is consid-

ered dead. The research tested three cut-points: the first was the overall mortality rate  

(Monserud and Sterba, 1999), the second was the intersection point of sensitivity and 

http://mathworld.wolfram.com/NaturalLogarithm.html
http://mathworld.wolfram.com/Likelihood.html
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specificity (Adame et al, 2010) and the third was a random number which can also be consid-

ered by running the random calculation 10 times. The percentage of live and dead trees is the 

average classification rates (Bravo-Oviedo et al., 2006). In other words, the study implement-

ed an individual-tree mortality equation either stochastically by using a random number or 

deterministically by using overall mortality rate and the intersection point of sensitivity and 

specificity. For the comparison of the stochastic and deterministic approaches, the simulations 

were run on a 100-year period using one-year growth steps by running the random calculation 

10 times. The average of four different response variables (Quadratic mean diameter, stand 

basal area, stand volume and number of trees per hectare) of stochastic approach were com-

pared with the four different response variables of deterministic approach, and then, the study 

used Mann Whitney U Test (Wilcoxon Rank Sum Test) for testing the null hypothesis that the 

differences between stochastic and deterministic simulations are negligible. 

2.7 Simulation of individual-tree growth model 

After developing the equations, the study will use NETLOGO to implement the simulations 

of the developed individual-tree growth model. The description of the PINUS-Syria-IBM (In-

dividual Based-Model) presented follows the ODD Protocol (Overview, Design concept, De-

tail) (Grimm et al., 2010). 

2.7.1 The purpose 

PINUS-Syria IBM model is conceived to gain knowledge about the growth of even-aged Pi-

nus brutia stands in the coastal region of Syria, which is considered an indispensable tool for 

applying sustainable forest management. The model simulates the growth and mortality of 

Pinus brutia influenced by distance-independent competition over time under different site 

conditions (site index, elevation, slope, aspect, soil depth). It can be used to determine the 

optimal rotation age (intersection of mean and current annual volume increment) where the 

wood production is maximized in absence of thinning. The model also is designed to better 

understand the effect of different thinning scenarios on growth. 

2.7.2 Entities stand variables and scales  

There are two types of entities, namely the patches and trees. The individual trees are de-

scribed by a set of state variables governing the location of the tree and the dimension of the 

tree stem (Table 2-9).  
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Table ‎2-9: State variables, initialization, range values and behaviour in the individual-based model. Range values 

are drawn from the inventory data and literatutre 

Variable Unit Explanation Initialization Range Behavior 

X [m] X-position Random 0-100 Constant 

Y [m] Y-position Random 0-100 Constant 

d1.3 [cm] Diameter at breast height 5 cm 5-140 (Gezer, 1986) Variable 
h [m] Tree height Calculated 1.3-42(Gezer, 1986) Variable 

𝑓1.3 - Form Factor Calculated 0.1-0.99 (Data) Variable 

vt [m3] Tree volume Calculated 0-1 (Data) Variable 

ba [cm2] Tree basal area Calculated 0.001-0.8(Data) Variable 

BAL [cm2] 
Basal area of trees larger 

than the subject tree 
Calculated 0.001-0.8(Data) Variable 

Pt 
-  

   

probability of individual 

tree mortality 
Calculated 0-1 Variable 

cr  Individual tree crown ratio Calculated 0-1 Variable 

 

The size of simulated area is a 100 × 100 grid of patches (1 ha) surrounded by 10 patches on 

all sides for total simulated area (1.44 ha). Patches are 1 × 1 (m) in size. Patches have six pri-

mary state variable (Table 2-10): 

Table ‎2-10: State variables of the patches, initialization, values and behaviour in the individual-based model. 

Range values are drawn from the inventory data 

Variable Unit Explanation Initialization Value Reference Behaviour 

SI [m] Site Index Scenario de-

pendent 

[5 – 30] with increment 1  Own-data Constant 

ASP [Radian] Aspect 
Scenario de-

pendent 
[0 – 360] with increment 10 Own-data Constant 

SLO [Percent] Slope 
Scenario de-

pendent 
[0 – 100] with increment 10 Own-data Constant 

ELE [m] Elevation 
Scenario de-

pendent 
[100–1000]with increment100 Own-data Constant 

Dep [m] Soil depth 
Scenario de-

pendent 
[10 – 150] with increment 10 Own-data Constant 

 

One-time step represents one year and simulations run for 150 years.  

2.7.3  Process overview and scheduling 

The PINUS-Syria-IBM is a distance-independent individual-tree growth model. During one-

time step, the model describes three main processes: Growth, mortality and thinning treat-

ment. Growth consists of three sub-routines namely diameter at breast height increment, tree 

height increment, crown ratio.  

The flowchart (Figure 2-13) shows the sequence of the execution of the processes in a one-

time step.  Implementing these processes starts with updating the state variables of all trees 

(e.g. tree basal area, form factor, tree crown ratio and tree volume). These variables determine 

the competition indices (compete) of the individuals that are calculated of the single tree level.  

The processes, described in detail below (Section 6 and Section 7), are scheduled in the fol-

lowing sequence: 
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1. Growth(grow): it is calculated for each individual tree 

I. Diameter at breast height increment (id) 

II. Tree height increment (ih) 

III. Crown ratio (cr) 

2. The individual-tree Mortality (check-mortality): it is calculated for each individual 

tree 

3. Thinning treatments (conduct-thinning): it is implemented at stand level. 

Finally, the stand variables (calc-global-vars) get updated: e.g. quadratic mean diameter, stand 

basal area, stands volume, means and current volume increment. 

2.7.4 Design concepts  

1. Basic principles  

The PINUS-Syria-IBM describes individual trees of pure even-aged brutia pine stands. It uses 

a distance-independent approach for calculating the competition indices. This is similar to 

PROGNAUS developed by Monserud et al (1997) which continues to be refined and devel-

oped today (Ledermann, 2006), and is in contrast to other stand growth models which consid-

er the specific spatial configuration.  

The main basic assumptions of PINUS-Syria-IBM:  

 The competition which influences resources, have been defined according to the most 

common approach: symmetric (Two-sided competition) / Asymmetric (One-sided 

competition). Two-sided competition occurs where resource uptake among competi-

tors is independent of the relative sizes, and one-sided competition occurs where the 

largest trees obtain all the contested resources (Schwinning and Weiner, 1998). Alt-

hough there is not a general relationship between the degree of size symmetry or 

asymmetry and the particular growth-limiting resources, many studies (Weiner et al., 

1990) pointed out to an association between size-symmetric competition and competi-

tion for below-ground resources on the one hand, and between size-asymmetric com-

petition and above-ground competition for light on the other. 

 Site characteristics (Site index, elevation, soil depth, etc.) play the main role in driving 

tree growth.  

 Competition and site index are the main factors on the mortality 

 Larger trees are subject to Senescence that increases tree mortality further. 

2. Emergence  

A size deminsions of tree emerge from trees interactions. For example, tree diameter at breast 

height, tree height, crown ratio and stand density index. 
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Figure ‎2-13:The proposed flowchart of the model processes in its execution order. The flowchart provides the 

sub-models (diameter at breast height increment, tree height increment and mortality) and calculations of compe-

tition indices, tree and stand variables 
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3. Interaction  

Individual trees interact with each other through competition for resources. The competition 

effect alters individual-tree growth and its survival. This is described by two competition ap-

proaches (See sub-section 2.5.1): symmetric and asymmetric competition. 

 PINUS-Syria IBM represents both the symmetric competition and asymmetric competition. 

Crown competition factor and stand density index are examples for the symmetric competi-

tion, BAL and modified BAL are examples for the asymmetric competition. The selected in-

dices todevelop the growth and mortality equations are explained in section 3-4. 

          4. Observation  

Measures related to state variables: diameter at breast height, tree height, tree basal area, tree 

volume, form factor. 

Variables describing the growth process of the individual trees: Diameter increment, height 

increment, crown ratio, probability of mortality and volume increment. 

Variables at stand level: stand density, stand volume, stand basal area, stand current and mean 

annual volume increment which determines the optimal rotation age, stand mean height, 

quadratic mean diameter, stand crown ratio.  

These measures are implemented every time step. 

5. Sensing 

Brutia pine trees “sense” all other trees in the plot in case of symmetric competition or all 

larger trees in case of asymmetric competition. 

6. Stochasticity 

The stochastic component are the random spatial distribution of the individuals at model ini-

tialization and mortality.  

Objectives, learning, and predictions are not relevant.   

7.Initialization  

At the start of the simulation, individual trees are randomly distributed according to the cho-

sen initial density. A tpical value of the initial density is 2000 trees distributed over the simu-

lated  area of (1) hectare and the buffer but can be varied according to the experimental de-

sign. The trees are randomly distributed. The initialization of the plot is done with  

inventory data from trees are randomly distributed. The initialization of the plot is done with 

inventory data from the study site. Since no trees smaller than 5 cm were not measured in the 
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stand, each simulated stand starts with an initial diameter at breast height 5 cm.  The initial 

height is calculated by using a generalized height-diameter equation.  

The site characteristics are assumed constant to be homogeneous for the whole plot across 

time in the simulation. The values of each site variable are derived from inventory data (Table 

2-11).  PINUS-Syria IBM provides the possibility to use other input data. The parameters of 

growth and mortality equations are assigned according to the individual-tree model as ex-

plained in section 6.  

2.7.5 Sub-models 

PINUS-Syria IBM model consists of three processes: the growth, mortality and thinning 

treatment. The growth includes three sub-routines calculating the:  

 The diameter at breast height increment  

 Tree height increment to evaluate the simulated height of trees, and the 

 Crown ratio   

The growth and mortality equations were explained methodologically in the previous section 

2.6 and the developed equations are shown in the results chapter. 

Tree and stand variables calculated for each time step simulation were explained in sub-

sections 2.4.2 and 2.4.3. 

 Thinning procedures 

Regarding thinning treatments, the type of thinning from below is implemented because it is 

common in Middle East for even-aged stands. Thinning from below is a noncommercial thin-

ning which was applied by cutting on a diameter basis, removing the smallest sizes (smallest 

diameters), leaving large trees (Marquis and Ernst, 1991).  

Each treatment will be carried out with different densities (Table 2-12): 

These treatments are applied in all site indices in brutia pine stands for once or twice (Table 2-

11). 

Table ‎2-11:Thinning treatments applied in the simulation model in different sites: Types of thinning, intensity, 

number of thinning 

Site index Types of thinning Intensity of thinning Number of thinning 

10 

 

0 % (No thinning) 
One 

15 10% (Light thinning) 

20 Thinning from below 20% (Moderate thinning)  

Two 25 35% (Heavy thinning ) 

30 45% (Very heavy thinning)  
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2.8 Methods used for model evaluation 

2.8.1 Sensitivity analysis  

The research tested the relative importance of the parameters within the simulation model 

using global sensitivity analysis (Ginot et al., 2006). The study varied several input parame-

ters over broad parameter ranges. The work performed analysis using Latin Hypercube Sam-

pling (LHS), which is implemented in R (Carnell,2009). The research defined the range and 

distribution of each input parameters (Table 2-12). 300 sets of input parameters were generat-

ed for different combinations, then explicitly accounting for the partial correlation between 

the parameters to calculate the influence of the input factors on the model output. 

Table ‎2-12:Input factors of Pinus brutia stands for the sensitivity analysis 

 Site index Elevation Soil depth Slope Aspect 

Range 10-30 100-1600 10-150 10-100 30-350 

The used varying 

values 

10-15-20-25-

30 

100-400-800-

1200-1600 

10-40-80-120-

150 

10-35-60-

85-100 

30-100-170-

240-350 

 

Simulations were carried out for 3125 parameter combinations with 10 repetitions each, and 

model outputs were stored after 70 years. 

The simulated size of 1 ha was initialized with 2000 trees, and no further recruitment occurred 

during the simulation. The model outputs include stand volume (V), Quadratic mean diameter 

(Dq), mean stand height(H), mean annual volume increment(MAI), periodic annual volume 

increment (CAI), stand density index (SDI), mean diameter increment (mid), mean height  

increment (mih), mean crown ratio(mcr), Stand basal area (BA), mean basal area of trees 

larger than the subject tree (mbal) and mean probability of individual tree mortality (mpt). 

2.8.2 Validation procedure 

Unfortunately, the ideal is rarely available,so in this study after developing the site index,  the 

appropriate decision was to take the different density and site index into account when select-

ing the validation plots, and that may provide a convincing test in the light of the data availa-

ble (Vanclay and Skovsgaard, 1997). The work implemented the validation procedure but 

only for the diameter and height increment sub-models by using independent data, which 

came from 10 validation plots representing different site indices measured for first time in 

2008 and were re-measured in 2016. 

The work placed the independent data into individual-tree level simulation program and made 

simulations of trees growth. 
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The study evaluated simulation results using two steps: (1) simulated values were plotted 

against measured values, and sub-models residuals were plotted against simulated values. 

(2) The methods presented in Table 2-13 as were estimated in the empirical study to deter-

mine the accuracy of sub-models predictions - were estimated to compare simulated and 

measured values for the developed sub-models. 

Stand level variables like stand volum are very informative and easily calculated from tree 

level variables (Table 2-2) and were compared with stand variables measured in 2016. 

Table ‎2-13:Methods of evaluation of individual-tree growth model 

Performance criteria Formula Ideal 

Model bias 
 

𝑞
 ∑( ̂    )

 

   

 Zero 

Relative bias 
 ̅     

 ̅
 Zero 

Root mean square error √
∑(    ̂ )

 

𝑞   
 Zero 

Relative Root mean square error     √
∑(    ̂ )

 
 (   )

∑  ̂   
 Zero 

Model Precision 

   √
∑ ( ̂   ̅   )

  
   

𝑞   
 Zero 

Relative Model Precision 
    

      

 ̅
 Zero 

Model Accuracy 
   √  

   ̅  Zero 

Relative Model Accuracy 
    

      

 ̅
 Zero 

         
       =    Observed value                          k   =     Number of variables in the equation  

 ̅      =    Average value of observations     ̅      =    Model Bias 

 ̂      =    Fitted value                               q       =    Number of observations                       

𝑖                                              (Soares et al., 1995, Weisberg, 2005; Pretzsch, 2009) 

 

The study also validated the mortality equation by analyzing the characterization of the sub-

model error. The probability of mortality for each tree was predicted. The predicted and ob-

served mortality were then compared by visually studying deviations over the explicatory 

variables included in the model.  

Described validation procedure will help to clarify if developed sub-models produce reliable 

predictions on the basis of independent data.Validation process is helpful procedure to assess 

if developed sub-models give  reliable predictions. 
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3 RESULTS 

3.1 Results of initial data processing 

The following sections deal with a detailed description of the yield characteristics. 

3.1.1 The results of height curve fitting 

 The first and most important step for modeling the tree height increment and to calculate 

stand variables was estimating the missing values of trees height which were not measured for 

each plot in both inventories. For this purpose, the study used Michailow (1943) equation. 

According to the results of height curve fitting for both inventories (Appendices 4, 5, 6 and 7), 

the relationships between diameter at breast height and tree height are clearly plausible and 

not linear. Plausible curves mean that height curves produced by both inventories steadily 

shift to the right side of abscissa (X) axis and the upper side of the ordinate (Y) axis and do 

not intersect each other; these curves precisely follow the growth patterns of trees. This be-

haviour agrees with Yuancai and Parresol (2001) and Van Laar and Akça (2007) criteria (Sec-

tion 2.4.1).  

The coefficients of determination of the Micahilow (1943) equation ranges from 0.17 to 0.98. 

The tree heights are strongly related to site productivity, and they are influenced by stand den-

sity so the values of height are considerably different from plot to plot in our study. The 

graphs in Figure 3-1 illustrate the difference of high curves among the plots which were taken 

as an example. The values of coefficient of determination in the low density stands are slight-

ly smaller than those of high density stands. The height curves of plots belonging to good site 

quality are generally higher than those of plots on poorer site qualities. 

 

  Figure  3-1: height curves of different plots for first (left) and second (right) inventory 
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By estimating the individual trees height in all plots in both inventories, the base for calculat-

ing the stand variables and developing the individual-tree height increment was prepared.   

3.1.2 Calculation of stand variables 

 The calculations results of stand variables at the first and the second measurement as well as 

the dead trees between two measurements for each plot came mainly from re-parametrized 

Michailow equations which allow estimating stand mean height and stand top height (Appen-

dices 8, 9, 10 and 11). By means of these calculations, it could easily calculate the most com-

mon stand variables (Husch et al., 2003; West, 2004; Van Laar and Akça, 2007)  like stand 

basal area, stand volume, and number of trees per hectare for both inventories 2008 and 2016, 

and then the establishment of the relationships between variables (Table 3-1). 

Table  3-1: Summary of yield characteristics (Quadratic mean diameter, mean stand height, stand basal area, 

stand volume, top stand diameter, top stand height and number of trees per hectare) for both inventories 

 Dq  
cm 

H  
m 

BA  
m2. ha-1 

V  
m3. ha-1 

D100  
cm 

H100  
m 

N  
Tree. ha-1 

2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 

Min 10.0 11.8 5.9 9.2 6.1 15.4 13.5 37.8 15.7 17.6 9.4 10.0 224.0 219.0 

Max 40.9 43.2 23.7 24.7 67.4 77.4 323.7 390.1 51.9 52.4 25.8 26.8 3144.0 3065.0 
Mean 23.9 26.6 14.7 16.6 38.8 46.3 146.2 189.4 33.5 36.1 16.9 18.5 1027.5 1001.2 
SD 7.9 7.9 4.4 4.4 14.0 14.6 74.5 89.8 9.1 8.8 4.5 4.7 678.6 659.8 

BA          =         Stand basal area in (m2. ha-1)                   Dq     =    Quadratic mean diameter (cm) 

D100            =         Top stand diameter (cm)                          H100   =     Top stand height(m) 

H            =         Mean stand height (m)                         N      =        Number of trees per hectare                       

V            =          Stand volume (m3. ha-1) 

These calculations at stand level not only give enough idea about the stand, but they also al-

low comparing different sites with each other. Considering the appendices 1 and 8, the calcu-

lations results show that stand variables considerably differ from plot to plot because of effect 

the density and the site productivity. The calculations also show that quadratic mean diame-

ters are proportional to number trees per hectare, where the diameter increases as number of 

trees decreases, the number of trees very high in the stands with small trees and low in the 

stands with big trees, this relationship is so important in understanding the mortality process 

and how the density affects the growth.  Diameter clearly affects the basal area and standing 

volume, where they increases with increasing the diameter, similar behavior was recorded for 

the relationship between standing volume and the tree height (Figure 3-2), but in the appen-

dices, the reader can notice that some plots have similar values of diameter or height but dif-

ferent values of volume and basal area, this clearly indicates that diameter or height is not the 

only variable controlling the growth.   
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Figure  3-2: Relationships between most common stand variables for the plots which measured for modeling 

process; A: relationship between number of trees per hectare and quadratic mean diameter; B: relationship be-
tween stand basal area and quadratic mean diameter; C:relationship between stand volume and quadratic mean 

diameter; D: relationship between tree height and standing volume  

 

72 removed trees (dead trees) from 39 modeling plots and 29 trees from validation plots were 

recorded; so, in each plot where dead trees were recorded, the following variables were calcu-

lated: number of removed trees per hectare, mean removed diameter at breast height, mean 

removed tree height, removed stand basal area and removed stand volume (Table ‎3-2). This 

step is necessary to model the individual-tree mortality. 

Table ‎3-2: The main variables for the removed stands for the Pinus brutia forests 

 Dq dead H dead BAdead  Ndead  Vdead 

 cm m m
2
. ha

-1
 Tree. ha

-1
 m

3
ha

-1
 

Min 5.2 2.8 0.0 5.1 0.1 

Max 35.0 22.0 4.7 110.5 12.2 

Mean 16.0 11.8 0.8 34.1 2.6 

SD 6.9 5.2 1.0 29.7 3.0 

Ndead       = The number of dead trees dead per hectare,                  H dead = Mean height of dead trees in each stand 

Dq dead = quadratic mean diameter of dead trees in each stand, Vdead = Stand volume of dead trees in each stand  

BAdead =Stand basal area of dead trees in each stand 

3.1.3 Crown diameter curves  

. To predict the crown diameter in 2016 inventory in each plot, a non-linear regression equa-

tion between tree crown diameter and diameter at breast height was used (Appendix 12 and 
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Appendix 13). When looking deeply at appendices 1,8 and 12; the study infers that the rela-

tions are different among plots, the difference are due to competition and site characteristics. 

The statistical analysis of the simple regression models was based on coefficients of determi-

nation (R
2
), the equation‟s significance, standard errors and the coefficients‟ significance. The 

R
2
 value ranges between 0.96 and 0.31. The values in high density stands are relatively better 

compared with those in low density stands. 

By implementing this step, it is possible to calculate the crown competition factor as one of 

the tested competition indices. 

3.1.4 Crown length curves 

As explained in section 2.4.1 in methodology chapter, crown length was measured only for 

sample trees in the second inventory, so a logarithmic model between crown length and height 

relationship was used in each plot (Appendix 14 and Appendix 15).  

The statistical analysis of the simple regression models was based on: coefficients of determi-

nation (R
2
), the equation‟s significance, standard errors and the coefficients‟ significance. The 

relationships in this study explain between 44 % and 99 % of crown length variations. All 

regression models were highly significant. The R
2
 values are relatively better in the high den-

sity stands and in the young aged-stands. 

Calculating the crown length is considered the base for developing individual crown ratio 

equation. 

By finding the relationships between crown diameter and diameter at breast height, relation-

ship between crown length and tree height, the preparations of data for analyzing the competi-

tion, developing the site index and then in the developing the individual-tree growth model, 

were completed.  

In the next section, the study will move to analyze the competition and determine the candi-

date competition indices to develop the equations included in the individual-tree growth mod-

el. 

3.2 Competition indices 

The first step to analyze the competition was estimating the relative basal area increment.  

The relationship between basal area increment and  1.3 of the local trees was found; the non-

linear regression explained 52 % of the basal area increment variation. The ratio between the 

actual basal area increment and predicted basal area increment is used to calculate the relative 

basal area increment. The same manner was applied for height increment, R
2
 was 27 %. 
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3.2.1 Spearman correlation test 

The next step in analyzing the competition was implementing a Spearman correlation test 

between various competition indices and both basal area increment and height increment.  

Whether with height increment or basal area increment, the results showed that correlations 

with the distance-independent indices are stronger than with correlations distance-dependent 

indices. 

In regard to basal area increment, the correlation test indicate that all distance-independent 

competition indices show a clear and negative significant correlation while the correlation 

with distance-dependent competition indices showed a clear and significant correlation with 

the exception of the Martin and Ek index and Rouvinnen 2 index which are statistically insig-

nificant. In regard to height increment, results of the correlation test indicate that all distance-

independent competition indices show a clear and negative significant correlation. Only 

BAL/BA index was statistically insignificant, whereas the correlation with distance-

dependent competition indices was a clear and significant negative (Figure 3-3 ). 

3.2.2 Determination of appropriate competition indices 

The last step was selecting the candidate competition indices for modeling the diameter and 

height increment. The criterion for selecting the appropriate competition index that better  

relates to tree relative diameter and height increment was based on the coefficient of determi-

nation (R²). The higher the value the better index expresses the relationship.  

Values of R² vary according to tree dimension and competition index (Table 3-3). A table 

shows similar values of R
2
 in each group, e.g., with the exception of two indices, R

2
 values of 

the relationships between distance-independent indices and relative height increment range 

between 0.31 and 0.18. The difference is not so large. These results are expected because of 

the similarities in the indices‟ formulations and because of associations among the input vari-

ables (e.g., d1.3, height) used to assess the size of competitors. 
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  Table ‎3-3: Relationships between competition indices and relative basal area increment and relative height  

increment 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

* = parameter not significant in parenthesis: standard error of the estimate; a0 and a1 = coefficients; R² = coeffi-

cient of determination. 

 

More interesting is similarities to a large extent regarding R
2
 between certain pairings of dis-

tance-dependent and distance-independent indices in case of relative height increment, that 

could be attributed to using the same input variables. 

Distance-independent indices 

Index 

Relative basal area increment Relative height increment 

R2 Intercept 
Parameter 

estimate a1 
R2 Intercept 

Parameter 

estimate a1 

CCF 0.37 1.0046 -0.948 0.19 0.9585 -0.313 

Reineke 0.40 7.563 -0.961 0.31 3.5293 -0.378 

BAL 0.40 4.2529 -0.836 0.20 2.1566 -0.31 

Schröder 0.11 1.1988 -0.275 0.18 1.0401 -0.155 

BA 0.35 0.6633 -0.283 0.28 2.3506 -0.358 

BAL/d1.3 0.20 1.3604 -0.418 0.21 1.1054 -0.19 

Heygie 0.003 1.3526 -0.057* 0.055 1.4025 -0.102* 

BAL/BA 0.10 1.068 -1.52 0.01 0.988 -0.27* 

Distance-dependent indices 

Index 

Relative basal area increment Relative height increment 

R2 Intercept 
Parameter 

estimate a1 
R2 Intercept 

Parameter 

estimate a1 

Heygie1 0.17 1.613 -0.373 0.049 1.102 -0.87* 

Heygi2 0.14 1.520 -0.271 0.012 1.039 -0.35* 
Martin 0.007 1.356 -0.047* 0.155 1.473 -0.099 

Braath 0.14 1.649 -0.352 0.19 1.193 -0.137 

Rouvinnen1 0.18 2.706 -0.479 0.139 1.587 -0.181 

Rouvinnen 2 0.07 2.148 -0.244 0.081 1.459 -0.112 

Rouvinnen 3 0.12 2.288 -0.367 0.158 1.562 -0.181 

Rouvinnen 4 0.132 2.352 -0.384 0.201 1.647 -0.206 
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Figure ‎3-3: Correlation between competition indices and both basal area and height increment; A: Correlation between distance-independent competition indices and basal area 

increment; B: Correlation between distance-independent competition indices and height increment ;C: Correlation between distance-dependent competition indices and basal area 
increment ; D: Correlation between distance-dependent competition indices and height incremen 
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The value of the relative basal area decreases as competition index increases and the line of 

the best fit points down to the right, indicating a negative relationship between competition 

index and relative basal area increment (Figure 3-4 ), similarly observed for the relationship 

between relative height increment and competition indices. 

 

Figure  3-4: Relationship between BAL index and relative basal area increment The figure shows only the signif-

icant correlation between CIs and tree dimensions 

The distance-independent competition indices which gave the best results in this analysis are 

the candidate for further analysis to model the diameter and height increment equation. 

Before closing this part, it is important to highlight the relationship between productivity and 

competition which is the oft-observed point but still unclear. The results of this study suggest 

that measured productivity responds directly to competition whether distance-dependent or 

independent indices. Although not all the competition indices tested seem to give the same 

response to site productivity, but at all indices, it is noted that the higher the site index, the 

higher the competition on resources (Figure 3-5).  

 

Figure  3-5: The relationship between site index and competition index in the modeling data
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3.3 Site index 

 According to the descriptions in methodology chapter, ten equations could be adapted to the 

value pairs from age t and upper level H100. The estimated parameters for each equation are 

listed in Table 3-4. All the parameters were found to be significant at 5% level. 

Table ‎3-4: Estimated parameters and coefficient of determination of tested site index equations 

Model 
Parameter 

R2
 

b0 b1 b2 

Korf (1939) 59.53  0.558 0.955 
Schumacher (1939) 45.314  47.407 0.965 
Hossfeld -65975.7 0.002 1.236 0.966 
Korf I 47.576 12.666  0.967 
King-Prodan 1.59 -28.321 1213.806 0.97 
Hossfeld I (Kiviste et al.,2002) 8.712  0.024 0.967 
Strand (1964) 0.01 0.00042 0.999 0.969 
Amateis and Burkhart (1985) -1.354 -0.292  0.77 

Sloboda (1971) 1.446 0.804 2075.73 0.99 

McDill and Amateis (1992) 38.51 1.289  0.966 

 

The analysis of the fit statistics revealed that the Amateis and Burkhart (1985) equation  per-

formed relatively poorly for fitting and validation when compared with other equations. It ex-

plained only 77 % of the total dominant height variations. Other equations gave similar results 

in terms of statistical tests with a slight superiority of Sloboda equation, which gave the high-

est accuracy and precision for fitting and validation data (Table 3-5). 

Table  3-5: Results of different statistical tests made to candidate equations for the plots 

Modeling Data 

Model Bias Relative bias Precision Relative precision Accuracy Relative accuracy 

Korf (1939) 0.105 0.573 0.757 4.138 0.765 4.178 
Schumacher (1939) 0.058 0.318 0.767 4.191 0.769 4.203 

Hossfeld 0.041 0.222 0.762 4.164 0.763 4.170 
Korf I 0.033 0.182 0.720 3.932 0.720 3.936 
King-Prodan 0.0136 0.0741 0.6507 3.5553 0.6509 3.5561 
Hossfeld I (Kiviste et 
al.,2002) 

0.030 0.163 0.718 3.925 0.719 3.928 

Strand (1964) -0.07 -0.40 0.68 3.71 0.68 3.73 
Amateis and Burkhart (1985) -1.67 -9.15 4.48 24.49 4.79 26.14 
Sloboda (1971) 0.038 0.205 0.633 3.457 0.634 3.463 

McDill and Amateis (1992) 0.106 0.581 0.736 4.023 0.744 4.064 

Test data 

Korf (1939) 0.030 0.164 0.947 5.172 0.947 5.174 
Schumacher (1939) 0.011 0.057 0.704 3.848 0.704 3.849 
Hossfeld 0.011 0.061 0.832 4.544 0.832 4.545 
Korf I -0.031 -0.172 0.783 4.276 0.783 4.279 
King-Prodan -0.032 -0.175 0.664 3.630 0.665 3.634 

Hossfeld I (Kiviste et 
al.,2002) 

-0.027 -0.145 0.789 4.313 0.790 4.316 

Strand (1964) -0.100 -0.547 0.803 4.386 0.809 4.420 
Amateis and Burkhart (1985) -1.71 -9.36 5.28 28.85 5.55 30.33 
Sloboda (1971) -0.017 -0.091 0.609 3.328 0.609 3.329 
McDill and Amateis (1992) 0.032 0.176 0.890 4.864 0.891 4.867 
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The relative errors (RE) by age were computed to determine the most appropriate reference 

age and the results showed that the age 48 (years) results are in lowest error value of predic-

tions, so the reference age was approximated to 50 (years) (Figure 3-6).  

 

Figure  3-6: Relative error in dominant height predictions related to choice of reference age for model for Slo-

boda equation 

Since the statistical analysis alone is not sufficient, the graphical tests were taken into account 

and for this purpose, the parameters were used to generate site index curves in order to know 

how well the data is distributed with the developed equations. Five classes were determined 

based on reference age 50: 10, 15, 20, 25 and 30 m.  

The equations represented well the dominant height development for plots over age (Figure 3-

7) and (Appendix 16). The shapes of the curves from these equations seem to be biologically 

reasonable. The site index values in Sloboda for all plots at 50 years ranged between 5.4 m 

and 30.2 m. The height is  zero at age zero and equal to site index at reference age. They are 

polymorphic curves,  there is an inflection point and  base-age invariance. 

 

Figure  3-7: Distribution of dominant height development (2008-2016) with the developed site index 

equations which categorized into five site classes (10, 15, 20, 25, and 30)  
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By applying Sloboda equation, Figure 3-8 shows a culmination of increment height between 9 

years in site Class 30 and 14 years in site Class 10. It follows the common pattern (culmina-

tion of increment top height and then decline as age increases) for the top height increment in 

forestry. 

 

 

 

Figure  3-8: Site index system (SLOBODA equation) for Pinus brutia stands with corresponding d e-

velopment of dominant height growth 

The error distributions are presented for the data used in fitting the equations and the bias 

does not correlate with stand top height and stand age. Figure 3-9 presented Sloboda equation 

as an example to explain this point. Sloboda equation met the nonlinear assumptions; and is 

statistically considered quite adequate.  

 

Figure ‎3-9: The relationship between residuals of fitted equation (Sloboda equation) and each of top height in-

crement stand top height and stand age 

Based on the above findings, Sloboda equation was confirmed as most appropriate for site 

index characterization of Pinus brutia stands in Syria, which is considered an indispensable 

factor to develop the individual-tree growth model. 

After processing the data, analyzing the competition and developing the site index, the road is 

paved for developing the individual-tree growth model. 
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3.4 Individual-tree growth model  

When selecting the equations of diameter increment, height increment, crown ratio, general-

ized height-diameter relationship and mortality, the assumptions for multiple linear, nonlinear 

and logistic regressions were satisfied, e.g. any relationship that violates accepted biological 

principles was rejected even if it results in efficient predictions for a particular data set, the 

goodness of fit was executed as well as the statistical significance of the parameters and unbi-

ased distribution of residuals. 

3.4.1 Diameter increment equation 

The predictor variables determined in chapter 2 were tested using the empirical single tree 

increment data,  and the results of fitting different equations were compared to select the best 

equation. Finally, the following form turned out to be best: 

  (     )            (    )          
        (  )       (      (   ))                        (26) 

Where: SL is the slope angle in percent, ASP is the aspect in radians, ln (    ) is the value of the 

natural logarithm of        (cm);     
 
 is the value of the square of      (cm); BAL: basal area of trees 

larger than the subject tree; SDI: Stand density index,      ,                 are regression coeffi-

cients;                         

All parameter estimates of the diameter growth equation are logical and significant at the 

0.001 level and the highest value of the standard error of coefficients was 0.076 (Table 3-6). 

The equation showed good performance for explaining the variations in diameter increment, 

where the coefficient of determination (R
2
) was 0.58 and that means the equation can explain 

58% of the variation of diameter increment for Pinus brutia in the coastal region in Syria. 

Table  3-6: Estimates of the parameters, significance and stand error of each parameters of Pinus brutia diameter 
increment equation 

Equation 
Unstandardized Coefficients 

Unstandardized 

Coefficients t P.value 

B Std.Error Beta 

Constant -2.971 0.076 - -39.261 0.000 

Ln(d1.3) 0.211 0.029 0.187 11.259 0.000 

(    
 
) -0.0001 0.000 -0.126 -7.368 0.000 

SDI -0.001 0.000 -0.658 -44.551 0.000 

BAL -0.013 0.000 -0.122 -8.294 0.000 

Slo.Cos(ASP) 0.019 0.002 0.103 8.097 0.000 

Ln(SI) 0.865 0.019 0. 676 45.56 0.000 

Where: SDI is stand density index (N/ha), and BALis the basal area in larger trees (m 2 /ha), SL is 

the slope angle in percent, ASP is the aspect in radians, ln(dbh) is the value of the natural logarithm 

of       (cm);     
 
 is the value of the square of      (cm),         ,                 are regression coef-

ficients 

The positive parameters for variable natural logarithm of diameter at breast height and nega-

tive parameter for squared diameter at breast height (Both represent the tree size) confirm the 

presumed relationship between tree growth and tree diameter, that is, for a given set of stand 
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conditions trees grow at low level when young, increase to maximum point and then decline 

thereafter. Competition is represented by stand density index and basal area larger than the 

subject tree (BAL) index which are distance-independent competition indces.  Stand density 

index is a relative measure of stand density the converts a stand's current density into a densi-

ty at a reference size. It is an effective index of competition in pure, even-aged stands (Uzoh 

and Oliver, 2008; Weiskittel et al, 2011) and represents two-sided (symmetric). Another com-

petition index is BAL. BAL index is the total basal area per hectare in trees that are larger 

than the subject tree. It represents an expression of the relative social rank of the subject tree 

in terms of basal area. It represents the one-sided competition (asymmetric competition). The 

sign of the parameters of BAL and stand density index, is all negative, it implies that the di-

ameter increment is significantly and negatively related to BAL and stand density index for 

Pinus brutia stands. Site index, slope and aspect represent the site characteristics. The positive 

sign of the site index indicates that trees grow obviously more rapidly on the good site quality 

than on bad site quality. This is consistent with the definition of site productivity trees grow 

faster on the better sites, whereas the small value of positive sign of slope and aspect parame-

ter show the a bit positive effect on tree diameter. 

Table 3-7 shows the partial effect of each explanatory variable such as on the predicted diam-

eter increment, holding the others constant at their sample mean. 

Table  3-7: The partial coefficient of correlation which assesses the contribution of each variable on the depend-
ent variable 

Variable Partial coefficient of  Correlation 

ln(d1.3) 0.133 

(    
 ) -0.095 

SDI -0.631 
BAL -0.150 

Slo.Cos(ASP) 0.146 
Ln(SI) 0.640 

Where: SDI is stand density index (N/ha), and BAL/     is the basal area in larger trees (m2 /ha), SL 

is the slope angle in percent, SI is the site index(m), ASP is the aspect in radians, ln(dbh) is the 

value of the natural logarithm of        (cm);     
 
 is the value of the square of      (cm),       

  ,                 are regression coefficients 

The residual plots of the final individual-tree diameter increment equation for Pinus brutia are 

given in Figure 3-10. They proved that there were no obviously observable patterns on these 

residual plots. 
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Figure  3-10: The relationship between residuals of diameter increment equation and variables used in construct-

ing the equation (Natural logarithm of site index, squared diameter at breast height, aspect and slop, natural loga-

rithm of diameter at breast height, basal are of trees larger than the subject tree divided by diameter at breast 

height, stand density index), this step as one of set of steps to make sure if regression assumptions are satisfied. 

Due to the logarithmic transformation of the predicted variable, a Snowdon correction factor 

was calculated and applied for the equation to remove bias from back-transformed  

Predictions (Snowdon 1991). The correction factor in this study was equal to 0.85. A predic-

tion of annual year future growth (i    , corrected) is calculated as: 

                                                          (  (     ))                                                     

(27) 

Where:  ln (Id) is the prediction of the logarithmic model (Equation 26). 

The diameter increment equation was evaluated by root mean square error (RMSE) and rela-

tive root mean square error. These tests were 0.09 cm and 17% respectively.  

In addition to the developed equation, one supplementary equation for diameter increment 

equation was fitted without geo-climatic variation (OGV) and evaluated exactly according to 

the previous steps explained above: 

  (     )                 (    )        
        

          (  )                  

       (28) 

All parameter estimates of the diameter growth equation are logical and significant at the 

0.001 level. The equation showed good performance for explaining the variations in diameter  

increment, where the coefficient of determination (R
2
) was 0.57 and that means the equation 

can explain only 0.01 of variation of diameter increment less than the diameter increment 

equation with OGV. 
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3.4.2 Development of height increment equations 

3.4.2.1 Development of realized height increment equation 

The following height increment equation is a function of tree size, site characteristics and 

competition (Lemmon and Schumacher, 1962; Beck, 1974; Wykoff et al., 1982): 

  (  )            (    )       
       (  )      (    )       (     )     

   

  
              (29) 

Where: ln(ELEV) is the elevation in meters, ln (depth) is natural logarithm of soil depth in stand(cm), ln(d1.3) is 

the value of the natural logarithm of       (cm);    is the value of the square of   (m),BAL/d1.3:basal area of trees 

larger than the subject tree divided by diameter at breast height ,       ,                 are regression coeffi-

cients 

 

All parameter estimates of the height growth equation are logical and significant at the 0.001 

level (Table 3-8) and the highest value of the standard error of coefficients was 0.25. The 

equation showed reasonable performance for explaining the variations in diameter increment, 

where the coefficient of determination (R
2
) was 0.36 and that means the equation can explain 

58% of the variation of diameter increment for Pinus brutia in the coastal region in Syria. 

Table  3-8: Estimates of the parameters, significance and stand error of each parameter of Pinus brutia height 

increment equation 

Equation 
Unstandardized Coefficients 

Unstandardized 

Coefficients t P.value 

B Std.Error Beta 

Constant -3.361 0.255  -13.162 0.000 

Ln(d1.3) -0.826 0.055 -0.445 -27.619 0.000 

(  ) 0.001 0.000 -0.219 -8.624 0.000 

Ln(SI) 1.562 0.043 0.741 36.180 0.000 
Ln(ELEV) 0.153 0.024 0.094 6.309 0.000 

Ln(depth) -0.080 0.032 -0.039 -2.469 0.000 

BAL/d1.3 -0.227 0.017 -0.329 -13.211 0.000 

Where: BAL/ d1.3 is the basal area of trees larger than the subject tree (m 2 /ha) divided by diameter 

at breast height (cm), SL is the slope angle in percent, ASP is the aspect in radians, ln(ELEV): the 

elevation in meters, ln(depth) is natural logarithm of soil depth in stand(cm), ln(d1.3): the value of 

the natural logarithm of       (cm);   : the value of the square of      (cm) 

Tree size is represented by the natural logarithm of diameter at breast height and squared tree 

height (Monserude and Sterba, 1996; Uzoh and Oliver, 2006).  Site index, elevation (m) and 

soil depth (cm) are included in the equation as representative of physiographic and topograph-

ic variables (Monserude and Sterba, 1996; Uzoh and Oliver, 2006). Site index, elevation and 

soil depth represent the site characteristics. The positive sign of the site index indicates that 

trees grow obviously more rapidly on the better sites than on poorer ones, while the elevation 

and soil depth have smaller effect on height growth. 

Competition is represented by modified BAL index (BAL/d1.3) (Hamilton, 1986). The nega-

tive sign of the parameters of BAL/d1.3 indicates that the diameter increment decreases as 

BAL/d1.3 increases. 
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To determine the contribution of each variable on the dependent variable which is in this 

study the height increment, the partial coefficient of correlation was applied. Table 3-9 indi-

cated the site index was the strongest individual predictors than any other variable, followed 

by the natural logarithm of diameter at breast height. 

Table  3-9:The partial coefficient of correlation which assesses the contribution of each variable on the dependent 

variable 

Variable Partial coefficient of  Correlation 

Ln(d1.3) -0.266 

(  ) -0.157 

Ln(SI) 0.554 

Ln(ELEV) 0.115 

Ln(depth) -0.045 
BAL/d1.3 -0.236 

Where: BAL/d1.3 : the basal area of trees larger than the subject tree (m2 /ha) divided by diameter at 

breast height, Ln(ELEV) : the elevation in meters, ln (depth) is natural logarithm of soil depth in 

stand (cm), ln (d1.3): the value of the natural logarithm of        (cm);    : the value of the square of 

     (cm) 

At last, the residuals do not correlate with variables used in construction of linearized height 

increment equation as the following (Figure 3-11) showed: 

 

 

Figure  3-11: The relationship between residuals of height increment equation and set of variables used in con-

structing the equation (natural logarithm of depth, ratio of basal are of trees larger than the subject tree and di-

ameter at breast height, elevation, squared tree height, natural logarithm of diameter at breast height, natural 

logarithm of site index).This step as one of set of steps to make sure if regression assumptions are satisfied. 

Due to the logarithmic transformation of the predicted variable, a Snowdon correction factor 

was calculated for the equation to remove bias from back-transformed predictions  

 (Snowdon 1991). The correction factor was equal to 0.917. A prediction of future annual 

height increment (Ih, corrected) is calculated as: 

                                                        (  (  ))                                                  (30) 
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Where:  ln (Ih) is the prediction of the logarithmic model equation (29)  

In addition to the developed equation, one supplementary equation for diameter increment 

equation was fitted without (geo-climatic variation (OGV)) and evaluated exactly according 

to the previous steps explained above: 

  (  )                  (    )          
          (  )                        (31) 

Where: ln(d1.3) is the value of the natural logarithm of        (cm);    is the value of the square of   

(m),BAL/d1.3:basal area of trees larger than the subject tree divided by diameter at breast height  

All parameter estimates of the diameter growth equation are logical and significant at the 

0.001 level. The equation showed good performance for explaining the variations in diameter 

increment, where the coefficient of determination (R
2
) was 0.35 and that means the equation 

can explain only 0.01 of variation of height increment less than the height increment equation 

with OGV. 

3.4.2.2 Development of potential-modifier height increment 

The potential top height increment was calculated as differences between two successive of 

top heights in two inventories. 

Then, the reparametrized nonlinear height increment equation (Nagel, 1999) is as follows: 

                                       (
     

    
)        (

    

 
)
     

                                          (32) 

Where: Ih: tree height increment; IHpot: potential stand top height increment; h: tree height in m, 

H100: stand top height (dominant height) in m,                    

Table 3-10 shows the main statistical parameters of this equation,and the equation shows no 

multicollinarity. 

Table 3-10:The coefficient of variables for potential modifier height increment equation and correlation matrix 

between the independent variable used in modeling 

Adjusted R
2
 Coefficients Correlation 

Value Std err       

0.52 0.407 0.018 1 -0.747 

1.709 0.124 -0.747 1 
 

Where: Std Err=standard error. 

 

Figure 3-11 showed that the predicted height increment correlates well with the observed in-

crement. R
2 
is 0. 54. 

The following Figure 3-12 visualizes the homogeneity of variance of equation‟s residuals for 

modelled height increment and the tree height. 
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Figure  3-12: The relationship between residuals of height increment equation and modelled height increment (A) 
and ratio of stand top height and  tree height (B); the relationship between predicted and measured height incre-

ment(c).  

The linearized height increment equation was evaluated by calculating absolute and relative 

root mean square error (RMSE). These tests gave good results where the absolute and relative 

RMSE were 0.11 m, 23.1 % respectively; the same tests were applied on potential-modifier 

height increment equation. These tests gave good results where the absolute and relative 

RMSE were 0.11 m, 22.19% respectively. 

Adjusted R-squared value of potential modifier height increment was 0.52 and adjusted R-

squared value of realized height increment was 0.49, the RMSE for potential modifier height 

increment and linearized height increment were 22.19, 23.1 respectively. 

To sum it up, the developed height increment equations satisfies the linear and nonlinear re-

gression assumptions by using a set of tests. The potential modifier height increment gave 

relatively higher performance than realized modifier height increment based on Fitting statis-

tics‟ results. 

3.4.3 Crown ratio equation 

The combinations of variables that showed a good performance in the all possible regression 

algorithm were tested in order to select the best nonlinear model, exponential, logistic, or 

Richards equation. 

Also, correlation analysis was carried out to give an insight into the association between 

crown ratio and the growth variables. It was observed from the correlation matrix presented in 

Table 3-11 that crown ratio decreased with increasing tree size and competition. 

Table  3-10: Correlation matrix for individual-tree crown ratio 

  
 CR SDI BAL lnSI 

Squared 

d1.3 
d1.3 

Pearson Correlation CR 1.000 -.671 -.322 -.782 -.147 -.297 

SDI -.671 1.000 .475 .465 -.034 .008 

BAL -.322 .475 1.000 .245 -.361 .065 

lnSI -.782 .465 .245 1.000 .197 .279 

Squared 

d1.3 
-.147 -.034 -.361 .197 1.000 .576 

d1.3 -.297 .008 .065 .279 .576 1.000 
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Table 3-12 presents the selected versions of the exponential, logistic and Richard equations. 

These equations used diameter at breast height and squared diameter at breast height to repre-

sent the tree size, stand density index and basal area of trees larger than the subject tree to 

represent the competition, site index to represent the site characteristics. 

Table  3-11: Selected tree crown ratio equations 

Model Examined equations 

Hasenauer and 

Monserud, 1996 

(      (                                               

                 
               )

   

Popoola and Adesoye, 

2012 

(      ( (                                          

               
              ))

 
 
  

Leites et al., 2009     (                                             

                  
              )

   

Where: SDI is stand density index, and BAL is the basal area in larger trees (m2 /ha), d1.3is the di-

ameter at breast height (cm) . SI is the site index (m)  

By evaluating the equations, Table 3-11 showed the exponential equation gave the best results 

(higher adjusted R
2
 and lowest values of root mean square error and relative root mean square 

error).  

Table  3-12: Predicted statistics for crown ratio equation using the modeling data 

Model R
2
 RMSE 

Relative 

RMSE 

Hasenauer and Monserud, 1997 0.735 0.078 10.02 

Popoola and Adesoye, 2012 0.735 0.23 35.4 

Leites et al., 2009 0.764 
0.068 

 
8.6 

 

In addition, the residuals do not correlate with variables used in construction of crown ratio 

equation (Figure 3- 13). 
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Figure  3-13:Relationship between residual and estimated CR using exponential equations. 

Given the results of tests, the exponential equation gave best results among the tested equa-

tions and satisfied the nonlinear regression assumptions. 

3.4.4 Generalized height-diameter relationship 

The candidate height-diameter equations which have one to four parameters were re-

parameterized, and all the equations were found to be the best fit for the data significantly at 

value = 0.05.  The coefficient of determination (R
2
) values for all the fitted equations were 

ranged from 0.50 to 0.81 (Table 3-31). 

Table  3-13: Estimates of the parameters of generalized height-diameter equation of Pnus brutia 

Equation Estimated Parameters 

            

Harrison et al. (1986) 441.06 0.037 3.98×10-5 - 

Hui and Gadow (1993) 0.323 0.397 0.387 0.480 

Mirkovich (1958) 2.927 1.033 0.003 9.489 

Stoffels and Van Soest modified by Tomé 

(1988) 
0.559 - - - 

The parameter estimates and the goodness-of-fit statistics of the different generalized height-

diameter equations tested are shown in Table 3-35. The equation that performed best (lowest 

values of bias, relative bias, precision and accuracy and highest values of adjusted R
2
) was the 

equation proposed by Mirkovich (1958). 

Equation proposed by Hui and Gadow (1993) performed adequately accounted for approxi-

mately the same percentage of variance as an equation proposed by Mirkovich (1958).  

Table  3-14: Selection statistics of the general height-diameter equation for brutia pine stands in the coastal re-

gion in Syria 

Equation R
2
 Bias 

Relative 

Bias 
Precision 

Relative 

Precision 
Accuracy 

Relative 

accuracy 

Harrison et al. (1986) 0,506 0.74 
 

4.73 3.98 25.4 6.18 39.56 

Hui and Gadow (1993) 0.808 0.079 0.507 2.58 16.51 2.63 16.83 

Mirkovich (1958) 0. 81 0.018 0.115 2.53 16.22 2.54 16.24 

Stoffels and Van Soest 

modified by Tomé (1988) 
0.76 0.7 4.47 2.82 18.03 5.29 33.86 
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In addition to the previous steps, the tested equations involved visual examinations of residu-

als against the predicted values. Figure 3-14 shows the residuals plotted against predictions of 

height for Mirkovich equation as an example. Graphical diagnostics of residuals for the height 

predictions indicated that the differences between predicted and actual values are approxi-

mately normally distributed in all equations. 

 

Figure  3-14:Analysis of residuals for the tested equations, for representing the height-diameter relationship using 

Mirkovich equation 

Methods of evaluation were also applied in the second group of data (212 sample trees). So, 

based on the different performance evaluations, the equation proposed by Mirkovich (1958) 

provides more satisfactory results as compared to the other tested equations. 

Table  3-15: Validation statistics of the generlaized height-diameter equations for Pinus brutia in the coastal 

region in Syria 

Equation Bias 
Relative 

Bias 
Precision 

Relative 

Precision 
Accuracy 

Relative 

accuracy 

Harrison et al. (1986) 0.5 3.3 2.9 19.5 4.4 29.2 

Hui and Gadow (1993) -0.5 -3.7 2.76 18.16 4.6 30.3 

Mirkovich (1958) -0.4 -3.1 2.7 18 4.2 27.8 

Stoffels and Van Soest 

modified by Tomé (1988) 
0.7 

 

4.9 3.1 20.4 5.8 38.2 

 

3.4.5  Mortality equation  

After checking the candidate variables by univariate analysis, the variables of three groups 

(tree size, competition, and stand level) with a significance level lower than 0.25 were used in 

multivariable analysis. 
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The general mortality model was formulated as the following logistic equations: 

                      
 

    (                             )
                                                                 (33) 

Where Pi is the probability of tree mortality, b0, b1, b2, b3, b4 are coefficients, d1.3: diameter at breast height, BAL: 

basal area of trees larger than the subject tree, Dq: quadratic mean diameter, SI : site index(m). 

Estimated coefficients and corresponding standard errors are presented in (Table 3-17). All 

parameters in the equations (diameter at breast height, basal area of trees larger than the sub-

ject tree, quadratic mean diameter and site index) were highly significant (p < 0.001). The 

standard errors of explanatory variables are close to zero. In Equation (33) Wald statistics 

showed that the highest predictive capacity in the equation was for the independent variable 

quadratic mean diameter (Dq), whereas the lowest predictive capacity in the equation was for 

the independent variable site index (SI). With continuous variables, the probability ratio de-

scribes the change of probability per one unit change of covariate. This means that the proba-

bility of mortality becomes 1.290  times higher than site index, quadratic mean diameter and 

basal area of trees larger than the subject tree with 1 cm increase in diameter at breast height. 

Table  3-16: Evaluation of coefficient of developed individual-tree mortality equation 

 Variables B Std.Error Wald Sig. 
Odds 

ratio(exp(B)) 

Equation 

(33) 

Intercept -5.088 0.535  0.000  

d1.3 -0.255 0.028 90.404 0.000 1.290 

BAL 0.102 0.011 81.420 0.000 0.903 

Dq 0.122 0.025 91.302 0.000 0.885 

SI 0.035 0.024 23.697 0.002 0.965 

Where: d1.3: diameter at breast height, BAL: basal area of trees larger than the subject tree, SI; site 

index, Dq: quadratic mean diameter, Sig=significance  

On the other hand, the effect of variables on the predicted probability of mortality was shown 

in Figure 3-15. For the effect of diameter at breast height on predicted mortality rates, the 

mortality rate curve can capture the U-shape. The mortality rate is highest in the smallest di-

ameters, it rapidly decreases as diameter increases and then increases again for very large 

trees,  as Figure 3-15 also illustrate the effect of stand basal area and basal area of larger trees 

on predicted mortality rates. Higher stand basal area or basal area in larger trees significantly 

increases mortality rates. 
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Figure  3-15:Predicted probability of individual-tree mortality of Pinus brutia as a function of tree diameter at 

breast height, and basal area of trees larger than the subject tree, and site index  for observed dead (black) and 

live trees(grey) for modeling data. 

The evaluation of the predictive capacity of developed mortalitz equation is presented in (Ta-

ble 3-18). 

Table  3-17: Statistical parameters of developed logistic equation 

 

 

 

The relative area below a ROC curve is a measure of accuracy based on the sensitivity and the 

specificity of the test. The relative area below the ROC for Equation (33) was 0.933 which 

means that the accuracy of the individual-tree survival equation for Pinus brutia was very 

good according to Hosmer and Lemeshow (2000) (Figure 3-16). 

 
Figure  3-16:Visualization of ROC curves. Left Figure represent the equation (33), the blue line is a ROC curve, 

green line y = x curve (Indicates no discrimination), right Figure: sensitivity-specificity diagram 

A threshold can be used to assign mortality. If the estimated probability of mortality exceeds 

the threshold, then the tree is considered dead. The cut-off value was assigned in three ways, 

the first: based on the Interception point of sensitivity and specificity (Adame et al, 2010;  

Thapa, 2014; Ma and Lei, 2015) which was 0.035 for equation (33) (Figure 3-16); the second: 

the average observed mortality rate which was 0.17 for equation (33). The first two thresholds 
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are considered as deterministic method while the third which is the random number is consid-

ered as stochastic method. The results of using these threshold are shown in the following 

table (Table 3-19).  

Table  3-18: Overall prediction rates for the developed mortality equation 

 Mortality equation 

Percentage correct 

Cutoff point Alive% Dead% Total% 

Average observed mortality rate 97.9 35.2 66.55 

Sensitivity-specificity cut-off 85.6 85.6 85.6 

Random number 86.2 35.2 60.7 

 

To summarize, the developed mortality equation showed very high capacity to predict natural 

mortality of trees. Three cut-off points (the interception point of sensitivity and specificity, the 

average observed mortality rate and a random number) were used. The interception point of 

sensitivity and specificity scored better results  than the average observed mortality rate and a 

random number. 

3.5 Simulation of individual-tree growth model 

Once the growth model has been calibrated, its forecasting accuracy must be assessed. The 

most important aspect of model evaluation is the comparison of prognosis and empirically 

observed growth, therefore in the first part in this section is the short-term forecasts on the 

independent 10 plots for a growth interval of eight years to test the goodness-of-fit of the cali-

brated model. To be efficient in management, a growth model must be realistic over several 

decades, so a long-term steady state predicted by the model was checked for quantitative 

plausibility. The third part of this section addresses the sensitivity analysis. This analysis al-

lows determining how sensitive a model‟s outputs are to changes in parameter values. The 

fourth part is the applications of simulation model which suggests the optimal rotation age in 

the absence of thinning and allows exploring the impact of the thinning on growth. 

3.5.1 Short-term prediction of a eight-year period  

The description of independent data, which came from10 plots, is seen in the appendices 2, 4, 

6, 8, 10, 12 respectively. The program simulated the development of the plots for 8 years 

 (2008 - 2016).  Diameter increment and linearized height increment equations were validated, 

and then transforming it to tree diameters at breast height (d1.3) and tree height respectively.  

In order to validate the equation: firstly, bias, relative bias, precision, relative precision, accu-

racy, and relative accuracy were calculated in order to estimate the precision of predictions of 

diameter increment, linearized height increment and potential-modifier height increment  
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(Table 3-20). 

Table  3-20: The validation results of fitted diameter equation applied in independent plots 

Diameter increment 

Plots Bias Relative 

Bias 

Precision Relative precision% Accuracy Relative 

Accuracy% 

14 0.46 3.70 0.64 5.15 3.76 30.33 

15 0.44 2.63 0.67 3.99 2.72 16.22 
30 -0.97 -2.04 2.45 5.14 3.19 6.69 

40 -0.08 -0.47 0.44 2.59 0.64 3.77 

46 -0.31 -1.50 0.72 3.48 0.78 3.79 

59 0.21 0.96 0.33 1.49 1.02 4.63 

61 0.73 1.70 1.06 2.48 2.00 4.67 
62 0.52 3.90 0.55 4.08 3.94 29.33 

63 1.89 5.95 2.04 6.42 6.29 19.84 

64 0.46 1.59 0.97 3.36 1.86 6.42 

Linearized height increment 

14 1.03 10.23 1.13 11.22 1.53 15.19 

15 0.05 0.39 0.45 3.23 0.45 3.26 

30 -0.74 -4.00 1.09 5.88 1.32 7.11 

40 1.34 12.07 1.50 13.46 2.01 18.08 

46 0.70 4.80 0.87 5.98 1.11 7.67 
59 -0.24 -3.10 0.28 3.53 0.37 4.70 

61 -0.45 -2.52 0.53 3.01 0.69 3.92 

62 0.56 7.91 0.62 8.86 0.83 11.88 

63 0.44 2.41 0.46 2.56 0.64 3.52 

64 -0.20 -1.05 1.11 5.71 1.13 5.80 

Potential-modifier height increment 

14 0.19 1.88 0.36 3.53 0.40 4.00 

15 -0.33 -2.36 0.49 3.53 0.59 4.25 

30 -0.68 -3.65 0.99 5.35 1.20 6.48 
40 -0.52 -4.66 0.57 5.16 0.77 6.95 

46 0.08 0.53 0.51 3.50 0.51 3.53 

59 0.04 0.46 0.12 1.49 0.12 1.56 

61 -0.44 -2.48 0.81 4.59 0.92 5.21 

62 -1.63 -23.16 1.68 23.91 2.34 33.28 

63 0.35 1.90 0.66 3.66 0.75 4.13 

64 -0.65 -3.32 0.77 3.97 1.01 5.17 

 

Second: the difference between predicted and observed values of diameter increment, height 

increment in the ten plots were presented (Appendices 17, 18, 19). They showed that observed 

values are very close to those of predicted ones. So they indicated that the growth model pro-

vided reasonable predictions. Based on the developed individual-tree growth model, Table 3-

21 below shows the results of the actual stand volume of the ten plots at first measurement as 

well as the predicted stand volume at the second measurement  The range of difference per-

centage related to the observed values is from -0.4% to 14.3 %. The average difference per-

centage of ten plots is 4.45%. 
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Table  3-21: Estimated stand volume based on the developed diameter increment and linearized height increment 

equations 

Plots 

V (m
3
.ha

-1
) 

From field 

measurements 

Validated 

from the 

developed 

equation 

Differences 

Relative 

error of 

estimation% 

14 136.7 155.1 18.4 13.4 
15 214.0 224.9 10.9 5.1 

30 154.3 138.1 -16.2 -10.5 

40 166.5 178.4 11.9 7.1 

46 199.6 200.4 0.8 0.4 

59 61.5 61.3 -0.2 -0.4 

61 331.5 339.1 7.5 2.3 

62 107.8 120.5 12.7 11.8 

63 249.2 284.7 35.5 14.3 

64 305.3 308.3 3.0 1.0 

With moving to the validation of mortality equations which used independent data from 10 

plots representing different indices, the probability of each tree was calculated. The evaluation 

process used also three cut off points. The overall predictions of mortality for validation data 

obtained using the average observed mortality rate, the intersection point of sensitivity. The 

results based on the interception point of sensitivity and specificity showed that the percent-

age of correctly predicted statuses 80.9 % for growing and 72.4 % for dead trees and 76.65 % 

overall followed by the average observed mortality rate cut-off, and then the random number 

cut-off (Table 3-22). 

Table  3-22: Overall predictions rates for the developed mortality equation applied on validation data 

 Equation 33 

Percentage correct 

Cut-off point Alive% Dead% 
Total

% 

Average observed mortality rate 97.6 27.5 62.6 

Sensitivity-specificity cut-off 80.9 72.4 76.65 

Random number 95.3 26.2 60.8 

 

3.5.2   Model plausibility 

The model behavior should also be consistent with biological knowledge and practical experi-

ence of stand growth over a long time in the absence of violent natural or human disturbance. 

The efficiency of a growth model over a single growth period of eight years is obviously not 

sufficient to guarantee applicability for management. To check the plausibility of the model, 

the study applied the model to simulate the development of a stand without harvest under dif-

ferent scenarios over 150 years. 
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The PINUS-Syria simulates the long-term behavior of diameter increment and height incre-

ment corresponding to the five site indices 10, 15, 20, 25, 30 under the effect of the independ-

ent predictors.  

Figure 3-17 indicates that there are differences in the growth rates between site indices, the 

higher site index the higher growth. But the growth decreases as diameter at breast increases 

that could be explained that over time trees become larger and the stand basal area increased, 

decreasing the increment as showed in Figure 3-17 (A). The pressure on water and soil nutri-

ents, which stand density index is considered as a proxy for them, caused higher competition 

which in turn leads to slower increment. Figure 3-17 (F) supports this result, where diameter 

increment decreases as the stand basal area increases under different densities. The lower den-

sity, the lower competition, and thus the higher diameter increment. In terms of BAL which 

can be regarded as descriptive size for the performance of the single tree, the result seems 

plausible where the diameter increment decreases as BAL increases. 

Regarding the height increment, Figure 3-17  showed that the height increment culminates in 

early-aged before height increment starts decreasing overage. The relationship between the 

site index and tree height are so closely related, the higher the site index, the higher the height 

increment. The competition stimulates a little the height increment before the competition 

decreases and slows the height increment. 

 

 

Figure  3-17:The effect of predictors on growth of Pinus brutia plot representing different site index values, dif-

ferent densities, where the conditions are:  elevation = 500 m, soild depth = 60 cm; slope = 20 % and aspect =50 

degree. A: Effect of tree diameter on diameter increment representing different site indices where the initial 
density is 1500 tree per ha; B: Effect of BAL on the diameter increment representing different site indices where 
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the initial density is 1500 tree per ha C: Effect of stand density index on diameter increment; D: Developing the 

height increment over time under different site index values representing different site indices where the initial 

density is 1500 tree per ha; E: Effect of BAL/ d1.3 on the height increment representing different site indices 

where the initial density is 1500 tree per ha F: Effect of stand basal area on diameter increment under three dif-

ferent densities 

The equation proposed by Mirkovich (1958) was used to estimate the diameter-height rela-

tionship for different site indices and different ages. The simulations of the site index effect 

on the height-diameter relationship were made using the age of 35 and values of dominant 

height estimated by Sloboda equation (1971) (Figure 3-18 A). In more productive sites, the 

height-diameter curves of Pinus brutia were steeper and presented larger asymptotes than in 

poor sites. The height estimates of Pinus brutia for different ages have been made using site 

index (20 m) and values of dominant height computed from Sloboda equation (1971) (Figure 

3-18 Right). Although fixed intervals of 10 years were used to describe the effect of age on 

height-diameter relationship of Pinus brutia, there is a decrease in the distance between 

height-diameter curves with increasing age (Figure 3-18 B), i.e. the distance between height-

diameter curve of age 15 and 25 is larger than the distance between height-diameter curve of 

age 45 and age 55. Probably that is attributed to the reduction in height and  

diameter growth in old ages, making the changes in the height-diameter curves become very 

small. 

                          

Figure  3-18:Effect of site index(A) and age (B) on the height-diameter relationship according to the developed 

generalized height-diameter equation for Pinus brutia. 

With moving to simulating the effect of competition on crown ratio,  the study found that ef-

fect is similar to the effect of competition on diameter and height increment. The crown ratio 

decreases as competition increases; and because there is a close relationship between site in-

dex and tree height, it is easily noted that better site index,  the smaller crown ratio values as 

Figure 3-19 (A) showed. Also, the simulation process indicated that the higher values of the 

crown ratio are noticed in the smaller diameter values under different site indices Figure 3-
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19(C) and under different densities Figure 3-19 (D) where the higher density led to less crown 

ratio values. 

                              

                                 

Figure  3-19:The effect of predictors on crown ratio of Pinus brutia plot representing different site index values, 

different densities, where the conditions are:  elevation = 500 m, soild depth=60 cm; slope= 20 % and aspect =50 

degree. A: Effect of competition on crown ratio in P. brutia plot representing different site index values: 10, 

15,20, 25 and 30; B: Effect of competition on crown ratio under different values of diameter at breast height 

where the initial density is 1500 tree per ha;C:Effect of tree diameter on crown ratio representing different site 

index values: 10, 15, 20, 25 and 30 where the density is 1500 tree per ha; D: Effect of tree diameter on crown 

ratio under three different densities  

The simulation runs were also analyzed for the development of the probability of mortality 

over time in the even-aged stands of Pinus brutia under different site indices: 10, 15, 20, 25, 

30 (Figure 3-20). The simulation results showed that the better the site index, the higher the 

probability of mortality. These findings seem consistent with biological knowledge and prac-

tical experience of stand growth,  where the competition on resources is higher in the better 

site index, thus high mortality rates occurs, within the same context, it is easy to understand 

why high mortality rates are seen in high density stands compared with the low density 

stands.  With going to analyze the effect of tree diameter on the mortality rate,  the study 

found that the probability of mortality increases with an increasing diameter at breast height 

in the small diameters up to a certain point, then the mortality decreases as diameter at breast 

height increases with pointing out that probability of mortality culminates sooner on  

higher density stands and declines more rapidly after reaching the point of culmination com-

pared with those growing on fewer density stands. 
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Figure  3-20:The effect of predictors on mortality of Pinus brutia plot representing different site index values, 

different densities, where the conditions are:  elevation = 500 m, soild depth=60 cm; slope= 20 % and aspect =50 

degree. A: Developing the probability of mortality over time under different site indices where stand density 
1500 per hectare; B: The effect of competition on probability of mortality where stand density is 1500 tree per 

hectare under different site indices; C: The effect of competition on probability of mortality where stand density 

is 1500 tree per hectare under different densities; D: The effect of diameter at breast height on probability of 

mortality where stand density is 1500 tree per hectare under different densities. 

Furthermore, the study compared four different response variables (Quadratic mean diameter, 

stand basal area, stand volume and number of trees per hectare) of stochastic and determinis-

tic approaches. Because the outcomes of independent samples were not normally distributed, 

a nonparametric test was appropriate. The study used Mann Whitney U Test (Wilcoxon Rank 

Sum Test) for testing the equality of means in two independent samples representing stochas-

tic and deterministic approaches respectively. 

The following Figure 3-21 (A) showed the number of trees per hectare decreases as quadratic 

mean diameter increases. In this figure, we can notice that the behavior of mortality by using 

stochastic and deterministic approaches is different. In the stochastic approach, the trees start  

dying at early diameters while in the deterministic approach the mortality is showed starting 

from 22.4 cm. Deterministic versus averaged stochastic projection results showed practical 

differences in mean stand values for a number of trees, basal area, volume, or quadratic mean 

diameter (Figure 3-21). 
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Figure  3-21:A:Mean 100-year stochastic and deterministic simulations of the number of trees per hectare, B) 

Basal area; C: Stand volumeand;D: quadratic mean diameter, the other conditions are:  elevation = 500 m, soild 

depth=60 cm; slope= 20 % and aspect =50 degree 

Considering these differences and the results of their associated t-tests, we are forced to reject 

the null hypothesis and to conclude that deterministic and stochastic simulations may yield 

different predictions.  

3.5.3 Sensitivity analysis  

The study tested the individual-tree growth model in a global sensitivity analysis by determin-

ing partial correlation coefficients for site characteristic parameter. 300 sets of input parame-

ters were generated for different combinations. 

Simulations were carried out for 3125 parameter combinations with 10 repetitions each, and 

model outputs were stored after 70 years. 

The results of Figure 3-22 show on the left side the distribution of the analyzed output varia-

bles for all input variable combinations. The pie charts on the right side illustrate the partial 

correlation between the input parameters and the outcomes. 

The diameter increment, height increment, crown ratio mortality are influenced to a varying 

degree by input parameters. 

Among the parameters which were tested (site characteristics), the most influencing input 

parameter is the site index. 

0

500

1000

1500

2000

0 20 40 60

N
u

m
b

e
r 

o
f 

tr
e

es
 p

e
r 

h
e

ct
ar

e
 

Quadratic mean diameter (cm) 

Stochastic

Deterministic

A 

0

20

40

60

80

0 20 40 60 80 100 120

St
an

d
 b

as
al

 a
re

a 
m

2 -
h

a
-1

 

Age (years) 

Deterministic

Stochastic

B 

0

50

100

150

200

250

300

350

400

0 50 100 150

St
an

d
 v

o
lu

m
e

 m
3 .

h
a

-1
 

Age (years) 

Stochstic

Deterministic

C 

0

10

20

30

40

50

0 20 40 60 80 100 120

Q
u

ad
ra

ti
c 

m
ea

n
 

d
ia

m
et

e
r 

cm
 

Age (years) 

Stochastic

Deterministic

D 



RESULTS 

 

90 
 

 Soil depth affects positively on diameter increment while the Aspect has no clear effect. The 

mean height increment varied widely in the outcomes of sensitivity analysis, indicating a sen-

sitive behavior.  Height increment increase as site index increases, this leads to a positive ef-

fect on growth, while slope affects negatively on height increment. Elevation has a positive 

effect on the height increment and this result is considered a bit surprising and the study will 

try to explain the causes that stand behind this result in detail in the discussion chapter. In-

creasing the elevation leads to increase in the crown ratio, while crown ratio decreases as site 

index and soil depth increase. 

In terms of the probability of mortality,  the sensitivity analysis showed that increasing the 

soil depth leads to an increase in the probability of mortality because the site index and soil 

depth are so related and this result confirms with the biological knowledge of growth 

behavior, while the probability of mortality decreases as elevation increases.  Aspect and 

slope have no clear effect. 
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 Figure  3-22:Sensitivity analysis where distribution of the analyzed output variables for all input var-

iable combinations (left) and the pie charts on the right side illustrate the partial correlation between 

the input parameters and the outcomes (right).Input parameters are : site index:             aspect:            

slope:            elevation:              soil depth:  
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3.5.4 Application of the PINUS-Syria Model 

3.5.4.1 Optimal rotation age 

Optimal rotation age where the wood production is maximized is determined as a result of 

intersection the mean volume increment and current volume increment. 

The most significant parameter affecting rotation length is the site index. As expected, stands 

with poor site indexes have longer optimal rotation lengths than stands on better sites. The 

mean annual increment (MAI) with the optimal rotation length in the example presented in 

this study was 11.5 m
3
 ha

−1
 on the best site and 2.9 m

3
 ha

−1
 on the poorest site. The rotation 

length was 40 years for the best site and 112 years for the poorest site (Figure 3-23). 

 

  

  

 

Figure 3-23:Mean annual increment (MAI) and current annual increment (CAI) curves of a P. brutia plot repre-

senting different site index values: 10, 15,20, 25 and 30 where the density is 1700 tree per ha, with elevation = 

500 m, soild depth= 60 cm; slope= 20 % and aspect =50 degree 
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3.5.4.2 Thinning treatment 

The model tested different forest management scenarios to suggest the appropriate intensity, 

time of executing the thinning treatment, and frequency of thinning of Pinus brutia stands. 

For the appropriate intensity, the model simulates the stand development under five different 

forest management scenarios: (a) absence of thinning, (b) light thinning with 10% of basal 

area removed, (c) moderate thinning with 20% of basal area removed, (d) heavy thinning with 

35% of basal area removed, and (e) very heavy thinning with 45% of basal area removed.  

The following Table 3-23 presents an example to stand with 2000 trees. ha
-1

, three different 

site indices 25, 20, 15 m. The growth was the highest for the scenario with very heavy thin-

ning, the heavy thinning scenario comes second; and followed by the moderate thinning sce-

nario, light thinning scenario, and finally the scenario with no thinning.  Considering these 

results, it has been shown that diameter growth is so related to the intensity of thinning. The 

lower intensity, the higher growth which could be explained as an attempt to compensate for 

extreme basal area reductions, where the higher the more competitors were removed i.e. more 

growing space provided for each one of the selected potential trees. The same behavior is rec-

orded for the height but it remains less affected by thinning compared with the diameter in-

crement. Moderate and heavy thinnings in good and very good productivity sites reach within 

10-40 years of the production period to the optimum age. It delivers a surplus of volume in 

relation to other thinning strategies. In poor sites where the site index is 10 m, there is no 

great economic benefit from the application of moderate, heavy thinning treatments. 
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Table  3-23: Simulation of the stand volume development, diameter at breast height, tree height in optimal sched-

uals which maximize wood production under five different management scenarios(No thinning, light (with 10% 

of basal area removed), moderate (with 20% of basal area removed), heavy (with 35% of basal area removed) 

and very heavy thinning (with 45% of basal area removed) ) which was carried out at 15 years for once in a very 

good site (SI=25 m) with initial density= 2000, elevation = 500 m, soild depth= 60 cm; slope= 20 % and aspect 

=50 degree 

  SI 25    

 No thinning light Moderate Heavy Very heavy 

Standing volume 

(m
3
) 

461.5 484.2 513.1 593.7 763.5 

Diameter (cm) 23.5 25.2 27.3 31.8 37.2 

Height (m) 24.2 25.2 26.2 28.2 30.8 

Rotation age (years) 42 46 51 63 84 

  SI 20    

 No thinning light Moderate Heavy Very heavy 

Standing volume 

(m
3
) 

417.2 447.1 474.4 576.3 729.8 

Diameter (cm) 23.5 25.4 27.5 32.4 37.6 

Height (m) 21.9 22.9 23.8 26.2 28.5 

Rotation age (years) 51 57 63 81 106 

  SI 15    

 No thinning light Moderate Heavy Very heavy 

Standing volume ( 

m
3
) 

350.3 384.9 416.6 535.4 653.7 

Diameter (cm) 23.1 25.2 27.5 33 37.7 

Height (m) 18.7 19.8 20.8 23.4 25.5 

Rotation age( years) 64 72 81 110 137 

 

For the appropriate frequency of thinning, the model simulates the stand development under 

three different forest management scenarios: (a) absence of thinning, (b) one thinning, (c) two  

thinning (Figure 3-24). Two thinnings scenario result in the highest total volume production, 

up to 32 % more than unthinned stands at age 42 years; and 21 % more than one thinning sce-

nario at age 53.  

 

Figure 3-24:Simulation of the stand volume development in optimal schedules which maximize wood production 

under three different management scenarios (No thinning, one thinning at 20 years and two thinning at 15 and 20 
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years) in a very good site (SI=25 m), the other conditions are:  initial density= 2000, elevation = 500 m, soild 

depth=60 cm; slope= 20 % and aspect =50 degree. 

For the appropriate timing of thinning, the model simulates the stand development under five 

different forest management scenarios: the absence of thinning, stand at 10 years, stand at 15 

years, stand at 20 years and stand at 30 years (Table 3-24). Tree responses in growth were 

significant and immediate after thinning. Despite an early age is preferably chosen to imple-

ment the thinning to eliminate weak and unhealthy trees to release the other trees from the 

competition, postponing the thinnings by 5-10 - 20 years, allows increasing the stand volume 

1- 12.5 % compared with no thinning scenario. 

Table  3-24: The impact of different timing of thinning on the rotation age and volume, the other conditions are: 

initial density= 2000, elevation= 500 m , soil depth= 60 cm, slope = 20 %, and aspect= 50 degree 

 No thinning 10 15 20 30 

Rotation age (years) 42 44 46 48 52 

Volume (m
3
.ha

-1
) 461 465 482 498 527 
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4 DISCUSSION 

This chapter elucidates on the meaning, importance, limitations, and implications of the re-

sults highlighted in the previous chapter. This chapter emphasizes the significance of data 

collection, size and representation, which form the basis for this work.  Next, it discusses the 

nature of the individual tree‟s responses to competition, and the comparisons between dis-

tance-dependent and independent indices,  as well as, this chapter permits discussion of some 

points related to the site curves. Then, the discussion chapter highlights separately on five 

primary model components including diameter increment, height increment, crown ratio, 

height-diameter relationship, and mortality. In this chapter, It is necessary to review the prac-

tical aspects of the developed model and the contribution which the thesis makes for Brutia 

pine stands and also shedding the light on the possible future prospects that support more and 

more efficient forest management in Syria. 

4.1 Data collection, size and representation  

 Building the perfect forest growth model essentially requires perfect data, but waiting 

through decades for such perfect data and model, which do not exist anyway, corresponds to a 

lack of logic. Therefore, researchers are trying to compensate for this by obtaining and relying 

on representative, but high-quality data. This study has followed the same orientation when it 

utilized data from permanent plots of Pinus brutia, which were established and inventoried 

for the first time in 2008, and re-measured in 2016 as a step towards an improved yield as-

sessment and growth modelling of Pinus brutia stands in Syria.  

Combining two measurements (2008 and 2016), the number of plots and the data so obtained 

well represented the most common growing conditions plus a record of the dead trees in Syri-

an Brutia pine stands, which was deemed good enough to build viable growth models. As 

Buongiorno (1996) suggests, such data needed not be of so high accuracy, insofar they will 

produce a practical growth model that is not difficult to check thereafter if the model mimics 

tree growth reasonably well or not.  

Using data from permanent plots for forest growth modeling is not the only obstacle which 

faces the researchers. When it comes to the practicality of field measurements, it is usually 

impossible to measure some variables for example, tree height and crown length for all trees 

in a whole forest, plot or stand,  Hence, sampling techniques are efficiently used to provide a 

robust estimation (Freese, 1962; Goulding and Lawrence, 1992; Shiver and Borders, 1996). 

Accordingly, it is conventional in forestry to select candidate trees to model un-measured 
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trees in each plot through a systematic sampling, for example. This is considered as the most 

frequently used sampling technique in forest inventory because it saves time and effort and 

the procedure is practically easy to apply on the field. This point is exemplified by the fact 

that it can easily explained to the field crew, and its potential to yield more precise results 

than simple random sampling when considering a similar number of sample points (Asrat and 

Tesfaye, 2013).  

This study has used the circumference tape to measure the diameter at breast height since this 

measure results in a smaller dispersion. Kramer and Akca (2008) recommended using it in 

case of trial surface recording and for the purpose of incremental examination. With the 

measurement of the tree height, which is considered more difficult than measuring the diame-

ter at breast height, we find that the probability of error is higher. Hence, this study used HCH 

Haglöf Clinometer with Height measuring function, but using this device did not completely 

prevent the error of measurements, which could come from the distance. A higher distance to 

the tree thus increases the possibility of error, which could occur from the inappropriate sight-

ing of the treetop, especially in case of the high-density stands. Additionally, measurement 

from the wrong direction could lead to errors in tree height measurements.  

Data collection in this study adequately accounted for all these mentioned factors. Among 

others, one advantage of building growth models in this study is that it helps in identifying 

knowledge gaps in the light of the inventory data used. The main limitation, however, is that 

the samples were unequally distributed regarding soil depth, elevation and slope, which could 

lead to results that possibly less reflect the influence of topographic factors. Future studies 

should assess in fine details the effect of the topographic factors on the growth and yield of 

Pinus brutia stands.  

Consideration for accurately assessing the effect of soil depth on the growth of Brutia pine 

stands, for example, requires that plots should be distributed along various degrees of soil 

depth within plots characterized by the same other conditions that influence growth. It is 

equally important to note the point that there were no sample stands with age below 16 years; 

this gap should be covered in future studies as it could effectively avoid the unreasonable tree 

height estimates so obtained in the early age of the studied stands. Furthermore, the long-term 

experimental plots as mentioned in this study focus only on pure and even-aged stands, and 

do not consist of any mixed stands, which deserves some consideration in future studies.  

The data size upon which individual-tree growth models were developed in this study is simi-

lar to many previous works on Pinus species. For example, Kitikidou et al (2012) used data 
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from 20 experimental plots (established in 2010) in Chalkidiki (Northern Greece) to develop 

an individual-tree growth model, site index and mortality equations for Pinus halepensis 

MILL. Similarly, Körner (2015) used data from 30 plots as measured in 2008, 2009 and 2010 

to model growth and yield of forest plantations in the Dominican Republic; In Spain in Gali-

cia, the study used a network of 155 plots (Crecente-Campo et al 2010). In North-east Greece, 

researchers used data from 78 permanent sample plots, which were established in 2000 and 

re-measured in 2005, for Site quality and individual-tree growth modeling in pure and mixed 

Pinus brutia stands (Palahí et al 2008). 

In terms of the validation process, a half and half split generally seems to be the most popular 

method in other disciplines as Snee (1977) observed, fewer proportion of data are usually re-

quired for validation of tree growth models, especially when considering forest plantations.   

Ma and Lei (2015) used 17 % of the data to validate individual-tree diameter growth and mor-

tality model of natural Mongolian oak forests in northeast China. Misir et al (2007) also used 

20% of the observations to validate an individual-tree mortality model for Crimean pine plan-

tations in Turkey. Other studies have used less data for validation. For example, Linkivicius 

(2014) and Adame et al (2010) used about 10% of the available data for validating their mod-

els.  This study used 10 plots, i.e. 19 % of data to validate an individual-tree growth model. 

The data used for validation in this study, which spreads over a range of stand conditions (site 

index, elevation, age, soil depth, aspect), is deemed sufficient as long as multiple silvicultural 

options were not being evaluated. 

4.2 Individual tree’s response to competition  

In even-aged stands, trees are presumably growing under uniform site and conditions. Varia-

tions in tree growth are often determined by competition among neighboring trees, which is 

considered the main factor in this respect. Analysis of tree-tree competition is necessary to 

develop good models for diameter and height increments, as well to predict tree mortality. For 

this reason, a set of competition indices mentioned in the methodology chapter were tested in 

this study. It is interesting to note that  this study forms the first attempt to analyze the compe-

tition indices in Syria, given that no earlier publication is available on this topic. Moreover, 

the use of both distance-dependent and independent site indices in the analysis especially give 

this attempt an additional importance. The study used a non-linear regression (logarithmic 

equation) model for describing the relationship between tree dimensions and competition in-

dices, where many previous studies used this same equation (e.g., Piper, 2008; Mohammed 

and Röhle, 2011).  
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Competition changes over time, this is not only attributed to the size and growth of competing 

trees, but also to the mortality or removal of competitors. The impact of all distance-

dependent and distance-independent competition indices was negative on tree basal area 

growth; i.e. the basal area increment decreases as the competition increases, and that agreed 

with the expectations and the common behavior of competition on growth (Contreras and 

Chung, 2011; Linkivicius, 2014). The Reineke index, which represents a two-sided competi-

tion has the most influence on the relative basal area increment. This index used the quadratic 

mean diameter and number of trees per hectare, hence, it is less influenced by age and site 

quality. These results conformed to findings of many publications that used this index in 

building their individual-tree diameter increment equations (e.g., Uzoh and Oliver, 2008; Ber-

rill et al, 2013). 

The BAL index and BAL-modified index represent the one-sided competition indices. They 

combine the individual tree‟s basal area percentiles with a measure of density and stand basal 

area.  With this, the largest diameter/ height tree in a plot would have a competition index 

value of zero, while the smallest diameter/ height tree in the plot would have a competition 

index value near that of the plot‟s total basal area. As these indices decrease, the predicted 

increment increases (Wykoff, 1990; Hann and Larsen, 1991; Uzoh et al., 1998; Uzoh, 2001; 

Palahí et al, 2003; Palahí et al, 2008; Ma and Lei, 2015). 

Using the relative diameter at breast height and the relative height made some distance-

dependent indices perform well, e.g. Heygi1 index and four indices of Rouvinen and Kuulu-

vainen (1997). Similar results were found in the study carried out by Piper (2008) where 

Heygi1 index was used. 

Based on our empirical or simulation study, the height growth is generally stimulated a bit by 

competition until certain point before it start decreasing with competition, and thus it is less 

affected by competition than diameter growth. These findings have a significant practical rel-

evance. In the case of diameter increment maximization, all competitors around the local tree 

have to be eliminated. If the goal is to maximize the height increment, some competitors 

around the subject tree have to remain. 

Regardless of the above, one main weakness of this study concerns the distance-dependent 

competition indices, where the fixed radius method was used. This method did not allow for 

the measurement of the positions all trees in sample plots, and it has been proved disadvanta-

geous when it is utilized in long-term growth studies (Pretzsch, 2009). In future studies, it is 

recommended to select other methods for estimating distance-dependent competition. Exam-
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ples of such methods include Influence zone overlap methods, Competition elimination angle 

methods, Angle count sampling methods, and Vertical search cone methods. It is predicted to 

provide deeper understanding of the dynamic of Pinus brutia stands and using it may  improve 

the the PINUS-SYRIA predictions (Pretzsch, 2009). Testing these methods and comparing 

them with the current individual-tree growth model would be an  

interesting step in selecting the best competition indices for modelling tree growth and  

mortality. 

4.3 Site curves of Pinus brutia and forest yield 

 This study tested several site index equations for the Pinus brutia stands in the coastal region 

of Syria. Sloboda equation (1971) gave the best performance when used to produce site class 

curves. At 100 years, the site class curves developed in this study by Sloboda equation (1971) 

reached a little higher height than those developed by the study presented by Suliman (2013) 

in the Rabiaa Region in Syria, which used the Richard-Chapman equation (Figure 4-1 A). 

By comparing  the  curvesobtained  from this work with site index curves (Korf equation) for 

(Pinus brutia Ten.)  developed by Kitikidou et al (2012) in central Cyprus, the study found 

that all stands in the coastal region in Syria for all site classes (except site index 10) show 

lower growth rates at younger and older ages (Figure 4-1 B). 

 

 

Figure 4-1: A: Comparison between the site class curves obtained by Suliman (2013)‟s study (gray curves) and 
site class curves of this study (Black curves) for Pinus brutia when dominant heights 10, 15, 20, 25 and 30 are 

reached at age 50, B: Comparison between the site class curves in Central Cyprus (gray curves) (Kitikidou et al, 

2012) and site class curves of this study (Black curves) for Pinus brutia when heights 10, 15, 20, 25 and 30 are 

reached at age 50 

This study showed the culmination of increment height between the ages of 9 and 14 years. 

The result is similar to the study by Yu (1982) who used Sloboda equation, and attributed that 

“to empirical evidence”. In accordance with the general experience, increment height culmi-

nates sooner on better sites, but declines more rapidly on the good sites after reaching the 
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point of culmination (Kramer, 1988). This study precisely aligns with this explanation, as the 

maximum values of height increment were found in the young plots and the minimum values 

recorded in the old plots. 

The reference age in this study was 50 years. Besides this age is common in literature for co-

niferous species, the relative error test was lowest at this value. According to  Goelz and Burk 

(1992) the reference age should be close to the rotation age and should be as young as possi-

ble, in order to help in earlier decision making of the silvicultural treatments to be applied to 

the stand; in this study, the rotation age in the best productivity sites was close to 50 years and 

that supported more that age 50 years is so appropriate to be taken as reference age. Further-

more, most available research works from the Mediterranean region have applied this same 

value as reference age; for example, Nahal (1982), Suliman (2013), and Diéguez-Aranda et al. 

(2005) who equally found the best base age for Pinus radiata, P. taeda and Betula pubescens 

stands was 50 years.  

This study tested the base age as an invariable property. This means that whatever the base 

age, height will equal site index when age equalsbase age. This property meets the desirable 

characteristics as cited by Bailey and Clutter (1974); Elfving and Kiviste (1997) and Goelz 

and Burk (1992). 

Unlike the anamorphic curves, which assume a common shape for all site classes, the poly-

morphic curves used in this study show that height growth exhibits pronounced sigmoid 

shapes on higher-quality sites, and “flatter” shape on lower-quality sites. 

One of the problematic points in forestry literature concerns the asymptotic parameter of 

 Pinus brutia site index equation, which was so high and forced the dominant height to con-

tinue growing at rather old ages. Although the growth characteristic according to Wenk et al 

(1990) is contradictory, and the assertion of Shvets and Zeide (1996) that non-asymptotic 

curves are not acceptable for growth modeling, there is strong evidence that growth in volume 

per hectare in even-aged stands is not asymptotic, and the gross accumulated volume may not 

show any inflection points (Garcia 1997). Gadow (1987) also indicates that stand height in-

creases until the decomposition phase. In the same context, Bontemps and Duplat (2012) indi-

cated that top height growth in pure and even-aged stands can be accurately described by a 

non-asymptotic curve, with better performances than those of asymptotic curves. Körner 

(2015) used this kind of curves to model the individual-tree growth model for Pinus caribaea 

Morelet var. hondurensis in the Dominican Republic. According to Author, the model per-

formed well. The site class curves developed for Scots Pine in Spain by Abejon and Ferreiro 



DISCUSSION 

 

102 
 

(1986) show that for the best sites there was a non-asymptotic trend. However, it is recom-

mended that the site index equation is not used out of the age range of the modeling data; and 

non-asymptotic equations should deserve more attention. 

Accordingly, the polymorphism, base-age invariance, increment height culminates sooner on 

better sites, and S-shaped curves, making the use of the Sloboda equation to obtain estimates 

of the site index in Pinus brutia stands more accurately and reliably than any other methods. 

This Sloboda equation can be applied for site index estimation through the stand dominant 

height and age while building an individual-tree growth model. It serves as a baseline for 

classifying and comparing Brutian pine stands in different Mediterranean Sea regions, and in 

land-use decisions, land appraisals and silviculture investment analyses. 

4.4 Individual-tree growth model 

4.4.1 Diameter increment equation 

Ordinary least squares (OLS) approach was used to elaborate the diameter increment equation 

in this study. Although many publications have used mixed models mainly because of the 

possible autocorrelation in growth variables between the two successive periods, temporal 

correlation may, however, not be a significant problem if growth intervals of 5 years or more 

are used (Gertner, 1985; Quicke et al., 1994).  

Tree size is a good indicator of future growth, reflecting past competitive status and different 

genetic responses to the environment (Perry, 1985; Bevilacqua, 1999). In this study, the diam-

eter growth in PINUS-Syria Model decreases monotonically without culmination as diameter 

at breast height increases, in the same manner as found in other works (Lick and Sterba, 1991; 

Monserud and Sterba, 1995; Carus, 2004). The effect of geographical variation on diameter 

growth is hitherto unclear. For this reason, this study found that it is better to develop a di-

ameter increment equation without slope and aspect, which should be paid more attention in 

future. One of the solutions we could follow in the future to assess the effect of slope and as-

pect is to establish a specially designed study that has plots at several aspects and slopes on 

the same other conditions (site index and density), as recommended by Uzoh and Oliver 

(2008). 

Besides the fact that increasing the competition index decreases the diameter growth, the co-

efficient of BAL is negative. This result can be interpreted as biologically plausible, since a 

higher competitive pressure leads to a reduction of the growth. A significantly negative rela-

tionship between stand density index and size was observed in all the stands. This behavior 

may be explained as a search for light and dominance by the larger trees following an asym-
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metric competition pattern.  In the same context, if the competition indices were removed 

from the developed diameter increment equation, the equation only explains 20 % of diameter 

increment variation; this result means that the competition in this study plays a crucial role in 

explaining the diameter increment variation (Figure 4-2). 

 

Figure ‎4-2: Diameter increment development over time with and without competition 

The mean annual diameter increment of Pinus brutia trees was 0.34 cm in the modeling data, 

eight-year diameter growth ranges between 0.45 cm to almost 9.4 cm depending on site quali-

ty and competition.  

These increments are so similar to the ones found for Brutia pine in Turkey (Carus, 2004) 

where the mean annual diameter was 0.29 cm and eight-year diameter growth varied between 

1 cm and 5 cm. In general, similar results were reported elsewhere in the Mediterranean re-

gion (Palahí and Grau, 2003; Palahí et al., 2003; Palahi et al., 2008). 

4.4.2 Height increment equations 

This study presented for the first time, not only in Syria but also in the Mediterranean region 

and the Middle East, an individual-height increment equation for pure and even-aged stands 

of Pinus brutia using two approaches: potential-modifier and realized height increment using 

distance-independent competition. 

The height growth in the simulation model increases until a certain point and then start de-

creasing as the tree size increases. This is similar to the results found by Uzoh and Oliver 

(2006) and Monserud and Sterba (1995). The size of initial diameter and tree height is an in-

dication of a tree‟s competitive status within a plot or stand, and thus, an expression of tree 

vigor (Figure 4-3). 
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Figure ‎4-3: Effect of tree height and diameter at breast height on height increment Pinus brutia plot representing 
three different site index values: 15, 20, and 25  

The site index was the strongest individual predictors than any other variable, assuming de-

veloping the linearized height increment without site index, the equation explains smaller than 

2 % of height increment variations. One could have inferred that height increment was affect-

ed more with the site index than diameter increment. 

Increasing the basal area of trees larger than the subject tree divided by diameter at breast 

height stimulates the height growth until a certain point before the height growth starts de-

creasing. Assuming competition is absent (BAL = 0), the equation explains 31 % of height 

increment variations. 

Before discussing the effect of elevation which is considered one of the significant variables 

in linearized height increment equation, it is worth to mention that 86 % of our plots were 

located at elevations equal or less than 800 m and the maximum elevation recorded is 975 m.  

In the PINUS-Syria Model, height growth increases as elevation increases until 975 m. This 

result corresponds with the results from the study of Kiaei and Samariha (2011), which tested 

the effect of elevation on the growth of Pinus eldarica in Iran where the tree height increases 

as elevation increases until 1200 m before a decrease emerged. Similar behavior is expected 

to be seen in the coastal region of Syria after 1200 m, but none of the plots used in the current 

study is located above 975 m. 

The difference in temperature between Safita, located at 350 m with 17.8°C and Qadmous, 

which are located at 750 m with 14.3 °C is only 3.5 °C is underpinning to the previous idea. 

This little change in temperature may be ineffective on growth with the dominance of differ-

ent effects of site productivity and competition, which have the strongest effects on growth 

according to linear regression analysis. 
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In general, the influence of elevation on productivity is a complicated one and attributing such 

effects to specific factors (e.g., average wind speeds, adiabatic processes operating, atmos-

pheric pressure, precipitations and soil condition changes) is problematic, given the present 

state of our knowledge. Worrell (1987) stated that the majority of environmental factors influ-

encing tree growth vary with changes in elevation. As suggested by Uzoh and Oliver (2008), 

distribution of plots should capture several elevations corresponding to similar other condi-

tions that influence growth in order to accurately assess the effect of elevation in greater de-

tail. Based on these results, this study found that it is better to develop additional linearized 

height increment without inserting topographical factors.  

With regard to the potential height increment modifier, the competition factor used, which 

represented the modifier, is the ratio of stand dominant tree height to tree height within the 

stand in contrary to other works that used tree height within the stand to stand dominant tree 

height (Monserud et al.,1997; Pretzsch, 2001 ). In this study, the ratio value ranged between 

0.8 and 2.6, and the average is 1.15.  The value 2.6 is equivalent to the value determined by 

Pretzsch (2001), Monserud et al. (1997) and Ledermann (2010) which found the maximum 

ratio of individual-tree height to dominant tree height within the stand is about 1.18. By using 

the dominant height, the approach of potential height increment modifier also appears to be 

more stable against thinning practices. Because the potential modifier requires less infor-

mation (only dominant height and tree height), it makes the equations less prone to changes 

and more stable than linearized height increment. Thus, this could explain why potential 

height increment modifier showed better results than the linearized height increment. 

4.4.3 Crown ratio 

The model appears to be well behaved and robust for pure even-aged brutia pine stands. The 

total variation explained by the exponential equation proposed is 76 %. This agrees with the 

report by Adeyemi et al (2013) and disagrees with the reports by Soares and Tome (2001), 

Temesgen et al. (2005), Adesoye and Oluwadare (2008), where the suitability of only the 

Richards and Logistic equations were established. This may be as a result of the variables 

used in their studies. 

In fact, diameter at breast height is one of the most important tree variables. It is usually ap-

plied to account for stand structure, tree vigor, and competition capacity. The choice of di-

ameter at breast height as an independent variable is supported by many studies (e.g., Soares 

and Tomé, 2001; Leites et al, 2009; Temesgen et al, 2005; Toney and Reeves, 2008) which 

concluded that increasing diameter at breast height would result in a larger value of the tree 
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crown ratio. This study contradicts these results, but rather indicates that crown ratio decreas-

es as the diameter at breast height increases; this result corresponds with the results of 

Temesgen et al (2005).  

Competition effects are estimated by stand density index (SDI) and basal area of the larger 

trees. With this, crown ratio decreases as competition increases. This result is supported by 

some earlier works (Hasenauer and Monserud, 1996; Soares and Tomé, 2001; Temesgen et al, 

2005; Toney and Reeves, 2008). The model is only explained to about 62 % if it developed 

without the competition indices (Figure 4-4). 

 

Figure ‎4-4: Crown ratio development over time with and without competition 

In the developed equation, greater values for site index resulted in smaller crown ratio values, 

and that could be explained by the fact that the site index affects positively on tree height, and 

the high values of tree height reduce the crown ratio. In a similar manner, site index was 

found significant in Soares and Tomé (2001). In other studies, however, the effect of Meyer‟ 

SI on the crown ratio is insignificant (Fu et al, 2015).  

The developed crown ratio models can already be incorporated into developed growth mod-

els, but the forest managers should keep in their mind that one could obtain potential im-

provements to the prediction of the current models using spatial competition measures when 

such variables can be obtained at a reasonable cost. 

4.4.4 Height-diameter equations 

The generalized height-diameter relationship equation was developed in the thesis to apply it 

in inventories where height data is missing for many trees on a sample plot. In the PINUS-

Syria Model, height-diameter sub-model includes dominant height as random effects. Domi-

nant height represents the site and age, and that reflects variations at the sample plot-level. In 

general, the height-diameter relationship varies from stand to stand, and even within the same 

stand, the relationship is not constant over time (Curtis, 1967). Therefore, a single curve can-

not be used to estimate all the possible relationships that can be found within a forest. To min-
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imize this level of variance, height-diameter relationships can be improved by taking into ac-

count of stand variables that introduce the dynamics of each stand into the model (Curtis, 

1967; Sánchez et al., 2003; Temesgen and Gadow, 2004; Dorado et al., 2006). 

The tested models showed overall good behavior, and meets the biological knowledge; where 

the height increases as diameter increase, the height-diameter curves change its direction, and 

plausible. On the best sites, the height-diameter curves of Pinus brutia were steeper and pre-

sented larger asymptotes than in poor sites (Cardoso et al., 1989; Bartoszeck et al., 2004). In 

spite of some viewpoints, which consider that the height-diameter could indicate forest 

productivity in different locations and conditions (Huang and Titus, 1993), forest managers 

should be careful when using height-diameter relationship in relation to productivity because 

many other factors influence forest yield. These include age, management, density, site, com-

petition (Costa et al, 2016). 

In the PINUS-Syria Model, using the individual-tree height led to unreasonable height in the 

early-aged stand, and that mostly is based on the fact that parameters of diameter and height 

growth models are usually not estimated simultaneously and therefore model predictions may 

result in unreasonable height-diameter ratios for individual trees (Hasenauer et al., 1998; 

Sharma, 2013). Another possible explanation relates to lack of data collected in early age 

plantations, or non-availability of time to conduct measurements yearly in order to ensure 

accurate predictions.  

This incompatibility could be avoided if the height-diameter models presented here are used 

together with individual-tree height or diameter models in the PINUS-Syria Model. This rea-

son motivated this study further to develop the generalized height-diameter. The developed 

generalized height-diameter relationship equation was used to calculate the initial value of 

height at the initialization of the simulation where implementing the height-diameter sub-

model prevents problems that may arise with an independent use of individual-tree height 

growth sub-model in the simulation model. The biological and statistical performance for the 

generalized height-diameter equation allows applying it to estimate missing heights for sam-

ple plots or other sample plots, where measured heights are available. 

4.4.5 Mortality equation 

For calibrating mortality models, several authors used logistic regression and obtained rea-

sonable results (e.g. Monserud and Sterba, 1999; Yang et al., 2003; Palahí et al., 2003; Jutras 

et al., 2003; Zhao et al., 2004; Adame et al, 2010). Following these authors, this study used a 

logistic model to fit the data for Pinus brutia stands. The negative parameter of diameter and 
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the positive parameter of diameter squared should supposed to capture the U-shaped mortality 

trend (Monserud, 1976; Monserud and Sterba, 1999; Yang et al, 2003). It indicated that mor-

tality rates are high when trees are small, and decrease with increasing tree size. This study, 

however, does not clearly reflect the U-shaped mortality trend due to the low frequency of 

trees larger than 40 cm diameter at breast height in the available data, and that maybe be con-

sidered as weak point. 

In this study, the increase of the basal area of trees larger than the subject tree leads to a high-

er possibility of mortality. This analysis is conformity with the results of Monserud and 

Sterba (1999), Palahi et al (2008) and Palahi et al. (2003). The site index in this study was a 

significant predictor in the mortality equation. Stands growing on better productive sites are 

more vulnerable to overcrowding effects than those growing on poorer sites. Due to faster 

growth, they are more intensively mortality than those growing on less productive sites. This 

result corresponds with some previous studies that mentioned the role site effect plays in tree 

mortality (Weiskittel et al, 2011; Eid and Tuhus, 2001; Murphy and Graney 1998; Bravo-

Oviedo et al. 2006). This differs from the finding of Vanclay (1994) who stated that the effect 

of site productivity on mortality is ambiguous and unclear, Vanclay attributed these findings 

to lack of suitable experimental data. 

By using the intersection point of sensitivity and specificity, the prediction of the number of 

dead trees was overestimated. This is in conformity with the study conducted by Crecente-

Campo et al. (2009). Its advantage is that it gives the most accurate percentage. Hein and 

Weiskittel (2010) considered the sensitivity-specificity cut- an optimal threshold, whereas the 

average observed mortality rate gives a much lower accuracy of predicting the correct trees 

but using the average observed mortality still the most reasonable threshold according to 

Monserud and Sterba (1999).  

One of the major issues in forest science concerns if there is any difference in growth predic-

tions by applying stochastic and deterministic approaches for the same single-tree model and 

the same initial conditions. This study made a comparison of two different approaches (i.e., 

deterministic and stochastic) of incorporating mortality into growth predictions. It was found 

that there are true differences between both approaches on the long-term. The differences 

ranged from 8-10 %. This difference raises another question: which approach is the best? 

To answer this question, some points need to be addressed and taken into account. First of all, 

there are no significant differences when the individual-tree growth model is applied to the 

short-term whether it used stochastic or deterministic approaches. On the long-term, unfortu-
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nately, we have no data to asses each approach in respect with the observed data, but future 

re-measurement of the permanent plots would be so helpful to increase our knowledge about 

this point.  

The second point relates to the growth steps. Fortin and Langevin (2011) hypothesized that 

growth steps affect the differences between stochastic and deterministic approaches more than 

the uncertainty mortality model. Our study re-parametrized the developed equations (diameter 

increment, height increment) to make the individual-tree model use 8-year growth and com-

pare between both approaches, by doing this, the differences relatively decreased and ranged 

between 1.5 and 3 %. Based on these results, this study proved the differences so close corre-

lated with the growth steps. These findings led us into another question: what is the reason 

behind the differences recorded between the stochastic and deterministic approaches when 

using the one-year growth step and 8-year growth step?  In fact, this study believes the simu-

lation over 100 years requires 100 re-insertions of the predicted variables (diameter increment 

and height increment), and that may cause error propagation. This could be one main reason 

for the increasing differences after certain growth steps. In a case where the model used 8-

year growth step, the simulation required only 12 re-insertion of the predicted variables and 

for this, the error propagation seems to be under control. This discussion does not mean that 

this study presented an exhaustive answer to this question, it needs to be re-visited and further 

addressed in future studies. 

Thirdly, it is generally known that mortality is a stochastic process, but perhaps mortality 

would appear less stochastic if relevant environmental variables were measured on permanent 

plots (Monserud and Sterba, 1999). One last point is related to the threshold of Sensitivity-

specificity. The mortality equation gave the most accurate predictions, but the prediction was 

overestimated at the same time. This point should be taken into account when we recommend 

which approach more reasonable. 

Based on these points, the study recommended that the modellers should aware that determin-

istic simulations may yield different results from stochastic simulations when using the same 

data and the same model on the long-term, and it is better to use the average observed mortali-

ty rate in spite of its low accurate but it is more realistic (Monserud and Sterba, 1999). 

In the same context, few studies have addressed the comparison of stochastic and determinis-

tic predictions of single-tree models, e.g., Ek (1980), Weber et al. (1986), Vanclay (1991) 

who concluded that the differences between stochastic and deterministic predictions were 

negligible. These results are likely attributed to that at the time these studies were carried out, 
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computing capacities were much more limited than they are today, whereas Zhou and 

Buongiorno (2004) Fortin and Langevin (2011) also found that there may be substantial dif-

ferences depending on the response variable and the model. 

To summarize, we highlighted in this part that the study tried to explain the behavior of mor-

tality under the most important explanatory variables that were selected to develop the mortal-

ity equation. It also discussed which thresholds were used in the study, and the difference in 

growth predictions by applying stochastic and deterministic approaches. 

4.5 Model Applications 

The PINUS-Syria Model can be applied effectively in several aspects of forest management. 

Firstly, it can be used for sustainable forest management as determining the rotation length in 

the absence of thinning and simulating the effect of different scenarios of thinning regimes on 

the stand development. Mean annual volume increment (MAI) per unit area is the most im-

portant criterion in terms of forest management when wood production is prioritized. Site 

quality and initial density are key factors explaining the variation in length of the rotation pe-

riod (Lundgren, 1981; Cao et al, 2006). The better site index, the faster rotation length. How-

ever, when economic profitability is maximized are used, the optimal rotation lengths would 

be different since the economically optimal rotation length depends on the stand establish-

ment costs, prices and dimensions of different timber assortments, and discounting rate; and 

in this case the stand density will play a crucial role in determining the rotation age, e.g. if 

economically required trees with diameters 25 cm, the stand with 1500 trees per hectare and 

site index 25 need 48 years to reach this diameter,  while it needs only 21 years to reach this 

value if the density was 500 trees per hectare, and so  the  more densely planted stands have 

longer optimal rotation lengths. The results of mean annual volume increment recorded in this 

study are similar to that recorded in the Mediterranean region. In Cyprus, the mean annual 

volume increment of Pinus brutia can be over 10 m
3
 ha

−1
/ year site index 20 m (Kitikidou et 

al 2011). In Greece, the maximum annual volume increment of pine stands on a good site an 

achieved (around 8.5 m
3
 ha

−1
/year) at 40 years (Palahi et al. 2008). In Turkey, the mean annu-

al increment in good sites of Pinus brutia stands ranged between 10-12 m
3
 ha

−1
 / year (Gezer, 

1986). On the other hand, Table 4-1 showed an approximate comparison of mean annual vol-

ume increment in site index 25 with other Pinus species in Syria. 
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Table ‎4-1: Comparison of mean annual volume increment in site class 25 between Pinus brutia in this study with 

other Pinus species in Syria 

 Pinus brutia Pinus halpensis Pinus pinester Pinus radiata 

MAI (m
3
 ha

−1
/year) 9.6 8.5 13.2 14.8 

Reference This study Koubaily et al, 2008 
Abido, and Koubai-

ly,2000 

Koubaily et 

al,2008 

 

The PINUS-Syria Model was used to simulate the optimal stand development that maximizes 

wood production under different scenarios of thinning regimes. Different thinning regimes 

have different effects on the stand development, by changing competition included in the 

growth and yield models. One shortcoming of the growth models is that they have been de-

veloped without taking into account the effect of thinning on the growth of stand (basal area, 

volume, height or diameter at breast height) in field. Thus, the results of thinning treatments 

are based on the assumption that the growth and yield model developed for even-aged Pinus 

brutia stands is reasonable and works properly because the developed equations were evaluat-

ed and validated. Moreover, the equations followed overall patterns of stand development, 

which in turn has led us to increase our belief that no drastic deterioration in simulation will 

occur as long as the simulation model is not used for prediction out of the range of the calibra-

tion data.  

Thinning improved the growth rates for diameter at breast height, tree height and tree volume, 

the improvement on diameter increment is more clearer than on height increment, in clear 

agreement with the results revealed when the competition was analyzed. Based on the simula-

tion results, this study suggests one thinning scenarios with heavy intensity in good and very 

good sites, and one or two thinning with moderate, heavy or very heavy thinning in medium 

and poor sites depending on the density. Using the heaviest thinning in good sites agrees with 

the conclusions of Carus and Catal (2009) work, which studied the responses of Brutia pine 

stands to different thinning intensity in Turkey.  

Secondly, the PINUS-Syria Model can be used for teaching students in forest growth and 

modelling, it can be also used for training people who are responsible for making decisions 

about forest management. Growth and yield models in forestry are necessary to support stand 

management research. The model output, consisting of charts and tables can provide forest 

managers with a wide variety of information and visualizations, to help them planning objec-

tively. 
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4.6 Outlook on the future 

The PINUS-Syria Model was built based on available data sources. Therefore, the use of the 

PINUS-Syria Model applications in forest management practice is limited to areas whose site 

conditions are similar to those of permanent plots used in the study. In the future, data collect-

ed in research plots should include not only diameter, height, mortality, crown length and 

crown diameter but also additional parameters such as recruitment, all tree position, tempera-

ture, precipitation, as well as consideration for different disturbance factors such as wildfire. 

Once these additional data are obtained, some following studies need to be implemented to 

further improve forest management in Syria: 

In the light of the large variation in the site, environmental conditions, developing a site index 

based on environmental and topographical conditions in the future will be a very advanced 

step to categorize sites more accurately. Besides that, the non-asymptotic trend of the devel-

oped site index equation deserves more attention. The reasonable results of competition indi-

ces encourage testing of distance-dependent competition indices for Pinus brutia in more de-

tail, such this step may improve the model prediction and provide better tools for the decision 

making process. Analysis of below-ground competition in spite of its effects on tree and stand 

growth was not considered in this study. Therefore, it should be on the list of studies to be 

carried out in the future.  

The PINUS-Syria Model was developed for pure and even-aged Brutia pine stands. However, 

the model approach can be tested for application to other forest types such as uneven-aged, 

multi-species deciduous forests and semi-evergreen forests. With datasets collected from 

permanent research plots, the model components can be calibrated to fit for such forests. This 

is an important and necessary work for sustainable forest management because at present 

there is still no effective model available. 

Because the stochastic and deterministic simulations yield different results for the same sin-

gle-tree model and the same initial conditions, further studies are also recommended to com-

pare the stochastic and deterministic methods for determining mortality. Nevertheless, the 

mortality equation has very good ability to predict natural mortality of trees. It is recommend-

ed for application where it is expected to facilitate the growth and yield prediction for better 

management of pine forests in the region.  

 In the future, the probability of ingrowth occurrence on a sample plot could be further devel-

oped and incorporated into the current growth model. Besides that, studies on effects of wild-

fire on all aspects need to be seriously considered in the future. 
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The PINUS-Syria Model allows managers to simulate plausible management schedule in a 

given stand, providing very helpful information for decision-making process. This tool could 

help forest managers in taking decisions on rotation length, and the timing, frequency, and 

intensity of forest thinning. Overall, models for optimal management become practical and 

easier to use in forestry practices than old applied methods. 
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APPENDICES 

 

Appendix1: Characteristics of modeling and validation plots in this study 
 

Plot Size(m2) Age2008 N ha-1(2008) Elev(m) Asp(degree) slo% Soil depth(cm) 
1 706.85 54 1089 375 330 45 44.4 
2 452.38 66 2144 548 330 30 23.4 
3 1963.49 41 535 454 180 11 26.8 
4 907.91 40 727 475 180 11 26.2 
5 907.91 39 881 485 210 5 30 
6 804.24 25 858 934.2 225 10 44.2 
7 452.38 28 1348 669 225 12 19.6 
9 1256.63 47 493 427 210 0 150 

10 1256.63 32 748 787 330 23 30.6 
11 706.85 61 891 444 150 0 17.4 
12 240 48 2500 780 110 42 28.8 
13 254.4 67 3144 673 25 40 35.8 
16 706.85 57 622 486 210 14 30.2 
17 1963.49 96 224 598 300 6 20.4 
18 1256.63 76 454 647 250 10 24.4 
19 1593.29 87 383 629 330 5 35.6 
20 282.14 55 1753 668 330 20 27.8 
21 530.92 55 753 618 120 60 38.8 
22 1256.63 60 645 657 200 20 28.8 
23 530.92 51 1356 658 160 30 28.8 
24 706.85 55 1019 651 180 45 38 
25 200 69 2499 590 280 30 28.8 
26 706.82 60 934 612 240 75 43.2 
27 530.9 51 1394 142 0 55 42.8 
28 452.37 49 2476 137 345 40 31.2 
29 1963.41 90 275 306 200 25 29.2 
30 804.21 93 137 643 330 10 21.8 
31 1256.63 82 302 390 310 30 26.8 
32 706.85 65 523 964 330 33 29.2 
33 452.37 30 1304 899 25 40 37.6 
34 314.14 34 2165 839 180 22 44.4 
35 706.85 35 806 131 295 10 37.2 
36 706.85 36 764 399 310 16 27.2 
37 930.99 16 634 505 300 25 29.8 
38 706.85 71 622 328 175 20 40.2 
39 907.91 60 474 404 115 50 34.8 
41 380.13 30 1868 937 195 10 29.2 
42 1256.63 74 525 903 315 36 96.4 
43 706.85 65 778 624 250 55 28.4 
44 690 52 652 341 215 25 22.8 
45 380.13 32 1789 268 170 21 44.4 
47 530.92 43 1092 522 350 25 42.2 
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48 907.91 43 672 975 205 25 94.6 
49 750 69 440 796 345 45 70.8 
50 1661,9 77 301 795 270 30 32.2 
51 1256.63 121 509 567 130 40 38 
52 452.38 55 1282 328 205 11 44.4 
53 380.13 81 1499 590 35 16 21 
55 706.85 68 297 590.5 100 17 31.2 
56 380.13 64 1184 616 85 33 27.2 
57 380.13 30 684 680 20 25 29.6 
58 254.46 16 2201 774,2 230 27 32 
60 452.38 66 951 796 190 35 27.8 
61 452.38 98 420 801 245 25 37.8 
62 69.99 37 2429 758 170 21 48 
63 452.38 39 707 743 60 15 31.6 
64 452.38 36 906 487 200 30 29.2 
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Appendix 2: Characteristics of constructed plot for competition 

 

Plot 
Number 

plotsize radius 
number of 

trees 
d1.3of 

central tree 

Height of 
central 

tree 

1 346.4 10.5 31 22.5 21 

2 103.9 5.75 27 13.6 11.5 

3 254.5 9 17 35.7 18 

4 201.1 8 17 19.2 16 

5 452.4 12 29 39.6 24 

6 314.2 10 27 26.2 20 

7 271.7 9.3 31 26 18.6 
9 380.1 11 19 34 22 

10 176.7 7.5 17 10.9 15 

11 191.1 7.8 25 21.7 15.6 

12 50.3 4 16 11 8 

13 52.8 4.1 28 11.2 8.2 

14 63.6 4.5 23 9.7 9 

15 113.1 6 26 14.1 12 

16 78.5 5 12 13.2 10 

17 314.2 10 10 42.9 20 

18 408.3 11.4 22 37.7 22.8 

19 452.4 12 20 61.8 24 

20 95.0 5.5 9 19.8 11 

21 380.1 11 27 33.5 22 

22 369.8 10.85 29 25.9 21.7 

23 136.8 6.6 24 11.4 13.2 

24 307.9 9.9 33 31.9 19.8 

25 63.6 4.5 14 10.5 9 

26 333.3 10.3 34 34.5 20.6 
27 181.5 7.6 29 24 15.2 

28 55.4 4.2 19 9.4 8.4 

29 339.8 10.4 15 43.4 20.8 

30 408.3 11.4 8 50.8 22.8 

31 380.1 11 14 44.4 22 

32 116.9 6.1 11 29.5 12.2 

33 314.2 10 39 22.1 20 

34 221.7 8.4 51 24.9 16.8 

35 227.0 8.5 24 22.2 17 

36 326.9 10.2 30 21.2 20.4 

37 95.0 5.5 12 11.3 11 

38 314.2 10 22 36.7 20 

39 346.4 10.5 19 31.1 21 

40 132.7 6.5 35 16 13 

41 186.3 7.7 39 18.1 15.4 

42 254.5 9 18 28 18 

43 176.7 7.5 19 23.4 15 

44 132.7 6.5 10 26.1 13 

45 81.7 5.1 18 10.3 10.2 
46 265.9 9.2 35 19.3 18.4 

47 265.9 9.2 30 22.9 18.4 

48 301.7 9.8 21 24.9 19.6 

49 227.0 8.5 11 33.1 17 
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50 201.1 8 11 31.3 16 

51 113.1 6 11 27.5 12 

52 506.7 12.7 58 34.8 25.4 

53 162.9 7.2 30 29 14.4 

55 452.4 12 15 37.7 24 

56 397.6 11.25 43 35.4 22.5 

57 415.5 11.5 26 31.7 23 

58 136.8 6.6 35 16 13.2 

59 58.1 4.3 7 25.2 8.6 

60 153.9 7 14 23.3 14 

61 191.1 7.8 9 58.7 15.6 

62 102.1 5.7 17 15.3 11.4 

63 346.4 10.5 27 30.8 21 

64 498.8 12.6 40 26.2 25.2 
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Appendix 3: Positions of central and competitor trees in plots 
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Appendix 4: The fitted stand-height curve of plots used in modeling by ap-

plying Michailow (1943) for the first and last inventory 
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Appendix 5: The fitted stand-height curve of plots used in validation by ap-

plying Michailow (1943) for the first and last inventory 
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Appendix 6: The coefficients of determination of the Michailow (1943) 

model with the parameters and significance of models for both inventories 

for all modeling plots 
 

Plot 2016 2008 

         Sign          Sign 

1 3.594 -15.183 0.77 0.002195034 3.51 -14.38 0.93 0.002434821 

2 2.223472 -1.37584 0.422 0.001792245 2.28 -3.9 0.95 0.001240886 

3 3.066326 -11.6674 0.744128 1.008× 10
-5

 3.05 -14.73 0.78 7.06× 10
-6

 

4 3.135888 -10.9607 0.819991 2.485× 10
-5

 3.07 -12.83 0.8 1.254× 10
-5

 

5 3.209519 -6.02305 0.448 0.000626497 3.47 -18.62 0.68 0.000298494 

6 3.380633 -12.3304 0.939342 0.000463386 3.13 -10.07 0.95 0.00026016 

7 3.605524 -16.5324 0.8 0.00075556 3.38 -15.15 0.78 0.000120139 

9 3.236784 -3.2003 0.314802 0.001321315 3.27 -6.08 0.46 0.001661788 

10 3.290147 -12.1742 0.935415 0.002181796 2.96 -8.42 0.97 0.007096973 

11 2.968991 -11.3762 0.8692 0.000135389 2.97 -10.96 0.89 0.000348073 

12 2.613536 -6.1816 0.781731 0.000880297 2.54 -5.63 0.81 0.001391684 

13 2.426197 -2.99328 0.492002 0.004645188 2.5 -4.83 0.68 0.002123884 

16 2.860674 -13.5376 0.662 2.257× 10
-5

 2.95 -19.9 0.72 1.81× 10
-5

 

17 3.279199 -18.5435 0.786566 2.023× 10
-5

 3.23 -17.36 0.81 0.000114901 

18 3.223655 -9.45788 0.711826 9.088× 10
-5

 3.27 -12.64 0.79 0.000128725 

19 3.258747 -11.2144 0.817552 0.001468072 3.27 -12.64 0.83 0.001161215 

20 3.124899 -11.7291 0.892 0.000193669 3.1 -12.22 0.96 0.000265426 

21 3.215087 -6.60067 0.958 0.000517948 3.22 -9.15 0.51 0.000375148 

22 3.368203 -16.9139 0.855709 1.63× 10
-5

 3.19 -11.05 0.61 6.71× 10
-5

 

23 2.908931 -5.27457 0.942977 0.025515121 2.798 -6.357 0.631 0.013459419 

24 3.27858 -12.7353 0.907 0.000512916 3.138 -10.485 0.643 0.000985162 

25 2.471723 -4.28799 0.929393 0.00629027 2.512 -6.745 0.849 0.0040257 

26 3.301472 -11.5381 0.789697 0.003422127 3.254 -10.92 0.742 0.009860606 

27 2.690421 -2.21661 0.98699 0.041626266 2.745 -4.744 0.948 0.044222469 

28 2.58337 -5.82894 0.934979 0.001193892 2.328 -3.806 0.738 0.003107493 

29 2.94525 -13.162 0.811319 0.002480085 2.948 -12.9 0.816 0.003369088 

31 3.241 -13.674 0.320 3.53× 10
-6

 3.233073 -14.0106 0.172 2.242× 10
-5

 

32 2.582654 -9.61646 0.875064 1.07× 10
-5

 2.718 -14.968 0.484 9.92× 10
-6

 

33 3.084282 -7.41838 0.786012 0.013750582 2.72 -5.988 0.748 0.003584451 

34 3.137813 -6.87957 0.625 0.021595327 3.054 -10.348 0.815 0.000869423 

35 3.083 -7.405 0.962 0.002001624 2.949 -6.882 0.544 0.003497442 

36 3.562361 -13.4527 0.617 0.004461115 3.357 -10.18 0.489 0.013951018 

37 3.120 -15.226 0.748 1.37× 10
-6

 3.049 -14.971 0.707 1.41× 10
-5

 

38 3.301677 -15.8254 0.88874 4.85× 10
-5

 3.34 -17.114 0.631 7.16× 10
-5

 

39 3.809 -28.084 0.778 1.95× 10
-5

 3.446 -17.82 0.549 4.47× 10
-5

 

41 3.05306 -8.74 0.86 0.001130718 2.793 -7.054 0.736 0.003773053 

42 2.832913 -9.92196 0.806 0.000172624 2.912 -12.3 0.686 0.000233486 

43 3.51854 -24.2325 0.865188 8.31866E-06 3.27 -16.961 0.853 6.40189E-05 

44 3.247 -16.481 0.906 6.92× 10
-5

 2.975 -10.218 0.7 0.001006172 

45 3.094624 -8.69004 0.882 0.005322456 2.947 -10.067 0.894 0.001152158 

47 3.778886 -24.4873 0.98388 7.47× 10
-6

 3.858 -25.536 0.829 1.29153E-05 

48 3.599022 -17.1539 0.77 0.000101678 3.579 -17.328 0.693 0.000141044 

49 2.939071 -16.4971 0.717 1.14596E-05 2.985 -16.729 0.652 2.06349E-05 

50 3.199042 -22.8266 0.658 5.1× 10
-6

 3.187 -24.611 0.75 5.66492E-06 

51 2.752134 -11.6114 0.754824 0.00043395 2.895 -17.572 0.839 0.000471292 

52 3.665671 -16.8607 0.86 0.000484904 3.567 -14.451 0.865 0.001591581 

53 2.975643 -11.1758 0.82 0.000138501 2.966 -12.202 0.815 8.93× 10
-5

 

55 3.647 -23.204 0.569 1.53× 10
-5

 3.112 -3.868 0.352 6.17× 10
-5

 

56 3.129774 -8.24757 0.942 0.004598589 3.105 -11.152 0.749 0.00093184 

57 3.405536 -10.1805 0.971 0.000692943 3.246 -10.06 0.49 0.000323887 

58 2.839152 -8.02599 0.805 4.04× 10
-5

 2.433 -4.487 0.77 0.007335618 

60 2.983079 -13.2794 0.925 6.55× 10
-7

 2.94 -14.338 0.466 7.33× 10
-7
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Appendix 7 : The coefficients of determination of the Michailow (1943) 

model with the parameters and significance of models for both inventories 

for all validation plots 
 2016 2008 

Plot          Sign          Sign 

14 2.821717 -6.20625 0.862597 0.015870897 2.73 -5.81 0.83 0.040419313 

15 2.109 -4.664 0.34 0.025685646 2.77 -3.05 0.47 0.003476783 

30 3.689829 -33.8336 0.918214 2.6× 10
-5

 3.484 -25.527 0.815 0.000120765 

40 3.007141 -7.45018 0.893 0.001351339 2.8 -7.164 0.88 0.002551992 

46 3.25487 -9.54807 0.74 0.006179588 3.157 -9.288 0.612 0.013656705 

59 2.244415 -5.71344 0.66 0.00016692 2.22 -6.672 0.634 0.000454481 

61 3.19086 -12.5034 0.319 5.726× 10
-5

 3.137 -13.154 0.359 5.8 × 10
-5

 

62 2.482045 -3.0712 0.728957 0.002009088 2.13 -3.991 0.48 0.000184117 

63 3.16892 -6.41765 0.96062 0.000301126 3.202 -10.862 0.555 8.83× 10
-5

 

64 3.67255 -16.2933 0.74 0.002078619 3.382 -12.041 0.417 0.002079069 
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Appendix 8: The main variables (Mean stand height, quadratic mean diam-

eter, stand top height, stand top diameter, stand basal area,stand volume, 

number of trees per hectare) of modeling plots 
 

Plot Dq H BA V D100 H100 N 

2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 

1 26.3 28.5 20.7 22.7 62.57 71.19 281.7 360.5 39.1 41.9 24.6 25.9 1089 1032 

2 11.7 13.2 8.3 9.6 27.03 32.74 65.2 87.7 20.4 24.7 9.4 10.0 2144 2122 

3 28.4 31.0 13.9 16.0 35.58 41.05 106.3 142.8 36.8 39.1 15.4 17.2 535 530 

4 28.5 30.3 15.0 17.3 48.12 54.11 158.3 202.6 37.9 39.8 16.7 18.8 727 727 

5 27.9 30.3 17.8 21.6 55.56 65.57 217.6 302.8 37.7 40.1 20.9 22.6 881 870 

6 26.1 29.4 16.8 20.6 47.76 60.47 178.3 272.2 36.4 39.8 18.6 22.9 858 833 

7 21.0 24.1 15.6 19.8 48.33 62.98 179.0 281.0 24.0 26.2 17.0 22.5 1348 1238 

9 35.4 38.5 23.5 24.7 51.82 60.67 279.5 352,5 47.9 51.0 24.5 25.2 493 493 

10 16.5 21.9 12.9 16.7 17.64 29.79 59,1 116.3 25.1 30.7 15.2 19.3 748 748 

11 16.1 19.5 11.2 12.2 20.71 29.05 62.1 85.4 27.4 30.7 14.3 14.5 891 891 

12 13.6 14.8 9.7 10.3 40.47 47.04 110.6 132.0 24.1 24.8 11.3 11.9 2500 2500 

13 11.7 12.9 9.4 10.3 39.33 43.94 104.7 127.7 21.0 22.5 11.0 11.2 3144 3065 

16 14.0 17.1 5.9 9.2 11.03 15.42 20.8 37.8 23.6 26.5 9.5 11.8 622 622 

17 33.6 37.0 16.4 17.4 22.97 23.77 80.0 102.6 44.0 45.7 18.4 19.0 224 219 

18 34.6 37.6 19.6 20.8 46.11 52.14 201.6 252.0 46.4 48.5 21.3 22.0 454 446 

19 36.8 40.0 20.0 21.0 44.42 50.55 205.3 260.8 48.3 50.9 21.5 22.2 383 377 

20 22.7 27.0 14.3 16.0 26.58 33.22 81.3 119.9 33.6 35.2 16.9 18.1 1753 1711 

21 29.9 31.7 19.7 21.5 55.35 61.83 240.1 290.5 40.4 42.4 21.7 22.6 753 734 

22 32.5 33.6 18.6 18.8 55.95 60.35 221.9 254.5 42.3 43.9 20.1 21.0 645 637 

23 17.8 20.1 12.8 15.4 38.27 45.22 118.1 164.5 26.6 28.0 14.6 16.5 1356 1337 

24 24.0 26.3 16.2 17.6 48.84 56.90 179.9 225.9 37.5 39.3 19.4 20.5 1019 991 

25 12.8 14.1 8.6 10.0 42.91 49.72 107.9 135.8 40.0 41.2 11.4 12.0 2499 2399 

26 23.5 26.6 17.6 18.9 45.52 53.99 176.3 233.4 37.7 39.7 21.1 21.6 934 892 

27 15.6 18.0 12.8 14.3 28.96 37.99 97.5 133.9 24.6 27.2 14.0 14.9 1394 1394 

28 10.0 11.8 8.3 9.4 21.47 29.13 58.6 83.7 16.0 17.6 9.5 10.8 2476 2432 

29 33.6 36.4 14.3 14.5 31.76 33.03 136.8 159.2 51.9 52.4 16.0 16.1 275 270 

31 40.9 42.8 19.3 19.9 42.54 44.74 182.5 223.8 50.7 52.4 19.0 19.5 302 294 

32 27.0 29.2 10.0 10.8 31.64 36.76 70.9 87.3 36.0 38.6 11.4 11.6 523 523 

33 14.9 17.9 11.5 15.7 24.79 34.35 75.9 134.6 20.3 23.1 12.8 17.1 1304 1238 

34 17.9 19.4 13.2 17.5 56.51 63.20 180.0 266.4 27.5 28.9 16.2 19.5 2165 2070 

35 21.4 25.2 15.1 17.6 30.68 42.08 107.8 163.1 29.1 33.3 16.0 18.8 806 806 

36 24.6 29.4 20.3 23.6 39.2 54.72 178.8 289.2 36.3 41.8 22.9 26.8 764 736 

37 10.7 17.7 6.5 10.9 6.07 15.56 13.5 43.4 15.7 23.0 9.7 12.0 634 613 

38 31.4 33.4 17.6 18.2 53.15 57.33 210.4 241.6 44.7 46.4 20.5 20.6 622 608 

39 30.6 33.1 18.8 20.6 36.35 43.85 155.4 212.2 40.8 44.1 22.3 23.4 474 474 

41 14.1 17.5 11.2 14.1 31.82 45.18 94.6 162.6 20.7 23.7 13.2 15.9 1868 1789 

42 22.8 26.4 12.0 13.0 23.89 29.98 64.6 87.6 31.4 35.2 12.9 14.1 525 517 

43 23.7 27.2 14.2 15.2 36.93 46.66 119.8 161.0 34.5 37.4 17.7 19.0 778 764 

44 19.2 23.6 12.8 14.1 20.02 29.64 62.9 95.6 25.1 29.4 20.3 23.0 652 652 

45 17.5 19.3 12.0 15.4 47.97 56.36 145.3 210.6 27.8 29.1 15.1 17.7 1789 1736 

47 23.9 26.5 17.6 18.7 50.58 62.87 203.8 264.3 30.9 34.6 20.6 22.9 1092 1036 

48 32.1 34.6 22.2 23.6 56.26 63.70 263.2 325.3 40.2 42.6 24.2 25.8 672 639 

49 27.5 30.5 12.1 12.3 27.72 33.77 75.3 92.7 24.8 27.0 12.1 12.3 440 440 

50 30.6 34.2 12.1 13.9 23.47 27.16 61.2 86.2 38.8 41.9 14.1 15.5 301 295 

51 22.2 24.5 9.5 11.1 22.27 25.11 48.6 63.5 34.8 36.8 12.3 12.7 509 501 

52 25.4 27.6 21.3 22.5 67.37 77.44 323.7 390.1 37.1 38.2 25.8 26.4 1282 1216 

53 19.2 20.5 11.6 12.7 48.2 53.96 138.6 166.7 31.9 33.7 14.5 15.4 1499 1473 

55 39.1 43.2 23.7 23.7 36.55 44.53 193.0 251.5 45.2 50.0 23.7 24.2 297 283 

56 25.1 26.1 15.6 18.0 61.87 64.08 208.3 253.3 31.3 32.0 16.9 19.0 1184 1131 

57 28.1 31.5 19.2 23.1 43.46 54.84 179.8 269.3 31.0 35.3 19.9 23.9 684 684 

58 9.5 15.9 8.4 11.6 16.33 44.09 122.8 149.4 13.6 19.9 9.6 12.7 951 929 

60 24.1 25.5 11.7 13.0 46.64 51.14 281.7 360.5 32.1 33.4 13.42 14.58 1089 1032 
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Appendix 9: The main variables (Mean stand height, quadratic mean diameter, stand 

top height, stand top diameter, stand basal area,stand volume, number of trees per hec-

tare) of validation plots 

 

Plot Dq H D100 H100 BA V N 

2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 2008 2016 

14 11.1 13.4 10.4 11.9 19.3 20.9 12.6 13.8 30.84 43.72 130.08 101.23 2934 2585 

15 15.0 16.9 14.3 16.8 25.0 27.3 15.4 17.8 40.7 50.86 213.97 152.86 2069 1941 

30 42.4 47.8 19.2 21 47.6 50.4 21.1 22.5 20.53 23.27 154.28 102.18 137 137 

40 14.5 16.8 11.3 14.3 19.2 21.4 12.4 15.6 33.4 45.32 166.53 104.66 1920 1867 

46 16.9 21.1 14.9 17.8 22.4 26.3 17.4 19.3 31.95 47.89 199.61 120.54 1342 1236 

59 20.8 22.1 8.0 8.6 31.9 32.0 9.0 9.2 28.9 30.85 61.514 52.458 764 750 

61 41,3 42,9 18 19.5 47.6 48,6 18,8 20,1 60.36 64.94 331.53 281.54 420 420 

62 12 13.5 7.3 10.8 22,1 23.9 8.3 11.8 28.2 35.54 114.38 62.400 2429 2143 

63 29.6 31.7 18.3 20.7 33.5 35.4 19.1 21.1 50.54 55.91 249.16 192.90 707 662 

64 25.7 29 19.7 23.8 27.4 29.7 21.3 24 47.5 59.86 
305.25 

 
203.98 906 839 
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Appendix 10: The main variables for the removed stands for the brutia pine 

forests 

 
plot  𝑞                 BAremoved Removed Number of 

trees per hectare 

Vremoved.m
3
ha

-1
 

1 20.3 17.6 1.87 56.6 7.93 

2 5.2 5.9 0.05 22.1 0.14 

3 12.5 7.8 0.06 5.1 0.15 

5 18.9 13.3 0.31 11.0 1.02 

6 16.2 12.6 0.60 24.9 2.15 

7 16.9 13.2 2.70 110.5 8.77 

10 10.2 5.7 0.03 8.0 0.13 

13 7.7 6.5 0.34 78.6 0.97 

17 15.1 22.0 0.12 5.1 0.55 

18 17.2 10.9 0.20 8.0 0.52 

19 18.1 14.4 0.02 6.3 0.59 

20 13.9 9.8 1.13 42.4 2.27 

21 20.1 14,9 0,91 18.8 2.14 

22 24.8 18,1 0.06 8.0 1.53 

23 9.9 6.7 0.37 18,8 0.33 

24 16.3 15.2 0.35 28.3 2.35 

25 7.0 6.0 4.70 100.0 0.96 

26 28.1 19.2 1.58 42.4 12.19 

28 6.6 5.1 0.45 44.2 0.37 

29 14.4 15.9 0.40 5.1 0.37 

31 31.5 18.1 0.03 8.0 2.34 

33 10.5 8.0 0.73 66.3 1.93 

34 12.0 11.5 1.58 95.5 3.88 

36 17.4 17.2 0.43 28.3 2.97 

37 8.0 5.9 0.29 21.5 0.24 

38 16.8 12.9 0.08 14.1 1.06 

41 10.3 9.2 0.75 78.9 2.23 

42 8. 1 9.0 0.22 8.0 0.14 

43 18.6 14.9 0.08 14.1 1.42 

45 8.7 5.7 0.42 52.6 0.66 

47 17.9 18.3 1.65 56.5 6.48 

48 23.2 16.5 1.31 33.0 5.30 

50 18.8 10.9 0.05 6.0 0.45 

51 9.8 2.8 0.21 8.0 0.06 

52 20.2 17. 8 1.67 66.3 9.15 

53 8.5 4.8 2.53 26.3 0.27 

55 35.0 18.8 0.43 14.1 5.32 

56 21.1 17.3 1.13 52.6 7.32 

58 7.6 6.6 2.43 157.2 1.96 

60 20.5 16.5 0.34 22.1 2.86 
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Appendix 11: The main variables (Mean stand height, quadratic mean di-

ameter, stand top height, stand top diameter, stand basal area,stand vol-

ume, number of trees per hectare)  for the removed stands of validation 

plots 

 
plot  𝑞                 BAremoved Removed Number 

of trees per hectare 
Vremoved.m

3
ha

-1 

14 8.2 8.8 1.95 348.2 6.65 
15 7.1 10.6 1.02 127.3 2.38 
40 10.9 7.2 0.47 52.6 1.39 
46 13.6 12.9 1.93 105.2 5.93 
59 13.3 7.9 0.06 14.1 0.46 
62 10.6 4.5 16.72 285.8 3.91 
63 27.3 22,5 1.50 44.2 12.40 
64 21.9 18.9 1.01 66.3 10.92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDICES 

156 

 

Appendix 12: The statistical parameters of crown diameter  equations of 

modeling plots 
 

plot Equation R2 Std Error of Coeff Sign of Coeff P-value 

a 0 a 1 a 0 a 1 

1 -3.974+2.601×ln(d1.3) 0.82 1.384 0.403 0.018 0.000 0.000 

2 -7.045+3.700×ln(d1.3) 0.81 1.685 0.597 0.002 0.000 0.000 

3 -3.341+2.227×ln(d1.3) 0.68 1.628 0.470 0.01 0.001 0.000 

4 -3.016+2.373×ln(d1.3) 0.73 1.509 0.441 0.01 0.000 0.000 

5 -3.974+2.601×ln(d1.3) 0.311 1.633 0.598 0.058 0.000 0.03 

6 -9.281+3.940×ln(d1.3) 0.87 1.538 0.463 0.000 0.000 0.000 

7 -8.329+3.633×ln(d1.3) 0.79 1.871 0.581 0.002 0.000 0.000 

9 -16.7+6.156×ln(d1.3) 0.87 2.639 0.718 0.000 0.000 0.000 

10 -5.297+2.727×ln(d1.3) 0.93 0.705 0.231 0.000 0.000 0.000 

11 -4.688+2.774×ln(d1.3) 0.90 0.853 0.279 0.000 0.000 0.000 

12 -3.853+2.779×ln(d1.3) 0.95 0.458 0.160 0.000 0.000 0.000 

13 -5.414+3.268×ln(d1.3) 0.87 1.000 0.373 0.000 0.000 0.000 

16 -3.501+2.486×ln(d1.3) 0.71 1.486 0.487 0.04 0.002 0.000 

17 -10.057+4.25×ln(d1.3) 0.73 2.669 0.729 0.003 0.000 0.000 

18 -13.147+5.25×ln(d1.3) 0.793 2.907 0.799 0.001 0.000 0.000 

19 -11.798+4.79×ln(d1.3) 0.89 1.855 0.511 0.000 0.000 0.000 

20 -5.55+2.756×ln(d1.3) 0.95 0.645 0.194 0.000 0.000 0.000 

21 -8.367+3.693×ln(d1.3) 0.84 1.766 0.502 0.001 0.000 0.000 

22 -8.287+0.462×ln(d1.3) 0.85 1.655 0.462 0.001 0.000 0.000 

23 -3.712+2.16×ln(d1.3) 0.93 0.549 0.186 0.000 0.000 0.000 

24 -5.083+2.582×ln(d1.3) 0.95 0.610 0.18 0.000 0.000 0.000 

25 -2.786+2.014×ln(d1.3) 0.91 0.550 0.18 0.000 0.000 0.000 

26 -9.358+4.063×ln(d1.3) 0.87 1.617 0.484 0.000 0.000 0.000 

27 -4.644+2.696×ln(d1.3) 0.92 0.697 0.242 0.000 0.000 0.000 

28 -3.205+2.213×ln(d1.3) 0.76 1.039 0.384 0.013 0.000 0.000 

29 -7.730+3.743×ln(d1.3) 0.91 1.323 0.367 0.000 0.000 0.000 

31 -18.75+6.44×ln(d1.3) 0.86 3.101 0.813 0.000 0.000 0.000 

32 -2.923+2.365×ln(d1.3) 0.73 1.484 0.437 0.04 0.000 0.000 

33 -5.442+2.942×ln(d1.3) 0.79 1.384 0.468 0.003 0.000 0.000 

34 -11.005+4.74×ln(d1.3) 0.89 1.678 0.545 0.000 0.000 0.000 

35 -5.301+2.787×ln(d1.3) 0.91 0.853 0.263 0.000 0.000 0.000 

36 -5.191+2.776×ln(d1.3) 0.71 1.862 0.540 0.02 0.001 0.000 

37 -4.003+2.314×ln(d1.3) 0.85 0.894 0.304 0.000 0.000 0.000 

38 -6.603+3.146×ln(d1.3) 0.72 2.143 0.596 0.000 0.000 0.000 

39 -7.826+3.467×ln(d1.3) 0.91 1.209 0.335 0.000 0.000 0.000 

41 -6.838+3.394×ln(d1.3) 0.91 0.955 0.324 0.000 0.000 0.000 

42 -7.91+3.617×ln(d1.3) 0.95 0.804 0.241 0.000 0.000 0.000 

43 -5.858+2.952×ln(d1.3) 0.94 0.749 0.222 0.000 0.000 0.000 

44 -4.424+2.403×ln(d1.3) 0.86 0.942 0.298 0.001 0.000 0.000 

45 -3.826+2.313×ln(d1.3) 0.87 0.831 0.274 0.001 0.000 0.000 

47 -8.751+3.817×ln(d1.3) 0.887 1.416 0.427 0.000 0.000 0.000 

48 -8.003+3.547×ln(d1.3) 0.84 1.679 0.473 0.001 0.000 0.000 

49 -7.012+3.489×ln(d1.3) 0.937 0.968 0.284 0.000 0.000 0.000 

50 -12.97+5.094×ln(d1.3) 0.83 2.580 0.714 0.001 0.000 0.000 

51 -5.143+2.816×ln(d1.3) 0.92 0.778 0.249 0.000 0.000 0.000 

52 -6.462+3.141×ln(d1.3) 0.83 1.478 0.431 0.002 0.000 0.000 

53 -4.196+2.309×ln(d1.3) 0.96 0.459 0.143 0.000 0.000 0.000 

55 -22.54+7.532×ln(d1.3) 0.94 2.072 0.551 0.000 0.000 0.000 

56 -3.106+2.036×ln(d1.3) 0.89 0.709 0.222 0.002 0.000 0.000 

57 -9.479+3.996×ln(d1.3) 0.86 1.707 0.499 0.000 0.000 0.000 

58 -3.255+2.085×ln(d1.3) 0.74 1.093 0.384 0.015 0.000 0.000 

60 -4.311+2.459×ln(d1.3) 0.56 2.213 0.663 0.08 0.000 0.000 
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Appendix 13: The statistical parameters of crown diameter  equations of 

validation plots 
 

plot Equation R2 Std Error of Coeff Sign of Coeff Sign 

a 0 a 1 a 0 a 1 

14 -5.884+3.200×ln(d1.3) 0.80 1.319 0.495 0.002 0.000 0.000 

15 -4.980+2.678×ln(d1.3) 0.91 0.747 0.259 0.000 0.000 0.000 

30 -3.826+2.313×ln(d1.3) 0.87 0.831 0.274 0.001 0.000 0.000 

40 -2.670+1.783×ln(d1.3) 0.81 0.766 0.263 0.007 0.000 0.000 

46 -2.757+1.830×ln(d1.3) 0.75 1.023 0.329 0.02 0.000 0.000 

59 -3.762+2.312×ln(d1.3) 0.95 0.509 0.163 0.000 0.000 0.000 

61 -16.08+5.941×ln(d1.3) 0.90 2.284 0.609 0.000 0.000 0.000 

62 -3.235+2.097×ln(d1.3) 0.84 0.760 0.281 0.002 0.000 0.000 

63 -4.797+2.757×ln(d1.3) 0.90 0.975 0.280 0.001 0.000 0.000 

64 -4.487+2.442×ln(d1.3) 0.72 1.563 0.463 0.018 0.000 0.001 
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Appendix 14: The statistical parameters of tree crown length models for 

each permanent experimental plot in the second inventory of modeling 

plots. 
 

plot R
2
 sign Intercept a1 

Std Error of 

coeff 

1 0,87 0,0000 -9,093 6,352 0,33 

2 0,75 0,0000 -4,459 4,867 0,41 

3 0,89 0,0000 -9,713 6,871 0,293 

4 0,89 0,0000 -8,053 6,232 0,33 

5 0,85 0,0000 -6,347 5,505 0,31 

6 0,87 0,0000 -15,364 8,385 0,56 

7 0,71 0,0000 -6,499* 5,319 0,63 

9 0,44 0,02 -12,94 7,679 0,709 

10 0,64 0,003 -3,111* 4,031 0,8 

11 0,83 0,0000 -2,386* 3,999 0,53 

12 0,78 0,0000 -4,061 4,523 0,56 

13 0,921 0,0000 -5,774 5,356 0,33 

16 0,73 0,0000 -4,326 4,736 0,77 

17 0,68 0,03 -8,740 6,651 1,322 

18 0,79 0,0000 -15,768 7,866 0,595 

19 0,67 0,0000 -14,566 8,373 0,8 

20 0,75 0,0000 -13,762 8,511 0,86 

21 0,795 0,0000 -12,555 7,613 0,451 

22 0,902 0,0000 -12,129 7,610 0,354 

23 0,69 0,004 -6,310 5,491 0,788 

24 0,606 0,0000 -12,861 7,979 1,4 

25 0,647 0,0000 -1,609* 3,683 0,635 

26 0,46 0,0000 -10,538 6,735 1,3 

27 0,88 0,0000 -12,498 7,794 0,30 

28 0,97 0,0000 -4,318 4,755 0,194 

29 0,61 0,02 -6,488* 5,735 1,7 

31 0,7 0,0000 -4,625* 5,254 0,6 

32 0,49 0,0000 -0,223* 3,22 0,7 

33 0,83 0,0000 -4,813 4,729 0,424 

34 0,874 0,0000 -7,993 6,005 0,352 

35 0,87 0,0000 -8,322 6,176 0,34 

36 0,65 0,003 -9,914* 6,655 1,3 

37 0,89 0,0000 -10,924 7,667 0,58 

38 0,75 0,0000 -7,802 6,167 0,95 

39 0,68 0,0000 -11,639 7,614 1,1 

41 0,742 0,0000 -7,476 5,966 0,7 

42 0,78 0,0000 -6,593 5,635 0,88 

43 0,70 0,0000 -3,326 4,366 0,842 

44 0,68 0,006 -6,192* 5,485 0,99 

45 0,75 0,0000 -5,319 5,073 0,909 

47 0,72 0,03 -6,132 5,478 1,096 

48 0,614 0,004 -7,791 5,924 0,862 

49 0,89 0,0000 -6,512 5,778 0,596 

50 0,89 0,0000 -8,625 5,615 0,51 

51 0,79 0,0000 -6,199 5,607 0,72 

52 0,75 0,006 -20,189 9,928 1,1 

53 0,82 0,0000 -10,26 7,154 1,02 

55 0,44 0,0000 -8,596* 6,398 0,53 

56 0,7 0,003 -17,176 9,421 1,071 

57 0,84 0,0000 -10,734 6,906 0,34 

60 0,753 0,002 -10,633 7,167 0,618 
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Appendix 15: The statistical parameters of tree crown length models for 

each permanent experimental plot in the second inventory of validation 

plots. 
plot Equation R2 Std Error of Coeff Sign of Coeff Sign 

a 0 a 1 a 0 a 1 

14 0,93 0,0000 -4,891 4,888 0,253 14 0,93 

15 0,67 0,0000 -7,637 5,815 0,453 15 0,67 

30 0,94 0,0000 -6,117 5,77 0,4 30 0,94 

40 0,99 0,0000 -7,119 5,72 0,1 40 0,99 

46 0,95 0,0000 -7,26 5,738 0,247 46 0,95 

59 0,92 0,0000 -6,646 6,124 0,31 59 0,92 

61 0,74 0,001 -9,147 6,779 0,74 61 0,74 

62 0,90 0,0000 -5,362 5,126 0,21 62 0,90 

63 0,86 0,0000 -13,148 7,803 0,356 63 0,86 

64 0,91 0,0000 -6,057 5,37 0,354 64 0,91 
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Appendix 16:Distribution of dominant height development (2008 -

2016) with the developed site index equations which categorized into 

five site classes (10, 15, 20, 25, and 30) 
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Appendix 17 :The relationship between measured (2016) and predicted di-

ameter at breast height (d1.3) values in test plot, produced by diameter in-

crement equation for validation plots 
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Appendix 18 :The relationship between measured (2016) and predicted 

height values in test plot, produced by linearized height increment equation 

for validation plots  
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Appendix 19 :The relationship between measured (2016) and predicted 

height values in test plot, produced by Potential modifier height increment 

equation for validation plots 
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