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Abstract

This research effort develops the necessary interfaces between the radar signal

processing components and an optimization routine, such as genetic algorithms, to

develop Electronic Countermeasure (ECM) waveforms under a Hardware-in-the-Loop

(HILS) architecture. The various ECM waveforms are stored in an ECM library,

where an operator selects the desired function to use against a particular system.

This optimization works with modular components, compared to previous research

that embedded a genetic algorithm into the Range Gate Pull-off (RGPO) waveform

optimization loop, which can be interchanged based upon the operator’s desired hard-

ware/ software testing setup. The ECM library’s first entries contain the RGPO and

Velocity Gate Pull-off (VGPO) signals, developed mathematically for multiple poly-

nomial profiles representing realistic moving false targets. The Lab-VoltTM training

system and jammer pod provided a validation medium for the developed RGPO and

VGPO waveforms. These waveforms were optimized using a Simulink model of the

Lab-VoltTM radar system and the MATLABr Genetic Algorithm (GA) and Direct

Search toolbox, contained in Version 7.4 (R2007a), using a defined parameter set,

specified for the RGPO waveform. Integration of MATLABr code with Simulink

models provides the necessary interfaces to later transition from software radar models

to actual system hardware. Results from GA optimization illuminate the necessity to

specifically define the necessary constrains, both linear and nonlinear, imposed upon

the environmental conditions. Given defined constraints relative to the Lab-VoltTM

training system, the HILS architecture produced multiple constant velocity range pro-

files with walk-off ranges and maximum velocities similar to the Lab-VoltTM Jammer

Pod.
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Improvement of ECM Techniques

through Implementation

of a Genetic Algorithm

I. Introduction

Successful development of electronic countermeasure (ECM) techniques against

target tracking radars comes through extensive analysis of hardware system imple-

mentation. Currently, this ECM development and analysis takes numerous manhours

to complete and can be a financially expensive venture. Numerous resources are al-

located in the setup and investigation/evaluation of a system’s circuit design. Those

resources do not cover any required for selection criteria determined for the types of

ECM to run against a given platform [1]. This research, made possible by the Air

Force Office of Scientific Research funding the basic research, continues an ongoing

effort involving the following organizations: Air Force Research Laboratory, RF Sen-

sor Technology Division, RF Countermesaures Assessment Lab (AFRL/RYRA); Air

Force Research Laboratory, Information Technology Directorate, Embedded Technol-

ogy Systems Engineering (AFRL/IFTA); Air Force Institute of Technology, Electri-

cal and Computer Engineering Department (AFIT/ENG); and research support from

in-house contractors. This collaboration is focused on implementing a hardware-in-

the-loop simulation (HILS) for developing ECM techniques using a genetic algorithm.

This research investigates the necessary linkages between radar signal processing hard-

ware and the genetic algorithm (GA) optimization routine to produce the desired

Range-Gate Pull-Off (RGPO) or Velocity-Gate Pull-Off (VGPO) ECM techniques.

This system implementation emphasizes the necessity to reduce ECM technique de-

velopment time and develop a library of fitness functions that can be used against

multiple radar systems in a multitude of engagement situations.

1



The purpose of this chapter is to outline the efforts of this research focused on

integrating hardware equipment, such as the Textronix RSA6114A Realtime Spec-

trum Analyzer, with the genetic algorithm, encoded in MATLABr V7.4 (R2007a)

and hosted on the Textronix AWG7102 Arbitrary Waveform Generator, in support

of optimizing ECM waveforms against threat hardware. The search space landscape

exploited by the genetic algorithm portrays the threat hardware’s operational envi-

ronment, which can be optimized through understanding the mathematical models

representing the environment. An ECM development suite is designed to handle

real-world applications with basic understanding of the connections between test and

operational radar systems. This thesis develops the process necessary to develop these

interactions and enable a HILS architecture for ECM waveform development as part

of the technique generation, optimization algorithms, and objective functions that

must be defined in a general sense. This chapter addresses the background, problem

to be investigated, and the proposed methodology.

1.1 Background

ECM development falls directly under the electromagnetic jamming component

of electronic attack (EA) in support of the tenets of electronic warfare (EW). Accord-

ing to Air Force Doctrine 2-5.1, “Electromagnetic jamming is the deliberate radiation,

reradiation, or reflection of electromagnetic energy for the purpose of preventing or

reducing an [threat system’s] effective use of the electromagnetic spectrum, with the

intent of degrading or neutralizing the [threat system’s] combat capability” [2]. Fig-

ure 1.1 depicts the EW arena with its major components. The cooperative aircraft

are shown in the center. The ground radar and airborne guidance system work in

concert with the tracking radar to provide guidance information. The dashed lines

depict the ECM signals used to deceive the tracking systems and disrupt, degrade, or

deny lock-on and accurate target guidance. ECM jamming signals limit the threat’s

access to information on cooperative force movement and composition.
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Figure 1.1: Electronic warfare environment

Deception jammers are a specific type of jammer sensitive to technological ad-

vances and constant environmental changes. This specific jammer type varies from

the common jammer conception of active noise jamming to highly sophisticated wave-

forms for deception. Deception jammers do not overwhelm the EM spectrum with

external noise, but provide false ranging information to the victim system. Deception

examples include Range Gate Pull-Off (RGPO), where pulse returns are time-delayed

to induce an increase in target distance, and Velocity Gate Pull-Off (VGPO), which

modulates pulse returns to increase measured velocity readings. If the deception jam-

mer provides accurate false target information, the victim system becomes confused

between real and false data and can no longer extract valid targeting data [3]. By

nature, deception jammers are more sophisticated than noise jammers, requiring more

complex hardware and software to create the desired signals. Deception jammers are

more complex because operational and waveform parameters are directly correlated

to the victim system’s performance parameters and modes of operation. Developing

ECM waveforms for use against search, acquisition, and tracking systems requires

having the actual hardware available for testing and exploitation. This task becomes

problematic because every radar system can not be acquired, which dictates that other

methods are necessary to develop ECM techniques. The question then arises: If ad-

versary assets and testing ranges are in high-demand, how can the process of ECM

waveform generation be automated and optimized to reduce technique development
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time? This project focuses on developing a generic hardware-in-the-loop simulation

system consisting of: an automated optimization algorithm, like GA, a library of

fitness functions for ECM techniques, and a radar/threat environment. Before dis-

cussing the proposed methodology, the Lab-VoltTM radar training system is presented

as the test radar.

1.1.1 Lab-VoltTM Radar Training System. For modeling and implementa-

tion, the Lab-VoltTM system serves as a demonstration platform for understanding

how tracking radars work in a simulated environment. The Lab-VoltTM radar is a

laboratory-scaled system with the capability to conduct both range and angle tracking

of a single point-scatterer at distances of up to 7.2 meters. This system has numer-

ous variable settings for operational frequency, pulse repetition frequency (PRF), and

pulse width to enable investigation of signal variation as encountered in real-world

systems. Table 1.1 lists Lab-VoltTM configuration data for implementing the Target

Tracking mode. Understanding the Lab-VoltTM radar tracking system reveals how

real-world considerations are modeled with validity. The Lab-VoltTM radar consists of

modular reconfigurable components for range and angle tracking, moving target in-

dicating, Doppler processing, and clutter simulation. The Lab-VoltTM Target Tracker

Module uses the Moving Target Indicator (MTI) output to detect objects in the en-

vironment. Range and angular data received from the dual-feed parabolic-reflector

antenna are determined to resolve the target’s movement. Depending on the result-

ing error signal received from the monopulse antenna, power signals can be sent to

the Antenna Motor Driver to compensate for the target’s positional changes. Angu-

Table 1.1: Lab-VoltTM Tracking Radar Parameters [4]
Parameter Values
PRF fprf , Hz 12, 18, 144, 216, 288
PRF Modes SINGLE, STAGGERED
Pulse Width τ , (ns) 1-5
Operating Frequency Range ft, (GHz) 8.0-10.0
Nominal Operating Frequency ftnom , (GHz) 9.4
Range Distances (m) 1.8, 3.6, 7.2
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Figure 1.2: Lab-VoltTM dual-channel antenna RF setup [4]

lar compensation by the Target Tracker module allows for accurate tracking profiles

by the Lab-VoltTM system. Automatic angle tracking within the Lab-VoltTM system

allows for the tracking of moving targets with automatic alignment of the aperture

to the target’s location [4]. Figure 1.2 shows a circuit diagram of the dual-channel

aperture. The output received from the left and right channels of the dual-channel

aperture are compared to determine angular direction. The MTI video signal is com-

pared to the range gate information and converted into an inverted (Right Lobe)

and non-inverted (Left Lobe) signal. Signal splitting occurs in this fashion due to

the aperture geometry. The antenna is configured to return the error between the

two horns, where the zero error ground reference indicates target position along the

center-line, and a positive-valued signal represents a target coming from the antenna’s

left. While the MTI processor does not distinguish where the horn references from in

creating the video signal, a gate timing circuit differentiates the left and right lobes

from the inverted signal. A resulting positive signal then means that the target is left

of boresight, causing an azimuth correction to be sent to the Antenna Motor Driver to

move left (clockwise) of its current position. This movement decreases angular error

to maintain a successful angular lock. The Lab-VoltTM system then can model appro-
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priately scaled 2-D scenarios for tracking targets in range and azimuth. Furthermore,

limited Electronic Counter-Countermeasures (ECCM) tracking capabilities such as

leading-edge tracking add realism for modeling the electronic warfare environment.

1.1.2 Lab-VoltTM ECCM Capabilities. The Lab-VoltTM system allows for

accurate real-world modeling through the ECCM capabilities built into the range-

azimuth tracking system features. The first involves the leading-edge tracker. Imple-

mentation for this tracking method involves moving the target tracking point off the

pulse centroid and to a specific point on the pulse’s leading edge. During the late

gate portion of the range tracking cycle, a DC voltage is held instead of the late gate

signal. The held DC voltage causes a bias in the integration circuit, subsequently

moving the track point toward the leading edge. The leading edge tracker threshold

dial on the Target Tracking module adjusts the DC levels accepted by the track-

ing algorithm. While using the leading edge function of this Lab-VoltTM component

makes locking onto quick-changing target returns more difficult, the benefit comes

in preventing range gate detection by jamming systems. The leading edge track-

ing contained within the Target Tracking module prevents detection of false targets

intended to mask the original target and change the range gate information. This

technique prevents range-gate pull off jamming from effectively walking the tracker’s

gated range value off the actual target return. Another important tracker ECCM fea-

ture involves the detection of average range gate limiting. The target’s average rate

of change detected by the radar is shown in Figure 1.3. Engaging this tracking radar

feature enables detection of unnatural range gate changes. Jamming techniques, such

as those that delay the target return in time, cause a tracker to see this movement and

estimate appropriate changes to the false target return. These erroneous estimations

cause the radar to lose track because the range gate no longer represents the location

where the target is located. The average rate limiter calculates the range gate between

collected returns and rejects the gate changes that exceed the determined threshold.

The rate limiting signal shown in Figure 1.3 determines the maximum change possible
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Figure 1.3: Averaging filter Lab-VoltTM signals [4]

for the given range recorded from the rangle/angle tracking algorithms as the range

rate limiter. Velocity and Range Gate Pull-Off jamming signals must compensate

for certain system restrictions, like range-limiting, to execute target masking without

alerting the victim system of a false target [3]. These two ECCM safeguards allow

for real-world threat modeling of tracking systems with appropriate considerations of

modern systems.

1.1.3 Summary. The Lab-VoltTM training system serves as a character-

istic system for developing ECM techniques. While limited to only 2-D tracking

capabilities, this system serves as a representative piece of hardware used by opera-

tors to understand and become proficient with real-world systems. Furthermore, the

Lab-VoltTM tracking module provides ECCM techniques, similar to those used in the

operational environment, that must be overcome in order to properly implement ECM

waveforms. The necessary tracking signals can be exploited to develop a ECM tech-

nique generator that can be optimized by a genetic algorithm. It is the intent of this

research to further progress HILS development that creates and evaluates ECM tech-
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niques using automated optimization. Having an operational HILS system that can

optimize ECM waveforms requires a library of objective, or fitness functions. These

functions should not be integrated into the optimization such that a new optimization

algorithm must be created for each combination of technique optimization.

1.2 Research Problem

Current ECM technique development is accomplished through numerous trial

and error iterations that are time-consuming and require access to test assets and a

priori knowledge of the system. Furthermore, during the development process, human

error can play a significant role in the time necessary to exactly characterize the desired

waveform against a specific asset. Genetic algorithms have the potential to reduce

development time through effective ECM waveform and technique derivation [1]. In an

effort to develop effective ECM, this project aids in the development of a generic HILS

system [5]. Through developing HILS with onboard optimization, human error may

be reduced and development time can be reduced because computerized optimization

is more precise and faster than solely man-in-the-loop experimentation.

This research answers the question: What interfaces are required between the

radar signal processing components and the GA to develop ECM waveforms under

HILS? Three major topics must be addressed. The first is Lab-VoltTM operation for

range and angle tracking. The second is a thorough understanding of how the radar

signal processing suite will be used to determine if the victim radar has a successful

track. The final aspect is the mathematical modeling of ECM waveforms for waveform

generalization and optimization.

1.3 Scope/Methodology

This research builds upon recent Lab-VoltTM characterization by Mayhew [6]

and extends it to the tracking module as a benchmark for understanding real-world

tracking radars. By understanding how the Lab-VoltTM tracks targets, the HILS

systems can be demonstrated with a GA optimization. The primary contribution
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of this work is the architecture for including a library of fitness functions for ECM

waveform generation. In addressing the research question and the investigative tasks

from the previous section, the following questions must be addressed:

1. Lab-VoltTM Tracking Module

(a) How does the tracking module implement range/angle tracking?

(b) What defines the tracking module “breaking lock”?

(c) How exactly are ECCM techniques implemented that are inherent to the

tracking module?

2. Radar Signal Processor

(a) What determines that a RADAR is tracking a given target?

(b) What determines the best ECM technique to use against that RADAR?

(c) What determines if the “break lock” criteria are met?

3. Genetic Algorithm

(a) What is the fitness function?

(b) How should the GA search space be defined and what is the space?

(c) What physical limitations (i.e. design variables and constraints) need to

be represented in the GA search space?

(d) Will a multiple-objective GA be required for the best ECM technique se-

lection?

(e) What interfaces are required between the calculated GA results and the

Arbitrary Waveform Generator (AWG)?

These questions provide a road map through the necessary tasks needed to success-

fully integrate optimization with HILS. The first set of questions regarding the radar

tracking module requires development of a tracking module in MATLABr for the
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current radar model. Previous research implemented the transmission and radar re-

ceiver portions of the Lab-VoltTM system but did not include the tracking portion.

Range and angle trackers and their ECCM are studied to answer the first set of ques-

tions. The second group of questions addresses the need for developing mathematical

models of the RGPO/VGPO techniques. The ECM models must be more general-

ized than the RGPO model reported by Nunez et al. [1]. Understanding the Doppler

responses implemented in a VGPO jammer reveals how a space-time adaptive pro-

cessing (STAP) model of the ECM Jammer pod may accelerate the optimization. The

MATLABr model of the ECM Jammer pod subsequently establishes how the radar

signal processing equipment determines if the threat radar broke lock. The final group

of questions explores the GA and the equations necessary to represent the landscape.

In exploring the VGPO and RGPO jamming techniques, exploration focuses on how

to use STAP data simulation methods to define the fitness function. While the back-

ground research explores how GAs can assist the problem, the requirements expand

for multi-optimization when multiple independent optimization routines are running

simultaneously.

Resolving these questions will drive the HILS development including the GA

implementation stage into exploration of multiple jammers used in concert with each

other. While this system is being developed on a training radar system, the next log-

ical step is to test the HILS system on a real-world system. Accurate modeling of the

tracking radar will give a robust development of the testing hardware and software

such that the system accurately interacts with systems that operate at different op-

erational frequency bands and varying pulse widths or PRFs in a variety of methods.

The methodology of how this research will progress to through HILS development

will be discussed further in chapters three, four, and five.
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II. Tracking Radar and Genetic Algorithm Literature

Review

2.1 Chapter Overview

This chapter discusses the background material necessary for understanding the

reasoning behind choosing the Genetic Algorithm optimization technique for devel-

oping ECM techniques against tracking radar systems. As discussed in the previous

section, the Lab-VoltTM system serves as a laboratory-scaled system suitable for con-

ducting ECM waveform optimization. Tracking radar implementation and genetic

algorithm development are presented in this chapter to give the reader a better un-

derstanding of how the ECM waveform optimization will be implemented against

the Lab-VoltTM system. Section 2.2 covers tracking radar principles used by the

Lab-VoltTM system. Section 2.3 gives an overview of genetic algorithms, outlining the

basic concepts and principles used to optimize the ECM technique fitness function.

Finally, Section 2.4 gives a literary overview of how genetic algorithms and evolution-

ary computational methods have been used to solve similar optimization problems.

2.2 Radar Tracking Model

2.2.1 Radar Range Equation. Development of radar tracking techniques

derives from the radar range equation studied for a single pulse return. This single

return is then used for detecting targets at a desired range. Equation (2.1) is the

basic radar range equation, applying the situation where a continuous track is held

for a given time, to [7]. Equation (2.1) includes effective aperture (Ae), transmit

antenna gain (Gt), target cross-section (σt), and receiver noise figure (kBToBFn) as the

detection of targets in range. In Equation (2.1), the product of average power returned

(Pav) and the time on target must equal the transmitted energy (Et) broadcast from

the transmitter. The signal-to-noise ratio (SNR), denoted as (S/No), is defined as the

ratio of signal power collected at the receiver to the noise power. No is the height of

the flat noise power spectral density. Equation (2.1) determines the maximum range
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at which a target of RCS σ can be “seen” over a given period to.

R4
max =

PavtoGtAeσ

4πkBToBFn(S/No)
(2.1)

The transmit antenna gain is

G =
4πρaA

λ2
, (2.2)

where A is the antenna’s physical area and ρa is the antenna efficiency defined in [8].

Antenna gain is derived from the radiation intensity (U(θ, φ)):

G =
4πU(θ, φ)

Pin

. (2.3)

The directive gain in U(θ, φ) is expressed as the maximum radiation intensity along

each field component [8]. Angular accuracy is based on the resolution of θB and

φB respectively, where θB and φb are the 3dB beamwidths in azimuth and elevation

respectively [9]. The Lab-VoltTM gain of 28.9dB [6] and angular resolution of degrees

combine with the narrow 1-nsec pulse width result in accurate target tracking in range

and angle.

2.2.2 Basic Target Tracking Algorithms. A range-tracking system makes

estimations of future target position and velocity to maintain track. Figure 2.1 shows

a block diagram of a basic target tracking algorithm, similar to one seen in the Lab-

Volt radar system. The first step includes interrogating the environment to determine

if a target exists and comparing collected returns to given threshold settings within

the radar. During the gating step, variations of target location are calculated to decide

if an observation is part of a previous track or belongs to a new track profile [10].

Gating acts as a coarse classification method to say that the target return is either a

candidate for updating the track profile or is the initial observation for a new track

profile. The second part of the correlation function makes the final assessment on

received returns. During this state, multiple returns falling within the same gate are

deconflicted through using either a “nearest-neighbor” or “all-neighbor” approach. In
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Figure 2.1: Basic elements of a simple tracker system [10]

the “nearest-neighbor” approach, the associated difference, or error value, for each

return to a specific range gate is evaluated and the minimal error return is associated

with that track, rejecting all other return values [10]. In the “all-neighbor” approach,

a weighted sum is applied to all gated returns based on the probability that each return

belongs in the given gate [10]. Any observations that are not connected to existing

tracks from the previous stage are used for generating new tracking profiles. During

this stage in Figure 2.1, confirmation logic is applied to determine if the new tracks

are legitimate or should be disregarded. Gate sizing and time period for confirming

track are developed to assist the correlation logic in processing track observations.

Any track profiles that have not been updated at this point are removed from the

tracking scenario. Finally, the remaining target track parameters are updated and

future parameter estimates are made regarding the location of the next observation.

Prediction estimates are developed through Kalman filtering and covariance matrices

are associated to each track profile.

In developing and maintaining tracking profiles, range tracking radars may use

detection schemes like Maximum Likelihood Estimators (MLEs) to determine where

the target return should come from given the prior knowledge. During this estima-

tion, the assumption given is that the signal is a stationary, bandlimited process,
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where the time delay will be fixed for each interval [11]. These MLEs use information

on probability of detection (Pd), probability of false-alarm (Pfa), error measurement

characteristics for the radar, and the target resolution prediction to determine a track

profile for a possible detected target. From these tracking parameters, the combina-

tional likelihood for each possible track is found through the binomial distribution of

a given track occurring at the current range. Through calculating the target distribu-

tion within range cells, the actual return can be compared to either adjust the track

profile estimate or adjust the future track distribution space to a smaller region [7,11].

Through numerous MLE iterations, track profiles can be refined by the time increment

or approximations in range to develop good track profiles. This methodology can be

applied to range tracking techniques, angle tracking techniques or the combination of

these and other target parameters.

2.3 Genetic Algorithms

GAs trace back to papers by Holland written in the 1960’s which discuss sys-

tems that could learn, interact, and adapt to their existing environment [12]. These

adaptive systems were designed to take advantage of the biological concepts of natu-

ral selection and constant species reproduction. Through competition and innovation

in a system, it was noted that an evolutionary algorithm could be developed in an

artificial environment to mimic nature’s tendencies to find the optimum solution. Ge-

netic algorithms separate themselves from other methods of evolutionary computation

based upon three distinct principles:

1. Data representation as bit-strings referred to as chromosomes,

2. The chromosome selection method used is proportional to the population size,

3. The primary method for reproduction with data variation, or creating new data

sets, is through crossover between population members.

Understanding the search environment and characterizing good population members

through a fitness function exploits the genetic algorithm’s distinguishing properties
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in finding optimum parameters. The fitness function used by the genetic algorithm

operates in the same manner as nature selects the fittest of the species. The genetic

algorithm constructs must be understood to appreciate Holland’s original ideas of the

modern genetic algorithm theory.

2.3.1 Basic Terminology. Genes are the biological building blocks that are

represented in this algorithm as data bit-strings. Depending on the data set used,

the data points being modeled for optimization can be gray coded for binary strings,

represented as permutation matrices, or real-valued like data signals. The chromosome

is defined then as an array of parameter values desired to be optimized. If there are

Npar parameters for the N -dimensional optimization, each given as p1, p2, · · · , pN , the

chromosome uc can be defined as [13]

uc = [p1p2p3 · · · pN ]. (2.4)

The parameters can be defined as either continuous or discrete, which can lead to

further constraints. If these parameters are continuous, the limits usually represent

physical properties of the landscape which bound the problem [13]. Both the chromo-

some format and the defined constraints dictate the operators used for crossover and

mutation, which will be discussed later [14]. To assess a chromosome, there must be

a way to determine its performance against the solution set. This performance objec-

tive is referred to as a fitness function, which can either be minimized or maximized

determined upon how the GA will be used. Chromosome mutation is the random

replacement of one allele, or portion of the bit-stream, with another value. These

changes are made in small rates as to not change the algorithm’s convergence scheme.

Contrasting mutation, selection is seen as choosing parent chromosomes to mate to

produce offspring, or new possible solution sets. Selection can come in a few different

forms, each having unique aspects to development. The first is through a random

probabilistic nature, where a percentage of the gathered parents are chosen without

preference to their fitness function [14]. Consequently, a tournament-style selection
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process would first rank the parent chromosomes based on their fitness values and se-

lect a certain percentage of chromosomes for crossover. Crossover itself then operates

on two of the selected parents to do either one or two-point crossover, where those

points are where data from one parent or the other are spliced together. Depending

on the crossover method, these values can result in two children if desired, or just a

single child made from the crossed over pieces.

2.3.2 Algorithm Mechanics. Figure 2.2 shows the standard GA functional

diagram for optimizing a desired parametric output [15]. Initially, the first parent

population is created through either random generation, a heuristic parameter selec-

tion or other desired means [12]. During this initial population generation process,

the population size must carefully be considered based upon desired computational

complexity and prevention of premature convergence. Large population sizes conduct

thorough sample-space exploration, but take longer for desired end state converge.

In contrast, a small population size does a coarse search through the landscape, but

tends to prematurely converge on local maxima/minima instead of finding the global

maxima/minima. Once the initial population is generated, the first selection can
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(Extract Individual
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Initial Population
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Results Ok?
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Figure 2.2: Genetic algorithm flowchart
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come from any of the selection methods discussed in the previous section. Selection

of individuals for the intermediate population come from each chromosome evalu-

ated through the fitness function selected for optimization. Selection of individuals

generates the mating pool from those deterministically chosen in the previous step.

A probabilistic process determines the number of crossover points in mating along

with the mating pairs. As with nature, the possibility exists that the offspring mirror

the parents although this event may not be desired. Prevention of exact replication

between generations falls in careful crossover probability definition. Gene mutation

within the offspring also occurs in a probabilistic manner, which aids in preventing

premature convergence. Mutation harms the solution method by changing random

genes which could be vital in finding the optimized parameter [12]. Random mutations

are used to alter only a small portion of the population. Typically for electromagnetic

problems, the reported mutation rate should be on the order of 0.1− 1% of all genes

be mutated for sufficient search results [13,16].

The resultant offspring are then evaluated by the fitness function used to de-

fine the problem space. Fitness function evaluation defines how well that offspring

satisfies the condition or possibly multiple conditions desired for optimization. After

assigning fitness values to each offspring, the offspring and parents are collected as

the current generation in determining solution conditions have been met. Different

GAs use different exit criteria based on average fitness performance, best performance

achieved or other desired effects. Some GAs operate on a tolerance level, where most

chromosomes fall within a given error level of each other, giving the resulting so-

lution. Other GAs operate on finding the singular value within an expected range

of values. If the exit criteria is achieved, the optimized chromosome represents the

desired solution. Otherwise, the current generation returns back to the selection step

shown in Figure 2.2. While previous discussion covered only a single parameter, the

multi-objective genetic algorithm transforms this process to handle multi-dimensional

problems, like the RGPO optimization [17]. Fitness functions are carefully defined

and evaluated in the multi-dimensional case to prevent finding one local extrema that
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does not represent the desired global extrema. Careful balance between crossover and

mutation prevents the GA from selecting a chromosome with a highly individually

fit gene with average overall fitness over chromosomes with near-optimal performance

that have a singular bad gene.

The ultimate reason why genetic algorithms are chosen for optimization is for

their efficiency involving a large number of parameters. Haupt’s paper discusses a cou-

ple of common electromagnetic problems that show the difference in operation time.

The first problem discussed is minimizing the backscattering-sidelobe level from a

grid of perfectly conducting strips. The 2M sized array was coded in bit-strings to

represent either a strip being present (1) or removed (0) from the grid. Implementing

a fully-populated grid of 2M = 40 strips of width 0.037λ and spacing between strips

of 0.1λ, the GA was implemented using 80 chromosomes in the initial population.

After eight generations, the GA resulted in a 20-bit gene [13]. An exhaustive search

would take 220 possible iterations to check all answers, showing that the GA gave the

optimum solution in a much faster manner. His paper continues to explore electro-

magnetic applications in optimizing sidelobe levels on a nonuniformly spaced array.

This time, instead of setting a defined spacing, the chromosome was defined to repre-

sent 2N = 48 elements in an array and each gene was a 3-bit number representing the

spacing between elements [13]. Again, instead of implementing 272 possible combina-

tions for an exhaustive search, the GA gives a population-size as a proportion of the

number of parameters being optimized on. Papers discussing the application of GAs

to electromagnetics give these recommendations for algorithm convergence [13,16]:

1. Try to use a population size of 10 times the number of bits in an individual

chromosome (if bit representation is known). If a significant number of bits do

represent a chromosome, use fewer chromosomes in the initial population due

to computer RAM issues.
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2. Population sizes of 30-100 allow for enough genetic diversity to enable fast con-

vergence while being small enough to execute complicated fitness functions in a

timely manner [16].

3. Keep the crossover probability around 0.6-0.9, with most problems resolving

successfully with a probability of 0.7 [16].

4. If the algorithm is having problems converging try to “1) increase the number of

mutations, 2) increase the number of chromosomes, or 3) add some constraints

that you know about from the physics of the problem” [13].

These GA implementation suggestions give a good baseline for operating the MATLABr

GA toolbox with the RGPO and VGPO waveforms. These two articles explore how

the GA optimizes specific electromagnetics problems that are relevant to this research.

Antenna design and desired sidelobe patterns are significant components of the ECM

environment. As discussed earlier, these two components define the radiated signals

from and the returned signals to the radar receiver. The ability to optimize specific

pieces of the ECM problem suggests that optimization of the waveform dependent

upon those components is also possible. Further research gave other current exam-

ples of where GA optimization proved useful in resolving similar problems to the

methodology given in this thesis. The next section explores literature discussing GA

implementations that are similar in nature to this research topic.

2.4 Similar Implementations

While genetic algorithms have been around since the 1960’s, their use with radar

systems has been limited. Optimization techniques have been explored within the

radar environment in various different methods. Numerous optimization techniques

have been used in both radar hardware and software development. While some radar

optimization problems have been outside the GA realm, their scope still stays in the

larger category of evolutionary algorithms, which obey certain properties similar to

genetic algorithms, such as they:
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1. are a method of optimization or learning,

2. are stochastic in nature, exploring the environment in a non-random search

method

3. use “survival of the fittest” analogy of exploring the environment

4. are not fast in computational time, but can scale nicely while being robust about

searching,

5. are based upon developing population sets and quality evaluation [17].

Three specific areas explored support the proposed methodology for using the GA

optimization technique: Antenna design optimization, radar tracking algorithm opti-

mization, and software designed ECM waveform optimization.

2.4.1 Genetic Algorithms and Antenna Design. Genetic algorithms and

other optimization techniques have been used recently to develop better phased array

antennas. The paper by Giovanni Golino in 2005 [18] explored using genetic algo-

rithms for defining the optimum antenna division within a phased array antenna for

use in producing increased electronic counter-counter measure (ECCM) capabilities.

Through exploring the conflicting functionalities between Pd and the Cramer-Rao

Lower Bound (CRLB) of the target’s estimated angular coordinates, the genetic algo-

rithm was used to find optimum tradeoffs between the two competing values. Using

a modified GA from discussion in Section 2.3.2, Golino explores antenna, target, and

disturbance characteristics, along with the genetic parameters and objective functions

necessary in MATLABr. Golino states that the experiment used a 64-element array

with isotropic radiators divided into 4 separate sub-arrays. The Lab-VoltTM radar

contains a phased-array antenna similar to the one used in Golino’s research that can

validate these experimental results. Evolutionary algorithms such as simulated an-

nealing and genetic algorithms become viable methods of electronic countermeasure

development through replicating Golino’s research. Golino’s research explores using

five separate objective functions that cover:
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1. the optimum spacing between antenna elements for the (θi, φi) plane,

2. the CRLB estimate of the target’s azimuth coordinate in the presence of a

main-beam jammer (MBJ),

3. the CRLB estimate of the target’s elevation coordinate in the presence of a

MBJ,

4. the Peak to Sidelobe Ratio (PSLR) of the developed beam with a MBJ present

at θi = 0, and

5. the PSLR of the developed beam with a MBJ at φi = 0 [18].

From using these five objective functions on the 64-element phased array antenna,

86% of the resulting structures produce the approximations desired. From these

structures, human knowledge was required to select the best structure due to physical

design limitations that could not be incorporated within the fitness functions given

to the genetic algorithm. This article shows that while the genetic algorithm gave

desired results in optimizing the five objective/fitness functions, human involvement

will still be required in designing of ECM waveforms. Human experience becomes

important to ensure that the optimum result is realizable and not something only

possible in mathematics [18].

2.4.2 Tracking Radar Development using Optimization Techniques. Track-

ing radar development recently has relied on using optimization techniques to aid in

tuning tracking filters. One such article used the Simulated Annealing optimization

technique for automatically tuning tracking filters within a radar receiver [19]. The

author motivates the reason behind this research topic: “The task of tuning a radar

tracking filter usually involves performing numerous Monte Carlo simulations on a

set of ‘design-to’ scenario trajectories” [19]. Currently, the method for establishing

filtering parameters for radar target tracking is done through numerous iterations

that can consume valuable financial and manpower resources. Kajenski’s use of sim-
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ulated annealing to automate this process suggests that this process can be used in

the corollary environment, ECM technique generation.

Kajenski develops the framework for the simulated annealing optimization through

describing the radar model in detail and then loosely discusses the tracking problem.

The author cites a paper from the 1994 American Control Conference in Baltimore,

but never discusses the premise of the control problem and any background or results

from this study, which Blackman discusses in the introduction of his book [10]. This

benchmark refers to the radar tracking problem, which in Kajenski’s article uses a

phased-array radar. Experimental results from Kajenski’s article discuss the target

types emulated in the simulated annealing optimization of the target tracker. The

author thoroughly explains how the fitness function used computes the performance

score of each target track. These experimental results support the use of optimization

techniques in the ECM arena, discussing reasonable search limits, coordinate spaces

and the associated population sizes used for problem development [19]. This article

furthers the idea for using evolutionary computational methods through its discussion

of the time taken to determine tracking filter parameters versus man-hours used in

trying to determining a more precise tracking model. This conference paper discusses

a method for representing physical limitations like velocity changes and acceleration

constants into evolutionary algorithms for optimizing results.

Further exploration of optimization techniques with tracking radars falls in the

multiple target track domain. Exploration of multiple target tracks requires develop-

ing appropriate coding schemes to account for each target [20]. Similiar to Kajenski’s

article, the research considers the population size in exploring the landscape. Fur-

ther development is taken in explaining the fitness function and the Pd based upon

multiple possible targets. The research also uses a fitness standardization function to

relate current generation fitness to overall fitness. This method applies a linear trans-

lation of fitness scores to weight the results based upon progression through the search

space [20]. Results from this research suggest the complexity of the genetic algorithm

can be simplified of through ordering the fitness function results after applying the
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linear regression. Finally, the research implicates that this method can be faster but

requires exploration into real-time target tracking systems. This line of thinking sup-

ports developing hardware simulation of radar systems using evolutionary algorithms

like GA to understanding how to apply physical limitations on the environment.

2.4.3 Previous ECM/GA Work. After understanding how GAs can assist

aperture development and create precision tracking filters, the final step to under-

standing this problem comes in looking at current research done with ECM techniques.

Previous work done by Dr. Gary Lamont and his student, Nathan Landis, explored

the feasibility of using the GA toolbox located in MATLABr to exploit ECM tech-

niques [15]. Their experimentation explored using the three input parameters (power

factor, ramp length, and ramp peak) for the RGPO ECM technique fitness function.

This project explored the effect of mutation and crossover rates on the chromosome

population and determining the resolution time needed for finding the best solution.

This project helped define the search space needed to solve this ECM optimization

problem and defining some of the landscape characteristics. Described below, each

input parameter plays a critical role in deceiving the threat radar:

1. Power factor describes the slope of the ramp length to the ramp peak. Larger

power factors indicate a quadratic or greater roll-off function.

2. Ramp length describes the roll-off time necessary to get the tracking radar to

break lock. The shorter the roll-off time, the quicker the target is trying to

escape the radar.

3. Ramp peak describes the maximum delay given to the false return. The larger

the ramp peak value, the farther distance the RGPO signal is moved away from

the true target return. [15]

Where the issues lie is in understanding the tradeoffs between each parameter. If the

power factor becomes too large, the tracking radar could determine that a jammer

is present and neglect the RGPO waveform. Depending on the aircraft, a short roll-
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off time could signify faster speeds than possible and lead the radar to determine a

jammer is present. Finally, if the peak return is too large, the radar determines that

the target return could not be that large and starts applying ECCM techniques to

remove the jammer.

Testing for this project was limited to software only. Through the use of

MATLABr radar models and the GA toolbox, the computational time necessary to

find the optimum solution took between 600 and 1800 seconds [15]. This result shows

that the algorithm needs improving to produce results in under 30 minutes. Power

factors and ramp lengths take on a large range of values that do not directly corre-

late to actual radar parameters. The results given state that the desired break-lock

times are under 10 seconds, which constitutes 1
12

th of the engagement time. Better

break-lock times are desired for simulation of a real-time environment. Where the re-

sults do assist current project development is in exploration of the genetic algorithm

itself. One important result from this research is that the population size must be

considered carefully in defining the problem. As population sizes increase, the time

to resolve an optimum solution increases as well. Carefully bounding the landscape

becomes another challenge to explore in this research. Through multiple runs of the

genetic algorithm, this ECM/GA effort found that negative fitness values skewed the

experimental results, leading to erroneous data. In designing not only the power level,

ramp height, and ramp length ranges, careful consideration must be given to phys-

ical limitations of the targeted aircraft and the operational environment to ensure

that the optimization routine produces desired results. Overall results from this work

show that the genetic algorithm can be used in developing ECM techniques against a

radar, but must be further extended to hardware-in-the loop simulations, to account

for real-world radar parameters.
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III. ECM Optimization Problem Methodology

This chapter gives an overview of the methodology used to solve the ECM wave-

form optimization problem. The first section details how the HILS architecture is

developed. This architecture overview serves as a road map for solving the ECM op-

timization problem. The final section looks at the various components and how they

are implemented. These individual components consist of the research efforts covered

in Chapters IV and V.

3.1 Architecture Development

The basic HILS architecture for optimization is illustrated in Figure 3.1. In

consideration of Figure 1.1, to cause a break-lock event, the HILS architecture must

encapsulate the radar operational environment along with recording the desired feed-

back signals necessary to understand how the tracking radar is reacting to the RGPO

signal. Figure 3.1 gives a basic overview of the system for optimization. This ar-

chitecture depicts the fundamental testing system for developing the optimum ECM

waveform. The vector u represents the necessary parameters that are passed to the

jammer system. This parameter set is passed forward after the operator selects the de-

sired ECM technique, given as the initialization block. The jammer pod is contained

within the radar operational environment block shown in Figure 3.1. The created

RGPO signal is then broadcast into the operational environment. The radar system

then processes the RGPO signal and the result from the radar signal processor is

passed back to the optimization routine to evaluate the results. While the fundamen-

tals of developing this RGPO waveform are seen from this block diagram, this system

has problems with handling significant changes. One major problem is that the opti-

mization routine and waveform are embedded within the optimization routine. This

implementation serves as a “black-box” method of optimizing the ECM waveform,

but does not lend itself to optimization algorithm modifications, ECM waveform, or

environmental modifications.
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Figure 3.1: ECM technique development basic block diagram.

A better method of developing the ECM optimization architecture is shown in

Figure 3.2 [21]. This system separates the optimization routine from the radar op-

erational environment. From initialization, the operator defines the ECM waveform

desired for testing. Within the software testing package, shown at the bottom of Fig-

ure 3.2, the ECM library then passes the necessary ECM waveform Φ to the jammer

in the operational environment and defines the optimization waveform parameters

u to the desired optimizer. Furthermore, the ECM library also contains the neces-

sary scoring function K for the optimization routine to evaluate the outputs from

the radar signal processor. This setup allows the optimization routine, which is the

genetic algorithm for this research, to operate independently of the ECM technique

and radar mode. The genetic algorithm passes the population of chromosomes u for

the jammer pod where the jammer waveform Φ(u) is transmitted into the environ-

ment. The radar, contained within the operational environment, processes the ECM

waveform, represented as the operator L[Φ(u)], and the scoring system acts as the

man-in-the-loop observation of the radar response [21]. In other words, the scoring

system operates on the radar response as K[L[Φ(u)]]. The scoring method K serves

as a method of ordering each member uc for selection and crossover, as discussed in

Section 2.3.2. This architecture has three major advantages:
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Figure 3.2: ECM optimization architecture block diagram.

1. The operational environment and optimization tools become separable func-

tions. This separability allows the ECM designer to interchange different parts

of the system to develop ECM waveform techniques. The software model of

the radar environment can be exchanged for physical hardware if it exists. Fur-

thermore, the optimization routine can be exchanged for other techniques, such

as Simulated Annealing or Direct Search, depending on the information known

about the landscape.

2. A correctly defined scoring function would represent how effective the ECM

waveform Φ(u) was in deceiving the radar tracker. By normalizing the scor-

ing method K by the maximum pull-off rate within the search space, this value

becomes a value with domain [0,1), where 1 represents the ideal case of instanta-

neous break lock condition. Subsequently, if the optimum parameters results in

a value close to 0, that particular ECM waveform model may not be successful

for deceiving that radar.

3. Proper waveform definition and optimization bounds represent the physical jam-

mer limitations within the radar environment. These jammer limitations be-

come specific to a particular jammer model or the waveforms implemented by

the jammer. Depending on the ECM technique(s) selected, the optimization
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routine then becomes a search for the best waveform (RGPO, VGPO, barrage

noise, etc.) to use against the particular radar system.

These advantages can be explored further in subsequent research. The next section

discusses the individual component implementation and how the research handled

each piece.

3.2 Architecture Components

This section examines the various blocks of Figure 3.2 and how they were devel-

oped in this research. Each subsection describes the methods used to develop these

systems and how they were integrated into the entire simulation.

3.2.1 ECM Library. The electronic countermeasure library contains the

various mathematical equations used to represent the waveform. An example mathe-

matical equation stored in the ECM library is the linear acceleration model, detailed

explicitly in section 4.2.1, as:

r(t) =
(Rmax −Ro)

2Tw
3 t3 − (Rmax −Ro)

Tw
2 t2 +

3(Rmax −Ro)

2Tw

t + Ro (3.1)

The parameter set u for implementing equation (3.1 is expressed as:

u =
[

Rmin Rmax Tw f Ṙmax Ṙmin Ao Amin

]
, (3.2)

where each parameter contained in u represents a physical property emulated by the

deceptive waveform. Table 3.1 lists each with a brief description. The parameter set

listed in Table 3.1, which is explained in-depth in section 4.2.1, serves as an example

of u passed to the GA in the optimization block. A similar parameter set exists for

the VGPO waveform, explained in section 4.3. The library serves as a catalog of all

associated Φ(u) waveforms that exist for the modeled jammer, such as the RGPO and

VGPO waveform expressions, and their scoring methods comprise the ECM library.
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Table 3.1: RGPO Parameter Set Definitions
Variable Definition

Rmax Maximum pull-off range
Rmin Initial pull-off range
Tw RGPO profile walk-off time
f RGPO profile number

Ṙmax Maximum pull-off range rate

Ṙmin Minimum pull-off range rate
Ao Initial jammer signal amplitude

Amin Minimum jammer signal amplitude

The next block covered, the optimization routine, explains the optimization routine

used for simulation.

3.2.2 Optimization Technique. This section explains the optimization tech-

nique block in Figure 3.2. The reviewed literature confirms that the genetic algorithm

can adequately optimize the electronic countermeasure waveforms developed for this

architecture. Section 5.1 explains the MATLABr GA toolbox which is used to imple-

ment the optimization routine. This toolbox was selected for the following reasons:

1. The radar asset modeled for this research was developed in Simulink. MATLABr

and Simulink work together and provide seamless integration of the jammer

model, genetic algorithm toolbox, and the radar model for proof of concept.

2. MATLABr is hosted on the Tektronix Arbitrary Waveform Generator, Real-

Time Spectrum Analyzer and the Digital Signal Oscilloscope contained in the

Radar Analysis Laboratory (RAIL). GA, or other optimization methods in

MATLABr allows later research to replace these simulations with hardware

components with minimal effort.

3. Significant documenting on the Genetic Algorithm toolbox reduces the learning

curve to prove ECM optimization. The Genetic Algorithm toolbox also contains

other search methods for further research of the optimization-waveform pair.
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Figure 3.3: Simulink block diagram of Lab-VoltTM radar [22].

The GA toolbox allows for user-defined fitness functions, which can be developed in

other MATLABr code, Simulink models, or hardware development.

3.2.3 Jammer Pod. The MATLABr modeled jammer pod was developed

from the Lab-VoltTM Jammer specifications [23]. This code, discussed in Section

4.2.4, uses the actual mathematical expressions from the ECM Library function and

implements the transmitted signal against a specified radar platform. This imple-

mentation allows the operator to specify the jammer pod’s operational mode from

outside the operational environment. Furthermore, the jammer pod parameters are

easily changed for mimicking a specific asset. Use of the Lab-VoltTM system allows

for validation of the MATLABr code from which further research could then develop

more sophisticated models.

3.2.4 Radar Operational Environment. Figure 3.3 shows the Simulink block

diagram of the Lab-VoltTM radar system. This Simulink development is based on

research by 2nd Lt. Oscar Mayhew, who characterized various components of the

Lab-VoltTM system [6]. The work in [6] validates the Simulink model developed by

Maj. Michael Saville. This radar model contains the basic radar operational compo-

nents of: Radar Transmitter, Radar Receiver, Synchronizer and Antenna Gain. As
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seen in Figure 3.3, the target block models the true target position and cross-section in

the environment. The MATLABr jammer model is inserted after this block, prior to

reception by the receiving antenna. Once the signal is received at the antenna block,

the true and false target information exist as found in the operational environment.

L[Φ(u)] represents the signal transmitted into the radar environment, the environ-

ment effects imposed prior to reception, and the radar signal processer manipulating

the data into a video output. Although these operations in the radar environment

are nonlinear functions, Cheney’s paper states that the appropriate approximations

lead to a linearized problem [24]. Cheney’s discussion on strip-mode SAR starts with

the Maxwell’s equation representation. Using the Born approximation for the scat-

tering solution, the matched filter processing representation can be given as a linear

equation. The result from this paper allows for L[Φ(u)] to be a linear operator and

be optimized using techniques such as the GA. After the signal is passed through

the Dual-Channel Sampler, the digital scope, represented as the returned Simulink

output to MATLABr captures the data for scoring function evaluation.

3.2.5 Scoring Function. The scoring function operates on the collected data

from the radar signal processor and makes a decision on whether the false target

‘spoofed’ the radar system. Once the signals have passed through the Dual-Channel

Sampler, the received signals are integrated over the collection time in step sizes of

the radar’s pulse width to determine which range bin the target returns fall into. This

radar signal processing output L[Φ(u)] is then evaluated to determine how successful

the ECM waveform was against the radar system. Figure 3.4 shows an example of

the radar scoring function. The matrix on the right shown in Figure 3.4 represents

the collected data from the output of the dual-channel sampler. The scoring function

waits for the jammer signal created by uc to propagate through the environment for

the entire walk-off time before producing a result. The range of m = [1, MJ], with

MJ representing the number of CPIs collected during the simulation. At a minimum,

MJ must be larger than the number of pulse repetition intervals (PRIs) required for
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the scoring function to appropriately evaluate each uc. Three data slices from the

Dual-Channel Sampler are shown on the left of Figure 3.4. Each row of the collected

data matrix from the Dual-Channel Sampler has been truncated to contain only the

walk-off range for the ECM signal. The individual rows span from t=[0:Tw], where

time “zero” represents the range bin where the true target exists. As described in

section 2.2.2, determination of which target the radar is tracking depends on the

range cell where the most average power exists. The top row shown in Figure 3.4

shows the radar tracking the false target cell on initialization of the ECM waveform.

The center row shown in the figure shows that over time, the target is moving with

decreased power returned to the target but still holds the target tracker. When the

target tracker finally breaks lock, depicted in the bottom row of Figure 3.4, the false

target cell no longer contains enough power to deceive the radar receiver, and the

victim radar has lost track of the real target. The scoring function K then records the

row where target track was broken. This value K[L[Φ(u)]] is normalized by MJ, to

give an effective ratio for that chromosome uc. Once all chromosomes are evaluated

by the scoring function, the values are returned back to the optimization routine to

determine future generations if the optimum solution has not been found.
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3.3 Methodology Summary

This research effort establishes the validity of the ECM techniques generation

shown in Section 3.1. The HILS architecture shown in Figure 3.2 separates the op-

timization technique, developed in this research using the MATLABr GA toolbox,

from the radar development environment, established in the Simulink block diagram

in Figure 3.3. Architecture development in this manner promotes modular design,

allowing for plug and play capabilities of different radar models, jammer pods, ECM

library functions and optimization methods as the operator desires. While the sys-

tem architecture is developed with a known radar system, this system can also be

implemented with minimum knowledge of the victim radar. The ECM library de-

veloped for this architecture exists under the general mathematical cases for RGPO

and VGPO, lending itself for use for any system. Furthermore, if the optimization

parameter landscape for the victim radar lends itself to search methods with known

shapes, the genetic algorithm block can be replaced for a deterministic search method

like a direct search or a terrain climbing approach like simulated annealing. The next

chapter looks at the development of basic library functions for the ECM jammer pod

and the associated parameter set that is passed to the optimization routine. Chapter

V evaluates the ECM waveforms developed for the RGPO signal.
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IV. Electronic Countermeasure Waveform Modeling

The first section in this chapter discusses the foundations of electronic countermeasure

technique development. The second section in this chapter discusses the mathemat-

ical model and MATLABr implementation of the generalized Range Gate Pull-Off

technique. The last section in this chapter discusses the mathematical derivation

of Velocity Gate Pull-Off and the subsequent MATLABr implementation using the

space-time adaptive processing paradigm.

4.1 ECM Development Theory

This section takes a closer look at the typical EW scenario, discussed earlier

in Section (1.1). In the engagement scenario, shown in Figure 1.1, the desired ECM

waveform deceives the victim radar by introducing additional radar signals that have

characteristics of additional targets with different locations and velocities. Once the

radar tracker breaks lock from the true target return, the radar must reacquire the

target via its search mode. By causing the threat radar to initiate a search mode, the

targeted aircraft buys important time to remove itself from the engagement or has

the ability to reverse the engagement situation. Judicious use of the ECM waveforms

enables the targeted platform to change the scenario.

One specific type of jammer that seeks to achieve this goal is the deception/re-

peater jammer, which masks the real target by injecting suitable modified replicas

of the real signal into the victim system [25]. As previously mentioned, the decep-

tion jammer does not flood the EM spectrum with external noise but provides false

ranging or velocity information to the victim system. Figure 4.1 shows the system

architecture of a basic repeater jammer, seeking to replicate the desired capture sig-

nal. The RF signals intercepted at the receiving antenna are first amplified to allow

the receiver circuit to make the appropriate decision on the received signal. Decisions

are made through the control circuit regarding what type of ECM response is desired

to protect the host asset. Upon determination of the ECM waveform necessary, the

amplitude and phase modulation block injects the appropriate modulation(s) neces-
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Figure 4.1: Repeater jammer block diagram [26].

sary to replicate the received waveform [26]. The output amplifier boosts the signal

prior to transmit. The signal memory and signal source circuits are disabled by the

control source in the repeater case. Neither circuit is necessary because the input

signal is being regenerated with appropriate amplitude/phase shifts and retransmit-

ted, without prior history needed. Specific types of deception jamming require these

circuits, which will be discussed in later sections. Within this system, the transmitter

output is directly proportional to the received signal. This system, known as a con-

stant gain system, is designed such that the transmitter power output is proportional

to the received signal power level, preventing any feedback to the input receiver and

subsequent unnecessary oscillation within the circuitry.

An extension of the repeater jammer is to operate the same circuit shown in

Figure 4.1 in a different configuration for deception signals. Instead of passing the

signal through the amplitude/phase modulation block, the circuit uses the signal

memory block to determine coherence. This configuration, known as a transponder

system with constant gain, uses time delayed copies of the original to rebroadcast

back into the environment. Coherence becomes important as it relates “. . . the ac-

curacy with which the intercepted signal can be reproduced in its carrier frequency,

which includes any frequency or phase modulation contained with the intercepted

signal” [26]. Deception techniques, discussed below, further stress the significance of
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coherence in EW signals. The signal memory and receiver circuits help regenerate

the power level necessary such that the maximum power out of the transmitter mir-

rors the intercepted signal level. Transponders prevent feedback signals from ruining

the intercepted signal as the transmit signal is gated from the receiver circuit during

transmission.

Through different variations of Figure 4.1, the desired operational mode of a

deception jammer provides realistic false target information to deceive the victim

radar. Similarity between various deception/repeater jammer operational block dia-

grams allows the same hardware to create various ECM waveforms without additional

equipment to a jammer pod. Instead, understanding the necessary signal coherence

and the necessary amplitude/phase modulations for waveform generation allows for

an optimization routine to select the best waveform for a specified engagement. The

following sections will describe the mathematical formulation for both RGPO and

VGPO waveforms, which subsequently lends itself to MATLABr modeling.

4.2 Generalized RGPO Techniques

One specific deception waveform found to be effective against pulse-Doppler

tracking radars is the range-gate pull-off (RGPO) waveform [27]. This section explores

the generalized RGPO modeling technique to be optimized by a genetic algorithm.

First, a mathematical discussion is presented on how false targets are generated by

the jammer and the associated range delays are induced. In generating the associated

range delays, the amplitude scaling must also be considered to ensure proper false

target representation. Next, the physical limitations of the mathematics are discussed

to shed light on the boundaries that must be considered by the optimization method.

Following, is an explanation of how MATLABr can implement the RGPO jammer

model. Finally, the MATLABr mathematical model is compared to the Lab-VoltTM

jammer pod accompanying the radar training system.
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4.2.1 Mathematical Background. A better understanding of how the RGPO

jammer pulls the tracker off the true target comes from looking at how the tracking

radar operates. Figure 4.2 shows how the range bins are arranged within the PRI.

In the tracker’s PRI (Tpri), the pulse waveform is transmitted towards and reflected

from a target within the space volume surveyed by the radar [26]. The range (R) at

which the target is detected at is a function of the time (t) it takes the pulse to travel

to and from the radar, and is:

R =
ct

2
, (4.1)

where c represents the speed of light. The radar’s reference point for when time

begins in the PRI is determined to be at the leading edge of the pulse shown in

Figure 4.2. The PRI can then be segmented into a series of range bins, arranged

contiguously after the pulse would be transmitted by the radar [26]. Each range bin

is one pulse width τ in length, which represents the radar’s range resolution [9]. It can

be seen from Figure 4.2 that if targets return from more than one position they will

show up in different gates, while multiple returns within τ will be lumped together

in the same range bin. The following three subsections cover three different profiles:

Constant Velocity, Constant Acceleration, and Linear Acceleration. The following

mathematical models were selected for physical limitations of realistic target motion.

The technique and development applies to general mathematical forms for ECM.
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Although any mathematical function can be used, the polynomial orders of one, two

or three are chosen to agree with known equations of motion. Subsequently, these

models uses physical properties to move the false target away a given distance.

4.2.1.1 Constant Velocity Profile. By understanding how the radar

processes detected targets, false target range delays can be developed appropriately

within the operational environment. From the radar range bin setup illustrated in

Figure 4.2, the next step in developing the RGPO profile is looking back at the

physical motion being represented in moving range bins. The equations for position

r(t), velocity v(t), and acceleration a(t) are defined as [28]:

r(t) =
∂

∂t
v(t), (4.2)

v(t) =
∂

∂t
a(t), (4.3)

r(t) =
∂2

∂t2
a(t). (4.4)

Equations (4.2)-(4.4) become the basis for developing the desired false target motion

with known profile parameters. Figure 4.3 depicts a linear range profile to move the

false target away. The linear RGPO profile shown in Figure 4.3 can be modeled with

the following equations:

38



r(t) = C1t + C0, (4.5)

v(t) =
∂

∂t
r(t) = C1, (4.6)

a(t) =
∂

∂t
v(t) = 0, (4.7)

which as shown in Figure 4.3 shows a linear walk-off with constant velocity and no

acceleration. The constants C0 and C1 are solved for by specifying boundary or

initial conditions of the RGPO profile. The equation is a first degree polynomial

making f equal or proportional to the degree. Figure 4.3 depicts the conditions for

the initial delay Ro, maximum delay Rmax, and the total walk-off time Tw. These

initial conditions are then expressed in the following manner:

r(Tmin) = Ro, (4.8)

r(Tmax) = Rmax, (4.9)

Tw = Tmax − Tmin. (4.10)

Substitution of Equations (4.8)-(4.9) into (4.5)-(4.6) gives the following conditions:

r(Tmin) = C1Tmin + C0 = Ro, (4.11)

r(Tmax) = C1Tmax + C0 = Rmax. (4.12)

Equations (4.11)-(4.12) further simplify with the understanding that the first pulse

should have no time delay from the original pulse. This equates to Tmin = 0, which

applied to (4.11) results in

Ro = C1 · 0 + C0 = C0. (4.13)

Furthermore, this also makes Tw = Tmax because the time offset needs to match the

engagement start time for coherence. Replacing the calculated C1 from (4.13) into
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(4.12) gives the other unknown:

Rmax = C1Tw + Ro, (4.14)

Rmax −Ro = C1Tw, (4.15)

Rmax −Ro

Tw

= C1. (4.16)

After calculation of both constants, the linear position model for Figure 4.3 is ex-

pressed as:

r(t) =
Rmax −Ro

Tw

t + Ro. (4.17)

Equation 4.17 represents the continuous time representation of range profile to pull

the false target away in a linear fashion. Furthermore, it is understood that the

RGPO jammer operates in a discrete manner and can not fully implement this con-

tinuous signal. Discretization of this signal comes from looking back at tracking radar,

illustrated in Figure 4.2. The time step given by each range bin can be defined as

t = mTPRI, (4.18)

where TPRI is the radar’s PRI. The variable m denotes the specific discrete walk-off

step within the total engagement time. Substitution of (4.18) to (4.17) gives the

discrete time-step function:

rm =
Rmax −Ro

Tw

(mTPRI) + Ro, (4.19)

with the range of values for m = [0, 1, · · · , MJ]. As discussed briefly in Section

3.2.5, MJ represents the number of tracking radar PRI’s required to walk the target a

distance Rmax. This number is calculated as the ratio of walk-time to the processing

time, given as:

MJ =

⌊
Tw

TPRI

⌋
, (4.20)

40



0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Walkoff Time (ms)

W
al

k−
of

f D
is

ta
nc

e 
(m

)

RGPO range−delay timing for f=1

(a) RGPO Range-Delay Profile.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9

10

Walkoff Distance (m)

S
ig

na
l A

m
pl

itu
de

 (
V

)

RGPO Walkoff Signal for f=1

 

 
Skin Return
Delayed Target

(b) RGPO Walk-off Signal.

Figure 4.4: Constant velocity RGPO profile.

where the floor function is used to round down the number of PRIs that fit within

the necessary walk-off time. Substitution of (4.17) and (4.20) into (4.17) results in

the discrete representation of the range delay signal as

rm = (Rmax −Ro)
m

MJ

+ Ro. (4.21)

Figure 4.4 shows the resulting constant velocity RGPO signal modeled with

equation (4.21) where Tw = 50 ms, Ro = 0.5 m, and Rmax = 2.5 m. The range-

delay profile shown in Figure 4.4(a) corresponds to a constant velocity of 40m
s
. This

constant velocity can be seen in the delayed signal shown in Figure 4.17, pulses,

marked with circles, are equally spaced and correspond to given distances away from

the target shown in Figure 4.4. The relative distance shown in Figure 4.4(b) is from

the true target return, shown as a solid line. The signal amplitude decreases in a 1
R2

proportion as distance increases, similar to what would be experienced by the true

signal return. The amplitude modulation for the RGPO jammer signal is discussed

further in Section 4.2.2. While this signal is the most basic of delayed target time-

signals, this development becomes the basis for larger, more-complicated signals that

compensate for other physical characteristics.
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Figure 4.5: Generic constant acceleration RGPO range/delay profile.

4.2.1.2 Constant Acceleration RGPO Signal. The most common

RGPO signal to model is the constant acceleration profile, which results in a parabolic

curve in the range/delay profile shown in Figure 4.5. This profile represents a constant

thrust profile described as:

F = ma(t), (4.22)

which makes the function a(t) a constant value, Co. From equation (4.22), the position

and velocity equations in (4.2) and (4.3) are rewritten accordingly as:

a(t) = C2, (4.23)

v(t) = C2t + C1, (4.24)

r(t) =
C2t

2

2
+ C1t + C0. (4.25)

Equations (4.2)-(4.4) resemble the constant acceleration equations (4.23)-(4.25) but

with an added time-dependence to the velocity and position equations. Solving this

differential equation requires additional information from the constant velocity model

discussed previously. The additional constant added is the maximum range rate Vmax,
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giving the following boundary conditions:

Vmax =
Rmax

Tw

, (4.26)

r(Tmin) = Ro, (4.27)

r(Tmax) = Rmax, (4.28)

Tw = Tmax − Tmin. (4.29)

From these initial conditions, Tmin = 0 still holds true for the constant acceleration

model:

Ro =
C2T

2
min

2
+ C1Tmin + C0, (4.30)

=
C2 · 02

2
+ C1 · 0 + C0, (4.31)

= C0. (4.32)

Substitution of (4.29) into (4.24) and (4.25) determines the coefficients C1 and C0:

v(Tw) = C2Tw + C1, (4.33)

r(Tw) =
C2T

2
w

2
+ C1Tw + Ro. (4.34)

Understanding that v(Tw) = Ṙmax, (4.33) can be rewritten in terms of C1 as

Vmax = C2Tw + C1, (4.35)

C1 =
Rmax

Tw

− C2Tw. (4.36)

C2 can be solved by substituting (4.36) into (4.34) for C1:

r(Tw) =
C2Tw

2

2
+

(
Rmax

Tw

− C2Tw

)
(Tw) + Ro. (4.37)
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Equation (4.37) simplifies after substitution of (4.27) and (4.28) and removing like

terms in the following manner:

Rmax =
C2Tw

2

2
+ Rmax − C2Tw

2 + Ro, (4.38)

−Ro = −C2Tw
2

2
, (4.39)

C2 =
2Ro

Tw
2 . (4.40)

C2 is the constant acceleration modeled for the initial equations (4.23)-(4.25). The

final constant, C1, solved after substituting C2 back into (4.36), results in:

C1 =
Rmax

Tw

−
(

2Ro

Tw
2

)
Tw, (4.41)

=
Rmax − 2Ro

Tw

. (4.42)

Constant C1 represents the minimum range rate for the false target to move with

minimum velocity Vmin during the constant acceleration profile. Substitution of the

constants back into the original range equation (4.25) gives the constant acceleration

model of the RGPO signal:

r(t) =
2Ro

Tw
2 t2 +

Rmax − 2Ro

Tw

+ Ro, (4.43)

and the discrete case for efficient modeling and simulation:

rm =
2Ro

MJ
2m2 +

Rmax − 2Ro

MJ

m + Ro. (4.44)

The parameters necessary for modeling the jammer signal are then represented as:

ū = [Tw, Ro, Rmax, Vmax, Vmin]. (4.45)

The derivation of Vmin and Vmax shows their dependence on either Ro or Rmax. This

dependency shows that while the parameters passed to the ECM Jammer Pod are
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Figure 4.6: Constant acceleration RGPO profile.

contained in ū, the minimum parameters required for implementing the constant

acceleration profile are contained in:

ūmin = [Tw, Ro, Rmax]. (4.46)

Figure 4.6 illustrates this minimum parameter set as shown in (4.46), using the same

constant parameters (Rmax = 2.5m, Ro = 0.5m, Tw = 50ms) as used in the constant

velocity model. Figure 4.6(a) shows the range-delay profile developed from (4.44) with

a parabolic curve similar to Figure 4.5. This profile shows up upon close examination

of the RGPO walk-off signal in Figure 4.6(b). The first few pulses are bunched close

together as the range separation between pulses is small. The spacing between pulses

in distance grows over the course of the profile, showing the parabolic change. This

profile shows a trend in the RGPO signal and its dependence on specific parameters,

given in (4.46). The linear acceleration model continues to show this dependence that

lends itself towards a generic RGPO profile given the desired f value.

4.2.1.3 Linear Acceleration RGPO Signal. The final RGPO signal

represented is the linear acceleration model. The linear profile is expressed as

a(t) = C3t + C2. (4.47)
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Integrating this function over time to achieve the velocity equation and then once

more for the position equation results in the following forms:

v(t) =
C3t

2

2
+ C2t + C1, (4.48)

r(t) =
C3t

3

6
+

C2t
2

2
+ C1t + C0. (4.49)

These equations represent the polynomial factor f = 3 with 4 unknown constants C0

to C3. The addition of another constant C3 requires an additional initial condition

to solve for all unknowns. In this case, maximum acceleration Amax is defined along

with all other previously stated initial boundary conditions:

Amax =
Rmax −Ro

Tw
2 , (4.50)

Vmax =
Rmax −Ro

Tw

,

r(Tmin) = Ro,

r(Tmax) = Rmax,

Tw = Tmax − Tmin,

Tmin = 0.

The f = 3 case mirrors the constant acceleration (f = 2) and constant velocity

(f = 1), lending to solving for the four unknowns in a similar manner as before.

First, t = 0 is substituted into (4.49), solving for C3:

r(0) =
C3 · 03

6
+

C2 · 02

2
+ C1 · 0 + C0, (4.51)

Ro = C0. (4.52)

Next, the acceleration at t = Tw in (4.47), results in

Amax = C3(Tw) + C2. (4.53)
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Equation (4.53) is rewritten with Rmax and Ro explicitly and expressed in terms of

C2:

Rmax −Ro

Tw
2 = C3(Tw) + C2, (4.54)

C2 = =
Rmax −Ro

Tw
2 − C3(Tw). (4.55)

The next step is to substitute Vmax into (4.48), subsequently applying the condition

t = Tw. This substitution results in

Rmax −Ro

Tw

=
C3(Tw)2

2
+ C2(Tw) + C1, (4.56)

which when (4.55) replaces C1 equates to

Rmax −Ro

Tw

=
C3Tw

2

2
+

(
Rmax −Ro

Tw
2 − C3Tw

)
(Tw) + C1. (4.57)

Further simplification of (4.57) by reducing like terms leaves the equation as

Rmax −Ro

Tw

=
C3Tw

2

2
+

Rmax −Ro

Tw

− C3Tw
2 + C1 (4.58)

0 = −C3Tw
2

2
+ C1 (4.59)

C1 =
C0Tw

2

2
. (4.60)

Using the initial condition r(Tw) = Rmax in equation (4.49) results in

Rmax =
C3Tw

3

6
+

C2Tw
2

2
+ C1Tw + Ro. (4.61)
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With (4.55) and (4.60) written in terms of C2 and C1 respectfully, (4.61) can then be

expressed as:

Rmax =
C3Tw

3

6
+

(
Rmax −Ro

Tw
2 − C3Tw

)
Tw

2

2
+ · · ·

(
C3Tw

2

2
+ C1

)
Tw + Ro (4.62)

Rmax −Ro =
C3Tw

3

6
+

Rmax −Ro

2
− C3Tw

3

2
+

C3Tw
3

2
(4.63)

Rmax −Ro

2
=

C3Tw
3

6
. (4.64)

One final simplification of (4.64) solves for the value C3.

C3 =
3(Rmax −Ro)

Tw
3 (4.65)

Using C3, C2 and C1 are determined. The first value to solve is C2, by applying C3

to (4.55).

C2 =
Rmax −Ro

Tw
2 − 3(Rmax −Ro)

Tw
3 Tw (4.66)

= −2(Rmax −Ro)

Tw
2 (4.67)

Equation (4.67) represents the minimum acceleration for the linear acceleration profile

Amin. Although this quantity was not expressed initially in defining the system, Amin

could be specified instead. The final quantity to solve, C1, is determined in the same

manner as C2 after substitution of C3 into (4.60).

C1 =

(
3(Rmax −Ro)

Tw
3

)
Tw

2

2
(4.68)

=
3(Rmax −Ro)

2Tw

(4.69)

C1 represents the minimum range rate Vmin for the RGPO profile with linear acceler-

ation. The range delay signal r(t) can then be solved by inserting the constants back
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Figure 4.7: Linear acceleration RGPO profile.

into (4.49).

r(t) =
(Rmax −Ro)

2Tw
3 t3 − (Rmax −Ro)

Tw
2 t2 +

3(Rmax −Ro)

2Tw

t + Ro (4.70)

The expanded parameter set for implementing the linear acceleration RGPO profile

ū includes the following:

ū = [Tw, Ro, Rmax, Vmax, Vmin, Amax, Amin]. (4.71)

The derivation of Vmin, Vmax, Amin, Amax all show a dependence on the initial range

parameters of either Ro or Rmax or both. This dependency continues the trend that

the parameters passed to the ECM Jammer Pod are contained in ū, but again can be

simplified to the minimum parameters:

ūmin = [Tw, Ro, Rmax]. (4.72)

Figure 4.7 shows the linear acceleration model RGPO signal implemented with depen-

dence on ūmin. Mathematical representation for the MATLABr jammer implementa-
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tion comes from the discrete time signal notation substitution as in (4.17)-(4.21).

r(w) =
(Rmax −Ro)

2MJ
3 m3 − (Rmax −Ro)

MJ
2 m2 +

3(Rmax −Ro)

2MJ

m + Ro (4.73)

The constant acceleration RGPO range/delay profile shown in Figure 4.7(a)

exhibits the cubic function as expected from the general solution in (4.25). Figure

4.7(b) shows this cubic profile when looking at the interpulse spacing. Both the

beginning and end pulses in the RGPO profile are spaced apart farther than the middle

pulses. The power profile mirrors those shown by Figures 4.4(b) and 4.6(b), which

will be explained further in Section 4.2.2. The final section for the RGPO range/delay

profile discusses the general f -nomial case for the RGPO profile for function modeling.

4.2.1.4 f -nomial RGPO Profile Modeling. Table 4.1 shows how all

three previously discussed polynomial cases show a functional relationship that can

be expressed in a general case. It can be easily from looking back at final motion

Equations (4.5), (4.34), and (4.49) that a generic relationship exists between the

polynomial factor desired and the associated range equation. Looking back at the

definitions given in (4.2)−(4.4), the position equation can be given in a general form

of:

r(t) =
Cmtm

m!
+

Cm−1t
(m−1)

(m− 1)!
+ · · ·C1t + C0. (4.74)

Table 4.1: RGPO Profile Velocity Constants

Variable
Constant Constant Linear
Velocity Acceleration Acceleration
(f = 1) (f = 2) (f = 3)

Vmin
(Rmax−Ro)

Tw
(Rmax−2Ro)

Tw
3(Rmax−Ro)

2Tw

Vmax
(Rmax−Ro)

Tw
(Rmax)

Tw
(Rmax−Ro)

Tw
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Equation (4.74) for the generalized range-delay profile can be rewritten in summation

notation as:

r(t) =

M=f∑
m=0

Cmtm

m!
, (4.75)

where r(t) has Cf coefficients and C0 = Ro. Further determination of constants for

(4.75) comes from exploring the other conditions highlighted in the three range-delay

profiles examined. The first relationship explored is between Vmax and Vmin for the

three f values explored previously. Table 4.1 shows the associated Vmax and Vmin.

Looking back at the parameters sets for all three profiles, the same three values make

up the desired optimization parameters based on range. These parameters are:

ūnom = [Tw, Ro, Rmax, f, JSR], (4.76)

where all three are required to define the desired profiles. Specifying extra param-

eters, such as Amin or Vmin serve to bound the problem space. These values specify

limitations on C0 to Cf for 4.75 and the associated values in 4.76. As shown from

Table 4.1, the values for minimum and maximum velocities and accelerations can be

defined in terms of the optimization parameters and serve as nonlinear constraints for

the optimization routine. The profile selected f becomes an optimization parameter

because each value represents a different representation from 4.74. The final compo-

nent added to the optimization parameter set is the power profile, discussed in detail

in the following section.

4.2.2 RGPO Jammer Signal Power. The signal power returned to each

range bin is compared to the detection threshold level set at the output of the radar

receiver. If the receiver output is large enough to exceed the set threshold, the radar

declares a target is present. Where the tracking radar’s threshold detector is set be-

comes dependent upon the environment space volume searched for targets. Referring

back to Figure 4.2, the signal power received by the ECM suite from the radar trans-

mitter is determined by the one-way free-space transmission equation [9], relating
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(Gt), the transmitted power (Pt), the jammer’s effective receive area (Aejam
), and the

one-way range (R) to the target, as:

PO =
PtGtAejam

4πR2
. (4.77)

The received power (PO) from the radar transmitter is then reradiated back into space

in various directions. The amount of power that is reradiated back in the direction

of the tracking radar receiver (PR) is based upon the target radar cross section (σt)

and the return range distance as:

PR =
PtGt

(4πR)2

σtAejam

(4πR)2
. (4.78)

Equation (4.78) represents the product of power captured by the ECM suite in (4.77)

and power density reradiated back at the tracking radar. Ideal conditions would

ensure all power received at the jammer would be broadcast back at the radar receiver

to effectively deceive the target tracker. Previous discussion from Section 2.2 shows

that only a fraction of the transmitted power returns back to the target tracker due

to the tracking radar aperture’s physical size.

The decision criteria for determining whether or not a target exists, after receiv-

ing the signal, is determined from the probability of detecting a target with voltage

signal Vr=
√

Pr. The expected signal Ve is detected with a probability density func-

tion [9]:

ps(Ve) =
Ve

ψ0

exp

(
−V 2

e − Vr
2

2Ψ0

)
I0

(
VeVr

Ψ0

)
, (4.79)

where Ψ0 represents the mean noise power for the radar system and Ve is the envelope

detection voltage. The probability of detecting a target then having voltage Ve is

expressed as:

Pd =

∫ ∞

Vt

ps(Ve)dVe. (4.80)

Equation (4.80) [9] becomes vital in understanding that injected false targets by the

jammer must observe this property to ensure the tracking radar does not dismiss
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the false target. Furthermore, false alarms are avoided by tracking radars through

carefully setting the automatic gain control (AGC) high enough to detect only true

targets with minimal probability of miss. This issue becomes important to consider

when implementing the RGPO profile to pull the tracker away using the injected

target.

Understanding that the tracking radar tries to compensate for false targets, a

closer look at (4.77) becomes necessary to determine the jammer power required to

effectively deceive the tracking radar. The power seen at the receiver in Figure 4.1 is a

product of the receiver power and the effective area of the jammer, which accounts for

the tracker operational wavelength, the repeater jammer gain (GJR), and the one-way

polarization losses (Lp) between the tracking radar and the repeater jammer. This

jammer input power can be expressed as:

PJR =
PtGt

4πR2

λ2GJR

(4π)Lp

. (4.81)

The power received at the radar receiver can then be expressed as [25]

PR =
PtGt

2

(4πR)4

GJRGJT Geλ
4

Lp
2 , (4.82)

where GJT represents the output amplifier gain in (4.1) and Ge represents the re-

peater’s antenna gain with all non-polarization losses accounted for. The jammer-to-

signal ratio (JSR) for this scenario can then be seen as:

JSR =
J

S
=

GJRGJT Geλ
2

4πσtLp
2 , (4.83)

which is independent of range, but accounts for all jammer induced gain and spatial

polarization losses [25]. After calculating the necessary JSR to deceive the tracking

radar, the repeater estimates the platform’s own radar cross section and magnifies it

to mask the true return: σe = JSRσt. The total repeater gain GREP is then calculated
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Figure 4.8: Jammer delay profile over multiple PRIs.

from the repeater RCS:

GREP = GJRGJT Ge (4.84)

=
4πσeLp

2

λ2
. (4.85)

Substitution of (4.85) back into (4.82), gives the power at the receiver from the jammer

as

PR =
PT Gt

2λ2σe

(4π)3R4
. (4.86)

Equation (4.86) gives the victim radar’s perception of the target once the jammer has

magnified the pulse. This allows the jammer to spoof the tracker radar into thinking

the target is larger than it actually is, but comes with physical tradeoffs that are

explored in the next section. With the jammer power relationship established, the

power profile for the delayed target signal must compensate for the added delay for

accurate target deception. Figure 4.8 shows the relationship of delaying the false

target a given distance from the true target without added power compensation. Yet

the deception signal should include a power dissipation of 1
R2 . An example of this

dependency is shown in Figure 4.9. The profile shown in Figure 4.9 is:

σe =
JSRσt

(R−Ro)2
. (4.87)
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Figure 4.9: Amplitude delay profile.

Equation (4.87) must be modified because when R = Ro the magnified RCS is infinity,

which is unrealistic for engagement modelling. This condition is compensated for but

shifting the decay function to the right. Applying a unit shift causes σe takes on the

value of JNSσt when R = Ro as desired. By adding a simple shift, expressed by

σe =
JSRσt

(R−Ro + 1)2
, (4.88)

gives the desired values for the RGPO power profile to deceive the radar. Figure 4.10

shows the amplitude delay profiles corresponding to Figures 4.6 and 4.7. Although

each profile has the same amplitude decay rate, the pulse spacing is different between

the Figures 4.6 and 4.7. These figures show that both the initial jammer signal

amplitude Ajo and minimum jammer signal amplitude Ajmin
modeled for the jammer

signal depend on the walk-off distance and not the actual pulses in the signal profile.

Equation (4.88) reveals the limitations to the desired RGPO ECM waveform, which

is explored further in next section.

4.2.3 Physical Limitations. Figure 4.10 shows the effects of inducing range

delays on the true target return. The power profile modeled shows that inducing

target delays comes at the cost of decreased power returned to the tracking radar. By

adding the extra range distance, shown in Figure 4.10 as a time-delay, the received
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(b) Amplitude delay profile for RGPO signal
(f = 3).

Figure 4.10: RGPO amplitude delay profiles from Figures 4.6 and 4.7.

power subsequently decreases. This power decrease is proportional to 1
R4 . When

establishing the appropriate JSR level to mask the true target return, the jammer

must consider the true target return power level and the walk-off time when setting

the power profile. If the false target is not set high enough, like in Figure 4.8, the target

tracker never locks onto the false target. Conversely, if the power level received is too

large, the tracker’s ECCM detects that the power spike is from a jammer and negates

the false target. Further consideration to walk-time also defines the minimum power

required to continually mask the target. As shown from Figures 4.4 to 4.7, the walk-off

distance is so large that the power drops below the minimum level desired to mask the

true target. Careful consideration must be given then to ensure that the jammer peak

power falls within these limits. Another physical limitation that must be considered

is the relative motion of the false target to the true return. For example, in the

Lab-VoltTM radar system specifications, the range span for the Lab-VoltTM radar covers

a maximum of 7.2m and the associated jammer pull-off distance equals 0.512m [4,23].

If the jammer’s pull-off rate is 5 cm
s

[4], the Lab-VoltTM tracker may not be able to

follow the jammer’s false target. When the target tracker can no longer track the

false target, the radar tracking loop returns to the last known true target return

stored in the tracker memory [26]. While some military tracking radar algorithms
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can handle up to nine times gravitational acceleration (9g), typical modeled pull-off

rates are on the order of three times the acceleration due to gravity, (3g) [26]. These

limitations are designed into the Lab-VoltTM training system. Figure 4.3 shows the

range pull-off profile typical to RGPO jammers like the Lab-VoltTM training system

jammer, which are modeled using a constant velocity RGPO signal. In comparison,

if equation (4.44) were used to model the RGPO signal for the Lab-VoltTM Jammer

Pod, the total delay would be 0.998 m. The change in range-delay profile would

increase the Lab-VoltTM walk-off rate by 48.7%. The subsequent acceleration rate

from changing the RGPO model is 1.175m
s2 . Although this acceleration falls within

previously discussed acceleration limitations, the Jammer Pod could not handle the

power increase necessary to inject the extra target distance. Although the initial

design phase was to simulate the Lab-VoltTM jammer pod, the designed MATLABr

RGPO jammer has the flexibility to model the f -nomial function defined in Section

4.2.1.4 or other desired models for a genetic algorithm to optimize.

4.2.4 MATLABr Implementation. Figure 4.11 shows the block diagram

of the RGPO simulator developed in MATLAB [26]. In implementing the RGPO

circuit, the memory circuit from Figure 4.1 is removed and the program circuit and

accompanying software control the number of delay steps to the range profile. The

input and output amps are tuned to model the desired JSR. The pulsepower MATLAB

code developed represents the input/output amplification modelled in equation (4.88)

to depict the power decay as shown in Figure 4.8. The signal memory block shown in

Figure 4.11 is implemented through the software counter defined in the RGPO main

program. Any necessary changes to the pulse shape are implemented through the

pulse generation subfunction to induce necessary phase delays. The counter (m) runs

through the various steps to the number of delays, given in 4.2. The delay code shows

how the counter is implemented to produce the delayed pulse. For this model, σt is

calculated based upon the target mounted on the Lab-VoltTM jammer pod. These

various radar cross section (RCS) values are programmed based upon a lookup table
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Figure 4.11: Lab-VoltTM RGPO implementation block diagram, adapted from [27].

derived from the mathematical formulas for representing these targets [29], contained

in radar cross-section code. These RCS values are considered Swerling Case 0, or non-

fluctuating targets. Future implementation of a generic jammer can be implemented

using either known RCS values or calculations based upon defined geometric shapes,

different Swerling models, and the materials used. Upon determining the associated

σt for transmission, the necessary jammer transmission power is developed through

(4.86) and is transmitted into the environment. Developing the RGPO jammer in

MATLAB required accurate depiction of the Lab-VoltTM Jammer Pod and the desired

operation modes. Table 4.2 gives the modeling parameters for the RGPO waveform.

The notable difference between the Lab-VoltTM Jammer Pod and the mathematical

development in Section 4.2.1 is the number of delays used to model the profile shown

in 4.3. The Lab-VoltTM jammer uses software to set MJ = 8 and using equation (4.21)

Table 4.2: Lab-VoltTM Jammer Pod RGPO Parameters [23].
Parameter Value

Distance between delays (cm) 6.4
Initial delay δi, (cm) 38

Maximum Input Power (dBm) 10
Number of delays MJ 8

Number of RGPO rates 4
RGPO rates (s) 0.8, 1.6, 4.0, and 8.0

58



0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Walkoff Distance (m)

Si
gn

al
 A

m
pl

itu
de

 (V
)

RGPO Walkoff Signal for LabVolt Jammer Pod

 

 
Skin Return
Delayed Target

(a) Lab-VoltTM RGPO range/delay profile.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Walkoff Time (s)

W
al

k−
of

f D
ist

an
ce

 (m
)

RGPO range−delay timing for LabVolt Jammer Pod

 

 

T
w

 = 0.8s

T
w

 = 1.6s

T
w

 = 4.0s

t
w

 = 8.0s

(b) Lab-VoltTM RGPO signal.

Figure 4.12: Lab-VoltTMRGPO constant velocity profile

with Rmax, Ro, and Tw from Table 4.2 results in the RGPO signal.

r(w) = .512
(m

8

)
+ .38 (4.89)

Figure 4.12 shows the Lab-VoltTM Jammer signal as simulated by the using delay

implementation code using Equation (4.89). The range-delay plots in Figure 4.12(a)

show the change in pull-off rates due to the walk-off time desired. The 8 delay points

correspond to the Lab-VoltTM Jammer Pod specifications of 6.4cm distance between

delays and the RGPO signal shown in Figure 4.12(b) validates this spacing. The sole

modification required was for incrementing the counter variable m. Equation (4.90)

shows the modification to the counter variable.

ml =

⌊
w

8Tp

Tw

⌋
(4.90)

Equation (4.90) allows the program counter to broadcast the number of pulses neces-

sary for operators to visualize the waveform while maintaining the necessary walk-off

distance and walk-off time to accurately portray the signal. Figure 4.12(a) shows simi-

lar delay distances as depicted in Figure 4.13, which uses the continuous time function

equation, defined by (4.44). Comparison between Figures 4.12 and 4.13 show the same

walk-off distances and amplitude modulation for the two signals. Where these two

range profiles differ is that equation (4.90) uses a defined number of PRIs by the
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(b) Lab-VoltTM RGPO signal.

Figure 4.13: Non-stepped Lab-VoltTMRGPO constant velocity profile

jammer software and Figure 4.13 uses the defined PRIs based upon equation (4.20).

The number of pulses in the walk-off profiles shown in Figure 4.13 range from 228 for

the 0.8s walk-off time to 2286 pulses for the 8.0s walk-off time.

4.2.5 RGPO Development Summary. The MATLABr simulation and the

mathematical representation of the Lab-VoltTM jammer pod shows that the RGPO

general case developed in Section 4.2.1 can accurately represent any jammer used

for modeling. Furthermore, this flexibility highlights the concept of modular jammer

design for the HILS architecture given in Section 3.1. The development framework

for the RGPO case lends itself to development of the VGPO profile model. The next

section develops the VGPO model using core pieces of the RGPO model, but using

the STAP model to process the necessary Doppler shifts.

4.3 VGPO Techniques

As discussed briefly in Section 1.1, the VGPO jammer generates a false target

with an induced frequency offset relative to the true target return. The induced fre-

quency offset on the returned pulses varies as a function of time to show the target

accelerating away from the victim radar. The associated time history for the VGPO

signal is repeated such that the victim’s radar range rate tracker is pulled away from

the true target return, causing the tracker to break lock [30]. The frequency modu-
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lation waveform used to induce the false Doppler returns onto the repeated jammer

signal then becomes a critical parameter for the deception jammer.

The VGPO waveform development is presented in three parts. The first section

looks at the VGPO basic signal, understanding how the imposed Doppler shifts add

the velocity component to the range/velocity tracking done by modern radar systems.

The second section looks at how the Doppler shift can be imposed using the Ward

STAP model [31]. By using the STAP model to implement the VGPO signal, coor-

dinated RGPO and VGPO is easily accomplished and may improve efficiency during

optimization because of the matrix framework [31]. The final section looks at the

developed VGPO signal model and applies it towards a known radar system. From

the implementation of the VGPO signal model, the velocity changes can be mimicked

with either a pull-off profile or a pull-in (VGPI) profile and add additional signal

models to the ECM library.

4.3.1 VGPO Mathematical Background. In modeling the deception jammer

waveform given in Equation (4.91), Aj represents the signal jammer voltage ampli-

tude, ωJ is the normalized Doppler frequency and φJ is the phase-shift induced by

the deception jammer. Equation (4.91) gives the deception jammer signal broadcast,

knowing the true target skin return, as [25]:

SJ = Aj cos(wJt + φJ). (4.91)

The normalized frequency offset imposed by the jammer comes with two limitations

that must be understood to successfully conduct VGPO jamming. First is that ωJ

must fall within the Doppler passband of the initial target. While broadcasting with

the initial frequency offset, enough time must be given such that the victim’s AGC

adjusts to the false target. As with the generalized RGPO waveform developed in [1]

and previous discussion, the target skin return must be masked and amplified such

that the AGC threshold is above the true target return. Second, in trying to deceive

the victim tracker, it is important to understand the victim radar’s Doppler resolution
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capabilities. To accurately use Equation (4.91) to walk off the true target return, φJ

must change in increments that the victim radar can detect, with maximum frequency

offsets ranging between 5 − 50 kHz [25]. Another important aspect in modeling

the phase changes requires consideration of the associated acceleration changes that

come with frequency modulation. Most Doppler radars associate differential velocity

changes as target acceleration. With at = δ
δt

vt, the velocity tracker checks for unusual

accelerations derived from either unusual jumps in velocity or values that exceed the

target’s expected performance specifications. This leads to constraints on φJ modeled

in the following manner [25]:

φj(t) =
∂

∂t
fd(t) (4.92)

=
π

2bJ−1
(4.93)

where bJ represents the number of discrete phase bits utilized by the jammer to add

the frequency shift to the output signal [25]. This parameter serves as an important

variable in ūc for the VGPO signal. The number of phase bits determines how accurate

the velocity signal walks away from the true target. Previous discussion from Nunez et

al. suggests that a linear-ramp frequency offset is ideal, giving a constant acceleration

[1] in modeling RGPO. While this handles some cases, changes in the mathematical

expression to represent other polynomial expressions could give the deception signal

the realistic representation of maneuvering in an attempt to evade the radar tracker.

While ensuring that the appropriate frequency offsets are applied, the associated

voltages applied are also important. The deception jammer power injected into the

target environment can be modeled knowing that the jammer can accurately detect

the signal power from the victim radar. The power profile for the VGPO signal

is identical to the RGPO power profile discussed in section 4.2.2. Through prior

knowledge of the victim radar operational frequency fo, transmitter power Pt, and

the target range to the victim radar R, the jammer power PJ equates to (4.81). This
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radar range equation modification gives the desired signal power necessary to deceive

the tracking radar with an injected false target.

The target range can be estimated from the pulse repetition frequency used by

the victim radar and usually calculated through the use of Digital Radio-Frequency

Memory (DRFM) chips within the repeater jammer. DRFM chips provide a memory

capability independent of storage time that allows coherence of captured signals, pre-

venting signal deterioration as time delays are introduced. Through knowing designed

jammer characteristics, the amplitude roll-off function is similar to that discussed

in [1], compensating for changes in range along with desired jammer-to-signal ratios.

For signal optimization, the linear VGPO pull-off signal is a function of the

relative velocity between the tracking radar platform and the jammer platform. The

relative Doppler frequency is:

frel =
2(Va − Vt)

λo

, (4.94)

where Va is the jammer platform’s velocity and Vt is the tracking radar platform’s

velocity. The normalized Doppler frequency is desired for false-target placement in

the STAP data-cube, which can be determined by:

f̂J =
frel

fPRF

−
⌊

frel

fPRF

⌋
. (4.95)

The number of pulses MJV required to step through the tracking radar’s velocity

gates is:

MJV = MδV = (f̂Jmax − f̂J)M, (4.96)
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where f̂Jmax is the normalized value of the maximum walk-off velocity. From (4.96),

bJ is determined after substitution into (4.93):

MδV =
π

2bJ−1
(4.97)

bJ =

⌈
log2

(
π

(f̂Jmax − f̂J)M

)⌉
+ 1. (4.98)

The ceiling function is required for bJ to determine the whole number of bits to

implement the phase shift. Furthermore, one extra bit is added based upon the 2s-

complement representation for the bit-stream. This representation allows for count-

down use in possible Velocity Gate Pull-In (VGPI) implementation, which the model

implemented uses 6 bits. The amplitude scaling necessary for the VGPO waveform

is the power profile given by (4.88). The mathematical function Φ(u) for jammer

implementation and subsequent waveform optimization is then expressed as:

Φ(u) = Aj cos(wJt + φJ), (4.99)

φJ = (f̂Jmax − f̂J)
m

MJV

fPRF, (4.100)

where

m = 1 : MJV , (4.101)

sequentially stepping the phase changes through the desired maximum velocity and

MJV is bounded both by the modelled acceleration rate and the tracking radar’s CPI.

The parameter set ū necessary for modeling Φ(u) for the VGPO signal is:

ū = [Tw, Ro, Rmax, JSR, f, MJV ]. (4.102)

MJV becomes an essential parameter because of the jammer’s dependence on the

radar system’s CPI length for STAP implementation. The jammer system hardware

necessitates that the number of steps in pulling off the velocity gate be on the order

of MJV = 2bJ−1 for adequate signal representation. Development of Φ(u) and ū
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Table 4.3: Radar Model Parameters.
Parameter Value

Aircraft Velocity - Va,(
m
s ) 200

Aircraft Altitude - ha,(m) 3048
Azimuth Channels - N 8
Elevation Channels - P 8

Azimuth Element Spacing - dx, (m) λ
2

Elevation Element Spacing - dz, (m) λ
2

Transmit Power - Pt, (kW) 200
Coherent Pulse Integration (CPI) 64

Boresight Angle - θ̄o, φ̄o (0◦, 0◦)
Operating Frequency - fo, (GHz) 1.24
Pulse Repetition Frequency - fr, (Hz) 1984
Pulse Width - τ (µs) 10
Radar Noise Figure - (dB) 3
Radar Range Resolution - ∂R (m) 151

Radar Velocity Resolution - ∂V , (ms ) 3.75

allows for HILS optimization, as shown in [21], which is assisted through a STAP

implementation of the VGPO waveform. The next section further develops the STAP

model for use in VGPO waveform development.

4.3.2 STAP Developed VGPO Signal. The model parameters from Table

4.3 come from the multi-channel airborne radar measurement (MCARM) system [32],

operating as a pulse-Doppler radar mounted on an airborne platform moving with a

constant speed (Va). The radar antenna is a uniformly spaced linear array with N

azimuth elements by P elevation elements [31]. The transmitted signal generated by

the MATLAB model data is assumed as a narrow-band signal that detects targets

in the far field. Through these assumptions, the voltage received along the array, at

the nth row element and the pth column element, is a function of the angle of arrival

with respect to θ and φ, the target Doppler velocity, vd, and the normalized phase

difference across the array, 2πd
λ

. This signal representation using complex envelope

notation is

sq(t) = α(t) exp

(
j2π

(
qd

λ
sin θ + vdt

))
(4.103)
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where α(t) represents the down-sampled voltage complex amplitude, derived from

(2.1), and the subscript q denotes the number sensor, referenced as [n, p] in the ar-

ray [31]. With this representation, the mutual coupling effects along the array are

ignored and the target return produces only a linear phase difference along the ar-

ray. Figure 4.14 illustrates the data cube collected during the receiver CPI, including

how the radar aperture elements map directly to the data cube [33]. Once the phase

compensations have been made, the data can be coherently added together through

the coherent processing interval (CPI) of pulses collected. Each of these M pulses

within the CPI are then sampled at a given range gate, R, along the total number of

sensors. Furthermore, the Doppler and angular information can be resolved through

understanding that the array’s linear spacing allows for discrete shifts between sensors

over all frequencies. Through development of a steering vector v, phase shifts along

the sensors can be corrected to allow coherent data processing. The steering vector v

then takes on the following form:

v(t) ≡ [1 v v2 · · · v(N−1)]T , (4.104)

where each element of v represents the exponential term described in (4.103). When

applying α(t) to (4.104), the complex voltage received, the resultant signal is s(t) =

v(t)Hα(t). The radar aperture shown in Figure 4.14 leads to the construction of three

column vectors representing the radar pulses collected across the aperture from a given

location in space. The temporal steering vector (b(t)), denotes the M-dimensional

Doppler returns to the radar aperture, while the other two denotes the number of

azimuth elements, (a(t)), and elevation elements (e(t)), shown in Figure 4.14, which

are expressed as

e(t) = [1 exp(j2πωte) · · · exp(j2π(P − 1)ωte]
T , (4.105)

b(t) = [1 exp(j2πνt) · · · exp(j2π(M − 1)νt]
T , (4.106)

a(t) = [1 exp(j2πωta) · · · exp(j2π(N − 1)ωta]
T (4.107)
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Figure 4.14: Illustration of STAP 3D data cube construction [33].

with

νt =
ft

fr

, (4.108)

ft = target Doppler velocity, (4.109)

ωta =
d

λ
sin(θt), (4.110)

ωte =
d

λ
sin(φt). (4.111)

Formation of (4.104) comes from combining (4.105)-(4.107) in the following operation,

v = e⊗ b⊗ a (4.112)

where ⊗ represents the Kronecker product of the two vectors. This operation creates

the spatial 2-D FFT across the array over all possible look angles in (θt, φt), summing

the returned signal across the entire array. From (4.112), the resulting vector creates

a 3-D space-time snapshot for a particular range. This accounts for the aperture’s

collected signal in both (θt, φt), but does not consider environmental noise and clutter

returns, prior to understanding target detection.

4.3.3 MATLABr Jammer Development. Using STAP with the VGPO jam-

mer integrates the mathematical equations from the previous section into the MAT-

LAB model from previous work [31]. Table 4.4 lists the target parameters that are
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Table 4.4: Target Characteristics.
Parameter Value
Target Range - R,(km) 37.8-75.6
Target Velocity - Vt,

m
s −200 - 200

Target Radar Cross Section - σt 5
Jammer Type - Deception
Jammer Mode - Uncoordinated VGPO
Jammer-to-Signal Ratio - (dB) -18

stored in vector form for use in the model. The σt value used represents a medium-

sized fighter, similar to the RCS of a third-generation aircraft, derived from Table 2.1

of Skolnik [9]. The injected target is given a random velocity and distance from the

victim radar, from a uniform random number, in the following manner:

Rt = U(250, 500),

Vt = U(−200, 200).

Rt is given a distance of at least 250∂R to represent a target somewhere in the far field

of the tracking radar. The velocity component, given in m
s
, uses a uniform random

number generator to determine the velocity sign while another determines the velocity

magnitude. The modeled targets fall under Swerling Case 0 where there are no RCS

fluctuations due to changes in pulses or scan-to-scan changes. The targets are injected

into a noisy environment, but clutter is ignored in the environment only for decreasing

processing time. The target generating function injects the target with the desired

velocity in the STAP model according to previously developed work [34]. Once the

targets are injected, the VGPO ECM function applies the necessary Doppler shifts

and amplitude changes necessary to represent a real jammer engagement. Prior to

invoking the VGPO ECM function, the system calculates a few important parameters.

First, the jammer determines the Doppler resolution as if communication took place

between the Radar Warning Receiver (RWR) and the deception jammer. This link

passes known Doppler tolerances of the victim system such that the linear progression

could be accurately modeled. Next, the jammer calculates the true target return’s
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actual Doppler frequency frel, noting possible aliasing that could occur in the victim

radar, determined in equation (4.95). From determining the appropriate Doppler

bin for the target return, the jammer processor then calculates the number of bins

necessary to pull off the velocity towards the victim’s maximum detectable velocity

[34]. This model assumes the linear case discussed in the previous section, although

the polynomial case can be implemented through further development of how the

jammer selected the number of bins to use. Finally, the associated direction of walk-

off is determined through the sign of the target Doppler. For example, if the target

velocity is −100m
s
, the target should move towards the minimum velocity and not

through zero towards the positive maximum. Placing the masked target return in

Doppler comes from manipulating (4.91) with respect to applying the normalized

Doppler with the steering vector, expressed in (4.112) [35]:

b̄ = exp(j2π(frel + φJ)), (4.113)

where both fd and φJ are normalized by the victim’s PRF for the appropriate fre-

quency shift. This shift represents the specific increase in velocity at a particular time

in the radar.

The final component to masking the true target return implements at for the

jammer signal output. While equation (4.88) gives the necessary power for the jammer

required to be seen at the victim radar, this model parallels target modeling with

changes in radar cross-section to induce necessary amplitude changes. To apply cross-

sectional changes to (4.88), the collective gain for the jammer and receiver is defined

by (4.88) discussed in Section 4.2.2, where σe is the magnified radar cross section for

the deception jammer. Implementation of σe in (4.88) in the VGPO walkoff script

is a function of the desired jammer-to-signal (JSR) ratio, the target RCS and the

linear power profile given in (4.88). The magnified deception jammer RCS, σe, is

amended for the initial target masking to prevent unnecessarily large initial returns

at the radar receiver. The jammer model processes the received pulse return and
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magnifies the signal by the desired JSR. In the initial return case, the jammer signal

is intended to increase the AGC. If this gain is not carefully monitored, electronic

counter-countermeasure (ECCM) flags would trip due to a power spike and reject the

jammer signals. This condition is prevented by the conditional statement developed

in the jammer for the initial target return. Once placed in doppler and given the

associated jammer voltage, the final radar target data operation applies the voltage

signal
√

Pr to v̄ at the rth range bin. This target data model assumes targets fall only

in a single range bin and that there are no correlation terms between either target’s

RCS.

4.3.4 VGPO/VGPI Simulation and Results. Figure 4.15(a) shows the final

result from the deception jammer mixed with the actual target return at the victim

receiver. Figure 4.15(a) comes from a specific snapshot of the radar signal processor

after receiving the collection of data from the target environment. The color map

imposed on the figures in this section show relative power at the victim radar receiver

after STAP. The chosen color scheme provides ease of visual target identification. The

target environment is created as a movie developed to depict near real-time processing

by the radar of the jammer and target signals received from the environment. These

movies are generated through looping through the jammer function for W snapshots

necessary to walk-off the velocity gate through Vmax. In developing the signal in

this manner, the VGPO ECM format is formulated to coincide with both the RGPO

model developed in Section 4.2.1 and the scoring function described in Section 3.2.5.

The VGPO signal illustrated in Figures 4.15 and 4.16 are considered uncoordinated

VGPO/VGPI signals. This suggests that the target movement is staying in the same

range bin but is increasing or decreasing its velocity relative to the victim radar. Each

jammer created signal is added to the target and noise signals, simulating the collec-

tion of all signals at the radar antenna. Once the entire suite of jammer snapshots are

created, the radar signal processor MATLAB function manipulates the data in suc-

cession to create the picture seen in the STAP models for one instant in time. All the
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(a) VGPO model example. (b) VGPO pull-off profile.

Figure 4.15: VGPO jammer signal simulation.

snapshots are processed in sequence to model how the jammer is pulling the target off

in velocity. Figure 4.16(a) shows the VGPO jammer based on a target with a positive

velocity. This graphic mirrors the VGPI jammer signal shown in Figure 4.15(a) cre-

ated from the MATLAB code to represent the target deceiving the radar by moving

closer to the victim radar. These snapshots come from the movie depicting the VGPO

jammer against the target injected into the engagement. Figure 4.15(b) shows the

summation of false targets over time in the power profile. Each peak represents the

returned jammer power at a given time instance. Figure 4.16(b) shows the similar

jammer power profile for the positive power profile change. Both 4.15(b) and 4.16(b)

show the peak power at time zero, where the jammer frequency repeats the target

return and terminates at the maximum measurable frequency change. The power

change rates reflect the linear slope discussed in Schleher [25]. Figures 4.16(a) and

4.16(b) show the case where the target aircraft is moving away from the victim radar

receiver. The target placement function, which serves as jammer main program, can

be modified to equate non-linear roll-off functions by adding a polynomial function to

the σe calculations. Any power modifications to the VGPO signal should consider the

range power changes modeled in section 4.2.2. The roll-off profile changes follow dis-
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(a) VGPI model example (b) VGPI pull-off profile for Figure 4.15(a)

Figure 4.16: VGPI jammer signal simulation.

cussion in both Schleher for linear VGPO and in [1] regarding the generalized pull-off

function.

One area not investigated at this point in model development is non-linear fre-

quency modulation for the VGPO jammer. Careful b̄ modification for non-linear

changes of φJ would equate to positive or negative accelerations. These modifications

are done through understanding the general RGPO/VGPO profile development. Fur-

thermore, the VGPO profile can be found through the derivative of the generic RGPO

profile expressed in (4.75), allowing for seamless integration. Through the STAP

framework, the induced false target distance comes from the previously calculated

velocity change and the range profile. The profile depicted in Figure 4.17 shows a

linear velocity profile change of 50m
s

through the engagement. The target is placed at

25δR, which enables the full profile depiction in Figure 4.17. The generalized RGPO

jammer signal incorporated into this model illustrates the coordinated RGPO/VGPO

jamming used against tracking radars with advanced ECCM suites. During this im-

plementation, coordination is necessary between range bin placement and Doppler

frequency addition to ensure that non-realistic velocities and accelerations are shown

in range-Doppler map.
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Figure 4.17: Coordinated RGPO/VGPO implemented in STAP.

4.4 ECM Waveform Modelling Summary

Mathematical development of the RGPO and VGPO waveforms creates the

primary building blocks in the ECM library. Through understanding how both signals

are created, proper MATLABr encoding was established to enable the GA to optimize

either based upon the defined parameter set. The generalized RGPO waveform can

be incorporated in either a stand-alone RGPO model or used with a VGPO signal

for advanced ECCM techniques. As future development continues, the mathematical

representations for each waveform are stored in the ECM library for use by any

given jammer. Development of two distinct jammer platforms shows flexibility of

implementation. As long as the specified jammer parameters can handle the range of

ECM library functions, the operator has freedom to define a particular ECM waveform

for optimization. The next chapter explores the GA implementation of optimizing

these two waveforms against a generic radar system.

73



V. Genetic Algorithm Optimization of RGPO

This chapter explores GA for developing ECM waveforms. The MATLABr Genetic

Algorithm and Direct Search toolbox serves as easy-to-use optimization routine that

can be easily integrated with the defined HILS architecture. Previous work by La-

mont and Landis shows that the ECM waveforms can be optimized, but more work

is required to separate the optimization routine from the ECM signal generation.

Demonstration of the separable components of optimization routine and ECM wave-

forms is shown with the RGPO waveforms. Future work from this research seeks to

investigate other optimization routines besides GA in this architecture. Comparison

between various optimization methods will determine which efficiently develops ECM

waveforms for the HILS architecture. After efficiency studies have been done on wave-

form optimization, other ECM waveforms require development to further expand the

ECM library for the HILS architecture.

5.1 MATLABr GA Implementation

This first section builds upon work by Lamont and Landis (discussed in Section

2.4.3 [15]), which explored the development of Range Gate Pull-off countermeasure

waveforms via the MATLABr genetic algorithm toolbox. To better understand how to

apply GA to ECM technique generation, a simple minimization problem is examined.

5.1.1 Analytical Bowl Minimization. The 3-D bowl provides a simple func-

tion with a known solution if the function Z describes an elliptical bowl located at

(xo, yo) = (5, 4):

Z = a(x− xo)
2 + b(y − yo)

2, (5.1)

= 2(x− 5)2 + 3(y − 4)2, (5.2)

then the known minimum can be found by calculating the function’s gradient [36]:

min Z(x, y) =
∂z

∂x
Z(x, y) +

∂z

∂y
Z(x, y) (5.3)
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where

∂x

∂z
Z(x, y) = 0, (5.4)

∂y

∂z
Z(x, y) = 0. (5.5)

Applying equations (5.4) and (5.5) to (5.2) gives the solution:

∂x

∂z
= 4(x− 5), (5.6)

x = 5, (5.7)

and

∂y

∂z
= 6(y − 4) (5.8)

y = 4. (5.9)

The constants a and b define curvature of the bowl, but further exploration of this

function is required to determine whether or not the solution is a local minimum

for this function. The Second Partials test [36] is required to resolve this question.

This test states that if f(x, y) has a continuous second partial derivatives in the

neighborhood of the minimum, (xo, yo), that the test [36]:

D(xo, yo) =
∂2x

∂z2
f(xo, yo)

∂2y

∂z2
f(xo, yo)− ∂x∂y

∂z2
f(xo, yo)

2 (5.10)

Where if:

1. D > 0 and ∂2x
∂z2 f(xo, yo) < 0, f(xo, yo) is a local maximum value.

2. D > 0 and ∂2x
∂z2 f(xo, yo) > 0, f(xo, yo) is a local minimum value.

3. D < 0,f(xo, yo) is not an extreme value.

4. D = 0, the test is inconclusive.
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Following this test, ∂2x
∂z2 f(xo, yo) = 4 and ∂2y

∂z2 f(xo, yo) = 6. Evaluating D(5, 4) results

in:

D(5, 4) = (4)(6)− (4(0)− 6(0))2 = 24, (5.11)

which verifies that the point (5, 4) represents the local minimum based upon the

Second Partials test. While this solution is trivial due to a general understanding

of calculus, this problem serves as a good test for the MATLABr GA function. A

known solution for a simplistic mathematical function allows exploration of the GA

function’s inputs and outputs, along with knowledge of parameter passing and neces-

sary formatting for a desired fitness function.

5.1.2 MATLABr GA Tool Definitions. The MATLABr GA toolbox, given

as ga.m or the GUI interface gatool.m, finds the local constrained minimum in a

defined objective function [37]. The GA accepts a 1×N vector argument set as input

to the objective function which is expressed for the minimization problem. Table

5.1 gives the various inputs for optimization using the GA toolbox. The variables

listed in Table 5.1 are listed in order of their inclusion to running the GA function

tool. In specifying Equation (5.2) as a fitness function for MATLABr, the variables

must be listed in a column vector, i.e. x(1) = x and x(2) = y. The options variable

Table 5.1: GA Optimization Parameters [37]
Variable Definition
fitnessfcn Fitness function to evaluate

nvars Number of variables in fitness function to optimize
options Options structure for GA tool
Aineq A matrix for inequality constraints
Bineq b vector for results of Ax = b equation
Aeq A matrix for equality constraints
Beq B vector for results of Ax = b equation
LB Lower bound on evaluation variables
UB Upper bound on evaluation variables

nonlcon Nonlinear constraint function
randstate (Optional) reset rand state for optimization
randnstate (Optional) reset randn state for optimization
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allows for the user to define specific parameters discussed in section 2.3.2, customized

to how the search algorithm should operate. Appendix A gives the MATLABr GA

options structure, defining the different options criteria for implementing the algo-

rithm. Further discussion will cover how this research will implement some of those

options. While this function is minimized to find the local minimum at (5, 4), the

GA toolbox can also find the maximum within a search space. The input function

maximum can be found through giving the GA function the negative complement of

(5.1), −Z = −a(x − xo)
2 − b(y − yo). Various iterations were run for (5.2), ranging

from the unbounded case to the constrained case with linear inequalities. For linear

constraints, equation (5.12) gives the generic definition for the MATLABr matrices

used in limiting the GA search.

Āx̄ ≤ b̄ (5.12)

Ā =




a(1,1) . . . a(1,M)

a(2,1) . . . a2,2)

...
. . .

...

a(N,M−1) . . . a(N,M)




NxM

(5.13)

b̄ =




b(1,1)

...

b(M,1)




M×1

(5.14)

These equations are defined to enclose the bowl to a smaller space. If matrices (5.13)-

(5.14) are listed as Aeq and Beq instead of Aineq and Bineq, the GA selects chro-

mosomes from population members on the boundary defined by Ā and b̄. The lower

bound and upper bound arrays are defined similarly to b̄ as a 1×N array, but bound

the variables for the search space:

UB =
[

UB(1,1) . . . UB(M,1)

]†

M×1

, (5.15)

LB =
[

LB(1,1) . . . LB(M,1)

]†

M×1

, (5.16)
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Table 5.2: GA Output Variables
Variable Definition

x End value for the fitness function
fval Fitness function value at output x

exitflag Integer value identifying why the GA ended
output Output structure that gives performance specifications

on the algorithm

where entries must exist for each variable contained in the optimization chromosomes.

Any individual gene that does not have an upper or lower bound requires an entry

of ±∞. In the test example, the lower bound was defined as [−20,−20] and the

upper bound was defined as [20, 20]. This serves an important role in functions that

may have more than one minimum or maximum but only a specific one is desired.

Once the population space and constraints are defined for ū, the appropriate output

variables are explained to ensure the proper results are recorded. The GA output

variables produce the actual chromosome ū, the reason why the GA terminated, or

the GA scoring value for the chromosome returned. The output values given from

running the GA are listed in Table 5.2 in the order that the user can request them.

The first two arguments of the GA output give the basic results desired from any min-

imum/maximum problem solution. The exitflag variable gives a scalar number that

represents the reason why the GA algorithm terminated. The termination reasons

relevant to this research are listed in Table 5.3, which gives explanation as to why the

Table 5.3: MATLABr GA Exit Flags [37]
1 The average change in fitness function is less than the

TolFun and constraint violation is less than TolCon.
3 The fitness function did not change in the generation and

the TolCon condition is met.
0 The maximum number of generations specified has been

exceed, which the resulting vector would be the smallest
in the current population.

−1 The optimization terminated by output or plotting func-
tion.

−2 No feasible population starting point was found.
−4 Time limit specified has been exceeded.
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Table 5.4: Output Structure Variables
Variable Definition
randstate The state of rand when the algorithm started.
randnstate The state of randn when the algorithm started.
generations The number of generations computed.
funccount The number of evaluations of the fitness function.
message Reason that the algorithm terminated.
maxconstraint Maximum constraint violation, if any occured.

GA terminated and their associated flag values. The TolFun and TolCon conditions,

which default at values of 10−6, are defined in the options structure in MATLABr

GA function. The TolFun option defines the average change in a generation that if

achieved causes the GA algorithm to exit and the TolCon is the deviation from the

linear equality solution allowed for the chromosome to be valid. The last flag (−4)

serves as a method, which should be explored in future research, to enable possible

real-time GA optimization for engagement scenarios. For current work, this flag is

not used because the true threshold is unlimited. Finally, the output variable gives a

structure with various performance specifications from running the algorithm. Table

5.4 gives the parameters from the output structure. The randstate and randnstate

variables allow for the recreation of MATLABrś GA results from the seed variables.

The message and maxconstraint variables allow the user to observe how the GA is

processing the fitness function. Additional variables for reporting the final population

scores and the members in the final population can also be accessed, but were not

used.

5.1.3 GA Bowl Optimization Results. The optimization trials were run in

four different iterations, covering the different input parameters and limitations for the

GA toolbox. Each trial was run in a Monte Carlo simulation of 1000 iterations, with

each optimization run from a different random start point in the solution space. The

first test setup was run with the unconstrained, unbounded problem. This allowed the

GA to search all possible population members to find the problem global minimum.

The second trial gave lower and upper bounds of [−20,−20] and [20, 20] respectively
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Figure 5.1: Bowl optimization surface from (5.2).

to determine whether or not bounds would decrease solution time or increase accuracy.

Figure 5.1 shows Equation (5.2) with the bounds applied. The third trial bounds the

search space with the linear inequality constraints defined in (5.17) and (5.18), as:

Ā =


 1 1

3 −2


 , (5.17)

b̄ =


 15

9


 . (5.18)

During the final simulation, the GA was given an overdetermined system, a system

with more equations than unknowns [38]. Having fewer unknowns than defined equa-

tions showed how the GA would handle the possibility of conflicting constraints. While

the simple bowl problem has a defined solution, the RGPO waveform has different

solutions based upon the environmental constraints, which could conflict depending

on the desired result. Equations (5.19) and (5.20) give the overdetermined system,
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Figure 5.2: (a) Solution space contour plot with imposed linear inequalities.
(b) Solution space with overdetermined linear inequality matrix.

with the last row being inserted.

Ā =




1 1

3 −2

5 −6


 (5.19)

b̄ =




15

9

10


 (5.20)

The final trial run explored GA limitations when given limited information about

the optimized function. This trial run mirrors physical constraints placed upon the

RGPO waveforms, as discussed in Section 4.2.3. Each linear constraint was defined to

contain the center point derived from equation (5.2). Figures 5.2(a) and 5.2(b) give a

contour plot of the bowl optimization problem from Section 5.1.1. Figure 5.2(a) shows

(5.17) and (5.18) imposed upon the GA optimization. Further constraints are placed

upon the GA in Figure 5.2(b), with a third inequality imposed. The third inequality

used to make (5.19) and (5.20) had to be chosen such that the desired solution was

contained in the enclosed area, shown in Figure 5.2(b). If the third inequality is not

carefully chosen, then the overdetermined Ā and b̄ matrices can prevent the GA from

finding the final solution. Table 5.5 lists the test results after running each limiting
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Table 5.5: GA Optimization Statistics
GA Type µs(x) εx(%) σs(x) µs(y) εy(%) σs(y)
Unconstrained 5.000 0.00 0.011 4.000 0.00 0.009
Bounded 4.912 1.76 0.045 3.904 2.40 0.050
Linear Constraints 5.001 0.02 0.016 4.000 0.00 0.015
Over-constrained 5.000 0.00 0.012 4.001 0.03 0.013

factor with the GA. The statistics given in the table represent the sample mean for

each variable, (µx, µy), the error values from the analytic solution (εx, εy), and the

sample set standard deviation (σx, σy). The best results from these trial runs came

from the unbounded, unconstrained trials.

During the unconstrained trials, the GA is able to search all values in the vari-

able space without having to determine if generated chromosomes are valid. The

linear constraints defined in (5.17) and (5.18) gave the GA constraints to compare

chromosomes against to ensure each belonged in the population. Furthermore, the

GA could remove invalid chromosomes in the population and had a defined search

space to seed the starting generation. The over-constrained trial runs had more error

compared to the unconstrained or linear constrained case because the possibility ex-

ists where numerous solutions could give the same answer. While the over-constrained

result gives relatively poor results, all solution statistics fall within 99% accuracy of

the analytic solution. These results translate to measurements off by less than 10kHz

on a 1MHz bandwidth signal.

Figures 5.3 and 5.4 show the number of generations required to solve the min-

imization problem from Section 5.1.1. Each generation contains a population of 100

chromosomes that were evaluated by the fitness function. The histograms in Fig-

ure 5.3 show the number of generations needed during each trial of the Monte Carlo

simulation to produce the results for Table 5.5. The unbounded, unconstrained sim-

ulation took 51-57 generations to produce results, while imposing bounds on (x, y)

took longer to find the final result. The final results between these two cases took an

average of 20 more generations to derive the solution. The longer evolution time di-
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(b) Bounded GA generation histogram.

Figure 5.3: GA fitness function histograms.

rectly results from migration towards the minimum happening in smaller increments.

In the unbounded case, the large range of fitness values allowed the large values to

be discarded more often than the bounded case, which had a smaller range of fitness

values, in creating the next generation. The bounded case leads to a smaller search

space and a slower descent towards the absolute minimum. The bounded case then

leaves more chromosomes in the population that deviate from the solution.

Figure 5.4 shows similar histogram values to the unbounded case. By imposing

linear constraints, certain values of the bounded region can be discarded in creating

chromosomes during the mutation/crossover stage of the GA. Where the linear con-

straint problem differs from the unbounded problem is through added constraints to
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(a) GA generation histograms with applied linear
inequality constraints.
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(b) GA generations histogram with overdeter-
mined linear inequality constraints.

Figure 5.4: GA results from applying linear inequality constraints.
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limit the population, which equates to the histogram’s standard deviation. Figure

5.4(a) contains values that range from 50-70 generations, 10% more than the 10 gen-

eration span of Figure 5.3(a). Again, this variation comes from the discussed issue of

retained chromosomes. Finally, Figure 5.4(b) contains the same logarithmic shape as

the three previous plots. Careful selection of the third linear inequality clustered more

of the generation results to the left half of the histogram. These results combined with

Table 5.5 shows that, although more linear inequality equations than unknowns can

harm the final solution, judicious selection of constrains can lead to refined results.

5.1.4 Performing a Linear Transformation on the Fitness Function. The

next exploration area for implementing GA optimization was performing a linear

transform on the observation space. Performing a linear transform on the GA fitness

function represents effects caused by the radar environment on the received RGPO

waveform. In order to understand how the GA will handle transformations of the

initial optimized function, a simple linear transformation matrix was developed to

manipulate the previously optimized bowl function. Figure 5.5 shows the population

undergoing a linear transform L, as shown in the HILS architecture, implemented by

the L-matrix (L):

L =


 2 4

0 −2


 , (5.21)

which performs two different operations on Φ(ū). First, the fitness function is reflected

on the x-axis. The fitness function then has a stretch factor of 2 applied to the solution

space before a vertical sheer mapping factor of 4 applied before the result depicted

in Figure 5.5 [38]. The analytic solution for the linear transformation problem then

comes from applying the L-matrix to the solution space. Equation (5.22) shows the

algebraic representation of the analytic solution matrix z̄ transformed by the L-matrix,

giving the result as z̄:

z̄ = L̄−1c̄ (5.22)
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Figure 5.5: Linear transformation of bowl optimization problem.

where

L̄−1 = −1

4


 −2 −4

0 2


 (5.23)

=


 .5 1

0 −.5


 . (5.24)

This transformation on the solution produces

z̄ =


 .5 1

0 −.5





 5

4


 (5.25)

=


 6.5

−2


 , (5.26)

which the results can be verified visually in Figure 5.5. The simulated linear transform

represents the necessity for the GA to wait for the radar signal processor to detect the

ECM signal and develop a track profile on the false target before returning a result

to the system.

The test setup for the applied linear transform is similar to the test scenario

for solving the bowl problem. Each setup was run under the same number of trial

runs and random initialization points to determine the results shown in Table 5.6.
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Table 5.6: Linear Transformation Statistics
GA Type µs(x) εx(%) σs(x) µs(y) εy(%) σs(y)
Unconstrained 6.497 0.04 0.048 -1.999 0.05 0.022
Bounded 6.497 0.04 0.056 -1.999 0.05 0.026
Linear Constraints 6.492 0.12 0.059 -1.996 0.02 0.026
Over-constrained 6.489 0.18 0.062 -1.995 0.03 0.030

Table 5.6 contains the all the same variables and significant statistics as illustrated

earlier in Table 5.5. There are a few important results that come from the results

shown here in Table 5.6. The first is that (εx, εy) for the unconstrained, bounded,

and linear constraints test all fall within 99.00% as the previous tests did. The linear

transformation applied to the problem space did not change how accurate the GA was

in finding the minimum solution. The linear inequality matrix, Āi, and vector, b̄, were

selected using equations chosen that incorporated the translated new solution. Both

Ā and b̄ chosen for the linear transformation GA simulations are shown in equations

(5.27) and (5.29):

Āi =


 .5 .5

1.5 4


 = ĀL̄−1 (5.27)

b̄i = Āz̄ = ĀL̄−1c̄ (5.28)

=


 2.25

1.75


 . (5.29)

The overdetermined problem contained an additional linear inequality added, as

given in (5.30)-(5.32):

Āi =




.5 .5

1.5 4

.5 −1.75


 = ĀL̄−1 (5.30)

b̄i = Āz̄ = ĀL̄−1c̄ (5.31)

=
[

4 3 −2
]†

. (5.32)
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Figure 5.6: (a) Solution space contour plot with imposed linear inequalities.
(b) Solution space with overdetermined linear inequality matrix.

The arrays shown in (5.30)-(5.32) are to expand the overdetermined problem beyond

the solved solution. Through expansion of this search space, the GA is constrained to

a search area, but that area does not collapse on one individual point. Looking back

at Figure 5.5 shows that the bottom of the transformed bowl has flattened out, leaving

a smaller gradient change between the minimum, [6.5,−2] and its surrounding points.

Figures 5.6(a) and 5.6(b) give the transformed bowl contour plot, depicting the flat-

tened bottom. These two figures depict the constraints imposed from the equations

(5.27)-(5.32), attempting to impose physical limitations to the defined linear trans-

form. The (σs(x), σs(y)) in Table 5.6 show the results of the bowl’s flattened bottom

because these values are significantly greater than the original optimization problem.
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Figure 5.7: Linear transform applied to GA fitness function
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The histograms in Figure 5.7 show the number of generations needed during each trial

of the Monte Carlo simulation to produce the results for Table 5.6. The unbounded

results, shown in Figure 5.7(a), have similar results to the original unbounded case.

As with the untransformed GA results, more than 80% of the unconstrained GA trials

resolved a solution within 50-55 generations. Promising results from this simulation

come from knowing that the maximum number of generations necessary to resolve

the solution in the bounded case was 80. The bounded case shown in Figure 5.7(b)

also shows similar results to the unbounded case, but a less defined peak of 50 gen-

erations needed to develop the final solution. The linear transformed bounded case

resolved in under 65 iterations for most trials, but 15% of all trials took more than

70 iterations to resolve. Figure 5.8 shows the results to the constrained cases of the

applied linear transform on equation (5.2). In the linear inequality histogram, shown

in Figure 5.8(a), fewer trials finished in the peak of 50 generations, but the major-

ity of the trials fall within the 50-70 generations range. This is consistent with the

results from the unbounded case, but does have outliers falling as far away as 120

generations. These outliers are farther spread from the mean number of generations

needed, which is consistent with having a transform applied to the fitness function.
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Figure 5.8: Linear transform applied to constrained GA fitness function with ap-
plied linear inequalities.
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The convergence rate is slower in the linear transformed fitness function case as seen

in Figure 5.8(a) due to the spreading of the bowl’s bottom. This same reasoning

explains the histogram spreading for the overdetermined linear inequality simulation

shown in Figure 5.8(b).

The number of generations for Figure 5.8(b) continue the trend illustrated in the

previous three histograms. This histogram’s shape mirrors the other simulations with

the L−1 transform applied, such that all four have an exponential decay pattern. Only

176 trials completed in 51 generations, which continues to show the solution space

having a gradual slope. The spreading of histogram values for Figure 5.8(b) shows

the GAs ability to resolve the solution over time. The 140 generations maximum

for the GA to resolve the solution modeled in Figure 5.8(b) would cause concern in

modeling mathematical functions. This result shows that the landscape definition

can be expressed concisely through mathematical equations and still take numerous

generations because of gradual changes.

The modeling of a linear transformation on a simple bowl problem illuminates

the point of judiciously developing the mathematical representation of the physical

limitations on the RGPO and VGPO waveforms. Understanding the landscape of the

ECM library functions allows precise GA implementation. Conversely, if the ECCM

limitations and the physical environment are not carefully described, the GA would

produce erroneous parameters that may not work against the threat radar system.

The next section covers how the MATLABr GA functions optimized the defined

mathematical functions for the range gate pull-off waveform.

5.2 GA RGPO Implementation

For optimization of the RGPO signal, certain physical environmental limitations

must be accurately modelled. The optimization parameters are defined from Section

4.2.1, expressed as:

u =
[

Ro Rmax Tw f JSR
]†

(5.33)
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The optimization routine without any upper or lower bounds serves no meaning

to developing accurate deception signals. Each parameter must be given a range of

values to search from to the domain of the values, which is defined in Table 5.7.

The polynomial factor for the RGPO profile maximum is the linear acceleration case

due to physical modeling constraints. Although section 4.2.1.4 discusses the possi-

bility of higher-order profile, current hardware limitations are contained to the linear

acceleration model. The JSR domain is also limited in scope, based upon the jam-

mer hardware modelled in the HILS architecture. This domain limitation becomes

necessary to prevent RGPO waveforms exceeding the known hardware capabilities.

Further constraints are placed upon the optimization parameters through (5.12)

as implemented in the bowl optimization problem. These constraints take on physical

limitations relative to the radar environment or the engagement scenario. Equation

(5.34) and (5.35) gives an example of the necessary constraints for the MATLABr GA

algorithm, where Āe and b̄e represent the matrix and vector components respectively.

Āe =




0 0 0 1 0

0 0 0 0 1

1 −1 0 0 0


 (5.34)

b̄e =
[

3 Gjmax 0
]†

(5.35)

Āe and b̄e show some of the necessary limitations on the parameters shown in Table

5.7. The first row limits the f -nomial RGPO function to the linear acceleration case,

ensuring that only the three specific cases covered in Section 4.2.1. The second row

Table 5.7: RGPO Optimization Parameter Domain
Parameter Domain

Ro [0,∞)
Rmax [0,∞)
Tw [0,∞)
f [0, 3]

JSR [0, Gjmax)
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states that the maximum JSR possible must be within the limits of specified jammer.

For this research, the maximum jammer signal equates to 10dBm and the maximum

jammer gain is stated as 30dB [23]. The last row given in this set of equations

states that Rmax should be larger than Ro, as defined in the RGPO profile. The first

subsection describes the environmental considerations factored in when implementing

the GA with the HILS architecture. The scoring function for this architecture will be

discussed further during the first subsection, based upon how the scoring processes

the environmental considerations. The second subsection describes the results derived

from implementing specific Ār and b̄r for optimization.

5.2.1 HILS Architecture Considerations for GA Implementation. While

Āe and b̄e serve as possible linear constraints on the function, more explanation and

better development must be discussed to ensure proper GA implementation. The first

consideration that requires implementation is that Rmax should be larger than Ro to

ensure that the RGPO signal integrity stays intact. If Rmax = Ro, the profile becomes

a false target generator, which is undesired for this implementation. The first line of

(5.36) and (5.37) ensures this condition in Ār and b̄r, which are expressed in 5.37 as

the MATLABr linear inequality.

Ār =




1 −1 0 0 0

−1 0 0 0 0

0 −1 0 0 0

0 0 0 0 1

1 1 0 0 0

0 0 0 0 −PRF




(5.36)

b̄r =
[

0 −Rres −3Rres 6 10 −2
]†

(5.37)

The second and third lines of Ār and b̄r state that both Ro and Rmax are to be larger

than the range resolution and three times the range resolution respectively. These

limitations set a minimum walk-off range of at least two pulse widths. The fourth
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row represents that the maximum walk-off time is six seconds for this engagement.

Row five expresses that the maximum pull-off range cannot exceed 10m, which is

beyond the Lab-VoltTMś detection range [4]. The last row imposes the limitation

that the walk-off time must span at least two PRIs. This inequality prevents the

GA from generating false targets to inject into the environment. The matrix barAr

and vector b̄r ensure the maximum walk-off length, that the pulse train walks the

target away in distance instead of closes the distance, and ensures that the power

profile decreases. No specific limitations are placed upon the polynomial factor. The

polynomial factor is already limited to integer values given in Table 5.7, which only

needs further limitation if the specific profile were to be optimized on. The GA

implementation has been set to explore the different values of f .

The other necessary limitation implemented were nonlinear constraints, to im-

pose velocity and acceleration constraints. In the GA input options, a MATLABr

script can be defined to impose these limitations in the following general form:

c̄eq ≤ 0, (5.38)

c̄ = 0. (5.39)

Equation (5.38) represents the interaction between variables that specify certain limits

while (5.39) represents boundary conditions. Special care is taken to define c̄ and c̄eq

to prevent errors. If these parameters are not adequately defined, the GA does not

find a desirable initial population and exits prematurely. Equation (5.40) represent

the limitations imposed based upon the Lab-VoltTM simulation:

c̄eq =
[
−Rmax−Ro

Tw
+ .15 −Rmax−Ro

Tw
+−1 −Rmax−Ro

Tw
2 − (3 ∗ 9.8)

]
(5.40)

The first two lines of (5.40) give a minimum velocity of .15m
s

and maximum velocity

of 1.00m
s
, which are relative to the motion of the Lab-VoltTM target table [29]. The

final line of (5.40) defines the maximum acceleration as three times gravity. The max-
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imum acceleration mirrors movement of a realistic target, stated in Section 4.2.3. A

limitation to using nonlinear constraints is the ability to use the customized mutation

functions in the GA toolbox. The MutationFcn setting, shown in Appendix A, must

be set to @mutationadaptfeasible due to population generation. Although this set-

ting was not explored during this research, future work should consider developing

mutation functions to increase search efficiency.

The scoring function developed for the GA implementation mirrors the discus-

sion from section 3.2.5. After receiving the processed Simulink data, the detector

determines the power level where the true target should return. This power level is

set as the minimum value needed by the RGPO signal to deceive the radar receiver.

This range bin is set as the default value in searching the remaining PRIs for the new

target. The MATLABr scoring function then determines where the power level of the

target return exceeds the false target power level and marks that PRI in the sequence

as w. The scoring value for all chromosomes is defined as:

K[L[Φ(u)]] = −
( w

W

)
. (5.41)

K[L[Φ(u)]] has been negated because the MATLABr GA toolbox finds the expressed

function minimum, as discussed in Section 5.1. This function operates independent

of JSR, because the power level is integrated into the Simulink model and w is based

upon detection criteria determined within the model. While no ECCM has been set

for automatic gain control, the equation weights the result to produce the desired

walk-off of the false target and meet the power profile necessary. Another benefit

to this scoring function is that profiles that are too long but partially deceive the

radar system are kept in the sample set. Those chromosomes meeting this criteria are

ranked higher in the population and maintain a high probability of reproducing into

following generations.
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Finally, adjustments were made to the GA optimization settings to allow for

search space exploration. The first setting changed was running the GA 100 times

for the GA Monte Carlo simulation. The GA optimization could either collapse upon

a specific set of radar parameters, as shown in the initial optimization problem, or

could derive different solutions based upon where the GA started. A Monte Carlo

simulation was run to average out the possibility of a specific instance finding local

minima. Although previous section discussed running 1000 iterations for the Monte

Carlo simulation, the HILS architecture run with the GA consumes more time than

necessary to sample the produced results. Conversely, a few iterations would not give

enough information about the RGPO waveform landscape. The population size was

reduced to 20 members, which is the default setting for the MATLABr GA. Trial runs

of the HILS architecture showed that large population sizes took significantly longer

than was required. Furthermore, the nonlinear constraints increased the landscape

search, as nonconforming chromosomes were rejected based upon the TolCon defined

in Appendix A. Another parameter changed involved increasing the StallTimeLimit

to infinity. This prevented the GA from prematurely ending if the Simulink models

took too long to process each generated population. The last parameter changed was

using the tournament selection function for the SelectionFcn option. This rates each

chromosome from the scoring value and determines which chromosomes should be

kept for reproduction. By ordering the results in this manner, the undesired results

discussed earlier would drop out and be replaced by viable chromosomes.

5.2.2 RGPO Optimization Results. The HILS architecture optimization

subspace for the RGPO waveform has five unique dimensions which requires careful

analysis to understand the results. Figure 5.9 shows an example walk-off profile from

the Monte Carlo simulation for the GA optimization and its defined amplitude and

range profiles. Figure 5.10 shows the matching range delay and amplitude value

for each pulse in the GA’s optimized solution. These figures are created from the
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Figure 5.9: GA optimized RGPO walk-off signal for Lab-VoltTM Jammer.

chromosome:

ūc =
[

0.0046 0.1645 0.2845 1 3.002
]
, (5.42)

which is the result from a single GA optimization trial within the HILS architec-

ture. The amplitude profile of Figure 5.10(a) shows the decay as expected from the

discussion in Section 4.2.2. The walk-off distance shown in Figure 5.10(b) has dis-

crete steps based upon the radar model’s range resolution. A comparison of Figure

4.12 to the GA optimized solution shown in Figure 5.9 have walk-off profiles with

a finite number of pulses displayed. The Lab-VoltTM system parameters set N = 8,
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Figure 5.10: Optimized Lab-VoltTM RGPO range and amplitude profiles.
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Figure 5.11: HILS architecture Monte Carlo simulation histograms.

independent of the desired walk-off time. Figure 5.10 shows 6 distinct pulse delays

shown in the profile, although using Equation (4.20) results in 82 unique pulse delays.

The Lab-VoltTM system determines the number of pulses per delay step required to

walk-off the false target. This optimization solution contains 15 pulses before the

walk-off distance is incremented. The false target velocity for ūc is 0.56m
s
, which is

close to the Lab-VoltTM system’s calculated false target velocity of 0.64m
s

for the 0.8s

walk-off time. The GA optimized solution shows the modelled RGPO waveforms for

the Lab-VoltTM Jammer Pod may not be optimum for the purpose for demonstration.

The total walk-off distance is shorter for the optimization solution, but also uses a

smaller Ro prior to pulling off the target.

The GA optimization routine produced ūc in 18 minutes, which is significantly

shorter than it would take a man-in-the-loop system to produce. Although the

MATLABr GA operates with continuous variables, an exhaustive search of this same

5-D landscape takes orders of magnitude larger to produce a similar result. If each

variable were divided into discrete search spaces of 100 elements, the exhaustive search

could take 1005 or 100 million iterations. With nonlinear constraints rejecting popu-

lation members prior to evaluation, the GA evaluates only desired parameter values

and subsequently reducing the number of iterations by at least an order of magni-
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tude. All 100 GA optimization simulations took less than 10 generations to evaluate

for the elite solution. The Simulink model initialization consisted of the majority of

the solution time. Further research is necessary to ensure simulation efficiency.

Table 5.8 gives aggregate statistics from running the HILS Architecture Monte

Carlo simulation. The raw data is contained in Appendix B formatted in accordance

with Equation 5.33. The average maximum velocity from these statistics is 0.353m
s
,

which closely resembles the Lab-VoltTM Jammer Pod false target velocity of 0.32m
s

for

its walk-off time of 1.6s, as stated in Section 4.2. Figure 5.11(a) shows the histogram of

JNS values based upon the GA optimization. The JNS values range between 3−25 dB,

with 64.0% fall between 3− 8dB. With no ECCM modelled in the HILS architecture,

the chromosome scores −1 for any profile that achieves the pull-off with an amplitude

much larger than the true target. Further implementation should explore using limits

in the automatic gain control to determine RGPO profiles. Figure 5.11(b) shows

the Monte Carlo results for the specific polynomial profile chosen. The constant

velocity profile was chosen 66% of the time, as expected from the Lab-VoltTM system

simulation discussion from Section 4.2.4. Only 4% of the simulations selected the

linear acceleration model, which would be the least likely option for modeling the

Lab-VoltTM deception signal. The range of values for Rmax covering 1m does not

allow linear acceleration motion changes to be apparent in the RGPO profile. The

linear velocity profile (f = 2) was selected 30% of the time, which suggests that this

profile reasonably walks off the true target. Although the constant velocity profile

solution is accurate, results also suggest that certain walk-off distances could use a

Table 5.8: GA Monte Carlo Simulation Results.
Variable µc σc

Ro (m) 0.2131 0.1729
Rmax (m) 0.6816 0.4947
Tw (s) 1.3266 1.3482
f 1 0.6567
JNS (dB) 6.8344 4.6534
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Figure 5.12: Aggregate GA RGPO walk-off profile for Lab-VoltTM Jammer.

more-realistic linear velocity model with accuracy to pull-off the Lab-VoltTM target

tracker.

Figure 5.12 shows the aggregate RGPO walk-off profile for the Monte Carlo

simulation, using the statistics from Table 5.8. The walk-off distance and Ro are close

to the Lab-VoltTM Jammer Pod RGPO parameters given in [23]. The Jammer-to-

Signal ratio from Table 5.8 does not produce a power level large enough to deceive

the radar through the entire profile. The possibility of multiple walk-off distances

with multiple JNS ratios within the landscape prevents direct correlation between

the aggregate JNS ratio and the desired wall-off profile. Under the HILS architecture

scoring system, the Monte Carlo simulation results in a fitness value of 0.518. Al-

though the individual solutions resulted in a fitness value of 1.0, the aggregate shows

the boundary conditions are not defined accurately enough to determine a singular

chromosome to model the RGPO waveform. Table 5.9 collects the Monte Carlo sim-

ulation data based upon Jammer-to-Signal ratios, as shown from Figure 5.11(a). As

shown from the scoring function for each aggregate result, the 3 − 10 dB solution

would not suffice for the given boundary conditions although each individual result

is considered an optimum solution. All three averaged solutions meet the nonlinear

boundary conditions and the linear boundary conditions discussed in Section 5.2.1.
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Figure 5.13: GA RGPO profile from Monte Carlo simulation.

Further analysis shows that 75% of the data does not meet the desired result based

upon these aggregated results. The two other JNS categories in Table 5.9 do produce

a valid optimized result, as shown in Figure 5.14. Comparison of these two profiles

shows that the profile shown in Figure 5.14(b) would be rejected if certain ECCM

flags were set to reject extreme signal increases. Figure 5.14(a) does not have a drastic

signal increase and may deceive automatic gain control levels. Figure 5.14 illustrates

that depending upon specific constraints, certain local minimum would serve as the

extreme minimum for the solution set. These results show that multiple local mini-

mum exist within this search space based upon the liberal boundary conditions set.

5.2.3 GA Optimization Summary. The MATLABr GA optimized the HILS

architecture using the developed Lab-VoltTM Simulink model. The optimization values

show that numerous different RGPO profiles exist based upon the broad limitations

Table 5.9: GA Monte Carlo Results by JNS.
JNS Range Ro Rmax Tw JNS Vmax K[L[Φ(u)]]

3− 10 0.1969 0.8563 1.5523 3.6233 0.42 0.12
10− 20 0.2399 0.6604 1.4865 13.9223 0.28 1.00
20− 25 0.3168 0.8783 1.6205 23.0131 0.35 1.00
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(a) Monte-Carlo Simulation RGPO Profile
(JNS=13.92 dB).
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(b) Monte-Carlo Simulation RGPO Profile
(JNS=23.03 dB).

Figure 5.14: RGPO signal comparison for different JNS ratios.

given in Section 5.2.1. All solutions take on the desired velocity and acceleration

limitations as specified by the nonlinear constraints. These results show that the

optimization architecture successfully determines RGPO waveforms from the radar

models placed in the system. The majority of the RGPO waveforms developed from

the Monte Carlo simulation depict similar general characteristics of the Lab-VoltTM

Jammer Pod but do not necessary represent a specific extreme minimum. Judicious

selection of boundary conditions becomes necessary to ensure that the GA optimized

solution produced the global minimum for the specific asset. Careful selection of linear

and nonlinear constraints, along with specific boundaries, causes the GA to converge

upon the optimum solution.
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VI. Conclusions and Future Research

Developing timely ECM waveforms through a HILS implementation with an inte-

grated optimization technique allows for the US Air Force to maintain a favorable

advantage in the electromagnetic spectrum as radar systems become increasingly

complex. This research explored two major aspects in developing this architecture:

Creating the genesis of an ECM Library containing mathematical representations of

well-known jamming signals and implementing a genetic algorithm independent of

the radar operating environment to optimize the jammer signals. Each area’s degree

of success is explored in the first two sections. The final section explores the future

work that should be explored within the HILS architecture.

6.1 ECM Library Development

The RGPO mathematical modeling was done for the generic polynomial case.

The VGPO mathematical modelling was done in a similar fashion in STAP framework.

The power profile for both signals was completed with consideration to the one-

way transmission equation. The power dissipation for the RGPO and VGPO signals

depicts the desired changes to move the false target away from the true target. The

option currently exists for the operator to manually select a specific waveform to

optimize on and determine its optimum solution. Currently, there is no switching

mechanism to select from RGPO to VGPO waveform optimization or to optimize

based on both waveforms. Future work should focus on the development of other

waveforms, such as the coordinated RGPO/VGPO profile. The signal coordination

should be completed using STAP implementation for producing the entire profile at

a certain instant. Another area for future efforts focuses on expanding the ECM

library functions. A multitude of mathematical functions for the ECM library allows

for developing the best jamming technique against a specific asset. In expanding the

ECM library, a method should be developed to compare between the different library

functions. This research track paves the way of optimizing numerous waveforms at a

given instant for the ideal waveform/technique against a particular asset.
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6.1.1 RGPO Waveform Modelling. The RGPO modeling functions covered

the known motion cases of constant velocity, linear velocity, and linear acceleration.

Furthermore, a generic RGPO profile was successfully developed. The generic case

showed the signal dependency on three important variables: Ro, Rmax, and Tw. The

waveform model was compared to the Lab-VoltTM jammer specifications and showed

how the general case applied to a realistic system. Future research should look to

expand upon the generic profile and explore how this profile affects the power neces-

sary to deceive the tracking radar. This exploration should also consider waveform

modelling with targets changing profiles, for example from a constant velocity to a

linear acceleration, to mimic targets following realistic flight paths.

6.1.2 VGPO Waveform Modelling. The VGPO waveform development was

conducted in a STAP framework for implementing the necessary Doppler phase shifts.

The VGPO signal model naturally developed from the RGPO general signal model.

The STAP framework is not new to radar signal processing but provides a natural

format for storing the necessary Doppler shifts in memory for implementation. Proper

STAP configuration for the jammer pod allows signal memory to contain the full ve-

locity profile based upon the system platform’s own velocity and position. Future

research should implement a VGPO jammer pod for use with the Lab-VoltTM sys-

tem. This work would develop a training tool for operators to understand the VGPO

waveform, along with studying how the Lab-VoltTM Target Tracking modules handles

velocity gating.

6.2 Optimization Algorithm

The MATLABr genetic algorithm served as proof of concept for optimization

of the RGPO/VGPO waveforms. The genetic algorithm produced significant results

from desired boundaries and system constraints. Careful design of the linear in-

equality constraints produces specific range profile development based upon known

physical limitations. The genetic algorithm implementation in MATLABr can be
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time-consuming for each run, but easily integrates with the testing hardware con-

tained in the RAIL research laboratory. Future work should explore the possibility

of other optimization routines for use in the HILS configuration. Literature reviewed

suggested other methods, such as a direct search or simulated annealing, to explore

the waveform development landscape. Results show that the ECM optimization land-

scape in not straight-forward, requiring more analysis of how each parameter interacts

with physical constraints. Research is necessary to compare the various optimization

techniques as well to determine which one will best utilize the known search space

behavior. Further exploration should also look into the best software optimization im-

plementation. MATLABr serves as an essential electrical engineering tool, but does

not always utilize memory efficiently for this optimization. Implementation in either

C++, FORTRAN, or another programming language may produce timely results

towards near-real time integration in future systems.

6.3 HILS Architecture

The basic setup for the proposed HILS architecture was exhibited using the

MATLABr genetic algorithm with the developed Simulink model. The individual

components are modular such that other software models or physical assets may be

substituted for a desired configuration. The scoring function developed conducts

rudimentary tracking of the RGPO signal. The scoring function outputs scalar values

based upon certain known conditions in the RGPO jammer signal. A higher-fidelity

model of the Lab-VoltTM tracking radar is required to ensure that the scoring function

accurately portrays the Lab-VoltTM system response. Future work should explore ex-

panding the fidelity of the HILS architecture. Currently, the architecture exists only

in software, through MATLABr and Simulink models. Research efforts should explore

implementation outside these environments. Necessary work follows the from the pos-

sibility of running the Textronix Lab Equipment in conjunction with the Lab-VoltTM

system.
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Appendix A. MATLABr Genetic Algorithm Options

This appendix gives the options structure table used to define the operation param-

eters of the MATLABr Genetic Algorithm Toolbox. Defined in the table below are

the specific options, their descriptions, the range of values each can take on. The

values used during RGPO optimization are italicized and those values that are the

MATLABr GA defaults but not used in this simulation are underlined, unless only

one value given.

Table A.1: MATLABr GA Options Structure [37]

Option Description Values

CreationFcn Handle to the function that creates

the initial population

@gacreationuniform

CrossoverFcn Handle to the function that the

algorithm uses to create crossover

children

@crossoverscattered

@crossoverintermediate

@crossoversinglepoint

@crossovertwopoint

@crossoverarithmetic

CrossoverFraction The fraction of the population at

the next generation, not including

elite children, that is created by the

crossover function

(0,1) 0.8

Display Level of display ‘off’

‘iter’

‘final’

‘diagnose’

EliteCount Positive integer specifying how

many individuals in the current

generation are guaranteed to sur-

vive to the next generation

Positive integer: 2
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Table A.1 – Continued

Option Description Values

FitnessLimit Scalar. If the fitness function at-

tains the value of FitnessLimit,

the algorithm halts.

Scalar - Inf

FitnessScalingFcn Handle to the function that scales

the values of the fitness function

@fitscalingshiftlinear

@fitscalingprop

@fitscalingrank

@fitscalingtop

Generations Positive integer specifying the max-

imum number of iterations before

the algorithm halts

Positive integer | 100,

2000

HybridFcn Handle to a function User-Defined Function

that continues the @fminsearch

optimization after @patternsearch

GA terminates @fminunc

@fmincon

[]

InitialPenalty Initial value of penalty parameter Positive scalar | 10

InitialPopulation Initial population used to seed the

genetic algorithm

Matrix | []

InitialScores Initial scores used to determine fit-

ness

Column vector | []

MigrationDirection Direction of migration ‘forward’ | ‘both’

MigrationFraction Scalar between 0 and 1 specifying

the fraction of individuals in each

subpopulation that migrates to a

different subpopulation

Scalar | 0.2
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Table A.1 – Continued

Option Description Values

MigrationInterval Positive integer specifying the num-

ber of generations that take place

between migrations of individuals

between subpopulations

Positive integer | 20

MutationFcn Handle to the function that pro-

duces mutation children

@mutationuniform

@mutationadaptfeasible

@mutationgaussian

OutputFcns Functions that ga calls at each iter-

ation

@gaoutputgen | []

PenaltyFactor Penalty update parameter Positive scalar | 100
PlotFcns Array of handles to functions that

plot data computed by the algo-

rithm

@gaplotbestf

@gaplotbestindiv

@gaplotdistance

@gaplotexpectation

@gaplotgeneology

@gaplotselection

@gaplotrange

@gaplotscorediversity

@gaplotscores

@gaplotstopping

[]

PlotInterval Positive integer specifying the num-

ber of generations between consec-

utive calls to the plot functions

Positive integer | 1
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Table A.1 – Continued

Option Description Values

PopInitRange Matrix or vector specifying the

range of the individuals in the ini-

tial population

Matrix or vector | [0;1]

PopulationSize Size of the population Positive integer | 20

PopulationType String describing the data type ‘bitstring’

of the population ‘custom’

Note: linear and nonlinear doubleVector

constraints are not satisfied

when PopulationType

is set to ‘bitString’ or ‘custom’.

SelectionFcn Handle to the function that selects

parents of crossover and mutation

children

@selectionremainder

@selectionuniform

@selectionstochunif

@selectionroulette

@selectiontournament

StallGenLimit Positive integer. The algorithm

stops if there is no improvement in

the objective function for StallGen-

Limit consecutive generations

Positive integer | 50, Inf

TimeLimit Positive scalar. The algorithm

stops after running for TimeLimit

seconds.

Positive scalar | Inf

TolCon Positive scalar. TolCon is used to

determine the feasibility with re-

spect to nonlinear constraints.

Positive scalar | 1e-6

107



Table A.1 – Continued

Option Description Values

TolFcn Positive scalar. The algorithm runs

until the cumulative change in the

fitness function value over Stall-

GenLimit is less than TolFun.

Positive scalar | 1e-6

Vectorized String specifying whether the com-

putation of the fitness function is

vectorized

’on’ | ’off’
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Appendix B. MATLABr HILS Architecture Simulation Results

This appendix contains the raw data generated from running a Monte Carlo simulation

of 100 trials with the HILS Architecture discussed in ChapterIII. Each row of the

table contains the specific chromosome that produced the optimum solution within

that iteration.

Table B.1: MATLABr GA Options Structure [37]

Ro Rmax JNS f Tw

0.4156 1.0684 24.8441 0.1877 1.0375

0.3861 1.0914 24.2786 0.0545 1.3135

0.3861 1.0914 24.2786 0.0545 1.3135

0.1249 0.6047 22.963 1.91 3.1981

0.2665 1.0303 21.8071 1.0003 1.2897

0.2498 0.4743 21.626 0.1248 1.4968

0.3884 0.7877 21.2942 1.8214 1.6941

0.2637 0.7964 19.9649 0.474 0.582

0.1228 1.7789 19.7583 1.9139 1.6561

0.1217 0.5038 19.0000 0.0012 2.5474

0.0622 0.7397 15.1846 1.5414 4.5163

0.2295 0.3669 15.0894 0.6999 0.1955

0.2813 1.0895 14.9566 2.7486 5.3884

0.4389 0.7324 13.8853 0.844 1.9566

0.2529 0.3213 13.2845 0.0352 0.1174

0.2469 0.3306 13.2188 0.1093 0.0837

0.2264 1.4428 13.1866 1.0001 1.2165

0.265 0.3181 12.611 0.0303 0.0532

0.2522 0.2878 12.0304 1.1918 0.0557

0.2296 0.2417 11.7984 0.5 0.0802
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Table B.1 – Continued

Ro Rmax JNS f Tw

0.2189 0.712 11.6462 1.0001 3.2875

0.0912 0.3464 11.5861 0.2594 0.2552

0.4608 0.9459 11.2039 1.0478 3.2336

0.496 0.6994 11.1345 0.2427 1.3559

0.0585 0.2342 11.0615 0.2501 0.1763

0.2501 0.5162 9.4077 0.5004 1.7744

0.3739 1.046 7.3049 0.6095 0.6721

0.4989 0.7393 5.3427 0.0982 1.6025

0.2782 0.7256 5.2742 0.5551 0.4474

0.0721 1.8607 5.0721 0.5002 1.7886

0.2489 1.0893 5.0313 1.4743 5.6027

0.0049 0.8416 5.0281 1.0000 5.5777

0.3047 1.1457 5.0038 0.0127 5.6031

0.1498 0.9132 4.6601 0.5000 0.7633

0.0029 1.5805 4.5591 0.2507 1.5776

0.2655 1.2863 4.4641 0.0015 1.0208

0.2502 1.4346 4.2501 0.6444 1.1845

0.0000 0.1797 4.041 0.032 0.1946

0.0064 0.0908 4.0399 0.2681 0.5625

0.0064 0.0908 4.0399 0.2681 0.5625

0.0006 0.1706 4.0163 0.3576 0.17

0.0049 0.0909 4.0015 1.3639 0.5729

0.0041 0.0904 4.0002 1.2347 0.5754

0.0158 1.646 3.9775 1.0000 1.6302

0.0039 0.2319 3.874 1.1909 1.5191

0.1267 1.8481 3.8658 0.1289 1.7213
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Table B.1 – Continued

Ro Rmax JNS f Tw

0.2952 0.3237 3.8497 0.0056 0.0285

0.0625 1.2267 3.7578 0.0708 1.1642

0.2248 1.073 3.7572 0.2499 0.8482

0.2261 1.7516 3.708 0.5001 1.5256

0.0171 1.1876 3.5713 0.125 1.1705

0.373 0.5873 3.5275 0.6291 1.4285

0.007 0.0901 3.503 1.585 0.5543

0.4968 0.9731 3.3885 1.3066 3.175

0.1602 0.6641 3.2578 0.2608 0.5039

0.3765 0.7042 3.2534 1.4333 2.1848

0.0123 0.0915 3.236 0.6741 0.5275

0.4776 0.7919 3.2178 0.2500 2.0956

0.2520 0.3400 3.2131 0.2500 0.5867

0.0061 0.1654 3.1933 0.2567 0.1593

0.2518 0.4749 3.1841 1.1056 1.4873

0.4991 0.9991 3.1833 0.000 3.3333

0.3923 0.5029 3.1768 0.1994 0.1106

0.1144 0.1944 3.1568 1.0116 0.5334

0.465 1.2545 3.1433 0.4532 5.2634

0.2895 0.4503 3.126 2.5617 1.0724

0.0051 0.2462 3.1228 0.9687 1.6076

0.0001 0.1773 3.1209 0.0018 0.1772

0.1472 1.2658 3.1051 1.1998 1.1186

0.4275 1.1632 3.0776 0.1875 1.2742

0.4275 1.1632 3.0776 0.1875 1.2742

0.0156 0.2014 3.0723 0.0039 1.2386
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Table B.1 – Continued

Ro Rmax JNS f Tw

0.0156 0.2014 3.0723 0.0039 1.2386

0.0295 0.0975 3.0706 0.5814 0.1145

0.4793 1.2513 3.0644 2.5885 5.1469

0.0973 0.6508 3.0469 1.1374 0.9536

0.461 0.6095 3.0377 0.0039 0.2997

0.0184 0.0991 3.0264 0.4514 0.5375

0.064 0.2908 3.0255 0.3525 1.5123

0.0608 0.3514 3.0201 1.827 0.4916

0.5000 0.7069 3.0167 1.0001 1.3793

0.5000 0.7069 3.0167 1.0001 1.3793

0.2415 0.2791 3.0166 2.3286 0.0376

0.0948 0.168 3.0164 1.1674 0.4879

0.4961 0.7055 3.0156 0.002 0.3506

0.4961 0.7055 3.0156 0.002 0.3506

0.0321 0.1182 3.0113 0.043 0.574

0.0087 0.0901 3.0112 0.0206 0.5427

0.0725 0.0958 3.0111 1.4397 0.1554

0.0035 0.0902 3.0079 1.0013 0.5778

0.4301 0.4979 3.0029 1.2934 0.0678

0.4358 1.1698 3.0029 1.3488 0.734

0.4301 0.4979 3.0029 1.2934 0.0678

0.0046 0.1645 3.002 0.7586 0.2845

0.0938 1.8147 3.0002 1.2444 1.7209

0.4999 0.6287 3.0001 0.9296 0.8586

0.1558 0.5368 3.0001 0.0448 2.5402

0.0173 0.0903 3.0000 0.0331 0.4861
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Table B.1 – Continued

Ro Rmax JNS f Tw

0.1235 1.736 3.0000 0.5777 1.6125

0.0173 0.0903 3.0000 0.0331 0.4861
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