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Abstract 

 This thesis includes the detailed mathematical calculations used to determine the 

feasibility of harnessing electrical energy from the blood flow through human capillaries. 

The designs are inspired by human physiology and well established electromagnetic 

energy harvesting techniques and the fabrication methods have been proposed for the 

various components of the device.  The fabrication and the design of these components 

have also been extensively analyzed using calculations based on the governing principles 

of microfluidics, kinetics, and electromagnetics.  The analysis has confirmed that this 

design can produce sufficient energy to power a MEMS device using non-standard 

materials and fabrication methods.  The designs were based on a standard hydroelectric 

dam model, modified to account for the biological aspects.  Nickel and gold were 

selected as the primary components of the electromagnetic portion of the device because 

of their electromagnetic properties and the ability to deposit and pattern them.  Of the 

four portions of the device, the coil was fully fabricated, experiments were conducted for 

the fabrication of the stator and the microchannels and the proposed fabrication method 

was explained for the turbine.  Three sets of the gold induction coils were fabricated, 

each with different thicknesses, but the same width and length.  Since the resistance of 

the coil is determined by the resistivity of the material and the dimensions, the cross-

sectional area of these coils determined the differences in resistance.  As predicted, the 

average resistance increased as thickness decreased.  However, the resistance was greater 

than calculated for the two thinner coil sets due to fabrication methods.   

iv 



 

v 

Acknowledgments 

 

 I would like to express my sincere appreciation to my faculty advisor, Maj 

LaVern Starman, for his guidance and support throughout the course of this thesis effort.  

The insight and experience was certainly appreciated.  I would also like to thank my 

sponsor, Dr. Nancy Kelley-Loughnane, from the Air Force Research Laboratory – 

Human Effectiveness Directorate for both the support and latitude provided to me in this 

endeavor and Capts Mark Bellott and Derrick Langley from the Air Force Research 

Laboratory – Sensors Directorate without who’s assistance I could not have overcome the 

many fabrication difficulties that were encountered.    

 
       Aaron J. Sprecher 

 

 

 

 



 

Table of Contents 

Page 

Abstract............................................................................................................................. iv 

Acknowledgments ..............................................................................................................v 

Table of Contents ............................................................................................................. vi 

List of Figures.....................................................................................................................x 

List of Tables ................................................................................................................ xviii 

Foreword...........................................................................................................................xx 

I.  Introduction to BioMEMS............................................................................................1 

1.1. The Need for Microfluidic Power Generation ..................................................1 

1.2. Microelectromechanical Systems (MEMS) .......................................................2 

1.2.1. BioMEMS ................................................................................................ 3 

1.2.2. Microfluidics ........................................................................................... 5 

1.3. Problem Overview: Limitations in MEMS and Microfluidics........................5 

1.4. Intent of Research................................................................................................6 

1.4.1. Proposed Solution and Research Objectives .......................................... 8 

1.4.2. End Goal of Microfluidic Power Generation Project ............................ 8 

1.4.3. Design Requirements .............................................................................. 9 

1.5. Organization of Thesis ........................................................................................9 

II. Literature Review .......................................................................................................10 

2.1. Chapter Overview .............................................................................................10 

2.1.1. Historical Perspective............................................................................ 10 

2.1.2. Potential Microfluidic Power Generation Applications ...................... 11 

2.2. Microfluidics: A Drop in the Bucket ...............................................................13 

vi 



 

2.3. Turbines: Turning the Wheel of History.........................................................17 

2.4. Electromagnetism: The Interaction of Charged Particles.............................19 

2.5. MEMS Energy Harvesting: Energy from the Ether ......................................21 

2.6. Relevant Research .............................................................................................22 

2.6.1. Similar Designs ..................................................................................... 22 

2.6.2. Microfluidic Power Generation ............................................................ 23 

2.7. Chapter Summary .............................................................................................25 

III. Theory ........................................................................................................................26 

3.1. Chapter Overview .............................................................................................26 

3.2. Fluid Dynamics ..................................................................................................26 

3.2.1. Turbulent vs. Laminar Flow ................................................................. 28 

3.2.2. Fluid in Microchannels......................................................................... 29 

3.3. Transduction: Mechanical to Electrical Energy Transfer.............................31 

3.4. Chapter Summary .............................................................................................33 

IV. Calculations................................................................................................................34 

4.1. Chapter Overview .............................................................................................34 

4.2. Calculations........................................................................................................35 

4.2.1. Fluid Flow in Microchannels ............................................................... 35 

4.2.2. Turbine Rotation ................................................................................... 39 

4.2.3. Electromagnetic Induction ................................................................... 42 

4.3. Chapter Summary .............................................................................................49 

V. Designs..........................................................................................................................51 

5.1. Chapter Overview .............................................................................................51 

vii 



 

5.2. Design Inspiration .............................................................................................51 

5.2.1. Inspiration From Human Physiology .................................................. 51 

5.2.2. Inspiration From Hydro-Electric Dam ................................................ 55 

5.3. Design Details.....................................................................................................56 

5.3.1. Microfluidic Channel Design ............................................................... 56 

5.3.2. Original Generator Design (Gear Ratio Design) ................................. 57 

5.3.3. Revised Generator Design (Flat Coil Design)...................................... 60 

5.4. Dominant Design Elements...............................................................................62 

5.4.1. Fluid Flow Rate..................................................................................... 62 

5.4.2. Turbine Size (Rate of Rotation) ............................................................ 63 

5.4.3. Dimensions and Material for Stator Magnets...................................... 63 

5.4.4. Coil Size and Number of Loops ............................................................ 65 

5.5. Chapter Summary .............................................................................................66 

VI. Fabrication .................................................................................................................67 

6.1. Chapter Overview .............................................................................................67 

6.2. Glass Slides.........................................................................................................67 

6.3. Turbine and Shaft..............................................................................................68 

6.4. Coil ......................................................................................................................71 

6.5. Stator ..................................................................................................................77 

6.6. Chapter Summary .............................................................................................81 

VII. Analysis and Results ................................................................................................82 

7.1. Chapter Overview .............................................................................................82 

7.2. Coil ......................................................................................................................82 

viii 



 

ix 

7.2.1. Coil Resistance ...................................................................................... 84 

7.2.2. Current Carrying Capacity ................................................................... 88 

7.3. Stator ..................................................................................................................89 

7.3.1. Deformation Due to Strain ................................................................... 89 

7.3.2. Magnetization ........................................................................................ 91 

7.4. Chapter Summary .............................................................................................92 

VIII. Conclusions and Recommendations .....................................................................93 

8.1. Chapter Overview .............................................................................................93 

8.2. Thesis Review.....................................................................................................93 

8.3. Scientific Contributions ....................................................................................94 

8.4. Recommendations..............................................................................................94 

8.4.1. Continuation of Power Generation Evaluation ................................... 95 

8.4.2. Examination of Alternate Power Generation Designs ........................ 97 

8.4.3. Energy Storage Capabilities ................................................................. 97 

8.4.4. Integration of Probes and Control Circuitry........................................ 97 

8.5. Conclusions ........................................................................................................98 

Appendix A: Mathematica Code ....................................................................................99 

Appendix B: Mask Designs ...........................................................................................119 

Appendix C: Fabrication Methods...............................................................................134 

Appendix D: Experiments and Raw Data ...................................................................139 

Bibliography ...................................................................................................................148 

Vita ……………………………………………………………………………………..153 



 

List of Figures 

Figure 1.1: Standard Diabetic Glucose Monitoring Equipment including diagnostic meter, 
lancet for piercing skin and test strip for collecting blood and transporting it 
to the diagnostic meter [2] ............................................................................... 1 

Figure 1.2: The AbioCor implantable replacement heart uses an implanted electronics 
package to monitor and control pumping speed of the heart based on the 
physiological needs of the patient [5]. ............................................................. 3 

Figure 1.3: The Learning Retinal Implant from Intelligent Medical Systems.  It is 
designed to help patients with retinitus pigmentosa.  The eye glasses and 
photoprocessor worn on the waist are used to train the retinal implant, thus 
restoring vision [5]........................................................................................... 4 

Figure 1.4: Braingate neural implant devised by Brown University.  The implantable chip 
will enable the mind to manipulate electronic devices and may lead to 
restored mobility in paralyzed patients [5]. ..................................................... 4 

Figure 1.5: Theoretical image of the completed MicroFluidic Power Generation (MFPG) 
device showing the outer shape, the microchannel, and the protein coating at 
the opening of the microchannel.  The turbine, generator and microchannel 
probes are not shown. ...................................................................................... 7 

Figure 2.1: Individual organs drawn in inks and opaque watercolors from an 18th century 
Persian translation of an Arabic medical compendium [12]. ........................ 11 

Figure 2.2: Implanted pacemaker used to regulate electrical activity in the heart [14].... 12 

Figure 2.3: Graphical representation of a microchannel with particulate fluid flow and 
analysis probes.  Each probe pair is coated to identify a specific type of 
particle. .......................................................................................................... 13 

Figure 2.4: Diagram of a gas chromatograph used for sample analysis [15].  This method 
often made identification of small samples impossible................................. 14 

Figure 2.5: Micronit Lab-on-a-Chip microfluidic analysis tool shown with glass 
microreactor chip [6]. .................................................................................... 15 

Figure 2.6: Effects of viscosity on fluid flow in a channel............................................... 16 

Figure 2.7: Cross-sectional views of an axial-flow turbine (a) [22] and an impulse turbine 
(b) [23] ........................................................................................................... 18 

x 



 

Figure 2.8: Voltaic pile consisting of a series of alternating zinc and copper disks 
separated by cardboard soaked with an acid or salt solution [25] ................. 20 

Figure 2.9:  Cross-section of Micro-engineered turbo-generator based on an axial-flow 
turbine. The generator uses permanent magnets (magnetite), which are 
inserted after the rotor is fabricated [27]. ...................................................... 22 

Figure 2.10: A schematic of the mobile-ion-drain method.  (a) Surface has adopted a 
charge when in contact with water and electron double layer forms; (b) A 
stable streaming potential exists due to the water flow and accumulation of 
mobile ions; (c) The mobile ions in (b) have drained and the surface will 
disassociate and become negatively charged; (d) The surface has become 
more negatively charged when flow resumes, resulting in a larger streaming 
potential. ........................................................................................................ 24 

Figure 3.1: Turbulent fluid flow due to an object in the path of the flow [33]................. 28 

Figure 3.2: Simulation of a laminar fluid flow through a cylindrical pipe [35] ............... 29 

Figure 3.3: Rendition of a human capillary shown with red blood cells and pressure 
gradients (red-brown arrows) [36]................................................................. 30 

Figure 4.1: Fluid pressure in the microchannel as a function of channel length.  Pressure 
at the channel inlet is 5332.9 N/m2. ............................................................... 38 

Figure 4.2: Change in flow rate as a function of capillary length, for a given change in 
pressure. ......................................................................................................... 38 

Figure 4.3: Cross-sectional view of turbine showing fluid pressure and resultant torque.41 

Figure 4.4: Vector diagram for the angular velocity of a particle in a 2-dimensional plane 
[39]................................................................................................................. 42 

Figure 4.5: Side view (a) and end view (b) illustration of Ampere-Maxwell current 
induction in a loop of wire (gold) due to a time-changing magnetic field 
(red)................................................................................................................ 43 

Figure 4.6: Magnetic field lines shown perpendicular (a) and parallel (b) to the cross-
sectional area. ................................................................................................ 45 

Figure 4.7: Output current as a function of the stator magnet height, or thickness.  The 
current increases linearly with the height of the magnets.............................. 47 

Figure 4.8: Output voltage as a function of the cross-sectional area of the coil.  Voltage is 
maximum when the cross-sectional area is minimum................................... 48 

xi 



 

Figure 4.9: Power output of the device as a function of the cross-sectional area of the coil.  
Like the output voltage, output power is maximized when the coil cross-
section is minimized. ..................................................................................... 49 

Figure 5.1: Typical amplitudes and frequency ranges for various biomagnetic fields and 
reference fields.  Field strength is in fT = 10-15 T [41]. ................................. 52 

Figure 5.2: Simple zinc/copper voltaic cell with 1.1V potential under standard conditions 
[43]................................................................................................................. 53 

Figure 5.3: Standard hydroelectric power plant model using an impulse turbine [46]..... 55 

Figure 5.4: Top view of original microfluidic channel design with winding 
microchannels. ............................................................................................... 56 

Figure 5.5: Original generator design with horizontal stator shaft. .................................. 58 

Figure 5.6: Gears used for original generator design with respective radii: Gear A - 
Turbine shaft gear, Gear B - Stator shaft gear. .............................................. 58 

Figure 5.7: Hinged designs for the stator shaft (a) with stator gears (b) and back plate 
components (c and d)..................................................................................... 59 

Figure 5.8: Side view of the flat-coil design illustrating the horizontal stator with 
magnetized nickel suspended above a gold coil. ........................................... 60 

Figure 5.9: Bottom view of gold induction coil with partial nitride layer (grey) shown 
where the wires cross (a) and stator arms with nickel (purple) (b) in the flat-
coil design...................................................................................................... 61 

Figure 6.1: Completed fabrication steps showing the turbine etch (a), the primary shaft 
etch (b), and the secondary shaft etch (c). ..................................................... 69 

Figure 6.2: Fabrication steps necessary to encapsulate and release the fabricated turbine 
and shaft......................................................................................................... 70 

Figure 6.3: Slide pattern after ashing.  Dried 1813 photoresist can be seen through the 
slide................................................................................................................ 73 

Figure 6.4: 0.25 µm thick gold coil trace with excess gold remaining between the trace 
and the small alignment marks. ..................................................................... 74 

Figure 6.5: 1.0 µm thick coil trace with good resolution.  Outline is sharp and free of 
excess gold..................................................................................................... 74 

xii 



 

Figure 6.6: Profilometer measurement showing the profile of a 0.25 µm center coil trace 
through the window opened in the Si3N4....................................................... 75 

Figure 6.7: Profilometer measurement of the main and center coil traces leading to the 
probe pads of a coil on slide #12.  Target coil thickness was 0.5 µm. .......... 76 

Figure 6.8: Nickel electroplating bath setup [52]. ............................................................ 78 

Figure 6.9: First nickel electroplating test wafer five days after electroplating.  Dot on the 
left side of the wafer was the location of the Kapton dot and shows the copper 
seed layer.  Circled areas show sites of initial delamination. ........................ 79 

Figure 6.10: Second nickel electroplating test three days after electroplating.  Slow 
cooling of the nickel from 50 ºC caused more severe delamination. ............ 80 

Figure 7.1: Potential thinning sidewalls created as a result of metal deposition method. 83 

Figure 7.2: Center coil trace damaged by probe contact during resistance measurements.
....................................................................................................................... 85 

Figure 7.3: Fully fabricated coil with gold traces shown in yellow and nitride in orange.
....................................................................................................................... 86 

Figure 7.4: Second attempt at nickel electroplating.  Tensile strain caused the nickel 
delamination to remove sections of substrate up to 30 µm deep................... 90 

Figure 7.5: Profilometer measurement of second electroplating test wafer after cooling.  
Ni layer was 8 µm thick, seed layers comprised 0.1 µm in thickness.  Red 
dashed line indicates original surface of the silicon substrate. ...................... 90 

Figure 7.6: Mangetization (a) of the electroplated nickel and magnetic attraction (b) 
lifting the substrate. ....................................................................................... 91 

Figure 8.1: Potential design of microturbine with w-shaped buckets before release (a) and 
after release (b). ............................................................................................. 96 

Figure A.1: Mathematica code used to determine the flow rate of blood through human 
capillaries....................................................................................................... 99 

Figure A.2: Mathematica code used to determine the pressure at the opening to the 
turbine cavity in the ideal MFPG device using blood as the fluid............... 100 

Figure A.3: Mathematica code and graph illustrating the relation between capillary length 
and outlet pressure.  Note that for blood flowing through a capillary with a 5 
µm radius and an initial pressure of 5332.9 N-m, the cut-off length is 800 

xiii 



 

µm.  Beyond this length, adhesive and cohesive forces within the blood will 
counteract the initial pressure and the blood will not flow.......................... 101 

Figure A.4: Mathematica code used to calculate the rate of water flowing through the 
microchannels of the fabricated MFPG device.  The pressure at the inlet is 
matched to human capillary arteriole pressure and the outlet pressure is 
matched to that calculated for the ideal MFPG device................................ 102 

Figure A.5: Mathematica code and graph used to illustrate the rate of water flow through 
the fabricated MFPG microchannels as a function of capillary height. ...... 103 

Figure A.6: Mathematica code and graph used to illustrate the rate of water flow through 
the fabricated MFPG microchannels as a function of capillary length. ...... 104 

Figure A.7: Mathematica code used to calculate the torque applied to the turbine, by the 
fluid pressure at the opening to the turbine cavity, in the fabricated MFPG 
device........................................................................................................... 105 

Figure A.8: Mathematica code used to calculate the angular velocity of the turbine in the 
fabricated MFPG device as a function of the ideal fluid flow rate.............. 106 

Figure A.9: Mathematica code used to calculate the rate of work done on the turbine by 
the fluid in the fabricated MFPG device...................................................... 107 

Figure A.10: Mathematic code used to calculate the magnetic field strength produced by 
the stator arms on the coil.  Note that the magnetic field strength was 
calculated for stator magnet height of 20µm. .............................................. 108 

Figure A.11: Mathematic code used to calculate the maximum theoretical current that can 
be produced by the MFPG device.  This was calculated for stator magnet 
height of 20µm and coil height of 2µm. ...................................................... 109 

Figure A.12: Mathematica code used to calculate the voltage and maximum theoretical 
power output from this design.  Again this is calculated for stator magnet 
height of 20µm and coil height of 2µm. ...................................................... 110 

Figure A.13: Mathematica code used to calculate the magnetic field strength of the stator 
magnets with respect to the height of the coil.  Note this calculation is for a 
magnet height of 20 µm.  The field strength would be 512 Teslas for a 
magnet height of 80 µm............................................................................... 111 

Figure A.14: Mathematica code used to calculate the total output current as a function of 
the magnet height.  Note the output current for the device when the magnets 
are 80 µm in height is just over 27 µA. ....................................................... 112 

xiv 



 

Figure A.15: Mathematica code used to calculate the total output current as a function of 
the magnets height and width.  Both are changing at the same rate to keep a 
square cross-sectional area.  The output current for the device when the 
magnets are 80 µm in height is approximately 27.16 µA............................ 113 

Figure A.16: Mathematica code used to calculate the voltage output of the device as a 
function of the coil’s cross-sectional area.  The voltage is maximum when the 
coil is thinnest, for a value of 12.24 mV when the coil’s cross-section is 
2.5*10-12 m2.................................................................................................. 114 

Figure A.17: Mathematica code used to calculate the theoretical maximum power output 
of this device as a function of the coil's cross-sectional area.  The curve 
follows the same shape as the voltage curve and again is maximized when the 
cross-sectional area is minimum.  The maximum theoretical power output 
from this calculation is 0.3325 µW when the stator magnets are 80µm high 
and the cross-sectional area of the coil is 2.5*10-12 m2................................ 115 

Figure A.18: Mathematica code used to calculate the theoretical resistance for the 0.25, 
0.5 and 1.0 µm thick center coil traces using the average fabricated 
dimensions for each group........................................................................... 116 

Figure A.19: Mathematica code used to calculate the theoretical resistance for the 
complete 0.25, 0.5 and 1.0 µm thick coil traces using the average fabricated 
dimensions of each group. ........................................................................... 117 

Figure A.20: Mathematica code used to calculate the theoretical resistance of the 200 Å 
thick titanium seed layer between the two gold traces.  Each section of 
titanium between the two layers of gold has an area of 100 µm2. ............... 118 

Figure B.1: L-edit layout showing all layers of the MFPG device................................. 119 

Figure B.2: L-edit layout for the top of first glass slide.................................................. 120 

Figure B.3: L-edit layout for the bottom of the first glass slide. .................................... 120 

Figure B.4: Enlarged image of features on bottom of the first glass slide...................... 121 

Figure B.5: L-edit layout of first etch design for top of second glass slide. ................... 121 

Figure B.6: Enlarged image of features on the first etch design for the top of the second 
glass slide..................................................................................................... 122 

Figure B.7: L-edit layout of second etch design for top of second glass slide. .............. 122 

Figure B.8: Enlarged image of features on the second etch design for the top of the 
second glass slide......................................................................................... 123 

xv 



 

Figure B.9: L-edit layout of third etch design for top of second glass slide................... 123 

Figure B.10: Enlarged image of features on the third etch design for the top of the second 
glass slide..................................................................................................... 124 

Figure B.11: L-edit layout of first etch design for the bottom of the second glass slide.124 

Figure B.12: Enlarged image of features on the first etch design for the bottom of the 
second glass slide......................................................................................... 125 

Figure B.13: L-edit layout of second etch design for the bottom of the second glass slide.
..................................................................................................................... 125 

Figure B.14: Enlarged image of features on the second etch design for the bottom of the 
second glass slide......................................................................................... 126 

Figure B.15: L-edit layout of first deposition design for the top of the third glass slide.126 

Figure B.16: Enlarged image of features on the first deposition design for the top of the 
third glass slide. ........................................................................................... 127 

Figure B.17: L-edit layout of second deposition design for the top of the third glass slide.
..................................................................................................................... 127 

Figure B.18: Enlarged image of features of the second deposition design for the top of the 
third glass slide. ........................................................................................... 128 

Figure B.19: 2X-enlarged image of features of the second deposition design for the top of 
the third glass slide. ..................................................................................... 128 

Figure B.20: L-edit layout of third deposition design for the top of the third glass slide.
..................................................................................................................... 129 

Figure B.21: Enlarged image of features of the third deposition design for the top of the 
third glass slide. ........................................................................................... 129 

Figure B.22: L-edit layout of stator arms with alignment marks and non-etch buffer. .. 130 

Figure B.23: Enlarged image of stator center showing shaft opening with groves. ....... 130 

Figure B.24: L-edit layout of stator magnets with alignment marks. ............................. 131 

Figure B.25: L-edit layout of stator magnets (red) superimposed on stator arms (gold) 
with alignment marks and non-etch buffer. ................................................. 131 

Figure B.26: L-edit layout of the turbine wheel with non-etch buffer............................ 132 

xvi 



 

xvii 

Figure B.27: L-edit layout of primary turbine shaft design. ........................................... 132 

Figure B.28: L-edit layout of secondary turbine shaft design. ....................................... 133 

Figure C.1: Recipe used to deposit Cr/Cu seed layer for nickel electroplating.............. 137 

Figure C.2: Recipe used for first two nickel electroplating attempts. ............................ 138 

Figure D.1: Current vs. voltage plot for all five coils on slide #2 with an averaged plot 
line. .............................................................................................................. 142 

Figure D.2: Current vs. voltage plot for the remaining four coils on slide #3 with an 
averaged plot line......................................................................................... 143 

Figure D.3: Current vs. voltage plot for the remaining two coils on slide #4with an 
averaged plot line......................................................................................... 144 

Figure D.4: Current vs. voltage plot for the one remaining coil on slide #12. ............... 145 

Figure D.5: Current vs. voltage plot for the remaining four coils on slide #5 with an 
averaged plot line......................................................................................... 146 

Figure D.6: Current vs. voltage plot for the remaining three coils on slide #6 with an 
averaged plot line......................................................................................... 147 



 

List of Tables 

Table 2.1: Equations governing fluid flow through a channel [16].................................. 16 

Table 3.1: Transducer categories and examples [24]........................................................ 31 

Table 4.1: Critical design elements and dimensions for the Ideal and Fabricated designs.
....................................................................................................................... 35 

Table 4.2: Parameters used to calculate the flow rate of blood in human capillaries....... 36 

Table 4.3: Parameters used to calculate the pressure at the opening to the ideal turbine 
chamber.......................................................................................................... 37 

Table 4.4: Values used to calculate pressure at the fabricated turbine chamber opening. 37 

Table 5.1: Magnetic properties of ferromagnetic materials [43]. ..................................... 64 

Table 5.2: Resistivity values for common materials at 0 ºC [24]. .................................... 65 

Table 6.1: Chemical composition of standard Nickel electroplating bath [53]. ............... 81 

Table 7.1: Average thickness and width of the center coil traces after fabrication. ......... 83 

Table 7.2: Average thickness and width of the main coil traces after fabrication............ 84 

Table 7.3: Calculated and measured resistance of the center coil trace for each of the 
three thicknesses. ........................................................................................... 85 

Table 7.4: Calculated and measured resistance of the full coil trace for each of the three 
thicknesses. .................................................................................................... 87 

Table 7.5: Cross-sectional area and resistance values for the coils on slide #5................ 88 

Table C.1: Recipe used for patterning of metal deposition with SF-11 and AZ5214E 
photoresist.................................................................................................... 134 

Table C.2: Recipe used for patterning Silicon Nitride and Borosilicate Glass (Silicon 
Dioxide) with 1813 photoresist. .................................................................. 136 

Table D.1: Measured height and width of the 1.0 µm center traces. .............................. 139 

Table D.2: Measured height and width of the 0.25 µm center traces. ............................ 139 

Table D.3: Measured height and width of the 0.5 µm center traces. .............................. 140 

xviii 



 

xix 

Table D.4: Measured height and width of the 1.0 µm main traces................................. 140 

Table D.5: Measured height and width of the 0.25 µm center traces. ............................ 141 

Table D.6: Measured height and width of the 0.5 µm center traces. .............................. 141 

Table D.7: Voltage versus current measurements for Slide #2 (1 µm trace thickness).. 142 

Table D.8: Voltage versus current measurements for Slide #3 (1 µm trace thickness).. 143 

Table D.9: Voltage versus current measurements for Slide #4 (1 µm trace thickness).. 144 

Table D.10: Voltage versus current measurements for Slide #12 (0.5 µm trace thickness).
..................................................................................................................... 145 

Table D.11: Voltage versus current measurements for Slide #5 (0.25 µm trace thickness).
..................................................................................................................... 146 

Table D.12: Voltage versus current measurements for Slide #6 (0.25 µm trace thickness).
..................................................................................................................... 147 



 

 

AFIT/GE/ENX/03-xx 

Foreword 

 

Technology is neither inherently good nor evil; rather, it is the intent with which it 

is used that often causes us to view it as one or the other.  This project was undertaken in 

the hopes that research derived from it may one day help to improve the quality of life for 

all mankind and the optimistic hope that it will never be used with malice. 

 

 

      Aaron J. Sprecher 
      March 2008 

        
       nam beneficium omnis populus 
       ad astra per aspera 

     

xx 



 

 
 

MICROFLUIDIC POWER GENERATION 
 
 

I.  Introduction to BioMEMS 

 

1.1.  The Need for Microfluidic Power Generation 

The biomedical field currently has a need for self-sufficient, implantable devices 

to monitor and correct biological disorders such as heart attacks, strokes, diabetes, high 

blood pressure, etc [1].  Many of the devices that are currently used for these purposes are 

run on batteries, requiring major surgery every five to ten years to replace the battery, or 

are external, requiring frequent visits to doctors or constant blood samples, as with the 

diabetic testing kit shown in Figure 1.1.   

 
Figure 1.1: Standard Diabetic Glucose Monitoring Equipment including diagnostic 
meter, lancet for piercing skin and test strip for collecting blood and transporting it to the 
diagnostic meter [2] 
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1.2.  Microelectromechanical Systems (MEMS) 

 The field of MEMS is often compared to integrated circuits (IC) because they use 

many of the same manufacturing techniques.  This comparison is misleading, however, 

because ICs are used primarily to manipulate electronic and some photonic signals.  

MEMS devices, on the other hand, are an interface between the physical world and the 

electronic world on a microscopic scale [3].  As such, they must operate in a much wider 

and more diverse environment.   

 MEMS devices can be created through several methods.  The most common 

method involves alternating steps of depositing and removing layers in a given pattern.   

Incredibly complex devices can be made through the MEMS process, including rotating 

wing microflying devices, internal combustion engines, and electrical motors, all smaller 

than a penny.   

 MEMS encompasses a vast breadth and diversity of technology.  The acronym 

describes a large selection of micromachined sensors and actuators that span many 

disciplines including: electrical engineering, mechanical engineering, IC processing, 

circuit design, materials science, chemistry, instrumentation, fluidic engineering, optics 

and packaging.  Because of the complex nature of these devices, they also have a diverse 

range of utility.  Today, MEMS devices are used in optical fiber switching, microfluid 

control, micromechanical electrical relays, biosensors, forensic analysis, digital video 

projectors, inkjet printing cartiridges, and many other everyday items.    

   

 

2 



 

1.2.1. BioMEMS 

 The first decade of the 21st century has seen rapid blending between the fields of 

biomedicine, microdevices, and informatics that has led to the formation of a new field of 

research known as BioMEMS.  It encompasses biochemistry, microfabrication, 

microfluidics, micromechanics, biophysics, protein engineering, cell physiology and 

computational power to create self-contained systems that can be used as a complete 

biological laboratory-on-a-chip, an artificial organ, or implantable biosensors [4].  

Examples of such advances include the AbioCor implantable replacement heart (Figure 

1.2), Learning Retinal Implant (Figure 1.3), and BrainGate (Figure 1.4) [5]. 

 

 
Figure 1.2: The AbioCor implantable replacement heart uses an implanted electronics 
package to monitor and control pumping speed of the heart based on the physiological 
needs of the patient [5]. 
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Figure 1.3: The Learning Retinal Implant from Intelligent Medical Systems.  It is 
designed to help patients with retinitus pigmentosa.  The eye glasses and photoprocessor 
worn on the waist are used to train the retinal implant, thus restoring vision [5]. 

 

 

Figure 1.4: Braingate neural implant devised by Brown University.  The implantable 
chip will enable the mind to manipulate electronic devices and may lead to restored 
mobility in paralyzed patients [5]. 
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1.2.2. Microfluidics 

 The field of microfluidics involves the handling and manipulation of minute 

amounts of fluid, usually on the order of micro-liters to pico-liters and lies on the 

boundary between biotechnology, medicine, chemistry and MEMS [6].  It has been 

beneficial for cell characterization, leading to increased sensitivity for cancer screenings 

and increased efficiency for drug discoveries [1]. 

 

1.3.  Problem Overview: Limitations in MEMS and Microfluidics 

As MEMS is a relatively young field of research, there are still many aspects of 

fabrication and device performance that are not well understood.  Device designs are 

often used because they function, even though it is not fully understood why they behave 

as they do.  Many of the properties of the materials used in the fabrication process are 

likewise not fully understood because of the shift in material behavior from macro-size 

samples to micro-size samples.  Documentation on the electromagnetic properties of sub-

micrometer volumes of ferromagnetic materials, for example, is essentially non-existent.  

Microfluidics also has its limitations.  While this area of research is better 

understood, it still has physical restrictions.  Due to the nature of fluidics, there are limits 

as to how small the channels can be before a fluid will not be able to flow.   

Since this project incorporates both MEMS and microfluidics, it will require 

multiple trial configurations in order to collect sufficient data to extrapolate an efficient 

design.  The questions then to be answered are: a) how can the nickel be magnetized once 

it is deposited, b) what volume of nickel will be sufficient to maintain a stable magnetic 
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field, c) what is the tolerance for distance between the nickel and the current loop, and 

finally, d) what coil dimensions will allow adequate current flow while preventing 

overheating and burnout of the coil. 

 

1.4.  Intent of Research 

Given the current state of MEMS technology and microfluidics, a self-sufficient 

device could be constructed to monitor all aspects of human blood from inside the body 

and then relay the information to an external device for monitoring.  Such a device would 

require six different components: a non-reactive housing, microfluidic channels for the 

blood to flow through, probes in the microchannels to monitor blood composition, 

microprocessors to process data from the probes, an external communications link, and 

finally a method to produce its own power.   

With the exception of power generation, all of these components currently exist or 

are being rigorously researched.  Many different materials, such as glass or polyimides, 

are currently used in the fabrication and structures of MEMS devices and will not cause 

an adverse reaction if implanted into the human body [7].  The housing for the device, as 

well as the microchannels, would be made of such a material.  The openings of the 

channels would be coated with a protein that controls angiogenesis [8], or the formation 

of blood vessels (Figure 1.5).  When implanted, the body would react to the protein by 

growing capillaries to the two openings of the device, thus providing the necessary blood 

flow through the device.   
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Protein Coating to 
induce angiogenisis  

Microchannel 
Opening (10 μm 
diameter)

Figure 1.5: Theoretical image of the completed MicroFluidic Power Generation (MFPG) 
device showing the outer shape, the microchannel, and the protein coating at the opening 
of the microchannel.  The turbine, generator and microchannel probes are not shown. 

 

The composition of the blood would be detected by measuring the resistance 

between sets of protein-coated probes positioned in the microchannels.  Each set of 

probes would be used to monitor different elements in the blood, i.e. – glucose, oxygen, 

white blood cells, etc, depending on the coating.  The probes would need to be spaced 

appropriately so that there is no interaction between adjacent probes.  Such probes are 

currently being used in a new generation of glucose monitors, requiring a significantly 

reduced blood sample size and an increase in accuracy [9].  

Once blood is flowing through the device, the probes will measure the 

composition of the blood and send the raw data to microprocessors.  The number of probe 

pairs in the channel and the required sampling rate will determine the number of 

microprocessors needed to format the data and send it to the external communications 

link for transmission to an external monitoring device.  Such microprocessor arrays with 
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radio frequency (RF) links are currently being researched for wireless implantable neural 

probes [10]. 

1.4.1.  Proposed Solution and Research Objectives 

  This project was undertaken to determine the feasibility of using well established 

electromagnetic power generation techniques to harness energy from the human body.  

As such, the objectives of this portion of the project are to 

 1.  Determine if it is theoretically possible to harness energy in this manor 

 2.  Design a method for electromagnetic power generation using a microfluid flow 

      as the external energy source 

 3.  Begin testing fabrication methods 

 4.  Characterize any portions of the device that are fabricated 

1.4.2.  End Goal of Microfluidic Power Generation Project 

 The power generation system that is the core of this research is not meant to be a 

stand-alone device.  Rather, it is meant to be one module within a larger device.  Like the 

mitochondria within a living cell, it is meant to be the powerhouse that allows all other 

parts to perform the necessary operations.  Once fabrication methods have been perfected 

for this power system, it must be integrated with other components to produce a self-

sufficient module that will improve the quality of life for any who have need of it, 

whether they are patients in a hospital, soldiers on the battlefield, or astronauts walking 

through the void of space. 
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1.4.3.  Design Requirements 

 There are no concrete design requirements (i.e.- specific voltage or current levels) 

as this is a novel project.  The requirement, rather is to determine if this is a feasible 

method for generating sufficient power to allow a BioMEMS system to operate self-

sufficently. 

1.5.  Organization of Thesis 

This thesis is divided into eight chapters with four appendices.   Chapter one 

details the need for this project, a basic definition of MEMS and microfluidics, a review 

of the potential problems that may be encountered, and the intent of the research.  

Chapter two contains a brief history of medicine, microfluidics, and electromagnetism, a 

brief overview regarding energy harvesting on a MEMS scale, and a review of theoretical 

and fabricated designs that are similar to that proposed for this project.  Chapter three is a 

review of the theory behind fluid mechanics, both on the macro and micro scale, and 

electromagnetic theory.  Chapter four contains information on the models used to design 

these devices and the calculations necessary for the models.  Chapter five contains details 

on the device designs.  Chapter six contains details on the methods of fabrication.  

Chapter seven details the analysis and results of experiments.  Finally, Chapter eight 

discusses conclusions from the results and recommendations for future research.   

Of the four appendices: Appendix A contains Mathematica code used to calculate 

flow rates, pressure, rates of rotation, magnetic field strength, and coil resistances; 

Appendix B contains design images; Appendix C contains the recipes used for the device 

fabrication; and Appendix D contains tables listing experimental data. 



 

II. Literature Review 

2.1.  Chapter Overview 

Technology has always played a part in medicine, but only recently has medicine 

played a part in technology.  The birth of the biomedical engineering field in the 1940s, 

heralded a shift from unmanaged, often crude single-problem technology solutions to 

organized research into future biomedical technology solutions.   This chapter illuminates 

the need for an MFPG system, its relevance in current medicine, and similar research that 

has already been completed and its relevance to this project.   

2.1.1.  Historical Perspective 

“Medicine is a science from which one learns the states of the 
human body with respect to what is healthy and what is not, in 
order to preserve good health when it exists and restore it 
when it is lacking.”  

Abū Alī ibn Sīnā, the opening to the Al-qanun fi al-tibb  
 

Since before recorded history, mankind has looked for ways to help those who are 

injured or infirm.  The first forms of help were often crude and made from readily 

available local materials.  Orchid bulbs were a common remedy for stomach problems 

while cuts and sores were usually smeared with animal fat and bandaged with animal 

skins.  Broken limbs would be crudely set and then covered in river clay, which would 

harden to form a crude cast to protect the bone as it healed [11]. 

Since then, the level and complexity of help that can be given has increased 

immensely.  From the foundations laid by the Greeks and the Arabs, studying human 
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anatomy, as shown by Figure 2.1, and the establishment of the first true hospitals, 

mankind has compiled a vast knowledge of human ailments and cures [12].   

 
Figure 2.1: Individual organs drawn in inks and opaque watercolors from an 18th 
century Persian translation of an Arabic medical compendium [12]. 

 

The last century has seen the greatest advances in medicine, culminating in today’s 

prosthetic limbs, complex surgeries, and intricate knowledge of medicinal affects on the 

human body.  This knowledge and ability has greatly improved the average lifespan and 

the quality of life for millions of people. 

2.1.2.  Potential Microfluidic Power Generation Applications 

Many of today’s “cures,” however, are still invasive and discomforting, often 

requiring the use of scalpels and needles.  As of the 2005 census, an estimated 20.8 

million people in the United States, or 7.0% of the population, live with diabetes [13].  

Those that are diagnosed with the disease are required to prick their finger several times 
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per day to monitor their blood-glucose level.  Once the finger has been pricked, the 

patient applies the blood to a test strip, and only then can the blood be analyzed for 

protein levels.   

Other cures often require the placement of bulky electrical devices, such as 

pacemakers like the one shown in Figure 2.2, inside the body to regulate heart or nerve 

functions.  These devices are typically run on batteries, which must be periodically 

replaced, requiring major surgery each time. 

 
Figure 2.2: Implanted pacemaker used to regulate electrical activity in the heart [14] 

The MFPG system would alleviate many of these necessities.  By generating power in 

an array of self-contained units within the body, many opportunities arise.  The MFPG 

systems could be combined with current blood analysis tools to create a self-contained 

blood analysis lab like the one shown in Figure 2.3 that would use the flow of blood 

through the device to power its array of probes.  These probes could be used for real-time 
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monitoring of proteins, molecules and foreign bodies in the bloodstream.  Pacemakers 

could be replaced by much smaller units, which do not require replaceable batteries.  

They would instead be linked to an array of MFPGs, which could be used to charge the 

pacemaker’s capacitors.  MFPGs coupled with RF components could also be used to link 

severed nerve endings, converting biochemical signals into RF and back, returning 

mobility and sensory capability to patients with spinal cord damage.  This ability could 

also be used to control prosthetic appendages, while increasing the manual dexterity and 

sensory capabilities.  

 

Probes 

Fluid Flow 

Particles 
in Fluid Special 

Coating 

Figure 2.3: Graphical representation of a microchannel with particulate fluid flow and 
analysis probes.  Each probe pair is coated to identify a specific type of particle. 

 

2.2.  Microfluidics: A Drop in the Bucket 

Research into microfluidics has been well documented since its inception at 

Stanford University in the 1990s.  It was developed to study the composition of a sample 

that would normally have been analyzed in a chromatograph, like the one shown in 

Figure 2.4.  Due to the relatively small size of the samples, however, the chromatograph 

was ineffective.  The analysts needed a way to handle and study these small volumes of 
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liquid, and so, micro-fluidics was born.  Shortly thereafter, IBM revolutionized the world 

of printers when it picked up microfluidics as a way to transfer ink to paper, giving rise to 

the inkjet printer.   

 

DIAGRAM OF A GAS CHROMATOGRAPH

Figure 2.4: Diagram of a gas chromatograph used for sample analysis [15].  This method 
often made identification of small samples impossible. 

 

Since that time, microfluidics has been incorporated into many fields, but the 

basic design for all microfluidic systems is essentially the same.  They use non-reactive 

materials such as glass or polymers with microchannels ranging from a few micrometers 

in diameter up to a few millimeters.  The methods for inputting and removing the fluids 

from the system vary from simple delivery and extraction by syringe or connections via 

tubing to external systems for the Lab-on-a-Chip, shown in Figure 2.5, to cohesion from 

a reservoir out to open air, in the case of an inkjet printer.  There are also several common 

methods for moving the fluid through the microchannels, including simple pressure 

gradients, micro-turbines, and electro-osmotics.  Some current applications for 

Detector 

Recorder 

Injector 
Port 

Flow 
Controller 

Carrier Gas 
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microfluidics include inkjet printers, forensic analysis, genomics and proteomics, food 

and nutrition, pharmacology, and chemistry. 

  

Microreactor Chip 

Figure 2.5: Micronit Lab-on-a-Chip microfluidic analysis tool shown with glass 
microreactor chip [6]. 

 

In common microfluidic applications, complications arise when trying to deal 

with very small channels, due to the physics that govern fluid flow through a channel.  

The first complication, low flow rate, arises from the nature of the fluid flowing in the 

channel [16].  Fluid flowing through a channel flows slower around the edges of the 

channel than it does in the center, as shown in Figure 2.6, due to its coefficient of 

viscosity (η).  A fluid’s coefficient of viscosity is a measure of its cohesive and adhesive 

nature or the degree to which it resists flow under an applied force.  The higher a fluid’s 

coefficient of viscosity, the more it resists flowing through the channel.  The second 

complication, resistance to fluid flow, relates directly to the size of the channel through 

which the fluid is flowing.  Table 2.1 shows that the equations for flow rate and 

resistance to fluid flow both depend heavily on channel size.  The resistance to fluid flow 
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(R) is proportional to the square of the radius (r) of the channel and the fluid flow rate (F) 

is inversely proportional to r4.   This means, as the channel becomes smaller, more force 

is required to push the fluid through the channel.  These equations will be discussed in 

further detail in Section 4.2.1.  Other variables in the equations include the channel length 

(L) and the change in fluid pressure from one end of the channel to the other (ΔP). 

          

 
Figure 2.6: Effects of viscosity on fluid flow in a channel. 

These complications should not arise in the proposed power generation unit, 

because the microchannels would be approximately 10 µm in diameter [17], the same 

size as a human capillary; thus the body would not be placed under any appreciable strain 

because there should be no increase in blood pressure required to push the blood through 

the device.    

 

Table 2.1: Equations governing fluid flow through a channel [16] 

Resistance to Fluid Flow R = (8 η L) 
       π r2 

Flow Rate Φ = π r4 ΔP 

      (8 η L) 
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2.3. Turbines: Turning the Wheel of History 

 A turbomachine is defined as a device in which energy transfer occurs between a 

flowing fluid and a rotating element due to dynamic action, and results in a change in 

pressure and momentum of the fluid.  Turbomachines can be used to either extract energy 

from or impart energy to a continuously moving stream of fluid.  This broad definition 

covers a wide range of machines, such as gas turbines, steam turbines, centrifugal pumps, 

centrifugal and axial flow compressors, windmills, water wheels, and hydraulic turbines 

[18].   

 The term “turbine” was coined in 1828, by a French professor Claude Burdin, to 

describe the subject of an engineering competition for a water-based power source.  The 

word comes from the Latin turbo, meaning a whirling or a vortex and is used to describe 

a machine in which water moves relative to the surfaces of the machine.  This is separate 

from machines in which this motion is secondary, such as a piston or a cylinder [19].  

Water turbines, or hydraulic turbines, are often used to drive electric generators in 

hydroelectric power stations.  The first such station was built in Wisconsin in 1882 and 

soon became the first of many [20].  By 1920, about 40% of all electric power in the U.S. 

was derived from hydropower.   

 Hydraulic turbines can be separated into two basic design categories: axial-flow 

turbines and impulse turbines [21].  The primary difference between these designs is the 

direction of fluid flow relative to the axis of the turbine.  In axial-flow turbines, the fluid 

flows parallel to the axis of the turbine, often completely covering a portion of the 

turbine, as shown in Figure 2.7a.  The blades of the turbine can range from a simple 
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straight blade positioned at an angle of 45º relative to the fluid flow, to complex curved 

L-shaped geometries designed to more efficiently convert the energy of the fluid flow to 

turbine rotation.   

 Impulse turbines like the one shown in Figure 2.7b, on the other hand, use a fluid 

flow perpendicular to the axis of the turbine.  A nozzle at the head of the fluid channel 

increases the pressure of the fluid before it impacts the blades of the turbine.  Unlike the 

axial-flow turbine design, the fluid flow for an impulse turbine impacts only a single 

blade at a time.  The fluid then falls in to a channel where it can pass out of the system.  

The blades of an impulse turbine are typically W-shaped, based on the design patented in 

1880 by Lester A. Pelton. 

    
                           (a)                                                                   (b) 
Figure 2.7: Cross-sectional views of an axial-flow turbine (a) [22] and an impulse 
turbine (b) [23] 
 

 Because of the particulate nature of blood, the fluid that the MFPG device should 

ultimately be utilized for, a modified version of the impulse turbine is the most likely 

design to be successful and least harmful.  The blades of the MFPG turbine, however, 
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will not be W-shaped like the Pelton turbine because of the difficulties in fabricating 

curved surfaces on a micron scale.   

 

2.4. Electromagnetism: The Interaction of Charged Particles 
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While the phenomenon of both electricity and magnetism we

 of ancient time, neither one had any practical application at the time and were

simply observed as curiosities [24].  The first true attempts to understand and harness 

electricity and magnetism did not start until the late 16th century, with the Englishman,

William Gilbert.  In 1600, he published De Magnete, one of the first scientific works on

the phenomenon.  Gilbert’s pioneering research into electricity and magnetism became 

the foundation for our modern technological society.   

The 18th century heralded numerous advances in

gnetism.  There were three key advances during this time period that were critical 

to our modern understanding.  The first was the model of static electricity.  Two models 

were actually developed to explain the phenomenon of static electricity, the one-fluid 

model proposed by Benjamin Franklin, and the two-fluid model proposed by Charles 

DuFay.  Franklin’s model suggested that neutral matter possessed a certain amount of 

electric fluid.  He supposed that a positive charge was an excess of the fluid and a 

negative charge was a deficiency of the fluid.  DuFay’s model suggested that there 

two different types of fluid; one positive, the other negative, and that neutral matter 

composed equal quantities of each.  These models would stand until J. J. Thompson’

discovery of the electron in 1897.  The remaining two key advances were technologica
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in nature.  One was the development of electrostatic devices, to create and store large 

amounts of static electricity.  The second was the development of the voltaic pile show
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ent, 

t 

Figure 2.8.  It was developed by Alessandro Volta in 1800 and is thought to be the 

earliest known form of battery.  With these two advancements, mankind finally had th

ability to harness electricity and use it when and where he wanted.   

Since that time, our knowledge of electricity and magnetism h

ed.  The development of Coulomb’s Law (1785), the Unification theory by 

Oersted (1820), Ampere’s Law regarding magnetic fields generated by electric curr

and Faraday’s discovery of electromagnetic induction in 1831, all led to the developmen

of the Electromagnetic Field Theory and Maxwell’s equations, which are the four key 

equations that are used today to model electromagnetic phenomenon. 

 

 
Figure 2.8: Voltaic pile consisting of a series of alternating zinc and copper disks 
separated by cardboard soaked with an acid or salt solution [25] 
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While electromagnetic fields have been extensively studied for more than four 

centuries on the macro scale, their properties and behavior on the micro scale have only 

recently been studied.  Documented experimentation with microscopic samples of 

ferromagnetic materials has, to date, been limited to altering the spin of electrons passing 

through the sample.  This field of research is known as spintronics or spintronic devices.  

Its only relevance to this project, however, is to prove that ferromagnetic materials do 

exhibit the necessary magnetic polarization in samples significantly smaller than those 

used for this project. 

 

2.5. MEMS Energy Harvesting: Energy from the Ether 

Energy scavenging or harvesting is the collecting of energy from the environment 

to enable work.  Mankind has been harvesting environmental energy since the first rock 

was rolled down a hill (i.e. – gravity), but we have only recently begun to actively 

examine electrical energy harvesting.  There are four main categories of energy 

harvesting: electromagnetic, kinetic, photonic and thermal.  All of the methods, such as 

solar, electromagnetic fields, thermal gradients, and fluid flow have all been successfully 

used to power electrical devices, though some more efficiently than others [26]. 

MEMS energy harvesting has already been demonstrated with a number of 

different devices; the majority of these devices, however, use piezoelectric materials to 

convert kinetic energy into electrical energy.  Of the other forms of energy harvesting, 

solar and thermal energy harvesting on the MEMS scale is impractical, due to size 

restrictions.  Fluid flow has been used to generate electrical energy by several methods, 
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which will be discussed in the next section.  Finally, electromagnetic energy harvesting 

on the MEMS scale has not been widely examined due to the lack of understanding of 

magnetic field behavior on the micron scale. 

 

2.6. Relevant Research 

2.6.1. Similar Designs 

 In 2003, researchers at the Imperial College in London successfully fabricated and 

tested an axial-flow turbine for airflow sensing (Figure 2.9) [27].  The turbine was 

created using UV lithography, Deep Reactive Ion Etching (DRIE), laser etching and 

electroplating.  The prototype device was 18x18x9 mm and could produce an average 

power of 1.1 mW [28].  This was only 1% of the power predicted by the models.  The 

power loss was most likely due to bearing loss and windage.    

 
Figure 2.9:  Cross-section of Micro-engineered turbo-generator based on an axial-flow 
turbine. The generator uses permanent magnets (magnetite), which are inserted after the 
rotor is fabricated [27]. 
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While the axial-flow turbine design shares the same fundamental power 

generation principles as the design for this project, there are several glaring differences, 

the primary difference being size.  The axial-flow turbine design is three orders-of-

magnitude larger than the MFPG design.  The second difference is the direction of flow 

through the turbine.  The airflow for the axial-flow turbine is parallel to the axis of the 

turbine.  The MFPG design has the fluid flow perpendicular to the axis of rotation to 

prevent any fluid from entering the stator cavity.  Finally the magnetic components in the 

axial-flow turbine design were permanent magnets that were manually inserted into the 

stator after fabrication.  Those of the MFPG design will be ferromagnetic nickel that will 

be magnetized after the device is assembled. 

2.6.2. Microfluidic Power Generation 

Several methods have been studied for producing power using fluidics on a small 

scale.  In 2000, MIT developed a model of a Micro Hydraulic Transducer that could be 

used to either induce a fluid flow or generate power from a fluid flow using piezoelectric 

material [29].  The power generation potential for this device was found by computer 

simulation to be roughly 1 kW/kg with a flow rate around 1.5 ml/s at 40% efficiency.  

Like the axial-flow turbine described above, however, the primary drawback again is the 

device’s size.  At 20x10x5 mm, it is too large to be used with blood flowing through 

capillaries.  Also, the device was not fabricated, so the actual power generating potential 

may be significantly less than the simulated levels. 

Another method of generating power on a MEMS scale was researched in 2004 

by researchers at the University of Alberta, Canada [30].  They forced water through a 
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ceramic rod, taking advantage of the charge separation phenomenon near the solid-liquid 

interface in microchannels, shown in Figure 2.10.  This is a naturally occurring 

phenomenon, which can be increased or decreased depending on the composition of the 

fluid and the solid.  This method requires a large number of microchannels and cannot be 

used to power a device directly.  It must be used to charge capacitors which will power 

the device.  Also, this method is only about 0.8% efficient and the resulting charge 

separation, which generates the power, may cause negative effects on blood.  

 

 

Figure 2.10: A schematic of the mobile-ion-drain method.  (a) Surface has adopted a 
charge when in contact with water and electron double layer forms; (b) A stable 
streaming potential exists due to the water flow and accumulation of mobile ions; (c) The 
mobile ions in (b) have drained and the surface will disassociate and become negatively 
charged; (d) The surface has become more negatively charged when flow resumes, 
resulting in a larger streaming potential. 
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2.7. Chapter Summary 

Although the field of microfluidics is well understood, very little research has 

been done into applications of microfluidics with the intent of generating power.  Those 

that have been done are not relevant to this project due to their size or methodology.  

Also, the electromagnetic portion of this project represents an unknown quantity.  It 

remains to be seen, whether sufficient current can be generated using this method, on this 

scale. 



 

III. Theory 

3.1. Chapter Overview 

A scientific theory is defined as an explanation of a set of related phenomena or 

observations based upon proven hypotheses and independently verified numerous times 

by other groups of researchers [31].  Scientific theories are accepted to be true by the 

whole of the scientific community and are used to predict the outcome of future events or 

experiments.  The purpose of this chapter is to review the theory of fluid dynamics, 

microfluidic flow and transduction, or energy transfer.  It will examine the difference 

between turbulent and laminar fluid flows and how fluid will flow on the micron scale.  It 

will also review the basic operating principles behind a mechanically driven 

electromagnetic generator. 

 

3.2. Fluid Dynamics 

Of the four states of matter, solid, liquid, gas, and plasma, liquid is perhaps the 

most dynamic.  A liquid can change directly to any of the other three states with a 

relatively small amount of energy and carries the properties of all three.  It can have the 

physical strength of a solid, can become electrically charged, and can conform to the 

shape of any container that it is placed into.   

There are three main forces that govern the movement of a fluid: adhesion, 

cohesion, and pressure.  Adhesion is a molecule’s attraction to molecules of other 

materials.  It is the force responsible for holding a drop of rain to a hanging leaf or that 

last drop of soda that will not come out of the bottle.  Cohesion, on the other hand, is the 
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attractive force between atoms of the same material.  This is what causes liquids to form 

droplets and rivulets.  These two forces govern how a liquid interacts with other matter, 

but it is pressure that governs why a liquid interacts with other matter.  Pressure is 

measured in force per unit area, with the area being defined by the surrounding solid 

material.  The force, acting in a direction perpendicular to the surface of the liquid, can be 

due to gravity or can be mechanically induced by a pump.  A water pump, for instance, 

creates a positive pressure in a pipe, forcing water away from it, where a vacuum cleaner 

creates a negative pressure, pulling air towards it. 

These three forces can be of great benefit to parents, often entertaining children 

for hours.  By placing a straw in a glass of liquid, placing a finger over the upper opening 

and lifting the straw out of the liquid, one can demonstrate adhesion, cohesion, and 

pressure.  When the straw is initially placed into the glass, the pressure of the liquid will 

force it into the straw.  When the straw is lifted out of the liquid, the finger covering the 

upper opening traps the air in the upper part of the straw.  The liquid molecules closest to 

the sides of the straw will adhere to the sidewalls and the remaining liquid molecules will 

cohere to those liquid molecules that adhered to the straw.  As the water attempts to yield 

to the force of gravity and drop out of the straw, it pulls on the air trapped at the top of 

the straw.  This creates negative pressure in the air pocket and combined with the 

cohesive and adhesive forces in the liquid, is sufficient to overcome the force of gravity 

and keep the liquid suspended in the straw. 
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3.2.1. Turbulent vs. Laminar Flow 

 Viscosity is a fluid property which relates applied stress to the resulting strain 

[32].  Simply put, it is a measure of how the adhesive and cohesive forces, described 

above, interact as a fluid is deformed.  Combined with the environment in which the fluid 

flows, viscosity governs how the fluid flows.  There are two basic types of fluid flow: 

turbulent and laminar flow.   

 Turbulent flow, as illustrated in Figure 3.1, describes complex, fluctuating, 

disorderly motion within the fluid as it flows.  This can be caused by variations in the 

walls of the material through which the fluid flows, particulates in the fluid flow, 

temperature and pressure changes, and many other factors.  Turbulent fluid flow is 

difficult to predict and model due to its complex nature and each solution must be 

tailored to the specific circumstances of that particular fluid flow.  Laminar flow, on the 

other hand, is much simpler. 

 
Figure 3.1: Turbulent fluid flow due to an object in the path of the flow [33] 
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 Laminar flow is named for the flow layers that form within the fluid.  It is more 

common when the flow channel is relatively small, the fluid is moving slowly, and its 

viscosity is relatively high [34].   Laminar flow is the type of flow in which the fluid 

travels smoothly or in regular paths parallel to the direction of the flow, as shown in 

Figure 3.2.  Laminar flow within a pipe can be considered as the relative motion of 

concentric circles.  The only difference between the circles is their velocity.  The circle 

closest to the sidewall of the pipe is essentially fixed because of its adhesive properties, 

with a velocity of zero.  The circle immediately inside the outer circle has a low velocity, 

sliding over the outer circle slowly due to cohesion.  This continues into the center of the 

pipe, where the pressure is greatest and the flow has the greatest velocity.   

 

Figure 3.2: Simulation of a laminar fluid flow through a cylindrical pipe [35] 

 

3.2.2. Fluid in Microchannels 

As described above, fluid flow in very small channels is almost always laminar, 

simply because there is no room for turbulence.  The viscosity of the fluid prevents the 

formation of pockets, eddies, and other forms of turbulence in such a confined space.  A 

microfluidic flow is typically modeled as a Poiseuille flow through a duct, after the 

French physician J. L. M. Poiseuille, who experimented with low-speed flow in tubes.  
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Poiseuille flows are usually laminar flows that are independent of density and driven by 

pressure gradients. 

Figure 3.3 shows the blood flow in human capillaries, and how it is a prime 

example of a Poiseuille flow.  The relatively small capillary diameter (6 – 10 µm) and its 

relatively high coefficient of viscosity (η = 0.0027 N-s/m2) force the blood flow to remain 

laminar while within the capillary.  The flow is pressure-driven from the arterial side of 

the capillary and is independent of density, meaning that the particles in the blood do not 

cause turbulence in the flow. 

 

Figure 3.3: Rendition of a human capillary shown with red blood cells and pressure 
gradients (red-brown arrows) [36] 
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3.3. Transduction: Mechanical to Electrical Energy Transfer 

A transducer is defined as any device that is actuated by power from one system 

and supplies power, usually in a different form to another system [37].  Table 3.1 lists the 

six main categories that are commonly used to classify transducers: thermal, mechanical, 

chemical, magnetic, radiant, and electrical.  While the vast majority of transducers fall 

into one of these categories, there are many that either do not fit neatly into any of the 

categories, or else fit into several categories at once.   

Table 3.1: Transducer categories and examples [24] 

Transducer Categories Examples 

Thermal temperature, heat, and heat flow 

Mechanical force, pressure, velocity, acceleration, and position 

Chemical concentration of chemicals, composition, and 
reaction rate 

Magnetic magnetic field intensity, flux density, and 
magnetization 

Radiant electromagnetic wave intensity, wavelength, 
polarization, and phase 

Electrical voltage, current, and charge 

 

Transducers can be used to either detect changes in the environment (sensors) or 

to affect a change in the surrounding environment (actuators).  Most complex 

autonomous systems today use a vast network of both sensors and actuators to 

accomplish their jobs.  Sensing transducers detect changes in the environment and relay 

signals back to a control network.  When the proper conditions are met, a signal is then 

sent from the control circuitry to an actuating transducer to affect the desired result in the 
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environment.  Autonomous assembly robots are a perfect example of this control loop.  

They exert pressure on a part they need to lift and then use pressure sensors to determine 

if they have exerted sufficient force to lift the object without dropping it.   

The human body is another example of a vast network of transducers.  Nerve 

endings in the skin, eyes, ears, tongue and nose are capable of detecting minute changes 

in the environment, in any of the categories listed above.  These changes are detected, 

converted to electro-chemical signals and sent to the main control unit, i.e. – the brain, 

which then determines a course of action and sends new electro-chemical signals down to 

the muscles to move the body.   

The MFPG project, in attempting to create a miniature mechanically driven 

electromagnetic generator, actually requires two forms of energy conversion in order to 

generate electricity.  The first energy conversion is from mechanical energy to magnetic 

energy.  The water flowing through the microchannels will induce mechanical pressure 

on the turbine, causing it to rotate.  This rotation causes a change in the magnetic flux 

emanating from the stator magnets.  The second energy conversion is from magnetic 

energy to electrical energy, using the magnets on the stator and the conductive coil below 

the stator.  The changing magnetic flux from the rotating stator induces an electrical 

current in the coil, producing the desired electrical current flow.  This will be illustrated 

and discussed in detail in the next chapter. 
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3.4.  Chapter Summary 

 In order to simulate conditions within the human capillaries, the MFPG project 

will require a laminar fluid flow within relatively small microchannels.  This will allow 

for a close approximation to the actual pressure that would be applied to the turbine if the 

device were implanted in a human body.  Also, the efficiency of the transducers involved 

in the project and their designs will determine the overall power output of the device. 



 

IV. Calculations 

4.1. Chapter Overview 

A boundary exists in the behavior of materials, which is determined by the size 

and quantity of atoms of the material, and so, is different for each material.  When 

dealing with a large sample of material, the material exhibits the characteristics that we 

are familiar with.  When dealing with a relatively small sample, however, the material 

may exhibit radically different behavior in anything from malleability to resistivity.   

The field of MEMS straddles this boundary, often using macro models as the 

basis for experimental designs.  In order to produce the desired results, the equations used 

for these initial designs must be modified to account for the shift in material behavior.  

This chapter discusses the models and calculations that were used to create and analyze 

the designs for this project and how and why the models were modified from the original 

macro models.  Due to the limitations of available tools and baseline material 

information, computer modeling/simulation of the device was not possible.   

Since this project is a proof-of-concept demonstration, there are two designs 

discussed in the following two chapters when discussing the microchannels and the 

turbine: the ideal design and the fabricated design.  The ideal design has the dimensions 

necessary to actually be implanted into the body and theoretically function.  The 

fabricated design is roughly four times larger in all dimensions due to the limitations of 

manual assembly and accurate analysis that will be discussed in Chapters 6 and 7.  The 

dimensions given in Table 4.1 show the size difference between the two designs. 
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Table 4.1: Critical design elements and dimensions for the Ideal and Fabricated designs. 
 Ideal Design Fabricated Design 

Microchannel Radius (µm) 5 20 

Microchannel Shape Round Square 

Microchannel Path Winding Straight 

Turbine Radius (µm) 48 192 

Turbine Fan Blade Width (µm) 10 40 

Turbine Fan Blade Height (µm) 10 40 
 

4.2. Calculations 

The equations used in this chapter were taken from a variety of sources.  Those used 

for calculations regarding the micro fluid flow were initially empirically derived, but 

have proven to be applicable for calculating fluid flow parameters in most microchannels.  

The equations used to calculate parameters regarding the turbine were also empirically 

derived, but for much larger systems.  It remains to be seen if these equations will remain 

valid at the micron scale.  The calculations were accomplished using Mathematica 

version 6.01. 

4.2.1. Fluid Flow in Microchannels 

 Since the MFPG device is intended to be used in conjunction with the flow of 

blood through human capillaries, the flow rate for capillary blood was calculated first.  

This flow rate was then used to determine the flow rate parameters in the MFPG 

microchannels.   

 The calculation starts with the basic equation for flow rate of a fluid in a 

microchannel, as given by 
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    Φ = ( π r4 ) / ( 8 η L ΔP )                  (1) 

In this equation, Φ represents the flow rate, r is the radius of the capillary, η is the 

viscosity of the fluid, L is the length of the capillary, and ΔP is the change in pressure 

over the length of the capillary [16].  Using the values given in Table 4.2 for the standard 

parameters of human capillaries and blood, the resultant flow rate is approximately 

0.0364 μL/min. 

Table 4.2: Parameters used to calculate the flow rate of blood in human capillaries. 
Parameter Value 

Capillary Radius (r) 5 µm 

Viscosity of Blood (η) 0.0027 N-s / m2 

Capillary Length (L) 500 µm 

Change in Pressure (ΔP) 3333.05 N / m2 

 Given this flow rate, the pressure at the opening to the turbine chamber of an ideal 

MFPG device can be calculated using a modified form of Equation 1.  Rearranging to 

solve for the change in pressure (ΔP), gives  

           ΔP = ( 8 Φ η L ) / ( π r4 )                              (2) 

The pressure at the inlet should be 5332.9 N/m2, the same as in a standard human 

capillary on the arteriole side [17].  This leaves only the pressure at the turbine as an 

unknown.  Using the parameters for the ideal MFPG microchannel, the viscosity of 

blood, provided in Table 4.3, and the flow rate from Equation 1, the pressure at the 

opening of the turbine chamber should be approximately 2000 N/m2 for a 500 µm long 

channel. 
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Table 4.3: Parameters used to calculate the pressure at the opening to the ideal turbine 
chamber. 

Parameter Value 
Capillary Radius (r) 5 µm 
Viscosity of Blood (η) 0.0027 N-s / m2 
Capillary Length (L) 2500 µm 
Fluid Flow Rate (Φ ) 6.06 x 105 µm3/s 
Inlet Pressure (PInlet) 5332.9 N / m2 

 

 The length of the microchannel is a critical dimension for this design.  As Figure 

4.1 shows, the pressure at the opening to the turbine cavity decreases linearly with the 

length of the capillary.  This is primarily due to the viscosity of the fluid.  As discussed 

earlier, the viscosity of blood is relatively high and causes it to resist flowing through a 

sufficiently small channel.  For this design, the cut-off length is approximately 800 µm.  

Beyond that length, blood will not flow through this capillary without additional pressure 

at the inlet.  

For the fabricated MFPG device to have the same pressure at the turbine end of 

the microchannel, water must be pumped at a rate of 0.016 mL/min.   This value was 

obtained from Equation 1, the MFPG microchannel parameters and the viscosity of 

water, given in Table 4.4, and the pressure from Figure 4.1.   

Table 4.4: Values used to calculate pressure at the fabricated turbine chamber opening. 
Parameter Value 

Capillary Radius (r) 20 µm 
Viscosity of water (η) 0.001 N-s / m2 
Capillary Length (L) 20000 µm 
Fluid Flow Rate (Φ ) 6.06 x 105 µm3/s 
Inlet Pressure (PInlet) 5332.9 N / m2 

 

37 



 

200 400 600 800
Length of

Capillary ��m�1000

2000

3000

4000

5000

Outlet Pressure�N�m2�

 

Figure 4.1: Fluid pressure in the microchannel as a function of channel length.  Pressure 
at the channel inlet is 5332.9 N/m2. 

 Again, a small change in the capillary length results in a change in the output 

parameters.  In this case, the flow rate is inversely proportional to the capillary length.  In 

order to maintain a constant pressure at the outlet, the flow rate of the fluid must change 

with the len th of he microchannel, as shown in g t Figure 4.2. 
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Figure 4.2: Change in flow rate as a function of capillary length, for a given change in 
pressure. 

38 



 

 The parameters calculated are used in the next section to determine the angular 

velocity of the turbine, the torque applied to the turbine and the total work done on the 

turbine by the fluid per unit of time.  As previously stated, the four stages of this device 

are all interconnected and so each affects the next.  A change in any one of these stages 

will cause a ripple effect through subsequent stages.  In addition, the data from this 

section is used in the experimental set-up for the analysis of the fabricated device. 

4.2.2. Turbine Rotation 

The Euler turbine equation (Equation 3) is based on the concepts of conservation of 

energy and conservation of angular momentum [38].  It is most commonly used to 

calculate the energy transfer between a fluid flow and a turbine, but can also be used to 

calculate the energy transfer from a mechanical device such as a compressor or pump, to 

the fluid flow[18].  The rate of energy conversion per unit mass is given as  

    W = τω= mω(CW1 r1 – CW2 r2)     (3) 

where  

 τ = net torque exerted by or acting on the rotor 
 ω = angular velocity of the rotor 
 m = mass flow rate (kg/s) 
 CW1 & CW2 = tangential velocity, in the direction normal to the radius, of the fluid  
            at the inlet and outlet 
 r1 & r2 = radial distance to the point of impact/release on the turbine blade 

 The standard thermodynamic sign convention for the Euler equation is that work 

done by a fluid is positive, and work done on the fluid is negative.  For the scope of this 

project, the work produced by the turbine will be positive.  By extension of the Euler 
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equation, the torque on the rotor can be determined by excluding the angular velocity.  

This leaves the equation as 

    τ = m(CW1 r1 – CW2 r2)      (4) 

 For this design, Equations 3 and 4 will be modified accordingly to account for 

differences in the design and the known variables for the ideal case.  For instance, the 

tangential velocity of the fluid at the outlet is unknown and cannot be accurately 

measured due to current technological restrictions.  The torque, therefore, can only be 

calculated for the ideal case where the tangential velocity of the fluid at the outlet is zero.  

Energy loss due to friction between the turbine and its housing is also assumed to be 

negligible because the turbine is suspended within the fluid.  Given these assumptions, 

the torque acting on the turbine can be simplified to a perpendicular force acting on an 

object at a given distance from the objects center.  Torque can therefore be calculated 

using the previously calculated fluid pressure at the opening to the turbine cavity using 

the relationship 

     τ = P A r         (5) 

where P is the pressure at the opening, A is the cross-sectional area of the channel and r is 

the radial distance from the center of the turbine to the point of impact on the blade, as 

shown in Figure 4.3.  For this design r = 92 µm.  The torque for the fabricated design 

should be 2.94 x 10-4 µN-m. 
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Figure 4.3: Cross-sectional view of turbine showing fluid pressure and resultant torque. 

 

 To calculate the angular velocity of the fabricated turbine, the simplified model of 

a particle in a two-dimensional plane shown in Figure 4.4 can be used because the 

movement of the turbine is restricted in the z-direction.  The turbines movement is also 

restricted in the radial direction (V║), so that the velocity is purely in the perpendicular 

direction (V┴).  The turbine’s angular velocity is given by 

     ω = V┴ / r        (6) 

 The calculations for the ideal angular velocity of the turbine, assuming no loss 

due to friction or backpressure, should be 4.12 radians/second.  This translates to a 

rotation rate of approximately 39.3 revolutions/minute.  Since the turbine and stator are 

connected via the turbine shaft, the stator should also be rotating at 39.3 rpm. 
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Figure 4.4: Vector diagram for the angular velocity of a particle in a 2-dimensional plane 
[39]. 

 

 From Equation 3, the rate of energy transfer from the fluid to the turbine can be 

determined by multiplying the angular velocity of the turbine by the applied torque.  For 

the fabricated design, this results in an energy transfer rate of 1.213 x 10-9 N-m/s.  

Although this is a key figure of merit for turbine designs, it will have limited effect on the 

overall power output of the device.  Rather, it is the electromagnetic portion of the device 

that will affect the majority of the power output characteristics. 

4.2.3. Electromagnetic Induction 

 The four fundamental equations of electromagnetism, known as Maxwell’s 

equations, describe the behavior of electric and magnetic fields.  Maxwell’s third and 

fourth equations, 

     ∇ x E = -∂B/∂t           (7) 

        ∇ x B = µ0J + µ0 ε0∂E/∂t       (8) 
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describe the interaction of electric and magnetic fields and are the most relevant to this 

project.  Equation 8, known as Ampère-Maxwell Law, describes the current density (J) 

and the displacement current (∂E/∂t) produced by the curl of the magnetic field (∇ x B).  

This means that a time changing magnetic field will induce a current in a wire or loop 

within the field, as illustrated in Figure 4.5 [24].   

 

Current Flow 

Direction  
of Rotation 

(a)                                                               (b) 

Figure 4.5: Side view (a) and end view (b) illustration of Ampere-Maxwell current 
induction in a loop of wire (gold) due to a time-changing magnetic field (red). 

 

 This method of power generation is the basis for most of today’s energy 

production.  All modern power plants, with the exception of solar plants, either superheat 

a liquid or use the force of gravity acting on water to turn a turbine, which in turn, turns 

an array of large permanent magnets.  These arrays induce a current flow in thousands of 

coils of wire surrounding them, thus producing the electricity that touches every aspect of 

human life today. 
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 The Ampère-Maxwell Law is also the basic equation that describes the current 

produced by the MFPG device.  Once magnetized, the nickel blocks on the stator will 

produce a constant magnetic field.  Once the turbine and stator begin to move, the coil 

below the stator will no longer be sitting in a constant magnetic field, but will instead be 

immersed in a time-changing magnetic field.  As an arm of the stator passes over a point 

on the coil, the coil will experience a relatively strong magnetic field due to an increased 

number of magnetic flux lines penetrating its surface.  The coil will then experience a 

relatively week magnetic field as a gap between the stator arms passes above it. 

 If the cross-sectional area of the loop and either the magnetic field (B) strength or 

the magnetic flux (Φ) is known, the remaining variable can be calculated using 

     ΦB = ∫ B · dA               (9) 

where dA is the cross-sectional area element in vector form.  Equation 9 can be 

simplified to  

             ΦB = B A Cos (Θ)           (10) 

where Θ is the angle between the magnetic field and the cross-sectional area.  This is 

maximized when Θ = 0º (the field is perpendicular to the area, Figure 4.6a) and 

minimized when Θ = 90º (the field is parallel to the area, Figure 4.6b).  Using Equation 

10, the maximum theoretical value for the magnetic flux density, and the dimensions of 

both the stator magnets (580x80x20 μm) and the cross-sectional area of the coil (2 x 10-11 

m2), each of the magnets can produce a field of 32 Teslas.   
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 Given this magnetic field strength, the theoretical current can then be calculated 

using a simplified version of Equation 8.   

     ∇ x B = µ0J        (11) 

Equation 11 assumes that the displacement current component (∂E/∂t) from Equation 8 is 

negligible compared to the current density (J).  While this is not strictly accurate, it is 

sufficient for these rough calculations.  Given the above conditions, the stator and coil 

could generate approximately 0.85 μA. 

 

 

 

(a)      (b) 

Figure 4.6: Magnetic field lines shown perpendicular (a) and parallel (b) to the cross-
sectional area. 

 

 Current flowing through the coil will generate a voltage difference between the 

ends of the coil due to the resistance of the coil material.  Equation 12 shows that the 

resistance in a wire is due to the resistivity (ρ) of the material and the dimensions of the 
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wire, where L is the length of the wire and A is the cross-sectional area of the wire.  This 

equation is sufficient for the given coil dimensions, because quantum scale effects such 

as electron-electron collisions do not have any significant effects for thicknesses above 

15nm [40]. 

           R = ρL/A            (12) 

 At room temperature (20 ºC), gold has a resistivity of 2.44 x 10-8 Ω-m.  The 

fabricated coil will have a length of 46.18 mm and be 10x2 μm, for a cross-sectional area 

of 20 x 10-12 m2.  This will give the coil a resistance value of 56.34 Ω. 

Using this resistance value, Equations 13 and 14 give a maximum voltage of    

382 μV and an output power of 2.6 nW. 

     V = IR             (13) 

     P = VI               (14) 

 The dimensions of the stator magnets and the coil can be adjusted, however, to 

increase the power output from the same design, as shown in Figure A.13 - 17Figure 

A.17.  The initial design has the stator magnets at 80 μm wide.  The height of the magnet 

can be changed during fabrication by electroplating additional nickel onto the magnet.  

The output current of the device is given as a function of the magnet height (X) by  

            IT1 = ( 8 ΦNI-g WM X ) / ( µ0 κm )        (15) 

where ΦNI-g is the magnetic flux density of the nickel, WM is the width of the magnet, µ0 

is the magnetic permeability of freespace, and κm is the ratio of the permeability of the 

material to the permeability of freespace (µ/µ0). 
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By changing only the height of the magnets, Figure 4.7 shows that the output 

current of the device increases linearly to 27 μA, when the stator is 80 μm x 80 μm.  This 

is an increase in the output current of two orders of magnitude over the 20 μm thick stator 

magnets.   
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Figure 4.7: Output current as a function of the stator magnet height, or thickness.  The 
current increases linearly with the height of the magnets. 

 

 The voltage generated in the coil and the total power output can also be changed 

by altering the dimensions of the coil.  Equation 16 shows the voltage generated by 

current flowing through the coil and Equation 17 shows the output power of the device, 

both as functions of the cross-sectional area of the coil (AC1).  The length of the coil was 

measured through the center of the coil. 

        VC1 = ( ITh ρAu LC ) / AC1            (16) 

        P1 = ( ITh
2 ρAu LC ) / AC1            (17) 
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 Figure 4.8 shows the output voltage curve for the coil cross-sectional area 

between 2.5 x 10-12 m2 and 20 x 10-12 m2.  The voltage increases as the cross-sectional 

area of the coil decreases for a maximum value of 12.2 mV when the cross-sectional area 

is 2.5 x 10-12 m2.  If both the height and width of the stator magnets are changed 

simultaneously, the output voltage curve becomes parabolic.   
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Figure 4.8: Output voltage as a function of the cross-sectional area of the coil.  Voltage 
is maximum when the cross-sectional area is minimum. 

 

  Since power can be found by multiplying voltage by current, Equation 17 

generates a curve that is very similar to the voltage curve from Figure 4.8.  Indeed,  

Figure 4.9 looks very similar, and again is maximized for a minimum value of the cross-

sectional area of the coil.    
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 The maximum theoretical power output from this device, given the stator magnet 

dimensions of 580x80x80µm, the coil dimensions of 46,200x10x0.25 µm, and the 

maximum flux density for nickel of 600 gauss, is approximately 0.3325 µW. 
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Figure 4.9: Power output of the device as a function of the cross-sectional area of the 
coil.  Like the output voltage, output power is maximized when the coil cross-section is 
minimized. 

 

4.3. Chapter Summary 

These calculations, while small, represent the possibilities inherent in this design.  

Small changes in any of the four sections of the device have great effects on the overall 

output power of the device.  Also, total power output may be increased by connecting 

two or more of the devices in series or parallel, depending on the need for either 

increased current or voltage.  
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One possible problem that these calculations do not illustrate is the danger of 

overloading the coil.  While the voltage and therefore the power is maximized as the 

cross-sectional area of the coil decreases, trying to push too many electrons, too quickly 

through that small of a wire may cause the wire to melt or deform.  Keeping the coil 

several times wider than the height of the coil may help to alleviate this possibility by 

providing increased contact area to the substrate, which acts as an infinite heat sink.   



 

V. Designs  

5.1.  Chapter Overview 

 Engineering design is an iterative process, often taking numerous design 

modifications before a working design is finalized.  Nowhere is this truer than when 

designing MEMS structures.  Because of the shift in material behavior when going from 

a macro scale to a micro scale, devices often behave differently than a macro model 

would predict.  This means that a novel MEMS design must often be created, analyzed, 

and redesigned several times before the desired results are achieved.   This chapter 

provides details concerning the origins of the MFPG device designs and the effects of 

each design element on the overall performance of the device.   

5.2.  Design Inspiration 

 As with any good design, the inspiration for the MFPG designs came both from 

nature and from previous technological marvels.  The design for the microchannels came 

directly from basic human physiology, namely the circulatory system.  Designs for the 

generator, however, came from hydroelectric power plants like the ones operating at the 

Hoover Dam. 

5.2.1. Inspiration From Human Physiology  

 In order to harvest energy from within the body, the different potential sources 

must first be identified.  The human body utilizes several forms of energy, including 

chemical, electrical, thermal, mechanical and magnetic.   

 Since electrical energy is the desired output, the electrical energy in the body 

would be an ideal source.  The only problem with this is that the electrical energy is only 
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present in the nervous system.  Attempting to harvest this energy directly could have 

negative repercussions on the person, ranging from minor loss of feeling to permanent 

systemic damage to the nervous system. 

 Magnetic energy is commonly used to generate electrical energy.  Attempts to 

harvest this energy from the body should not have any lasting effects as the bio-magnetic 

field is present everywhere in the body and harvesting tools tend to be static.  The major 

drawback to this is the relative weakness of the bio-magnetic field.  As Figure 5.1 shows, 

the biomagnetic field, at its strongest point surrounding the heart, has a strength of only 

~10 picoTeslas, roughly 1/100,000th the strength of the Earth’s magnetic field and twelve 

orders of magnitude less than a Magnetic Resonance Imageing (MRI) scan [41].  As 

such, it is extremely difficult to measure and would be even more difficult to extract 

energy from the field. 

 

Figure 5.1: Typical amplitudes and frequency ranges for various biomagnetic fields and 
reference fields.  Field strength is in fT = 10-15 T [41]. 
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 The components for an electrochemical cell are abundant within the human body.  

Zinc and copper, the two most common metals used in simple electrochemical cells are 

minerals that the human body must have to function properly [42].  The problem arises 

from the need to extract the minerals from the body, store them in a usable fashion, like 

the simple voltaic cell shown in Figure 5.2, and return the ionized waste to the body for 

disposal.  Again, this is a complex, but potentially feasible method for harvesting energy 

from the human body. 

 
Figure 5.2: Simple zinc/copper voltaic cell with 1.1V potential under standard conditions 
[43] 
 

 Thermal energy systems are an efficient method of doing work.  They rely on the 

expansion and contraction of molecules due to the application of hot and cold 

temperatures, respectively.  These principles have been applied on a large scale in both 
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the Ocean Thermal Energy Conversion (OTEC) process [44]and geothermal heat pumps 

which are commonly used to heat and cool residential housing [45].  The OTEC process 

uses a low-boiling-point fluid such as ammonia to turn an electromagnetic turbine.  

Warm ocean water is used to vaporize the ammonia and the resulting expansion of the 

vapor turns the turbine.  Cool ocean water is then used to condense the ammonia so that it 

may be used again.  One potential problem with using thermal energy for generating 

electricity within the human body is the lack of a temperature variation over small 

distances.  Without the ability to cool the low-boiling-point fluid, the device would only 

operate during the initial vaporization. 

 This leaves only mechanical energy as a potential source.  There are two primary 

sources of mechanical energy within the body, the first being the expansion and 

contraction of muscle tissue and the second being the flow of fluids through the body.  

Energy could be harvested from the expansion and contraction of muscle tissue using 

implanted piezoelectric materials.  Energy flow from these implants, however, would be 

dependent upon the level of activity of the muscles into which they were implanted.  

Also, a secondary means of collecting and analyzing the patient’s blood would still be 

necessary. 

 Fluid flow in the human body occurs in two systems: the digestive system and the 

circulatory system.  There is potential use for such a device in the digestive tract, but not 

for analyzing blood.  Since the circulatory system is the primary means of moving blood 

throughout the body, has a constant flow rate through the capillaries, and transports the 

very substance that is to be analyzed, it is an ideal source of energy for this device.    
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5.2.2. Inspiration From Hydro-Electric Dam 

 Once the circulatory system was identified as a likely source for energy 

harvesting, how to extract the energy from the fluid flow efficiently, became the question.  

The most likely answer came from a device that has been employed as long as humans 

have used electricity and who’s predecessors have been employed by humans for 

hundreds of years: the hydroelectric generator, shown in Figure 5.3.   

 The basic operating principles for a hydroelectric generator are simple.  The fluid 

flow turns a large paddle wheel, known as the turbine, which is attached to a shaft.  The 

shaft translates the motion of the wheel to a set of magnets, known as the stator.  The 

stator is surrounded by numerous coils of wire, usually made of copper.  As the stator 

turns, the flux generated by the magnets induces a current in the copper wire, thus 

producing electricity.   

 

 

Figure 5.3: Standard hydroelectric power plant model using an impulse turbine [46]. 

55 



 

5.3.  Design Details 

 From these two sources of inspiration, three designs were created: one for the 

microfluidic channels and two for the generator design.  The dimensions for the designs 

were given previously in Section 4.1. 

5.3.1. Microfluidic Channel Design 

 The primary concern when creating the microfluidic channel design was to mimic 

human capillaries in order to minimize disruption in the blood flow.  This was done by 

matching the diameter of the channels to the average size of human capillaries, roughly 

10 μm.  By doing this, changes in pressure associated with switching from a diameter of 

one size to another are minimized.   

 The second concern was to allow sufficient spacing between detection devices.  

This is why the original channel design, shown in Figure 5.4, shows winding channels.   

 

 
Figure 5.4: Top view of original microfluidic channel design with winding 
microchannels. 
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 The specific material that is being monitored in the fluid can be detected through 

two methods.  The first method, impedance spectroscopy, measures the resistance change 

between a set of voltage probes, operating at a given frequency.  The probes are coated 

with a protein specific to the protein or molecule that they are monitoring for and would 

operate by measuring the voltage difference between the positive and negative probes 

[47].  This change in the resistance would be due to the presence or absence of the target 

in the fluid.    Sufficient space would be required between probe pairs to prevent voltage 

from one pair interfering with the next.  The second method, refractive index detection, 

has recently been shown to be a sensitive, universal detection scheme for identifying the 

composition of a microfluid flow for several lab-on-a-chip applications.  A low-powered 

laser is directed through the fluid channel and detected on the other side.  A deflection of 

the laser beam or a shift in its intensity can be used to identify the composition of the 

fluid [48]. 

 Since this is a proof-of-concept design, the microchannels and the turbine were 

designed roughly four times the size of the ideal device described above.  This alleviated 

some difficulties associated with handling and measuring such a small fluid flow.  

5.3.2. Original Generator Design (Gear Ratio Design) 

 Figure 5.5 shows the original design for the generator portion of this project.  It 

consists of a vertical turbine shaft linked by gears to a horizontal stator shaft, all 

sandwiched between three layers of glass wafers.  The key advantage to this design is the 

ability to change the rate of rotation of the stator shaft.  This can be done by changing the 

relative sizes of the two gears shown in Figure 5.6.  The gear ratio will determine the 
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frequency of the output current and can be adjusted to match the demands of the 

application. 

 

Legend 
   Turbine & Shaft 
   Turbine Gear 
   Stator 
   Magnets 
   Coil 
   Wafer Features 

Figure 5.5: Original generator design with horizontal stator shaft. 

 

 

Figure 5.6: Gears used for original generator design with respective radii: Gear A - 
Turbine shaft gear, Gear B - Stator shaft gear. 

 

 The primary drawback to this design is the difficulty associated with trying to 

deposit nickel along the length of the stator.  Since nickel requires a seed layer to adhere 

to silicon, the stator shaft would have to be fabricated horizontally.  This would require 

the shaft to be hinged, as shown in Figure 5.7, either in four sections attached along the 
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length of the shaft (1) that could be folded together, or in two long sections hinged in the 

middle (2) that could be folded together and fused.  

 

 Gear Post 

(1a)  Gear Posts 
Back plate 
Posts 

 Hinges 

(1b) (1c) (1d) 

(2a) 

(2b) 

 Gear Post 

Figure 5.7: Hinged designs for the stator shaft (a) with stator gears (b) and back plate 
components (c and d). 

 

 Because of limitations in the methods that could be used to create the hinged 

designs (i.e. – PolyMUMPS, SU-8 reflow, micromolding, etc.), the hinges may not be 

thick enough or robust enough to withstand the constant motion of the device for an 
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appreciable length of time.  Also, these micron-sized parts would need to be assembled 

by hand, using tweezers and a microscope. 

5.3.3. Revised Generator Design (Flat Coil Design) 

 Given the limitations in fabricating the first design, a simpler design was created 

for the express purpose of removing the horizontal stator shaft.  The design shown in 

Figure 5.8 was named the “Flat-coil Design” because the gold wires lay flat on the 

bottom wafer in an expanding coil, as shown in Figure 5.9a.   

 

 

Legend 
   Turbine & Shaft 
   Stator 
   Magnets (Ni) 
   Coil (Au) 
   Wafer Features 

Figure 5.8: Side view of the flat-coil design illustrating the horizontal stator with 
magnetized nickel suspended above a gold coil. 

 

 The magnetic induction in this design comes from the flat stator, shown in   

Figure 5.9b, which now attaches directly to the turbine shaft and is suspended above the 

induction coil.  This greatly reduces the difficulties associated with fabrication and nickel 
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deposition and also simplifies the assembly of the device, as only two pieces must be 

inserted into the glass wafers and fused together. 

 Like the previous design, the frequency of the output current can be designed.  

For this design, however, the frequency of the output current is dependant on the 

diameter of the outer gold coil.  As the electrons are pushed through the gold coil, the 

spacing between peaks becomes larger.  This is due to the increasing distance between 

the magnets on the stator arms in the radial direction.  Once the electrons leave the coil 

and the presence of the magnets, the frequency should remain constant.   

        

          (a)                                                                            (b) 

Figure 5.9: Bottom view of gold induction coil with partial nitride layer (grey) shown 
where the wires cross (a) and stator arms with nickel (purple) (b) in the flat-coil design. 

 

 One possible problem with this design is the potential for overheating the gold at 

the return junction of the coil.  The frequency difference between the current returning to 

the coil and the current in the innermost loop may cause an electron vacuum, forcing the 
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returning electrons to accelerate.  This will cause an increase in electron collisions and, 

by extension, an increase of thermal energy being given off. 

 

5.4.  Dominant Design Elements 

 For both of the designs, there are four main factors that will determine the level of 

power output from this device.  They are, 1) the rate of fluid flow in the microchannels, 

2) the speed with which the turbine rotates, 3) the size and magnetic properties of the 

stator magnets, and 4) the dimensions and number of loops in the induction coil.  Because 

of the nature of transduction from mechanical to electrical energy, all four of these 

factors are inter-connected and a change in any one will result in a change of the overall 

power output. 

5.4.1. Fluid Flow Rate 

 Since this device is meant to interface with human capillaries, the fluid flow 

through the device should mimic the flow of blood in the body.  Given the precautionary 

measures necessary for dealing with blood, however, the designs will be tested using 

water as the fluid flowing through the microchannel.  As discussed in Section 4.2.1, the 

critical variable for flow through the ideal MFPG device is the head pressure, or the 

pressure at the opening to the turbine cavity.  This dictates the force that the fluid will 

have as it strikes the turbine and, by extension, the speed with which the turbine will 

rotate.  Once the ideal head pressure was calculated, the microchannel dimensions for the 

fabricated MFPG device could be determined to match the head pressure of the ideal 

MFPG device and to determine the flow rate of the water through the fabricated 
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microchannels.  The fabricated microchannels were lengthened to accommodate the 

design of the Lab-on-a-chip microfluidic analysis kit.  This was done to simplify testing 

of the devices. 

5.4.2. Turbine Size (Rate of Rotation) 

 Once the flow rate for water in the fabricated microchannels was calculated, the 

dimensions for the turbine were determined.  Since the microchannels were designed 

roughly four times larger than the ideal design, the turbine also had to be roughly four 

times its ideal size.  The critical dimensions for the turbine are the size and shape of the 

blades and the distance from the axis of rotation to the point of impact of the fluid on the 

blades [49].  Because of the difficulty in fabrication, the turbine blades were designed to 

be straight vertical paddles.  Their dimensions roughly match the size of the 

microchannels, with the height being slightly less to prevent friction and the width being 

slightly larger to allow extra space for the fluid. 

5.4.3. Dimensions and Material for Stator Magnets 

 The primary concern with the design for the stator was having sufficient mass of 

the ferromagnetic material to generate an appreciable magnetic field.  Since no relevant 

documentation exists on the strength of a magnetic field given a small volume of 

material, the stator was designed to maximize the volume of the ferromagnetic material 

while not being overly heavy.   

 The second concern for the design of the stator was the composition of the 

ferromagnetic material itself.  Table 5.1 shows the magnetic properties of various 

commonly used ferromagnetic materials and how each is obtained.  The strongest 
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magnetic fields are generated by pure iron [50], like the iron core of the earth.  However, 

iron is not typically used in MEMS processes.  It can however be deposited with nickel in 

a nickel-iron electroplating bath that is commonly used in the LIGA process [51].  The 

same cannot be said of permalloys and cobalt, which are not used for MEMS.  Nickel, the 

material with the fifth highest flux density, is more commonly used in the MEMS process 

and can be easily and inexpensively deposited in the necessary shape and size.  When 

nickel is 99% pure and has been annealed to remove crystalline defects it has a maximum 

relative permeability of 600 and a remanent flux density of 0.4 Teslas. 

 

Table 5.1: Magnetic properties of ferromagnetic materials [43]. 
Material Treatment Initial 

Relative 
Permeability 

(H/cm2) 

Maximum 
Relative 

Permeability 
(H/cm2) 

Coercive 
Force 

(oersteds) 

Remanent 
Flux 

Density 
(gauss) 

Iron, 99.8% 
pure 

Annealed 150 5000 1.0 13,000 

Iron, 99.95% 
pure 

Annealed in 
hydrogen 

10,000 200,000 0.05 13,000 

78 Permalloy Annealed, 
quenched 

8,000 100,000 0.05 7,000 

Superpermalloy Annealed in 
hydrogen, 

controlled cooling 

100,000 1,000,000 0.002 7,000 

Cobalt, 99% 
pure 

Annealed 70 250 10 5,000 

Nickel, 99% 
pure 

Annealed 110 600 0.7 4,000 

Steel, 0.9% C Quenched 50 100 70 10,300 
Steel, 30% Co Quenched --- --- 240 9,500 

Alnico 5 Cooled in magnetic 
field 

4 --- 575 12,500 

Silmanal Baked --- --- 6,000 550 
Iron, fine 
powder 

Pressed --- --- 470 6,000 
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5.4.4. Coil Size and Number of Loops 

 The final design element that will determine the power output of the device is the 

coil.  Three variables affect the coil’s ability to convert magnetic flux lines into current: 

position of the coil relative to the flux, size of the coil, and composition of the coil.  In 

order to maximize the number of flux lines that pass through the surface of the coil, the 

cross-sectional area of the coil must be positioned perpendicular to the magnetic flux 

lines emanating from the stator magnets.  Both the cross-sectional area and the length of 

the coil also affect the coil’s ability to conduct.  Again, the surface area must be 

maximized, while minimizing the cross-sectional area to allow for maximum current flow 

(Equation 10).  Finally, the coil should be composed of a metal with low resistivity (ρ).  

Table 5.2 gives some common materials and their associated resistivity values at 0 ºC. 

Copper is most commonly used in large electromagnetic generators because of its low 

resistivity, low cost and abundance.  Given the application, however, the resistivity value 

becomes the driving factor for selecting a material for the coil.  Since both copper and 

gold are commonly used in MEMS devices and gold has a slightly lower resistivity, a coil 

made of gold should allow more current to flow.   

 

Table 5.2: Resistivity values for common materials at 0 ºC [24]. 

Material Resistivity ρ (Ω-m) 
Gold 1.47x10-8 

Copper 1.54x10-8 
Aluminum 2.43x10-8 
Beryllium 2.71x10-8 
Tungsten 4.82x10-8 

Zinc 5.59x10-8 
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5.5. Chapter Summary 

 This final MFPG design combines human physiology, standard hydroelectric 

power generation systems, electromagnetic field theory, and MEMS fabrication 

techniques.  It is a basic hydroelectric power system miniaturized to use a microfluid 

flow and modified to allow for fabrication methods and materials.  It has the flexibility to 

allow each of the four elements of the design to be altered independently, changing the 

power output characteristics to meet the requirements of the device, without requiring a 

complete redesign.   

 



 

VI. Fabrication 

6.1.  Chapter Overview 

 The process of fabricating a new device is often more difficult and time 

consuming than any other step in the chain.  Materials must be selected, photoresist 

recipes must be perfected, deposition methods selected, etch rates discovered; and, with 

each step during the fabrication process, the probability of error increases.  Out of a 

hundred initial test devices, only a handful might actually survive the fabrication process 

intact and as designed. 

 The fabrication of this device was no different.  This chapter discusses the process 

of fabricating various parts of the device, the difficulties associated with the processes, 

and the proposed methods for fabricating the remaining portions of the device. 

6.2. Glass Slides 

 Four packages of glass cover slides with dimensions of 22x50 mm and between 

0.17 and 0.25 mm thick.  These slides were chosen because they are slightly larger than 

the dimensions of the testing apparatus shown in Figure 2.5, and were diced to 

approximately 15 x 45 mm so they would fit.  They were also chosen because they are 

sufficiently thin to make etching relatively quick, but thick enough to reduce the risk of 

breakage during handling.  The thickness was measured on several slides and an average 

thickness of 0.2 mm was found, with a variance of ±0.01 mm.     

 These slides were to have formed the three layers in which the microchannels, the 

turbine, the stator and the coil would be housed.  To obtain the required depth and 

vertical sidewalls, an RIE etch or DRIE etch would be required, as a wet etch would etch 
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isotropically.  Therefore, an RIE etch test was performed, using standard AFRL silicon 

dioxide etch recipes, to determine the etch rate of the slide using a Freon-14/O2 gas mix. 

The slide was coated with 3350 photoresist approximately 4.3 µm thick, which was then 

removed from one end using acetone.  Two Kapton photoresist dots were then applied, 

one to the blank slide and one to the photoresist, to help determine the total etch depth.  

The slide was etched for 27 minutes producing a depth of ~4000Å on the glass and 1.5 

µm on the photoresist.  This etch rate of 184 µm/min would require an etch time of two 

and a half hours to etch 2 µm down. 

 Given this, an RIE etch of the full 200 µm slide thickness would take several 

days. Despite the ability to see through the slides to the rotating turbine and stator within, 

this makes the glass slides an impractical choice for the structural layers of the device.   A 

cryoflourine gas mix is commonly used for DRIE etches of silicon and would easily etch 

through silicon structural layers at a rate of ~10 µm/min. 

 

6.3. Turbine and Shaft 

 The turbine and shaft were to be fabricated from the backside of some available 

Silicon-On-Insulator (SOI) wafers.  SOI was chosen because different etchants are used 

for silicon and silicon dioxide and the silicon dioxide would prevent the fabricated parts 

from being released after etching.  The backside of the wafer was originally 350 µm 

thick, but was thinned to approximately 143 µm thick using a lapping process.  Lapping a 

wafer is done by placing a liquid suspension on the sample and using a flat plate to apply 

pressure and rotate in a circular motion.  These wafers were lapped at 30 rpm on a 15 
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inch platter using a suspension containing 5 µm aluminum oxide particles in water at a 

concentration of 150 g/l.  The target thickness for the backside silicon layer was between 

100 and 200 µm.  This would allow for the thickness of the turbine, the length of the 

primary shaft through the structural layer and the secondary shaft that the stator will 

attach to.   

 The three steps necessary to fabricate the turbine and shaft using a cryoflourine 

DRIE process are shown below in Figure 6.1.  The first step (a) would be to pattern the 

backside of the SOI wafer using the turbine mask and etch the full thickness of the silicon 

layer.  The second step (b) would be to re-pattern the wafer using the primary turbine 

shaft pattern.  This pattern must be etched the thickness of the silicon layer minus the 

required 40 µm for the turbine.  Finally, the wafer must be re-patterned using the 

secondary turbine shaft pattern.  The depth of this etch (c) is dependant upon the 

thickness of the coil and the stator. 

 

 
(a) (b) (c) 

40 µm 

143 µm 

~70 µm 

SiO2 

Silicon 

Silicon 

Figure 6.1: Completed fabrication steps showing the turbine etch (a), the primary shaft 
etch (b), and the secondary shaft etch (c).   
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 Once the turbines were fabricated, they would need to be encapsulated to prevent 

them from floating away in the release etch.  Figure 6.2 illustrates the steps necessary to 

accomplish this.  First, a thick layer of photoresist was to be deposited over the turbines 

(a).  The photoresist would be patterned to open 1 mm wide channels in a grid pattern 

around the turbines, exposing the silicon below (b).  Si3N4 would then be deposited across 

the wafer and patterned with small 1 µm square etch holes (c).  This would allow for the 

removal of the photoresist and the SiO2 to release the turbines without allowing them to 

float away (d).  Each turbine could then be accessed individually as needed by using a 

probe tip to peal away the Si3N4 above it. 

 

 

Figure 6.2: Fabrication steps necessary to encapsulate and release the fabricated turbine 
and shaft. 

 

 

 

Si3N4 

Photoresist 

(b) (c) (d) (a) 
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6.4. Coil 

 The coils were fabricated on the glass cover slips mentioned in Section 6.2.  Prior 

to patterning, the slides underwent an initial cleaning with acetone and methanol to 

remove any excess material or residue and a dehydration bake for one minute at 110 ºC to 

remove any remaining moisture that would disrupt the photoresist application process.  

Once they had cooled, a liberal amount of SF-11 photoresist was applied to four slides, 

before being spun for 30 seconds at 4000 rpm.  NanoEBR was then applied to the back 

and sides of the slides via a cotton swab to remove any photoresist edge beading.  The 

slides were again baked on a hotplate for two minutes at 200 ºC to remove moisture and 

solvents from the photoresist.  This spin rate and length provides an approximate 

photoresist thickness of 1.1 µm.   

 Once the SF-11 layer has been prepared, a layer of AZ5214 negative photoresist 

was applied to all twelve slides.  The slides were again spun at 4000 rpm for 30 seconds 

and baked at 110 ºC for 60 seconds, providing a 1.4 µm thick layer.  The slides were then 

placed on the Karl Suss MA6 Mask Aligner and exposed to 16 mJ/cm2 of ultraviolet light 

(UV).  This transfered the mask image onto the AZ5214.  Following the initial exposure, 

a post-exposure bake (PEB) was done on the slides to reverse the image.  When exposed 

AZ5214 is baked at ~ 125 ºC for two minutes, it looses its photosensitivity and 

effectively becomes neutral.  This recipe, however, is for a standard wafer thickness of 

~500 µm.  As these substrates were only 200 µm thick, it was necessary to reduce the 

PEB to 110 ºC for 90 seconds to ensure sufficient pattern development. 
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 Following the PEB, a flood exposure was performed, subjecting the previously 

unexposed photoresist to approximately 500 mJ/cm2.  This causes the previously 

unexposed areas of photoresist to become exposed and therefore vulnerable to developer.  

The slides were developed in a 1:5 mixture of 351 developer and deionized water (DI).  

A microscope and profilometer were used to examine the features to verify the designs 

were sharp and free of photoresist.  The initial four slides then underwent a deep UV 

flood exposure for 300 seconds to pattern the SF-11, development in SAL101 developer 

for 120 seconds, six rinse cycles with DI in an automatic rinse tank, and drying with 

Nitrogen (N2).  

 Once the slides were patterned, they were fixed to a blank silicon wafer using 

1813 photoresist.  This was done to facilitate the metallization process, as the slides were 

to be metalized in sets of four.  The 1813 was spun onto the wafer at 4000 rpm for only a 

few seconds and the slides were immediately placed patterned-side up on the wafer.  

After four of the slides had been positioned on the wafer, the wafer was softbaked to 

remove the remaining solvent and solidify the photoresist, thus anchoring the slides to the 

wafer.  This process was repeated for the remaining eight slides.  Finally, the slides were 

placed in the LFE Barrel Asher for two minutes to remove any remaining photoresist 

within the developed pattern, leaving the finished photoresist patterns shown in 

Figure 6.3. 
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Trace Pattern 

Main 
Alignment 
Marks 

Figure 6.3: Slide pattern after ashing.  Dried 1813 photoresist can be seen through the 
slide.  

 

 Following the initial metal deposition on the 0.25 µm and 0.5 µm thick center coil 

traces, the excess metal was removed via acetone bath.  This also released the slides from 

the blank Si wafers.  Some gold remained outside of the patterned areas after the initial 

acetone bath.  The slides were then placed in an ultrasonic bath in an attempt to remove 

the remaining gold.   Figure 6.4 shows the excess gold remaining between the coil trace 

on the left and the alignment marks on the right.  This was a common appearance among 

the 0.25 µm and 0.5 µm thick traces and may have been due to insufficient photoresist 

thickness and over baking of the photoresist that was present.   
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Figure 6.4: 0.25 µm thick gold coil trace with excess gold remaining between the trace 
and the small alignment marks. 

 

 Following metallization of the 1.0 µm thick traces, the excess metal was removed 

via metal liftoff.  The slides were then cleaned with acetone and placed in heated 1165 

striper for two minutes to remove the SF-11 and rinsed for six cycles in an automatic 

rinse tank.  These traces had much smoother edges than the 0.25 µm and 0.5 µm thick 

traces and no excess metal between the traces and the small alignment marks because of 

the added photoresist thickness.  Figure 6.5 shows a 1.0 µm thick trace with smooth 

edges and sharper corners than the other thicknesses. 

 

Figure 6.5: 1.0 µm thick coil trace with good resolution.  Outline is sharp and free of 
excess gold. 

74 



 

 Once the center coil traces were fabricated, a 1000 Å thick layer of silicon nitride 

(Si3N4) was deposited on all of the glass slides.  This acts as a dielectric to prevent 

current leakage between the two layers of the coil.  Once nitride was deposited on all of 

the slides, they were patterned using 1813 photoresist (Table C.2) and etched using a 

Freon-14/O2 RIE process. 

 Once the nitride was patterned, resistance measurements were taken to ensure all 

of the nitride had been removed from the surface of the coil traces and the window in the 

center of the nitride was clear.  Figure 6.6 shows a profilometer measurement across the 

window in the nitride perpendicular to the center coil trace.  It shows the full thickness of 

the nitride on either side of the window, the thickness of the center coil trace and the 

opening around the center coil trace in the nitride. 

 

 

Figure 6.6: Profilometer measurement showing the profile of a 0.25 µm center coil trace 
through the window opened in the Si3N4. 
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 Following the resistance testing, the slides were again patterned with SF-11 and 

AZ5214 to pattern the gold deposition for the main coil and the contact pads.  This layer 

of gold was deposited to thicknesses corresponding to the thicknesses of the center coil 

traces so that, once completed, the gold thickness would be constant on each slide from 

one contact pad to the other.  Again, a seed layer of 200 Å of titanium was deposited to 

allow for adhesion to the glass and the nitride.  This seed layer will affect the resistance 

measurements of the coil and will be discussed further in Section 7.2.1. 

 After the main coils were fabricated, they were again measured under the 

profilometer to gauge the thickness of the coils.  Figure 6.7 shows the difference in 

thickness between the two coil layers on a 0.5 µm slide.  The difference of 380 Å is due 

to the ion beam digging holes in the gold target during longer evaporation runs, requiring 

a readjustment.  The beam had to be adjusted twice during this run. 

 

Figure 6.7: Profilometer measurement of the main and center coil traces leading to the 
probe pads of a coil on slide #12.  Target coil thickness was 0.5 µm. 
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6.5. Stator 

 The stator was also to be fabricated from the SOI wafers described above, 

however they were to be fabricated from the device side of the wafer, which was 50 µm 

thick.  This thickness was not ideal because of the resulting increased mass of the stator 

arms and the necessity to etch deeper into the second glass layer.  Several attempts were 

made to reduce the thickness of the silicon layer to approximately 20 µm using the 

lapping process previously addressed.  This proved ineffective, however, because the 

lapping process could not be accurately controlled over such a small thickness.  After just 

a few rotations, groves could clearly be seen in the silicon exposing the silicon dioxide 

below. 

 The decision was therefore made to use the full 50 µm thick layer.  However, 

before the SOI wafers were used, a blank three inch silicon wafer was electroplated as a 

test, because the Ni electroplating bath being used had not been characterized.  Figure 6.8 

shows the setup of a typical Ni electroplating bath with the sample attached to either the 

anode or cathode depending on whether the sample is being added to or subtracted from. 

 A seed layer of 200 Å thick chromium and 700 Å thick copper were evaporated 

onto the wafer, to allow for electrical conductivity.  One Kapton photoresist dot was 

placed on the copper seedlayer half way to the edge of the wafer.  This would prevent 

adhesion of the nickel to this section of the wafer in the electroplating bath and, once 

removed after the electroplating, would allow for measurement of the electroplated nickel 

thickness.  The wafer was then placed into the electroplating bath with a current density 

of 10 mA/cm2 and an average current of 0.456 A. 
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Figure 6.8: Nickel electroplating bath setup [52]. 

 

 After 39.5 minutes, the wafer was removed from the electroplating bath and 

rinsed with DI.  Delamination was clearly visible in several areas around the edge of the 

wafer.  After the Kapton dot was removed, the wafer was dried and tested under the 

profilometer.  The electroplated nickel was a dull brownish-grey and measured 8 µm 

thick from the copper seed layer where the Kapton dot was located during electroplating.  

The delaminated areas around the edge were shiny grey and the height difference was 

measured to be approximately 7 µm, indicating that the seed layer and approximately 1 

µm of the electroplated nickel remained.  Metal lift-off methods were then applied to test 

the adhesion of the nickel.  The nickel did not come off the wafer by this method, 

however, over the course of several days, the nickel continued to delaminate until only 

the nickel visible in Figure 6.9 remained.  The nickel that delaminated over the course of 
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the week removed sections of substrate as it delaminated, giving the streaked, cratered 

appearance that now characterizes much of the wafer. 

 

Nickel 

Copper 

Silicon 

Figure 6.9: First nickel electroplating test wafer five days after electroplating.  Dot on 
the left side of the wafer was the location of the Kapton dot and shows the copper seed 
layer.  Circled areas show sites of initial delamination. 

  

 A second electroplating test was performed to determine if rapid cooling of the 

wafer caused additional tensile stress and therefore delamination of the electroplated 

nickel.  The electroplating bath operates at 50 °C and the DI water used to rinse the wafer 

after electroplating is approximately 20 °C.  Instead of rinsing this wafer after removal 

from the electroplating bath, it was placed in a beaker of DI that was maintained at 50 °C 

on a hotplate.  The temperature was lowered at a rate of ½ °C/minute until it reached 

room temperature.  The delamination on this wafer occurred more rapidly and more 

severely than with the previous test.  Figure 6.10 shows the second electroplated test 
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wafer three days after electroplating.  Again, the surface of the wafer is streaked and 

cratered because of delamination. 

 

Figure 6.10: Second nickel electroplating test three days after electroplating.  Slow 
cooling of the nickel from 50 ºC caused more severe delamination. 

  
 Following the second electroplating test, it was determined that the electroplating 

bath did not contain any additives that are normally added to an electroplating bath to 

reduce the tensile stress of the nickel.  Saccharin is the most common and is usually 

added at a concentration of 0.4 oz/gallon.  Table 6.1 shows the composition of the 

electroplating bath with the added saccharin.   
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Table 6.1: Chemical composition of standard Nickel electroplating bath [53].   

Chemical Formula Composition (oz/gal) 

Nickel Sulfamate Ni (SO3NH2)2 11.50 

Nickel Bromide Ni Br2 1.60 

Boric Acid H3BO3 5.00 

Saccharin C7H5NO3S 0.40 

 

6.6. Chapter Summary 

 Of the four portions of the device, the coil was fully fabricated, experiments were 

conducted for the fabrication of the stator and the microchannels and the proposed 

fabrication method was explained for the turbine. 

 At the beginning of the coil fabrication process, there were twelve slides, each 

with five coils, for a total of sixty coils.  There were four slides, twenty coils, designated 

for each of the three thicknesses.  Of those, only twenty-one survived the complete 

fabrication process to be fully tested. 

 The nickel electroplating tests showed that saccharin was a necessary additive to 

reduce the tensile stress of the electroplated nickel.  It would need to be added to the bath 

before further fabrication of the stators could be done.  Finally, etch tests showed that 

borosilicate glass slide covers did not make good structural layers for the device because 

of the slow etch rate.



 

VII. Analysis and Results 

7.1. Chapter Overview 

The most interesting part of any experiment is the data that is gathered from it, 

whether it validates a hypothesis or brings a new puzzle to light.  Just as the fabrication 

process is an iterative process, so too are the results from experimentation used to refine 

the initial design.  The results from these experiments are detailed below.  They show 

great promise for this design, but also show where the design can be improved. 

 

7.2. Coil 

 The coils were measured after each step in the fabrication process for dimensions 

and resistance.  The dimensions of the coil traces were determined using a Tencor 

profilometer. Table 7.1 shows the average thickness and width of the center coil traces, 

grouped by target thickness, after they were fabricated.  In each case, the average 

measured thickness was 2 - 7% thicker than the target thickness.  While this does not 

grossly affect the characteristics of the coil, it will have a small affect on the overall 

resistance.  The average measured width of the center coil traces was also greater than the 

target width, by as much as 29%.  This too will have an affect on the resistance of the 

trace. 
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Table 7.1: Average thickness and width of the center coil traces after fabrication. 

Center Trace 
Thickness (Å) 

Average Measured 
Thickness (Å) 

Average Measured 
Width (µm) 

2500 2674 12.62 

5000 5099 12.85 

10,000 10375 12.88 

 

 Once the center coil traces were analyzed, the silicon nitride was deposited.  After 

deposition, the silicon nitride was analyzed using elipsometry and determined to be   

1099 Å thick.  Although this is 10% thicker than the target thickness, the additional 

material will only serve to increase the dielectric properties of the thin-film.  The only 

reason to limit the thickness of the nitride layer is a potential for the gold traces deposited 

on top of the nitride to loose continuity as they pass over the center coil trace.  Since the 

gold is being evaporated onto the slides, the sidewalls may become significantly thinner 

than the main portion of the trace, therefore increasing the resistance or even breaking the 

connection, as illustrated in Figure 7.1. 

 

2nd Gold Deposition 

1st Gold 
Deposition 

Nitride Layer 

Thinning Sidewall 

Substrate 

Figure 7.1: Potential thinning sidewalls created as a result of metal deposition method. 
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 The main coil traces were characterized after deposition in the same manor as the 

center coil traces.  Table 7.2 shows the average thickness and width of the main coil.  The 

thickness of the coils was again greater than the target thickness in all cases, but the 

average width of the coils was much closer to the target width of 10 µm.  This 

improvement may have been due to a slightly longer PEB time during patterning of the 

AZ5214 photoresist.  Again, this will affect the overall resistance of the complete coil. 

Table 7.2: Average thickness and width of the main coil traces after fabrication. 

Coil Thickness 
(Å) 

Average 
Measured 
Thickness (Å) 

Average 
Measured Width 
(µm) 

2500 2736 10.32 

5000 5215 10.43 

10,000 10,491 10.47 

 

7.2.1. Coil Resistance 

 The resistance of each of the gold layers was measured following the profilometer 

measurements.  Table 7.3 shows both the calculated resistance using the actual fabricated 

dimensions and the measured resistance of the center coil traces.  The measured values 

for the resistance are roughly twice that of the calculated values.  This is most likely due 

to impedance mismatch between the probes and the measuring device because the current 

flowing from the ohmmeter is partially reflected back to the machine, allowing less total 

current to flow and increasing the resistance measurement.   
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Table 7.3: Calculated and measured resistance of the center coil trace for each of the 
three thicknesses. 

Center Trace 
Thickness (µm) 

Calculated 
Resistance (Ω) 

Measured 
Resistance (Ω) 

0.25 5.49 10.0 

0.50 2.83 5.0 

1.00 1.39 3.5 

 

 Measuring the resistance of the center coils was difficult because of the relative 

size difference between the traces and the probe tips.  Some of the traces were damaged 

during measurement, because it was necessary to adjust the height of the probe tips to 

ensure good contact with the metal.  Figure 7.2 shows a 1 µm trace that was damaged 

during the resistance measurements.   

 

 

Figure 7.2: Center coil trace damaged by probe contact during resistance measurements. 
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 Once both layers of gold were deposited, the completed coils, shown in Figure 7.3 

were again measured for resistance.  Table 7.4 shows both the calculated resistance 

values for the completed coils and the average measured values.  The layer with the 

smaller cross-sectional area will have the higher resistance, and as the two layers of gold 

act like resistors in series, the dimensions of the smaller one were used to calculate the 

resistance.  The calculated values also take into account the 200 Å thick 10 µm square 

layer of titanium that sits between the two gold layers where they overlap.  Given that the 

conductivity of titanium is roughly 5% that of gold, each 10 µm square adds about 20 Ω 

of resistance to the overall coil resistance [54].  Combining this with the total calculated 

resistance of the coil made completely of gold gives the values shown below.  The 

impedance mismatch between the ohmmeter and the probes is less significant for these 

measurements because of the increased length of the coil traces and therefore 

significantly increased overall resistance. 

 

 

Figure 7.3: Fully fabricated coil with gold traces shown in yellow and nitride in orange. 
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Table 7.4: Calculated and measured resistance of the full coil trace for each of the three 
thicknesses. 

Trace 
Thickness (µm) 

Calculated 
Resistance (Ω) 

Measured 
Resistance (Ω) 

0.25 445 517.9 

0.50 250 275.2 

1.00 138 139.4 

 

 As predicted, the 1 µm coils have the least resistance, but they are also the closest 

to the calculated resistance value.  This is potentially due to the sidewall thinning 

mentioned above.  Scanning Electron Microscope (SEM) pictures of the overlap were 

attempted, but resolution was too poor to determine whether sidewall thinning was 

present.  This lack of resolution was due to electrical charging of the coil and caused the 

electron beam to continually drift and jump at settings as low as 2 kV and 1 µA.  At 

higher energy settings, the image was completely distorted by the electrical field 

generated by the interaction of the coil and the electron beam.  

 Table 7.5 shows the measured dimensions of the coil traces on slide #5 with the 

calculated cross-sectional area and the measured resistance values for each coil.  

Resistance should be inversely proportional to the cross-sectional area, so as the cross-

sectional area decreases, the resistance should increase.  The values do not strictly follow 

this behavior.  Trace 5 has the largest cross-sectional area, but has the second largest 

resistance, and Trace 4, which has the smallest cross-sectional area, should have the 

largest resistance but has one of the smallest.  Rather, their behavior seems more 

dependant on the thickness of the traces and almost independent of the width.  Trace 3, 
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for instance, is the thinnest trace and has the largest resistance value.  Similarly, Trace 2 

is the thickest of the traces and has the lowest measured resistance.  The measured 

resistance values shown below would be more consistent with traces between 2350 and 

2450 Å, given the measured widths.  This is consistent with the theory regarding thinning 

sidewalls of the main traces. 

 

Table 7.5: Cross-sectional area and resistance values for the coils on slide #5. 

 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

Height (Å) -- 2728.4 2672.8 2721.5 2688.0 

Width (µm) -- 10.54 10.54 10.04 11.03 

Cross-Sectional Area (µm2) -- 2.876 2.817 2.732 2.965 

Measured Resistance (Ω) -- 488 506 496 500 

 

 One method to alleviate this potential problem would be to etch the substrate the 

exact size, shape, and thickness of the center coil trace prior to any depostition.  Once the 

etch is accomplished, the center coil trace can be deposited.  A quick dip in a Buffered 

Oxide Etch (BOE) solution should remove any excess gold that remains above the plane 

of the substrate creating a relatively smooth surface for the nitride and the second gold 

layer to be deposited on. 

7.2.2. Current Carrying Capacity 

 Voltage was applied to each coil to determine the amount of current flow through 

the device and to determine if the current flow had detrimental effects on the structure of 
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the coil.  The voltage was increased from 1 to 6 V in 1-V increments.  The coils behaved 

as predicted, with no burnouts or glowing.  The 1 µm traces allowed an average of 40 mA 

to flow given a 6-V bias, significantly higher than any theoretical voltage or current that 

the final device could produce.  Similar results were seen with the 0.5 µm and 0.25 µm 

traces, each flowing an average of 21 mA and 12 mA, respectively.  Exact data points 

and graphs are located in Table D.7-12 and Figure D.1-6. 

 

7.3. Stator 

7.3.1. Deformation Due to Strain 

 As previously stated, the nickel electroplating bath that was used for these 

experiments was not in common use and had not been properly characterized.  As such, it 

was not determined until after the initial two test runs that the bath did not contain the 

necessary additive to reduce the tensile strain of the nickel as it was being deposited. 

 The second test wafer was measured with a profilometer to determine the 

thickness of any remaining nickel on the substrate.  Figure 7.4 shows the second 

electroplated test wafer and Figure 7.5 shows the resulting trace, which indicates that as 

the nickel delaminated, it removed large sections of the silicon substrate more than 40 μm 

deep.  The red dashed line indicates the original surface of the silicon wafer.  These 

results indicate that slow cooling of the nickel seems to have the opposite effect of that 

which was expected. 
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Figure 7.4: Second attempt at nickel electroplating.  Tensile strain caused the nickel 
delamination to remove sections of substrate up to 30 µm deep. 

 

 

Figure 7.5: Profilometer measurement of second electroplating test wafer after cooling.  
Ni layer was 8 µm thick, seed layers comprised 0.1 µm in thickness.  Red dashed line 
indicates original surface of the silicon substrate. 
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7.3.2. Magnetization 

 After the nickel was electroplated onto the second test wafer, it continued to 

delaminate until only about 1/3 of the nickel remained on the substrate.  To test for basic 

magnetization, a magnet was placed in contact with the remaining nickel, as shown in 

Figure 7.6a.  This caused the remaining nickel to become magnetically polarized.  Once 

polarized, it would require a magnetic field strength in the opposite alignment of 55.7 H 

or a temperature increase above the Curie temperature of 627 K to return the net 

magnetization of the nickel to zero.  When the magnet was removed, and again placed in 

proximity to the nickel, the behavior was very similar to the behavior of two magnets.  If 

the magnet was aligned with the nickel as it had been when initially placed on the nickel, 

it caused the nickel to move slightly.  However, if it was aligned opposite, the attraction 

between the nickel and the magnet would cause the 500 µm thick, 3” wafer to lift off of 

the desk, as shown in Figure 7.6b.  

 

   
(a)                                                                   (b) 

Figure 7.6: Mangetization (a) of the electroplated nickel and magnetic attraction (b) 
lifting the substrate. 
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7.4. Chapter Summary 

The results presented in this chapter have helped to validate the theoretical 

calculations put forth in Chapter 4.  The coil behaves as predicted, with the exception of 

the additional resistance caused by the titanium seed layer that is a necessary fabrication 

step.  This seed layer should be taken into consideration for the next design.  Sidewall 

thinning must also be considered before the next design revision. 

The experiments with the nickel electroplating have validated the ability of the 

electroplated nickel to become magnetized and maintain a strong magnetic field.  They 

also showed that tensile stress must be compensated in the electroplating bath or the 

nickel will destroy the substrate it is deposited on. 

Finally, the test results for the etch tests of the borosilicate glass slide covers have 

shown that it can be done, but a different choice of substrate, such as silicon or sapphire 

would allow for faster and easier etching of the deep channels and the through-substrate 

holes.



 

VIII. Conclusions and Recommendations 

8.1. Chapter Overview 

 No great project is ever truly finished, only abandoned.  Improvements can be 

made even to the pinnacle of perfection, because the purpose of the project can change.  

This chapter will provide a final review of the progress of this project, along with a 

synopsis of the scientific contributions from this research in the areas of BioMEMS and 

electromagnetics.  Finally, recommendations for future research in this area will also be 

summarized.   

8.2. Thesis Review 

 Chapter one of this thesis reviewed the need for a self-sustaining power source 

that could be implanted within the human body to power life-sustaining medical devices.  

It briefly described the current capabilities in the areas of MEMS, microfluidics and 

BioMEMS and proposed a solution for the need of a power source. 

 Chapter two reviewed current research into microfluidics and electromagnetic 

power generation in MEMS devices and compared them with this proposed research.  It 

showed that although research has been done in this area, the devices theorized were 

several orders of magnitude too large to be used in the proposed manor. 

 Chapter three reviewed the underlying theory behind the proposed device, 

including basic fluid flow mechanics, the behavior of fluid flows in microchannels, and 

energy transfer from mechanical to electrical. 

 Chapter four mathematically verified that it is possible to extract usable amounts 

of electrical energy by using the blood flow through human capillaries to rotate a micron 

scale turbine generator.  The calculations for pressure in human capillaries was used to 
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determine the dimensions for the microchannels and the turbine, while the calculations 

for the magnetic field generated for a give sample of nickel helped determine the 

dimensions of the stator and the coil.   

 Chapter five described the designs that were created and why they were refined 

down to a single design with four independent parts that could be fabricated using 

conventional MEMS fabrication techniques and assembled.   

 Chapter six described the fabrication process for the induction coils.  It also 

described the experiments that were begun on fabrication techniques for the stators and 

the structural layers and theoretically explained the fabrication process for the turbine, as 

the process is routinely done during MEMS fabrication. 

 Chapter seven described the results of the experiments run on the coils and the 

electroplated nickel, and describes how they compared to the predicted results. 

8.3. Scientific Contributions 

 Although small electromagnetic generators have been theorized and fabricated, 

none has been as small as the MFPG device and all contain pieces of naturally occurring 

magnetite (Fe3O4) which must be physically inserted into the device after fabrication.  As 

such, this is the first device of its size, and the first to use nickel, deposited during device 

fabrication, as the source of the magnetic field.   

8.4. Recommendations 

 As this part of the project comes to a close, I would like to leave some parting 

thoughts to any who may continue in this research.  Below are my thoughts on what can 

be done to improve the current device and additional projects that could be integrated 

with the MFPG device to provide a complete system. 
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8.4.1. Continuation of Power Generation Evaluation 

 The results of the calculations and experiments undertaken as part of this thesis, 

show great potential for the device.  The continuation of research in this area should 

focus on fabrication methods and modifications to the design.  Since each of the critical 

parameters of this device effects the overall power output of the device, there are a 

myriad of potential modifications that can be made to the design to alter the frequency, 

voltage, and current of the output.  Continued experimentation using different dimensions 

would help to determine the limits of the output characteristics. 

8.4.1.1. Variations in Turbine Shape and Position 

 As discussed in Section 2.3, impulse turbines have a W-shaped bucket to more 

effectively capture the energy of the fluid flow.  It is unknown whether this modification 

would have any effect on the microturbine, both because of the scale and because the 

turbine is submersed in the fluid. 

 One potential method for creating these W-shaped buckets on this scale would be 

to isotropically etch pits into the top of a wafer to form the buckets.  A thin strip of gold 

could then be deposited on one half of the collar leading from the buckets to the main 

body of the turbine.  Figure 8.1 shows this design both before and after the release.  Once 

the device is released, the stress differential between the half of the collar with gold and 

the half of the collar without should cause the collar to twist, leaving the buckets at an 

angle to the main body of the turbine.  The specific dimensions of the deposited gold 

would determine the exact angle. 
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(a)                           (b) 

Main Body 

Gold 

Buckets 

Figure 8.1: Potential design of microturbine with w-shaped buckets before release (a) 
and after release (b). 

 Also, as the calculations in Chapter 4 indicated, the closer the turbine is to the 

source of the microfluidic flow, the more pressure the fluid will have, and thus the faster 

the turbine should spin.  Placement within the microchannel is therefore crucial to 

determining the frequency of the power generated by this device. 

8.4.1.2. Variations of coil and stator dimensions 

 As the calculations in Section 4.2.3 show, the two critical factors that determine 

the magnitude of the power output from this device are the dimensions of the coil and the 

stator.  The coil is responsible for allowing current to flow while the stator is responsible 

for generating the magnetic field that causes the current to flow.  The smaller the cross-

sectional area of the coil, the less resistance it will offer and therefore the more current 

will flow.  The length of the coil acts just the opposite; the longer the coil, the higher the 

resistance.  For the stator, the magnetic field generated by several atoms of a material is 

larger than the sum of the individual fields.  This means the more mass, the larger the 
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magnetic field will be.  Again, these should be adjusted to fit the requirements of the 

device that is being powered. 

8.4.2. Examination of Alternate Power Generation Designs 

 This design uses an internal turbine to turn the stator and thus generate power.  

Other designs could be created to make use of a fluid flow outside of the device, more 

like a water wheel at an old mill.  This would preclude the need for microchannels and 

could be used in larger areas such as inside the heart or the larger blood vessels. 

 Another alternative to either of these designs may be to use the same design for 

the power generation, but have several coil/stator sets tied together in series or parallel to 

alter the power output beyond the values attainable by simply altering the dimensions of a 

single coil/stator set. 

8.4.3. Energy Storage Capabilities 

 Regardless of the design used to generate the power, there is still a need to 

regulate and store the power to ensure a constant level of output.  Research needs to be 

done to design a system that could be integrated with the energy production system to 

provide a well regulated output for use in the rest of the system.  This includes voltage 

and frequency regulation as well as energy storage, which may be feasible using arrays of 

micron-sized capacitors. 

8.4.4. Integration of Probes and Control Circuitry 

 The probes used to monitor the contents of the fluid need to be designed such that 

they can be fabricated with the rest of the device.  The same is true of the control 

circuitry that should be able to monitor the signals from the probes and convert it to a 
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transmittable signal.  The design of this circuitry will depend greatly on the power 

available and the desired output signal characteristics. 

 

8.5. Conclusions 

 With so many applications and the potential to increase the quality of life for so 

many people, it is only logical to conclude that additional research must be done in this 

area.  In addition, the scientific knowledge gained by research into the properties of 

electromagnetic fields on this scale may increase our understanding of electromagnetic 

field theory. 

  

  

  

 



 

Appendix A: Mathematica Code 

 This appendix contains the Mathematica code used for the calculations in Chapter 

IV.  It includes calculations for fluid flow rates, both for blood through human capillaries 

and water through the MFPG microchannels, fluid pressure in the microchannels and the 

rate of rotation of the turbine for various pressures. 

 
Figure A.1: Mathematica code used to determine the flow rate of blood through human 
capillaries. 
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Figure A.2: Mathematica code used to determine the pressure at the opening to the 
turbine cavity in the ideal MFPG device using blood as the fluid. 
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Figure A.3: Mathematica code and graph illustrating the relation between capillary 
length and outlet pressure.  Note that for blood flowing through a capillary with a 5 µm 
radius and an initial pressure of 5332.9 N-m, the cut-off length is 800 µm.  Beyond this 
length, adhesive and cohesive forces within the blood will counteract the initial pressure 
and the blood will not flow. 
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Figure A.4: Mathematica code used to calculate the rate of water flowing through the 
microchannels of the fabricated MFPG device.  The pressure at the inlet is matched to 
human capillary arteriole pressure and the outlet pressure is matched to that calculated for 
the ideal MFPG device. 
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Figure A.5: Mathematica code and graph used to illustrate the rate of water flow through 
the fabricated MFPG microchannels as a function of capillary height. 
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Figure A.6: Mathematica code and graph used to illustrate the rate of water flow through 
the fabricated MFPG microchannels as a function of capillary length. 
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Figure A.7: Mathematica code used to calculate the torque applied to the turbine, by the 
fluid pressure at the opening to the turbine cavity, in the fabricated MFPG device.  
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Figure A.8: Mathematica code used to calculate the angular velocity of the turbine in the 
fabricated MFPG device as a function of the ideal fluid flow rate. 
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Figure A.9: Mathematica code used to calculate the rate of work done on the turbine by 
the fluid in the fabricated MFPG device. 

 

107 



 

 
Figure A.10: Mathematic code used to calculate the magnetic field strength produced by 
the stator arms on the coil.  Note that the magnetic field strength was calculated for stator 
magnet height of 20µm.  
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Figure A.11: Mathematic code used to calculate the maximum theoretical current that 
can be produced by the MFPG device.  This was calculated for stator magnet height of 
20µm and coil height of 2µm.  
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Figure A.12: Mathematica code used to calculate the voltage and maximum theoretical 
power output from this design.  Again this is calculated for stator magnet height of 20µm 
and coil height of 2µm. 
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Figure A.13: Mathematica code used to calculate the magnetic field strength of the stator 
magnets with respect to the height of the coil.  Note this calculation is for a magnet height 
of 20 µm.  The field strength would be 512 Teslas for a magnet height of 80 µm. 
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Figure A.14: Mathematica code used to calculate the total output current as a function of 
the magnet height.  Note the output current for the device when the magnets are 80 µm in 
height is just over 27 µA. 
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Figure A.15: Mathematica code used to calculate the total output current as a function of 
the magnets height and width.  Both are changing at the same rate to keep a square cross-
sectional area.  The output current for the device when the magnets are 80 µm in height is 
approximately 27.16 µA. 
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Figure A.16: Mathematica code used to calculate the voltage output of the device as a 
function of the coil’s cross-sectional area.  The voltage is maximum when the coil is 
thinnest, for a value of 12.24 mV when the coil’s cross-section is 2.5*10-12 m2. 
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Figure A.17: Mathematica code used to calculate the theoretical maximum power output 
of this device as a function of the coil's cross-sectional area.  The curve follows the same 
shape as the voltage curve and again is maximized when the cross-sectional area is 
minimum.  The maximum theoretical power output from this calculation is 0.3325 µW 
when the stator magnets are 80µm high and the cross-sectional area of the coil is 2.5*10-

12 m2. 
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Figure A.18: Mathematica code used to calculate the theoretical resistance for the 0.25, 
0.5 and 1.0 µm thick center coil traces using the average fabricated dimensions for each 
group. 
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Figure A.19: Mathematica code used to calculate the theoretical resistance for the 
complete 0.25, 0.5 and 1.0 µm thick coil traces using the average fabricated dimensions 
of each group. 

 

 

117 



 

118 

 

Figure A.20: Mathematica code used to calculate the theoretical resistance of the 200 Å 
thick titanium seed layer between the two gold traces.  Each section of titanium between 
the two layers of gold has an area of 100 µm2.



 

Appendix B: Mask Designs 

 This appendix contains all of the designs used to fabricate the MFPG devices.  

The images on the following pages were created in the MEMSPro L-edit® layout editor 

and sent to Photo Sciences, Inc. in Torrance, CA for mask fabrication using their Fast-

Track photomask service.  A total of four masks were used for the initial design, each 

containing separate portions of the designs for the complete device.  All designs shown in 

this appendix constitute original work. 

 The designs were created using two L-edit layers: Poly-0 and Hole0.  These 

correspond to GDSII layers 13 and 41, respectively.  The Poly-0 layer was used to define 

the dark portions of the masks while the Hole0 layer was used to open holes in the Poly-0 

layer, in essence, a subtractive process. 

 

 
Figure B.1: L-edit layout showing all layers of the MFPG device. 
 

 This image represents a composite of all of the layers presented in Figure B.1 

through Figure B.28.  Image colors have been changed to fully illustrate the different 

layers. 
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Figure B.2: L-edit layout for the top of first glass slide. 

 
Features: 1000µm diameter round holes, 500µm x 500µm square holes  
 
Purpose: Round holes are the main fluid inlet/outlet holes.  Square hole windows for the 
electrical contacts.  All features on this mask will be etched completely through the 
wafer. 

 
 

 
Figure B.3: L-edit layout for the bottom of the first glass slide. 

Features: 900µm diameter rounds, 40µm wide lines, alignment marks. 
 
Purpose: Rounds are purely for alignment purposes and will be etched through during 
the top etch for this wafer.  The lines will be etched to a depth of 2 µm and will fit snugly 
into the microchannels on the top of wafer 2.  This is for alignment and to prevent sealant 
from leaking into the microchannels. 
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Figure B.4: Enlarged image of features on bottom of the first glass slide. 
 
Features: 40µm wide lines, 10µm wide torus w/ inner radius of 60µm, alignment marks 
 
Purpose: Lines are meant to fit snugly into the channels on the top of slide 2.  This will 
help with alignment and prevent CrystalBond from leaking into the channels when the 
slides are bonded.  The torus is meant to be an upper bumper for the turbine to reduce 
friction.  
 
 

 
Figure B.5: L-edit layout of first etch design for top of second glass slide. 
 
Features: 500µm diameter rounds, 40µm wide channels, alignment marks 
 
Purpose: Round holes are the fluid inlet/outlet holes from the large holes in slide 1.  The 
channels are for the actual fluid flow through the device. 
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Figure B.6: Enlarged image of features on the first etch design for the top of the second 
glass slide. 
 
Features: 244µm diameter round, 40µm wide channel, alignment marks 
 
Purpose: The round is the cavity that the turbine will sit in and, again, the channel is for 
the fluid flow. 
 
 
 

 
Figure B.7: L-edit layout of second etch design for top of second glass slide. 
 
Features: 500µm x 500µm square holes, alignment marks 
 
Purpose: The square holes are windows for the electrical contacts and will be etched 
completely through the wafer. 
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Figure B.8: Enlarged image of features on the second etch design for the top of the 
second glass slide. 
 
Features: 100µm diameter round, 500µm x 500µm square holes, alignment marks 
 
Purpose: The 100µm diameter round hole is the pass-through window for the turbine 
shaft.  Again, the square holes are windows for the electrical contacts and all features on 
this mask will be etched completely through the wafer. 
 
 

 
Figure B.9: L-edit layout of third etch design for top of second glass slide. 
 
Features: 120µm diameter torus in center of a 240µm hole, alignment marks 
 
Purpose: The torus is meant to be a bottom bumper for the turbine to reduce friction.  It 
should mirror the torus on the bottom of the first slide. 
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Figure B.10: Enlarged image of features on the third etch design for the top of the 
second glass slide. 
 
Features: 120µm diameter torus in center of a 240µm hole, alignment marks 
 
Purpose: The torus is meant to be a bottom bumper for the turbine to reduce friction.  It 
should mirror the torus on the bottom of the first slide. 
 
 
 

 
Figure B.11: L-edit layout of first etch design for the bottom of the second glass slide. 
 
Features: 1800µm diameter round, alignment marks 
 
Purpose: The 1800µm diameter round is the cavity for the stator.  When completed, the 
stator will be recessed into the bottom of slide 2. 
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Figure B.12: Enlarged image of features on the first etch design for the bottom of the 
second glass slide. 
 
Features: 1800µm diameter round, alignment marks 
 
Purpose: The 1800µm diameter round is the cavity for the stator.  When completed, the 
stator will be recessed into the bottom of slide 2. 
 
 
 

 
Figure B.13: L-edit layout of second etch design for the bottom of the second glass slide. 
 
Features: 300µm diameter torus, 10µm wide, in center of an 1800µm wide hole, 30µm 
wide channels, alignment marks 
 
Purpose: The torus is meant to be a bumper for the stator, similar to the ones used for the 
turbine.  The channels are to allow room for the gold wires connecting the coil to the 
contact pads on the top of slide 3. 
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Figure B.14: Enlarged image of features on the second etch design for the bottom of the 
second glass slide. 
 
Features: 300µm diameter torus, 10µm wide, in center of an 1800µm wide hole, 30µm 
wide channels, alignment marks 
 
Purpose: The torus is meant to be a bumper for the stator, similar to the ones used for the 
turbine.  The channels are to allow room for the gold wires connecting the coil to the 
contact pads on the top of slide 3. 
 

 
Figure B.15: L-edit layout of first deposition design for the top of the third glass slide. 
 
Features: 10µm wide wire, alignment marks 
 
Purpose: This is the wire running from the center of the coil  to one of the contact pads. 
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Figure B.16: Enlarged image of features on the first deposition design for the top of the 
third glass slide. 
 
Features: 10µm wide wire, alignment marks 
 
Purpose: This is the wire running from the center of the coil to one of the contact pads. 
 
 

 
Figure B.17: L-edit layout of second deposition design for the top of the third glass slide. 
 
Features: Torus with inner and outer radii of 225 µm and 850 µm, alignment marks 
 
Purpose: Nitride insulating layer to prevent shorting between the coil and the inner lead 
from Figure B.16. 
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Figure B.18: Enlarged image of features of the second deposition design for the top of 
the third glass slide. 
 
Features: Torus with inner and outer radii of 225 µm and 850 µm, alignment marks 
 
Purpose: Nitride insulating layer to prevent shorting between the coil and the inner lead 
from Figure B.16. 
 

 
Figure B.19: 2X-enlarged image of features of the second deposition design for the top 
of the third glass slide. 
 
Features: 20 µm wide square opening in torus 
 
Purpose: Allow for contact between the inner lead and the coil. 
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Figure B.20: L-edit layout of third deposition design for the top of the third glass slide. 
 
Features: Coils with contact pads, alignment marks 
 
Purpose: Allow current to flow as the stator magnet rotates above 
 

 
Figure B.21: Enlarged image of features of the third deposition design for the top of the 
third glass slide. 
 
Features: Coils with contact pads, alignment marks 
 
Purpose: Allow current to flow as the stator magnet rotates above 
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Figure B.22: L-edit layout of stator arms with alignment marks and non-etch buffer. 
 
 
 
 

 
Figure B.23: Enlarged image of stator center showing shaft opening with groves. 
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Figure B.24: L-edit layout of stator magnets with alignment marks. 
 
 
 
 

 
Figure B.25: L-edit layout of stator magnets (red) superimposed on stator arms (gold) 
with alignment marks and non-etch buffer. 
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Figure B.26: L-edit layout of the turbine wheel with non-etch buffer. 
 
 
 
 

 
Figure B.27: L-edit layout of primary turbine shaft design. 
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Figure B.28: L-edit layout of secondary turbine shaft design. 
 
 
 
 
 
 
 



 

Appendix C: Fabrication Methods  

  

 This appendix contains figures and tables showing detailed recipes for lithograph, 

metal deposition and electroplating derived from recipes provided by AFRL/SND.  

Exposure times and temperatures on lithography recipes have been modified to reflect the 

actual equipment used. 

 
Table C.1: Recipe used for patterning of metal deposition with SF-11 and AZ5214E 
photoresist. 

Process Step Notes Date/Time 
Inspect Wafer:  
Note any defects 
Solvent clean only if needed 

Start Date 
 
Start Time 

Solvent Clean (if needed): 
20 sec acetone rinse at 500 rpm 
20 sec isopropyl alcohol rinse at 500 rpm 
Dry with nitrogen at 500 rpm 
Dry wafer with nitrogen on clean texwipes  

  

Dehydration Bake: 
1 min 110°C hot plate bake 

  

PMGI SF11 COAT: 
 Flood wafer with PMGI SF11 
 30 sec Spin at 4000 rpm, Ramp=200 
Clean backside with EBR and swab 
2 min 200˚C Hot Plate Bake 
Cool Wafer on Cooling Plate 

  

Resist Coat: 
Spin on 5214E Resist at 4000 rpm, ramp at 200 for 1.4 um thickness.  
60 sec 110˚C hot plate bake 

  

Expose with Mask: 
No alignment for first level mask 
2 sec exposure on MA6 Mask Aligner, 7 mW/cm2, 365 nm 

2.8 sec @ 
 5.6 mW/cm2 
~16 mJ/cm2 

 

Post-Exposure Bake (Temperature is Critical!): 
120 sec 125˚C hot plate bake  
Record relative humidity 

90 sec 110˚C 
RH =  40.0%       

 

Flood Exposure: 
90 sec Flood expose on MA6 @ 7 mW/cm3 

5.6 mW/cm3 
~500 mJ/cm2 

 

Develop: 
30 sec develop with 351:DI water (1:5) at 500 rpm 
30 sec DI water rinse at 500 rpm 
Dry with nitrogen at 500 rpm 
Dry wafer with nitrogen on clean texwipes 

  

Inspect Resist: 
Inspect photoresist under microscope 

  

Tencor Measurement (if needed):  
Measure photoresist step height 
Top:                               Center:                           Bottom: 
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Asher Descum:  
2 min, 200 W, 500 sccm O2, LFE Barrel Asher 

  

Bottom Metal Deposition: 
Evaporate 200 Å Ti /  (2500Å Au, 5000Å Au, 10,000Å Au) 

  

Lift-Off Bottom Metal: 
Use tape to remove excess metal with wafer on vacuum chuck (Tape 
lift-off) 
Visually inspect for metal removal 
20 sec spray with acetone gun at 1000 rpm (pressurized @ 40 psi) 
20 sec spray with acetone bottle at 500 rpm 
30 sec spray with isopropyl alcohol at 500 rpm 
Dry with nitrogen at 500 rpm 
Dry wafer with nitrogen on clean texwipes  

  

INSPECT METAL: 
Inspect Metal with microscope; if some metal did not lift, then: 
          10 min Acetone soak (do not let wafer dry when transferring 
             from petri dish to spinner chuck) 
          15 sec Acetone spray at 500 rpm 

          15 sec Isopropyl spray at 500 rpm 

          Dry with N2 on clean Texwipes 

  

PMGI STRIP: 
2 minute soak in 1165 Stripper at 90˚C 
6x DI Rinse in automatic rinse tank 
Dry with N2 on clean Texwipes 

  

Inspect Wafer: 
Inspect for resist removal under microscope 

  

Asher Clean:  
4 min, 200 W, 500 sccm O2, LFE Barrel Asher 

  

Tencor Measurement:  
Measure M1 step height 
Top:                               Center:                            Bottom: 

Finish Date: 

Finish Time: 
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Table C.2: Recipe used for patterning Silicon Nitride and Borosilicate Glass (Silicon 
Dioxide) with 1813 photoresist. 

Init Process Step Notes  

 PREPARATIONS: 
Coordinate PECVD nitride run with nitride operator 
Coordinate RIE nitride etch with etch operator 
Coordinate metal deposition with metal operator 

Start Date  

 1813 COAT: 
 Flood wafer with 1813 Photoresist 
 30 sec Spin at 4000 rpm, Ramp=200 
Clean backside with Acetone 
 75 sec 110˚C Hot Plate Bake 
Cool Wafer on Cooling Plate 

  

 EXPOSE 1813 WITH POST MASK: 
   8 sec Expose on MA6 Mask Aligner, 7mW/cm2, 365 nm 

10 sec @ 
 5.6 mW/cm2 

 

 351 DEVELOP: 
30 sec Spin Dev. with 351 Developer:DI 1:5 at 500 rpm 
30 sec Spin Rinse with DI at 1000 rpm 
Dry with N2 on clean Texwipes 

  

 INSPECT LITHOGRAPHY: 
Inspect Photoresist with microscope using Yellow Filter 
 Make sure features are open, clean, and sharp 

  
 
 
 

 REMOVE 1813: 
 15 sec Acetone spray GUN at 500 rpm 
 15 sec Acetone spray at 500 rpm 
 15 sec Isopropyl spray at 500 rpm 
 15 DI 
Dry with N2 on clean Texwipes 
 Check backside and clean with Acetone is necessary 

  

 O2 PLASMA ASHER: 
 4 min LFE Barrel Asher 
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Figure C.1: Recipe used to deposit Cr/Cu seed layer for nickel electroplating. 
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Figure C.2: Recipe used for first two nickel electroplating attempts. 

 



 

Appendix D: Experiments and Raw Data 

 

Table D.1: Measured height and width of the 1.0 µm center traces. 

Slide #  Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

Height (Å) -- -- -- -- -- 
1 

Width (µm) -- -- -- -- -- 

Height (Å) 1.053 1.019 1.000 1.013 1.067 
2 

Width (µm) 13.02 12.13 12.43 12.13 12.72 

Height (Å) 1.041 1.039 1.044 1.041 1.050 
3 

Width (µm) 13.12 12.92 13.12 12.52 13.12 

Height (Å) 1.046 1.031 1.038 1.042 1.038 
4 

Width (µm) 13.27 12.82 13.32 13.02 13.52 

 

Table D.2: Measured height and width of the 0.25 µm center traces. 

Slide #  Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

Height (Å) 2617 2640 2635 2634 2597 
5 

Width (µm) 12.72 12.02 13.12 12.92 12.52 

Height (Å) 2641 2855 2751 2814 2717 
6 

Width (µm) 12.52 12.32 12.92 12.52 12.72 

Height (Å) 2730 2637 2643 2648 2627 
7 

Width (µm) 12.32 22.06 22.75 20 22.65 

Height (Å) 2629 2654 2656 2638 2715 
8 

Width (µm) 12.52 12.42 13.31 12.62 12.12 
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Table D.3: Measured height and width of the 0.5 µm center traces. 

Slide #  Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

Height (Å) 4975 5163 5116 5190 5212 
9 

Width (µm) 12.92 11.92 12.62 12.62 12.92 

Height (Å) 5049 5083 5075 5064 5063 
10 

Width (µm) 12.22 12.82 12.42 12.32 12.62 

Height (Å) 4962 5086 5039 5106 5295 
11 

Width (µm) 12.92 13.02 13.32 13.51 14.60 

Height (Å) -- -- -- -- -- 
12 

Width (µm) -- -- -- -- -- 

 

 

Table D.4: Measured height and width of the 1.0 µm main traces. 

Slide #  Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

Height (Å) -- -- -- -- -- 
1 

Width (µm) -- -- -- -- -- 

Height (Å) 9.98 9.99 9.99 1.05 1.02 
2 

Width (µm) 10.47 10.47 10.47 10.47 10.47 

Height (Å) 1.08 1.07 1.04 1.03 1.02 
3 

Width (µm) 10.47 10.47 10.47 10.47 8.48 

Height (Å) 1.09 1.10 1.10 1.10 1.03 
4 

Width (µm) 10.47 10.47 9.98 10.47 5.49 
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Table D.5: Measured height and width of the 0.25 µm center traces. 

Slide #  Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

Height (Å) -- 2728.4 2672.8 2721.5 2688.0 
5 

Width (µm) -- 10.54 10.54 10.04 11.03 

Height (Å) 2710.7 2854.4 2759.2 2767.3 2715.7 
6 

Width (µm) 10.14 10.64 10.93 9.841 9.145 

Height (Å) -- -- -- -- -- 
7 

Width (µm) -- -- -- -- -- 

Height (Å) -- -- -- -- -- 
8 

Width (µm) -- -- -- -- -- 

 

Table D.6: Measured height and width of the 0.5 µm center traces. 

Slide #  Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

Height (Å) -- -- -- -- -- 
9 

Width (µm) -- -- -- -- -- 

Height (Å) -- -- -- -- -- 
10 

Width (µm) -- -- -- -- -- 

Height (Å) -- -- -- -- -- 
11 

Width (µm) -- -- -- -- -- 

Height (Å) -- 5214.8 -- -- -- 
12 

Width (µm) -- 10.43 -- -- -- 
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Table D.7: Voltage versus current measurements for Slide #2 (1 µm trace thickness). 

Voltage (Ω) Current 
 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Average 

1 0.006 0.007 0.007 0.007 0.006 0.0066 
2 0.013 0.014 0.014 0.014 0.013 0.0136 
3 0.020 0.021 0.021 0.020 0.019 0.0202 
4 0.027 0.028 0.028 0.027 0.025 0.0270 
5 0.033 0.035 0.034 0.033 0.030 0.0330 
6 0.040 0.041 0.040 0.039 0.035 0.0390 
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Figure D.1: Current vs. voltage plot for all five coils on slide #2 with an averaged plot 
line. 
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Table D.8: Voltage versus current measurements for Slide #3 (1 µm trace thickness). 

Voltage (Ω) Current 
 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Average 

1 0.007 0.007 0.007 0.007 X 0.007 
2 0.014 0.015 0.015 0.014 X 0.0145 
3 0.021 0.023 0.023 0.021 X 0.022 
4 0.028 0.03 0.03 0.028 X 0.029 
5 0.035 0.036 0.036 0.035 X 0.0355 
6 0.041 0.043 0.042 0.04 X 0.0415 
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Figure D.2: Current vs. voltage plot for the remaining four coils on slide #3 with an 
averaged plot line. 
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Table D.9: Voltage versus current measurements for Slide #4 (1 µm trace thickness). 

Voltage (Ω) Current 

 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Average 

1 0.007 X 0.007 X X 0.007 

2 0.014 X 0.015 X X 0.0145 

3 0.021 X 0.023 X X 0.022 

4 0.028 X 0.03 X X 0.029 

5 0.034 X 0.037 X X 0.0355 

6 0.04 X 0.043 X X 0.0415 
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Figure D.3: Current vs. voltage plot for the remaining two coils on slide #4with an 
averaged plot line. 
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Table D.10: Voltage versus current measurements for Slide #12 (0.5 µm trace thickness). 

Voltage (Ω) Current 

 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 

1 X 0.003 X X X 

2 X 0.007 X X X 

3 X 0.011 X X X 

4 X 0.015 X X X 

5 X 0.018 X X X 

6 X 0.021 X X X 
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Figure D.4: Current vs. voltage plot for the one remaining coil on slide #12. 
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Table D.11: Voltage versus current measurements for Slide #5 (0.25 µm trace thickness). 

Voltage (Ω) Current 

 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Average 

1 X 0.002 0.002 0.002 0.002 0.002 

2 X 0.004 0.004 0.004 0.004 0.004 

3 X 0.006 0.006 0.006 0.006 0.006 

4 X 0.008 0.008 0.008 0.008 0.008 

5 X 0.01 0.01 0.01 0.01 0.01 

6 X 0.012 0.012 0.012 0.012 0.012 
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Figure D.5: Current vs. voltage plot for the remaining four coils on slide #5 with an 
averaged plot line. 
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Table D.12: Voltage versus current measurements for Slide #6 (0.25 µm trace thickness). 

Voltage (Ω) Current 

 Trace 1 Trace 2 Trace 3 Trace 4 Trace 5 Average 

1 X 0.001 X 0.001 0.001 0.001 

2 X 0.003 X 0.003 0.003 0.003 

3 X 0.005 X 0.005 0.005 0.005 

4 X 0.007 X 0.007 0.007 0.007 

5 X 0.009 X 0.009 0.008 0.008667 

6 X 0.011 X 0.011 0.01 0.010667 
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Figure D.6: Current vs. voltage plot for the remaining three coils on slide #6 with an 
averaged plot line.
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