
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2008

Hardware Algorithm Implementation for Mission Specific Hardware Algorithm Implementation for Mission Specific

Processing Processing

Jason W. Shirley

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Hardware Systems Commons, and the Numerical Analysis and Computation Commons

Recommended Citation Recommended Citation
Shirley, Jason W., "Hardware Algorithm Implementation for Mission Specific Processing" (2008). Theses
and Dissertations. 2779.
https://scholar.afit.edu/etd/2779

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=scholar.afit.edu%2Fetd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholar.afit.edu%2Fetd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2779?utm_source=scholar.afit.edu%2Fetd%2F2779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Hardware Algorithm Implementation

For

Mission Specific Processing

THESIS

Jason W. Shirley, Captain, USAF

AFIT/GE/ENG/08-27

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GE/ENG/08-27

Hardware Algorithm Implementation

For

Mission Specific Processing

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jason W. Shirley, B.S.E.E.

Captain, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/08-27

Hardware Algorithm Implementation

For

Mission Specific Processing

Jason W. Shirley, B.S.E.E.

Captain, USAF

Approved:

/signed/ 27 Feb 2008

Yong C. Kim, PhD (Chairman) date

/signed/ 27 Feb 2008

LaVern A. Starman, PhD, Maj (Member) date

/signed/ 27 Feb 2008

Guna S. Seetharaman, PhD (Member) date

/signed/ 27 Feb 2008

Juan R. Vasquez, PhD (Member) date

AFIT/GE/ENG/08-27

Abstract

There is a need to expedite the process of designing military hardware to stay

ahead of the adversary. The core of this project was to build reusable, synthesize-

able libraries to make this a possibility. In order to build these libraries, Matlabr

commands and functions, such as Conv2, Round, Floor, Pinv, etc., had to be con-

verted into reusable VHDL modules. These modules make up reusable libraries for

the Mission Specific Process (MSP) which will support AFRL/RY.

The MSP allows the VLSI design process to be completed in a mere matter of

days or months using an FPGA or ASIC design, as opposed to the current way of

developing a system which can take 1-2 years to complete. By having the libraries

built, the components can be implemented in an FPGA or ASIC design over and

over again. The libraries make it possible to make upgrades to weapons systems

to meet the ever-changing needs the War Fighter faces. MSP makes it possible to

develop various algorithms, including algorithms implemented in Matlabr . The

MSP libraries were built and tested using TSMC 250-nmrtechnology library from the

Taiwan Semiconductor Manufacturing Company. They were also synthesized for an

FPGA. The modules were all synthesized using the CAD tools from Cadencerand

Mentor Graphicsr. Power, area, and delay results for each module were presented.

iv

Acknowledgements

First and foremost, I would like to thank my Lord and Savior Jesus Christ for giv-

ing me the wisdom and knowledge to complete my thesis. I also owe a large debt

of gratitude to my wife and daughter for their understanding and patience during

my research at the Air Force Institute of Technology (AFIT). I would like to thank

Dr. Yong Kim for his wisdom, knowledge, and helpfulness during my research as he

guided and encouraged me throughout my research process. I would like to thank

Dr. Juan Vasquez and Douglas Summers-Stay for sponsoring me, and I hope that

the research that I have gathered is useful to the Air Force Research Lab (AFRL)

AFRL/RY. Finally, I’d like to thank my fellow students for all of their encouragement

and knowledge during my research efforts: Sam Stone, Benjamin Hancey, Eric Lam,

James Crouch, and Gene Hockenberry.

Jason W. Shirley

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xi

List of Abbreviations . xii

I. Introduction . 1
1.1 Specific Issue . 4

1.2 Problem Statement . 4
1.3 Scope and Assumptions 5

1.4 Thesis Organization . 5

II. Background . 7

2.1 Overview of VLSI Design Process 7

2.2 VLSI Design Process . 8

2.2.1 Specification . 9

2.2.2 Architecture . 9
2.2.3 RTL Coding . 11

2.2.4 RTL Verification 11
2.2.5 Synthesis/Manual Layout 11

2.2.6 Implementation/Fabrication 12

2.3 FPGA vs. ASIC Risk 13
2.4 MSP Design Reusability 14

2.5 Optical Flow . 17

2.6 Chapter Summary . 19

III. Methodology . 20

3.1 Overall Design . 21

3.2 Two Dimensional Convolution 22
3.2.1 Memory . 23

3.2.2 Multiplier . 23

3.2.3 Control . 24
3.2.4 Multiplexer, Adder, Register 24

3.3 Matrix Transpose . 25

vi

Page

3.4 Compute Derivatives . 25

3.5 Reduce Matrix Function 27
3.6 Round/Floor . 28

3.7 Pseudoinverse (Pinv) . 28

3.8 Synthesis/Timing . 29

3.9 Testing Procedure . 30

3.10 Chapter Summary . 31

IV. Analysis and Results . 32

4.1 Overview of MSP Modules 32
4.2 Error Analysis . 37

4.3 Power, Area, and Delay 40

4.4 Synthesis . 44

4.5 Chapter Summary . 50

V. Conclusions . 51
5.1 Summary of the Project 51

5.2 Future Work . 51
5.2.1 Improve Module Designs 52

5.2.2 Power, Area, and Delay 52

5.2.3 Complex Numbers 52

Appendix A. Reducing Power Consumption 53

A.1 Clock Speed/Clock Gating 53

A.2 Turning Off The Circuit 54

A.3 Recycle Power . 55

A.4 Redesign Logic Of The Circuit 56

A.5 Higher Level of Integration 56

A.6 Dynamic Power Management 56

A.6.1 Clock Gating 57

A.6.2 Qualified System Latches 58

A.6.3 Guarded Evaluation 58
A.6.4 Bus Deactivation 59
A.6.5 Self-timed Techniques 59

A.7 Synthesize . 59

vii

Page

Appendix B. Matlabr Code . 61

B.1 HierarchicalLK . 61
B.2 Reduce . 63
B.3 LucasKanade . 63
B.4 LucasKanadeRefined . 65
B.5 Expand . 67

Appendix C. VHDL Code . 69

C.1 Reduce Matrix Function Top-Level 1 Behavior Multiplier 69

C.2 Reduce Matrix Function Top-Level 2 Behavior Multiplier 75

C.3 Reduce Matrix Function Top-Level 1 Booth Multiplier . 85

C.4 Reduce Matrix Function Top-Level 2 Booth Multiplier . 91

C.5 Compute Derivatives Fx using Booth Multiplier 102

C.6 Compute Derivatives Fy using Booth Multiplier 107

C.7 Compute Derivatives Ft using Booth Multiplier 111

C.8 Matrix Transpose . 116

C.9 Pseudoinverse . 119

Bibliography . 127

Vita . 128

viii

List of Figures
Figure Page

1.1. Power, Area, and Delay Triangle 2

1.2. A Sample of Target Tracking Imagery 5

2.1. Three Main Steps for VLSI Design Process 7

2.2. Six Steps for VLSI Design Process 8

2.3. Nand Gate Layout . 12

2.4. Standard Design Time vs. MSP Design Time 15

2.5. Optical Flow Vectors for a 250× 400 Image 18

4.1. Reduce Matrix Function Top Level Design 1 32

4.2. Conv2 Sub-Modules Design . 33

4.3. Behavior Multiplier Module Design 33

4.4. Booth Multiplier Module Design 34

4.5. Reduce Matrix Function Top Level Design 2 34

4.6. Multiplier State Machine Design 35

4.7. Booth Multiplier State Machine Design 35

4.8. Compute Derivatives Top-Level Design 36

4.9. Matrix Transpose Top-Level Design 36

4.10. Pseudoinverse Top-Level Design 37

4.11. Reduce Matrix Function Matlabr vs. VHDL Percent Error . . 38

4.12. Reduce Matrix Function Module Net Power(mW) vs. Clock Speed 40

4.13. Reduce Matrix Function Module Cell Area vs. Clock Speed . . 41

4.14. Compute Derivatives Module Net Power(mW) vs. Clock Speed 41

4.15. Compute Derivatives Module Cell Area vs. Clock Speed 42

4.16. Matrix Transpose Module Net Power(mW) vs. Clock Speed . . 42

4.17. Matrix Transpose Module Cell Area vs. Clock Speed 43

4.18. Pseudoinverse Module Net Power(mW) vs. Clock Speed 43

ix

Figure Page

4.19. Pseudoinverse Module Cell Area vs. Clock Speed 44

A.1. Energy Recovery Clocked Flip-Flops with Clock Gating 54

A.2. Clock Recovery Circuit . 55

A.3. Illustration of Clock Gating . 57

A.4. Guarded Evaluation . 58

A.5. Leakage Power Optimization Flow 60

x

List of Tables
Table Page

2.1. Summary of Maximum Clock Frequency for Modules 16

3.1. Configurable parameters . 21

4.1. Comparison between Matlabr and VHDL Gaussian Distribution 38

4.2. Comparison between Matlabr and VHDL Pseudoinverse Module 39

4.3. FPGA Synthesize Results for Top-Level 1, Behavior Multiplier 45

4.4. FPGA Synthesize Results for Top-Level 2, Behavior Multiplier 45

4.5. FPGA Synthesize Results for Top-Level 1, Booth Multiplier . . 46

4.6. FPGA Synthesize Results for Top-Level 2, Booth Multiplier . . 46

4.7. FPGA Synthesize Results for Compute Derivative Fx Module . 47

4.8. FPGA Synthesize Results for Compute Derivative Fy Module . 47

4.9. FPGA Synthesize Results for Compute Derivative Ft Module . 47

4.10. FPGA Synthesize Results for Matrix Transpose Module 48

4.11. FPGA Synthesize Results for Floor Module 48

4.12. FPGA Synthesize Results for Round Module 49

4.13. FPGA Synthesize Results for Pseudoinverse Module 49

4.14. Summary of Maximum Clock Speed for Modules 49

4.15. Summary of Net Power Watts for Modules 50

xi

List of Abbreviations
Abbreviation Page

AFIT Air Force Institute of Technology v

AFRL Air Force Research Lab v

VLSI Very Large-Scale Integration 1

MSP Mission Specific Process 1

VHDL VHSIC Hardware Description Language 1

FPGA Field Programmable Gate Array 3

ASIC Application Specific Integrated Circuits 3

TSMC Taiwan Semiconductor Manufacturing Company 4

Conv2 Two Dimensional Convolution 4

Pinv Pseudoinverse . 4

RTL Register Transfer Level . 5

DoD Department of Defense . 11

SRAM Static Random Access Memory 13

CLB Configurable Logic Block 44

DSP Digital Signal Process . 52

DPM Dynamic Power Management 54

DC Direct Current . 55

AC Alternating Current . 55

Vp Peak Voltage . 55

Vth Threshold Voltage . 56

P Power . 56

V Voltage . 56

I Current . 56

xii

Hardware Algorithm Implementation

For

Mission Specific Processing

I. Introduction

In today’s advancing technologies, devices are shrinking and densities of integra-

tions are increasing. With these trends come many new challenges in designing in-

tegrated electronic circuits and systems. To achieve high performance (Power, Speed,

Dynamic Range, etc.) in new integrated circuits for next-generation systems; new

methodologies must be created, adopted, and executed.

The objective of this research is to examine and investigate current difficul-

ties/problems associated with modeling and fabricating Very Large-Scale Integration

(VLSI) circuits, then provide reusable library cells for AFRL/RY directorate’s Mis-

sion Specific Process (MSP) in Very High Speed Integrated Circuit (VHSIC) Hardware

Description Language (VHDL). These reusable libraries can be broken into three vari-

ations which are as follows: optimizing power, minimizing area, and minimizing delay.

By having these libraries built and ready to go, system requirements can be upgraded

and changed in a matter of days instead of months or even years. These reusable

libraries make it possible to meet the changing requirements of the operational envi-

ronment. The MSP makes it flexible for system changes to be implemented quickly

into a system. The variations between power, area, and delay can be generalized as

the points on an equilateral triangle as seen in Figure 1.1. The points of the triangle

represent the priority optimal design for the given circuit. For example, if you want

to optimize the power, the other two parameters will not be the priority. This will

cause the design to have minimal power consumption at the expense of the final de-

1

Figure 1.1: Power, Area, and Delay Triangle.

sign being large or slow. The blue dot in the triangle represents where the priority

lies, meeting design specifications.

The idea behind AFRL/RY directorate’s MSP is a threefold approach to de-

signing circuits. First, it takes time for the design to be developed and fabricated

before it can get into the hands of the customer. The design to market can take up

to 1-2 years depending on the technology and the level of difficultly of the circuit

design. In addition to the amount of time it takes to develop the product, it can be

obsolete in only a few years. This is what makes MSP so unique; it is made up of

pre-built synthesizable reusable libraries so the designer doesn’t have to start from

scratch. The designer can quickly use the pre-built libraries and make new ones when

specifications change and add them to the library.

Second, if modifications are required for additional features to be added to the

product, then you have to wait for the redesign to take place. You have to pay the

vendor again for the changes they make and wait for the new design to be delivered.

This is where MSP comes in to reduce the cost and schedule of redesigning a circuit

just to make a few changes for additional specifications. The use of the reusable

libraries makes designing a circuit much easier than current methodologies. In a

2

sense, it is like putting a Legorset together. By having all the pre-built parts it’s just

a matter of integrating them together for your personal application.

Thirdly, a Field Programmable Gate Array (FPGA) can replace an Application

Specific Integrated Circuit (ASIC) design, unless you want absolute performance.

The use of MSP makes it flexible for the designer to develop prototypes faster and

cheaper for an FPGA as opposed to an ASIC design. Having MSP in your tool box

can save time and money for the next generation of a circuit design. Therefore, the

War Fighter will have new equipment in the field in a matter of days as opposed to

the old way of doing business, which could take 1-2 years for a weapons system to be

developed.

This project will support AFRL/RY in their development of a target tracking

project, where the circuits and digital circuits are to be implemented in one chip.

The goals are to provide reliable building blocks as portable synthesizable reusable

libraries. These libraries will enable the War Fighter to get an upgradable weapon

system in a matter of a few days or hours and to keep up-to-date with the ever-

changing Global War on Terrorism.

Building these reusable libraries and making them usable for FPGA or ASIC

designs is beneficial in many ways. For instance, programming the design on an

FPGA makes it possible to protect the design against enemy hands. Anti-tamper

methods on the FPGA board protects the design from being discovered by the en-

emy. Additionally, placing the designs on an FPGA allows the weapons system to be

implemented quicker than sending the design to a foundry for fabrication as an ASIC

design, which can take months due to long lead times that the foundries put in their

schedule. Once the design is created on an ASIC chip it has to be thoroughly tested

to find faults in the fabrication process. All these design steps take time, especially if

there are problems with the completed design.

3

1.1 Specific Issue

The War on Terrorism has made the military solider depend on today’s tech-

nology of global positioning systems, radar systems, and different communication

devices. These devices, being mobile or not, are required for them to operate in the

field and communicate with Command and Control. For this reason it is essential

that these libraries be built and perfected.

With any circuit design there are three key parmeters that designers face when

designing circuits, and they are as follows: power, area, and delay. The designer

has to make tradeoffs between these three parmeters to meet their specific design

constraints. Every commercial or military application has its own specifications for

power, area, and delay.

The VLSI technology continues to place more and more transistors on a single

chip. This allows the chips to become more powerful in computing power as the

area of the chips remain small. The chips constantly require electrical power to keep

them operational which makes it difficult for the War Fighter to do their mission

without wondering if their batteries are going to sustain throughout their mission.

There is a need to be able to run longer missions and have longer lasting equipment

that doesn’t require battery change-outs in the middle of a critical mission. This low

power optimization will be using a 250-nm technology library [15] from the Taiwan

Semiconductor Manufacturing Company (TSMC). This library will provide a starting

point to develop circuits that have lower power consumption for the future.

1.2 Problem Statement

The problem is to take the AFRL/RY Optical Flow Dense Algorithm written

in Matlabr and convert the commands into synthesizable reusable library modules

written in VHDL. We will be laying the foundation with these synthesizable reusable

libraries for other weapons systems that require Matlabr commands such as, Round,

Floor, Two Dimensional Convolution (Conv2), and Pseudoinverse (Pinv), etc. The

4

Figure 1.2: A Sample of Target Tracking Imagery [1].

Optical Flow Dense Algorithm can provide various libraries to handle Unmanned

Aerial Vehicles for image processing. An example of target tracking imagery can be

seen in [1] Figure 1.2. The small rectangles show targets that can potentially be

tracked using Optical Flow.

1.3 Scope and Assumptions

It is assumed that the reader has knowledge about the VLSI technology and

understands VHDL, scripting, and intergrating the script in Cadencersoftware pro-

gram or Modelsimr. The main software programs that will be used for this research

are Modelsimr, Mentor Graphicsr, and CadencerCompanies’ software tools. The

simulations will be run on Modelsimrto verify the Register Transfer Level(RTL) cod-

ing. Cadencerand Mentor Graphicsrsoftware tools will be used to verify that the

modules are synthesizable.

1.4 Thesis Organization

Chapter 2 of this thesis will give background information required to understand

the technology options that are available for use to reduce power consumption. Each

option will be briefly explained and the main focus of the research project option will

be expounded into further details and discussions. Also, background information will

5

be given to support the design decisions used in Chapter 3. Chapter 3 will discuss

the theory and methods that were used for this thesis project. Chapter 4 will look at

the results that were gathered throughout this research and will be analyzed and dis-

cussed. Finally, Chapter 5 will discuss future work and topics. The ModelsimrVHDL

code will be located in Appendix C.

6

II. Background

This chapter will give an overview of the background information used throughout

this research. The MSP idea makes it flexible enough to accommodate the ever-

changing Air Force missions. This section will present an overview of the VLSI Design

Process as well as a more in depth view of the process. We will also discuss FPGA

vs. ASIC Risk, MSP Design Reusability, and Optical Flow.

2.1 Overview of VLSI Design Process

The VLSI Design Process can be summed up in the following three main steps:

architecture, verification, and implementation and can be seen in Figure 2.1. The

architecture is made up of three methods to design a circuit which are power, area,

and delay (speed). Each architecture has it pros and cons for design implementation

depending on what you are trying to achieve. The use of the circuit will drive what

architecture you should use when designing it.

It is important to verify that your expected results match your simulated results.

Once you have determined your design is working properly through simulations it is

time to implement your design on an FPGA or fabricated circuit such as an ASIC.

Figure 2.1: Three Main Steps for VLSI Design Process

7

Figure 2.2: Six Steps for VLSI Design Process

The fabrication process for a circuit can take anywhere from 3 to 6 months at

the foundry. In the next section, the VLSI Design Process will be broken down for a

more magnified look at the steps involved to build an operational design.

2.2 VLSI Design Process

The typical VLSI Design Process can be broken into the following six steps and

can be seen in Figure 2.2:

1. Specification

2. Architecture

3. RTL Coding

4. RTL Verification

5. Synthesis

6. Implementation/Fabrication

Each of these steps will be discussed further for an understanding of what is

required before a design can be implemented into the field as an operational weapons

system.

8

2.2.1 Specification. The specification for any design comes from the cus-

tomer who has a specific need for a project they want built and implemented. There

are three different design strategies for circuits - custom, ASIC, and FPGA. The

customer lists the criteria they want for their system, which could be a specific size

(area) of the circuit, a certain power usage, or delay (speed) of the design, or even that

they want the design written in VHDL. The vendor (designer) will discuss with the

customer the possibilities based on the technology available at the time the original

specification was created.

2.2.2 Architecture. There are three different architectures that can be im-

plemented in any design. The three architectures are power, area, and delay (speed).

2.2.2.1 Power. Clock control plays a major role when designing a

circuit to reduce power consumption. Reducing the speed of the clock for a circuit

will reduce the switching activity. This results in power savings by limiting the amount

of switching activity that takes place. Besides reducing the speed of the clock for the

circuit, designers have also proposed “clock gating [13] by modifying the design of

the existing energy recovery clocked flip-flops to incorporate a power saving feature

that eliminates any energy loss on the internal clock and other nodes of the flip-

flops.” According, to Steve Kilts, in his book, Advanced FPGA Design, he suggests

the following:

The most effective and widely used technique for lowering the dynamic
power dissipation in synchronous digital circuits is to dynamically disable
the clock in specific regions that do not need to be active at particular
stages in the data flow [9].

It would be ideal to have the circuit temporarily turn the clock off when a par-

ticular section of the circuit is not required to reduce power consumption. These are

a few techniques that are available for use to reduce power consumption. Additional

power reduction techniques can be found in Appendix A.

9

2.2.2.2 Area. Another architecture that can be used when developing

a circuit design is area. Ways to implement reduction in area for a circuit depends

on picking the correct topology. Topology that focus on reducing the area size of

a circuit can be attained by reusing [9] “the logic resources to the greatest extent

possible, often at the expense of throughput(speed).” When you want to increase the

delay for a design you need to pipeline your design. However, to reduce the area you

need to do the opposite of creating pipelines, you need to roll them up to be able to

use the available resources. Also, it is a good idea, according to Steve Kilts, to [9]

“share logic resources between different functional operations.”

2.2.2.3 Delay (Speed). The third architecture that can be used when

designing a circuit is speed. There are three ways to describe speed in regards to circuit

design - they are throughput, latency, and timing. In the book Advanced FPGA Design [9],

Kilts gives a description for each one of these.

A high-throughput design is one that is concerned with the steady-state
data rate but less concerned about the time any specific piece of data
requires to propagate through the design (latency). A low-latency design
is one that passes the data from the input to the output as quickly as
possible by minimizing processing delays. Timing refers to the clock speed
of a design. The maximum delay between any two sequential elements in
a design will determine the max clock speed [9].

A key factor that should be considered when designing a circuit for speed is to

use pipelining wherever possible to increase your throughput. The idea of pipelining

is very similar to how an assembly line works. Each member is continually performing

their specific task; they finish one, pass it on to the next station, and get another.

The result is that a completed product is continuously produced. Pipelining [9] is a

way to increase throughput for a process. Another [9] technique is to have the system

run things in parallel to speed up the process. This technique is most useful when

doing math calculations in a design.

10

2.2.3 RTL Coding. The third step in the VLSI Design Process is RTL

Coding. RTL Coding is nothing more than what language you will code your design

in. There are different Hardware Description Languages (HDL) that can be used to

make an RTL module. The most commonly used RTL modeling languages are the

following:

1. VHDL

2. Verilog

3. System Verilog

VHDL is the adapted hardware description languages for the Department of

Defense (DoD). For this thesis we will code our design in VHDL.

2.2.4 RTL Verification. Step four in the VLSI Design Process is RTL

Verification. RTL Verification is when you verify that your VHDL code simulates

correctly. The simulation waveform generated in Modelsimrgives you a waveform to

show the circuit is functioning. If this waveform gives you the expected results then

your code and RTL are working properly.

2.2.5 Synthesis/Manual Layout. A flexible synthesis tool, such as Leonardo

Spectrum by Mentor GraphicsrTool, allows a synthesizable HDL design to be syn-

thesized for both FPGA and ASIC. The software tool uses optimization algorithms

to determine the best floor design, place, and route of the design. The synthesis step

has made it possible for an FPGA to only need the design to be download to the

FPGA board to verify whether the simulation results match the synthesis results and

meet the specifications that were stated at the beginning of the VLSI Design Process.

Unlike the FPGA design, after the ASIC design is synthesized, it still needs to be sent

to a foundry to be fabricated. The use of FPGA eliminates the fabrication step, it is

economically inexpensive to own and can be reconfigured for a new design in a matter

of seconds, depending on the size of the design. Therefore, if there was a problem

with the timing of the design and it didn’t meet the specifications of the design, the

11

Figure 2.3: Nand Gate Layout

designer would be aware of the problem and begin to correct the timing issue. How-

ever, the ASIC design wouldn’t find this problem until the design was tested after it

was received from the foundry.

When developing a custom design, a manual layout could be used. This would

require you to hand place every piece of the circuit in a location that is determined by

you. Then you would have to route all the cell wires together. This is a very tedious

and time consuming process. The designer has to worry about design rule violations

such as placing the cells too close together or too far apart causing timing delays. An

example of a handmade design of a Nand Gate is seen in Figure 2.3. This Nand Gate

is only one gate. If you have a complicated design, in the range of hundreds of millions

of gates, you can see how this task can be extremely time consuming. Once the gates

have been layed out, then you have to determine if they are in the optimal position

for the place and route step. This design lacks scalability when new technologies are

created, the old layout may not be usable at all in ASICs. However, ASIC designs

will have a higher absolute performance than FPGA designs.

2.2.6 Implementation/Fabrication. Implementation/Fabrication is the final

step in the VLSI Design Process. Implementation/Fabrication consists of the design

being synthesized for an ASIC design, otherwise it would be a manual layout design.

The design is finalized and the circuit is sent on as a computer file to the foundry for

12

the fabrication process. At the foundry, several different metal layers and polysilicon

layers will be used to create the design. The design will also need a set of test vectors

to be sent with it to the foundry. This is required to determine if the design is working

correctly. If the design comes back correct, then this ASIC or custom design can only

be used for this given application. On the other hand, if the design comes back not

working properly, then the designer will have to analyze the circuit and determine

where in the six step process the design failed. This basically leaves the designer at

square one. All of this time has been invested into a product that does not work.

Even if the change is found within a few days it will still be 3 to 6 months from the

time they send it to the foundry before they will see it again. Therefore, making an

ASIC design is very costly and time consuming for the design process. Unlike the

ASIC, the FPGA can be designed and implemented in an shorter time span and is

an economical, reusable, and reconfiguable product.

2.3 FPGA vs. ASIC Risk

Now that the VLSI design cycle has been thoroughly discussed, let us examine

the risk that is involved with building a circuit to meet an FPGA or ASIC design.

The FPGA is an inexpensive design option that will only cost a few thousand dollars

for a board. The Static Random Access Memory (SRAM) FPGA is reconfigurable in

that once you put one design on the board you can take the program off the board and

reprogram the board for a completely new design with no new costs involved. Once

the design is synthesizable and thoroughly tested, it requires less time to become

operational. There is also a higher chance that your FPGA design will synthesize and

work the first time, unlike the ASIC design, saving a company time and money. On the

other hand, an ASIC design is an expensive investment and will require substantially

more time and money to be implemented. For example, let us say that a company is

implementing a new design and they choose to take the route of an ASIC design. They

could invest a million dollars into the program before it is even fabricated due to the

labor intensive effort required. If the design fails once, it comes back from fabrication

13

to engineers who will thoroughly look at the design to understand why it failed. Once

the failure has been determined, it may cost an additional $100,000 from the time

the engineers determine the problem to the time it is refabricated and works. Also,

this design can only be used for this single application. If this application was for a

satellite that was in space and it failed, the satellite would lose that functionality in the

system. However, if the design was on an FPGA, the design could be reprogrammed

in a matter of minutes to keep the system functioning. As you can see, there are

several risks that need to be considered when deciding what design solution to use.

In this thesis, we will create a set of synthesizable VHDL libraries targeting FPGAs

and ASICs. However, we are putting emphasis on the FPGAs due to extra time and

cost required for us to fabricate ASIC solutions for validation purposes.

2.4 MSP Design Reusability

Now you have seen the design steps required for a VLSI circuit design and how

there are two different approaches to reach a solution. MSP offers design reusability

by creating multiple modules of the same functioning task that focus on optimizing

power, area, and delay modules. A typical design takes an average of 24 months

to complete. The MSP design can take 3 months on average to complete, due to

the synthesizable reusable libraries. Each design is unique to itself with different

variables that depend on the length of time required to complete a design. Some of

the variables that need to be considered are as follows: complexity factor, can you

reuse anything from a previous design, is the task fully defined, experience of the

designer, etc. A typical design timeline can be seen in Figure 2.4. The MSP libraries

include the Architecture, RTL Coding, RTL Verification, and Synthesis. Using these

MSP libraries can save time, money, and resources when designing a circuit. Chang

and Aguan [3] state how important it is to have reusable VHDL modules in their

journal article “Design-for-reusability” in VHDL.

14

Figure 2.4: Standard Design Time vs. MSP Design Time

The reuse of electronic components can improve productivity in system de-
sign. However, without careful planning, components are rarely designed
for reuse.

There is also more than one option when designing a multiplier, adder, or con-

troller. You can build a behavior combinational multiplier, structurally combinational

multiplier, behavior sequential multiplier, structurally sequential multiplier, or even

a Booth multiplier just to name a few. They all have strengths and weaknesses for a

design. The MSP idea is to build reusable libraries to meet the needs of the designers.

A multiplier is a good example of this. The designer can build three variations of a

multiplier to have one optimized for power, one for area, and one for delay (speed).

When a new requirement is generated and it requires the use of a multiplier, the

reusable libraries of power, area, and delay will be available. Since these modules

have already been optimized, there is no additional work for the designer. This con-

cept goes back to the the power, area, and delay triangle that was shown in Figure 1.1.

The pre-built modules make it possible for the designer to only have to choose which

module will work best for the specifications they were given. This can be seen in

Table 2.1 where there are four types of multiplier designs showing their results for

power, area, and delay. These results came from the software tool Cadencer. The

15

Table 2.1: Summary of Maximum Clock Frequency for Modules
Type of Multiplier Power mW Area mm2 Max. Freq. MHz Constrained
Booth 37.17 0.1537 53.99 Yes
Combinational Behavior 7.35 0.2043 53.09 No
Combinational Structural 9.13 0.2422 28.23 No
Sequential Behavior 64.87 0.2151 37.31 Yes

constrained column in the table gives a clear picture of what power, area, and maxi-

mum clock frequency can be achieved. When combinational designs are synthesized in

Cadencerthere is no clock used to determine how fast the design will run accurately.

Therefore, Cadencergives a best guess estimate for the power, area, and delay. As

you can see, the Booth Multiplier has the fastest delay but the third largest amount

of power consumption. One multiplier design may have the smallest area, but the

slowest delay. It is up to the designer to pick which module will work best for their

application.

If you take this a step further and expand to other modules like adders, subtrac-

tors, and controllers, you will have generated an arsenal of modules that have been

optimized for power, area, and delay. This will be like picking out a new car. What

options do you want for a new car - power windows, cd player, full size spare tire, etc.?

Having these libraries built, reconfigurable, and reusable makes designing a weapon

system simpler and saves time, money, and resources. Also, using an FPGA makes

it easier to upgrade the system at a lower cost while applying less time. There will

be several different variations of the same module focusing on optimized power, area,

and delay. For example, if a design calls for fast multiplications to be performed, the

designer has the option to choose the multiplier that has been optimized for speed

from the reusable libraries that are already built.

In this thesis we will be implementing a Booth multiplier. The Booth multiplier

is based on adding, subtracting, and shifting the binary values several times. Andrew

Booth [5] noticed this can be achieved by having a lookup table to determine if the

binary value needs to be added, subtracted, or do no operation and only shift the

16

binary values one place. The Booth algorithm is summarized in points 1-3 below [5].

By using a lookup table, it is possible to quickly determine what operation needs to be

performed. The best thing about the Booth multiplier is the option it has to perform

no operation if there is a run of “00” or “11” in the number being multiplied. This

do nothing option reduces the number of operations, saving clock cycles required to

compute the multiplication. For example, if the bit width is 32 bits, it will only require

16 clock cycles to complete the multiplication. For this thesis we will implement a

2 bit shift Booth multiplier to cut the clock cycles in half from the given number of

input bits.

Booth Multiplier Algorithm Summary:

1. Examine each pair of digits in the multiplier, creating the first pair by appending

a dummy ‘0’ at the least significant end.

If the pair is 01, add the multiplicand.

If the pair is 10, subtract the multiplicand.

Otherwise, do nothing.

2. Shift both partial product and multiplier one place to the right, allowing the

next pair of digits to be examined.

3. Repeat as many times as there are digits in the multiplier [5].

2.5 Optical Flow

The Optical Flow algorithm compares two images together to see what is dif-

ferent between the two images. Some applications where optical flow are used are

change detection, computer vision, pattern recognition, tracking targets, and image

processing. Optical Flow is best described by Horn and Schunck [7] in their paper,

“Determining Optical Flow.”

Optical flow is the distribution of apparent velocities of movement of
brightness patterns in an image. Optical flow can arise from relative mo-

17

Figure 2.5: Optical Flow Vectors for a 250× 400 Image

tion of objects and the viewer. Consequently, optical flow can give impor-
tant information about the spatial arrangement of the objects viewed and
the rate of change of this arrangement.

There are two [7] [10] well regarded methods for calculating optical flow - are

Horn-Schunck and Lucas-Kanade methods. The Horn-Schunck [7] method looks at the

difference between the brightness and contrasts between the two images to estimate

what changes have occurred. The changes are represented in a vector field to show

the direction of motion the image is moving compared to the first image. The Lucas-

Kanade method [10] makes use of the “spatial intensity gradient of the images.” Using

the Horn-Schunck or the Lucas-Kanade method requires large amounts of calculations

to determine if there is a change between the first image and the second image. In

this project, we will look at the Lucas-Kanade method to determine an optical flow

solution between two images. An example of a vector field that was produced between

two images using the Lucas-Kanade method is shown in Figure 2.5. These results were

attained from Matlabr comparing two images that are 250× 400 pixels.

18

2.6 Chapter Summary

The background information for Chapter 2 covered the following: VLSI Design

Process, FPGA vs. ASIC Risk, MSP Design Reusability, and Optical Flow. Several

low power, area, and delay (speed) implementations were also looked at and discussed

in the architecture section of the VLSI Design Flow section. MSP has shown the

importance of creating many different modules for optimized power, area, and delay

that will perform the same task. Two different methods to perform Optical Flow

have been discussed, which were the Lucas-Kanade and Horn-Schunck Optical Flow

methods. We will build reusable libraries in VHDL for the Lucas-Kanade method

so the libraries can later build a complete Lucas-Kanade Optical Flow system. This

image processing can be used in part of the target tracking project. These ideas will

be discussed further in Chapter 3 to develop this thesis project.

19

III. Methodology

The methodology used to convert the Matlabr commands that generated the

Dense Optical Flow will be discussed in this chapter. The research goal is to

convert the Matlabr commands, located in Appendix B, used in the Dense Optical

Flow to build reusable VHDL libraries such as, Conv2, Matrix Transpose, Round,

Floor, and Pinv, etc. The goal is to demonstrate functioning MSP modules that are

reusable for image processing such as Optical Flow, DSP, computer vision, pattern

recognition, tracking targets, change detection, etc. These MSP libraries will be the

key for the foundation of these applications.

The Dense Optical Flow Matlabr command functions will be created and

demonstrated using smaller modules. These modules will make up the parts for the

Matlabr command that can later be used to build an Optical Flow system using MSP

modules. An example of some of the Matlabr commands that are used in Optical

Flow code can be seen in Listing III.1.

Listing III.1:

1 % Example of using the conv2 command

2 hResult = conv2(im, mask);

3

4 % Example of using the matrix transpose command

5 curFx = curFx ’;

6

7 % Example of using the Pinv command

8 U = pinv(A’*A)*A’*curFt;

9

10 % Example of using the round command

11 uIn = round(uIn);

12

13 % Example of using the floor command

14 halfWindow = floor(windowSize /2);

To create these commands, smaller modules were designed around the Matlabr

Dense Optical Flow written by Sohaib Khan [8] using the Lucas-Kanade algorithm [10].

20

The reason for creating individual modules and making them configurable components

is to be able to use a generic module and shape it to meet the needs of a specific de-

sign. We will assume that the image sizes will not change while the data is being

recorded with a camera and the modules will be set to receive grayscale images. This

parameter is configurable to meet future needs. The configurability parameters of

many of the individual modules can be seen in Table 3.1.

Table 3.1: Configurable parameters
Parameter Description
address width Bit width of matrix size (row, column)
data width Bit width of pixel depth values

3.1 Overall Design

The overall design of the Dense Optical Flow was broken into smaller parts

called modules. These modules were designed to take on the same characteristics

as the Matlabr commands. There are two different designs for the Reduce Matrix

Function that will be developed in VHDL. These two designs will look at large area and

small power consumption between the designs. These modules were built using VHDL

and tested with test benches to prove that they functioned properly. Other Matlabr

commands that will be created in VHDL are the following: Conv2, Round, Floor,

Matrix Transpose, Compute Derivatives, Reduce Matrix Function, Adder, Multiplier,

Divider, Subtractor, and Pinv. Also, the goal is to implement the Matlabr functions

as VHDL modules. For instance, the 2×2 matrix called A has the following parameters

while the 2× 2 matrix called B has the following parameters:

Matrix A


 1 2

3 4


 Matrix B


 5 6

7 8




The following Matlabr code calculates the two-dimensional convolution of Ma-

trices A and B as seen in Equation 3.1. The resulting answer is stored in the 3 × 3

Matrix C.

21

C = Conv2(A,B) (3.1)

Matrix C produces the following result:

Matrix C




5 16 12

22 60 40

21 52 32




These results match the results from the VHDL convolution module with 0% error.

The other Matlabr commands or functions were converted to VHDL to build the

reusable module libraries to lay the foundation for Dense Optical Flow algorithm. The

Matlabr commands that are only specific to Matlabr were developed and function

properly include: Conv2, Matrix Transpose, Round, Floor, and Pinv.

3.2 Two Dimensional Convolution

The two dimensional convolution Matlabr command Conv2 can be seen in

Equation 3.1. The Conv2 to Matlabr command is the backbone for the image pro-

cessing that has to take place in an application such as Optical Flow. Other Matlabr

functions that were developed by Sohaib Khan, such as a Reduce Function and Com-

puting Derivatives, can not be developed without the use of the Conv2 command.

Therefore, the Conv2 command was the first module that was created.

Matrix C is created from the size of Matrix A and B. For example, Matrix C is

[D+F-1, E+G-1]. These parameters come from the size of Matrix A[D,E] and Matrix

B[F,G]. The algorithm for the Conv2 can be seen in Equation 3.2.

C(n1, n2) =
∞∑

k1=−∞

∞∑

k2=−∞
a(k1, k2)b(n1 − k1, n2 − k2) (3.2)

From the Matlabr Conv2 algorithm, VHDL modules were written and im-

plemented having the same characteristics as the Matlabr command using a state

22

machine to take the place of the nested for-loops. The Conv2 Matlabr command

requires the following modules to be built in VHDL in order for it to function:

1. Memory Module

2. Multiplier Module

3. Control Module

4. Multiplexer Module

5. Adder Module

6. Register Module

Once these modules are built, they will be connected together, like connecting

Legosrtogether, to build the Conv2 Module for VHDL. Simulations will be run to test

the VHDL Conv2 and the results will be compared to the Matlabr Conv2 command.

3.2.1 Memory. Picture images are made up of grayscale values between

0-255 integer values that makeup the brightness of the image. These values are used

to discern between adjacent pixel colors of the images. A picture image is nothing

more than a two-dimensional matrix that has rows and columns and is loaded with

integer values to represent the brightness of the pixels. The memory method that will

be used is to initially generate a matrix larger than the image that is going to have

the Conv2 command performed on it. This is required when the Conv2 command

is finished computing, the resultant matrix is larger than the initial image matrix

size. Therefore, to take into account the matrix being larger than the initial image

size, the memory module will initially be filled with all zero’s. This oversized matrix

eliminated the problem of the Conv2 command from stepping out of bounds when

computing the results for the Conv2 command. The matrix can then be filled with

the required grayscale values that represent the image.

3.2.2 Multiplier. The initial Multiplier Module that will be developed will

only be a basic behavior model. The second Multiplier Module that will be developed

23

will be a 2-bit Booth Multiplier. This multiplier will be able to cut the clock cycle

in half for calculating the results. For instance, the data input for the pixel value for

the image is 8 bits, but we need to take into account the fractional parts of numbers

that are multiplied together. The Matlabr Optical Flow uses a 1 × 5 mask matrix

that is made up of a Gaussian distribution. The Mask 1× 5 matrix has the following

values:

Mask Matrix
(

.05 .25 .4 .25 .05
)

When these calculations are performed, the results give a fractional part to the

resultant. Therefore, we will use fixed-point notation to represent the fractional part

of the number. In doing so, we will allocate 16 bits for the fractional part to represent

the Gaussian distribution trying to minimize the error that will be caused since the

values .05 or .4 will be only a close proximation of these values. This leaves us with

16 bits for the fraction part and 8 bits for the grayscale images yielding a total of 24

bits required to represent the images. We will initially set the image data width to

24 bits. However, this parameter is configurable to a larger bit width, if required.

3.2.3 Control. The Control Module could be implemented using a for-loop

but these loops cannot typically be used for algorithmic iterations in synthesizable

code [9]. Therefore, a state machine will be built to unroll the iterative loop that will

increase throughput for the design.

3.2.4 Multiplexer, Adder, Register. The Multiplexer Module is used to

switch between the loading of images and the Control Module, and is connected to

the Memory Module. Once the image is loaded into the Memory, the Multiplexer

will switch from a load mode to only communicate with the control logic. The Adder

Module is used to add the values together once the multiplication is completed for a

set of values. The Conv2 Matlabr commands require the sum of matrix positions to

be multiplied and added together. The Register Module locks in the values that have

been added together into its register. Once all the calculations have been completed,

24

the Control Module will send a signal to Matrix C so the data in the Register Module

can be written into Matrix C at location (0,0).

3.3 Matrix Transpose

Part of the Matlabr code transposes the input image. The following modules

are required to build the Matrix Transpose Module:

1. Memory Module

2. Control Module

3. Multiplexer Module

Since the goal of the MSP is to create reusable libraries, creating the Matrix

Transpose Module has been simplified because the Memory Module was already de-

veloped while creating the Conv2 command. Therefore, the only new module required

to be built is a state machine Control Module to transpose a matrix.

3.4 Compute Derivatives

Another Matlabr function module that needs to be developed is one that is able

to compute derivatives. The Fx and Fy derivatives are used to determine the edge

detection of an object that has moved between Image1 and Image2. The Ft derivative

is the summation of Image1 and Image2. You can picture it as placing Image2 on top

of Image1, which forms the Ft derivative. The Compute Derivatives Module is built

around the Matlabr Conv2 command. Again, the MSP reusable libraries make it

possible for the creation of the Compute Derivative function by being able to recycle

the Memory and Conv2 modules. The equation seen in Equation 3.3 is from the

Compute Derivatives function that was written in Matlabr . This equation requires

the Conv2 command to be used twice to multiply Image1 by a fixed 2× 2 matrix and

added together with the result from Image2 being Conv2 with a fixed 2× 2 matrix.

Fx = Conv2(Image1, 0.25[−11;−11]) + Conv2(Image2, 0.25[−11;−11]); (3.3)

25

The following modules are required to build the Compute Derivative Module:

1. Memory Module

2. Control Module

3. Conv2 Module

The Matlabr Compute Derivatives Function code can be seen in Listing III.2.

Listing III.2:

1 [fx, fy, ft] = ComputeDerivatives(im1 , im2);

2

3 function [fx , fy , ft] = ComputeDerivatives(im1 , im2);

4 % ComputeDerivatives Compute horizontal , vertical and

5 % time derivative between two gray -level images.

6

7 if (size(im1 ,1) ~= size(im2 ,1)) | (size(im1 ,2) ~= size(im2 ,2))

8 error(’input images are not the same size’);

9 end;

10

11 if (size(im1 ,3) ~=1) | (size(im2 ,3) ~=1)

12 error(’method only works for gray -level images ’);

13 end;

14

15

16 fx = conv2(im1 ,0.25*[-1 1; -1 1])+ conv2(im2 , 0.25*[-1 1; -1 1]);

17 fy = conv2(im1 ,0.25*[-1 -1; 1 1])+ conv2(im2 , 0.25*[-1 -1; 1 1]);

18 ft = conv2(im1 ,0.25* ones (2))+conv2(im2 , -0.25* ones (2));

19

20 % make same size as input

21 fx=fx(1: size(fx ,1) -1, 1:size(fx ,2) -1);

22 fy=fy(1: size(fy ,1) -1, 1:size(fy ,2) -1);

23 ft=ft(1: size(ft ,1) -1, 1:size(ft ,2) -1);

26

3.5 Reduce Matrix Function

When dealing with image processing, the images need to be down sampled in

size. This down sampling is part of the Optical Flow. We will use the terminology

Reduce Matrix Function instead of down sampling. The Reduce Matrix Function is

another Matlabr function that needs to be created in VHDL. The Reduce Matrix

Function Module takes the initial image and reduces it in size by one half. For

example, an initial image size of 250 × 400 will be 125 × 200 after performing the

Reduce Matrix Function. Here is another example of how the MSP design thought

process uses the created reusable libraries to develop another module. The key module

in image processing is the Conv2 Module; again, it is used to build another module.

The following modules are required to build the Reduce Matrix Function Module:

1. Conv2 Module

2. Control Module

3. Reduce Control Horizonal Module

4. Reduce Control Vertical Module

5. Memory Module

6. Multiplexer Module

7. Adder Module

8. Register Module

The Matlabr Reduce Matrix Function code can been seen in Listing III.3.

Listing III.3:

1 function smallIm = Reduce(im)

2 % REDUCE Compute smaller layer of Gaussian Pyramid

3

4 % Sohaib Khan , Feb 16, 2000

5

6 %Algo

27

7 % Gaussian mask = [0.05 0.25 0.4 0.25 0.05]

8 % Apply 1d mask to alternate pixels along each row of image

9 % apply 1d mask to each pixel along alternate columns

10 % of resulting image

11

12 mask = [0.05 0.25 0.4 0.25 0.05];

13

14 hResult = conv2(im, mask);

15 hResult = hResult (:,3: size(hResult ,2) -2);

16 hResult = hResult(:, 1:2: size(hResult ,2));

17

18 vResult = conv2(hResult , mask ’);

19 vResult = vResult (3: size(vResult ,1) -2, :);

20 vResult = vResult (1:2: size(vResult ,1) ,:);

21

22 smallIm = vResult;

3.6 Round/Floor

The Round and Floor commands are predefined Matlabr commands that do

not exist in VHDL. The Round Module will take an input and round it up or down

depending on what the fractional part of the number is. If, for example, the number

is 4.5, the Round Module will round the number to 5 and if the number is 4.49 it will

round the number to 4. On the other hand, the Floor command will take the floor of

a number. For example, if the value is 5.9 it will floor the value to 5.

3.7 Pseudoinverse (Pinv)

The Pseudoinverse, also known as Pinv, is used to calculate the inverse of a

matrix. Not all matrices have an inverse, therefore, the Pseudoinverse is used to

find a close matrix inverse for a matrix. The Pseudoinverse [12] Equation 3.4 is

the equation used to calculate the Pseudoinverse for Matrix A and the answer is

stored in Y. The Matlabr code uses the equation seen in Equation 3.5 to do this

28

calculation. The method used to build the Pseudoinverse Module will be to use the

Matrix Transpose module and multiply it by the original Matrix A. While that is

being done, we will multiply Matrix Transpose by BV ector, where the BV ector is the

Ft derivative. Doing these two multiplications in parallel, we will perform the matrix

inverse on the resultants using the LU-Factorization method [6] to find the inverse.

The Pseudoinverse Module will include the following modules for its development:

Y = (AT A)−1AT (3.4)

Y = (AT A)−1(AT BV ector) (3.5)

1. Memory Module

2. Control Module

3. Multiplier Module

4. Divider Module

5. Adder Module

6. Matrix Transpose Module

7. Register Module

3.8 Synthesis/Timing

The XilinxrVirtex-4 SX ML402 FPGA will be the target FPGA to attain the

power, area, and delay of the circuits. The Virtex-4 is a generalized moderate cost

FPGA that is a practical standard FPGA for DSP applications. The Virtex-4 ML402

is a good evaluation board with a wide range of applications such as DSP and low

power. The Precision RTLrRTL 2007a.8 and XilinxrISE 9.2 are the two synthesis

tools that will be used.

In one method, the two dimensional convolution module is built using sequential

and combinational modules that make up the Conv2. The Conv2 module does many

29

multiplications and additions to compute the result for Matrix C. These sub-modules

are built using combinational logic. Therefore, if the clock runs too fast, the multipli-

cations and additions will not be completed before the next clock cycle, causing the

wrong result to be stored in Matrix C. One of the ways to eliminate this problem is

to lower the clock speed.

A second method would be to place a pipeline register between the multiplier

and adder to increase throughput by increasing the clock speed. Timing is important

for Dense Optical Flow due to the number of calculations required to complete two

simple 2× 2 matrices to create a 3× 3 matrix. Timing simulations will show how fast

the system can run to increase throughput. Timing simulations can also determine

if it is required to add additional pipeline registers to increase throughput. The

timing simulations can also determine how slow the clock can run without including

additional registers or hardware. By slowing the clock speed to a minimal speed,

power can be saved in the design. All these things rely on the timing simulations.

The Mentor Graphicsrtools will also play a role in attaining the results for Chapter

4 of this thesis project.

3.9 Testing Procedure

There are several ways to perform testing on these modules that will be devel-

oped. First, Modelsimrversion 6.3c will be used to develop the VHDL code. The

Modelsimrsoftware will also be used to generate test benches to show the function-

ality of modules. Once the VHDL modules are functioning, they will be run through

the Precision RTLr2007a.8 and XilinxrISE 9.2 software programs for synthesis to

look at power, area, and delay of the circuits. This will give an estimate of how to

reduce high power draws that occur due to the high amounts of calculations required

by Dense Optical Flow. This may require that the circuit clock speeds be slowed

down to reduce power, which in turn can minimize circuit size and slow the speeds of

the system being tested.

30

3.10 Chapter Summary

The idea of breaking the Matlabr commands and functions into synthesizable

reusable library modules that are used in image processing were discussed. These

modules will support AFRL/RY later when they want to create the Optical Flow as

a system by taking the synthesizable reusable libraries and connecting them together

to build an Optical Flow that can be fully designed in VHDL. The synthesis, timing,

and testing procedures were introduced and discussed. The software that will be used

to carry out this methodology was discussed and how it will be used. Each sub-

module was thoroughly tested to ensure there will be no errors when final assembly

of the sub-modules are connected to create an MSP module such as a Conv2, Matrix

Transpose, Round, Floor, and Pinv, etc.

31

IV. Analysis and Results

This chapter will discuss the overview design of the MSP modules that were

discussed in the methodology section. We will also look at the power, area, and

delay for the MSP modules. We will also look at the error analysis calculated between

the Matlabr code and the VHDL modules.

4.1 Overview of MSP Modules

The overarching module that needed to be created was the Conv2 Module. This

module was used in the development of the Reduce Matrix Function and Computing

Derivatives. The Top-Level Design 1 for the Reduce Matrix Function can be seen

in Figure 4.1. The Reduce Matrix Function requires the use of Conv2 Module to

perform the Conv2 Matlabr command. When using the Conv2 command in Matlabr

the matrix size grows larger due to the Conv2 algorithm. The hControl/vControl

Reduce Module are used to reduce the oversized matrix that is created when Conv2

is performed. The Reduce Matrix Function is used to reduce a matrix size in half.

For example, an image the size of 6 × 8 reduces to a 3 × 4. The Conv2 Module will

generate a 6×12. The hControl Reduce Module then reduces the 6×12 matrix down

to 6 × 4. The Conv2 Module will generate a 10 × 4 which will be reduced to 3 × 4

using the vControl Reduce Module. The final image is stored in the Memory Module

as a 3× 4.

Figure 4.1: Reduce Matrix Function Top Level Design 1

32

Figure 4.2: Conv2 Sub-Modules Design

The modules that were used in the the Top-Level Design 1 for the Conv2 Module

can be seen in Figure 4.2. These modules make up the Conv2 Module. The first Conv2

Module uses a 1 × 5 Mask matrix opposed to the 5 × 1 Mask matrix that is used in

the second Conv2 Module. The Conv2 Module design uses Multiplexer, Memory,

Multiplier and Controller Modules. They are connected together to achieve the result

for Conv2 Matlabr command.

The Behavior Multiplier can be seen in Figure 4.3. The three modules, Be-

havior Multiplier, Adder, and Register are required in the development of the Conv2

command.

The modules that are required to build a 2-bit Booth Multiplier Module can

be seen in Figure 4.4. The Booth Multiplier Module requires the input values to be

loaded into the Multiplicand and Product Module. The Control Module is used to

communicate between the other modules.

Figure 4.3: Behavior Multiplier Module Design

33

Figure 4.4: Booth Multiplier Module Design

The Top-Level Design 2 that was used to develop the Reduce Matrix Function

can be seen in Figure 4.5. This design approach eliminates the use of a second

Multiplier Module reducing power consumption and minimizing area compared to

Top-Level Design 1. Further analysis will be discussed later in Chapter 4 to see

the differences between the two design methods. Every large scale design requires a

Control Module to communicate between the other modules. The Control Module is

basically the “brains” for the module.

Figure 4.5: Reduce Matrix Function Top Level Design 2

34

Figure 4.6: Multiplier State Machine Design

The Control Module that was used for the Behavior Multiplier Module uses

seven states for its state machine. The Control Module is used to communicate

between the Multiplier Module and the other modules. The seven states that the

Control Module uses to communicate with the Behavior Multiplier Module can be seen

in Figure 4.6. The Booth Multiplier, on the other hand, requires that the Control

Module be built using 24 states for its state machine if using a 32 bit input. The

Booth Multiplier state machine can be seen in Figure 4.7. The Booth Multiplier is

performing its shifts, adds, and subtraction operations during States S4-S20 for a 32

bit number. If the input number was to be reduced to 24 bits, it would require 4 less

states for the Controller to use.

The Compute Derivatives Top-Level Design can be seen in Figure 4.8. Again,

you can see how the Conv2 Module was used to build the Compute Derivatives Mod-

ule. This function requires the use of the Conv2, Controller, Adder, and a Memory

Figure 4.7: Booth Multiplier State Machine Design

35

Figure 4.8: Compute Derivatives Top-Level Design

to build the derivative module in VHDL. The MSP Design effort payed off in the

creation of the MSP Compute Derivatives Modules by being able to reuse previously

designed modules.

The Matrix Transpose Module requires the use of a Multiplexer, Controller, and

Memory. The Matrix Transpose Module receives data through the Multiplexer which

loads the Memory. The Controller is used to transpose the values from the Memory

to Memory Transpose. The Top-Level design of the Matrix Transpose Module can be

seen in Figure 4.9.

Figure 4.9: Matrix Transpose Top-Level Design

36

Figure 4.10: Pseudoinverse Top-Level Design

The Pseudoinverse (Pinv) Module can be broken into 3 Modules. The (AT A)−1

is one module, the AT BV ector the other module, and finally the module that will

perform the LU-Factorization. The Pinv Module Top-Level Design can be seen Fig-

ure 4.10.

4.2 Error Analysis

When creating the VHDL modules to have the same functionality as the Matlabr

commands and functions, error is introduced. Part of this error is introduced and can

be seen from the Mask Matrix 1 × 5 or its transpose 5 × 1 that have the Gaussian

Distributions values in the Memory Matrix. The values .05 and .40 can not exactly be

represented in binary numbers when only using a limited amount of bits to represent

these values. We used 16 bits to represent the fractional part of the Mask Matrix

values. Therefore, when the Conv2 Module multiplies the image by the mask, the

resultant will have error. This is due to the fact that the Mask Values were not being

exactly compared to the Matlabr values. The close approximation values that were

used for the Mask Matrix and Matlabr values can be seen in Table 4.1. The error

analysis equation that will be used is %Error = V HDL−MATLAB
MATLAB

× 100.

The error analysis that was shown for the Reduce Matrix Function for the VHDL

compared to the Matlabr can be seen in Figure 4.11. The largest amount of error

37

Figure 4.11: Reduce Matrix Function Matlabr vs. VHDL
Percent Error

Table 4.1: Comparison between Matlabr and VHDL Gaussian Distribution
Matlabr Gaussian Distribution 0.05 0.25 0.4 0.25 0.05
VHDL Gaussian Distribution 0.049987793 0.25 0.399993896 0.25 0.049987793
% Error Difference 0.024414 0 0.001526 0 0.024414

that occurred was .0059% for the sample 6× 8 data set that we used. The 6× 8 data

set that was used can be seen in the Input Data Matrix. This data set was arbitrarily

chosen. The Reduce Matrix Function reduces the 6 × 8 matrix down to 3 × 4, but

not before the 6 × 8 has the Conv2 Module performed on it. The x-axis represents

the positions in the the 3× 4 matrix. The y-axis shows the percent error between the

Matlabr output and the VHDL output.

Input Data Matrix




1 2 3 4 5 6 7 8

17 18 19 20 21 22 23 24

9 10 11 12 13 14 15 16

41 42 43 44 45 46 47 48

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40




The Compute Derivatives for Fx, Fy, and Ft had zero percent error compared

to the Matlabr code. This is due to the fact that the Compute Derivative equation

38

used a positive or negative 2× 2 matrix with the values .25 which can be represented

in binary with zero percent error. Also, the Matrix Transpose Module had zero error

because it took the original Matrix A and transposed it to become Matrix AT . There

was no loss of data precision when transposing Matrix A.

The sample test data set that was used to test the Pseudoinverse Module was

Matrix A 9 × 2 and Matrix BV ector 9 × 1. The comparison between Matlabr and

VHDL results can be seen in Table 4.2. The results are stored in a 2× 1 matrix. The

largest percent error from the sample test data was 2.65%. A small amount of error

occurs from the divider that is used to calculate the Pseudoinverse. This small error

gets magnified when the value is multiplied. This intermediate result is divided and

multiplied again as part of the LU-Factorization in order to find the Pseudoinverse.

Matrix A




6 8

1 3

10 12

5 7

15 14

4 3

12 13

0 11

2 17




Matrix BV ector




1

5

7

9

10

15

20

2

8




Table 4.2: Comparison between Matlabr and VHDL Pseudoinverse Module
Matrix Position (1, 1) Matrix Position (2, 1)

Matlabr Results 0.731775 0.305488
VHDL Results 0.716705 0.313827
% Error Difference 2.10 2.65

39

Figure 4.12: Reduce Matrix Function Module Net
Power(mW) vs. Clock Speed

4.3 Power, Area, and Delay

In the power, area, and delay section we will look at the results that were

attained from the MSP modules implemented using the Cadencersynthesis tool. The

Cadencersoftware tool did not specifically target an FPGA or an ASIC for the results

that were attained.

First, we will look at the results that were attained from the Reduce Matrix

Function, seen in Figure 4.12. From the excel chart, it is clear that the Top-Level

Design 2 approach requires less net power to be used for the Reduce Matrix Function

Module. The power savings that occurs for Top-Level Design 2 over Top-Level Design

1 is at least 2.8 times smaller. In Figure 4.12 the Cadencersoftware also stated that

the fastest delay for Top-Level Design 1 using a behavior Multiplier Module ran at

52.02 MHz. The other designs ran at 53.86 MHz.

In Figure 4.13 it is clear that Top Level Design 2 uses a smaller area in the

design, up to 54.6% smaller, compared to the Behavior Multiplier Top-Level Design

1 and Booth Multiplier Top-Level Design 2.

The results for Fx, Fy, and Ft can be seen in Figure 4.14 for Power vs. Clock

Speed using the Cadencersoftware. As expected, as you increase the clock speed, the

net power increases. The clock speeds and area that were attained for the excel charts

40

Figure 4.13: Reduce Matrix Function Module Cell Area vs.
Clock Speed

Figure 4.14: Compute Derivatives Module Net Power(mW)
vs. Clock Speed

41

Figure 4.15: Compute Derivatives Module Cell Area vs. Clock
Speed

are only estimations generated from the Cadencersoftware. Every software package

uses different algorithms to attain the power, area, and delay.

The area for the Compute Derivatives was unchanged as the speed increases as

shown in Figure 4.15. For example, you are able to achieve the same cell area for 10

MHz design or a 52 MHz design.

The Matrix Transpose Module achieved the results for Power vs. Clock Speed

in Figure 4.16. The net power increased as the speed increased which is what is

Figure 4.16: Matrix Transpose Module Net Power(mW) vs.
Clock Speed

42

Figure 4.17: Matrix Transpose Module Cell Area vs. Clock
Speed

expected. The cell area was unchanged when the clock speed was increased. This can

be seen in Figure 4.17.

The Pseudoinverse Module achieved the results for Power vs. Clock Speed in

Figure 4.18. The net power increased as the clock speed increased which is what is

expected. The cell area was unchanged when the clock speed was increased. This can

be seen in Figure 4.19.

Figure 4.18: Pseudoinverse Module Net Power(mW) vs.
Clock Speed

43

Figure 4.19: Pseudoinverse Module Cell Area vs. Clock Speed

4.4 Synthesis

In the synthesis section, all the modules were targeted for the XilinxrVirtex-4

SX ML402 FPGA that uses 90nm technology. The device used was 4V SX35FF668,

and a Speed Grade of −10 was used to attain area and speed for the synthesis.

The XilinxrVirtex-4 board isn’t a state-of-the art board and therefore is very cost

efficient. Without a doubt, high-end FPGA systems will work much faster (2-3 times

the speed) than the current one with Configurable Logic Blocks (CLB) to spare. Like

any synthesis software tool, each one uses different algorithms for optimal power, area,

and delay for designs. That is why the results in this section will not match the results

from the Cadencersoftware since it uses 250 nm technology to attain the area and

delay for the modules. The Reduce Matrix Function Module was synthesized using

the Precision RTLrsoftware, which is a Mentor Graphicsrproduct.

The Reduce Matrix Function Module for the Behavior Multiplier Top-Level

Design 1 results can be seen in Table 4.3. The constraint for the frequency used

was 76 MHz. After synthesis, the maximum clock speed/frequency was 76.482 MHz.

Therefore, the synthesis had no timing violations. The Reduce Matrix Function used

only 10.24% of the FPGA area. There are a total of 15360 CLB slices available for

the targeted FPGA.

44

Table 4.3: FPGA Synthesize Results for Top-Level 1, Behavior Multiplier
Resources Used Available Utilization %
Inputs & Outputs 264 448 59.93
Global Buffers 1 32 3.13
Function Generators 3145 30720 10.24
CLB Slices 1573 15360 10.24
Dffs or Latches 2027 31616 6.41
Block RAMs 5 192 2.60
DSP48s 10 192 5.21

Table 4.4: FPGA Synthesize Results for Top-Level 2, Behavior Multiplier
Resources Used Available Utilization %
Inputs & Outputs 166 448 37.05
Global Buffers 1 32 3.13
Function Generators 2725 30720 8.87
CLB Slices 1362 15360 8.87
Dffs or Latches 1670 31616 5.28
Block RAMs 4 192 2.08
DSP48s 8 192 4.17

The Reduce Matrix Function Module for the Behavior Multiplier Top-Level

Design 2 results can be seen in Table 4.4. The constraint for the frequency used

was 73 MHz. After synthesis, the maximum clock speed/frequency was 73.115 MHz.

Therefore, the synthesis had no timing violations. Design 2 only requires 8.87% of

the CLB slices saving 15.49% more area than Design 1.

The Reduce Matrix Function Module for the Booth Multiplier Top-Level Design

1 results can be seen in Table 4.5. The constraint for the frequency used was 100 MHz.

After synthesis, the maximum clock speed/frequency was 101.75 MHz. Therefore, the

synthesis had no timing violations. Design 1 only requires 11.32% of the CLB slices.

This results in a 10% increase in area over the behavior design. The Booth design

has a 39.1% increase in maximum clock frequency over the Behavior Design 1.

The Reduce Matrix Function Module for the Booth Multiplier Top-Level Design

2 results can be seen in Table 4.6. The constraint for the frequency used was 100 MHz.

After synthesis, the maximum clock speed/frequency was 100.422 MHz. Therefore,

45

Table 4.5: FPGA Synthesize Results for Top-Level 1, Booth Multiplier
Resources Used Available Utilization %
Inputs & Outputs 268 448 59.82
Global Buffers 1 32 3.13
Function Generators 3475 30720 11.31
CLB Slices 1738 15360 11.32
Dffs or Latches 2387 31616 7.55
Block RAMs 5 192 2.60
DSP48s 6 192 3.13

Table 4.6: FPGA Synthesize Results for Top-Level 2, Booth Multiplier
Resources Used Available Utilization %
Inputs & Outputs 173 448 38.62
Global Buffers 1 32 3.13
Function Generators 2887 30720 9.40
CLB Slices 1444 15360 9.40
Dffs or Latches 1867 31616 5.91
Block RAMs 4 192 2.08
DSP48s 6 192 3.13

the synthesis had no timing violations. Design 2 only requires 9.40% of the CLB

slices. This results in a 6% increase in area over the Behavior Design. Although, the

Booth design has a 37.34% increase in maximum clock frequency over the Behavior

Design 2. Design 2 for the Booth is 20.36% smaller than Design 1 using a Booth

multiplier.

The Compute Derivatives Fx, Fy, and Ft Modules synthesis results can be seen

in Table 4.7, Table 4.8, and Table 4.9 respectively. The constraint for Compute

Derivative Fx Module had a frequency of 105 MHz. After synthesis, the maximum

clock speed/frequency was 105.876 MHz. Therefore, the synthesis had no timing

violations.

The constraint for Compute Derivative Fy Module in Table 4.8 had a frequency

of 105 MHz. After synthesis, the maximum clock speed/frequency was 105.876 MHz.

Therefore, the synthesis had no timing violations.

46

Table 4.7: FPGA Synthesize Results for Compute Derivative Fx Module
Resources Used Available Utilization %
Inputs & Outputs 106 448 23.66
Global Buffers 1 32 3.13
Function Generators 3439 30720 11.19
CLB Slices 1720 15360 11.20
Dffs or Latches 2187 31616 6.92
Block RAMs 5 192 2.60
DSP48s 4 192 2.08

Table 4.8: FPGA Synthesize Results for Compute Derivative Fy Module
Resources Used Available Utilization %
Inputs & Outputs 106 448 23.66
Global Buffers 1 32 3.13
Function Generators 3439 30720 11.19
CLB Slices 1720 15360 11.20
Dffs or Latches 2187 31616 6.92
Block RAMs 5 192 2.60
DSP48s 4 192 2.08

The constraint for Compute Derivative Ft Module in Table 4.9 had a frequency

of 101 MHz. After synthesis, the maximum clock speed/frequency was 101.75 MHz.

Therefore, the synthesis had no timing violations.

Table 4.9: FPGA Synthesize Results for Compute Derivative Ft Module
Resources Used Available Utilization %
Inputs & Outputs 106 448 23.66
Global Buffers 1 32 3.13
Function Generators 3368 30720 10.96
CLB Slices 1684 15360 10.96
Dffs or Latches 2183 31616 6.90
Block RAMs 5 192 2.60
DSP48s 4 192 2.08

The constraint for Matrix Transpose Module in Table 4.10 had a frequency of

158 MHz. After synthesis, the maximum clock speed/frequency was 158.856 MHz.

Therefore, the synthesis had no timing violations. The Matrix Transpose Module

only required 3.22% CLB slices to be used.

47

Table 4.10: FPGA Synthesize Results for Matrix Transpose Module
Resources Used Available Utilization %
Inputs & Outputs 68 448 15.18
Global Buffers 1 32 3.13
Function Generators 990 30720 3.22
CLB Slices 495 15360 3.22
Dffs or Latches 588 31616 1.86
Block RAMs 2 192 1.04
DSP48s 2 192 1.04

The constraint for the Floor Module had a frequency of 471 MHz. After synthe-

sis, the maximum clock speed/frequency was 471.032 MHz. Therefore, the synthesis

had no timing violations and the results can be seen in Table 4.11. The Floor module

only uses .01% of the CLB slices.

Table 4.11: FPGA Synthesize Results for Floor Module
Resources Used Available Utilization %
Inputs & Outputs 9 448 2.01
Global Buffers 1 32 3.13
Function Generators 4 30720 0.01
CLB Slices 2 15360 0.01
Dffs or Latches 4 31616 0.01
Block RAMs 0 192 0.00
DSP48s 0 192 0.00

The constraint for the Round Module had a frequency of 148 MHz. After

synthesis, the maximum clock speed/frequency was 148.236 MHz. Therefore, the

synthesis had no timing violations and the results can be seen in Table 4.12. The

Round Module uses 3.67% of the CLB slices.

The constraint for the Pseudoinverse Module had a frequency of 33 MHz.

After synthesis, the maximum clock speed/frequency was 34.58 MHz. Therefore, the

synthesis had no timing violations and the results can be seen in Table 4.13. The

Pseudoinverse Module uses 28.27% of the CLB slices.

The summary of maximum clock speed can be seen in Table 4.14. The Precision

RTLrsoftware tool showed similar results as the Cadencersoftware tool. The Reduce

48

Table 4.12: FPGA Synthesize Results for Round Module
Resources Used Available Utilization %
Inputs & Outputs 68 448 15.18
Global Buffers 1 32 3.13
Function Generators 1128 30720 3.67
CLB Slices 564 15360 3.67
Dffs or Latches 582 31616 1.84
Block RAMs 1 192 0.52
DSP48s 2 192 1.04

Table 4.13: FPGA Synthesize Results for Pseudoinverse Module
Resources Used Available Utilization %
Inputs & Outputs 339 448 75.67
Global Buffers 2 32 6.25
Function Generators 8698 30720 28.31
CLB Slices 4349 15360 28.31
Dffs or Latches 4986 31616 15.77
Block RAMs 14 192 7.29
DSP48s 22 192 11.46

Table 4.14: Summary of Maximum Clock Speed for Modules
Module Name Maximum Clock Speed MHz
Reduce Matrix Function Top-Level 1 Behavior Multiplier 76.48
Reduce Matrix Function Top-Level 2 Behavior Multiplier 73.11
Reduce Matrix Function Top-Level 1 Booth Multiplier 101.75
Reduce Matrix Function Top-Level 2 Booth Multiplier 100.42
Compute Derivative Fx 105.87
Compute Derivative Fy 105.87
Compute Derivative Ft 101.75
Matrix Transpose 158.85
Floor 471.03
Round 148.23
Pseudoinverse 34.58

Matrix Function Booth Multiplier Design outperforms the Behavior Multiplier by

39.1%.

The summary of the net power in Watts can be seen in Table 4.15. The

Precision RTLrsoftware tool showed similar results as the Cadencersoftware tool.

49

Table 4.15: Summary of Net Power Watts for Modules
Module Name Net Power Watts
Reduce Matrix Function Top-Level 1 Behavior Multiplier 0.672
Reduce Matrix Function Top-Level 2 Behavior Multiplier 0.662
Reduce Matrix Function Top-Level 1 Booth Multiplier 0.703
Reduce Matrix Function Top-Level 2 Booth Multiplier 0.687
Compute Derivative Fx 0.700
Compute Derivative Fy 0.708
Compute Derivative Ft 0.700
Matrix Transpose 0.668
Floor 0.636
Round 0.660
Pseudoinverse 0.646

4.5 Chapter Summary

In this chapter we discussed the overview of the designs that were used to build

the MSP synthesizable reusable libraries. Top-Level Design schematics were used

to show how the modules connected together. Error analysis was discussed to see

what error was introduced by using the Gaussian Distribution for the Mask Matrix

Modules. These modules used values that were close approximations to the Matlabr

values. The error results showed only a maximum of .0059% error for our arbitrary

data set. The power, area, and delay section used the Cadencersoftware to attain

the results for each module. It was noticed that as the delay increased the power

consumption increased. In some cases, the smallest cell area occurred when the delay

was at maximum. The synthesis section used the Precision RTLrsoftware to target

the XilinxrVirtex-4 SX ML402 FPGA to attain area and speed for the different

modules.

50

V. Conclusions

5.1 Summary of the Project

The problem was to convert Matlabr commands and functions into VHDL com-

ponents. These commands are used in image processing such as Optical Flow. To

fully implement Lucas-Kanade Optical Flow using these libraries may take up to six

months. The foundation has been laid through the synthesizable reusable libraries.

The development of these MSP modules have shortened the development time for an

FPGA or ASIC design. The MSP modules were implemented, validated, and are fully

synthesizable and functional reusable libraries. Chapter 2 discussed the VLSI Design

Process and how long it takes to get the design completed. Architecture techniques

were used in the development of the MSP libraries. The risks were discussed and

developed for why FPGAs are the right solution for getting a design field quickly.

Chapter 3 discussed the methodology and design structure that was used to aid in

the creation of the MSP libraries. Chapter 4 discussed the analysis and results that

were achieved from the design methodology. These libraries make it possible for the

designer to save time, money, and resources in the VLSI Design Process. The mod-

ules that were created are reconfigurable to meet the needs the of the ever-changing

Air Force. These modules can be used for future Air Force projects that require

change detection, computer vision, pattern recognition, tracking targets, and image

processing.

5.2 Future Work

The designs of the MSP Modules were shown to work successfully through sim-

ulations and were synthesized through the RTL software Cadencerand Precision

RTLrsoftware tools. The Cadencersoftware focused results on using the 250-nm

technology library from the Taiwan Semiconductor Manufacturing Company. The

Precision RTLrsoftware tools targeted designs for the XilinxrVirtex-4 SX ML402

FPGA. This section will discuss three future research topics.

51

5.2.1 Improve Module Designs. The modules designed are just the begin-

ning. The great thing about this project is that it provided baseline modules that

will be able to be enhanced for many projects to come. For example, the Reduce

Matrix Function Module could have pipelines and parallization added to it to im-

prove the delay of the Module. This would require that the Conv2 Module also have

additional multipliers, controllers, pipelining, and parallization. The Memory Mod-

ule could have enhanced features to accept multiple reads and writes during the same

clock cycle. By breaking the Control Module into smaller control units it will assist in

the parallization of how quickly the multiplications can be achieved. This will result

in a faster delay, and the area of the design will grow larger due to the additional

hardware. These are just a few examples; the possibilities are endless.

5.2.2 Power, Area, and Delay. Optimized power, area, and delay modules

can be developed for each Matlabr command or function that makes up the Lucas-

Kanade method. These additional modules will give the designer more flexibility and

options to chose from for their next design. For example, their arsenal can have three

different versions of a multiplier: Multiplier Power Module, Multiplier Area Module,

and Multiplier Delay Module. The designer will have the option to mix and match

these modules together for future needs of the Air Force.

5.2.3 Complex Numbers. Currently, the modules are based on using fixed-

point notation. Enhancements and variations can be made to handle floating point

and complex numbers. A floating point number will give more range than using

fixed-point. However, complex numbers can open the doors for potential uses such

as Digital Signal Process (DSP), image processing, tracking targets, etc. When using

DSP applications, complex numbers are used. DSP requires complex numbers to be

able to work in the time and frequency domain using Laplace transforms.

52

Appendix A. Reducing Power Consumption

This section will discuss other ways to reduce power consumption for designing

an architecture that requires low power.

A.1 Clock Speed/Clock Gating

One of the six different options used to reduce the amount of power in a circuit

is to reduce the speed of the clock. Reducing the speed of the clock for a circuit will

reduce the switching activity. This results in power savings by limiting the amount

of switching activity that has to take place. Besides reducing the speed of the clock

for the circuit, designers have also proposed.

Clock gating by modifying the design of the existing energy recovery
clocked flip-flops to incorporate a power saving feature that eliminates
any energy loss on the internal clock and other nodes of the flip-flops.
Applying this approach of clock gating for a system that has 1000 flip-
flops with 50% percent data switching eliminates the total power of the
circuit by 47% and also found that during sleep mode the flip-flops reduce
their power by (1000x) and has negligible amounts of overhead when the
flip-flops are in active mode [13].

The proposed method that achieved these results [13] “inserted the gating fea-

ture inside the flip-flops themselves.” This design can be seen in Figure A.1. Figure

A.1a is Single-Ended Conditional Capturing Energy Recovery (SCCER), Figure A.1b

is Static Differential Energy Recovery (SDER), and Figure A.1c is Differential Con-

ditional Capturing Energy Recovery (DCCER) flip flop.

Another option to reducing the power of the clock is to have an asynchronous

circuit design, also known as a clockless design [2]. This design eliminates the use

of having a clock saving power. Arsalan and Shams state the following about asyn-

chronous designs [2]:

The asynchronous circuit design has been long regarded as a way for solv-
ing the problem of synchronous circuit design such as clock skew, worst
case delay, and heavy global clock loading. When designed carefully, asyn-
chronous circuits can be more power efficient as compared to their syn-
chronous counterparts.

53

Figure A.1: Energy Recovery Clocked Flip-Flops with Clock
Gating [13]

A.2 Turning Off The Circuit

A second option to reduce power consumption is to set up a circuit to have

processes idle or turned off when not in use. This approach to reducing power con-

sumption can be broken into three parts: timeout-based, predictive, and stochastic [4].

The timeout-based is self explanatory. When a task is not required to be used over

a given time period it will timeout until it is required again. The predictive scheme

can use an algorithm to predict when the circuit should turn different portions on

and off, depending on it’s requirements. The predictive scheme, or partially shutting

down the system when it is not in use, will reduce the power consumption. Partial

shutdown will put a section of the system into idle or sleep mode depending on the

operation that is being performed. If a process is set into idle mode it will wake up

without waiting to reboot. If a process is set into sleep mode it will be turned off when

not in use. The downsides are that the idle mode will require more power to keep

the system readily available and the sleep mode will take longer for the section of the

circuit to transition to run mode. The third approach to reducing power consumption

is stochastic. This “approach formulates policy optimization of Dynamic Power Man-

agement (DPM) as an optimization problem under uncertainty rather than trying to

eliminate uncertainty by prediction” [4].

54

Figure A.2: Clock Recovery Circuit

A.3 Recycle Power

Thirdly, recycling the power in the circuit is another possible solution to reduc-

ing power consumption. The switching activity for a circuit is the major cause for

power consumption by having the circuit constantly charging and discharging across

the load and parasitic capacitance [16]. If you were to recycle the power of the circuit

back into it’s voltage supply you could save up to 80% power consumption [16], in-

stead of sending the power discharging back into ground where it will be lost forever.

Most circuits use Direct Current (DC) power supplies to turn them on. If you use

Alternating Current (AC) power supplies instead you can recycle the power for your

circuit. This approach can be seen in Figure A.2 [16] using two diodes and P channel

and N channel transistors to keep the load from discharging. As the power source

supplies a sinusoidal waveform the signal is 0 volts and the P channel transistor is

turned on and begins charging the load capacitor. This causes the diode connected to

the P channel to be just below the Peak Voltage (Vp) by one diode. During all this,

the N channel transistor is turned off. The diode that is connected to the P channel

transistor holds the load voltage to Vp. During the Vp of the sinusoidal waveform

the N channel transistor is turned on and the P channel transistor is turned off. The

P and N channel transistors are turned off during the negative cycle of the sinusoidal

signal [16].

55

A.4 Redesign Logic Of The Circuit

Another option is to reduce the amount of floating point operations in the circuit

by replacing them with fixpoint representation. It’s even possible to have a trade off

between parallel and serial logic design for the circuit. Power can be saved by using

parallization, pipelining, or a systolic architecture approach. Parallization gives you

the option to be able to slow down the clock speed to still compute data through the

circuit. The slowing down of the clock speed reduces the clock switching resulting in

power savings. For example, a sequential design requires a clock that will result in

continuous switching activity that will cause the power consumption to increase over

a design that are combinational. In a sequential circuit, adders and multipliers are a

good example of how additional switching activity will increase power consumption.

Reducing the power consumption for a sequential circuit could reduce the clock speed

of the circuit.

A.5 Higher Level of Integration

Changing the way the circuit is integrated can help reduce power. Performing

a System on Chip approach, non-cmos, or even reducing the lamda size of the circuit

from 250 nm to 90 nm, for example, can reduce the power. Reducing the technology

size of design reduces the Threshold Voltage (Vth) required to turn on the transistors.

As seen in the Equation A.1, reducing the voltage or current will cause the power

usage to go down. P represents power (P), V represents voltage (V), and I stands for

Current (I). Lowering the Vth decreases power, resulting in a power savings.

P = V I (A.1)

A.6 Dynamic Power Management

Finally, dynamic power management is another approach to reduce power con-

sumption in a circuit design. It has been stated [14] that “Dynamic power man-

agement is one of the most popular and successful low power design techniques in

56

Figure A.3: Illustration of Clock Gating

commercial integrated circuits”. This approach to saving power is built around the

idea of conserving power in the circuit for activities that don’t need to be operating.

The approach is also easy to build into a circuit design or even older design struc-

tures. One of the best features of using DPM is that in most cases the area of the

system will not increase much in size and the performance will not be reduced. The

mechanisms for DPM are a collection of techniques using the following areas in the

circuit to reduce the power consumption: Clock Gating, Qualified System Latches,

Guarded Evaluation, Bus Deactivation, and Self-timed Techniques. Now lets take a

look at each one of these power saving strategies in further detail.

A.6.1 Clock Gating. Clock Gating was touched on early but it’s still impor-

tant to note that when dealing with circuits or microprocessors that high performance

is typically trying to be achieved. Performance in a design requires that the clock

of the system operate as quickly as possible. This in turn causes the most power

consumption for the system [14] by the amount of switching activity that is taking

place. Also, the clock tree for a system puts an additional load on the system caus-

ing increased power consumption. The idea is to eliminate unnecessary activity on

segments of the clock signal by gating these with special qualifying signals. This can

been seen in Figure A.3.

57

Figure A.4: Guarded evaluation for a dual function ALU: (a)
Original design, (b) Guarded design

A.6.2 Qualified System Latches. According to Tiwari [14] “regular system

latches have a data input and a control input that is usually connected to the system

clock. A qualified latch has an additional input, the “enable” input, which determines

if the inputs to the latch will be read or not when the clock is asserted.” The use of

these latches can have a better power savings than regular latches. The reasoning be-

hind this is that the regular latches use power every time the system clock is switching

low to high, even when the data is not changing across the latch.

A.6.3 Guarded Evaluation. From the previous two subsections you saw

how the clock on the system requires large amounts of power to operate. Guarded

evaluation comes into play when you are unable to slow the clock or can not make any

further corrections to reduce the amount of power the clock is drawing. For instance,

[14] “if the combinational block at the output of a system latch is known to be doing

no useful work, power can be canned by disabling transitions from entering the block.”

It can also be beneficial if you have a set of [14] “modules that share a set of inputs”.

Being able to turn on only the module that is used will save power from going to a

module that is not being used. This is seen in Figure A.4.

58

A.6.4 Bus Deactivation. According to Tiwari [14] “the idea is to restrict the

enabling condition on tristate buffers driving a bus, such that the bus is not driven

on cycles when it is known that its results will not be used. Such unnecessary activity

on heavily loaded buses can lead to significant power wastage.”

A.6.5 Self-timed Techniques. Self-timed techniques are useful with on-chip

memories to reduce power. When dealing with microprocessors the memory can cause

large power consumption as data is being transferred back and forth to the cache with

on-chip memories systems. “A low-power optimization is to pre-charge the bit lines

and activate the sense-amps using short pulses. These pulses are generated only

when changes are detected on the address lines and a read or write is going to be

initiated [14].”

A.7 Synthesize

The synthesis approach in this research will be using Cadence Software CAD

tools. The paper [11] “Leakage Power Optimization Flow”, written by Sirsi, discusses

three different Power Flow models. The Power Flow model that worked the best for

reducing power consumption for clock speed of 200Mhz, technology 130 nm, and cell

instances 120K was his Power Flow 3 which uses a RTL Compiler and System on

Chip Encounter. Siri’s power flow model is illustrated in Figure A.5. In general, the

flow taken from Cadence’s support documentation has the block diagrams broken into

simpler blocks. The most important thing for a good design is the design flow used for

the system. Writing a good script to address these challenges plays a large role with

using the Cadence Tools. The first step is to set up your environment settings along

with what technology library that will be used. Load the VHDL file and perform

elaboration on the design. Apply constraints such as timing, design rule constraints,

defining input and output delay, and etc. Once these have been set it’s a good idea

to add optimization setting to the design. Now you’re ready for the final steps of the

script to synthesize, perform analysis, and export the design as a RTL file.

59

Figure A.5: Leakage Power Optimization Flow

60

Appendix B. Matlabr Code

This section has the Matlabr code that was written by Sohai Khan [8] for Optical

Flow using the Lucas-Kanade method.

B.1 HierarchicalLK

Listing B.1: The HierarchicalLK.m Matlabr file.(appendix2/HierarchicalLK.m)

1 function [u,v,cert] = HierarchicalLK(im1 , im2 , numLevels , ...
windowSize , iterations , display)

2 % HIERARCHICALLK Hierarchical Lucas Kanade
3 % (using pyramids)
4 % [u,v]= HierarchicalLK(im1 , im2 , numLevels , windowSize , iterations ...

, display)
5 % Tested for pyramids of height 1, 2, 3 only ...
6 % operation with pyramids of height 4 might be unreliable
7 %
8 % Use quiver(u, -v, 0) to view the results
9 %

10 % NUMLEVELS Pyramid Levels (typical value 3)
11 % WINDOWSIZE Size of smoothing window (typical value 1-4)
12 % ITERATIONS number of iterations (typical value 1-5)
13 % DISPLAY 1 to display flow fields (1 or 0)
14 %
15 %Uses: Reduce , Expand
16 %
17 % Sohaib Khan
18 % edited 05-15-03 (Yaser)
19 % yaser@cs.ucf.edu
20 %
21 % [1] B.D. Lucas and T. Kanade , "An Iterative Image Registration
22 % technique , with an Application to Stero Vision ," Int ’l Joint
23 % Conference Artifical Intelligence , pp. 121-130, 1981.
24
25 if (size(im1 ,1)~=size(im2 ,1)) | (size(im1 ,2)~=size(im2 ,2))
26 error(’images are not same size’);
27 end;
28
29 if (size(im1 ,3) ~= 1) | (size(im2 , 3) ~= 1)
30 error(’input should be gray level images ’);
31 end;
32
33
34 % check image sizes and crop if not divisible
35 if (rem(size(im1 ,1), 2^(numLevels - 1)) ~= 0)
36 warning(’image will be cropped in height , size of output will ...

be smaller than input!’);
37 im1 = im1 (1:(size(im1 ,1) - rem(size(im1 ,1), 2^(numLevels - 1))...

), :);
38 im2 = im2 (1:(size(im1 ,1) - rem(size(im1 ,1), 2^(numLevels - 1))...

), :);

61

39 end;
40
41 if (rem(size(im1 ,2), 2^(numLevels - 1)) ~= 0)
42 warning(’image will be cropped in width , size of output will ...

be smaller than input!’);
43 im1 = im1(:, 1:(size(im1 ,2) - rem(size(im1 ,2), 2^(numLevels - ...

1))));
44 im2 = im2(:, 1:(size(im1 ,2) - rem(size(im1 ,2), 2^(numLevels - ...

1))));
45 end;
46
47 %Build Pyramids
48 pyramid1 = im1;
49 pyramid2 = im2;
50
51 for i=2: numLevels
52 im1 = reduce(im1);
53 im2 = reduce(im2);
54 pyramid1 (1: size(im1 ,1), 1:size(im1 ,2), i) = im1;
55 pyramid2 (1: size(im2 ,1), 1:size(im2 ,2), i) = im2;
56 end;
57
58 % base level computation
59 disp(’Computing Level 1’);
60 baseIm1 = pyramid1 (1:(size(pyramid1 ,1) /(2^(numLevels -1))), 1:(size...

(pyramid1 ,2) /(2^(numLevels -1))), numLevels);
61 baseIm2 = pyramid2 (1:(size(pyramid2 ,1) /(2^(numLevels -1))), 1:(size...

(pyramid2 ,2) /(2^(numLevels -1))), numLevels);
62 [u,v] = LucasKanade(baseIm1 , baseIm2 , windowSize);
63
64 for r = 1: iterations
65 [u, v] = LucasKanadeRefined(u, v, baseIm1 , baseIm2);
66 end
67
68 %propagating flow 2 higher levels
69 for i = 2: numLevels
70 disp([’Computing Level ’, num2str(i)]);
71 uEx = 2 * imresize(u,size(u)*2); % use appropriate expand ...

function (gaussian , bilinear , cubic , etc).
72 vEx = 2 * imresize(v,size(v)*2);
73
74 curIm1 = pyramid1 (1:(size(pyramid1 ,1) /(2^(numLevels - i))), ...

1:(size(pyramid1 ,2) /(2^(numLevels - i))), (numLevels - i)...
+1);

75 curIm2 = pyramid2 (1:(size(pyramid2 ,1) /(2^(numLevels - i))), ...
1:(size(pyramid2 ,2) /(2^(numLevels - i))), (numLevels - i)...
+1);

76
77 [u, v] = LucasKanadeRefined(uEx , vEx , curIm1 , curIm2);
78
79 for r = 1: iterations
80 [u, v, cert] = LucasKanadeRefined(u, v, curIm1 , curIm2);

62

81 end
82 end;
83
84 if (display ==1)
85 figure , quiver(reduce ((reduce(medfilt2(flipud(u) ,[5 5])))), -...

reduce ((reduce(medfilt2(flipud(v) ,[5 5])))), 0), axis equal
86 end

B.2 Reduce

Listing B.2: The Reduce.m Matlabr file.(appendix2/Reduce.m)

1 function smallIm = Reduce(im)
2 % REDUCE Compute smaller layer of Gaussian Pyramid
3
4 % Sohaib Khan , Feb 16, 2000
5
6 %Algo
7 %Gaussian mask = [0.05 0.25 0.4 0.25 0.05]
8 % Apply 1d mask to alternate pixels along each row of image
9 % apply 1d mask to each pixel along alternate columns of

10 % resulting image
11
12
13 mask = [0.05 0.25 0.4 0.25 0.05];
14
15 hResult = conv2(im, mask);
16 hResult = hResult (:,3: size(hResult ,2) -2);
17 hResult = hResult(:, 1:2: size(hResult ,2));
18
19 vResult = conv2(hResult , mask ’);
20 vResult = vResult (3: size(vResult ,1) -2, :);
21 vResult = vResult (1:2: size(vResult ,1) ,:);
22
23 smallIm = vResult;

B.3 LucasKanade

Listing B.3: The LucasKanade.m Matlabr file.(appendix2/LucasKanade.m)

1 function [u, v] = LucasKanade(im1 , im2 , windowSize);
2 % LucasKanade lucas kanade algorithm , without pyramids
3 % (only 1 level);
4
5 % REVISION: NaN vals are replaced by zeros
6
7 [fx, fy, ft] = ComputeDerivatives(im1 , im2);
8
9 u = zeros(size(im1));

10 v = zeros(size(im2));

63

11
12 halfWindow = floor(windowSize /2);
13 for i = halfWindow +1: size(fx ,1)-halfWindow
14 for j = halfWindow +1: size(fx ,2)-halfWindow
15 curFx = fx(i-halfWindow:i+halfWindow , j-halfWindow:j+...

halfWindow);
16 curFy = fy(i-halfWindow:i+halfWindow , j-halfWindow:j+...

halfWindow);
17 curFt = ft(i-halfWindow:i+halfWindow , j-halfWindow:j+...

halfWindow);
18
19 curFx = curFx ’;
20 curFy = curFy ’;
21 curFt = curFt ’;
22
23
24 curFx = curFx (:);
25 curFy = curFy (:);
26 curFt = -curFt (:);
27
28 A = [curFx curFy];
29
30 U = pinv(A’*A)*A’* curFt;
31
32 u(i,j)=U(1);
33 v(i,j)=U(2);
34 end;
35 end;
36
37 u(isnan(u))=0;
38 v(isnan(v))=0;
39
40 %u=u(2: size(u,1), 2:size(u,2));
41 %v=v(2: size(v,1), 2:size(v,2));
42
43 %%%
44 function [fx , fy , ft] = ComputeDerivatives(im1 , im2);
45 %ComputeDerivatives Compute horizontal , vertical and time
46 %derivative between two gray -level images.
47
48 if (size(im1 ,1) ~= size(im2 ,1)) | (size(im1 ,2) ~= size(im2 ,2))
49 error(’input images are not the same size’);
50 end;
51
52 if (size(im1 ,3) ~=1) | (size(im2 ,3) ~=1)
53 error(’method only works for gray -level images ’);
54 end;
55
56
57 fx = conv2(im1 ,0.25* [-1 1; -1 1]) + conv2(im2 , 0.25*[-1 1; -1 1])...

;

64

58 fy = conv2(im1 , 0.25*[-1 -1; 1 1]) + conv2(im2 , 0.25*[-1 -1; 1 1])...
;

59 ft = conv2(im1 , 0.25* ones (2)) + conv2(im2 , -0.25* ones (2));
60
61 % make same size as input
62 fx=fx(1: size(fx ,1) -1, 1:size(fx ,2) -1);
63 fy=fy(1: size(fy ,1) -1, 1:size(fy ,2) -1);
64 ft=ft(1: size(ft ,1) -1, 1:size(ft ,2) -1);

B.4 LucasKanadeRefined

Listing B.4: The LucasKanadeRefined.m Matlabr file.
(appendix2/LucasKanadeRefined.m)

1 function [u,v,cert] = LucasKanadeRefined(uIn , vIn , im1 , im2);
2 % Lucas Kanade Refined computes lucas kanade flow at the current
3 % level given previous estimates current implementation is only
4 % for a 3x3 window
5
6
7 %[fx , fy , ft] = ComputeDerivatives(im1 , im2);
8
9 uIn = round(uIn);

10 vIn = round(vIn);
11 %uIn = uIn (2: size(uIn ,1), 2:size(uIn , 2) -1);
12 %vIn = vIn (2: size(vIn ,1), 2:size(vIn , 2) -1);
13
14
15 u = zeros(size(im1));
16 v = zeros(size(im2));
17
18 % to compute derivatives , use a 5x5 block ...
19 % the resulting derivative will be 5x5...
20 % take the middle 3x3 block as derivative
21 for i = 3:size(im1 ,1) -2
22 for j = 3:size(im2 ,2) -2
23 % if uIn(i,j)~=0
24 % disp(’ha ’);
25 % end;
26
27 curIm1 = im1(i-2:i+2, j-2:j+2);
28 lowRindex = i-2+vIn(i,j);
29 highRindex = i+2+vIn(i,j);
30 lowCindex = j-2+uIn(i,j);
31 highCindex = j+2+uIn(i,j);
32
33 if (lowRindex < 1)
34 lowRindex = 1;
35 highRindex = 5;
36 end;
37

65

38 if (highRindex > size(im1 ,1))
39 lowRindex = size(im1 ,1) -4;
40 highRindex = size(im1 ,1);
41 end;
42
43 if (lowCindex < 1)
44 lowCindex = 1;
45 highCindex = 5;
46 end;
47
48 if (highCindex > size(im1 ,2))
49 lowCindex = size(im1 ,2) -4;
50 highCindex = size(im1 ,2);
51 end;
52
53 if isnan(lowRindex)
54 lowRindex = i-2;
55 highRindex = i+2;
56 end;
57
58 if isnan(lowCindex)
59 lowCindex = j-2;
60 highCindex = j+2;
61 end;
62
63
64
65 curIm2 = im2(lowRindex:highRindex , lowCindex:highCindex);
66
67 [curFx , curFy , curFt]= ComputeDerivatives(curIm1 , curIm2);
68 curFx = curFx (2:4, 2:4);
69 curFy = curFy (2:4, 2:4);
70 curFt = curFt (2:4, 2:4);
71
72 curFx = curFx ’;
73 curFy = curFy ’;
74 curFt = curFt ’;
75
76
77 curFx = curFx (:);
78 curFy = curFy (:);
79 curFt = -curFt (:);
80
81 A = [curFx curFy];
82
83 U = pinv(A’*A)*A’* curFt;
84
85 u(i,j)=U(1);
86 v(i,j)=U(2);
87
88 cert(i,j) = rcond(A’*A);
89

66

90 end;
91 end;
92
93 u = u+uIn;
94 v = v+vIn;
95
96
97 %%%
98 function [fx , fy , ft] = ComputeDerivatives(im1 , im2);
99 %ComputeDerivatives Compute horizontal , vertical and time

100 %derivative between two gray -level images.
101
102 if (size(im1 ,1) ~= size(im2 ,1)) | (size(im1 ,2) ~= size(im2 ,2))
103 error(’input images are not the same size’);
104 end;
105
106 if (size(im1 ,3) ~=1) | (size(im2 ,3) ~=1)
107 error(’method only works for gray -level images ’);
108 end;
109
110
111 fx = conv2(im1 ,0.25* [-1 1; -1 1]) + conv2(im2 , 0.25*[-1 1; -1 1])...

;
112 fy = conv2(im1 , 0.25*[-1 -1; 1 1]) + conv2(im2 , 0.25*[-1 -1; 1 1])...

;
113 ft = conv2(im1 , 0.25* ones (2)) + conv2(im2 , -0.25* ones (2));
114
115 % make same size as input
116 fx=fx(1: size(fx ,1) -1, 1:size(fx ,2) -1);
117 fy=fy(1: size(fy ,1) -1, 1:size(fy ,2) -1);
118 ft=ft(1: size(ft ,1) -1, 1:size(ft ,2) -1);

B.5 Expand

Listing B.5: The Expand.m Matlabr file.(appendix2/Expand.m)

1 function largeIm = Expand(im);
2 %EXPAND Compute large layer of Gaussian pyramid
3
4 % Sohaib Khan , Feb 16, 2000
5
6 %Algo
7 % Gaussian mask = [0.05 0.25 0.4 0.25 0.05]
8 % Insert zeros in every alternate row position and conv with mask
9 % insert zeros in every alternate clmn position in result

10 % and conv with mask ’
11
12 mask = 2*[0.05 0.25 0.4 0.25 0.05];
13 % factor of 2 is there because
14 % each pixel gets contribution either
15 % from 0.05, 0.4, 0.05 or from 0.25, 0.25

67

16
17 % insert zeros in every alternate position in each row
18 rowZeros = [im; zeros(size(im))];
19 rowZeros = reshape(rowZeros , size(im ,1), 2*size(im ,2));
20
21 %conv with horiz mask
22 newIm = conv2(rowZeros , mask);
23 newIm = newIm (:,3: size(newIm ,2) -2);
24
25 % insert zeros in every alternate position in each col
26 colZeros = newIm ’;
27 colZeros = [colZeros; zeros(size(colZeros))];
28 colZeros = reshape(colZeros , size(colZeros ,1)/2, 2*size(colZeros ...

,2));
29 colZeros = colZeros ’;
30
31 largeIm=conv2(colZeros , mask ’);
32 largeIm=largeIm (3: size(largeIm ,1) -2,:);

68

Appendix C. VHDL Code

This section has the Top-Level Designs that were coded in VHDL to convert the

Matlabr commands and functions.

C.1 Reduce Matrix Function Top-Level 1 Behavior Multiplier

Listing C.1: The ReduceConv2Module.vhd VHDL file.
(appendix3/ReduceConv2Module.vhd)

1 -- Capt. Jason Shirley
2 -- This is the Reduce Matrix Function Top -Level Design 1 using the
3 -- Behavior Multiplier. These Modules are structually connected.
4
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_unsigned.all;
9 use ieee.std_logic_arith.all;

10 use ieee.numeric_std.all;
11
12 ---
13
14 entity reduceconv2_module is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 24);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_matrixA : in std_logic;
22 enable_conv2_module : in std_logic;
23 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
24 read_address_matrixReduce : in std_logic_vector (...

address_width - 1 downto 0);
25 input_matrixA_values : in std_logic_vector (...

data_width - 1 downto 0);
26 output_data_matrixC : out std_logic_vector(...

data_width - 1 downto 0);
27 reduce_module_finished : out std_logic;
28 input_to_matrixC_hresult : out std_logic_vector(...

data_width - 1 downto 0);
29 writeEnable_matrixC_hresult : out std_logic;
30 address_matrixA_hresult : out std_logic_vector(...

address_width - 1 downto 0);
31 address_matrixB_hresult : out std_logic_vector(...

address_width - 1 downto 0);
32 address_matrixC_hresult : out std_logic_vector(...

address_width - 1 downto 0);
33 matrixA_output_hresult : out std_logic_vector(...

data_width - 1 downto 0);

69

34 matrixB_output_hresult : out std_logic_vector(...
data_width - 1 downto 0);

35 control_adder_signal_hresult: out std_logic;
36 input_to_matrixC_vresult : out std_logic_vector(...

data_width - 1 downto 0);
37 writeEnable_matrixC_vresult : out std_logic;
38 address_matrixA_vresult : out std_logic_vector(...

address_width - 1 downto 0);
39 address_matrixB_vresult : out std_logic_vector(...

address_width - 1 downto 0);
40 address_matrixC_vresult : out std_logic_vector(...

address_width - 1 downto 0);
41 matrixA_output_vresult : out std_logic_vector(...

data_width - 1 downto 0);
42 matrixB_output_vresult : out std_logic_vector(...

data_width - 1 downto 0);
43 control_adder_signal_vresult: out std_logic
44);
45
46 end reduceconv2_module;
47
48 ---
49
50 architecture structure_reduceconv2_module of reduceconv2_module is
51
52 component hresultconv2_module is
53
54 generic (address_width: integer := 8;
55 data_width: integer := 24);
56
57 port (clk : in std_logic;
58 reset : in std_logic;
59 enable_matrixA : in std_logic;
60 enable_conv2_module : in std_logic;
61 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
62 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
63 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
64 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
65 enable_reduce : out std_logic;
66 input_to_matrixC : out std_logic_vector(data_width -...

1 downto 0);
67 writeEnable_matrixC : out std_logic;
68 address_matrixA : out std_logic_vector(...

address_width - 1 downto 0);
69 address_matrixB : out std_logic_vector(...

address_width - 1 downto 0);
70 address_matrixC : out std_logic_vector(...

address_width - 1 downto 0);

70

71 matrixA_output : out std_logic_vector(data_width -...
1 downto 0);

72 matrixB_output : out std_logic_vector(data_width -...
1 downto 0);

73 control_adder_signal : out std_logic
74);
75
76 end component hresultconv2_module;
77
78 ---
79
80 component hresultreducecontrol is
81
82 generic (address_width: integer := 8;
83 n1: integer := 5;
84 n2: integer := 11);
85 -- address_width must be an even number
86 -- The hResultReduceControl module reduces the orignal 6x8
87 --input matrix in half from the number of columns from the
88 -- hResultControl module. Example 6 x 12 will be reduce down
89 -- to 6x4 n1 is the row position and n2 is the column position.
90 -- you want n1 and n2 to be one size smaller then the 6 x 12
91 -- therefore n1 should equal = 5 since you start at zero
92 -- and n2 should equal = 11 since you start at zero
93 -- The hResultReduceControl module reduces the orignal 6x8
94 -- input matrix in half from the number of columns from the
95 -- hResultControl module. Example 6 x 12 will be reduce down
96 -- to 6x4 n1 is the row position and n2 is the column position.
97 -- you want n1 and n2 to be one size smaller then the 6 x 12
98 -- therefore n1 should equal = 5 since you start at zero
99 -- and n2 should equal = 11 since you start at zero

100
101 port (clk : in std_logic;
102 reset : in std_logic;
103 enable_control : in std_logic;
104 writeEnable_matrix : out std_logic;
105 enable_vresult : out std_logic;
106 read_address_hResult : out std_logic_vector (...

address_width - 1 downto 0);
107 write_address_reducehResult: out std_logic_vector (...

address_width - 1 downto 0)
108);
109
110 end component hresultreducecontrol;
111 ---
112
113 component vresultconv2_module is
114
115 generic (address_width: integer := 8;
116 data_width: integer := 24);
117
118 port (clk : in std_logic;

71

119 reset : in std_logic;
120 enable_matrixA : in std_logic;
121 enable_conv2_module : in std_logic;
122 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
123 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
124 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
125 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
126 enable_reduce : out std_logic;
127 input_to_matrixC : out std_logic_vector(data_width -...

1 downto 0);
128 writeEnable_matrixC : out std_logic;
129 address_matrixA : out std_logic_vector(...

address_width - 1 downto 0);
130 address_matrixB : out std_logic_vector(...

address_width - 1 downto 0);
131 address_matrixC : out std_logic_vector(...

address_width - 1 downto 0);
132 matrixA_output : out std_logic_vector(data_width -...

1 downto 0);
133 matrixB_output : out std_logic_vector(data_width -...

1 downto 0);
134 control_adder_signal : out std_logic
135);
136
137 end component vresultconv2_module;
138
139 ---
140 component vresultreducecontrol is
141
142 generic (address_width: integer := 8;
143 n1: integer := 9;
144 n2: integer := 3);
145 -- address_width must be an even number
146 port (clk : in std_logic;
147 reset : in std_logic;
148 enable_control : in std_logic;
149 writeEnable_matrix : out std_logic;
150 enable_vresult : out std_logic;
151 read_address_vResult : out std_logic_vector (...

address_width - 1 downto 0);
152 write_address_reducevResult: out std_logic_vector (...

address_width - 1 downto 0)
153);
154
155 end component vresultreducecontrol;
156
157 ---
158 component mem_matrix is

72

159
160 generic (address_width: integer := 8;
161 data_width: integer := 24);
162
163 port (clk : in std_logic;
164 reset : in std_logic;
165 writeEnable : in std_logic;
166 matrix_values : in std_logic_vector (...

data_width - 1 downto 0);
167 write_address : in std_logic_vector (...

address_width - 1 downto 0);
168 read_address : in std_logic_vector (...

address_width - 1 downto 0);
169 output_matrix_values : out std_logic_vector(...

data_width - 1 downto 0)
170);
171
172 end component mem_matrix;
173
174 ---
175 signal enable_reduce_h_to_enable_control , ...

writeEnable_matrix_to_enable_matrixA: std_logic;
176 signal enable_vresult_to_enable_conv2_module , ...

enable_reduce_v_to_enable_control: std_logic;
177 signal writeEnable_matrix_to_writeEnable: std_logic;
178 signal write_address_reducevResult_to_write_address:...

std_logic_vector (address_width - 1 downto 0);
179 signal read_address_hResult_to_read_address_matrixC:...

std_logic_vector (address_width - 1 downto 0);
180 signal read_addressvResult_to_read_address_matrixC:...

std_logic_vector (address_width - 1 downto 0);
181 signal write_address_reducehResult_to_read_address_matrixA:...

std_logic_vector (address_width - 1 downto 0);
182 signal output_data_matrixC_to_input_matrixA_values: ...

std_logic_vector(data_width - 1 downto 0);
183 signal output_data_matrixC_to_matrix_values: std_logic_vector(...

data_width - 1 downto 0);
184
185 begin
186 hresultconv2_module1: hresultconv2_module port map (clk => clk ,
187 reset => reset ,
188 enable_matrixA => enable_matrixA ,
189 enable_conv2_module => enable_conv2_module ,
190 read_address_matrixA => read_address_matrixA ,
191 read_address_matrixC =>
192 read_address_hResult_to_read_address_matrixC ,
193 input_matrixA_values => input_matrixA_values ,
194 output_data_matrixC =>
195 output_data_matrixC_to_input_matrixA_values ,
196 enable_reduce => enable_reduce_h_to_enable_control ,
197 input_to_matrixC => input_to_matrixC_hresult ,
198 writeEnable_matrixC => writeEnable_matrixC_hresult ,

73

199 address_matrixA => address_matrixA_hresult ,
200 address_matrixB => address_matrixB_hresult ,
201 address_matrixC => address_matrixC_hresult ,
202 matrixA_output => matrixA_output_hresult ,
203 matrixB_output => matrixB_output_hresult ,
204 control_adder_signal => control_adder_signal_hresult);
205
206 hresultreducecontrol1: hresultreducecontrol port map(clk => clk ,
207 reset => reset ,
208 enable_control => enable_reduce_h_to_enable_control ,
209 writeEnable_matrix=> writeEnable_matrix_to_enable_matrixA ,
210 enable_vresult => enable_vresult_to_enable_conv2_module ,
211 read_address_hResult =>
212 read_address_hResult_to_read_address_matrixC ,
213 write_address_reducehResult =>
214 write_address_reducehResult_to_read_address_matrixA);
215
216 vresultconv2_module1: vresultconv2_module port map(clk => clk ,
217 reset => reset ,
218 enable_matrixA => writeEnable_matrix_to_enable_matrixA ,
219 enable_conv2_module => enable_vresult_to_enable_conv2_module ,
220 read_address_matrixA =>
221 write_address_reducehResult_to_read_address_matrixA ,
222 read_address_matrixC =>
223 read_addressvResult_to_read_address_matrixC ,
224 input_matrixA_values =>
225 output_data_matrixC_to_input_matrixA_values ,
226 output_data_matrixC => output_data_matrixC_to_matrix_values ,
227 enable_reduce => enable_reduce_v_to_enable_control ,
228 input_to_matrixC => input_to_matrixC_vresult ,
229 writeEnable_matrixC => writeEnable_matrixC_vresult ,
230 address_matrixA => address_matrixA_vresult ,
231 address_matrixB => address_matrixB_vresult ,
232 address_matrixC => address_matrixC_vresult ,
233 matrixA_output => matrixA_output_vresult ,
234 matrixB_output => matrixB_output_vresult ,
235 control_adder_signal => control_adder_signal_vresult);
236
237 vresultreducecontrol1 :vresultreducecontrol port map(clk => clk ,
238 reset => reset ,
239 enable_control => enable_reduce_v_to_enable_control ,
240 writeEnable_matrix => writeEnable_matrix_to_writeEnable ,
241 enable_vresult => reduce_module_finished ,
242 read_address_vResult =>
243 read_addressvResult_to_read_address_matrixC ,
244 write_address_reducevResult =>
245 write_address_reducevResult_to_write_address);
246
247 mem_matrixReduce: mem_matrix port map (clk => clk ,
248 reset => reset ,
249 writeEnable => writeEnable_matrix_to_writeEnable ,
250 matrix_values => output_data_matrixC_to_matrix_values ,

74

251 write_address => write_address_reducevResult_to_write_address ,
252 read_address => read_address_matrixReduce ,
253 output_matrix_values => output_data_matrixC);
254
255 end structure_reduceconv2_module;

C.2 Reduce Matrix Function Top-Level 2 Behavior Multiplier

Listing C.2: The ReduceConv2Module2.vhd VHDL file.
(appendix3/ReduceConv2Module2.vhd)

1 -- Capt. Jason Shirley
2 -- This is the Reduce Matrix Function Top -Level Design 2 using the
3 -- Behavior Multiplier. These Modules are structually connected.
4
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_unsigned.all;
9 use ieee.std_logic_arith.all;

10 use ieee.numeric_std.all;
11
12 --
13
14 entity reduceconv2_module2 is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 24);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_matrixA : in std_logic;
22 enable_conv2_module : in std_logic;
23 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
24 read_address_matrixReduce: in std_logic_vector (...

address_width - 1 downto 0);
25 input_matrixA_values : in std_logic_vector (...

data_width - 1 downto 0);
26 reduce_module_finished : out std_logic;
27 output_data_matrixReduce : out std_logic_vector(...

data_width - 1 downto 0)
28);
29
30 end reduceconv2_module2;
31
32 --
33
34 architecture structure_reduceconv2_module2 of reduceconv2_module2 ...

is
35

75

36 component hresultcontrol2 is
37
38 generic (address_width: integer := 8;
39 n1: integer := 5;
40 n2: integer := 11);
41 -- address_width must be an even number
42
43 port (clk : in std_logic;
44 reset : in std_logic;
45 enable_control : in std_logic;
46 update_reg_enable : out std_logic;
47 writeEnable_matrixC : out std_logic;
48 reset_reg : out std_logiC;
49 enable_reduce : out std_logic;
50 read_address_matrixA : out std_logic_vector (...

address_width - 1 downto 0);
51 read_address_matrixB : out std_logic_vector (...

address_width - 1 downto 0);
52 write_address_matrixC : out std_logic_vector (...

address_width - 1 downto 0);
53 mux_enable : out std_logic
54);
55
56 end component hresultcontrol2;
57
58 --
59 component hresultreducecontrol2 is
60
61 generic (address_width: integer := 8;
62 n1: integer := 5;
63 n2: integer := 11);
64 -- address_width must be an even number
65 -- The hResultReduceControl module reduces the orignal 6x8
66 -- input matrix in half from the number of columns from the
67 -- hResultControl module. Example 6 x 12 will be reduce down
68 -- to 6x4 n1 is the row position and n2 is the column position.
69 -- you want n1 and n2 to be one size smaller then the 6 x 12
70 -- therefore n1 should equal = 5 since you start at zero
71 -- and n2 should equal = 11 since you start at zero
72 -- The hResultReduceControl module reduces the orignal 6x8
73 -- input matrix in half from the number of columns from the
74 -- hResultControl module. Example 6 x 12 will be reduce down
75 -- to 6x4 n1 is the row position and n2 is the column position.
76 -- you want n1 and n2 to be one size smaller then the 6 x 12
77 -- therefore n1 should equal = 5 since you start at zero
78 -- and n2 should equal = 11 since you start at zero
79
80 port (clk : in std_logic;
81 reset : in std_logic;
82 enable_control : in std_logic;
83 writeEnable_matrix : out std_logic;
84 enable_vresult : out std_logic;

76

85 read_address_hResult : out std_logic_vector (...
address_width - 1 downto 0);

86 write_address_reducehResult: out std_logic_vector (...
address_width - 1 downto 0);

87 mux_enable : out std_logic
88);
89
90 end component hresultreducecontrol2;
91 --
92 component vresultcontrol2 is
93
94 generic (address_width: integer := 8;
95 n1: integer := 9;
96 n2: integer := 3);
97 -- address_width must be an even number
98
99 port (clk : in std_logic;

100 reset : in std_logic;
101 enable_control : in std_logic;
102 update_reg_enable : out std_logic;
103 writeEnable_matrixC : out std_logic;
104 reset_reg : out std_logiC;
105 enable_reduce : out std_logic;
106 read_address_matrixA : out std_logic_vector (...

address_width - 1 downto 0);
107 read_address_matrixB : out std_logic_vector (...

address_width - 1 downto 0);
108 write_address_matrixC : out std_logic_vector (...

address_width - 1 downto 0)
109);
110
111 end component vresultcontrol2;
112
113 --
114 component vresultreducecontrol2 is
115
116 generic (address_width: integer := 8;
117 n1: integer := 9;
118 n2: integer := 3);
119 -- address_width must be an even number
120 port (clk : in std_logic;
121 reset : in std_logic;
122 enable_control : in std_logic;
123 writeEnable_matrix : out std_logic;
124 enable_vresult : out std_logic;
125 read_address_vResult : out std_logic_vector (...

address_width - 1 downto 0);
126 write_address_reducevResult: out std_logic_vector (...

address_width - 1 downto 0)
127);
128
129 end component vresultreducecontrol2;

77

130 --
131 component mux2to1 is
132
133 generic (address_width: integer := 8);
134
135 port(sel : in std_logic;
136 input1 : in std_logic_vector(address_width - 1 downto ...

0);
137 input2 : in std_logic_vector(address_width - 1 downto ...

0);
138 mux_output : out std_logic_vector(address_width - 1 downto...

0)
139);
140
141 end component mux2to1;
142
143 --
144 component mux1to2data_width is
145
146 generic (data_width: integer := 24);
147
148 port(sel : in std_logic;
149 input : in std_logic_vector(data_width - 1 downto 0)...

;
150 mux_output1 : out std_logic_vector(data_width - 1 downto ...

0);
151 mux_output2 : out std_logic_vector(data_width - 1 downto ...

0)
152);
153
154 end component mux1to2data_width;
155
156 --
157 component mux2to1data_width is
158
159 generic (data_width: integer := 24);
160
161 port(sel : in std_logic;
162 input1 : in std_logic_vector(data_width - 1 downto 0);
163 input2 : in std_logic_vector(data_width - 1 downto 0);
164 mux_output : out std_logic_vector(data_width - 1 downto 0)
165);
166
167 end component;
168 --
169 component mux6to3enable is
170
171 port(sel : in std_logic;
172 input1 : in std_logic;
173 input2 : in std_logic;
174 input3 : in std_logic;
175 input4 : in std_logic;

78

176 input5 : in std_logic;
177 input6 : in std_logic;
178 mux_output1 : out std_logic;
179 mux_output2 : out std_logic;
180 mux_output3 : out std_logic
181);
182
183 end component;
184
185 --
186 component mem_matrix is
187
188 generic (address_width: integer := 8;
189 data_width: integer := 24);
190
191 port (clk : in std_logic;
192 reset : in std_logic;
193 writeEnable : in std_logic;
194 matrix_values : in std_logic_vector (data_width - ...

1 downto 0);
195 write_address : in std_logic_vector (address_width...

- 1 downto 0);
196 read_address : in std_logic_vector (address_width...

- 1 downto 0);
197 output_matrix_values : out std_logic_vector(data_width - ...

1 downto 0)
198);
199
200 end component mem_matrix;
201
202 --
203 component mask1x5mem_matrix is
204
205 generic (address_width: integer := 8;
206 data_width: integer := 24);
207
208 port(clk : in std_logic;
209 reset : in std_logic;
210 read_address : in std_logic_vector (address_width - 1 ...

downto 0);
211 output_matrix_values: out std_logic_vector(data_width - ...

1 downto 0)
212);
213
214 end component mask1x5mem_matrix;
215
216 --
217 component mask5x1mem_matrix is
218
219 generic (address_width: integer := 8;
220 data_width: integer := 24);
221

79

222 port(clk : in std_logic;
223 reset : in std_logic;
224 read_address : in std_logic_vector (address_width - 1 ...

downto 0);
225 output_matrix_values: out std_logic_vector(data_width - ...

1 downto 0)
226);
227
228 end component mask5x1mem_matrix;
229
230 --
231 component conv2 is
232
233 generic (data_width: integer := 24);
234
235 port (clk : in std_logic;
236 reset : in std_logic;
237 update_reg_enable : in std_logic;
238 input_matrixA_values : in std_logic_vector (data_width - ...

1 downto 0);
239 input_matrixB_values : in std_logic_vector (data_width - ...

1 downto 0);
240 output_data_matrixC : out std_logic_vector (data_width -...

1 downto 0)
241);
242
243 end component conv2;
244
245 --
246
247 signal update_reg_enable_to_mux_input1 , ...

control_writeEnable_memC_to_WriteEnableMatrixC_mux_input3: ...
std_logic;

248 signal control_reset_reg_to_hvcontrol_reset_mux_input2 , ...
enable_reduce_to_hResultReduceControl: std_logic;

249 signal mux_enable_to_mux_select , writeEnable_matrix_to_MatrixA2 , ...
enable_vresult_to_vResultControl : std_logic;

250 signal mux_enable_to_mux_select_matrixA2 , ...
update_reg_enable_to_mux_input4: std_logic;

251 signal control_writeEnable_memC_to_mux_input6: std_logic;
252 signal control_reset_reg_to_mux_input5 , ...

enable_reduce_to_vResultReduceControl_enable : std_logic;
253 signal writeEnable_matrix_to_MatrixReduce , ...

mux_output_to_conv2_update_reg: std_logic;
254 signal mux_output_to_conv2_reset , ...

mux_out_writeEnableMatrixC_to_writeEnableMatrixC: std_logic;
255 signal read_address_matrixA_to_mux_input1 , ...

read_address_matrixB_to_mask1x5 : std_logic_vector (...
address_width - 1 downto 0);

256 signal write_address_matrixC_to_WriteAddressMatrix_mux_input1 , ...
write_address_reducehResult_to_mux_input1_matrixA2_address : ...
std_logic_vector (address_width - 1 downto 0);

80

257 signal read_address_hResult_to_mux_input1_readAddressMatrixC , ...
write_address_matrixC_to_WriteAddressMatrix_mux_input2 : ...
std_logic_vector (address_width - 1 downto 0);

258 signal write_address_reducevResult_to_mux_input2_matrixA2_address ,...
read_address_matrixB_to_mask5x1 : std_logic_vector (...

address_width - 1 downto 0);
259 signal read_address_vResult_to_mux_input2_readAddressMatrixC , ...

write_address_reducevResult_to_MatrixReduce: std_logic_vector (...
address_width - 1 downto 0);

260 signal mux_ouput_to_matrixA1 ,mux_output_to_matrixA2_address: ...
std_logic_vector (address_width - 1 downto 0);

261 signal read_address_matrixC_to_address_matrixC , ...
mux_output_WriteAddressMatrixC_to_write_address_matrixC: ...
std_logic_vector (address_width - 1 downto 0);

262 signal output_matrix_values_to_mux_input1_matrixA_values , ...
output_matrix_values_to_mux_input2_matrixA_values: ...
std_logic_vector(data_width - 1 downto 0);

263 signal mux_output_matrixA_values_to_conv2_input1 , ...
output_matrix_values_to_mux_input1_matrixB_values: ...
std_logic_vector(data_width - 1 downto 0);

264 signal output_matrix_values_to_mux_input2_matrixB_values , ...
mux_output_matrixB_to_conv2_input2: std_logic_vector(data_width...
- 1 downto 0);

265 signal output_matrixC_values_to_mux_input_values , ...
mux_output_MatrixC_values_to_matrixA2_values: std_logic_vector(...
data_width - 1 downto 0);

266 signal mux_output_MatrixC_values_to_matrixReduce_values: ...
std_logic_vector(data_width - 1 downto 0);

267 signal output_data_matrixC_to_matrixC_values: std_logic_vector(...
data_width - 1 downto 0);

268
269 begin
270
271 hresultcontrol1: hresultcontrol2 port map (clk => clk ,
272 reset => reset ,
273 enable_control => enable_conv2_module ,
274 update_reg_enable => update_reg_enable_to_mux_input1 ,
275 writeEnable_matrixC =>
276 control_writeEnable_memC_to_WriteEnableMatrixC_mux_input3 ,
277 reset_reg => control_reset_reg_to_hvcontrol_reset_mux_input2 ,
278 enable_reduce => enable_reduce_to_hResultReduceControl ,
279 read_address_matrixA => read_address_matrixA_to_mux_input1 ,
280 read_address_matrixB => read_address_matrixB_to_mask1x5 ,
281 write_address_matrixC =>
282 write_address_matrixC_to_WriteAddressMatrix_mux_input1 ,
283 mux_enable => mux_enable_to_mux_select);
284
285 --
286 hresultreducecontrol1: hresultreducecontrol2 port map(clk => clk ,
287 reset => reset ,
288 enable_control => enable_reduce_to_hResultReduceControl ,
289 writeEnable_matrix => writeEnable_matrix_to_MatrixA2 ,

81

290 enable_vresult => enable_vresult_to_vResultControl ,
291 read_address_hResult =>
292 read_address_hResult_to_mux_input1_readAddressMatrixC ,
293 write_address_reducehResult =>
294 write_address_reducehResult_to_mux_input1_matrixA2_address ,
295 mux_enable => mux_enable_to_mux_select_matrixA2);
296
297 --
298 vresultcontrol1: vresultcontrol2 port map (clk => clk ,
299 reset => reset ,
300 enable_control => enable_vresult_to_vResultControl ,
301 update_reg_enable => update_reg_enable_to_mux_input4 ,
302 writeEnable_matrixC => control_writeEnable_memC_to_mux_input6 ,
303 reset_reg => control_reset_reg_to_mux_input5 ,
304 enable_reduce => enable_reduce_to_vResultReduceControl_enable ,
305 read_address_matrixA =>
306 write_address_reducevResult_to_mux_input2_matrixA2_address ,
307 read_address_matrixB => read_address_matrixB_to_mask5x1 ,
308 write_address_matrixC =>
309 write_address_matrixC_to_WriteAddressMatrix_mux_input2);
310
311 --
312 vresultreducecontrol1 :vresultreducecontrol2 port map(clk => clk ,
313 reset => reset ,
314 enable_control => enable_reduce_to_vResultReduceControl_enable ,
315 writeEnable_matrix => writeEnable_matrix_to_MatrixReduce ,
316 enable_vresult => reduce_module_finished ,
317 read_address_vResult =>
318 read_address_vResult_to_mux_input2_readAddressMatrixC ,
319 write_address_reducevResult =>
320 write_address_reducevResult_to_MatrixReduce);
321
322 --
323 mux2to1_matrixA1: mux2to1 port map(sel => enable_matrixA ,
324 input1 => read_address_matrixA_to_mux_input1 ,
325 input2 => read_address_matrixA ,
326 mux_output => mux_ouput_to_matrixA1);
327
328 --
329 mux2to1_matrixA_values: mux2to1data_width port map(
330 sel => mux_enable_to_mux_select ,
331 input1 => output_matrix_values_to_mux_input1_matrixA_values ,
332 input2 => output_matrix_values_to_mux_input2_matrixA_values ,
333 mux_output => mux_output_matrixA_values_to_conv2_input1);
334
335 --
336 mux2to1_matrixB_values: mux2to1data_width port map(
337 sel => mux_enable_to_mux_select ,
338 input1 => output_matrix_values_to_mux_input1_matrixB_values ,
339 input2 => output_matrix_values_to_mux_input2_matrixB_values ,
340 mux_output => mux_output_matrixB_to_conv2_input2);
341

82

342 --
343 mux6to3_Enable1: mux6to3enable port map (
344 sel => mux_enable_to_mux_select ,
345 input1 => update_reg_enable_to_mux_input1 ,
346 input2 => control_reset_reg_to_hvcontrol_reset_mux_input2 ,
347 input3 =>
348 control_writeEnable_memC_to_WriteEnableMatrixC_mux_input3 ,
349 input4 => update_reg_enable_to_mux_input4 ,
350 input5 => control_reset_reg_to_mux_input5 ,
351 input6 => control_writeEnable_memC_to_mux_input6 ,
352 mux_output1 => mux_output_to_conv2_update_reg ,
353 mux_output2 => mux_output_to_conv2_reset ,
354 mux_output3 => mux_out_writeEnableMatrixC_to_writeEnableMatrixC);
355
356 --
357 mux2to1_ReadAddressMatrixC: mux2to1 port map(
358 sel => mux_enable_to_mux_select_matrixA2 ,
359 input1 => read_address_hResult_to_mux_input1_readAddressMatrixC ,
360 input2 => read_address_vResult_to_mux_input2_readAddressMatrixC ,
361 mux_output => read_address_matrixC_to_address_matrixC);
362
363 --
364 mux2to1_WriteAddressMatrixC: mux2to1 port map(
365 sel => mux_enable_to_mux_select ,
366 input1 => write_address_matrixC_to_WriteAddressMatrix_mux_input1 ,
367 input2 => write_address_matrixC_to_WriteAddressMatrix_mux_input2 ,
368 mux_output =>
369 mux_output_WriteAddressMatrixC_to_write_address_matrixC);
370
371 --
372 mux1to2_matrixA2_ReduceMatrix_values: mux1to2data_width port map(
373 sel => mux_enable_to_mux_select_matrixA2 ,
374 input => output_matrixC_values_to_mux_input_values ,
375 mux_output1 => mux_output_MatrixC_values_to_matrixA2_values ,
376 mux_output2 => mux_output_MatrixC_values_to_matrixReduce_values);
377
378 --
379 mem_matrixA1: mem_matrix port map (clk => clk , reset => reset ,
380 writeEnable => enable_matrixA ,
381 matrix_values => input_matrixA_values ,
382 write_address => mux_ouput_to_matrixA1 ,
383 read_address => mux_ouput_to_matrixA1 ,
384 output_matrix_values =>
385 output_matrix_values_to_mux_input1_matrixA_values);
386
387 --
388 mem_matrixA2: mem_matrix port map (clk => clk , reset => reset ,
389 writeEnable => writeEnable_matrix_to_MatrixA2 ,
390 matrix_values => mux_output_MatrixC_values_to_matrixA2_values ,
391 write_address =>
392 write_address_reducehResult_to_mux_input1_matrixA2_address ,
393 read_address =>

83

394 write_address_reducevResult_to_mux_input2_matrixA2_address ,
395 output_matrix_values =>
396 output_matrix_values_to_mux_input2_matrixA_values);
397
398 --
399 mask1x5mem_matrix0: mask1x5mem_matrix port map (clk => clk ,
400 reset => reset ,
401 read_address => read_address_matrixB_to_mask1x5 ,
402 output_matrix_values =>
403 output_matrix_values_to_mux_input1_matrixB_values);
404
405 --
406 mask5x1mem_matrix0: mask5x1mem_matrix port map (clk => clk ,
407 reset => reset ,
408 read_address => read_address_matrixB_to_mask5x1 ,
409 output_matrix_values =>
410 output_matrix_values_to_mux_input2_matrixB_values);
411
412 --
413 conv2_1: conv2 port map (clk => clk ,
414 reset => mux_output_to_conv2_reset ,
415 update_reg_enable => mux_output_to_conv2_update_reg ,
416 input_matrixA_values => mux_output_matrixA_values_to_conv2_input1 ,
417 input_matrixB_values => mux_output_matrixB_to_conv2_input2 ,
418 output_data_matrixC => output_data_matrixC_to_matrixC_values);
419
420 --
421 mem_matrixC: mem_matrix port map (clk => clk ,
422 reset => reset ,
423 writeEnable => mux_out_writeEnableMatrixC_to_writeEnableMatrixC ,
424 matrix_values => output_data_matrixC_to_matrixC_values ,
425 write_address =>
426 mux_output_WriteAddressMatrixC_to_write_address_matrixC ,
427 read_address => read_address_matrixC_to_address_matrixC ,
428 output_matrix_values =>
429 output_matrixC_values_to_mux_input_values);
430
431 --
432 mem_matrixReduce: mem_matrix port map (clk => clk ,
433 reset => reset ,
434 writeEnable => writeEnable_matrix_to_MatrixReduce ,
435 matrix_values => mux_output_MatrixC_values_to_matrixReduce_values ,
436 write_address => write_address_reducevResult_to_MatrixReduce ,
437 read_address => read_address_matrixReduce ,
438 output_matrix_values => output_data_matrixReduce);
439
440 end structure_reduceconv2_module2;

84

C.3 Reduce Matrix Function Top-Level 1 Booth Multiplier

Listing C.3: The ReduceConv2ModuleBooth.vhd VHDL file.
(appendix3/ReduceConv2ModuleBooth.vhd)

1 -- Capt. Jason Shirley
2 -- This is the Reduce Matrix Function Top Level Design 1 using the
3 -- Booth Multiplier. These Modules are structually connected.
4
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_unsigned.all;
9 use ieee.std_logic_arith.all;

10 use ieee.numeric_std.all;
11
12 ---
13
14 entity reduceconv2_modulebooth is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 24);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_matrixA : in std_logic;
22 enable_conv2_module : in std_logic;
23 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
24 read_address_matrixReduce : in std_logic_vector (...

address_width - 1 downto 0);
25 input_matrixA_values : in std_logic_vector (...

data_width - 1 downto 0);
26 output_data_matrixC : out std_logic_vector(...

data_width - 1 downto 0);
27 reduce_module_finished : out std_logic;
28 input_to_matrixC_hresult : out std_logic_vector(...

data_width - 1 downto 0);
29 writeEnable_matrixC_hresult : out std_logic;
30 address_matrixA_hresult : out std_logic_vector(...

address_width - 1 downto 0);
31 address_matrixB_hresult : out std_logic_vector(...

address_width - 1 downto 0);
32 address_matrixC_hresult : out std_logic_vector(...

address_width - 1 downto 0);
33 matrixA_output_hresult : out std_logic_vector(...

data_width - 1 downto 0);
34 matrixB_output_hresult : out std_logic_vector(...

data_width - 1 downto 0);
35 control_adder_signal_hresult: out std_logic;
36 input_to_matrixC_vresult : out std_logic_vector(...

data_width - 1 downto 0);
37 writeEnable_matrixC_vresult : out std_logic;

85

38 address_matrixA_vresult : out std_logic_vector(...
address_width - 1 downto 0);

39 address_matrixB_vresult : out std_logic_vector(...
address_width - 1 downto 0);

40 address_matrixC_vresult : out std_logic_vector(...
address_width - 1 downto 0);

41 matrixA_output_vresult : out std_logic_vector(...
data_width - 1 downto 0);

42 matrixB_output_vresult : out std_logic_vector(...
data_width - 1 downto 0);

43 control_adder_signal_vresult: out std_logic;
44 mult_ready_hresult : out std_logic;
45 mult_done_hresult : out std_logic;
46 mult_ready_vresult : out std_logic;
47 mult_done_vresult : out std_logic
48);
49
50 end reduceconv2_modulebooth;
51
52 ---
53
54 architecture structure_reduceconv2_modulebooth of ...

reduceconv2_modulebooth is
55
56 component hresultboothconv2_module is
57
58 generic (address_width: integer := 8;
59 data_width: integer := 24);
60
61 port (clk : in std_logic;
62 reset : in std_logic;
63 enable_matrixA : in std_logic;
64 enable_conv2_module : in std_logic;
65 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
66 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
67 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
68 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
69 enable_reduce : out std_logic;
70 input_to_matrixC : out std_logic_vector(data_width -...

1 downto 0);
71 writeEnable_matrixC : out std_logic;
72 address_matrixA : out std_logic_vector(...

address_width - 1 downto 0);
73 address_matrixB : out std_logic_vector(...

address_width - 1 downto 0);
74 address_matrixC : out std_logic_vector(...

address_width - 1 downto 0);

86

75 matrixA_output : out std_logic_vector(data_width -...
1 downto 0);

76 matrixB_output : out std_logic_vector(data_width -...
1 downto 0);

77 control_adder_signal : out std_logic;
78 mult_ready : out std_logic;
79 mult_done : out std_logic
80);
81
82 end component hresultboothconv2_module;
83
84 ---
85
86 component hresultreducecontrolbooth is
87
88 generic (address_width: integer := 8;
89 n1: integer := 5;
90 n2: integer := 11);
91 -- address_width must be an even number
92 -- The hResultReduceControl module reduces the orignal 6x8
93 -- input matrix in half from the number of columns from the
94 -- hResultControl module. Example 6 x 12 will be reduce down
95 -- to 6x4 n1 is the row position and n2 is the column position.
96 -- you want n1 and n2 to be one size smaller then the 6 x 12
97 -- therefore n1 should equal = 5 since you start at zero
98 -- and n2 should equal = 11 since you start at zero
99 -- The hResultReduceControl module reduces the orignal 6x8

100 -- input matrix in half from the number of columns from the
101 -- hResultControl module. Example 6 x 12 will be reduce down
102 -- to 6x4 n1 is the row position and n2 is the column position.
103 -- you want n1 and n2 to be one size smaller then the 6 x 12
104 -- therefore n1 should equal = 5 since you start at zero
105 -- and n2 should equal = 11 since you start at zero
106
107 port (clk : in std_logic;
108 reset : in std_logic;
109 enable_control : in std_logic;
110 writeEnable_matrix : out std_logic;
111 enable_vresult : out std_logic;
112 read_address_hResult : out std_logic_vector (...

address_width - 1 downto 0);
113 write_address_reducehResult: out std_logic_vector (...

address_width - 1 downto 0)
114);
115
116 end component hresultreducecontrolbooth;
117 ---
118
119 component vresultboothconv2_module is
120
121 generic (address_width: integer := 8;
122 data_width: integer := 24);

87

123
124 port (clk : in std_logic;
125 reset : in std_logic;
126 enable_matrixA : in std_logic;
127 enable_conv2_module : in std_logic;
128 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
129 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
130 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
131 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
132 enable_reduce : out std_logic;
133 input_to_matrixC : out std_logic_vector(data_width -...

1 downto 0);
134 writeEnable_matrixC : out std_logic;
135 address_matrixA : out std_logic_vector(...

address_width - 1 downto 0);
136 address_matrixB : out std_logic_vector(...

address_width - 1 downto 0);
137 address_matrixC : out std_logic_vector(...

address_width - 1 downto 0);
138 matrixA_output : out std_logic_vector(data_width -...

1 downto 0);
139 matrixB_output : out std_logic_vector(data_width -...

1 downto 0);
140 control_adder_signal : out std_logic;
141 mult_ready : out std_logic;
142 mult_done : out std_logic
143);
144
145 end component vresultboothconv2_module;
146
147 ---
148 component vresultreducecontrolbooth is
149
150 generic (address_width: integer := 8;
151 n1: integer := 9;
152 n2: integer := 3);
153 -- address_width must be an even number
154 port (clk : in std_logic;
155 reset : in std_logic;
156 enable_control : in std_logic;
157 writeEnable_matrix : out std_logic;
158 enable_vresult : out std_logic;
159 read_address_vResult : out std_logic_vector (...

address_width - 1 downto 0);
160 write_address_reducevResult: out std_logic_vector (...

address_width - 1 downto 0)
161);
162

88

163 end component vresultreducecontrolbooth;
164
165 ---
166 component mem_matrix is
167
168 generic (address_width: integer := 8;
169 data_width: integer := 24);
170
171 port (clk : in std_logic;
172 reset : in std_logic;
173 writeEnable : in std_logic;
174 matrix_values : in std_logic_vector (data_width ...

- 1 downto 0);
175 write_address : in std_logic_vector (...

address_width - 1 downto 0);
176 read_address : in std_logic_vector (...

address_width - 1 downto 0);
177 output_matrix_values : out std_logic_vector(data_width ...

- 1 downto 0)
178);
179
180 end component mem_matrix;
181
182 ---
183
184 signal enable_reduce_h_to_enable_control , ...

writeEnable_matrix_to_enable_matrixA: std_logic;
185 signal enable_vresult_to_enable_conv2_module , ...

enable_reduce_v_to_enable_control: std_logic;
186 signal writeEnable_matrix_to_writeEnable: std_logic;
187 signal write_address_reducevResult_to_write_address:...

std_logic_vector (address_width - 1 downto 0);
188 signal read_address_hResult_to_read_address_matrixC:...

std_logic_vector (address_width - 1 downto 0);
189 signal read_addressvResult_to_read_address_matrixC:...

std_logic_vector (address_width - 1 downto 0);
190 signal write_address_reducehResult_to_read_address_matrixA:...

std_logic_vector (address_width - 1 downto 0);
191 signal output_data_matrixC_to_input_matrixA_values: ...

std_logic_vector(data_width - 1 downto 0);
192 signal output_data_matrixC_to_matrix_values: std_logic_vector(...

data_width - 1 downto 0);
193
194 begin
195 hresultboothconv2_module1: hresultboothconv2_module port map (
196 clk => clk ,
197 reset => reset ,
198 enable_matrixA => enable_matrixA ,
199 enable_conv2_module => enable_conv2_module ,
200 read_address_matrixA => read_address_matrixA ,
201 read_address_matrixC =>
202 read_address_hResult_to_read_address_matrixC ,

89

203 input_matrixA_values => input_matrixA_values ,
204 output_data_matrixC =>
205 output_data_matrixC_to_input_matrixA_values ,
206 enable_reduce => enable_reduce_h_to_enable_control ,
207 input_to_matrixC => input_to_matrixC_hresult ,
208 writeEnable_matrixC => writeEnable_matrixC_hresult ,
209 address_matrixA => address_matrixA_hresult ,
210 address_matrixB => address_matrixB_hresult ,
211 address_matrixC => address_matrixC_hresult ,
212 matrixA_output => matrixA_output_hresult ,
213 matrixB_output => matrixB_output_hresult ,
214 control_adder_signal => control_adder_signal_hresult ,
215 mult_ready => mult_ready_hresult ,
216 mult_done => mult_done_hresult);
217
218 hresultreducecontrolbooth1: hresultreducecontrolbooth port map(
219 clk => clk ,
220 reset => reset ,
221 enable_control => enable_reduce_h_to_enable_control ,
222 writeEnable_matrix=> writeEnable_matrix_to_enable_matrixA ,
223 enable_vresult => enable_vresult_to_enable_conv2_module ,
224 read_address_hResult =>
225 read_address_hResult_to_read_address_matrixC ,
226 write_address_reducehResult =>
227 write_address_reducehResult_to_read_address_matrixA);
228
229 vresultboothconv2_module1: vresultboothconv2_module port map(
230 clk => clk ,
231 reset => reset ,
232 enable_matrixA => writeEnable_matrix_to_enable_matrixA ,
233 enable_conv2_module => enable_vresult_to_enable_conv2_module ,
234 read_address_matrixA =>
235 write_address_reducehResult_to_read_address_matrixA ,
236 read_address_matrixC =>
237 read_addressvResult_to_read_address_matrixC ,
238 input_matrixA_values =>
239 output_data_matrixC_to_input_matrixA_values ,
240 output_data_matrixC => output_data_matrixC_to_matrix_values ,
241 enable_reduce => enable_reduce_v_to_enable_control ,
242 input_to_matrixC => input_to_matrixC_vresult ,
243 writeEnable_matrixC => writeEnable_matrixC_vresult ,
244 address_matrixA => address_matrixA_vresult ,
245 address_matrixB => address_matrixB_vresult ,
246 address_matrixC => address_matrixC_vresult ,
247 matrixA_output => matrixA_output_vresult ,
248 matrixB_output => matrixB_output_vresult ,
249 control_adder_signal => control_adder_signal_vresult ,
250 mult_ready => mult_ready_vresult ,
251 mult_done => mult_done_vresult);
252
253 vresultreducecontrolbooth1 :vresultreducecontrolbooth port map(
254 clk => clk ,

90

255 reset => reset ,
256 enable_control => enable_reduce_v_to_enable_control ,
257 writeEnable_matrix => writeEnable_matrix_to_writeEnable ,
258 enable_vresult => reduce_module_finished ,
259 read_address_vResult =>
260 read_addressvResult_to_read_address_matrixC ,
261 write_address_reducevResult =>
262 write_address_reducevResult_to_write_address);
263
264 mem_matrixReduce: mem_matrix port map (clk => clk ,
265 reset => reset ,
266 writeEnable => writeEnable_matrix_to_writeEnable ,
267 matrix_values => output_data_matrixC_to_matrix_values ,
268 write_address => write_address_reducevResult_to_write_address ,
269 read_address => read_address_matrixReduce ,
270 output_matrix_values => output_data_matrixC);
271
272 end structure_reduceconv2_modulebooth;

C.4 Reduce Matrix Function Top-Level 2 Booth Multiplier

Listing C.4: The ReduceConv2ModuleBooth2.vhd VHDL file.
(appendix3/ReduceConv2ModuleBooth2.vhd)

1 -- Capt. Jason Shirley
2 -- This is the Reduce Matrix Function Top -Level Design 2 using the
3 -- Booth Multiplier. These Modules are structually connected.
4
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_unsigned.all;
9 use ieee.std_logic_arith.all;

10 use ieee.numeric_std.all;
11
12 ---
13
14 entity reduceconv2_modulebooth2 is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 24);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_matrixA : in std_logic;
22 enable_conv2_module : in std_logic;
23 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
24 read_address_matrixReduce: in std_logic_vector (...

address_width - 1 downto 0);

91

25 input_matrixA_values : in std_logic_vector (...
data_width - 1 downto 0);

26 reduce_module_finished : out std_logic;
27 output_data_matrixReduce : out std_logic_vector(...

data_width - 1 downto 0);
28 mult_ready_hresult : out std_logic;
29 mult_done_hresult : out std_logic;
30 mult_ready_vresult : out std_logic;
31 mult_done_vresult : out std_logic
32);
33
34 end reduceconv2_modulebooth2;
35
36 ---
37 architecture structure_reduceconv2_modulebooth2 of ...

reduceconv2_modulebooth2 is
38
39 component hresultcontrolbooth2 is
40
41 generic (address_width: integer := 8;
42 n1: integer := 5;
43 n2: integer := 11);
44 -- address_width must be an even number
45 -- n1 and n2 are the size of the input matrix conv2 with the
46 -- 1x5 mask example , input 6x8 matrix , mask 1x5, new conv2 matrix
47 -- equals Conv2 (n1xn2)= (6+1 -1)x (8+5 -1), therefore n1 = 6,
48 -- n2 = 12, but the matrix starts at zero so, n1 = (6-1) = 5,
49 -- n2 = (12 -1) = 11.
50
51 port (clk : in std_logic;
52 reset : in std_logic;
53 enable_control : in std_logic;
54 update_reg_enable : out std_logic;
55 writeEnable_matrixC : out std_logic;
56 reset_reg : out std_logic;
57 enable_reduce : out std_logic;
58 execute : out std_logic;
59 read_address_matrixA : out std_logic_vector (...

address_width - 1 downto 0);
60 read_address_matrixB : out std_logic_vector (...

address_width - 1 downto 0);
61 write_address_matrixC : out std_logic_vector (...

address_width - 1 downto 0);
62 mux_enable : out std_logic
63);
64
65 end component hresultcontrolbooth2;
66
67 ---
68 component hresultreducecontrolbooth2 is
69

92

70 generic (address_width: integer := 8; -- address_width ...
must be an even number

71 n1: integer := 5;
72 n2: integer := 11);
73 -- address_width must be an even number
74 -- The hResultReduceControl module reduces the orignal 6x8
75 -- input matrix in half from the number of columns from the
76 -- hResultControl module. Example 6 x 12 will be reduce down
77 -- to 6x4 n1 is the row position and n2 is the column position.
78 -- you want n1 and n2 to be one size smaller then the 6 x 12
79 -- therefore n1 should equal = 5 since you start at zero
80 -- and n2 should equal = 11 since you start at zero
81 -- The hResultReduceControl module reduces the orignal 6x8
82 -- input matrix in half from the number of columns from the
83 -- hResultControl module. Example 6 x 12 will be reduce down
84 -- to 6x4 n1 is the row position and n2 is the column position.
85 -- you want n1 and n2 to be one size smaller then the 6 x 12
86 -- therefore n1 should equal = 5 since you start at zero
87 -- and n2 should equal = 11 since you start at zero
88
89 port (clk : in std_logic;
90 reset : in std_logic;
91 enable_control : in std_logic;
92 writeEnable_matrix : out std_logic;
93 enable_vresult : out std_logic;
94 read_address_hResult : out std_logic_vector (...

address_width - 1 downto 0);
95 write_address_reducehResult: out std_logic_vector (...

address_width - 1 downto 0);
96 mux_enable : out std_logic
97);
98
99 end component hresultreducecontrolbooth2;

100 ---
101
102 component vresultcontrolbooth2 is
103
104 generic (address_width: integer := 8;
105 n1: integer := 9;
106 n2: integer := 3);
107 -- address_width must be an even number
108 -- n1 and n2 are the size of the input matrix conv2 with the
109 -- 5x1 mask example , input 6x4 matrix , mask 5x1, new conv2
110 -- matrix equals Conv2 (n1xn2)= (6+5 -1)x (4+1 -1),
111 -- therefore n1 = 10, n2 = 4, but the matrix starts at
112 -- zero so, n1 = (10 -1) = 9, n2 = (4-1) = 3.
113
114 port (clk : in std_logic;
115 reset : in std_logic;
116 enable_control : in std_logic;
117 update_reg_enable : out std_logic;
118 writeEnable_matrixC : out std_logic;

93

119 reset_reg : out std_logic;
120 enable_reduce : out std_logic;
121 execute : out std_logic;
122 read_address_matrixA : out std_logic_vector (...

address_width - 1 downto 0);
123 read_address_matrixB : out std_logic_vector (...

address_width - 1 downto 0);
124 write_address_matrixC : out std_logic_vector (...

address_width - 1 downto 0)
125);
126
127 end component vresultcontrolbooth2;
128
129 ---
130
131 component vresultreducecontrolbooth2 is
132
133 generic (address_width: integer := 8;
134 n1: integer := 9;
135 n2: integer := 3);
136 -- address_width must be an even number
137 port (clk : in std_logic;
138 reset : in std_logic;
139 enable_control : in std_logic;
140 writeEnable_matrix : out std_logic;
141 enable_vresult : out std_logic;
142 read_address_vResult : out std_logic_vector (...

address_width - 1 downto 0);
143 write_address_reducevResult: out std_logic_vector (...

address_width - 1 downto 0)
144);
145
146 end component vresultreducecontrolbooth2;
147 ---
148 component mux2to1 is
149
150 generic (address_width: integer := 8);
151
152 port(sel : in std_logic;
153 input1 : in std_logic_vector(address_width - 1 downto ...

0);
154 input2 : in std_logic_vector(address_width - 1 downto ...

0);
155 mux_output : out std_logic_vector(address_width - 1 downto...

0)
156);
157
158 end component mux2to1;
159
160 ---
161 component mux1to2data_width is
162

94

163 generic (data_width: integer := 24);
164
165 port(sel : in std_logic;
166 input : in std_logic_vector(data_width - 1 downto 0)...

;
167 mux_output1 : out std_logic_vector(data_width - 1 downto ...

0);
168 mux_output2 : out std_logic_vector(data_width - 1 downto ...

0)
169);
170
171 end component mux1to2data_width;
172
173 ---
174 component mux2to1data_width is
175
176 generic (data_width: integer := 24);
177
178 port(sel : in std_logic;
179 input1 : in std_logic_vector(data_width - 1 downto 0);
180 input2 : in std_logic_vector(data_width - 1 downto 0);
181 mux_output : out std_logic_vector(data_width - 1 downto 0)
182);
183
184 end component;
185 --
186 component mux8to4enable is
187
188 port(sel : in std_logic;
189 input1 : in std_logic;
190 input2 : in std_logic;
191 input3 : in std_logic;
192 input4 : in std_logic;
193 input5 : in std_logic;
194 input6 : in std_logic;
195 input7 : in std_logic;
196 input8 : in std_logic;
197 mux_output1 : out std_logic;
198 mux_output2 : out std_logic;
199 mux_output3 : out std_logic;
200 mux_output4 : out std_logic
201);
202
203 end component;
204 ---
205 component mux2to4enable is
206
207 port(sel : in std_logic;
208 input1 : in std_logic;
209 input2 : in std_logic;
210 mux_output1 : out std_logic;
211 mux_output2 : out std_logic;

95

212 mux_output3 : out std_logic;
213 mux_output4 : out std_logic
214);
215
216 end component;
217
218 ---
219 component mem_matrix is
220
221 generic (address_width: integer := 8;
222 data_width: integer := 24);
223
224 port (clk : in std_logic;
225 reset : in std_logic;
226 writeEnable : in std_logic;
227 matrix_values : in std_logic_vector (data_width - ...

1 downto 0);
228 write_address : in std_logic_vector (address_width...

- 1 downto 0);
229 read_address : in std_logic_vector (address_width...

- 1 downto 0);
230 output_matrix_values : out std_logic_vector(data_width - ...

1 downto 0)
231);
232
233 end component mem_matrix;
234
235 ---
236 component mask1x5mem_matrix is
237
238 generic (address_width: integer := 8;
239 data_width: integer := 24);
240
241 port(clk : in std_logic;
242 reset : in std_logic;
243 read_address : in std_logic_vector (address_width - 1 ...

downto 0);
244 output_matrix_values: out std_logic_vector(data_width - ...

1 downto 0));
245
246 end component mask1x5mem_matrix;
247
248 ---
249 component mask5x1mem_matrix is
250
251 generic (address_width: integer := 8;
252 data_width: integer := 24);
253
254 port(clk : in std_logic;
255 reset : in std_logic;
256 read_address : in std_logic_vector (address_width - 1 ...

downto 0);

96

257 output_matrix_values: out std_logic_vector(data_width - ...
1 downto 0)

258);
259
260 end component mask5x1mem_matrix;
261
262 ---
263 component boothconv2 is
264
265 generic (data_width: integer := 24);
266
267 port (clk : in std_logic;
268 reset : in std_logic;
269 execute : in std_logic;
270 update_reg_enable : in std_logic;
271 input_matrixA_values : in std_logic_vector (data_width...

- 1 downto 0);
272 input_matrixB_values : in std_logic_vector (data_width...

- 1 downto 0);
273 output_data_matrixC : out std_logic_vector (...

data_width - 1 downto 0);
274 mult_ready : out std_logic;
275 mult_done : out std_logic
276);
277
278 end component boothconv2;
279
280 ---
281
282 signal update_reg_enable_to_mux_input1 , ...

control_writeEnable_memC_to_WriteEnableMatrixC_mux_input3: ...
std_logic;

283 signal control_reset_reg_to_hvcontrol_reset_mux_input2 , ...
enable_reduce_to_hResultReduceControl: std_logic;

284 signal mux_enable_to_mux_select , writeEnable_matrix_to_MatrixA2 , ...
enable_vresult_to_vResultControl : std_logic;

285 signal mux_enable_to_mux_select_matrixA2 , ...
update_reg_enable_to_mux_input5: std_logic;

286 signal control_writeEnable_memC_to_mux_input7: std_logic;
287 signal control_reset_reg_to_mux_input6 , ...

enable_reduce_to_vResultReduceControl_enable : std_logic;
288 signal writeEnable_matrix_to_MatrixReduce , ...

mux_output_to_conv2_update_reg: std_logic;
289 signal mux_output_to_conv2_reset , ...

mux_out_writeEnableMatrixC_to_writeEnableMatrixC: std_logic;
290 signal read_address_matrixA_to_mux_input1 , ...

read_address_matrixB_to_mask1x5 : std_logic_vector (...
address_width - 1 downto 0);

291 signal write_address_matrixC_to_WriteAddressMatrix_mux_input1 , ...
write_address_reducehResult_to_mux_input1_matrixA2_address : ...
std_logic_vector (address_width - 1 downto 0);

97

292 signal read_address_hResult_to_mux_input1_readAddressMatrixC , ...
write_address_matrixC_to_WriteAddressMatrix_mux_input2 : ...
std_logic_vector (address_width - 1 downto 0);

293 signal write_address_reducevResult_to_mux_input2_matrixA2_address ,...
read_address_matrixB_to_mask5x1 : std_logic_vector (...

address_width - 1 downto 0);
294 signal read_address_vResult_to_mux_input2_readAddressMatrixC , ...

write_address_reducevResult_to_MatrixReduce: std_logic_vector (...
address_width - 1 downto 0);

295 signal mux_ouput_to_matrixA1 ,mux_output_to_matrixA2_address: ...
std_logic_vector (address_width - 1 downto 0);

296 signal read_address_matrixC_to_address_matrixC , ...
mux_output_WriteAddressMatrixC_to_write_address_matrixC: ...
std_logic_vector (address_width - 1 downto 0);

297 signal output_matrix_values_to_mux_input1_matrixA_values , ...
output_matrix_values_to_mux_input2_matrixA_values: ...
std_logic_vector(data_width - 1 downto 0);

298 signal mux_output_matrixA_values_to_conv2_input1 , ...
output_matrix_values_to_mux_input1_matrixB_values: ...
std_logic_vector(data_width - 1 downto 0);

299 signal output_matrix_values_to_mux_input2_matrixB_values , ...
mux_output_matrixB_to_conv2_input2: std_logic_vector(data_width...
- 1 downto 0);

300 signal output_matrixC_values_to_mux_input_values , ...
mux_output_MatrixC_values_to_matrixA2_values: std_logic_vector(...
data_width - 1 downto 0);

301 signal mux_output_MatrixC_values_to_matrixReduce_values: ...
std_logic_vector(data_width - 1 downto 0);

302 signal output_data_matrixC_to_matrixC_values: std_logic_vector(...
data_width - 1 downto 0);

303 signal execute_to_mux_input4 , execute_to_mux_input8 , ...
mux_out_execute_to_boothconv2: std_logic;

304 signal mult_ready_to_mux_input1 , mult_done_to_mux_input2: ...
std_logic;

305
306
307 begin
308
309 hresultcontrolbooth1: hresultcontrolbooth2 port map (clk => clk ,
310 reset => reset ,
311 enable_control => enable_conv2_module ,
312 update_reg_enable => update_reg_enable_to_mux_input1 ,
313 writeEnable_matrixC =>
314 control_writeEnable_memC_to_WriteEnableMatrixC_mux_input3 ,
315 reset_reg => control_reset_reg_to_hvcontrol_reset_mux_input2 ,
316 enable_reduce => enable_reduce_to_hResultReduceControl ,
317 execute => execute_to_mux_input4 ,
318 read_address_matrixA => read_address_matrixA_to_mux_input1 ,
319 read_address_matrixB => read_address_matrixB_to_mask1x5 ,
320 write_address_matrixC =>
321 write_address_matrixC_to_WriteAddressMatrix_mux_input1 ,
322 mux_enable => mux_enable_to_mux_select);

98

323
324 ---
325 hresultreducecontrolbooth1: hresultreducecontrolbooth2 port map(
326 clk => clk ,
327 reset => reset ,
328 enable_control => enable_reduce_to_hResultReduceControl ,
329 writeEnable_matrix => writeEnable_matrix_to_MatrixA2 ,
330 enable_vresult => enable_vresult_to_vResultControl ,
331 read_address_hResult =>
332 read_address_hResult_to_mux_input1_readAddressMatrixC ,
333 write_address_reducehResult =>
334 write_address_reducehResult_to_mux_input1_matrixA2_address ,
335 mux_enable => mux_enable_to_mux_select_matrixA2);
336
337 ---
338 vresultcontrolbooth1: vresultcontrolbooth2 port map (clk => clk ,
339 reset => reset ,
340 enable_control => enable_vresult_to_vResultControl ,
341 update_reg_enable => update_reg_enable_to_mux_input5 ,
342 writeEnable_matrixC => control_writeEnable_memC_to_mux_input7 ,
343 reset_reg => control_reset_reg_to_mux_input6 ,
344 enable_reduce => enable_reduce_to_vResultReduceControl_enable ,
345 execute => execute_to_mux_input8 ,
346 read_address_matrixA =>
347 write_address_reducevResult_to_mux_input2_matrixA2_address ,
348 read_address_matrixB => read_address_matrixB_to_mask5x1 ,
349 write_address_matrixC =>
350 write_address_matrixC_to_WriteAddressMatrix_mux_input2);
351
352 ---
353 vresultreducecontrolbooth1 :vresultreducecontrolbooth2 port map(
354 clk => clk ,
355 reset => reset ,
356 enable_control => enable_reduce_to_vResultReduceControl_enable ,
357 writeEnable_matrix => writeEnable_matrix_to_MatrixReduce ,
358 enable_vresult => reduce_module_finished ,
359 read_address_vResult =>
360 read_address_vResult_to_mux_input2_readAddressMatrixC ,
361 write_address_reducevResult =>
362 write_address_reducevResult_to_MatrixReduce);
363
364 ---
365 mux2to1_matrixA1: mux2to1 port map(sel => enable_matrixA ,
366 input1 => read_address_matrixA_to_mux_input1 ,
367 input2 => read_address_matrixA ,
368 mux_output => mux_ouput_to_matrixA1);
369
370 ---
371 mux2to1_matrixA_values: mux2to1data_width port map(
372 sel => mux_enable_to_mux_select ,
373 input1 => output_matrix_values_to_mux_input1_matrixA_values ,
374 input2 => output_matrix_values_to_mux_input2_matrixA_values ,

99

375 mux_output => mux_output_matrixA_values_to_conv2_input1);
376
377 ---
378 mux2to1_matrixB_values: mux2to1data_width port map(
379 sel => mux_enable_to_mux_select ,
380 input1 => output_matrix_values_to_mux_input1_matrixB_values ,
381 input2 => output_matrix_values_to_mux_input2_matrixB_values ,
382 mux_output => mux_output_matrixB_to_conv2_input2);
383
384 ---
385 mux8to4_Enable1: mux8to4enable port map (
386 sel => mux_enable_to_mux_select ,
387 input1 => update_reg_enable_to_mux_input1 ,
388 input2 => control_reset_reg_to_hvcontrol_reset_mux_input2 ,
389 input3 =>
390 control_writeEnable_memC_to_WriteEnableMatrixC_mux_input3 ,
391 input4 => execute_to_mux_input4 ,
392 input5 => update_reg_enable_to_mux_input5 ,
393 input6 => control_reset_reg_to_mux_input6 ,
394 input7 => control_writeEnable_memC_to_mux_input7 ,
395 input8 => execute_to_mux_input8 ,
396 mux_output1 => mux_output_to_conv2_update_reg ,
397 mux_output2 => mux_output_to_conv2_reset ,
398 mux_output3 => mux_out_writeEnableMatrixC_to_writeEnableMatrixC ,
399 mux_output4 => mux_out_execute_to_boothconv2);
400
401 ---
402 mux2to4_Enable1: mux2to4enable port map (
403 sel => mux_enable_to_mux_select ,
404 input1 => mult_ready_to_mux_input1 ,
405 input2 => mult_done_to_mux_input2 ,
406 mux_output1 => mult_ready_hresult ,
407 mux_output2 => mult_done_hresult ,
408 mux_output3 => mult_ready_vresult ,
409 mux_output4 => mult_done_vresult);
410
411 ---
412 mux2to1_ReadAddressMatrixC: mux2to1 port map(
413 sel => mux_enable_to_mux_select_matrixA2 ,
414 input1 => read_address_hResult_to_mux_input1_readAddressMatrixC ,
415 input2 => read_address_vResult_to_mux_input2_readAddressMatrixC ,
416 mux_output => read_address_matrixC_to_address_matrixC);
417
418 ---
419 mux2to1_WriteAddressMatrixC: mux2to1 port map(
420 sel => mux_enable_to_mux_select ,
421 input1 => write_address_matrixC_to_WriteAddressMatrix_mux_input1 ,
422 input2 => write_address_matrixC_to_WriteAddressMatrix_mux_input2 ,
423 mux_output =>
424 mux_output_WriteAddressMatrixC_to_write_address_matrixC);
425
426 ---

100

427 mux1to2_matrixA2_ReduceMatrix_values: mux1to2data_width port map(
428 sel => mux_enable_to_mux_select_matrixA2 ,
429 input => output_matrixC_values_to_mux_input_values ,
430 mux_output1 => mux_output_MatrixC_values_to_matrixA2_values ,
431 mux_output2 => mux_output_MatrixC_values_to_matrixReduce_values);
432
433 ---
434 mem_matrixA1: mem_matrix port map (clk => clk , reset => reset ,
435 writeEnable => enable_matrixA ,
436 matrix_values => input_matrixA_values ,
437 write_address => mux_ouput_to_matrixA1 ,
438 read_address => mux_ouput_to_matrixA1 ,
439 output_matrix_values =>
440 output_matrix_values_to_mux_input1_matrixA_values);
441
442 ---
443 mem_matrixA2: mem_matrix port map (clk => clk , reset => reset ,
444 writeEnable => writeEnable_matrix_to_MatrixA2 ,
445 matrix_values => mux_output_MatrixC_values_to_matrixA2_values ,
446 write_address =>
447 write_address_reducehResult_to_mux_input1_matrixA2_address ,
448 read_address =>
449 write_address_reducevResult_to_mux_input2_matrixA2_address ,
450 output_matrix_values =>
451 output_matrix_values_to_mux_input2_matrixA_values);
452
453 ---
454 mask1x5mem_matrix0: mask1x5mem_matrix port map (clk => clk ,
455 reset => reset ,
456 read_address => read_address_matrixB_to_mask1x5 ,
457 output_matrix_values =>
458 output_matrix_values_to_mux_input1_matrixB_values);
459
460 ---
461 mask5x1mem_matrix0: mask5x1mem_matrix port map (clk => clk ,
462 reset => reset ,
463 read_address => read_address_matrixB_to_mask5x1 ,
464 output_matrix_values =>
465 output_matrix_values_to_mux_input2_matrixB_values);
466
467 ---
468 boothconv2_1: boothconv2 port map (clk => clk ,
469 reset => mux_output_to_conv2_reset ,
470 execute => mux_out_execute_to_boothconv2 ,
471 update_reg_enable => mux_output_to_conv2_update_reg ,
472 input_matrixA_values => mux_output_matrixA_values_to_conv2_input1 ,
473 input_matrixB_values => mux_output_matrixB_to_conv2_input2 ,
474 output_data_matrixC => output_data_matrixC_to_matrixC_values ,
475 mult_ready => mult_ready_to_mux_input1 ,
476 mult_done => mult_done_to_mux_input2);
477
478 ---

101

479 mem_matrixC: mem_matrix port map (clk => clk , reset => reset ,
480 writeEnable => mux_out_writeEnableMatrixC_to_writeEnableMatrixC ,
481 matrix_values => output_data_matrixC_to_matrixC_values ,
482 write_address =>
483 mux_output_WriteAddressMatrixC_to_write_address_matrixC ,
484 read_address => read_address_matrixC_to_address_matrixC ,
485 output_matrix_values =>
486 output_matrixC_values_to_mux_input_values);
487
488 ---
489 mem_matrixReduce: mem_matrix port map (clk => clk , reset => reset ,
490 writeEnable => writeEnable_matrix_to_MatrixReduce ,
491 matrix_values => mux_output_MatrixC_values_to_matrixReduce_values ,
492 write_address => write_address_reducevResult_to_MatrixReduce ,
493 read_address => read_address_matrixReduce ,
494 output_matrix_values => output_data_matrixReduce);
495
496 end structure_reduceconv2_modulebooth2;
497 ---

C.5 Compute Derivatives Fx using Booth Multiplier

Listing C.5: The FxComputeDerivativesBoothConv2Module.vhd VHDL file.
(appendix3/FxComputeDerivativesBoothConv2Module.vhd)

1 -- Capt. Jason Shirley
2 -- This is the FxComputeDerivatives Module using the
3 -- Booth Multiplier.These Modules are structually connected
4
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_unsigned.all;
9 use ieee.std_logic_arith.all;

10 use ieee.numeric_std.all;
11
12 --
13
14 entity fxcomputederivativesboothconv2_module is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 24);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_matrix_A_B : in std_logic;
22 enable_conv2_module : in std_logic;
23 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
24 read_address_matrixB : in std_logic_vector (...

address_width - 1 downto 0);

102

25 read_address_matrixC : in std_logic_vector (...
address_width - 1 downto 0);

26 input_matrixA_values : in std_logic_vector (data_width -...
1 downto 0);

27 input_matrixB_values : in std_logic_vector (data_width -...
1 downto 0);

28 output_data_matrixC : out std_logic_vector(data_width -...
1 downto 0);

29 enable_fxcomputederivative_complete : out std_logic;
30 writeEnable_matrix_conv2A : out std_logic;
31 writeEnable_matrix_conv2B : out std_logic;
32 mult_ready_conv2A : out std_logic;
33 mult_done_conv2A : out std_logic;
34 mult_ready_conv2B : out std_logic;
35 mult_done_conv2B : out std_logic
36);
37
38 end fxcomputederivativesboothconv2_module;
39
40 --
41
42 architecture structure_fxcomputederivativesboothconv2_module of ...

fxcomputederivativesboothconv2_module is
43
44 component boothconv2_module is
45
46 generic (address_width: integer := 8;
47 data_width: integer := 24);
48
49 port (clk : in std_logic;
50 reset : in std_logic;
51 enable_matrixA : in std_logic;
52 enable_conv2_module : in std_logic;
53 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
54 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
55 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
56 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
57 enable_complete : out std_logic;
58 writeEnable_matrixC : out std_logic;
59 mult_ready : out std_logic;
60 mult_done : out std_logic
61);
62
63 end component boothconv2_module;
64
65 --
66 component adder is
67

103

68 generic (data_width: integer := 24);
69
70 port (input_mult_data : in std_logic_vector (data_width - 1 ...

downto 0);
71 input_reg_data : in std_logic_vector (data_width - 1 ...

downto 0);
72 output_data : out std_logic_vector (data_width - 1...

downto 0)
73);
74
75 end component adder;
76 --
77 component fxfyftcontroladder is
78
79 generic (address_width: integer := 8; -- address_width ...

must be an even number
80 n1: integer := 5;
81 n2: integer := 7);
82
83 -- address_width must be an even number
84 -- n1 and n2 are the size of the input matrix for example 6x8
85 -- matrix starts at zero so, n1 = (6-1) = 5, n2 = (8-1) = 7.
86
87 port (clk : in std_logic;
88 reset : in std_logic;
89 enable_control_conv2A : in std_logic;
90 enable_control_conv2B : in std_logic;
91 writeEnable_matrix_image1_image2 : out std_logic;
92 enable_fxfy_complete : out std_logic;
93 read_address_matrix_image1 : out std_logic_vector...

(address_width - 1 downto 0);
94 read_address_matrix_image2 : out std_logic_vector...

(address_width - 1 downto 0);
95 write_address_matrix_image1_image2 : out std_logic_vector...

(address_width - 1 downto 0)
96);
97
98 end component fxfyftcontroladder;
99 --

100 component mem_matrix is
101
102 generic (address_width: integer := 8;
103 data_width: integer := 24);
104
105 port (clk : in std_logic;
106 reset : in std_logic;
107 writeEnable : in std_logic;
108 matrix_values : in std_logic_vector (data_width ...

- 1 downto 0);
109 write_address : in std_logic_vector (...

address_width - 1 downto 0);

104

110 read_address : in std_logic_vector (...
address_width - 1 downto 0);

111 output_matrix_values : out std_logic_vector(data_width ...
- 1 downto 0)

112);
113
114 end component mem_matrix;
115
116 --
117
118 signal enable_complete_to_enable_control_conv2A , ...

enable_complete_to_enable_conrol_conv2B: std_logic;
119 signal writeEnable_matrix_image1_image2_to_writeEnable: std_logic;
120 signal mux_ouput_matrixA , mux_ouput_matrixB :std_logic_vector (...

address_width - 1 downto 0);
121 signal control_matrixA_to_muxA_input1 , ...

control_matrixB_to_muxB_input1:std_logic_vector (address_width ...
- 1 downto 0);

122 signal write_address_matrix_image1_image2_to_writeEnable:...
std_logic_vector (address_width - 1 downto 0);

123 signal read_address_matrix_image1_to_read_address_conv2A , ...
read_address_matrix_image2_to_read_address_conv2B:...
std_logic_vector (address_width - 1 downto 0);

124 signal output_data_matrix_conv2A_to_input_mult_data , ...
output_data_matrix_conv2B_to_input_reg_data: std_logic_vector(...
data_width - 1 downto 0);

125 signal output_data_to_mem_matrix_input_values: std_logic_vector(...
data_width - 1 downto 0);

126
127 begin
128
129 boothconv2_module1: boothconv2_module port map (clk => clk ,
130 reset => reset ,
131 enable_matrixA => enable_matrix_A_B ,
132 enable_conv2_module => enable_conv2_module ,
133 read_address_matrixA => read_address_matrixA ,
134 read_address_matrixC =>
135 read_address_matrix_image1_to_read_address_conv2A ,
136 input_matrixA_values => input_matrixA_values ,
137 output_data_matrixC =>
138 output_data_matrix_conv2A_to_input_mult_data ,
139 enable_complete => enable_complete_to_enable_control_conv2A ,
140 writeEnable_matrixC => writeEnable_matrix_conv2A ,
141 mult_ready => mult_ready_conv2A ,
142 mult_done => mult_done_conv2A);
143
144 boothconv2_module2: boothconv2_module port map (clk => clk ,
145 reset => reset ,
146 enable_matrixA => enable_matrix_A_B ,
147 enable_conv2_module => enable_conv2_module ,
148 read_address_matrixA => read_address_matrixB ,
149 read_address_matrixC =>

105

150 read_address_matrix_image2_to_read_address_conv2B ,
151 input_matrixA_values => input_matrixB_values ,
152 output_data_matrixC =>
153 output_data_matrix_conv2B_to_input_reg_data ,
154 enable_complete => enable_complete_to_enable_conrol_conv2B ,
155 writeEnable_matrixC => writeEnable_matrix_conv2B ,
156 mult_ready => mult_ready_conv2B ,
157 mult_done => mult_done_conv2B);
158
159 fxfyftcontroladder0: fxfyftcontroladder port map (clk => clk ,
160 reset => reset ,
161 enable_control_conv2A => enable_complete_to_enable_control_conv2A ,
162 enable_control_conv2B => enable_complete_to_enable_conrol_conv2B ,
163 writeEnable_matrix_image1_image2 =>
164 writeEnable_matrix_image1_image2_to_writeEnable ,
165 enable_fxfy_complete => enable_fxcomputederivative_complete ,
166 read_address_matrix_image1 =>
167 read_address_matrix_image1_to_read_address_conv2A ,
168 read_address_matrix_image2 =>
169 read_address_matrix_image2_to_read_address_conv2B ,
170 write_address_matrix_image1_image2 =>
171 write_address_matrix_image1_image2_to_writeEnable);
172
173 mem_matrixC: mem_matrix port map (clk => clk ,
174 reset => reset ,
175 writeEnable =>
176 writeEnable_matrix_image1_image2_to_writeEnable ,
177 matrix_values => output_data_to_mem_matrix_input_values ,
178 write_address =>
179 write_address_matrix_image1_image2_to_writeEnable ,
180 read_address => read_address_matrixC ,
181 output_matrix_values => output_data_matrixC);
182
183 adder1: adder port map (input_mult_data =>
184 output_data_matrix_conv2A_to_input_mult_data ,
185 input_reg_data => output_data_matrix_conv2B_to_input_reg_data ,
186 output_data => output_data_to_mem_matrix_input_values);
187
188 end structure_fxcomputederivativesboothconv2_module;

106

C.6 Compute Derivatives Fy using Booth Multiplier

Listing C.6: The FyComputeDerivativesBoothConv2Module.vhd VHDL file.
(appendix3/FyComputeDerivativesBoothConv2Module.vhd)

1 -- Capt. Jason Shirley
2 -- This is the FyComputeDerivatives Module using the
3 -- Booth Multiplier. These Modules are structually connected
4
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_unsigned.all;
9 use ieee.std_logic_arith.all;

10 use ieee.numeric_std.all;
11
12 --
13
14 entity fycomputederivativesboothconv2_module is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 24);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_matrix_A_B : in std_logic;
22 enable_conv2_module : in std_logic;
23 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
24 read_address_matrixB : in std_logic_vector (...

address_width - 1 downto 0);
25 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
26 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
27 input_matrixB_values : in std_logic_vector (data_width -...

1 downto 0);
28 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
29 enable_fycomputederivative_complete : out std_logic;
30 writeEnable_matrix_conv2A : out std_logic;
31 writeEnable_matrix_conv2B : out std_logic;
32 mult_ready_conv2A : out std_logic;
33 mult_done_conv2A : out std_logic;
34 mult_ready_conv2B : out std_logic;
35 mult_done_conv2B : out std_logic
36);
37
38 end fycomputederivativesboothconv2_module;
39
40 --
41

107

42 architecture structure_fycomputederivativesboothconv2_module of ...
fycomputederivativesboothconv2_module is

43
44 component boothconv2_module is
45
46 generic (address_width: integer := 8;
47 data_width: integer := 24);
48
49 port (clk : in std_logic;
50 reset : in std_logic;
51 enable_matrixA : in std_logic;
52 enable_conv2_module : in std_logic;
53 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
54 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
55 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
56 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
57 enable_complete : out std_logic;
58 writeEnable_matrixC : out std_logic;
59 mult_ready : out std_logic;
60 mult_done : out std_logic
61);
62
63 end component boothconv2_module;
64
65 --
66
67 component adder is
68
69 generic (data_width: integer := 24);
70
71 port (input_mult_data : in std_logic_vector (data_width - 1 ...

downto 0);
72 input_reg_data : in std_logic_vector (data_width - 1 ...

downto 0);
73 output_data : out std_logic_vector (data_width - 1...

downto 0)
74);
75
76 end component adder;
77 --
78
79 component fxfyftcontroladder is
80
81 generic (address_width: integer := 8;
82 n1: integer := 5;
83 n2: integer := 7);
84 -- address_width must be an even number
85 -- n1 and n2 are the size of the input matrix for example 6x8

108

86 -- matrix starts at zero so, n1 = (6-1) = 5, n2 = (8-1) = 7.
87
88 port (clk : in std_logic;
89 reset : in std_logic;
90 enable_control_conv2A : in std_logic;
91 enable_control_conv2B : in std_logic;
92 writeEnable_matrix_image1_image2 : out std_logic;
93 enable_fxfy_complete : out std_logic;
94 read_address_matrix_image1 : out std_logic_vector...

(address_width - 1 downto 0);
95 read_address_matrix_image2 : out std_logic_vector...

(address_width - 1 downto 0);
96 write_address_matrix_image1_image2 : out std_logic_vector...

(address_width - 1 downto 0)
97);
98
99 end component fxfyftcontroladder;

100 --
101
102 component mem_matrix is
103
104 generic (address_width: integer := 8;
105 data_width: integer := 24);
106
107 port (clk : in std_logic;
108 reset : in std_logic;
109 writeEnable : in std_logic;
110 matrix_values : in std_logic_vector (...

data_width - 1 downto 0);
111 write_address : in std_logic_vector (...

address_width - 1 downto 0);
112 read_address : in std_logic_vector (...

address_width - 1 downto 0);
113 output_matrix_values : out std_logic_vector(...

data_width - 1 downto 0)
114);
115
116 end component mem_matrix;
117
118 --
119
120 signal enable_complete_to_enable_control_conv2A , ...

enable_complete_to_enable_conrol_conv2B: std_logic;
121 signal writeEnable_matrix_image1_image2_to_writeEnable: std_logic;
122 signal mux_ouput_matrixA , mux_ouput_matrixB :std_logic_vector (...

address_width - 1 downto 0);
123 signal control_matrixA_to_muxA_input1 , ...

control_matrixB_to_muxB_input1:std_logic_vector (address_width ...
- 1 downto 0);

124 signal write_address_matrix_image1_image2_to_writeEnable:...
std_logic_vector (address_width - 1 downto 0);

109

125 signal read_address_matrix_image1_to_read_address_conv2A , ...
read_address_matrix_image2_to_read_address_conv2B:...
std_logic_vector (address_width - 1 downto 0);

126 signal output_data_matrix_conv2A_to_input_mult_data , ...
output_data_matrix_conv2B_to_input_reg_data: std_logic_vector(...
data_width - 1 downto 0);

127 signal output_data_to_mem_matrix_input_values: std_logic_vector(...
data_width - 1 downto 0);

128
129 begin
130
131 boothconv2_module1: boothconv2_module port map (clk => clk ,
132 reset => reset ,
133 enable_matrixA => enable_matrix_A_B ,
134 enable_conv2_module => enable_conv2_module ,
135 read_address_matrixA => read_address_matrixA ,
136 read_address_matrixC =>
137 read_address_matrix_image1_to_read_address_conv2A ,
138 input_matrixA_values => input_matrixA_values ,
139 output_data_matrixC =>
140 output_data_matrix_conv2A_to_input_mult_data ,
141 enable_complete => enable_complete_to_enable_control_conv2A ,
142 writeEnable_matrixC => writeEnable_matrix_conv2A ,
143 mult_ready => mult_ready_conv2A ,
144 mult_done => mult_done_conv2A);
145
146 boothconv2_module2: boothconv2_module port map (clk => clk ,
147 reset => reset ,
148 enable_matrixA => enable_matrix_A_B ,
149 enable_conv2_module => enable_conv2_module ,
150 read_address_matrixA => read_address_matrixB ,
151 read_address_matrixC =>
152 read_address_matrix_image2_to_read_address_conv2B ,
153 input_matrixA_values => input_matrixB_values ,
154 output_data_matrixC =>
155 output_data_matrix_conv2B_to_input_reg_data ,
156 enable_complete => enable_complete_to_enable_conrol_conv2B ,
157 writeEnable_matrixC => writeEnable_matrix_conv2B ,
158 mult_ready => mult_ready_conv2B ,
159 mult_done => mult_done_conv2B);
160
161 fxfyftcontroladder0: fxfyftcontroladder port map (clk => clk ,
162 reset => reset ,
163 enable_control_conv2A => enable_complete_to_enable_control_conv2A ,
164 enable_control_conv2B => enable_complete_to_enable_conrol_conv2B ,
165 writeEnable_matrix_image1_image2 =>
166 writeEnable_matrix_image1_image2_to_writeEnable ,
167 enable_fxfy_complete => enable_fycomputederivative_complete ,
168 read_address_matrix_image1 =>
169 read_address_matrix_image1_to_read_address_conv2A ,
170 read_address_matrix_image2 =>
171 read_address_matrix_image2_to_read_address_conv2B ,

110

172 write_address_matrix_image1_image2 =>
173 write_address_matrix_image1_image2_to_writeEnable);
174
175 mem_matrixC: mem_matrix port map (clk => clk ,
176 reset => reset ,
177 writeEnable =>
178 writeEnable_matrix_image1_image2_to_writeEnable ,
179 matrix_values => output_data_to_mem_matrix_input_values ,
180 write_address =>
181 write_address_matrix_image1_image2_to_writeEnable ,
182 read_address => read_address_matrixC ,
183 output_matrix_values => output_data_matrixC);
184
185 adder1: adder port map (
186 input_mult_data => output_data_matrix_conv2A_to_input_mult_data ,
187 input_reg_data => output_data_matrix_conv2B_to_input_reg_data ,
188 output_data => output_data_to_mem_matrix_input_values);
189
190 end structure_fycomputederivativesboothconv2_module;

C.7 Compute Derivatives Ft using Booth Multiplier

Listing C.7: The FtComputeDerivativesBoothConv2Module.vhd VHDL file.
(appendix3/FtComputeDerivativesBoothConv2Module.vhd)

1 -- Capt. Jason Shirley
2 -- This is the FtComputeDerivatives Module using the
3 -- Booth Multiplier. These Modules are structually connected
4
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_unsigned.all;
9 use ieee.std_logic_arith.all;

10 use ieee.numeric_std.all;
11
12 --
13
14 entity ftcomputederivativesboothconv2_module is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 24);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_matrix_A_B : in std_logic;
22 enable_conv2_module : in std_logic;
23 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
24 read_address_matrixB : in std_logic_vector (...

address_width - 1 downto 0);

111

25 read_address_matrixC : in std_logic_vector (...
address_width - 1 downto 0);

26 input_matrixA_values : in std_logic_vector (data_width -...
1 downto 0);

27 input_matrixB_values : in std_logic_vector (data_width -...
1 downto 0);

28 output_data_matrixC : out std_logic_vector(data_width -...
1 downto 0);

29 enable_ftcomputederivative_complete : out std_logic;
30 writeEnable_matrix_conv2A : out std_logic;
31 writeEnable_matrix_conv2B : out std_logic;
32 mult_ready_conv2A : out std_logic;
33 mult_done_conv2A : out std_logic;
34 mult_ready_conv2B : out std_logic;
35 mult_done_conv2B : out std_logic
36);
37
38 end ftcomputederivativesboothconv2_module;
39
40 --
41
42 architecture structure_ftcomputederivativesboothconv2_module of ...

ftcomputederivativesboothconv2_module is
43
44 component boothconv2_image1_module is
45
46 generic (address_width: integer := 8;
47 data_width: integer := 24);
48
49 port (clk : in std_logic;
50 reset : in std_logic;
51 enable_matrixA : in std_logic;
52 enable_conv2_module : in std_logic;
53 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
54 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
55 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
56 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
57 enable_complete : out std_logic;
58 writeEnable_matrixC : out std_logic;
59 mult_ready : out std_logic;
60 mult_done : out std_logic
61);
62
63 end component boothconv2_image1_module;
64
65 --
66 component boothconv2_image2_module is
67

112

68 generic (address_width: integer := 8;
69 data_width: integer := 24);
70
71 port (clk : in std_logic;
72 reset : in std_logic;
73 enable_matrixA : in std_logic;
74 enable_conv2_module : in std_logic;
75 read_address_matrixA : in std_logic_vector (...

address_width - 1 downto 0);
76 read_address_matrixC : in std_logic_vector (...

address_width - 1 downto 0);
77 input_matrixA_values : in std_logic_vector (data_width -...

1 downto 0);
78 output_data_matrixC : out std_logic_vector(data_width -...

1 downto 0);
79 enable_complete : out std_logic;
80 writeEnable_matrixC : out std_logic;
81 mult_ready : out std_logic;
82 mult_done : out std_logic
83);
84
85 end component boothconv2_image2_module;
86
87 --
88
89 component adder is
90
91 generic (data_width: integer := 24);
92
93 port (input_mult_data : in std_logic_vector (data_width - 1 ...

downto 0);
94 input_reg_data : in std_logic_vector (data_width - 1 ...

downto 0);
95 output_data : out std_logic_vector (data_width - 1...

downto 0)
96);
97
98 end component adder;
99 --

100 component fxfyftcontroladder is
101
102 generic (address_width: integer := 8;
103 n1: integer := 5;
104 n2: integer := 7);
105 -- address_width must be an even number
106 -- n1 and n2 are the size of the input matrix for example 6x8
107 -- matrix starts at zero so, n1 = (6-1) = 5, n2 = (8-1) = 7.
108
109 port (clk : in std_logic;
110 reset : in std_logic;
111 enable_control_conv2A : in std_logic;
112 enable_control_conv2B : in std_logic;

113

113 writeEnable_matrix_image1_image2 : out std_logic;
114 enable_fxfy_complete : out std_logic;
115 read_address_matrix_image1 : out std_logic_vector...

(address_width - 1 downto 0);
116 read_address_matrix_image2 : out std_logic_vector...

(address_width - 1 downto 0);
117 write_address_matrix_image1_image2 : out std_logic_vector...

(address_width - 1 downto 0)
118);
119
120 end component fxfyftcontroladder;
121 --
122 component mem_matrix is
123
124 generic (address_width: integer := 8;
125 data_width: integer := 24);
126
127 port (clk : in std_logic;
128 reset : in std_logic;
129 writeEnable : in std_logic;
130 matrix_values : in std_logic_vector (data_width ...

- 1 downto 0);
131 write_address : in std_logic_vector (...

address_width - 1 downto 0);
132 read_address : in std_logic_vector (...

address_width - 1 downto 0);
133 output_matrix_values : out std_logic_vector(data_width ...

- 1 downto 0)
134);
135
136 end component mem_matrix;
137
138 --
139
140 signal enable_complete_to_enable_control_conv2A , ...

enable_complete_to_enable_conrol_conv2B: std_logic;
141 signal writeEnable_matrix_image1_image2_to_writeEnable: std_logic;
142 signal mux_ouput_matrixA , mux_ouput_matrixB :std_logic_vector (...

address_width - 1 downto 0);
143 signal control_matrixA_to_muxA_input1 , ...

control_matrixB_to_muxB_input1:std_logic_vector (address_width ...
- 1 downto 0);

144 signal write_address_matrix_image1_image2_to_writeEnable:...
std_logic_vector (address_width - 1 downto 0);

145 signal read_address_matrix_image1_to_read_address_conv2A , ...
read_address_matrix_image2_to_read_address_conv2B:...
std_logic_vector (address_width - 1 downto 0);

146 signal output_data_matrix_conv2A_to_input_mult_data , ...
output_data_matrix_conv2B_to_input_reg_data: std_logic_vector(...
data_width - 1 downto 0);

147 signal output_data_to_mem_matrix_input_values: std_logic_vector(...
data_width - 1 downto 0);

114

148
149 begin
150
151 boothconv2_image1_module1: boothconv2_image1_module port map (
152 clk => clk ,
153 reset => reset ,
154 enable_matrixA => enable_matrix_A_B ,
155 enable_conv2_module => enable_conv2_module ,
156 read_address_matrixA => read_address_matrixA ,
157 read_address_matrixC =>
158 read_address_matrix_image1_to_read_address_conv2A ,
159 input_matrixA_values => input_matrixA_values ,
160 output_data_matrixC =>
161 output_data_matrix_conv2A_to_input_mult_data ,
162 enable_complete => enable_complete_to_enable_control_conv2A ,
163 writeEnable_matrixC => writeEnable_matrix_conv2A ,
164 mult_ready => mult_ready_conv2A ,
165 mult_done => mult_done_conv2A);
166
167 boothconv2_image2_module2: boothconv2_image2_module port map (
168 clk => clk ,
169 reset => reset ,
170 enable_matrixA => enable_matrix_A_B ,
171 enable_conv2_module => enable_conv2_module ,
172 read_address_matrixA => read_address_matrixB ,
173 read_address_matrixC =>
174 read_address_matrix_image2_to_read_address_conv2B ,
175 input_matrixA_values => input_matrixB_values ,
176 output_data_matrixC =>
177 output_data_matrix_conv2B_to_input_reg_data ,
178 enable_complete => enable_complete_to_enable_conrol_conv2B ,
179 writeEnable_matrixC => writeEnable_matrix_conv2B ,
180 mult_ready => mult_ready_conv2B ,
181 mult_done => mult_done_conv2B);
182
183 fxfyftcontroladder0: fxfyftcontroladder port map (clk => clk ,
184 reset => reset ,
185 enable_control_conv2A =>
186 enable_complete_to_enable_control_conv2A ,
187 enable_control_conv2B =>
188 enable_complete_to_enable_conrol_conv2B ,
189 writeEnable_matrix_image1_image2 =>
190 writeEnable_matrix_image1_image2_to_writeEnable ,
191 enable_fxfy_complete => enable_ftcomputederivative_complete ,
192 read_address_matrix_image1 =>
193 read_address_matrix_image1_to_read_address_conv2A ,
194 read_address_matrix_image2 =>
195 read_address_matrix_image2_to_read_address_conv2B ,
196 write_address_matrix_image1_image2 =>
197 write_address_matrix_image1_image2_to_writeEnable);
198
199 mem_matrixC: mem_matrix port map (clk => clk , reset => reset ,

115

200 writeEnable => writeEnable_matrix_image1_image2_to_writeEnable ,
201 matrix_values => output_data_to_mem_matrix_input_values ,
202 write_address =>
203 write_address_matrix_image1_image2_to_writeEnable ,
204 read_address => read_address_matrixC ,
205 output_matrix_values => output_data_matrixC);
206
207 adder1: adder port map (input_mult_data =>
208 output_data_matrix_conv2A_to_input_mult_data ,
209 input_reg_data => output_data_matrix_conv2B_to_input_reg_data ,
210 output_data => output_data_to_mem_matrix_input_values);
211
212 end structure_ftcomputederivativesboothconv2_module;

C.8 Matrix Transpose

Listing C.8: The TransposeMatrixModule.vhd VHDL file.
(appendix3/TransposeMatrixModule.vhd)

1 -- Capt. Jason Shirley
2 -- This is the Transpose Matrix Module
3 -- These Modules are structually connected
4
5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_unsigned.all;
9 use ieee.std_logic_arith.all;

10 use ieee.numeric_std.all;
11
12 ---
13
14 entity transpose_matrix_module is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 24);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_transpose : in std_logic;
22 enable_matrix_original : in std_logic;
23 read_address_matrix_original : in std_logic_vector (...

address_width - 1 downto 0);
24 input_matrix_original_values : in std_logic_vector (...

data_width - 1 downto 0);
25 read_address_matrix_transpose : in std_logic_vector (...

address_width - 1 downto 0);
26 output_data_matrix_transpose : out std_logic_vector(...

data_width - 1 downto 0);
27 enable_transpose_complete : out std_logic
28);

116

29
30 end transpose_matrix_module;
31
32 ---
33
34 architecture structure_transpose_matrix_module of ...

transpose_matrix_module is
35
36 component transposecontrol is
37
38 generic (address_width: integer := 8;
39 n1: integer := 5;
40 n2: integer := 7);
41 -- address_width must be an even number
42 -- n1 and n2 are the size of the input matrix for example 6x8
43 -- matrix starts at zero so, n1 = (6-1) = 5, n2 = (8-1) = 7.
44
45 port (clk : in std_logic;
46 reset : in std_logic;
47 enable_control : in std_logic;
48 writeEnable_matrix_transpose : out std_logic;
49 enable_transpose_complete : out std_logic;
50 read_address_matrix_original : out std_logic_vector (...

address_width - 1 downto 0);
51 write_address_matrix_transpose : out std_logic_vector (...

address_width - 1 downto 0)
52);
53
54 end component transposecontrol;
55
56
57 --
58 component mem_matrix is
59
60 generic (address_width: integer := 8;
61 data_width: integer := 24);
62
63 port (clk : in std_logic;
64 reset : in std_logic;
65 writeEnable : in std_logic;
66 matrix_values : in std_logic_vector (data_width ...

- 1 downto 0);
67 write_address : in std_logic_vector (...

address_width - 1 downto 0);
68 read_address : in std_logic_vector (...

address_width - 1 downto 0);
69 output_matrix_values : out std_logic_vector(data_width ...

- 1 downto 0)
70);
71
72 end component mem_matrix;
73

117

74 ---
75 component mux2to1 is
76
77 generic (address_width: integer := 8);
78
79 port(sel : in std_logic;
80 input1 : in std_logic_vector(address_width - 1 downto...

0);
81 input2 : in std_logic_vector(address_width - 1 downto...

0);
82 mux_output : out std_logic_vector(address_width - 1 ...

downto 0)
83);
84
85 end component mux2to1;
86
87 ---
88
89 signal writeEnable_matrix_transpose_to_mem_matrix_transpose: ...

std_logic;
90 signal control_matrix_original_to_mux_input1:std_logic_vector (...

address_width - 1 downto 0);
91 signal control_address_transpose_to_transpose_matrix:...

std_logic_vector (address_width - 1 downto 0);
92 signal mux_output_to_original_matrix:std_logic_vector (...

address_width - 1 downto 0);
93 signal output_matrix_original_values_to_matrix_transpose_values: ...

std_logic_vector(data_width - 1 downto 0);
94
95 begin
96
97 transposecontrol1: transposecontrol port map (clk => clk ,
98 reset => reset ,
99 enable_control => enable_transpose ,

100 writeEnable_matrix_transpose =>
101 writeEnable_matrix_transpose_to_mem_matrix_transpose ,
102 enable_transpose_complete => enable_transpose_complete ,
103 read_address_matrix_original =>
104 control_matrix_original_to_mux_input1 ,
105 write_address_matrix_transpose =>
106 control_address_transpose_to_transpose_matrix);
107
108 mem_matrix_orginal: mem_matrix port map (clk => clk ,
109 reset => reset ,
110 writeEnable => enable_matrix_original ,
111 matrix_values => input_matrix_original_values ,
112 write_address => mux_output_to_original_matrix ,
113 read_address => mux_output_to_original_matrix ,
114 output_matrix_values =>
115 output_matrix_original_values_to_matrix_transpose_values);
116
117 mem_matrix_transpose: mem_matrix port map (clk => clk ,

118

118 reset => reset ,
119 writeEnable =>
120 writeEnable_matrix_transpose_to_mem_matrix_transpose ,
121 matrix_values =>
122 output_matrix_original_values_to_matrix_transpose_values ,
123 write_address => control_address_transpose_to_transpose_matrix ,
124 read_address => read_address_matrix_transpose ,
125 output_matrix_values => output_data_matrix_transpose);
126
127 mux2to1_matrix_orginal: mux2to1 port map (
128 sel => enable_matrix_original ,
129 input1 => control_matrix_original_to_mux_input1 ,
130 input2 => read_address_matrix_original ,
131 mux_output => mux_output_to_original_matrix);
132
133 end structure_transpose_matrix_module;

C.9 Pseudoinverse

Listing C.9: The PseudoinverseModule.vhd VHDL file.
(appendix3/PseudoinverseModule.vhd)

1 -- Capt. Jason Shirley
2 -- This is the PseudoinverseModule
3
4
5 library ieee;
6 use ieee.std_logic_1164.all;
7 use ieee.std_logic_unsigned.all;
8 use ieee.numeric_std.all;
9 --use ieee.std_logic_signed.all;

10 --use ieee.std_logic_arith.all;
11
12 --
13
14 entity xresultbooth_module is
15
16 generic (address_width: integer := 8;
17 data_width: integer := 32);
18
19 port (clk : in std_logic;
20 reset : in std_logic;
21 enable_matrixAtA : in std_logic; -- load A matrix ...

value
22 enable_AtA_module : in std_logic; -- start AtA
23 enable_matrixBvector : in std_logic; -- load B matrix ...

value
24 read_address_matrixA : in signed (address_width - 1 ...

downto 0);
25 read_address_matrixBvectors : in signed (address_width - ...

1 downto 0);

119

26 read_address_matrixX : in signed (address_width -1 ...
downto 0);

27 input_matrixA_values : in signed (data_width - 1 downto...
0);

28 input_matrixBvectors_values : in signed(data_width - 1 ...
downto 0);

29 output_data_matrixX : out signed(data_width - 1 downto...
0);

30 enable_finished : out std_logic
31);
32
33 end xresultbooth_module;
34
35 --
36
37 architecture structure_xresultbooth_module of xresultbooth_module ...

is
38
39 component yresultbooth_module is
40
41 generic (address_width: integer := 8;
42 data_width: integer := 32);
43
44 port (clk : in std_logic;
45 reset : in std_logic;
46 enable_matrixAtA : in std_logic; -- load A matrix ...

value
47 enable_AtA_module : in std_logic; -- start AtA
48 enable_matrixBvector : in std_logic; -- load B matrix ...

value
49 read_address_matrixA : in signed (address_width - 1 ...

downto 0);
50 read_address_matrixBvectors : in signed (address_width - ...

1 downto 0);
51 read_address_matrixU : in signed (address_width - 1 ...

downto 0);
52 read_address_matrixY : in signed (address_width - 1 ...

downto 0);
53 input_matrixA_values : in signed (data_width - 1 downto...

0);
54 input_matrixBvectors_values : in signed(data_width - 1 ...

downto 0);
55 output_data_matrixY : out signed(data_width - 1 downto...

0);
56 output_data_matrixU : out signed(data_width - 1 downto...

0);
57 enable_finished : out std_logic
58);
59
60 end component yresultbooth_module;
61 --
62 component xcontrolbooth is

120

63
64 generic (address_width: integer := 8;
65 data_width: integer := 32);
66
67 port (clk : in std_logic;
68 reset : in std_logic;
69 enable_control : in std_logic;
70 enable_predivider_register : out std_logic;
71 enable_postdivider_register: out std_logic;
72 enable_checkneg : out std_logic;
73 enable_divider : out std_logic;
74 mux_load_divider : out std_logic;
75 muxU : out std_logic;
76 muxUXY : out signed (1 downto 0);
77 writeEnable_matrixX : out std_logic;
78 enable_finished : out std_logic;
79 execute : out std_logic;
80 read_address_matrixU : out signed (address_width - 1 ...

downto 0);
81 write_address_matrixX : out signed (address_width - 1 ...

downto 0);
82 read_address_matrixY : out signed (address_width - 1 ...

downto 0)
83);
84
85 end component xcontrolbooth;
86
87 --
88 component reciprocal_top Is
89 Generic(high_bit : natural := 31; fraction_size : natural := ...

16);
90 Port(clk , reset , load , mux_control : In std_logic;
91 data_in : In signed(high_bit Downto 0); --signed
92 data_out : Out signed(high_bit Downto 0); --signed
93 overflow : Out std_logic);
94 end component reciprocal_top;
95
96 --
97 component mux2to1data_width is
98
99 generic (data_width: integer := 32);

100
101 port(sel : in std_logic;
102 input1 : in signed(data_width - 1 downto 0);
103 input2 : in signed(data_width - 1 downto 0);
104 mux_output : out signed(data_width - 1 downto 0)
105);
106
107 end component mux2to1data_width;
108
109 --
110 component mux3to1data_width is

121

111
112 generic (data_width: integer := 32);
113
114 port(sel : in signed (1 downto 0);
115 input1 : in signed (data_width - 1 downto 0);
116 input2 : in signed (data_width - 1 downto 0);
117 input3 : in signed (data_width - 1 downto 0);
118 mux_output : out signed (data_width - 1 downto 0)
119);
120
121 end component mux3to1data_width;
122
123 --
124 component mem_matrix is
125
126 generic (address_width: integer := 8;
127 data_width: integer := 32);
128
129 port (clk : in std_logic;
130 reset : in std_logic;
131 writeEnable : in std_logic;
132 matrix_values : in signed (data_width - 1 downto ...

0);
133 write_address : in signed (address_width - 1 ...

downto 0);
134 read_address : in signed (address_width - 1 ...

downto 0);
135 output_matrix_values : out signed(data_width - 1 downto ...

0)
136);
137
138 end component mem_matrix;
139
140 --
141 component booth2bit is
142
143 generic (data_width: integer := 32;
144 shift_size: integer := 8);
145
146 port (clk : in std_logic;
147 reset : in std_logic;
148 execute : in std_logic;
149 input_matrixA_values : in signed(data_width - 1 downto 0)...

;
150 input_matrixB_values : in signed(data_width - 1 downto 0)...

;
151 mult_ready : out std_logic;
152 booth2bit_output : out signed(data_width - 1 downto ...

0);
153 mult_done : out std_logic
154);
155

122

156 end component booth2bit;
157
158 --
159 component checkneg is
160
161 generic (data_width: integer := 32);
162
163 port (clk : in std_logic;
164 enable : in std_logic;
165 matrix_value : in signed (data_width - 1 downto 0);
166 output_value : out signed(data_width - 1 downto 0)
167);
168
169 end component checkneg;
170
171 --
172 component adder is
173
174 generic (data_width: integer := 32);
175
176 port (input_mult_data : in signed (data_width - 1 downto 0);
177 input_reg_data : in signed (data_width - 1 downto ...

0);
178 output_data : out signed (data_width - 1 downto...

0)
179);
180
181 end component adder;
182
183 --
184 component dff is
185
186 generic (data_width: integer := 32);
187
188 port (clk : in std_logic;
189 enable : in std_logic;
190 input_data : in signed (data_width - 1 downto 0);
191 output_data : out signed (data_width - 1 downto 0)
192);
193
194 end component dff;
195
196 --
197
198 signal enable_finished_to_xcontrol ,...

enable_predividercontrol_to_predivider_dff : std_logic;
199 signal enable_postdivider_registercontrol_to_postdivider_dff: ...

std_logic;
200 signal enable_divider_to_load , mux_load_divider_to_mux_control: ...

std_logic;
201 signal execute_to_execute , muxU_to_muxU , ...

writeEnable_matrix_to_write_memoryX: std_logic;

123

202 signal muxUXY_to_muxUXY: signed (1 downto 0);
203 signal output_data_to_data_input , data_out_to_post_divider_dff: ...

signed (data_width - 1 downto 0);
204 signal output_data_to_mux_input1 , ...

output_data_matrixU_to_predivider_dff: signed (data_width - 1 ...
downto 0);

205 signal read_address_matrixU_control_to_read_addres_matrixU: signed...
(address_width - 1 downto 0);

206 signal read_address_matrixY_control_to_read_addres_matrixY: signed...
(address_width - 1 downto 0);

207 signal write_address_matrixX_control_to_write_address_matrixX: ...
signed (address_width - 1 downto 0);

208 signal mux_output_to_boothinputA , output_data_matrixY_to_muxinput1...
: signed (data_width - 1 downto 0);

209 signal booth2bit_output_to_input_value_memoryX: signed (data_width...
- 1 downto 0);

210 signal mux_output_to_booth_inputB , output_data_to_muxinput3: ...
signed (data_width - 1 downto 0);

211 signal checkneg_output_value_to_input_data_dff , ...
dff_output_to_adder_inputA: signed (data_width - 1 downto 0);

212 signal enable_checkneg_to_checkneg: std_logic;
213
214
215 begin
216
217 yresultbooth_module1 :yresultbooth_module port map (clk => clk ,
218 reset => reset ,
219 enable_matrixAtA => enable_matrixAtA ,
220 enable_AtA_module => enable_AtA_module ,
221 enable_matrixBvector => enable_matrixBvector ,
222 read_address_matrixA => read_address_matrixA ,
223 read_address_matrixBvectors => read_address_matrixBvectors ,
224 read_address_matrixU =>
225 read_address_matrixU_control_to_read_addres_matrixU ,
226 read_address_matrixY =>
227 read_address_matrixY_control_to_read_addres_matrixY ,
228 input_matrixA_values => input_matrixA_values ,
229 input_matrixBvectors_values => input_matrixBvectors_values ,
230 output_data_matrixY => output_data_matrixY_to_muxinput1 ,
231 output_data_matrixU => output_data_matrixU_to_predivider_dff ,
232 enable_finished => enable_finished_to_xcontrol);
233
234 xcontrolbooth1 :xcontrolbooth port map(clk => clk ,
235 reset => reset ,
236 enable_control => enable_finished_to_xcontrol ,
237 enable_predivider_register =>
238 enable_predividercontrol_to_predivider_dff ,
239 enable_postdivider_register =>
240 enable_postdivider_registercontrol_to_postdivider_dff ,
241 enable_checkneg => enable_checkneg_to_checkneg ,
242 enable_divider => enable_divider_to_load ,
243 mux_load_divider => mux_load_divider_to_mux_control ,

124

244 muxU => muxU_to_muxU ,
245 muxUXY => muxUXY_to_muxUXY ,
246 writeEnable_matrixX => writeEnable_matrix_to_write_memoryX ,
247 enable_finished => enable_finished ,
248 execute => execute_to_execute ,
249 read_address_matrixU =>
250 read_address_matrixU_control_to_read_addres_matrixU ,
251 write_address_matrixX =>
252 write_address_matrixX_control_to_write_address_matrixX ,
253 read_address_matrixY =>
254 read_address_matrixY_control_to_read_addres_matrixY);
255
256 reciprocal_top1: reciprocal_top port map (clk => clk ,
257 reset => reset ,
258 load => enable_divider_to_load ,
259 mux_control => mux_load_divider_to_mux_control ,
260 data_in => output_data_to_data_input ,
261 data_out => data_out_to_post_divider_dff ,
262 overflow => open);
263
264 mux2to1data_widthY: mux2to1data_width port map
265 sel => muxU_to_muxU ,
266 input1 => output_data_to_mux_input1 ,
267 input2 => output_data_matrixU_to_predivider_dff ,
268 mux_output => mux_output_to_boothinputA);
269
270 mux3to1data_widthUXY: mux3to1data_width port map
271 (sel => muxUXY_to_muxUXY ,
272 input1 => output_data_matrixY_to_muxinput1 ,
273 input2 => booth2bit_output_to_input_value_memoryX ,
274 input3 => output_data_to_muxinput3 ,
275 mux_output => mux_output_to_booth_inputB);
276
277 mem_matrixX: mem_matrix port map (clk => clk ,
278 reset => reset ,
279 writeEnable => writeEnable_matrix_to_write_memoryX ,
280 matrix_values => booth2bit_output_to_input_value_memoryX ,
281 write_address =>
282 write_address_matrixX_control_to_write_address_matrixX ,
283 read_address => read_address_matrixX ,
284 output_matrix_values => output_data_matrixX);
285
286 booth2bit1: booth2bit port map(clk => clk ,
287 reset => reset ,
288 execute => execute_to_execute ,
289 input_matrixA_values => mux_output_to_boothinputA ,
290 input_matrixB_values => mux_output_to_booth_inputB ,
291 mult_ready => open ,--
292 booth2bit_output => booth2bit_output_to_input_value_memoryX ,
293 mult_done => open);--
294
295 adder1: adder port map(

125

296 input_mult_data => dff_output_to_adder_inputA ,
297 input_reg_data => output_data_matrixY_to_muxinput1 ,
298 output_data => output_data_to_muxinput3);
299
300 checkneg1: checkneg port map(clk => clk ,
301 enable => enable_checkneg_to_checkneg ,
302 matrix_value => booth2bit_output_to_input_value_memoryX ,
303 output_value => checkneg_output_value_to_input_data_dff);
304
305 dffpredivider: dff port map(clk => clk ,
306 enable => enable_predividercontrol_to_predivider_dff ,
307 input_data => output_data_matrixU_to_predivider_dff ,
308 output_data => output_data_to_data_input);
309
310 dffpostdivider: dff port map(clk => clk ,
311 enable =>
312 enable_postdivider_registercontrol_to_postdivider_dff ,
313 input_data => data_out_to_post_divider_dff ,
314 output_data => output_data_to_mux_input1);
315
316 dffpostcheckneg: dff port map(clk => clk ,
317 enable =>
318 enable_postdivider_registercontrol_to_postdivider_dff ,
319 input_data => checkneg_output_value_to_input_data_dff ,
320 output_data => dff_output_to_adder_inputA);
321
322 end structure_xresultbooth_module;
323
324 --...

126

Bibliography

1. AFRL/SN, Sensors Directorate. “Data Collection Supports Sensors Develop-
ment”. http : //www.wpafb.af.mil/news/story print.asp?id = 123033809, June
2006.

2. Arsalan, Muhammad and Maitham Shams. “Asynchronous Adiabatic Logic”.
3720–3723. 2007. VL:.

3. Chang, J. Morris and S. Kagan Agun. “Design-for-reusability in VHDL”. October
2001.

4. Chen, WenZhi and Huan Zheng. “Analysis of Power Saving Effect for Dynamic
Power Management”. 1–4. 2006. VL:.

5. Collin, Andrew. “Andrew Booth Computers at Birkbeck College”.
http://www.cs.man.ac.uk./CCS/res/res05.htm#e.

6. Edwards, Larson. Elementary Linear Algebra. Houghton Mifflin, 4 ed. edition,
2000. ISBN 0-395-96717-1.

7. Horn, B.K.P and B. G. Schunck. “Determining Optical Flow”. volume 17, 185–
203. 1981.

8. Khan, Sohai. “Lucas-Kanade”. http://www.cs.ucf.edu/ vision/Code/Opti-
cal Flow/Lucas%20Kanade.zip, May 2003.

9. Kilts, Steve. Advanced FPGA Design. Wiley, 2007. ISBN 978-0-470-05437-6.

10. Lucas, B.D and T. Kanade. “An iterative image registration technique with an
application to stereo vision”. 121–130. 1981.

11. Sirsi, Gurudev Bhat. “Leakage Power Optimization Flow”, Sep 2004.

12. Strang, Gilbert. Linear Algebra and its Applcations. Thomson Brooks/Cole, 4
ed. edition, 2006. ISBN 0-03-010567-6.

13. Tirumalashetty, Vishwanadh and Hamid Mahmoodi. “Clock Gating and Negative
Edge Triggering for Energy Recovery Clock”. 1141–1144. 2007. VL:.

14. Tiwari, V., R. Donnelly, S. Malik, and R. Gonzalez. “Dynamic power management
for microprocessors: a case study”. 185–192. 1997. VL:.

15. Virginia Tech, Dr. Dong S. Ha. “http://www.vtvt.ece.vt.edu/vlsidesign/download.php”.

16. Yeung, W. K., Cheong-Fat Chan, Chiu-Sing Choy, and Kong-Pang Pun. “Clock
recovery circuit with adiabatic technology (quasi-static CMOS logic)”. volume 2,
II–185–II–187 vol.2. 2003.

127

Vita

Captain Jason W. Shirley graduated from Valencia High School in Placentia,

CA in 1997. He attended Fullerton Junior College for three years before transferring

to California State Polytechnic University of Pomona as an Electrical Engineering

student, and graduated in 2003 with a Bachelor’s of Science in Electrical Engineer-

ing. Shortly after, Captain Shirley joined the US Air Force and was commissioned

as an officer in September 2003 through Officer’s Training School. Captain Shirley’s

first assignment was at the Oklahoma City Air Logistics Center at Tinker Air Force

Base, OK. During his tour at Tinker he earned a Master’s of Science in Aerospace

Administration from Southeastern Oklahoma State University in 2006. His second as-

signment was at the Air Force Institute of Technology (AFIT) to complete a Master’s

of Science in Electrical Engineering. He will graduate in March of 2008.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

128

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
27-03-2008

2. REPORT TYPE
Master Thesis

3. DATES COVERED (From – To)
May 2006-March 2008

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

HARDWARE ALGORITHM IMPLEMENTATION FOR MISSION SPECIFIC PROCESSING

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
ENG 07-312
5e. TASK NUMBER

6. AUTHOR(S)

Shirley, Jason W., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way
 WPAFB OH 45433-7765 DSN: 785-3636

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/08-27

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Douglas Summers-Stay, 937-674-9033, Douglas.Summers-Stay@WPAFB.AF.MIL
AFRL/RYAT (AFMC)
2241 Avionics Circle
WPAFB, OH 45433-7765

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT
There is a need to expedite the process of designing military hardware to stay ahead of the adversary. The core of this project was to build
reusable, synthesizeable libraries to make this a possibility. In order to build these libraries, Matlab commands and functions, such as
Conv2, Round, Floor, Pinv, etc., had to be converted into reusable VHDL modules. These modules make up reusable libraries for the
Mission Specific Process (MSP) which will support AFRL/RY. The MSP allows the VLSI design process to be completed in a mere matter
of days or months using an FPGA or ASIC design, as opposed to the current way of developing a system which can take 1-2 years to
complete. By having the libraries built, the components can be implemented in an FPGA or ASIC design over and over again. The libraries
make it possible to make upgrades to weapons systems to meet the ever-changing needs the War Fighter faces. MSP makes it possible to
develop various algorithms, including algorithms implemented in Matlab. The MSP libraries were built and tested using TSMC 250-nm
technology library from the Taiwan Semiconductor Manufacturing Company. They were also synthesized for an FPGA. The modules were
all synthesized using the CAD tools from Cadence and Mentor Graphics. Power, area, and delay results for each module were presented.

15. SUBJECT TERMS
Mission Specific Process, Field Programmable Gate Array, Optical Flow, VHDL

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Yong C. Kim, PhD (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
 142 19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636, ext 4620; email: Yong.Kim@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	Hardware Algorithm Implementation for Mission Specific Processing
	Recommended Citation

	tmp.1584730864.pdf.ZSVQR

