
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2008

Development of a Night Vision Goggle Heads Up Display For Development of a Night Vision Goggle Heads Up Display For

Paratrooper Guidance Paratrooper Guidance

Fernando Ontiveros

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ontiveros, Fernando, "Development of a Night Vision Goggle Heads Up Display For Paratrooper Guidance"
(2008). Theses and Dissertations. 2761.
https://scholar.afit.edu/etd/2761

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2761&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F2761&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2761?utm_source=scholar.afit.edu%2Fetd%2F2761&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Development of a Night Vision Goggle Heads-Up Display

For Paratrooper Guidance

THESIS

Fernando Ontiveros, Captain, USAF

AFIT/GCS/ENG/08-24

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/08-24

Development of a Night Vision Goggle Heads-Up Display

For Paratrooper Guidance

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

Fernando Ontiveros, B.S.C.S., M.S.C.S.

Captain, USAF

June 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/08-24

Development of a Night Vision Goggle Heads-Up Display

For Paratrooper Guidance

Fernando Ontiveros, B.S.C.S., M.S.C.S.

Captain, USAF

Approved:

/signed/ 28 May 2008

Dr. J. Raquet, (Chairman) date

/signed/ 28 May 2008

Lt Col J. McDonald, PhD (Member) date

/signed/ 28 May 2008

Lt Col S. Kurkowski, PhD (Member) date

AFIT/GCS/ENG/08-24

Abstract

This thesis provides the proof of concept for the development and implementa-

tion of a Global Positioning System (GPS) display via Night Vision Goggles (NVG)

Heads-Up Display (HUD) for paratroopers. The system has been designed for soldiers

who will be able to utilize the technology in the form of a processing system worn in

an ammo pouch and displayed via NVG HUD as a tunnel in the sky. The tunnel in the

sky display design is essentially a series of boxes displayed within the goggle’s HUD

leading the paratrooper to the desired Landing Zone (LZ). The algorithm developed

receives GPS and inertial sensor data (both position and attitude), and displays the

guidance information in the paratrooper’s NVG HUD as the tunnel in the sky. The

primary goal of the project is to provide a product which allows military personnel to

reach a desired LZ in obscured visibility conditions such as darkness, clouds, smoke,

and other unforeseen situations. This allows missions to be carried out around the

clock, even in adverse visibility conditions which would normally halt operations.

iv

Acknowledgements

I would like to express my sincere appreciation to my thesis advisor, Dr. John Raquet

for his endless support throughout my research. His insight and gentle nudging kept

me from losing my mind completely.

I would also like to thank Don Smith for his support in putting together all the

hardware components which went into this effort. His skill made it possible to bring

this idea from my imagination into the physical world and actually have it function.

I would also like to thank my two sons and my daughter who always thought

what I was working on was neat and even related it to a video game. Which is a great

complement from a 13 year old.

And finally I would like to thank my girlfriend who actually took the time to

read this entire document more than once. She was always able to pick out all the

bad grammar. Thank you for keeping me grounded and giving me an out every once

in a while to keep me for going completely crazy. Now its off to our next adventure!

Fernando Ontiveros

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

Table of Contents . vi

List of Figures . ix

List of Tables . xiv

List of Abbreviations . xv

I. Introduction . 1
1.1 Background . 1

1.2 Research Focus . 5
1.3 Objectives . 5

1.4 Assumptions . 6

1.5 Approach . 6

1.6 Document Overview . 8

II. GPS Display in Night Vision Goggle-Background 9

2.1 Navigation History . 9

2.2 GPS Overview . 9
2.3 Parachute . 11
2.4 High Altitude High Open 13

2.5 Inertial Navigation System 13

2.6 System Hardware . 14

2.6.1 Night Vision Goggle Technology 14

2.6.2 Heads-Up Display 15

2.6.3 Tunnel in The Sky Navigation Displays 17

2.6.4 STS Model AN and PVS-21 NVG 19
2.6.5 Processing Board X-board GP8 20

2.6.6 Head Tracking 22

2.7 Software . 23
2.8 Programming Language 23

2.9 Cross Compiling . 24

2.10 Kernel . 25
2.10.1 Operating System 26

vi

Page

2.11 Alternative Technologies 28

2.11.1 NVG Displays 28

2.11.2 Head Trackers 28
2.11.3 Software - Optimized Algorithm 28

2.12 Previous Research . 29
2.13 Summary . 30

III. Hardware Description . 32

3.1 System Description . 32

3.2 External Systems . 33

3.2.1 External Jump Parameters 33

3.2.2 User Input . 33

3.2.3 GPS Navigation Display System 36

3.2.4 MIDG II - Head Tracker 37
3.3 Body Worn Computer 39

3.3.1 Processing Board 40

3.3.2 Host Connection Board 41
3.4 Display . 42

3.4.1 Graphics Card 42

3.4.2 Non-Computing Components 43

3.4.3 HUD Display 44

3.5 Completed System . 45

3.6 Summary . 48

IV. Software Implementation . 49

4.1 Input Data . 49

4.2 Jump Parameters . 49

4.3 Algorithms . 51

4.3.1 Wind Calculations 51
4.3.2 CalcSituation Algorithm 57

4.3.3 Display Algorithm 61

4.4 Software Components 64

4.4.1 Wind Algorithm Software 65

4.4.2 CalcSituation Algorithm Software 69

4.4.3 Display Algorithm Software 71

4.5 Data Structures . 75
4.6 Kernel . 78
4.7 Root File System – Journal Flash File System 2 79

4.7.1 Software Tools 79
4.7.2 Software Development Process 81

vii

Page

4.7.3 Design Patterns 82

4.7.4 UML Analysis 82

4.8 Summary . 87

V. Methodology and Results . 89

5.1 Goals and Hypothesis 89

5.2 Approach . 90

5.3 System Description . 91

5.4 Evaluation Technique 91

5.5 Experimental Design . 93

5.6 Workload . 94
5.7 Performance Metrics . 94
5.8 Test Parameters . 94
5.9 Suggestions for Future Testing 95

5.10 Test Design . 96

5.10.1 Head Tracking 96

5.10.2 Path Navigation 97

5.11 Test Results . 97
5.11.1 Head Tracking 97

5.11.2 Path Navigation 104

5.12 Analysis . 106

5.13 Conclusion . 107

VI. Conclusions and Recommendations 108
6.1 Conclusions of Research 108
6.2 Significance of Research 111

6.3 Recommendations for Future Research 111

Appendix A. Sample Parameter File 113

Appendix B. HAHO Navigation System Mission Planner 115

B.1 HAHO 1D Wind Format 115
B.2 Sample 1D Wind File 115

Bibliography . 117

Vita . 120

Index . 121

Author Index . 1

viii

List of Figures
Figure Page

1.1. Current navigational displays [CRA08]. 4

2.1. View of the GPS constellation orbits [DAN98]. 10

2.2. da Vinci’s original parachute concept [SEC06]. 12

2.3. Parafoil used to deliver cargo [SEC07]. 12

2.4. A typical NVG display seen by military personnel–Iraq 2004. . 14

2.5. F-22 HUD example; standard HUD currently utilized in military

aircraft [QSA08]. 16

2.6. Standard military aircraft HUD operation [ANS07]. 17

2.7. Size of OLED compared to postage stamps. OLED is utilized by

STS in their AN/PVS-21 LPNVG HUD system [STS07]. 18

2.8. Graphic view of the four HUD designed [PAR03]. 19

2.9. TOP: STS AN/PVS-21 Low Profile NVG (LPNVG) with bat-

tery pack connected to HUD. BOTTOM: AN/PVS-21 without

battery pack connected [STS07]. 21

2.10. Two STS Night Vision Goggle models mounted on desert hel-

mets. LEFT: AN/PV2-21 LPNVG (used for this project). RIGHT:

AN/PVS-15 [STS07]. 21

2.11. Kontron’s GP8 X-Board. Large chip on dominating right side of

board is the Intel 80219 CPU. Smaller chip on left is the SM501

Graphics chip [KON06]. 22

2.12. Intel X-Scale processor hardware overview. 22

2.13. Microbotics’ MIDG 2 provides Inertial Navigation System (INS)

and GPS data [MIC07]. 23

3.1. High level view of the GPS Navigational Display System. . . . 32

3.2. JPADS Main input screen. 34

3.3. Required static user inputs, required prior to aircraft departure. 34

3.4. HAHO Mission Planner Main input screen. 35

ix

Figure Page

3.5. Components making up the GPS Navigation Display System. . 36

3.6. The MIDG II subsystem which provides sensor data. 37

3.7. The MIDG II used for INS and head tracking functions. 39

3.8. Overall high level GPS Navigational Display System. 39

3.9. The Kontron GP8 is a general processing module which utilizes

the Intel 80219 ARM architecture to deliver 600Mhz process-

ing. In addition, the GP8 module also has an on-board SM-501

graphics chip to provide SVGA video output capability [KON06]. 40

3.10. Diamond Point International D2426 X-board Baseboard utilized

as the host board. The D2426 provides external connectivity

with a small light-weight package. Photo shows D2426 with GP8

mounted on left side of the board [INT07b]. 42

3.11. This photo shows the rear of the D2426 with an inserted Com-

pactFlash card, plus the external mount points [INT07b]. . . . 42

3.12. Display subsystem consisting of on-board graphics card and SVGA

monitor (NVG HUD). 43

3.13. Gentex PM jump helmet without any additional equipment such

as NVG mounts or life support systems [GEN08]. 44

3.14. Helmet Components. 45

3.15. Body Worn Computer in a .223 Cal Ammo Pouch. 46

3.16. Body Worn Computer Diagram. 47

3.17. View of internal Body Worn Component. 47

4.1. HAHO Mission Planner main screen 50

4.2. System flow chart. 52

4.3. Wind drift effects on jumper. Jumper’s heading directs them to

aim point, compensating for wind effects. 52

4.4. Display of four wind cases used to calculate navigational path.

Case 1: Minimum height is below current wind level. Case 2:

Minimum height and maximum height are above and below the

wind level boundaries. Case 3: Maximum height is above current

wind level. Case 4: Minimum and maximum heights are within

same wind level. 55

x

Figure Page

4.5. This figure shows the visual representation of the components

used to establish the positional delta from the true path. 58

4.6. Rotate . 61

4.7. The image plane which rotates the coordinate from the physical

world to the image plane. 63

4.8. System domain diagram which describes the interaction between

the software components. 65

4.9. The wind class handles all the wind calculations that are used

throughout the navigation path generation. This class is com-

posed of two main structures, params and windVelocities. Addi-

tionally, the wind header file acts as an interface used to access

the wind methods. 67

4.10. The paramloader.cpp performs the reads from both the config.txt

and navaid.txt files to load system parameters and 1D wind file.

This class is composed of three structures; params, NavParams,

and enuData; and three methods used to perform the various

loads. 68

4.11. LLAConvert class diagram . 70

4.12. The location class reads the present position information from a

data structure NavParam (See Paragraph 4.5.0.5) diagram. Lo-

cation.cpp is made up of three structures; params, NavParams

and enuData. 72

4.13. The situation class is called upon to determine the location of the

operator. It then determines the current descent phase based on

positional information. The class structure is composed of two

structures, params and the NavParam. 73

4.14. Box.cpp is the class utilized to construct the tunnel display based

upon the same fixed locations coordinate used in Equations 4.16

through 4.20. The class is composed of two structures, params

and NavParam. 74

xi

Figure Page

4.15. The Draw is used to interface with the SGE graphics library

[AND00], used to draw the simple shapes such as lines and el-

lipses. The draw class is composed of two structures: params

and NavParam. 76

4.16. The path Projection class performs the critical equations used to

rotate and normalize the pixel locations, as described in Para-

graph 4.3.3 and Equations 4.16 through 4.20. This class is com-

posed of two structures: params and NavParam. 77

4.17. The location class sequence which shows the program flow. Lo-

cation.cpp calls the path projection, class which is used to calcu-

late the proper pixel display location, as described in Equations

4.13 through 4.15, by calling classes such as box.cpp and magni-

tude.cpp, which finally calls draw.cpp to present the data. . . . 88

5.1. Screen shot of the HUD display. 90

5.2. Map of locations, distances and paths followed during the evalu-

ation. 96

5.3. Plot showing slight movement in pitch and roll, but large amount

of movement needed in the yaw axis to keep target within screen. 98

5.4. This plot uses the same data as Figure 5.3, but the data data

has been adjusted to show the ranges between 0 and 360. . . . 98

5.5. Two test run tracks which shows extreme movements of the yaw

axis in comparison to pitch and roll. 99

5.6. Same test run track data shown in Figure 5.5. This plot has yaw

360 degree adjustment in order to bring the values between 0 and

360 degrees. 100

5.7. Forward facing mounted head tracker (previous research), op-

erator mounted head tracker. Amount of movement noted in

attempting to keep track within screen. 101

5.8. Data tracks for the 2nd run to location 3. This Data shows how

the operator becomes disoriented, affecting all three axis as he

attempts to reacquire the target location. 102

xii

Figure Page

5.9. Data tracks for the 2nd run to location 3, this is the same data

used for 5.8. The data track has been adjusted for yaw’s 360

degree offset. If a report was negative, 360 was added to added

to the report, to make it positive. 103

5.10. Yaw data for the test run to location 3. This data indicates a 180

difference from report 453 to report 454. After this point, track-

ing is almost 180 degrees different from previous target tracking. 103

5.11. This plot illustrates the difference between the heading angle

to the target and the operator’s head tracking yaw. The blue

track indicates the heading angle to the target as calculated by

the software. The green plot indicates the human yaw tracking

which took place in order to keep the target within the screen. 104

5.12. Data from a 58 minute stationary test. This plot indicates the

amount of drift introduced into the head tracker in an indoor en-

vironment with an externally mounted GPS antenna connection. 105

6.1. Body worn computer in .223 Cal ammo pouch. 109

6.2. Internal components of the body worn computer. 109

xiii

List of Tables
Table Page

B.1. HAHO Navigation System Mission Planning File Format. . . . 116

xiv

List of Abbreviations
Abbreviation Page

GPS Global Position System 1

NVG Night Vision Goggles . 1

HUD Heads-Up Display . 1

HAHO High Altitude High Open 1

CSAR Combat Search And Recovery 2

PJ Parachute Jumper . 4

LZ Landing Zone . 4

HAHO High Altitude High Open 5

LZ Landing Zone . 5

UTC Coordinated Universal Time 9

TOA Time Of Arrival . 10

CDMA Code Division Multiple Access 10

C/A Coarse/Acquisition . 10

HAHO High Altitude High Open 13

INS Inertial Navigation System 13

IMU Inertial Measurement Unit 14

IR Infrared Imaging . 14

OPU Overhead Projector Unit 16

CRT Cathode Ray Tube . 16

LCD Liquid Crystal Display . 17

LCoS Liquid Crystal on Silicon 17

DMD Digital Micro-mirrors Display 17

OLED Organic Light-Emitting Diode 17

PFD Primary Flight Display . 17

NASA National Aeronautics and Space Administration 18

xv

Abbreviation Page

SVS Synthetic Vision System 18

STS Sensor Technologies System 19

LPNVG Low Profile Night Vision Goggle 19

DRAM Dynamic Random Access Memory 20

USB Universal Serial Bus . 20

MMU Memory Management Units 22

BTB Branch Target Buffer . 22

MAC Multiplier-Accumulator 22

INS Inertial Navigation System 22

ROM Read Only Memory . 26

API Application Programming Interface 26

AFRL Air Force Research Laboratory 28

MP Motion Planning . 29

INS Inertial Navigation System 37

IMU Inertial Measurement Unit 38

RISC Reduced Instruction Set Computer 40

CPU Central Processing Unit 40

PDA Personal Digital Assistance 40

PCI Peripheral Component Interconnect 40

GB/s gigabit per second . 40

DDR Double Data Rate . 41

SDRAM Synchronous Dynamic Random Access Memory 41

ECC Error Correction Code . 41

ASIC Application Specific Integrated Circuit 41

DSP Digital Signal Processors 41

DMA Direct Memory Access . 41

SVGA Super Video Graphics Array 41

USB Universal Serial Bus . 41

xvi

Abbreviation Page

MMCC Mobile Multimedia Companion Chip 43

OLED Organic Light Emitting Diode 44

ENU East/North/UP . 49

JPADS Joint Precision Airdrop System Mission Planner 50

FAP Final Approach Point . 51

AP Aim Point . 51

GCC GNU Compiler Collection 79

JFFS2 Journal Flash File System 2 79

IDE Integrated Development Environment 80

UML Unified Modelling Language 80

CVS Concurrent Versions System 80

MVC Model-View-Controller . 82

xvii

Development of a Night Vision Goggle Heads-Up Display

For Paratrooper Guidance

I. Introduction

The goal of this thesis is to develop a proof of concept for the incorporation of a Global

Positioning System (GPS) display into a paratrooper’s Night Vision Goggles (NVG)

Heads-Up Display (HUD). The driving force behind the development of this research is

to provide a small, light-weight, non-intrusive navigation system specifically designed

for Special Operations and Airborne personnel. The project uses GPS and inertial

technology to provide navigational data to a body worn computer system, which in

turn generates the appropriate navigational display. The navigational display is a

tunnel in the sky, presented to the operator via a color display generated within the

Night Vision Goggles. This carries forward the work started in two previous thesis

which addressed the same subject.

1.1 Background

United States military personnel have adapted jump tactics in order to utilize

new technologies and increase the probability for mission success. For example, US

paratroopers incorporate the use of High Altitude High Open (HAHO) jumps in order

to decrease the chance of detection by having transportation aircraft standoff further

distances. By allowing the paratroopers to open their parachutes at high altitudes,

the paratroopers can travel greater distances to the landing zone. This prevents

the aircraft from approaching the landing zone, thus reducing detection. The use

of HAHO jumps, allowing the distant deployment of personnel, combined with the

cover of darkness, greatly reduces the possibility of detection. The use of Night Vision

Goggles has made it possible for personnel to travel the longer distances under the

cover of darkness. Although, the use of NVG technology has given paratroopers the

1

ability to see at night, it still does not provide them with any navigational data.

HAHO jumps can cover long distances and without navigational data paratroopers

must rely on visual cues to reach their desired target.

The first HAHO jump was conducted by USAF Colonel Joe Kittinger at an

altitude of 19 miles above the earth’s surface. The first use of a HAHO jump in a

combat operation occurred during the Vietnam War [SEC07]. While HAHO jumps

solved the problem of getting to a stranded airman, other problems have arisen.

For instance, conducting a HAHO jump during daylight means an enemy on the

ground could easily observe the paratroopers and landing location [THO05], and

during inclement weather or smoke covered regions, such as the oil fires in Kuwait,

the current NVG technology does not provide the necessary data.

Combat Search And Recovery (CSAR) efforts are also often adversely affected

by bad weather or hostile environments, which prevent Special Operations personnel

from jumping at safe altitudes. These factors can be greatly mitigated by providing

the jumper with an accurate light-weight navigation option. Due to low visibility,

CSAR operations often can not be undertaken because of the unsafe jump conditions.

Since the cloud cover ceiling is so low, the rescue jumpers can not safely navigate or

open their parachutes at a safe altitude, preventing them from reaching the downed

or stranded personnel on the ground.

Current methods of presenting navigational information to paratroopers com-

bine Global Positioning Systems (GPS) technology with chest worn and goggle at-

tached displays [CRA08]. The current technology does not present the paratrooper

with a full navigational picture. The display in figure 1.1 provides the following

information:

• Number of satellites being tracked

• Ground track

• Selected LZ

• Ground track on compass (always points up)

2

• Heading to selected LZ

• Destination distance

• Altitude

While this system does provide the paratrooper with a great deal of informa-

tion and can be used for daytime jumps, it lacks nighttime operational capabilities.

Additionally, the current informational display does not present a display which is

intuitive to jumpers. This lack of obvious navigational information prevents this from

being an ideal solution for airborne personnel.

In addition, the current HUD navigation system does not utilize any head track-

ing technology. Instead the display is usually based on the GPS-derived velocity, not

on the actual orientation(heading) of the parachute or the soldier’s head. The head

tracking technology allows the operator to look in directions which may not be the

direction of the LZ. Due to the winds at various altitudes, the paratrooper may be

forced to follow different headings in order to arrive at the various way points. The

current HUD systems assume the operator is looking in the same direction as their

heading, which can be erroneous. The paratrooper may be looking at a vector which

is not the landing zone, but current technologies do not account for the head tracking

needed to accomplish this task.

In order to provide the airborne personnel a greater chance of success, work was

begun to develop a reliable navigational display system for airborne personnel. Work

in this area was first begun in 2003 by Balaz, who developed a simulation running

on a PC of the virtual tunnel landing system [BAL03]. The navigation reference

was intended to serve as a Heads-Up Display integration into Night Vision Goggles

used by paratroopers with High Altitude High Opening parachutes during inclement

weather [BAL03]. The virtual tunnel in the sky was then integrated into a Night

Vision Goggle’s (NVGs) Heads Up Display operating on a portable laptop computer

by Thompson [THO05].

3

Figure 1.1: Current navigational displays [CRA08].

This thesis will take this project to the next step, providing a proof of concept,

by integrating the software into an embedded computer system which can be carried

by Special Operations Parachute Jumpers (PJ) through actual airborne parachute

jumps. Additionally, a new display algorithm was developed which more efficiently

calculates the desired trajectory.

This work combines several fields of research into a paratrooper’s Night Vi-

sion Goggles (NVG) heads-up display (HUD) that provides an intuitive navigational

display to the landing zone. Hardware was assembled and integrated into a small,

light-weight package which could safely be carried by airborne personnel. In addition,

software programs and algorithms to provide the realtime updates needed to guide

personnel to the desired LZ were developed. The goal of this project is to provide

paratroopers the tools to make landings on target regardless of Landing Zone (LZ)

visibility or weather conditions and enable them to perform missions that were once

impossible. By allowing specialized teams, such as CSAR personnel, to carry out

their mission, lives will be saved and missions will be enhanced.

4

1.2 Research Focus

The primary focus of this research is to complete a proof of concept for the GPS

display within a paratrooper’s Night Vision Goggles. The path generating algorithm

is based on work begun in the two previous theses. The project is composed of two dis-

tinct parts–the hardware and the software. The hardware focus of this project builds

a system which is small, lightweight, and can be worn during an actual parachute

jump. The software portion of the project is focused on writing a real-time program

which is efficient and will provide an intuitive interface for the user.

1.3 Objectives

The primary objective of this research is to provide a proof-of-concept for the

design and implementation of a NVG HUD system to convey navigational information

a paratrooper needs in order to execute a High Altitude High Open (HAHO) jump

and land at the designated Landing Zone(LZ).

The proof of concept is demonstrated in two steps. First, hardware selected and

built to provide a small light-weight package. The hardware design takes several of

the constraints into consideration, such as flight safety, weight and size. The overall

system package must be capable of fitting into a paratrooper’s ammo pouch, yet still

provide the information in a clear and concise manner for the entire descent period.

The second step developed the software algorithms that run efficiently on the smaller

hardware configuration. This smaller configuration includes limited processing power

and memory availability.

The software system integrates data from an integrated GPS/IMU (Inertial

Measurement Unit), which measures real-time position and attitude of the jumpers

helmet. The data is used to calculate a path for the paratrooper to follow in order to

successfully land at the LZ. The path is depicted in an intuitive, three dimensional,

graphical display, projected as a tunnel in the sky within the paratrooper’s NVG HUD

system.

5

1.4 Assumptions

Several assumptions have been made in order to limit the scope of this research

to a manageable level. First, we assume that this navigational information will only

be used in a parachuting environment. Although the system can be adapted to ground

navigation, this is not the thrust of this research. Second, it is assumed the system

will be used while the paratrooper is under an open parachute. If the system is em-

ployed prior to the parachute opening, the head tracking system will not function

properly, due to the placement of the GPS antenna. The antenna has been placed

in a location to optimize antenna signal reception while the operator is in a vertical

position, under canopy. Third, it is assumed that wind information used while gen-

erating the path is reasonably accurate. Once the wind information is read into the

system from the initialization file, all calculations are rendered from those values. If

the time/wind values differ significantly from the entered wind information, the path

generation will not be accurate and could therefore produce navigational paths which

can not be achieved due to environmental factors. Fourth, it is assumed that the

GPS/IMU information is correct. This equipment has been utilized by other systems

and has proven to provide reliable information; therefore, once system checks have

been passed, the information will no longer be verified and is assumed to be accurate.

1.5 Approach

We approach this thesis by developing hardware and software in a parallel.

The hardware systems selected provide a mobile platform which is light-weight and

powerful enough to handle the calculations which are necessary to provide the real-

time navigational data. An additional hardware requirement is the need for operator

safety, in which excessive weight must be kept off the head area, due to the extreme

G-forces which operators are subject to during operations.

The software is the second portion of the system developed in parallel with the

hardware. The kernel was built to operate the selected processing hardware. Items

such as hardware memory limitations and processor speed are items which affected

6

the software development. Software programs and algorithms were also developed to

operate on the limited processor architecture.

The system uses a consistent process to generate the navigational display on

the HUD. Information about the HAHO jump is collected in a parameter file prior to

the jump, and is read into the system prior to departing the aircraft. The parameters

collected include parachute characteristics, Landing Zone(LZ) coordinates, jumper’s

preferences, and wind information.

Once the information is collected, a path to the LZ is computed, based on the

wind and parachute performance data. The path is displayed to the paratroopers as

a series of boxes forming a virtual tunnel for them to fly through. The path begins

at the initialization point (the position at which the system is initialized after canopy

opening) and leads the jumpers to the Landing Zone.

The GPS and orientation data is generated from the GPS/IMU continuously as

the paratrooper descends. The information is passed through the system and used to

update the tunnel in the sky. GPS/IMU data provides current location and heading

information.

The system was tested on the ground because of the risk to personnel and to

build confidence in the overall reliability of the system. The first test evaluated the

head tracking algorithms to ensure the operator was able to acquire and track the

targeted landing zone in the correct physical location. The next portion of the ground

test, tested the effect of the navigational aides to the user. This allowed the operator

to exercise the system to ensure it did indeed provide an improvement over the current

navigational methods.

Follow on evaluation of the system needs to be conducted by constructing a

simulation which emulates the effects of winds while allowing inputs from the head

tracking system to simulate the operational functionality. When confidence in the

system reliability has been reached, only then should live testing be conducted. The

7

live testing should only be conduced by qualified jump test individuals at locations

such as Natick Soldier Evaluation Center.

1.6 Document Overview

The remainder of this thesis is divided into five chapters. Chapter two explores

previous research conducted in the field of using a HUD as a reference in addition

to other related research areas, such as head-tracking and parachute characteristics.

Chapter three details the implementation of the hardware system. Chapter four

describes the software methodology and description used in the system. Chapter five

presents the various testing environments utilized. Chapter six presents the final test

results and analysis of the data. Chapter seven summarizes the research and presents

topics for further research and development related to this project.

8

II. GPS Display in Night Vision Goggle-Background

2.1 Navigation History

Navigation is the art and science of charting a course from point A to point

B and staying on that course. This act of navigation can be as simple as driving

to work or walking to a store, which can be accomplished though utilizing our eyes,

common sense, and landmarks. However, there are many other instances which re-

quire more accurate knowledge of our position, intended course, or transit time to

a desired destination. In these situations, the use of navigational aids assist us in

correctly navigating to the destination. These navigational aids can be a simple clock

to determine the velocity over a known distance, an odometer in the car to track

distance travelled, or more sophisticated systems which transmit electronic signals,

i.e. radionavigation aids [THO05].

The subject has a long and fascinating history, with ancient explorers crossing

vast oceans guided only by the stars. They soon discovered stars couldn’t be counted

upon to always be visible. The technology of the twentieth century has now solved

this problem nearly completely by placing artificial stars in the sky. The NAVSTAR

Global Position System is the first of this new breed of global navigation satellite

systems to become operational [MIS06].

2.2 GPS Overview

Presently, GPS is fully operational and meets the criteria established in the

1960s as an optimum positioning system. The system provides accurate, continu-

ous, world-wide, three-dimensional position and velocity information to users with

the appropriate receiving equipment. GPS also disseminates a form of Coordinated

Universal Time (UTC). The satellite constellation nominally consists of 24 satellites

arranged in 6 orbital planes with 4 satellites per plane, as shown in figure 2.1. A

worldwide ground control/monitoring network monitors the health and status of the

satellites. This network also uploads navigation and other data to the satellites.

GPS can provide service to an unlimited number of users since user receivers operate

9

Figure 2.1: View of the GPS constellation orbits [DAN98].

passively (i.e. receive only). The system utilizes the concept of one-way Time of Ar-

rival (TOA) ranging. Satellite transmissions are referenced to highly accurate atomic

frequency standards onboard the satellites, which are synchronized with a common

GPS time base. The satellites broadcast ranging codes and navigation data on two

frequencies (referred to as L1 and L2) using a technique called Code Division Multi-

ple Access (CDMA). Each satellite transmits on these frequencies, but with different

ranging codes than those employed by other satellites. Each satellite generates a short

code referred to as the Coarse/Acquisition C/A code and a long code denoted as the

Precision (P) code. Currently all satellites actually transmit an encrypted form of

the P code called the Y-code.

The navigation data provides the means for the receiver to determine the lo-

cation of the satellite at the time of signal transmission, whereas the ranging code

enables the user’s receiver to determine the transit time of the signal and thereby de-

termine the satellite-to-user range. This technique requires that the user receiver also

contain a clock. Utilizing this technique to measure the receivers’s three-dimensional

location requires that TOA ranging measurements be made to four satellites. If the

10

receiver clock were synchronized with the satellite clocks, only three range measure-

ments would be required. However, a crystal clock is usually employed in navigation

receivers to minimize the cost, complexity, and size of the receiver. Thus, four mea-

surements are required to determine user latitude, longitude, height, and receiver

clock offset from internal system time. If either system time or height is accurately

known, fewer than four satellites are required [KAP06].

2.3 Parachute

Leonardo da Vinci first sketched an idea for a device (a “tent roof”) that would

let someone down safely from high buildings, but he never moved this concept from

the drawing board to production. The crude sketch depicted a large four-sided cloth

covered framework resembling a pyramid in shape. Attached to each lower corner of

the shape were four long suspension lines secured together at a confluence formed at

the lower ends of the lines (see Figure 2.2). In use, da Vinci showed how someone

would hang by hands from the line confluence and be lowered beneath the open shape

to the ground [SEC06].

Since the time of da Vinci the parachute has continued to evolve to handle

everything from military cargo and space vehicle recovery to use on racing vehicles

[SEC06]. The parachute has allowed the military to develop safety systems for use

in aircraft, and special operations which rely on dropping airborne personnel from

miles above the earth and arriving safely at the desired location. The technology has

proceeded from a solid fabric to a silk weave to the latest parafoil (see Figure 2.3) or

ram chute technology used by military personnel.

The parafoil or ram-air parachute is a deformable airfoil that maintains its profile

by trapping air between two rectangularly shaped membranes, sewn together at the

trailing edge and sides, but open at the leading edge. Several ribs are sewn to the inside

of the upper and lower surfaces, maintaining an airfoil cross section in the spanwise

direction. The parafoil is a parachute-like device that can be steered. This system

is designed to retard the vertical velocity and provide a relatively soft touchdown.

11

Figure 2.2: da Vinci’s original parachute concept [SEC06].

Figure 2.3: Parafoil used to deliver cargo [SEC07].

The lifting parafoil has three advantages over the conventional type: 1) being able

to reduce the dispersions associated with trajectories by using its maneuverability to

glide to a predetermined point, 2) having the capability of being manually controlled

to minimize landing area impact dispersions and, 3) by flairing, to reduce the impact

shock at touchdown. The advantages of a conventional parachute are reduced weight

and less complexity. If a parafoil is deployed at an altitude of approximately 6000

meters, typical performance characteristics provide a maneuvering circle of about 16

km in radius [SEC06].

The parafoil, or square parachute, is popular in sport parachuting but only sees

limited use in the military, mainly among special operations units and demonstration

teams. The majority of military parachutes are round in shape and have limited

or no steering capability, which is important to large scale paratrooper operations.

It is undesirable to have several hundred paratroopers independently steering their

parachutes because of the risk of collision [SEC06].

12

2.4 High Altitude High Open

The system was developed to assist personnel during a High Altitude High

Open (HAHO) descent. A HAHO jump is characterized by the personnel opening

their chutes shortly after departing the aircraft. HAHO is generally used to airdrop

personnel at high altitudes when aircraft can’t fly above enemy skies without posing

a threat to the aircraft and jumpers. In addition, HAHO parachute jumps are used

to insert covert military personnel (generally special forces) into enemy territory in

circumstances where the covert nature of an operation may be compromised by the

loud noise of parachutes opening at low altitude.

In a typical HAHO exercise, the jumper will jump from the aircraft and deploy

the parachute at a high altitude, 10 to 15 seconds after departing the aircraft (typically

at approximately 27,000 feet (8300m)). The jumper will use a compass or GPS device

for guidance while flying for 30 or more miles [SEC07]. The jumper must use way

points and terrain features to navigate to his desired landing zone, and along the way,

must correct his course for changes in wind speed and direction; making for a tricky

navigation problem [SEC07].

2.5 Inertial Navigation System

Every object that is free to move in space has six “degrees of freedom”. There

are three linear degrees of freedom (x,y,z) that specify position and three rotational

degrees of freedom (pitch, yaw, and roll) that specify orientation. If these six variables

are known, then location and attitude are known. An Inertial Navigation System

(INS) utilizes self contained accelerometers and gyroscopes to provide a navigation

solution. The only difference between an INS and an IMU is that in an INS, the

solution is calculated, but in an IMU, only the measurements are collected. Position

and orientation can be acquired by integrating the accelerometers and rate gyros

[UNI07].

13

Figure 2.4: A typical NVG display seen by military personnel–Iraq 2004.

An Inertial Measurement Unit (IMU) is a set of six inertial sensors. An IMU is

normally composed of three linear accelerometers and three rate gyros with a compu-

tational unit to conduct the position calculations based off the sensors. The problem

with IMU’s is the error which occurs from the sensors. Although the error can be

small (in the millionths of g’s from some accelerometers) it is nontrivial. This error

begins to grow when it is integrated twice over long periods of time. The noise accu-

mulates after integration into the solution, causing a slow drift which gradually gains

speed. In order to correct for the drift, many IMU units utilize GPS data to null out

the IMU drift error [UNI07].

2.6 System Hardware

2.6.1 Night Vision Goggle Technology. There are two major types of NVG

technology which currently dominate the field: image intensification (light amplifi-

cation) and thermal infrared (IR) imaging. Light amplification works as the name

suggests, electronic signals (light detection) nearly undetectable by the human eye are

passed through the amplification and altered into energy patterns (See Figure 2.4).

14

Just as faint sounds can be made louder, near total darkness can become vis-

ible. The NVG takes photons, and converts them into electrons. These electrons

pass through a thin disk that is about the size of a quarter and contains over 10

million channels. As the electrons travel through and strike the walls of the channels,

thousands of additional electrons are released. These multiplied electrons bounce off

the phosphor screen, converting the electrons back into a greatly amplified number

of photons, letting an operator see the nighttime view in extremely low light. The

intensifier tube component is the workhorse of this type of night vision device. Inten-

sifier tube performance is a very important factor when evaluating and selecting any

night vision device.

The second prominent technology, thermal-imaging, looks at heat and not visible

light. Unlike image-intensifiers, thermal-imaging is less affected by smoke or fog or

other weather conditions as it is not dependant on visible light. Thermal-imaging

has infrared detectors sensitive to the invisible infrared portion of the electromagnetic

spectrum or heat. The image is typically seen on a color scale with the more expensive

units or can be shown in shades of gray [DAV07].

2.6.2 Heads-Up Display. The Heads-Up Display (HUD) is a transparent

display that presents data without obstructing the operator’s view. Although the

HUD was initially developed for military aviation (see Figure 2.5, HUDs are now used

in commercial aircraft, automobiles, and other applications. There are two types of

HUDs–fixed and helmet-mounted. Fixed HUDs require the user to look through a

display element attached to the airframe or vehicle chassis. The system determines the

image to be presented depending solely on the orientation of the vehicle. Commercial

aircraft and automobiles usually incorporate a fixed HUD system. Helmet-mounted

or head-mounted HUDs feature a securely-attached display element that moves with

the orientation of the user’s head. Such systems are often monocular and are used in

the Apache attack helicopters and other fighter aircraft. Miniature HUDs are used

to enhance combat readiness and situational awareness with unmatched sensor fusion

15

capabilities for night or day operation. The HUD enables the operator to overlay real

time alphanumeric or video information from thermal sights, personal computers,

vehicle systems, or other key information systems onto night vision view [ANS07].

Figure 2.5: F-22 HUD example; standard HUD currently utilized in military aircraft
[QSA08].

A typical HUD in civil aircraft contains three primary components: a computer,

an Overhead Projector Unit (OPU) and a combiner. The computer usually is located

with the other avionics equipment and provides the interface between the HUD and

the aircraft systems to be displayed. Flight data is received from the inertial reference

system, flight management system, and other flight guidance systems, and then it

is processed into a form compatible with the Overhead Projector Unit. The CPU

takes this data and projects it onto the combiner. The combiner is usually made of

glass with a special coating that reflects the monochromatic (monochromatic light

is described by only one frequency, such as a laser [ELE08]) light from the OPU,

while allowing all other wavelengths of light to pass through, creating a superimposed

image. Tactical military aircraft usually rely on a projection unit incorporated into

the combiner [SPI07] (See Figure 2.6).

Traditionally, the source for the projected image has been a Cathode Ray Tube

(CRT). This is the same technology traditionally used in older televisions and moni-

tors, but micro-display imaging technologies are now being introduced which are open-

ing up new applications for HUD technology. Currently, micro-display technologies

16

Figure 2.6: Standard military aircraft HUD operation [ANS07].

that have been demonstrated include Liquid Crystal Display (LCD), Liquid Crystal

on Silicon (LCoS), Digital Micro-mirrors Display (DMD), and Organic Light-Emitting

Diode (OLED) [TEK06] (See Figure 2.7). HUD systems that project information di-

rectly onto the wearer’s retina with a low-powered laser (virtual retinal display) are

also in the experimentation stage [ANS07].

2.6.3 Tunnel in The Sky Navigation Displays. MIL-STD-1787 defines the

standard military Head Up Display. The primary focus of the MIL-STD-1787 HUD

is to convey flight information, such as the pitch, altitude, and airspeed of the air-

craft. However, the HUD also displays additional information, such as the bearing,

to the next way-point, course indicator, and vertical deviation indicator. For USAF

purposes, the MIL-STD-1787 HUD conveys sufficient information to act as a Primary

Flight Display (PFD) [THO05]. While the PFD is useful for flight information, it

does not display sufficient information to produce a navigational display. The MIL-

STD-1787 HUD is based on gauges and instruments that have been present in the

cockpit since World War II [KRA98].

17

Figure 2.7: Size of OLED compared to postage stamps. OLED is utilized by STS
in their AN/PVS-21 LPNVG HUD system [STS07].

The pathway in the sky originated because of the increased complexity of flying

and navigating versus the information display. Commercial airliners often fly in situ-

ations, such as landing patterns, which require them to follow precise flight profiles in

order to avoid collisions with other aircraft. Because the MIL-STD-1787 HUD is inad-

equate for this type of flight, other methods to display navigational information have

been developed. One such technique is the pathway in the sky method. During the

mid-1990’s, the National Aeronautics and Space Administration (NASA) developed a

Synthetic Vision System (SVS) to preset real world information to aircraft/spacecraft

pilots. This had the advantage of eliminating cockpit windows and gauges from the

aircraft/spacecraft design [ANS07]. Once the initial concept had been implemented,

further research progressed on the most effective display for pilots. Research con-

ducted on several different approaches began to emerge. For example, displays ranged

from two-dimensional grid square displays to more compelling three-dimensional com-

puter graphics. With the increase in computing power and computer graphics, the

navigational displays could display many different styles of pathways in the sky.

18

Figure 2.8: Graphic view of the four HUD designed [PAR03].

Research conducted by [SNO99] found that pilots using the pathway in the sky

HUD were able to land with the same accuracy and maintain a commanded airspeed

equally well, regardless of visibility conditions. Pilots preferred the pathway in the

sky technique over the standard military HUD, as well, claiming that the pathway

increased situational awareness, even when the ground was not visible [THO05]. Sev-

eral methodologies for building the tunnels have been developed, ranging from the

minimalist to the complex. Some configurations use a flat series of rectangles, creating

a pathway resembling a sidewalk suspended in the air. These configurations create

a flat path and are known as pathways in the sky [KRA98]. Other configurations

use rectangles to define a tunnel around the path that should be taken by the pilot.

These configurations are known as tunnels in the sky [SNO99]. All four displays are

illustrated in figure 2.8.

2.6.4 STS Model AN and PVS-21 NVG. The platform used to display

the GPS navigational information to the operator is the Sensor Technologies Sys-

tems (STS) Low Profile Night Vision Goggle model AN/PVS-21 (See Figures 2.9

and 2.10). The AN/PVS-21 is a Low Profile Night Vision Goggle (LPNVG); this

19

system was selected because of its integrated SVGA HUD and third generation op-

tics. The AN/PVS-21 utilizes OLED technology produced by eMagin, producing a

12.78 x 9mm viewing area in a 0.61” package size. The AN/PVS-21 LPNVG brings

the optics closer to the wearer’s face enhancing depth perception by using a unique

“see-through” beam combiner system capitalizing on both intensifier (night vision en-

hanced) and unintensified (see-through capability for day use of HUD display) vision.

This see-through technology permits operation from extreme low-light environments

to bright light conditions. The miniaturized HUD option for the AN/PVS-21 can cur-

rently display map overlay, building schematics or any other PC display while leaving

an unobstructed forward view. The HUD has 320 x 240 resolution and is horizontally

and vertically adjustable [DAV07]. The AN/PVS-21 NVG has been certified for static

line, HALO and HAHO parachute jumps. The NVG tubes are the latest Generation 3

tubes with an Objective focus from 25 cm to infinity and the entire AN/PVS-21 sys-

tem weighs 1.68 lbs with a 7.85 in-lb torque (jump weight acting on the paratroopers

head) [STS07].

2.6.5 Processing Board X-board GP8. The X-board GP8 is the second ARM-

compatible XScale-based module in Kontron’s X-board product family of small em-

bedded form factor modules (See Figure 2.11). It is based on the Intel 80219 General

Purposed PCI processor (400 MHz/600 MHz) and utilizes the Silicon Motion SM501

chip set. It has 128 MB of onboard Dynamic Random Access Memory (DRAM) and

8 MB of onboard dedicated graphic memory. The SM501 chip set enables accelerated

graphics and video to support the AN/PVS-21 HUD display. In addition to the video

support, the Kontron X-board GP8 module was selected because of its compact size

and robust interface capabilities. The entire board is the size of credit card and does

not require external cooling, adding to its low power consumption. In addition to the

video support described above, the GP8 board also supports multiple interfaces such

as Ethernet, Universal Serial Bus (USB) 2.0 and audio, which are required for reading

data into the system [KON06].

20

Figure 2.9: TOP: STS AN/PVS-21 Low Profile NVG (LPNVG) with battery pack
connected to HUD. BOTTOM: AN/PVS-21 without battery pack connected [STS07].

Figure 2.10: Two STS Night Vision Goggle models mounted on desert helmets.
LEFT: AN/PV2-21 LPNVG (used for this project). RIGHT: AN/PVS-15 [STS07].

21

Figure 2.11: Kontron’s GP8 X-Board. Large chip on dominating right side of board
is the Intel 80219 CPU. Smaller chip on left is the SM501 Graphics chip [KON06].

Figure 2.12: Intel X-Scale processor hardware overview.

Intel XScale microarchitecture is based on a new core which is compliant with

ARM version 5TE (See Figure 2.12. The microarchitecture surrounds the core with

instruction and data memory management units; instruction, data, and mini-data

caches; write, fill, pend, and branch target buffers; power management, performance

monitoring, and debug units; coprocessor interface; 32k caches; Memory Manage-

ment Units (MMU), Branch Target Buffer (BTB), Multiplier-ACcumulator (MAC)

coprocessor; and core memory bus [INT07a].

2.6.6 Head Tracking. In order to orient the navigational display with the

operator’s view point, the Microbotics’ MIDG II was selected (See Figure 3.7). The

MIDG II is an Inertial Navigation System (INS) with GPS contained in a small pack-

age. The MIDG II is a GPS aided inertial navigation system for use in applications

22

Figure 2.13: Microbotics’ MIDG 2 provides Inertial Navigation System (INS) and
GPS data [MIC07].

requiring altitude, position, velocity, acceleration, and angular rates for navigation or

control. An internal GPS receiver measures position and velocity and passes it to the

data fusion processor to be combined with the inertial data to generate an optimal

solution. An internal three-axis magnetometer provides a magnetic heading reference

when needed [MIC07].

2.7 Software

Ever since the invention of Charles Babbage’s difference engine in 1822, comput-

ers have required a means of instructing them to perform a specific task. This means

is known as a programming language. Computer languages were first composed of

a series of steps to wire a particular program; these morphed into a series of steps

keyed into the computer and then executed; later these languages acquired advanced

features such as logical branching and object orientation. The computer languages of

the last fifty years have come in two stages, the first major languages and the second

major languages, which are in use today [FER04].

2.8 Programming Language

There are several programming languages that provide the operating capabilities

for this program. Languages like JAVA and C# provide an object−oriented structure

which allow the programmer to write object−oriented code, making the program

23

easier to maintain and expand. The main drawback of these two languages is the need

for a virtual machine running on the processor. The need for this virtual machine

consumes valuable memory and processing resources, which are extremely limited in

an embedded system. Other languages, such as C, provide the ability to execute

in a limited processing environment and also provide the programmer with direct

access to system resources, such as low-level memory. This is both a benefit and a

hazard since the program can over-write critical sections of memory if great care is not

taken by the programmer. An additional drawback to the C programming language

is the inability to create object structures. This forces the programmer to write in a

functional programming structure which has proven to be more difficult to maintain

and debug. Another alternative is C++, which is considered a superclass of the C

programming language.

C++ is an “object oriented” programming (OOP) language created by Bjarne

Stroustrup and released in 1985. It implements “data abstraction” using a concept

called “classes”, along with other features to allow object-oriented programming.

Parts of the C++ program are easily reusable and extensible; existing code is eas-

ily modifiable without actually having to change the code. C++ adds a concept

called “operator overloading” not seen in the earlier OOP languages and it makes the

creation of libraries much cleaner [CHE07].

C++ maintains aspects of the C programming language, yet has features which

simplify memory management. Additionally, C++ contains features allowing low-

level access to memory, along with high-level features such as object oriented pro-

gramming capabilities. C++ could be considered a superset of C, which will run in

C++ compilers. C uses structured programming concepts and techniques while C++

uses object oriented programming and classes which focus on data [CHE07].

2.9 Cross Compiling

A compiler is a program that turns source code into executable code. Like all

programs, a compiler runs on a specific type of computer, and the new programs it

24

outputs also run on a specific type of computer. The computer the compiler runs on is

called the host and the computer the new programs run on is called the target. When

the host and target are the same type of machine, the compiler is a native compiler.

When the host and target are different, the compiler is a cross compiler.

In theory, a PC user who wanted to build programs for some device could acquire

the appropriate target hardware (or emulator), boot a Linux distribution on that sys-

tem, and compile natively within that environment. While this is a valid approach, it

has a few prominent shortcomings for items such as a router or iPod. Drawbacks such

as speed, capability, availability, and flexibility [LIN08] make development on these

systems extremely taxing and time consuming. These factors force many programs

to be written in different environments such as the X86 hardware, which has its own

drawbacks. Word size, endianness, alignment, and default signedness are only a few

of the obstacles which prevent programs from running on target systems which are

not X86. In order to solve these issues, the program must be cross compiled or built

with the appropriate word size, endianness, alignment and specifics of that particular

target architecture. The process of cross compiling is most prominent when program-

ming for embedded systems, whose limited memory, and processing capabilities make

it infeasible to write, test, and debug on the target architecture.

2.10 Kernel

The kernel is a program that constitutes the central core of a computer oper-

ating system. It has complete control over everything that occurs in the system. A

kernel can be contrasted with a shell (such as bash, csh or ksh in Unix-like operating

systems), which is the outermost part of an operating system and a program that in-

teracts with user commands. The kernel itself does not interact directly with the user,

but rather interacts with the shell and other programs as well as with the hardware

devices on the system, including the processor, memory and disk drives. The kernel

is the first part of the operating system to load into memory during booting, and it

remains there for the entire duration of the computer session because its services are

25

required continuously. Thus it is important for it to be as small as possible while still

providing all the essential services needed by the other parts of the operating system

and by the various application programs [PRO05].

Because of its critical nature, the kernel code is usually loaded into a protected

area of memory, which prevents it from being overwritten by other, less frequently

used parts of the operating system or by application programs. The kernel performs its

tasks, such as executing processes and handling interrupts, in kernel space, whereas

everything a user normally does, such as writing text in a text editor or running

programs in a GUI, is done in user space. This separation is made in order to prevent

user data and kernel data from interfering with each other and thereby diminishing

performance or causing the system to become unstable and possibly crashing.

2.10.1 Operating System.

2.10.1.1 Windows CE. Windows CE is the smallest Microsoft Win-

dows operating system designed from the ground up to be a small Read Only Memory

(ROM) based operating system with the Win32 subset Application Programming In-

terface (API). Windows CE extends the Windows API into the markets and machines

that can not support the larger footprints of the Windows XP kernel. The Windows

NT/2000/XP line of operating systems is written for the enterprise sector. It sac-

rifices compatibility and size to achieve its high level of reliability and robustness.

Windows XP home Edition is a version of Windows XP built for the home user that

does strive for compatibility, but this is secondary to its primary goal of stability.

Windows CE isn’t backward compatible with MS-DOS or Windows. Nor is it an

all-powerful operating system designed for enterprise computing. Instead, Windows

CE is a lightweight, multi-threaded operating system with a graphical user inter-

face. Its strength lies in its small size, its Win32 subset API and its multi-platform

support [BOL03].

26

Windows CE’s greatest advantage is easily its similarity to other members of the

Microsoft Windows family of operating systems. Many professional software develop-

ers have experience developing applications to the Windows API using Microsoft tools

such as Visual C++ and Visual Basic. The ability to leverage those skills in the future

is simply too large a factor to discount Windows CE. In addition, Microsoft’s Windows

CE is currently used as the foundation for the initial version of the .NET Compact

Framework, a version of the .NET runtime for mobile and embedded devices. The

Compact Framework provides the same powerful .NET runtime environment with a

smaller class library so that it fits in small battery-powered devices.

2.10.1.2 Linux. Linux is a Unix-like operating system designed to

provide personal computer users a free or very low-cost operating system comparable

to traditional and more expensive Unix systems. Linux has a reputation as a very

efficient and fast-performing system. Linux’s kernel was developed by Linus Torvalds

at the University of Helsinki in Finland [PRO07]. To complete the operating system,

Torvalds and other team members made use of system components developed by

members of the Free Software Foundation for the GNU Project. Linux is a complete

operating system, including a graphical user interface, an X Window System, TCP/IP,

and other components usually found in a comprehensive Unix system. Although

copyrights are held by various creators of Linux’s components, Linux is distributed

using the Free Software Foundation’s copyleft stipulations, which means any modified

version that is redistributed must in turn be freely available [PRO05].

Unlike Windows and other proprietary systems, Linux is publicly open and

extendible by contributors. Because it conforms to the Portable Operating System

Interface standard user and programming interfaces, developers can write programs

that can be ported to other operating systems. Linux comes in versions for all the ma-

jor microprocessor platforms including the Intel, PowerPC, Sparc, ARM, and Alpha

platforms.

27

2.11 Alternative Technologies

2.11.1 NVG Displays. There are numerous other projects currently being

developed and fielded in order to provide the paratrooper and the Special Opera-

tions community with clear, easy to read navigation data. The Air Force Research

Laboratory (AFRL) is doing extensive work in developing small body worn com-

puters which will have integrated GPS and provide the operator a small portable

computer [DAN08]. Although this does provide a GPS solution, this option does not

provide the navigational data into a hands free system, such as an operator’s NVGs.

This will not work for personnel as they perform their free fall operations or even

ground operations which require their full attention, such as combat missions. An

alternative, which is also being developed by AFRL, is a Night-Vision Monocle which

displays compass heading information. This is much easier for the operator to utilize,

but the system still does not display GPS information such as latitude, longitude and

altitude [DAN08].

2.11.2 Head Trackers. The head tracking arena has a number of new direc-

tions and initiatives currently being undertaken and sponsored by the Air Force. A

number of these have being developed for inclusion in aircraft such as the F-35 Joint

Strike Fighter. By developing the head trackers for cockpits, the system can determine

where the pilot is looking in order to correctly ordinate threat warning tones. This

will allow the pilot to react and search in the direction of the threat and not force the

pilot to check the instruments prior to searching for the threat. One such technology

which is currently under development consists of two microrings which contain fluid

and sensors around the ring. As the pitch, yaw and roll change, the change in fluid

orientation within the ring is registered by the sensors [DAN08]. Although this type

of technology is promising because of its size and weight, the technology is still in the

development stage and will not be available for use with this project.

2.11.3 Software - Optimized Algorithm. A change in the software approach

to this project was also explored with the possibility of creating an optimized soft-

28

ware algorithm based on advanced software methodologies. This approach relates the

flight path problem to the 3-Dimensional routing problem utilized by the artificial

intelligence field. Extensive work has been conducted in the 3-D routing arena in

respect to Motion Planning (MP) for robotics. This is one of the most important

areas of robotic research since the complexity of the motion-planning problem has

hindered the development of practical algorithms. Until recently, robots were pri-

marily employed for carrying out programmed repetitious task. Methodologies and

algorithms for autonomous functioning were examined, but their implementation was

hindered by the slow computing hardware. With the rapid advances in semiconductor

and computing technology, it has become feasible to build robots that can function

at reasonable speeds. The board classification of gross motion planning is what will

be related to this problem. Gross motion planning is concerned with the problem in-

volving free space much wider than the objects’ sizes. Instead of a robot determining

a 3-D route, the GPS system will determine the optimum route based on the current

state. The algorithm will need to be effective and efficient in order to allow for the

near realtime corrections at each stage [HWA92].

Certain constraints exist on the paratrooper, which do not directly relate to the

robotic model, but still need to be taken into consideration. The primary constraint

affecting the algorithm design is the various wind speeds at different altitudes during

the descent. In addition to the wind speed, the overall paratrooper’s velocity would

also play a role in the characteristics of the proposed flight path. Although this

approach was explored and defined, in order to produce the proof of concept with a

working system, the software optimization option was not implemented. Instead of

the 3-Dimensional approach, the software will instead route the most direct route to

the landing zone, taking into consideration wind speed and operator velocity.

2.12 Previous Research

In 2003, Balaz began research into the area of providing airborne personnel with

a reliable all weather navigation reference system. His primary focus was the design,

29

implementation and evaluation of an intuitive three-dimensional display to serve as

a primary navigation reference for paratroopers. A significant portion of his research

involved the development of a software system to compute and display the optimal

path to take a paratrooper from the release point to target. Although the research

did not provide a fully operational version of a primary three-dimensional heads-up

primacy navigation reference display for paratroopers using HAHO parachute tech-

niques, it did provide the groundwork for further application in terms of software

engineering and visual display [BAL03]

In 2005, Thompson continued the work begun by Balaz two years earlier. Thomp-

son’s work focused research to extend the design, implementation and evaluation of a

prototype HUD displayed on NVG, using data from GPS and an Inertial Measurement

Unit to enable a paratrooper to navigate in zero-visibility situations. A significant

portion of his research was dedicated to developing a graphical HUD which had a

low computing demand, enabling it to run on low-powered, easily portable computers

and on how to compute a path to deliver a paratrooper from the release point to the

landing zone. Another key point of research was to evaluate the effectiveness of the

graphical HUD against conventional navigational cues [THO05]. The first of the two

objectives; designing and implementing a HUD as a primary navigational reference

for paratroopers was successfully achieved. A path generating algorithm was created

and implemented by utilizing a third party graphics library. The second objective of

testing the HUD system failed to meet its full objectives due to the lack of a fully

built system. The system which was tested lacked key elements such as head tracking

which proved to be crucial. Testing of the system actually proved a GPS receiver

alone provided better navigational capabilities than the HUD system without head

tracking.

2.13 Summary

This thesis builds upon work performed in two previous thesis in order to de-

velop a proof of concept for this project. The three distinct areas of research are

30

the navigation, hardware and software. The navigational aspect of the project will

consist of utilizing GPS technology combined with head-tracking data to provide the

positional, velocity, altitude and head orientation information. This information will

then be processed by the processor worn by the operator in order to generate the

correct flight path data along with the display information needed to produce the

navigational display or tunnel in the sky. The software developed for larger footprint

processors is ported into a the compact footprint needed in the Windows CE environ-

ment. GPS provides the navigation needed for the processor to display the tunnel in

the sky navigational display to the operator.

31

III. Hardware Description

Figure 3.1: High level view of the GPS Navigational Display System.

This chapter discusses the design and implementation of the hardware function-

ality for this system. The system is described by decomposing the entire system into

smaller more atomic functional units. For example, to begin, the overall system is

encapsulated in a single operational component, “GPS Navigation Display System”,

but as the chapter proceeds the system is decomposed into specific components. The

software is approached in a similar manner in the following chapter.

3.1 System Description

The system as a whole is composed of three major hardware components; ex-

ternal inputs (external systems/sensors/user inputs), the body-worn computer, and

the display system. The operational flow of the system consists of the sensors (GPS

antenna and Head Tracker) receiving and forwarding the data to the body worn com-

puter. The data is then parsed, decoded, and fed into the path algorithm to generate

the navigation message which can then be sent to the NVG display system (See Figure

3.1).

32

3.2 External Systems

The system interacts with external sources to achieve its overall goal of guiding

the paratroopers to their final destination. The two external systems are 1) external

jump parameters and 2) Global Positioning System. The first is needed to provide

data related to the jumper’s present environment which would affect the jump char-

acteristics. The second external system provides the system with accurate position

and velocity throughout the descent. The final portion of the external system is the

sensors needed to receive the GPS data and accurately track any head orientation

change.

3.2.1 External Jump Parameters.

3.2.1.1 Static Data. The first set of external inputs needed by the

system is the static data input by the operator. This data is key to developing an

accurate and achievable path from the release point to the landing zone. The operator

is required to manually input certain variables, which will be used to determine the

path generation. The four parameters needed by the system are the wind data at the

various levels, the parachute profile, the release point, and the landing zone. This data

must be input prior to departing the aircraft to generate the proper path generation

solution. Since this data is completely autonomous to the system, the method must

follow strict formatting rules. The most efficient and effective way to accomplish this

formatting accuracy is to utilize the JPADS mission planning system. The JPADS

system provides the user with a graphical interface for the entry of the environmental

static data (See Figure 3.2). Although the JPADS system is the preferred input

system, the user can also modify a stand-alone text file, but must once again follow

the formatting rules.

3.2.2 User Input.

33

Figure 3.2: JPADS Main input screen.

Figure 3.3: Required static user inputs, required prior to aircraft departure.

34

Figure 3.4: HAHO Mission Planner Main input screen.

3.2.2.1 Wind Data. Wind data is required to assess the possible travel

distance an operator can cover given the parachute profile and the wind characteris-

tics at various altitudes. For example, if an airfoil can travel 2 miles within a 100 foot

altitude drop in zero wind, the system must account for winds reducing or increasing

the travel distance of a given parachute. The wind data must be acquired by exter-

nal means. Systems such as JPADS (See Figure 3.2 or the HAHO Mission Planner

(See Figure 4.1) automatically gather information from air dropped transponders. A

second approach is to have personnel manually note the wind characteristics as the

aircraft travels up through the various altitudes.

3.2.2.2 Parachute Data. The second data element the operator needs

to input is the parachute profile. This is needed to provide an achievable path given

the parachute performance characteristics. For example, a pilot’s ejection chute can

not travel as far and is not as maneuverable as an airfoil designed for special operations

personnel. Given the different characteristics, the user will have to input the correct

parachute model utilized for the jump.

3.2.2.3 Release Point and Landing Zone coordinates. The third and

fourth data elements needed by the system are the Release Point (RP) and the Land-

ing Zone (LZ) coordinates. The operator will need to enter the latitude and longitude

35

Figure 3.5: Components making up the GPS Navigation Display System.

and the altitude for the LZ. In addition, to have the system generate a valid path,

the point at which the system will begin tracking is needed to generate the initial

navigation solution. The information must be input prior to departing the aircraft.

3.2.3 GPS Navigation Display System. The second external system needed

is the Global Positioning System, which provides a signal to be utilized for developing

position and velocity solutions. The GPS signal is also utilized by the MIDG for

updating the INS solution to improve attitude performance. The MIDG, like all

IMU’s, is suspectable to drift due to small errors in its accelerometers and gyroscopes.

These small errors are introduced into the solution and are propagated continuously,

developing a greater and greater amount of drift. The MIDG utilizes the GPS solution

to null the effects of the drift and provide an accurate solution.

The external data noted above is passed into the system, which utilizes algo-

rithms described in Chapter 4, to generate a navigational message. The navigational

message is processed and sent to the external display system. The display can con-

nect to any standard CRT/video monitor. The system outputs the graphical display

utilizing 800 x 600 pixel SVGA resolution and can therefore be connected to any

monitor system capable of displaying this resolution. The system utilizes the Sensor

36

Figure 3.6: The MIDG II subsystem which provides sensor data.

Technology Systems (STS) HUD system to display the navigational information via

the NVG’s. The STS HUD is designed to utilize the SVGA output in order to provide

the operator with a clear site picture. The interconnection between the MIDG and

the remainder of the system in shown in Figure 3.5.

3.2.4 MIDG II - Head Tracker. The head tracking unit consists of the

MIDG II, which provides the system with its attitude data. The MIDG is an Inertial

Navigation System (INS) with Global Positioning System (GPS) within a single unit.

All data messages are timestamped with GPS time, and a one pulse per second signal

37

is used for synchronization with the body worn computer system. The MIDG II can

operate in Inertial Measurement Unit (IMU) only or full INS solution. The data

provided from the MIDG includes orientation, position, velocity, acceleration, and

angular rates. Figure 3.6 illustrates the MIDG hardware’s input and output data.

The sensor actually generates the INS data, which is combined with the GPS data

when passed to the body worn computer.

When the MIDG is in IMU mode, the unit provides the most basic operation.

In this mode, the MIDG II provides calibrated values for angular rate, acceleration,

and magnetic field. Measurements from the GPS receiver are also available. However,

none of the position/velocity/attitude estimation algorithms are executed. As a result,

attitude is not available, and position and velocity are available directly from the GPS

receiver at up to 5HZ.

The MIDG provides head tracking information to the body worn computer. This

head tracking information updates the graphics which are displayed to the operator.

If the operator is looking away from the LZ, an arrow indicator is displayed and directs

the operator in the direction of the LZ and the tunnel in the sky display. The head

tracker is mounted and oriented to the vertical position of the operator. The system is

designed to operate when the operator has deployed the parachute and is in a vertical

orientation. The MIDG weights under 55 grams, and provides orientation data via 3-

axis rate gyros, 3-axis accelerometers and 3 axis magnetometer. In addition, position,

velocity and attitude from a Kalman filter is available at a 50Hz rate. The MIDG can

also operate in three distinct moods of operation: IMU, VG(vertical gyro), and INS.

The IMU mode represents the most basic operation, none of the position, velocity or

attitude estimation algorithms are executed. In VG mode, basic attitude estimations

are added to the IMU mode. And finally in INS mode, the MIDG provides estimates

of position, velocity and attitude up to 50Hz using a state estimation filter [MIC07].

38

Figure 3.7: The MIDG II used for INS and head tracking functions.

Figure 3.8: Overall high level GPS Navigational Display System.

3.3 Body Worn Computer

The body worn computer is the heart of the entire system and is composed of

several components. These components include the main processing board, graphics

chip, host connection board, and mounting equipment. The body worn computer

provides all of the on board processing for the system. The MIDG tracking unit is

connected to the body worn computer via a serial connection. The streaming data

is decoded as described in Chapter 4 and is then used to generate the path solution.

Once the navigation message is composed, the data generates the tunnel in the sky

graphics. In addition to decoding the raw data, the CPU also stores the decoded

39

Figure 3.9: The Kontron GP8 is a general processing module which utilizes the
Intel 80219 ARM architecture to deliver 600Mhz processing. In addition, the GP8
module also has an on-board SM-501 graphics chip to provide SVGA video output
capability [KON06].

information in an onboard file for historical reference. After being decoded the data

is stored to allow analysis of the solution utilized for the path generation.

3.3.1 Processing Board. The processing system must be small enough to fit

into a paratrooper’s ammo pouch. This allows the paratrooper to wear the computer

on their body, while still being physically connected to the NVG input. In addition,

the processing system must have the processing power to process the MIDG data and

produce a valid navigational display. To achieve the minimal size for this proof of

concept, and combine the head tracking and GPS signals into a visible navigational

display, the Intel 80219 processor was selected as the on board processor.

The Intel 80219 is an ARM based processor, which is a 32-bit Reduced In-

struction Set Computer (RISC) processor architecture developed by ARM Limited

and is widely used in embedded systems. The ARM family of processors account for

over 75% of all 32-bit RISC Central Processing Units (CPU), making it one of the

most prolific 32-bit architectures in the world. ARM CPU’s are found in consumer

electronics from portable devices, such as Personal Digital Assistances (PDA), mo-

bile phones, and calculators to computer peripherals such as hard drives and desktop

routers [ARM05].

The 80219 processor runs at 600MHz and processes a 133 MHz Peripheral Com-

ponent Interconnect (PCI)-X interface for a 1 gigabit per second (GB/s) throughput.

40

The internal bus operates at 200 MHz and 1.6 GB/s internal bandwidth. The 80219

General Purpose PCI Processor also features a 200 MHz Double Data Rate (DDR)

Synchronous Dynamic Random Access Memory (SDRAM) controller with Error Cor-

rection Code (ECC) support up to 1 GB of 64-bit DDR SDRAM. It also supports

32-bit memory for applications that are more space sensitive. It contains a pro-

grammable, 31-bit local bus designed for embedded applications requiring connec-

tions to non-PCI peripheral components such as Application Specific Integrated Cir-

cuit (ASIC), Flash memory, or Digital Signal Processors (DSP). The Intel 80219 has

additional features that accelerate I/O throughput. A 2-channel Direct Memory Ac-

cess (DMA) controller facilitates increased PCI-to-memory and memory-to-memory

throughput. The 80219 is compliant with ARM Version 5TE instruction set (exclud-

ing the floating point instruction set) [INT06]. The Intel 80219 is a 600Mhz Intel

XScale ARM processor. The ARM processor is a reduced instruction set and has an

onboard graphics chip. The distinct advantage of the onboard graphics chip is the

ability to drive a color Super Video Graphics Array(SVGA) required by the AN/PVS-

21 HUD. The 80219 processor chip is being utilized using the Kontron GP8 General

Processing board, which provides the external memory and video graphics needed by

this project.

3.3.2 Host Connection Board . The GP8 supports several input/output

devices such as RS-232 serial connection, Universal Serial Bus (USB) host/client, and

SVGA video output. Unfortunately the GP8 board is only a processing board and

does not contain any onboard connectors to allow external devices to mount onto the

system. To provide this external component connection service, the Diamond Point

D2426 X-board baseboard is being utilized.

This board weighs .22 lbs and is 5.71” in length, 2.68” in width and .75” in over-

all height. The D2426 baseboard acts as the host “motherboard” for the GP8 by pro-

viding the external connections needed to accomplish the external interface [INT07b].

The D2426 baseboard was designed by Diamond Point International specifically to

41

Figure 3.10: Diamond Point International D2426 X-board Baseboard utilized as
the host board. The D2426 provides external connectivity with a small light-weight
package. Photo shows D2426 with GP8 mounted on left side of the board [INT07b].

Figure 3.11: This photo shows the rear of the D2426 with an inserted CompactFlash
card, plus the external mount points [INT07b].

operate with the Xboard family of general processing modules. The GP8 process-

ing board mounts directly onto the D2426 board via an IDE connection. Figure 3.10

shows the overall size of the D2426 with a mounted GP8 module attached, and Figure

3.11 also shows the D2426, but from the rear of the board. Figure 3.11 also displays

the size of the board with a compact flash card inserted. In addition to the compact

flash card on the rear, the external mounting points, plus power connectors are visible.

3.4 Display

3.4.1 Graphics Card. The Kontron GP8 board comes with an on-board

graphics chip (Silicon Motion SM501), which is necessary to provide the SVGA res-

olution required by the STS NVG e-module, to generate the HUD display. Figure

42

Figure 3.12: Display subsystem consisting of on-board graphics card and SVGA
monitor (NVG HUD).

3.12, breaks out the display subsystem inputs and outputs. The graphics engine take

in the display coordinates and generate the HUD display. The SM501 is a Mobile

Multimedia Companion Chip (MMCC) device which connects to the PCI Bus. The

SM501 removes the burden of 2D and video acceleration from the the Intel 80219

processor chip. By off-loading this additional workload, the GP8 module can handle

the processing requirement to update the navigation display with up-to-date data.

3.4.2 Non-Computing Components.

3.4.2.1 GPS antenna. The system utilizes a small GPS antenna in

order to receive the GPS signal. The antenna is mounted to the paratrooper’s helmet

to provide signal reception once the operator is in a vertical position. This is needed

to ensure the maximum signal reception is achieved during the under canopy stage

of the jump. The system was developed for use once the parachute deploys and the

operator is in a vertical position.

43

Figure 3.13: Gentex PM jump helmet without any additional equipment such as
NVG mounts or life support systems [GEN08].

3.4.2.2 Jump Helmet. The system can be mounted to any DoD ap-

proved helmet, but in this project, the system is designed to be mounted on the Gentex

ParaMaster HALO/HAHO helmet (See Figure 3.13). This helmet is designed for the

military operations dealing with HALO and HAHO jumps, which require the wearer

to use life support systems at the jump altitudes. This is the latest approved jump

helmet used by the US Army and is currently being utilized by its special operations

and airborne personnel.

3.4.2.3 Power. The system is designed to operate under its own power

and must therefore provide power to all associated components. The MIDG unit draws

1.2 watts, in addition to the GP8 board drawing 4 watts at 3.3 volts and the D2426

board drawing an additional 5 volts. Because of this high power consumption, light

weight requirement, and long life operation, the 12 volt Lithium Polymer battery

was chosen in a dual stack configuration. This provides enough power to operate the

entire system for nearly 2 hours.

3.4.3 HUD Display. Sensor Technology Systems utilizes Tek Gear’s eMagin-

based O2 microdisplay OEM kit for its Enhanced Heads-Up Display (E-HUD) module

on the AN/PVS-21 Low Profile Night Vision Goggle. The O2 OEM Kit is a drop in

module that is designed to be integrate into high resolution microdisplays. The O2 Kit

includes eMagins SVGA+ Organic Light Emitting Diode (OLED)-XL microdisplays

and high performance controllers.

44

Figure 3.14: Helmet Components.

To provide the operator with the appropriate navigation display information, the

system utilizes a low-level graphics library to draw each visual graphics component,

then this information is passed to the HUD display system. The STS NVG HUD

system operates on an SVGA input, therefore, the critical portion of the graphic

output process is to ensure the graphic components, such as the tunnel in the sky, are

correctly located and generated within the given display area in the SVGA format.

3.5 Completed System

Figures 3.14 through 3.17 are photos of the completed assembled system. Figure

3.14 is the head worn portion of the system. This is composed of the standard Gentex

HAHO jump helmet, with a custom fabricated head tracker and GPS antenna mount.

The fabrication of the helmet mount allowed for the sensors to have a stable and level

mounting point on the helmet. Also shown in the photo is the attached STS low

profile monocle with the attached E-HUD display unit. The E-HUD system is the

component which generates the visual display for the operator.

45

Figure 3.15: Body Worn Computer in a .223 Cal Ammo Pouch.

Figures 3.16 and 3.15 show the body worn computer. This portion of the system

is designed to fit in a standard .223 caliber ammo pouch as is shown in figure 3.15,

while still providing access to controls and allowing I/O cables to exit without modifi-

cation to the pouch. Figure 3.16 illustrates the dimensions of the total enclosure, plus

highlights the external component. For example, across the top is a display intensity

control knob, the power switch, and the HUD video out port. Down the right side is

the serial input port and the compact flash port.

Figure 3.17 shows the various internal products which make up the body worn

computer. The 12 volt batter has been removed to allow visual access to the various

internal circuit boards. The entire system is mounted on a Diamond D2426 base

board for power and I/O connectivity. The TekGear E-HUD circuit board is mounted

towards the top side of the container to provide the E-HUD video display output. And

finally, the GP8 processor module is on the bottom half of the container.

46

Figure 3.16: Body Worn Computer Diagram.

Figure 3.17: View of internal Body Worn Component.

47

3.6 Summary

Since the first time humans began utilizing parachutes, research has been con-

ducted on how to make them more efficient, travel further, and carry more weight.

With the advent of HAHO jumps, paratroopers can cover dozens of miles during an

single jump. This is of great value to the military because it allows for insertions of

airborne personnel into areas without endangering aircraft. With the added conceal-

ment of night, these jumps can become even safer. The equipment describe in this

chapter provides and overview of the components which are needed to accomplish the

task of adding a navigational aid to night vision goggles allowing operators to travel

vast distances safely navigating to their final destination. There are several alter-

native technologies which are currently being explored, but nothing currently being

developed provides the necessary information in a small compact easy to use package.

This research attempts to bridge this gap be developing a system which gives the

operator clear navigational information while not adding excessive weight.

48

IV. Software Implementation

This chapter describes the software and the engineering methods used to implement

the operational software utilized by this project. The software is designed to take an

input data stream from a sensor (MIDG) and calculate an accurate navigational path

for the paratrooper, based on environmental factors, such as wind, parachute type

and travel distances.

4.1 Input Data

The initial phase of the program begins by initializing the MIDG 2 sensor to

set unit parameters, such as message frequency and serial settings. Once set, the

MIDG begins streaming data via a serial connection into the body worn computer.

This program then parses the message data being received. The program stores the

latitude, longitude, altitude, yaw, pitch, roll, and magnetic orientation data in an

output file with the “raw” extension. This data can be utilized to provide record and

debugging information for future development. All latitude, longitude, and altitude

data is then transformed into an East/North/Up (ENU) coordinate system.

The ENU coordinate system is a local cartesian coordinate system which sets

the origin point (known as [0,0,0]) to the landing zone. This enables all calculations

to be performed in a local Cartesian coordinate system.

4.2 Jump Parameters

The program’s next step is to start a second thread to run the calculation func-

tions. The system is designed to run two user level threads simultaneously. The first

thread reads the sensor input and parses the data into usable messages (as described

above). This thread also stores the data into a log file and into a data repository

structure, utilized by the second thread. The critical sections (writes / reads) are

protected by a set of locks which only allows one thread access at a time. Once the

data is written and the locks are released by the sensor thread, the calculation thread

can then lock the data, to perform its read.

49

Figure 4.1: HAHO Mission Planner main screen

The first step of the calculation thread is to read the jump parameters. This

consists of two files. The first is a text file which overrides default parameters, such

as parachute data, final approach characteristics, and landing zone variables. An

example parameter file is located at Appendix A. This data allows each jump to be

configured according to the specific circumstances and operator’s preferences.

The second file loaded into the system is the wind data file. This file is a

standard file generated by the two major air delivery programs currently utilized. The

first program is called the Joint Precision Airdrop System Mission Planner (JPADS)

[DRA06]. This system is utilized by both the Air Force and the Army to deliver both

personnel and cargo to specific landing zones. The system receives wind data via

a radio signal from an air drop sensor, which is then fed to an on-board laptop to

generate the wind data file. The second program used by the air delivery community

is the HAHO Mission Planner, which is built specifically for the HAHO missions.

Figure 4.1 is a screen shot of the HAHO Mission Planner’s main input panel.

50

4.3 Algorithms

The navigation software consists of three major algorithms: the wind calcula-

tions, the calcSituation, and the display algorithm. The wind calculation algorithm

processes the input wind data and the parachute parameters to produce an accurate

navigation solution. The calcSituation algorithm utilizes the current positional infor-

mation to produce an updated situational report. This algorithm is where the delta

positional information is calculated and passed on to the display algorithm. The final

algorithm developed is the display algorithm, which transforms the physical world

into the NVG lens vector to create a screen display.

4.3.1 Wind Calculations. The wind algorithm reads wind data (wind speed

and direction) for every level loaded on the wind 1D file. Once the entire wind file is

loaded and set, the system generates three different paths. The first path is from the

Landing Zone to the Final Approach Point (FAP). The next path is generated from

the FAP to the Aim Point (AP). The final path is the path from the initialization

point to the AP. Each of these points is calculated based on inputs from the wind file

and the configuration text file. This solution guides the paratrooper on an offset to

compensate for wind drift, and allows the operator to reach the desired waypoint in

space.

Figure 4.2 illustrates the decision flow process followed in determining the po-

sitional data. Figure 4.3 is a graphical display of the effects winds have upon the

jumper. In Figure 4.3, the jumper heads to the aim point. The effects of the wind

will cause the jumper to drift to the desired physical way point. The surrounding cir-

cles represent the three ranges of the parachute travel ability. The solid middle circle

is the ideal glide slope, where the inner dashed circle represents the possibility of the

parachutist overshooting the intended target. The outer dashed circle represents the

maximum travel distance for that particular parachute. If the jumper is beyond the

outer circle, the target is out of reach, even at maximum glide.

51

Figure 4.2: System flow chart.

Figure 4.3: Wind drift effects on jumper. Jumper’s heading directs them to aim
point, compensating for wind effects.

52

Because the speed and direction of each wind level is different, the amount of

time the jumper spends in each level determines wind drift effects. For example, if the

winds at level two are blowing at 10 mph, out of the north, and the jumper spends

10 minutes within the wind level, then the jumper will have travelled 1.6 miles to the

south, while in level two (See Equation 4.1).

10(minutes) ∗ .16(miles/perminute) = 1.6(miles) (4.1)

Equation 4.2 is the distance equation used to determine the distance, where d is

distance, v is the velocity of the jumper and t is the amount of time spent within that

wind level.

vt = d (4.2)

v = velocity of jumper

t = amount of time spent in wind level

d = distance covered

Equation (4.2) shows how the calculations used to determine the proper wind

drift to be added to the overall wind.

Equation 4.3 represents the calculation used to determine the amount of wind

drift within a single level.

W = Vw∆t (4.3)

53

W = drift due to wind

Vw = 2 dimensional wind velocity vector

∆t = time in the wind level

In Equation 4.3 W is the drift due to wind, Vw is the 2 dimensional wind velocity

vector, and ∆t is the time in the wind level. ∆t is determined by Equation 4.6.

For several layers, Equation 4.4 is used to calculate the total amount of wind

drift.

W TOT =
N∑

j=1

(V wj∆tj) (4.4)

∆tj = time within the jth level

V wj = is the wind velocity vector in the jth level

Wind level j is defined by hmin and hmax, the minimum and maximum height

in that level. We want to calculate wind effect over altitude interval hmax − hmin.

Figure 4.4 is a graphical example of the level description.

For a parachute in descent, Equation 4.5 is used to determine the downward

movement distance.

∆h = Vd∆t (4.5)

∆t =
∆h

Vd

(4.6)

54

Figure 4.4: Display of four wind cases used to calculate navigational path. Case 1:
Minimum height is below current wind level. Case 2: Minimum height and maximum
height are above and below the wind level boundaries. Case 3: Maximum height is
above current wind level. Case 4: Minimum and maximum heights are within same
wind level.

55

∆h = downward movement distance

Vd = descent velocity

∆t = time of descent

There are four cases which are used to determine the time delta utilized in the

calculation. These four cases are dependant on the maximum and minimum height

of the situation. For a given wind layer, Equation 4.7 describes the determination of

∆h, for a given wind level. This equation is also described visually in Figure 4.4.

∆hj =

hmaxj − hmin if hmax > hmaxj and hmin ≥ hminj

hmaxj − hminj if hmax ≥ hmaxj and hmin ≤ hminj

hmax − hminj if hmax ≤ hmaxj and hmin ≤ hminj

hmax − hmin if hmax < hmaxj and hmin > hmin

(4.7)

∆hj = downward movement distance

hmax = maximum altitude

hmin = minimum altitude

hmaxj = upper boundary of wind level j

hminj = lower boundary of wind level j

Equation 4.8 is used to determine the ∆tj for each level, where ∆hj is the

downward movement distance, and Vd is the descent velocity.

∆tj =
∆hj

Vd

(4.8)

56

∆tj = time within the level

∆hj = downward movement distance

Vd = descent velocity

Equation 4.8 now provides the data to calculate the W TOT , as described in

Equation 4.4.

4.3.2 CalcSituation Algorithm. The calcSituation algorithm is the portion

of the system which provides the updated positional information and determines the

positional delta. Figure 4.5 is the visual representations of Equations 4.9 through

4.15 used to produce the delta position in relation to the projected path.

Within Equation 4.9, b is the projected distance, while a is the true distance.

P ref is the established fixed location, such as the final approach point or initial release

point. This is the same fixed point which will be used throughout the entire cycle of

calculations until the next phase of the descent is entered. The final variable, C is

the projected aim point taking into consideration the effects of wind drift.

b = a
C − P ref

‖C − P ref‖
(4.9)

b = projected vector p and P refprojected onto desired true path

a = vector between p and P ref

P ref = established fixed location

C = true aim point

57

Figure 4.5: This figure shows the visual representation of the components used to
establish the positional delta from the true path.

58

Equation 4.10 is used to establish a, which is the true distance along the true

path. p represents the true position, with P ref being the same fixed point used in

Equation 4.9. See Figure 4.5 for a visual description of the variables used for this

calculation.

a = p− P ref (4.10)

a = true distance

p = true position

Equation 4.11 defines the projected location at time t, where b is the value

established in Equation 4.9 and P ref is again the same fixed location used in previous

calculations.

P projt
= P ref + b (4.11)

P projt
= projected position at time t

∆p is established in Equation 4.12 as the difference between the product of the

present point (p) subtracted from the projected point (P projt
) established in Equation

4.11.

∆p = p
ref
− P projt

(4.12)

59

∆p = delta position projected on the projected path

For Equations 4.13 through 4.15 refer to Figure 4.5. Equation 4.13 establishes

b′, as the distance on the projected path to location c (projected aim point). The

equation multiplies the difference between c and P ref (which is the same reference

location used previously), by the ratio of the magnitude of b, which was established in

Equation 4.9, and the magnitude of the aim point (AP), and the established reference

point(P ref).

b′ = (c− P ref)
‖b‖

‖AP − P ref‖
(4.13)

b′ = distance on the projected path to location c

‖b‖ = magnitude of projected location established in Equation 4.9

AP = projected aim point, considering wind drift

Next in the Equation P projp
is established as the sum of P ref (same as previously

used) plus b′(established in Equation 4.13).

P projp
= P ref + b′ (4.14)

P projp
= projected position in relation to projected path

The final equation in the calcSituation establishes the projected position (P projp
)

from Equation 4.14 plus the delta position (∆p) established in Equation 4.12.

60

Figure 4.6: Rotate

P p = P projp
+ ∆p (4.15)

P p = current position with the goal at C (or aim point)

4.3.3 Display Algorithm. The third algorithm which is used by the system,

to generate the navigational message for the operator, is the display algorithm. This

algorithm is responsible for transforming a 3-D coordinate into the pixel location.

This physical location is defined by the transformed operator’s NVG position (lens

position) and the target location. Figure 4.6 describes the transformation utilized by

the system in which the lens position’s (P) x,y, and z axes are related to the physical

world’s x,y, and z axes.

The axis transformation is performed by applying Equations 4.16 through 4.20.

This set of equations is applied to every position which must be mapped to the screen.

61

Equation 4.16 calculates the vector below point location (XENU), which needs

to be projected and the jumper’s projected position (PENU
projp

), established in Equation

4.15.

∆XENU = XENU − PENU
projp

(4.16)

∆XENU = delta from projected jumper position to projected positional point

XENU = point to project

PENU
projp

= position from Equation 4.15 transformed into ENU coordinates

The next step is to rotate the ∆XENU into display (I) frame, by multiplying

the ∆XENU by the direction cosine matrix.

∆XI = CI
ENU∆XENU (4.17)

∆XI = position x, y, z rotated into image frame

CI
ENU = direction cosine matrix

∆XENU = delta position from Equation 4.16

Equation 4.18 is the CI
ENU matrix where, ψ represents yaw, θ represents pitch,

and φ represents roll, which are obtained from the MIDG.

62

Figure 4.7: The image plane which rotates the coordinate from the physical world
to the image plane.

CI
ENU =

sin φ cos ψ − cos φ sin θ sin ψ − sin φ sin ψ − cos φ sin θ cos ψ cos φ cos θ

cos φ cos ψ + sin φ sin θ sin ψ − cos φ sin ψ + sin φ sin θ cos ψ − sin φ cos θ

cos θ sin ψ cos θ cos ψ sin θ

(4.18)

Once the vector has been rotated into the display frame, the next step is to

project the location into normalized pixel locations. Figure 4.7 shows the layout of

the display in relation to Equations 4.19 and 4.20. The screen normalization takes the

three dimensional rotated ENU position, and produces an Xpix and Y pix location,

based on Equations 4.19 and 4.20. These Xpix and Y pix positions represent the final

display screen location of the pixel to be projected.

63

Xpix = Cx
X(1)

X(3)
+

M + 1

2
(4.19)

Xpix = screen X pixel value

Cx = normalized screen ratio, based on display resolution

X(1) = X projected value of XProj from Equation 4.17

X(3) = Z projected value of XProj from Equation 4.17

M = number of horizontal pixels

Ypix = Cy
X(2)

X(3)
+

N + 1

2
(4.20)

Ypix = screen Y pixel value

Cy = normalized screen ratio, based on display resolution

X(2) = Y projected value of XProj from Equation 4.17

X(3) = Z projected value of XProj from Equation 4.17

N = number of vertical pixels

4.4 Software Components

The following section describes the software components that make up the Nav-

igational application software. The first components described make up the wind

calculation algorithm. As described in section 4.3.1, this performs the wind adjust-

ments for the navigational message. The second set of software components make up

the calcSituation algorithm (See Paragraph 4.3.2). The final software components im-

plement the display algorithm as described in Paragraph 4.3.3. These three software

64

Figure 4.8: System domain diagram which describes the interaction between the
software components.

sections compose the model/view/controller architecture for the application software.

Figure 4.8 is the system domain diagram which describes the interaction between the

software components.

4.4.1 Wind Algorithm Software. The wind algorithm is composed of the

following two software components which provide the system with the wind calculation

tables for use in generating a navigational solution which can be successfully reached.

4.4.1.1 Wind.cpp. The wind.cpp handles all the wind calculations

that are used throughout the navigation path generation. Wind.cpp creates wind

tables for every altitude level which is read in by the paramloader.cpp. The levels

65

are stored as vectors which fluctuate to meet the needs for the number of wind levels

needed for a particular mission. Once the tables are created, the information is used

by the software to generate the navigational path between a reference point (i.e. the

Aim Point) and the target point (i.e. Final Approach Point), by the calcSituation

algorithm (See Paragraph 4.3.2). The winds for the altitudes between these two points

are used to determine the amount of drift which will be encountered during the time

within that particular wind level. This algorithm is described in much more detail

in section 4.3.1. Figure 4.9 is the class diagram for the wind class. This class is

composed of two main structures, params, and windVelocities. In addition, the wind

header file acts as an interface used to access the wind methods.

4.4.1.2 paramloader.cpp. The paramloader.cpp performs the reads

from both the config.txt and navaid.txt files to load system parameters and 1D wind

file. Figure 4.10 is the class diagram for the paramloader. This class is composed

of three structures, params, NavParams, and enuData; and three methods used to

perform the various loads. The first method reads data from the config.txt file, which

parses the data based on text file rules and keywords. If the inputs are invalid, an

error is posted citing the error and the system halts and exits. The second method

reads in the navaid.txt file, which is the 1D wind file standard used throughout the air

delivery community. This method parses the data, based on comma separated values,

and performs any data transformation needed on the input values, such as converting

the latitude and longitude from degrees to radians and converts the directional inputs

from compass headings to mathematical coordinates. These conversions are needed to

perform all future equations utilizing this data. All values which are read in by both

these classes are loaded into the Params data structure, (See Paragraph 4.5.0.4), to be

used as the model portion of the system architecture. The paramloader is executed

only once, at system initialization, since this data is static and therefore is never

changed throughout the system operation.

66

Figure 4.9: The wind class handles all the wind calculations that are used through-
out the navigation path generation. This class is composed of two main structures,
params and windVelocities. Additionally, the wind header file acts as an interface
used to access the wind methods.

67

Figure 4.10: The paramloader.cpp performs the reads from both the config.txt and
navaid.txt files to load system parameters and 1D wind file. This class is composed
of three structures; params, NavParams, and enuData; and three methods used to
perform the various loads.

68

4.4.2 CalcSituation Algorithm Software. These software components make

up the CalcSituation (See Paragraph 4.3.2) algorithm portion of the system. These

components parse incoming data reports and provide updated positional information

to the display algorithm.

4.4.2.1 MIDGIIController.cpp. The MIDGIIController.cpp was first

developed by Kresge [FLE07] utilizing the MIDG 2 sensor. The original code was mod-

ified to meet the needs of this software application. This class initializes the MIDG,

the serial port, and the output record files. The MIDGIIController then begins to

read incoming messages on the serial port and stores the data in the appropriate data

structure for use by the processing segment of the software. The serial processing is

performed in a separate thread which locks and unlocks the data structures as needed

to ensure race conditions are avoided. This class provides the updated positional in-

formation which is used by the calcSituation (See Paragraph 4.3.2), by updating the

NavParams (See Paragraph 4.5.0.5) with the positional and orientation data. This

class also controls the rate at which data is read from the MIDG sensor, which is

currently set at 2 Hz.

4.4.2.2 LLAConvert.cpp. LLAConvert.cpp is a utility class which

performs the math functions to convert latitude and longitude into the east/north/up

coordinates. East/north/up (ENU) Cartesian coordinates use the landing zone as the

[0,0,0], to base all other location calculations. This allows for the math functions to

be performed in a simpler manner, as compared to performing the same operations

on latitude and longitude coordinates, which would be much more complex.

4.4.2.3 location.cpp. To generate the proper display, the present po-

sition information is read from a data structure NavParam (See Paragraph 4.5.0.5)

containing the latitude, longitude, altitude, yaw, pitch and roll for the operator’s

current position and orientation. Figure 4.12 is the class diagram for Location.cpp,

69

Figure 4.11: LLAConvert class diagram

70

which is made up of three structures; params, NavParam and enuData. The class

uses the data in the static params data to generate the updated ENU positional data.

4.4.2.4 situation.cpp. The situation class is called upon to determine

the location of the operator. It then determines which phase of the descent the

operator is currently in, whether approaching the Aim Point, the Final Approach

Point or the Landing Zone. Once the stage is determined, the appropriate reference

and target points are used to calculate where on the path the operator should be

located, as described in Paragraph 4.3.2, and Equations 4.13 through 4.15. Figure

4.13 is the class diagram for the situation class. The class structure is composed of

two structures, params (See Paragraph 4.5.0.4) and the NavParam (See Paragraph

4.5.0.5).

4.4.3 Display Algorithm Software. The final software components described

make up the display algorithm. These components are responsible for utilizing the

operator’s positional and orientation information and creating the correct situational

display. Paragraph 4.3.3 and Equations 4.16 through 4.20 describe the algorithm

which is implemented by the following software components.

4.4.3.1 box.cpp. Box.cpp is the class utilized to construct the tunnel

display based upon the same fixed location coordinates used in Equations 4.16 through

4.20. This provides an anchor location which is the endpoint for the center of the

tunnel. The class diagram for the box class is shown in Figure 4.14, which illustrates

the class composition as being made up of two structures, params (See Paragraph

4.5.0.4) and NavParam(See Paragraph 4.5.0.5).

4.4.3.2 draw.cpp. Draw.cpp is used to interface with the SGE graphics

library [AND00], used to draw simple shapes, such as lines and ellipses. In addition to

the simple shapes, the draw class also implements the textual display utilized to pass

information such as operator location and orientation (yaw, pitch, and roll). The draw

71

Figure 4.12: The location class reads the present position information from a data
structure NavParam (See Paragraph 4.5.0.5) diagram. Location.cpp is made up of
three structures; params, NavParams and enuData.

72

Figure 4.13: The situation class is called upon to determine the location of the op-
erator. It then determines the current descent phase based on positional information.
The class structure is composed of two structures, params and the NavParam.

73

Figure 4.14: Box.cpp is the class utilized to construct the tunnel display based
upon the same fixed locations coordinate used in Equations 4.16 through 4.20. The
class is composed of two structures, params and NavParam.

74

methods use pixel locations which have already been rotated into the proper NVG

frame and normalized for the screen resolution, as described in paragraph 4.3.3. Figure

4.15 is the class diagram for the draw class, which is composed of two structures:

params (See Paragraph 4.5.0.4) and NavParam(See Paragraph 4.5.0.5).

4.4.3.3 path Projection.cpp. The path Projection class performs the

critical equations used to rotate and normalize the pixel locations, as described in

Paragraph 4.3.3 and Equations 4.16 through 4.20. This class converts the physical

real-world location into a normalized 2-dimensional pixel location. The display is

based on taking a three dimensional physical location and transforming the coordi-

nates into a 2-dimensional screen location. The basis for this transformation is found

in [VET]. The program first transforms the ENU Cartesian coordinates into the

NVG visual coordinates, as described in Paragraph 4.3.3. Figure 4.16 represents the

class diagram for the path Projection class. This class is composed of two structures:

params (See Paragraph 4.5.0.4) and NavParam (See Paragraph 4.5.0.5).

4.5 Data Structures

The software utilizes two main structures, which are the params and NavParam

data structures. These two structures are the cornerstones to the navigation program,

providing central accessibility for data utilized by other classes. The params structure

is used as the model portion of the software; it provides a location where static data

is loaded and is accessible by the system. The NavParam data structure provides

a location where updated positional information is stored for processing during that

particular cycle.

4.5.0.4 params – User Parameters. The user parameters are read

by the paramloader (See Paragraph 4.4.1.2, which opens up the config.txt and the

navaid.txt files as read-only to prevent data corruption). The user parameters are

stored in the params structure, which holds all static jump data, such as the landing

zone, release point, final approach, and aim points. Each of these objects in the

75

Figure 4.15: The Draw is used to interface with the SGE graphics library [AND00],
used to draw the simple shapes such as lines and ellipses. The draw class is composed
of two structures: params and NavParam.

76

Figure 4.16: The path Projection class performs the critical equations used to rotate
and normalize the pixel locations, as described in Paragraph 4.3.3 and Equations 4.16
through 4.20. This class is composed of two structures: params and NavParam.

77

data structure has its own information, such as the initialization point, latitude,

longitude, altitude, and east/north/up (ENU) location coordinates. A sample of

the data structure is located in Appendix A. This structure represents the model

portion of the architecture. It provides data which is static and will not change once

the initial loading and calculations are performed. This also allows several of the

calculations to be performed prior to the mission start (sensor reading cycles). For

example, the wind data is contained within this structure. All wind level calculations

are performed prior to the sensor reading cycles, which allows the wind data to be

stored in a static manner, preventing repeated calculations from being performed.

This allows the algorithm to be more efficient since it only performs the calculations

once and stores the data for future reference throughout the processing.

There are two structures which are embedded within this structure. The enuData

is used to store East/North/Up coordinates for each of the fixed locations. The sec-

ond structure, windData, is used to store information about each wind level. Each

individual wind level (Paragraph 4.4.1.1 and Equation 4.4 describe the process to

calculate the wind Data.) is stored as a single windData record within the params

structure.

4.5.0.5 navparam–Navigational Positional Data. The NavParam struc-

ture was developed to store data for the current report cycle (present position navi-

gational data). This allows all information for a single cycle to be located in a single

structure which is standardized throughout the program. The NavParam structure

holds present position data, such as latitude, longitude, altitude, and yaw, pitch, and

roll orientation.

4.6 Kernel

The kernel is the controlling program within the computer operating system.

It is the first part of the operating system to load into memory during booting. It

remains there for the duration of the computer operations because it provides services

78

throughout the entire process. Since it remains in memory, it must be as small as

possible, but still provide the robustness needed to deliver all necessary services to

other parts of the operating system and application programs. Linux was chosen as

the operating system, since its kernel could be configured and rebuilt to provide the

needed functionality while maintaining the small memory footprint.

The kernel was built utilizing the Kontron Company’s toolchain program and

scripts. The toolchain consists of a number of components needed to build the kernel.

The main one is the compiler itself; the GNU Compiler Collection (GCC), which is

used to the host a cross-compiler. This is supported by binutils, which is a set of tools

for manipulating binaries. The process used to build the kernel involved modifying the

basic build scripts provided by Kontron to remove unnecessary functionality, while

maintaining the critical services for the navigational application software and the

80219 processor.

4.7 Root File System – Journal Flash File System 2

A second crucial element of the operating system is the file system structure.

The file system provides the structure and organization for storing files and data

to allow for ease of access. UNIX and Linux operating systems normally require a

graceful shutdown to prevent corruption to the file system structure. The graceful

shutdown of this system could not be guaranteed, and in most cases this system will

only be shut down by removing power. Because of this reason, the (JFFS2) was

selected as the file system to use in this application. This file system was designed

to handle embedded Linux operating systems that are not gracefully powered down.

It provides this capability by placing the file system directly on the flash memory

instead of translating the filesystem for placement on a hard drive.

4.7.1 Software Tools.

79

4.7.1.1 Eclipse IDE. The primary tool used in the software develop-

ment of the application software was the Eclipse (IDE). The programming was per-

formed within the Linux version of the Eclipse IDE version 3.2 utilizing the C/C++

plugin. This tool was selected because of familiarity with the development environ-

ment and the various tools and plugins available. An additional advantage to this

tool is the ability to run under the Linux operating system, which is necessary to

perform the cross compilation needed to build the application targeting the XScale

architecture. The cross compile capability allows the program to be written, run, and

debugged on an x386 architecture then recompiled targeting the new architecture; in

this case, the X-Scale ARM processor.

4.7.1.2 Analysis/Design. To enhance the development and analysis

of the software, (UML) diagrams are utilized. The Umbrello diagram tool was also

utilized to provide a cleaner look at the class relationships. Umbrello works with Linux

Eclipse and provides class relationship analysis. The class diagrams used within IV

were created using this tool.

4.7.1.3 Software Repository. To ensure the security of the software and

the performance of proper backups, a Concurrent Versions System (CVS) repository

was established on the AFIT telemark UNIX server. This location is used to keep a

historical repository which provides several benefits. The primary benefit being the

normal backups performed on the system. By having the data backed up on a regular

basis, a functional back up is readily available if something were to happen to the

sandbox copy. In addition, to the security provided by redundancy, CVS also provides

a historical trail of the updates performed. This allows a working copy to always

be available. CVS provides a repository allowing for application rollback if needed.

Therefore, if during the course of modifying the software, it is determined that a

particular path needs to be reconsidered, CVS provides the avenue to accomplish this

task. The final advantage of utilizing the CVS repository is the access to the code

80

from anywhere with an internet connection. This allows for work to be accomplished

on a current version of the software without dealing with synchronization issues.

4.7.2 Software Development Process. The iterative development method

was used for this project to benefit from the stability offered. In addition, the software

development approach was also modelled after the Microsoft cooperation, by not

allowing branches (target and development) to diverge and by also maintaining a

functional code. Backups were performed at least once daily during the development

process and were always functional. This means the backups were always in a state

which could be compiled and run. The backup would not contain all the functionality

and many of the functions were stubbed out, but the software was in a stable state

which could be run.

By utilizing this type of backup system, the software was also constructed utiliz-

ing several incremental builds. The iterative development process was used to break

the project down into small iterations and provide a stable foundation for future

growth. For example, the first phase of the project developed the parsing and data

file loading classes, then the wind algorithm classes were developed. This allowed

the system to be grown while still maintaining an operational system. The multi-

ple smaller builds avoided the waterfall method and provided a logical breakdown of

the entire system. This type of development also allows testing and bug resolution

prior to the final stage of development. The iterative process has multiple cycles of

planning, requirements, analysis & design, implementation, testing, and evaluation.

There were two distinct development branches utilized for this project. The

first was the development system, which was an Intel architecture Dell laptop run-

ning an Intel core Duo, with the Linux operating system. This system was chosen

as the development system because of its robust debugging and multi tasking capa-

bility. This is a deviation from Microsoft, in that development was not performed

on the actual system which the application was intended to run upon. The second

development branch was the cross compile targeted XScale processor. This computer

81

processing board that runs during the operator descent provides the navigational

path and display processing. Once the software was written and in a stable state, a

cross compilation was also executed. This entailed ensuring the libraries and header

files were all properly compiled to run on the different architecture. By keeping both

branches synchronized, all debugging and compilation issues were resolved throughout

the development, instead of waiting until the last iteration of development.

4.7.3 Design Patterns.

4.7.3.1 Model-View-Controller Pattern. The application software is

implemented following a Model-View-Controller pattern (MVC). The MVC divides

and redistributes responsibility so that classes and packages stay small enough to

maintain [MET03]. In this project the division is aligned with the three algorithms

described in Chapter IV. The model portion of the architecture is the wind algorithm,

(See Paragraph 4.3.1), which defines the static data used throughout the software.

Once the program begins, there are no updates to the parachute, wind or user pa-

rameters. The controller portion of the system is the CalcSituation algorithm (See

Paragraph 4.3.2), which is the updated information based on present positional data.

This controls the system application. The display algorithm, (See Paragraph 4.3.3),

represents the view portion of the system.

4.7.3.2 Interface Pattern. The next pattern implemented is the in-

terface pattern. All classes have a header file which defines the interface needed to

interact with methods and data in a given class. A benefit of an interface pattern is it

imposes a limit on object interaction. The limitation allows for ease of maintainability

by allowing the class which implements an interface to be changed in how it fulfills

the interface, while leaving the client unaffected [MET03].

4.7.4 UML Analysis.

82

4.7.4.1 Class Diagram. Class diagrams are one of the primary tools of

object-oriented analysis and design. They show the classes of a system, their interre-

lationships, (including inheritance, aggregation, and association), and the operations

and attributes of the classes. Class diagrams are used for a wide variety of purposes,

including both conceptual/domain modelling and detailed design modelling. In this

project class diagrams are shown in section 4.4, which describes the various classes

which make up the system algorithms and their relationships.

4.7.4.2 Use Case Analysis. Use case diagrams provide an overview of

the usage requirements for a system. They are useful for presenting the requirements

in a simple straight-forward manner. Use cases describe “the meat” of the actual

requirements. The use cases listed below were used in determining the software flow

for various jumper situations. These cases show what will occur when the jumper

is on the average glide slope (best case), when the jumper is at the maximum glide

slope to the target, when the jumper is beyond the maximum glide slope to the target,

and when the jumper is in danger of over shooting the target. Figure 4.3 shows the

possible jumper locations and how these relate to the four cases developed below.

Use Case 1: Jumper on average glide slope

Scope: CalcSitution algorithm, Display Algorithm

Level: subfunction

Primary Actor: Jumper

Precondition: Parachute parameters have been input and wind calculations have

been performed

Main Success Scenario:

1. Jumper is following navigational data

2. Jumper is on glide slope

3. “On Track” Message is posted to HUD

83

4. Wind data is accurate

5. Jumper is able to reach aim point with average glide slope

Extensions:

1. Jumper remains on glide slope, no change needed

2. Winds remain stable

Technology and Data Variations List: None

Open Issues:None

Use Case 2: Jumper is at maximum glide slope

Level: CalcSitution algorithm, Display Algorithm

Primary Actor: Jumper

Precondition: Parachute parameters have been input and wind calculations have

been performed

Scenario:

1. Jumper is at the maximum glide slope distance

2. “Max Glide Slope Needed” Message is posted to HUD

3. Tunnel display is updated according to Equations 4.13 through 4.15, to

reflect course deviation

4. Jumper uses maximum glide to adjust position

5. “On Track” Message is posted to HUD

6. Jumper reaches aim point

Extensions:

1. Jumper does not adjust to navigation messages

2. Tunnel display continues to show position off of intended navigational path

– Path does not recalculate to new position

84

3. Jumper continues to drift out of navigational parameters – See use case 3

“Beyond glide slope”

Technology and Data Variations List: None

Open Issues: None

Use Case 3: Jumper beyond maximum glide slope

Scope: CalcSitution algorithm, Display Algorithm

Level: subfunction

Primary Actor: Jumper

Precondition: Parachute parameters have been input and wind calculations have

been performed

Scenario:

1. Jumper is beyond maximum parachute travel distance

2. “Beyond Reach” message is posted to HUD

3. CalcSituation recalculates tunnel display parameters

4. New navigational data is updated

5. “On Track” message posted to HUD

6. Jumper reaches aim point

Extensions:

1. Jumper’s position is out of reach of final aim point

2. “Miss Target” message posted to HUD

3. Navigational tunnel still shows original path

Technology and Data Variations List: None

Open Issues: None

85

Use Case 4: Jumper overshoot possibility

Scope: CalcSitution algorithm, Display Algorithm

Level: subfunction

Primary Actor: Jumper

Precondition: Parachute parameters have been input and wind calculations have

been performed

Scenario:

1. Jumper is within the minimal glide radius

2. “Over Shoot Warning” Message is posted to HUD

3. Jumper bleeds off excess altitude

4. Tunnel display continues to show position off of intended navigational path

– Path does not recalculate to new position

5. Jumper’s altitude is readjusted to navigational data

6. “On Track” message posted to HUD

7. Jumper reaches aim point

Extensions:

1. Jumper does not adjust flight path

2. “Miss Target” message posted to HUD

3. Navigational tunnel still shows original path

Technology and Data Variations List: None

Open Issues: None

4.7.4.3 Sequence Diagram. UML sequence diagrams model the flow of

logic within a system in a visual manner, enabling both documentation and validation

of logic, and are commonly used for both analysis and design purposes. Sequence

86

diagrams are the most popular UML artifact for dynamic modelling, which focuses

on identifying the behavior within a system [MET03]. Figure 4.17 is the sequence

which shows the location class flow. The diagram describes the system flow from the

location class. This class will call the path projection class, which is used to calculate

the proper pixel display location, as described in Equations 4.13 through 4.15, by

calling classes such as box.cpp and magnitude.cpp, which finally calls draw.cpp to

present the data.

4.8 Summary

Chapter four described the three algorithms which make up the developed appli-

cation. Further, the various software components which were developed to implement

the various algorithms were also described. The software is also depicted by utilizing

class diagrams, which show the relationship between the various classes and the data

structures. The model/view/controller architecture used to model the software is also

related to the three algorithms and their interrelationship. The final portion of this

chapter briefly describes the software practices and tools used to aid the software

development.

87

Figure 4.17: The location class sequence which shows the program flow. Loca-
tion.cpp calls the path projection, class which is used to calculate the proper pixel
display location, as described in Equations 4.13 through 4.15, by calling classes such
as box.cpp and magnitude.cpp, which finally calls draw.cpp to present the data.

88

V. Methodology and Results

This chapter discusses the techniques used to evaluate the graphical HUD developed

for this project and its impact on the operator’s ability to track a designated target

location. The ability to track a target location involved both the ability to keep a

target within the display screen and the ability to reacquire the target after looking

away by utilizing directional arrows. This evaluation was conducted on the ground

for safety and cost reasons, therefore the main point of evaluation was the amount

of lateral (yaw) head movement needed to track the target. Pitch and roll head

movement was not as critical during this evaluation, since altitude was not a factor.

This test does not test the entire system. For example, the tunnel in the sky approach

was not able used in the ground testing. There were plans to accomplish additional

tests beyond what are shown here, but due to time constraints these were not able to

be accomplished. The point of the testing described in this section is to demonstrate

that the system is able to provide visual cues which enable a user to look in the

correct direction (towards a fixed target). This capability is fundamental to the more

advanced display algorithms described in Chapter 4.

5.1 Goals and Hypothesis

The goal of this research was to design a navigational aid to assist HAHO

jumpers reach their desired location in darkness or inclement weather. This research

broke this goal into two portions, each of which will be addressed separately; first the

head tracking algorithms and second, the impact of the navigational aids in reaching

a target destination.

Since work had been done prior to this research in determining which naviga-

tional display would provide the more intuitive reading for the individual, this research

will not address that particular issue, but will instead focus on the ability to navigate

and reach a destination at various distances.

The navigational HUD display is an improvement of the system utilized to test

the prior system by Thompson [THO05]. The NVG system utilizes an E-HUD system,

89

Figure 5.1: Screen shot of the HUD display.

boasting a 46 degree field of view, which is a vast improvement over the previous 13

degrees. Another major advancement this project produced was the addition of a

head tracking system, which is utilized to monitor the operator’s visual field.

The navigational display shows a small flag centered upon an oval to clearly

identify the targeted landing zone. If the LZ is not within the field of view, then

directional arrows will indicate the appropriate vector needed to reacquire the target.

The tunnel in the sky is represented by various numbers of squares, leading to the

landing zone, dependant upon the distance to the LZ. The textual display is located

across the top and bottom of the display. The indications are the east, north, and up

distance to the target, with the next line down indicating the operator’s orientation

in yaw, pitch and roll of the helmet mount sensor. Across the bottom is a heading

display (yaw information) and target distance information (See Figure 5.1).

5.2 Approach

The research goal was to evaluate the effects of the added navigation technol-

ogy to the current night vision goggle capabilities. Due to the danger and expense

involved in actually performing an airborne jump, ground testing was conducted.

This provided a first look opportunity at the software and algorithms used to both

track head movements and identify targeted locations. This is a crucial first step to

90

ensure all hardware components operate as expected–providing the necessary data in

the expected time frame.

The first portion of the test was designed to test the quality of the head tracker

in both stationary and moving scenarios. Head tracking allows the user to move his

head or be in motion while not looking directly at the target and still able to reacquire

the target in the correct position. The second portion of the test will evaluate the

user’s ability to utilize the navigational aides to effectively reach a predefined location

at various distances.

5.3 System Description

The components that made up the system under test include:

• GPS system–The system is made up of the various components and software

described in Chapters 3 and 4.

• Test subject– Individual who was responsible for acting upon the supplied nav-

igational information.

• Test monitor/safety–Individual responsible for monitoring the test and ensuring

hazards were avoided.

• Dell Latitude (2 gigahertz, 512 megabytes of RAM, running a standard AFIT

ghost XP configuration) laptop–used to run software test software under a con-

trolled computing environment.

• STS LPNVG PVS/AV-21 Monocle, with the standard E-HUD.

• Dell Inspiron E1505 Core Duo–Utilized for charting the test course.

• Garmin Legend e-trex–Handheld GPS receiver, used as baseline test.

5.4 Evaluation Technique

The ideal evaluation is to have an experienced HAHO jumper utilize the sys-

tem and evaluate the effects of the navigational aides. There are several test jump

91

organizations who are willing to actually perform this test. For example, one of the

primary sponsors of the research was the Army’s Research and Development Center

in Natick, MA, who performs these types of experimental jumps with various naviga-

tional equipment. Unfortunately, without further verification testing and evaluation

of the system, this is an unsafe option. Test jumpers would be risking their lives while

evaluating the system, and therefore the system must have a high degree of confidence

which has not yet been obtained.

The second option, which is less dangerous, is to utilize simulators and emula-

tors. A parachute simulator maintained by the Ohio National Guard was evaluated

for testing purposes, but unfortunately was found to be unsuitable for the evaluation

of this system. The simulator places the individual in a parachute harness, and has

the operator wear a set of virtual reality goggles, and simulates the movement which

occurs in various weather and altitudes. The use of the virtual reality goggles elimi-

nates the ability to utilize this system as a viable test environment since it does not

allow for information to be fed into the GPS/head tracking system developed.

The simulation originally developed by Balaz provides the movement simulation

and the tunnel display upon the desktop for a safe environment, but does not have an

interface to the NVG system nor does it provide a simulation for the newly developed

head tracking system. Therefore, neither of these simulations could be utilized for

the evaluation.

Due to time constraints, a realistic simulation was not developed for this system.

This would be the logical next step, developing a system which not only emulates

winds upon the path, but also accounts for the head movements of the user.

The final option chosen was the ground evaluation of the system. This option

also had several constraints, but allowed the system to be evaluated by tracking

movements of the test individual in a safe, controlled environment. The system was

developed for use by HAHO jumpers and therefore, also utilizes altitude within the

navigation algorithm. Unfortunately, by performing ground testing, the 3rd dimension

92

was removed from the equation. In addition, the winds were also removed from the

equation due to the fact that a ground walker is not affected by the winds in the same

manner as a parachutist, during freefall.

5.5 Experimental Design

The test was designed to test two distinct aspects of the research. First the head

tracking algorithm was tested. This evaluation was designed to evaluate the accuracy

of the head tracking system, which was a newly implemented development. Previous

work has been conducted on the “best” navigational message to display, but none of

these had the ability to track the user’s head movements and incorporate that into

the display. This evaluation also addressed possible issues with the MIDG internal

magnetometer.

The first portion of the test was designed to test the internal magnetometer and

the effect that various environments could have upon its operation. The test placed

the unit in a stationary position, allowing it to track a target over a period of time to

record the amount of drift noted. The test was conducted both within a build with

an external GPS antenna feed and in an outside field free from obstacles and at least

100 meters from power lines and light poles. The amount of drift was tracked and

noted.

The second test was designed to evaluate the ability to navigate to a location

while in a moving vehicle. A path to three different points was plotted and used as the

predefined coarse. This test was designed to determine how accurately and efficiently

the paths could be followed utilizing the various systems. The differences were noted

in both the head movement and the amount of time the target was off screen during

navigation to the target location.

93

5.6 Workload

The workload submitted to the system consisted of the distance between the

origin and the target. The distance between tunnel squares and the size of the squares

was kept at a constant, and therefore did not influence the test operation. The

distances ranged from several meters to over a kilometer. In addition, various paths

types were chosen, such as in an open field or around buildings.

5.7 Performance Metrics

The primary performance metric utilized by the evaluation was the amount

of head movement used to navigate to the target LZ. This head movement had a

direct effect on the time needed to operator needed to reach the designated target.

In addition, the time to reach each target was also used as a performance metric

to determine the effectiveness of the navigational aids. It is assumed that the more

intuitive and responsive the display, the quicker the user will be able to follow the

navigational data.

5.8 Test Parameters

The following parameters were factors in the ground testing of the system:

• Environmental conditions–This includes the air temperature, precipitation lev-

els and the terrain being navigated.

• Lighting Conditions–The system is designed to be utilized during hours of dark-

ness.

• Individual–Different users have different abilities to understand and follow nav-

igational data.

• Terrain–The course traversed various types of terrain, such as paved pathways,

grassy areas and hilly terrain.

• GPS accuracy.

94

5.9 Suggestions for Future Testing

Ground testing was utilized because this was the safer option, however this

method had several limitations which affected its actual relation to a real world

parachute jump. To build confidence in the system and identify all potential software

errors and hardware limitations, the system must be fully stressed by lab modelling.

The next step would be to develop a simulation which can simulate winds,

descent rates, and environmental influences. The simulation must then be able to

read inputs, such as head tracking and user steering inputs, and incorporate these

into a realistic scenario, which will stress the system. The navigational messages

output by the simulation must be realistic and correctly direct the operator to the

intended landing zone.

Once confidence in the system has been established via extensive lab modelling,

the final step will be to actually have the system jump tested by qualified parachutists.

The safety precautions must be explored and developed to account for system failure.

The operator must have the ability to navigate and safely land if the system completely

fails. A second consideration is to have a control system jumped at the same time to

ensure the system does not output erroneous navigational data which could lead the

jumper into a hazardous condition, such as sending him off course into a populated

area or a water landing. Both of these scenarios could expose the jumper to undo

danger.

A final consideration prior to having the system actually jump tested is to en-

sure the hardware components meet the safety requirements needed. For example,

the system must be sealed to ensure moisture does not adversely affect the opera-

tion. Video and input cables must be safely secured to not interfere with parachute

operations, causing a hazard by fowling the chute deployment.

95

Figure 5.2: Map of locations, distances and paths followed during the evaluation.

5.10 Test Design

5.10.1 Head Tracking. The test was designed to test two aspects of the

implemented research; the head tracking and the navigational impact of the additional

information. The head tracking aspect of the test did not address the tunnel or

navigational capabilities, but only the ability of the operator to correctly track and

reacquire a target at various distances. Although the additional navigational data,

such as the tunnel in the sky, were available and operational during the test, this test

focused on the use of directional arrows to indicate correct look vectors.

The baseline used for this test was to mount the head tracking unit in a fixed

forward facing position and follow the course to the intended target location. This

recorded the amount of variance the target was actually off screen. This test was

repeated to all three different locations. The test was then repeated while having the

golf cart follow the predefined path, but while having the test subject try to keep the

target within the visual screen. This test was also conducted to all three designated

target locations.

96

5.10.2 Path Navigation. The second portion of the test utilized both the

head tracking and the tunnel in the sky concept to navigate to a designated location

(See Figure 5.2). The predefined course presented obstacles which caused the system

to adjust its navigational solution with a new course. Due to a last minute failure

of one of the body worn display components, the test was modified from its original

configuration. The test was run on the ground utilizing a laptop to provide the

display interface. This did have an impact on the test due to the increased speed and

memory of the laptop as compared to the body worn computer design. To provide

the necessary power to run the head tracker and the laptop, the test was conducted

on a golf cart with an onboard power supply. The maximum speed utilized during

the test was 10 mph, with an average speed of only 6.8. The use of the golf cart also

presented an influence on the test and outcomes, since now timing was not effected

by the individuals walking, but instead on the ability to pass navigational data to the

cart operator.

Again, since this was a ground test, neither wind nor altitude were significant

factors in the overall test. This was very apparent by the small amount of variation

in the pitch recorded during the various test runs. It is speculated that during an

actual parachute decent, the pitch and roll aspects of the head movement would be

far more drastic.

5.11 Test Results

5.11.1 Head Tracking. The first set of test reinforced the initial hypothesis

that attitude would not be a factor while performing ground test. This was very

apparent by the tracking of the head movements. Figure 5.3 show three distinct

tracks for the yaw, pitch and roll. During all test runs, the pitch and roll were only

slightly affected, while extreme fluctuations were noted in the yaw during the same

time period. This same data is also shown in Figure 5.3 with the yaw value adjusted

to show only positive values. If a value was negative, 360 would be added to value,

in order to bring the range between 0 and 360 degrees.

97

Figure 5.3: Plot showing slight movement in pitch and roll, but large amount of
movement needed in the yaw axis to keep target within screen.

Figure 5.4: This plot uses the same data as Figure 5.3, but the data data has been
adjusted to show the ranges between 0 and 360.

98

Figure 5.5: Two test run tracks which shows extreme movements of the yaw axis
in comparison to pitch and roll.

Figure 5.5 shows the pitch and roll fluctuations for 2 test runs to point 2 (370.14

meters). This shows that the altitude portion of the navigation algorithm had very

little influence on the ground test. Since it is speculated that airborne personnel

would have a much greater variance and use of all three axis; yaw, pitch and roll, a

simulation must be created to allow the operator to exercise all three axis. Because

the yaw movement can have a 360 degree change, Figure 5.6 is the same plot used in

Figure 5.5, but adjusted for positive values only. If the degree was negative, 360 was

added to the value in order to bring all values between 0 and 360 degrees.

During the testing of the head tracking, the amount of head movement by test

subjects at times caused the head tracker to become disoriented and became 180 de-

grees inverted. This is believed to be due to an issue with the internal magnetometer.

Figure 5.7 shows the amount of head (yaw) movement for two test runs. The first run

(blue) line is a stationary mounting of the head tracking unit on the golf cart following

the predesignated path. The objective of this test was only to see how much variation

99

Figure 5.6: Same test run track data shown in Figure 5.5. This plot has yaw 360
degree adjustment in order to bring the values between 0 and 360 degrees.

there was in the yaw movement, without attempting to keep the target within the op-

erator’s target. This was following a path, without any navigational assistance from

the system. The spikes in the the yaw are due to the turns in the path which caused

the momentary spike in the degree of movement. The second line (red) represents the

amount of movement (yaw) of operator’s head while attempting to keep the target in

the screen while in a moving vehicle (golf cart). The data shows that an operator’s

head must be in almost constant movement to adjust for the target tracking. The

minor corrections allowed the operator to keep the target within the screen, but it

also indicates that the smaller movements were also due to the effectiveness of the

directional arrows. The efficient use of the vectoring arrows allowed the operator

to make minor adjustments to the look vector to reacquire the target. This was a

successful test of the head tracker with no head tracker disorientation.

Figure 5.8 is the yaw tracking data for a test run conducted to a target location

which was 1142 meters from the starting location. This plot shows the entire run,

100

Figure 5.7: Forward facing mounted head tracker (previous research), operator
mounted head tracker. Amount of movement noted in attempting to keep track
within screen.

but is intended to highlight how the test subject became disorientated at about the

4 minute mark. The yaw track became almost 180 degrees off normal tracking and

much more movement in the pitch and roll axis appears, as the operator attempts to

reacquire the target. Figure 5.10 represents 5 minutes of the run, intended to show

the effects of the head tracking disorientation. During this period, for about a minute

period the operator was tracking data at 180 degrees off target. The line follows a

fairly smooth track for the first four minutes with only momentary spikes in the yaw,

but then the head tracker becomes disoriented at about three and half minutes into

the reading. The tracking average moves from negative 150 degrees to positive 150

area of tracking. Figure 5.9 is the same data track adjusted for yaw’s 360 degree offset.

If a report was negative, 360 was added to bring the report back into the positive set.

The disorientation period is still visible at the same time. As a note, the time graph

was truncated to 600 reports for clarity of information. During the test, the safety

101

Figure 5.8: Data tracks for the 2nd run to location 3. This Data shows how the
operator becomes disoriented, affecting all three axis as he attempts to reacquire the
target location.

monitor intervened to avoid any possible safety issues and returned the test subject

to tracking the orientation for the remainder of the test.

The plot in Figure 5.11 illustrates the difference between the heading angle to

the target and the operator’s head tracking yaw. The blue track indicates the heading

angle to the target. The green plot indicates the human yaw tracking which took place

in order to keep the target within the screen. The difference between the two plots

indicate the amount of movement needed by the individual in order to keep the target

within the screen.

Fiqure 5.12 represents the amount of drift and correction which is imposed upon

the head tracker with no movement. The data represent 58 minutes worth of tracking,

where the target was acquired and the system was then set on a stationary workbench.

This system was connected to an external GPS antenna, but the head tracker was

102

Figure 5.9: Data tracks for the 2nd run to location 3, this is the same data used
for 5.8. The data track has been adjusted for yaw’s 360 degree offset. If a report was
negative, 360 was added to added to the report, to make it positive.

Figure 5.10: Yaw data for the test run to location 3. This data indicates a 180
difference from report 453 to report 454. After this point, tracking is almost 180
degrees different from previous target tracking.

103

Figure 5.11: This plot illustrates the difference between the heading angle to the
target and the operator’s head tracking yaw. The blue track indicates the heading
angle to the target as calculated by the software. The green plot indicates the human
yaw tracking which took place in order to keep the target within the screen.

surrounded by electrical equipment to induce a high average electrical field. The

electrical interference could have been both much worse (placing strong magnetics

near magnetometer) or much less by having the system placed in an open field for the

period. This test shows under somewhat normal operating conditions, the stationary

drift of almost 2 degrees of yaw for the hour period is uncorrected. Although, when

in a moving vehicle without dramatic changes in direction, the tracker seems to hold

the same type of tracking. The disorientation while in movement, problem seems to

only occur when drastic (over 90 degrees) changes in direction are made. This is only

preliminary speculation, and would require additional testing, focused solely on the

movement effects, to determine the true effects.

5.11.2 Path Navigation. This test was initially intended to utilize time

as the primary metric to measure the difference between the various types of nav-

igational aids, in addition to provide some comparison to previous research work.

104

Figure 5.12: Data from a 58 minute stationary test. This plot indicates the amount
of drift introduced into the head tracker in an indoor environment with an externally
mounted GPS antenna connection.

Unfortunately, due to hardware issues, the body worn computer which was used to

run the navigation software and power both the HUD and head tracker, was unable

to be used for the testing. Therefore, a Dell laptop was substituted, to replace the

body worn computer. Due to this substitution, much more care had to be taken

while driving the golf cart and performing the test runs, which greatly affected the

timing metrics. In addition, due to the increased processor speed and capabilities of

the laptop, the workload on the software did not stress the system enough to indicate

any difference in performance. Although all test runs were conducted using the same

method, the times varied greatly due to type of terrain, and not the effects of the

navigational aide.

One item which became apparent during the test, was the affect of the tunnel

in the sky. Due to the path going around obstacles, and having slight variations in

altitude due to terrain, the tunnel in the sky was only a slight factor in the traversal

of the path. The tunnels did behave as described leading the operator in a straight

105

line from the starting location to the target landing zone. The tunnel appeared to

indicate the shortest path, but due to the obstacles on the course, several times the

tunnel was not followed. The tunnel did assist in reacquiring the target location.

While the target location may have been off the screen, the tunnel acted as a second

navigational aide (in addition to the vector arrows), to help the operator reacquire

the target location.

5.12 Analysis

The evaluation of the system did uncover issues which affect this research. First,

the head tracking software does perform the correct algorithms to translate the phys-

ical world locations into the correct screen locations allowing the operator’s head

movements to be tracked and the screen picture to be correctly updated. The head

movements of an operator on the ground relies much more on yaw information, than

would a parachutist in 3 dimensional space. A preliminary analysis of the tracking

information indicates that all three axis are correctly translated. One issue, which

is very evident in the ground testing, is the unreliability of the head tracking infor-

mation being sent from the MIDG’s magnetometer. This is not an insurmountable

issue, but needs to have further direct research applied to ensure invalid reports do

not propagate.

The testing of the tunnel in the sky as a navigational aid did provide an increase

in overall situational awareness, by providing the operator with navigational cues

which allows him to keep the target tracking within his field of view and to reacquire

the target. This can prove to be extremely useful.

One item was noted during the operational period of the body worn computer.

The processor speed was far less than what is appropriate for a system which needs

to render head movements in a real-time manner. The screen refresh rate was about

1 Hz, meaning the screen refreshed one time per second, which is far too slow for an

operator to accurately and comfortably track locations in a moving situation.

106

5.13 Conclusion

A portable NVG HUD system has been developed which is designed to provide

the operator with a GPS solution to reach a desired landing zone. The solution incor-

porates both wind and jump parameters to develop a viable navigational path. The

system also implements a head tracking system, allowing the operator to look away

from the target and have directional indicators which will allow the reacquisition of

the target with minimal effort. To build confidence in the system, ground testing was

selected as the safest and most appropriate approach for the initial system evalua-

tion. This allows the hardware components and software to be exercised in a safe and

controlled environment in order to provide initial capability assessments. In order

to build additional confidence in the system, a second step would be to develop a

simulation which incorporates all aspects of the algorithm. Once the system has been

fully lab tested, the final test would then be to have the entire system jump tested

by a qualified individual with appropriate safety considerations in place.

Although the system was tested under limited implementation, the preliminary

results indicate the system provides an increased navigational benefit. The head

tracking systems did track the target with the proper image translation. A problem

does exist with the head tracking hardware, but this can be corrected with some

additional programming filters and raw navigational data manipulation. The tunnel

in the sky display also proved to be useful in navigating to a target location. The

tunnel display provides an additional navigational cue which allows the operator to

reacquire the target once it has moved off the visible area. In addition, the vector

arrows provide accurate vectors for target location reacquisition, which again, is a

significant benefit by letting the operator look away from the target and then be able

to reacquire the target.

107

VI. Conclusions and Recommendations

The goal of this research was to produce a proof of concept for the integration of a

GPS display into a paratrooper’s night vision goggles heads up display. This would

provide an increased capability, allowing operators to reach target landing zones in ad-

verse conditions, such as low light or inclement weather, which would have previously

prevented missions.

6.1 Conclusions of Research

The research did accomplish the initial goal of producing a system which could

fit within an operator’s ammo pouch and produce the navigational message which

would allow missions to proceed under low light or inclement weather.

The hardware assembled consisted of a 600 MHz ARM processor module with

on an onboard graphics chip. This provided the color display needed to run the AVN-

21 HUD. In addition, the module was mated with a third party base board used to

provide the external connections such as video, serial, and USB ports. Within the

same enclosure the TechGear HUD circuit was also mounted to reduce the number

of external cable connections which could foul the operator’s parachute. The entire

system was powered by a 12 volt lithium polymer battery, which provided enough

power to run the system for over 2 hours. Figure 6.1 is the body worn computer

in the ammo pouch and Figure 6.2 shows the body worn computer with the cover

removed.

The Linux operating system which was developed for this project is based on the

Kontron (maker of the processor module) kernel template. The kernel was compiled

to run on the ARM processor with minimal additional processes to keep the kernel

memory footprint as small as possible. In addition, the navigational application

software was developed on an IBM x86 processor and cross-compiled to run on the

targeted XScale ARM processor.

The application software is written in C++, utilizing the Eclipse Integrated

Development Environment version 3.2. The code was written using object oriented

108

Figure 6.1: Body worn computer in .223 Cal ammo pouch.

Figure 6.2: Internal components of the body worn computer.

109

practices, such as interface and model, view, controller patterns. This allowed the

software to be developed in an iterative method, testing small modules as the entire

system was built. The navigation algorithm takes inputs, such as wind, user param-

eters, and target locations, to build a navigational solution which is presented to the

operator in a tunnel in the sky display.

The system developed provided the operator with a navigational message con-

sisting of a tunnel in the sky leading to a designated target landing zone. The hardware

did fit into the required enclosure size and provided enough functional power for the

intended time frame. The helmet mounted sensor and antenna provided an accurate

estimate of position and orientation. In addition, the software did correctly process

the data, which was transmitted from the head tracking system, and produced an

accurate target picture. However, there is some issue with the attitude data from the

head tracking system.

The second major issue discovered during the field evaluations was the head

tracker’s disorientation problems. This caused the target to appear 180 degrees off

from its correct location. This issue may be caused by a problem with the head

tracker’s internal magnetometer and how it distinguishes 180 degrees from negative

180 degrees. This issue can be corrected by eliminating the use of the magnetometer

and developing a software algorithm to provide orientation based on raw measure-

ments.

The final issue, which arose during the evaluation of the system, was the hard-

ware’s lack of stability. During the test, the HUD circuitry failed, which caused the

signal from the body worn computer to no longer be able to output a video signal to

the night vision goggles. The hardware composition developed during this research

provides the necessary component, but has not yet reached its maturity. Several is-

sues arose from attempting to interface components which were manufactured by three

different vendors, which caused significant delays in the system’s overall completion.

110

6.2 Significance of Research

This research and evaluation of the developed system did provide a proof of

concept that a GPS display could be integrated into a night vision HUD. There are

some issues which still need to be addressed and worked out, but the foundation

for a self-contained system which provides the user with navigation data is viable.

Once fully implemented, this research will give airborne personnel a much broader

mission capability by allowing them to proceed in conditions which are currently

prohibited. Combat Search and Rescue units will be able to proceed to downed

personnel regardless of lighting conditions. Currently, if visibility prevents a clear

visual of the landing zone from a given altitude, the mission can not proceed. With this

technology, the window of operational missions will be greatly expanded to allow these

previously impossible missions. In addition, paratroopers who are making HAHO

jumps can proceed in darkness without having to rely on visual ground indicators.

This technology will give them a path which accounts for their travel over the distances

covered during these long range air movements. The path generated factors items,

such as wind and parachute characteristics, to allow the airborne personnel to reach

the desired landing zone without utilizing ground cues.

6.3 Recommendations for Future Research

To continue moving this project forward to the eventual live jump test and

deployment of the system, several items must first occur. The first step is to develop

a simulation which can be used to verify the navigation algorithm. The simulation

will have to emulate winds and positional movements while still taking head tracking

data from the head tracker. This needs to be accomplished to build confidence and

stress the system prior to any real world jump is attempted.

The second item which needs to be addressed is the magnetometer data. Further

study of the issues which cause the yaw discrepancy needs to occur. To prevent

reliance on the magnetometer data, software needs to be developed in house which

produces the inertial measurements. By replacing the magnetometer data with in

111

house developed software, true debugging can occur and confidence in the system

reliability can be greatly increased.

The final area for continued research is the processing hardware. In the 18

months since this research began, smaller, more powerful processors have been re-

leased. The hardware must be upgraded to to a faster processor, with integrated

floating point math. This will allow the update rate to be much faster and smoother.

The next version should use an integrated processor chip and mother board to elimi-

nate the interface problems which arise when mating products from different vendors.

For example, processors such as the VIA C7 1.GHz processor are currently available

which are mounted on a motherboard with all necessary external I/O. An additional

benefit is that these processers run standard Windows or Linux operating systems,

which removes the need for cross-compilation. This would provide the increased speed

while removing unnecessary complexity in software development.

Once these steps have been completed and confidence in the system operation

is high, can actual jump testing be considered. Testing the system by a live jump

test should only be persuaded once the system has been fully stressed and software

bugs have be resolved. Qualified testing agencies such as Natick Soldier Center have

specially trained individuals to test these types of systems.

112

Appendix A. Sample Parameter File

This appendix contains the sample parameter file which is originally read by the

system. These parameters are used by the system to set jump specifics.

// Config.txt contains user parameters that are set prior to departing aircraft

// Parameters read in at system start up,

// a reboot is needed in order to reload parameters

// All tags must be entered exactly as shown without modification

//

// Parachute safety margin (max / min travel distance percentage);

PARACHUTE TRAVEL ERROR=.5

//

// Final approach information

// FINAL APPROACH AGAINST WIND (YES=1 / NO = 0)

// This gives the operator choice of landing against wind

FAP AGAINST WIND=1

//

// FINAL APPROACH ALTITUDE is the altitude the system stops guidence

FAP ALTITUDE=400

//

// FINAL APPROACH HEADING is the heading to

// approach LZ from Final Approach Point

FAP HEADING=120

//

// AIM POINT HEADING is the heading from Aim

// Point to Final Approach Point

AIM POINT HEADING=120

//

// AIM POINT ALTITUDE is the altitude delta from

// Aim Point to Final Approach Point

113

AIM POINT ALTITUDE=1100

//

// AIM POINT AGAINST WIND (YES=1 / NO = 0)

// This gives the operator choice of landing against wind

AIM POINT AGAINST WIND=1

//

// View options

//

// Display Demensions–STS E-Hud SVGA Default 800 x 600

// Display width

SCREEN WIDTH=800

//

// Display height

SCREEN HIEGHT=600

//

// BOX WIDTH is the width of the boxes used

// for the tunnel in the sky

BOX WIDTH=50

//

// BOX HEIGHT is the height of the boxes used

// for the tunnel in the sky

BOX HEIGHT=50

//

// BOX SEPEARATION is the physical distance

// between the box representations

BOX SEPERATION=500

//

// END OF CONFIGURATION FILE config.txt

114

Appendix B. HAHO Navigation System Mission Planner

This appendix describes the HAHO Navigation System Mission Planner. The

mission planner was developed by the Naval Research Center in Pensicola

Florida and is currently utilized by the 1st Marine Recon during HAHO missions.

The mission planner provides a GUI interface in order to enter wind data.

B.1 HAHO 1D Wind Format

name1,lat1,long1,alt1, name2,lat2,long2,alt2,name3,lat3,long3,alt3,name4,lat4,long4,

alt4,ReleasePoint,latRP,longRP,OpenAltitude,DDist,DDir,Jnum,

Jtime,Aspd,MOS,latCircle,longCircle,PT,Wmag0,Wmag1K,,Wmag2K,

Wmag3K,Wmag4K,Wmag5K,Wmag6K,,Wmag7K,Wmag8K,Wmag9K,Wmag10K,

Wmag12K,Wmag14K,Wmag16K,Wmag18K,Wmag20K,Wmag22K,Wmag24K,

Wmag26K,Wmag28K,Wmag30K,Wdir0,Wdir1K,,Wdir2K,Wdir3K,Wdir4K,

Wdir5K,Wdir6K,Wdir7K,Wdir8K,Wdir9K,Wdir10K,Wdir12K,Wdir14K,

Wdir16K,Wdir18K,Wdir20K,Wdir22K,Wdir24K,Wdir26K,Wdir28K,Wdir30K,

Pname,ParSpeed,PFallRate,cbPar.SelectedIndex,SpeedUnits,DistanceUnits,

AltitudeUnits,Log,Jump,JMode,filepath,

B.2 Sample 1D Wind File

Prime Landing Zone,39.88240166,-84.1809016,120,NOWAYPOINT,0,0,0,

NOWAYPOINT,0,0,0,NOWAYPOINT,0,0,0,ReleasePoint,39.88243333,

-84.182283333,1944,8,12,10,5,150,10,34.0555570128726,69.9893790092627,

9.375,299999,30,31,32,33,34,30,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

0,45,90,180,270,360,405,720,722,719,60,61,62,63,64,65,66,67,68,69,70,

mc,25,1200,1,1,1,1,0,1,2,C: Documents and Settings Administrator My Documents

MP files 9.txt

115

Table B.1: HAHO Navigation Sys-
tem Mission Planning File Format.

Location Variable Name Description

0 name1 Name of the first LZ
1 Lat1 Latitude of the first LZ in D.dd, N=+, S=-
2 long1 longitude of the first LZ in D.dd, W=+, E=-
4 alt1 altitude of the first LZ in ft MSL
16 Release Point Name of the Release Point
17 latRP latitude of the Release Point in D.dd, N=+,S=-
18 longRP longitude of the Release Point in D.dd, W=+,E=-
19 OpenAltitude Opening altitude of the Release Point in ft MSL
20 DDist Distance from RP to Prime LZ in nm
21 DDir Direction from RP to Prime LZ in degrees
28 PT Parachute Travel Distance in NM
29 Wmag0 Wind Magnitude at 0 ft MSL
30 Wmag1K Wind Magnitude at 1K ft MSL
31 Wmag2K Wind Magnitude at 2K ft MSL
32 Wmag3K Wind Magnitude at 3K ft MSL
33 Wmag4K Wind Magnitude at 4K ft MSL
34 Wmag5K Wind Magnitude at 5K ft MSL
35 Wmag6K Wind Magnitude at 6K ft MSL
36 Wmag7K Wind Magnitude at 7K ft MSL
37 Wmag8K Wind Magnitude at 8K ft MSL
38 Wmag9K Wind Magnitude at 9K ft MSL
39 Wmag10K Wind Magnitude at 10K ft MSL
40 Wmag12K Wind Magnitude at 12K ft MSL
41 Wmag14K Wind Magnitude at 14K ft MSL
42 Wmag16K Wind Magnitude at 16K ft MSL
43 Wmag18K Wind Magnitude at 18K ft MSL
44 Wmag20K Wind Magnitude at 20K ft MSL
45 Wmag22K Wind Magnitude at 22K ft MSL
46 Wmag24K Wind Magnitude at 24K ft MSL
47 Wmag26K Wind Magnitude at 26K ft MSL
48 Wmag28K Wind Magnitude at 28K ft MSL
49 Wmag30K Wind Magnitude at 30K ft MSL
50 Wdir0 Wind Direction (from) at 0 ft MSL
. . .
. . .
. . .
70 Wdir30K Wind Direction (from) at 30K ft MSL
71 Pname Name of the Parachute
72 ParSpeed Speed of the Parachute in knots
73 PFallRate Fall Rate of the Parachute in ft/min

116

Bibliography

AND00. RIVER ANDREAS. Gnugo sdl graphics library. Jan 2000. SGE Graphics
for rectangles and fonts.

ANS07. ANSWERS. Head-up display. June 2007. A basic history of HUD systems
and their implementation.

ARM05. ARM. Arm procuct backgrounder. January 2005. An overview of the ARM
architecture.

BAL03. BRIAN BALAZ. A three-dimensional heads-up primary navigation ref-
erence display for paratroopers performing hight altitude high open
jumps. Master’s thesis, Graduate School of Engineering, Air Force In-
stitute of Technology (AETC), Wright-Patterson AFB OH, May 2003.
AFIT/GE/ENG/03.

BOL03. DOUGLAS BOLING. Programming Microsoft-Windows CE.NET. Number
0-7356-1884-4. Microsoft Press, One Microsoft Way, Redmond, Washington
98052-6399, third edition edition, 2003.

CHE07. GRIBBLE CHERYL. A brief history of c. Jan 2007. A history of the C
programming languages.

CRA08. JASON CRALEY. Air drop systems. Technical report, Natick Soldier
Research, Development and Evlauation Center, Natick, MA, 2008.

DAN98. PETER DANE. Eeng 533: Navigation using the gps course handsout spring
2006. Technical report, Air Force Institute of Technology, Wright Patterson
AFB, OH, 1998.

DAN08. REGINALD DANIELS. Head tracking small business innovative resources,
May 2008. This was the initial SBIR meeting for the Phase I head tracking
and noise modeling technology.

DAV07. BOB DAVIS. Night vision. American Cop, 3(2):38–41, March/April 2007.

DRA06. LABORATORY DRAPER. Joint Precision Airdrop System Mission Plan-
ner. Number 423288. 555 Technology Square, Cambridge, Massachusetts
02139, revision 10.0 edition, 2006.

ELE08. GLENN ELERT. The nature of light. Jan 2008. Explanation of the
Monochromatic light.

FER04. ANDREW FERGUSON. The history of computer programming languages.
Nov 2004. A history of programming languages from Babage to current high
level language.

117

FLE07. JORDAN FLETCHER. Real-time gps-alternative navigation using com-
modity hardware. Master’s thesis, Graduate School of Engineering, Air
Force Institute of Technology (AETC), Wright-Patterson AFB OH, May
2007. AFIT/GE/ENG/02.

GEN08. HAHO GENTEX. Gentex haho helmet home page. Jan 2008. Description
of Gentex HAHO helmet.

HWA92. YONG HWANG. Gross motion planning–a survey. Technical report, Sandia
National Labaratories, Albuquerque, New Mexico, 1992.

INT06. INTEL. Intel 80219 general purpose pci processor. January 2006. 80219
Processor specs.

INT07a. INTEL. Intel xscale microarchitecture technical summary. January 2007.
XScale Microarchitecture specs.

INT07b. DIAMOND POINT INTERNATIONAL. D2426 x-board baseboard. Aug
2007. Diamond Point International D2426 homepage.

KAP06. HEGARTY KAPLAN. Understanding GPS Principles and Applications.
Number 1-58053-894-0. Artech House, Artech House, Inc, 685 Canton
Street, Norwood, MA 02062, second edition edition, 2006.

KON06. KONTRON. Resource guide 2006. January 2006. PC 104 and Small Form
Factors.

KRA98. LYNDA KRAMER. Pathway design effects on synthetic vision head-up
displays. Research paper, Nasa Langley Research Center, 24 West Taylor
Street, Hampton, VA, USA, 1998.

LIN08. TIMESYSTEM LINUX. Introduction to cross-compiling for linux. Jan
2008. A history of cross compiling.

MET03. STEVEN METSKER. Design Patterns in Java. Number 0-7356-1884-4.
Addison-Wesley, One Microsoft Way, Redmond, Washington 98052-6399,
third edition edition, 2003.

MIC07. MICROBOTICS. Midg ii homepage. June 2007. The MIDG II home page.

MIS06. ENGE MISRA. Global Positioning System Signals, Measurements, and Per-
formance. Number 0-9709544-1-7. Ganga-Jamuna Press, Ganga-Jamuna
Press P.O. Box 692 Lincoln, Massachusetts 01773, second edition edition,
2006.

PAR03. RUSSEL V PARRISH. Avionic pictorial tunnel pathway highway in the sky
workshop. Jan 2003. Four hud workshop.

PRO05. LINUX INFORMATION PROJECT. Kernel defination. May 2005. The
Kernel defination.

118

PRO07. LINUX INFORMATION PROJECT. About linus torvalds. Sept 2007. The
Linus Torvalds bio.

QSA08. UK QIOPTIQ St Aspha. Qioptiq product homepage. Jan 2008. Maker of
HUD military products homepage.

SEC06. GLOBAL.ORG SECURITY. Parachute history. March 2006. A history of
the parachute from the time of da Vinci to Ram air systems.

SEC07. GLOBAL.ORG SECURITY. Military free fall school. Aug 2007. John F.
Kennedy Special Warfare Center- Military Free Fall School.

SNO99. MICHAEL SNOW. Flying complex approaches using a head-up display:
Effects of visibility and display type. Research paper, United States Air
Force Research Laboratory, 2255 H Street,Crew System Interface Division,
Wright-Patterson AFB, OH 45433-7022, 1999.

SPI07. CARY SPITZER. Digital Avionics Handbook, 2d ed. Number 0-849384419.
CRC Press, One Microsoft Way, Redmond, Washington 98052-6399, second
edition edition, 2007.

STS07. STS. Av/pvs21 homepage. June 2007. The AV/PVS21 home page.

TEK06. TEKGEAR. Svga-3d oled microdisplays. Jan 2006. Technical specifications
for the EHUD utilized by the STS company for the HUD.

THO05. JASON THOMPSON. A three-dimensional helmet mounted primary flight
reference for paratroopers. Master’s thesis, Graduate School of Engineering,
Air Force Institute of Technology (AETC), Wright-Patterson AFB OH, May
2005. AFIT/GE/ENG/05.

UNI07. PORTLAND STATE UNIVERISTY. Ins home-portland state university.
Aug 2007. The PSAS Inertal Navigation System home page.

VET. MICHAEL VETH. Master’s thesis, Wright-Patterson AFB OH, September,
note = AFIT/EENG/02, school = Graduate School of Engineering, Air
Force Institute of Technology (AETC), title = Fusion of Imaging and Inertial
Sensors for Navigation, year = 2006,.

119

Vita

Captain Fernando Ontiveros attended Park College where he graduated with honors

and received a Bachelor of Science degree in Computer Science in May 2000. Follow-

ing graduation and completion of Officer Training School he was commissioned as a

Second Lieutenant in the United States Air Force.

Captain Ontiveros served for two years at Vandenburg AFB, CA as a Squadron Sec-

tion Commander. In August 2002, he was assigned to US Forces NATO at Supreme

Headquarters Allied Powers Europe (SHAPE), where he deployed to Afghanistan and

Iraq. In August 2006, Captain Ontiveros entered the Air Force Institute of Technol-

ogy (AFIT) as a graduate student in the Department of Electrical and Computer

Engineering. He graduated from AFIT with a Masters of Science degree in Computer

Science with a focus on Software Engineering.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

120

Index

The index is conceptual and does not designate every occurrence of a key-
word. Page numbers in bold represent concept definition or introduction.

AFRL, 28

AP, 51

API, 26

ASIC, 41

BTB, 22

CDMA, 10

CPU, 40

CRT, 16

CSAR, 2

DDR, 41

DMA, 41

DMD, 17

DRAM, 20

DSP, 41

ECC, 41

ENU, 49

FAP, 50

GB/s, 40

GPS, 1

HAHO, 1, 5, 13

HUD, 1

IMU, 14, 38

INS, 13, 22, 37

JPADS, 50

LCD, 17

LCoS, 17

LPNVG, 19

LZ, 4, 5

MAC, 22

MMCC, 43

MMU, 22

MP, 29

NASA, 18

NVG, 1

OLED, 17, 44

OPU, 16

PCI, 40

PDA, 40

PFD, 17

PJ, 4

RISC, 40

ROM, 26

SDRAM, 41

STS, 19

SVGA, 41

SVS, 18

TOA, 10

USB, 20, 41

UTC, 9

121

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

19–06–2008 Master’s Thesis September 2006 — June 2008

Development of a Night Vision Goggle Heads Up Display
For Paratrooper Guidance

Fernando Ontiveros, Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/08-24

Mr. Robert Stephens
Sensor Technology Systems
2794 Indian Ripple Road
Beavercreek, Ohio 45440, USA
(937) 426-2341 e-mail: robert.stephens@ogaragroup.com

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This thesis provides the proof of concept for the development and implementation of a Global Positioning System (GPS) display via Night
Vision Goggles (NVG) Heads-Up Display (HUD) for paratroopers. The system has been designed for soldiers who will be able to utilize the
technology in the form of a processing system worn in an ammo pouch and displayed via NVG HUD as a tunnel in the sky. The tunnel in
the sky display design is essentially a series of boxes displayed within the goggle’s HUD leading the paratrooper to the desired Landing
Zone (LZ). The algorithm developed is effective and efficient in order to receive GPS sensor data, correlate head-tracking data, and display
the combined information in the paratrooper’s NVG HUD as the tunnel in the sky. The primary goal of the project is to provide a product
which allows Special Operations personnel to reach a desired LZ in obscured visibility conditions, i.e. darkness, clouds, smoke, and other
unforeseen situations. This allows missions to be carried out around the clock, even in adverse visibility conditions which would normally
halt operations.

GPS, Paratroopers, Heads Up Display, HUD, Global Positioning System, Night Vision Goggles, NVG,

U U U UU 140

John F. Raquet, Ph.D. (ENG)

(937) 255–3636, x4580; john.raquet@afit.edu

	Development of a Night Vision Goggle Heads Up Display For Paratrooper Guidance
	Recommended Citation

	tmp.1584733010.pdf.zQG85

