
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2008

Hot Swapping Protocol Implementations in the OPNET Modeler Hot Swapping Protocol Implementations in the OPNET Modeler

Development Environment Development Environment

Mark E. Coyne

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
Coyne, Mark E., "Hot Swapping Protocol Implementations in the OPNET Modeler Development
Environment" (2008). Theses and Dissertations. 2747.
https://scholar.afit.edu/etd/2747

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/288295174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2747&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F2747&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2747?utm_source=scholar.afit.edu%2Fetd%2F2747&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Hot Swapping Protocol Implementations in the OPNET Modeler

Development Environment

THESIS

Mark E Coyne, 2d Lt, USAF

AFIT/GCS/ENG/08-05

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/08-05

Hot Swapping Protocol Implementations in the OPNET

Modeler Development Environment

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

Mark E Coyne, BS

2d Lt, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/08-05

Hot Swapping Protocol Implementations in the OPNET

Modeler Development Environment

Mark E Coyne, BS

2d Lt, USAF

Approved:

/signed/ 7 Feb 2008

Maj. Scott Graham, PhD
(Chairman)

Date

/signed/ 7 Feb 2008

Lt. Col. Stuart Kurkowski, PhD
(Member)

Date

/signed/ 7 Feb 2008

Dr. Kenneth Hopkinson, PhD
(Member)

Date

AFIT/GCS/ENG/08-05

Abstract

This research effort demonstrates hot swapping protocol implementations in

OPNET via the building of a dependency injection testing framework. The thesis

demonstrates the externalization (compiling as stand-alone code) of OPNET process

models, and their inclusion into custom DLL’s (Dynamically Linked Libraries). A

framework then utilizes these process model DLL’s, to specify, or “inject,” process

implementations post-compile time into an OPNET simulation. Two separate appli-

cations demonstrate this mechanism. The first application is a toolkit that allows

for the testing of multiple routing related protocols in various combinations without

code re-compilation or scenario re-generation. The toolkit produced similar results

as the same simulation generated manually with OPNET. The second application

demonstrates the viability of a unit testing mechanism for the externalized process

models. The unit testing mechanism was demonstrated by integrating with CxxTest

and executing xUnit style test suits.

iv

Acknowledgements

I would like to thank Lt Col Timothy Halloran, Lt Col Jeffrey McDonald, and Lt

Col Stuart Kurkowski. As the professors of the software engineering track, they have

prepared me well for this thesis and the many future software related endeavors to

come. I would also like to thank Dr. Kenneth Hopkinson for keeping me on track and

continually providing guidance and support. Lastly, I would like to extend a special

thanks to my advisor, Maj Scott Graham, for the many invaluable thesis and Air

Force discussions, his willingness to go the extra mile to help his advisees, and his

genuine ability to inspire those around him to seek knowledge.

Mark E Coyne

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xi

List of Listings . xii

I. Introduction . 1
1.1 Motivation . 3
1.2 Problem Statement . 4
1.3 Research Objectives . 4

1.4 Implications . 5

1.5 Preview . 6

II. Background . 7

2.1 Toolkits and Library Design Principles 7

2.1.1 Polylithic Versus Monolithic Designs 7

2.1.2 The Click Modular Router 8
2.1.3 OSKit . 9
2.1.4 Oasis . 9
2.1.5 Intelligent Network Configuration Optimization

Toolkit . 10
2.1.6 Visualization Toolkit 11
2.1.7 ET++ . 12
2.1.8 Executable Protocols and OPNET Simulation En-

vironment . 13
2.1.9 Distributed Link 16 Simulation Demonstration . 13
2.1.10 Middleware Based Approaches 14

2.1.11 Sphere . 15

2.2 Inversion of Control and Dependency Injection 15

2.3 Related Thesis Work . 18
2.3.1 Strategic Buffering 18

2.4 Conclusion . 19

vi

Page

III. Design Methodology . 20

3.1 OPNET Fundamentals 21
3.1.1 OPNET Organization/Operation 21

3.1.2 Existing Protocol Implementations 23

3.2 Specifying Process Model Implementations With Depen-
dency Injection . 23

3.2.1 Motivation . 23
3.2.2 Alternate Methodology 1 25

3.2.3 Dependency Injection 25

3.3 Process Model Refactoring 26

3.3.1 The framework State Pattern 28
3.3.2 Stochastic Packet Dropper: A simple proof of

concept . 29

3.3.3 Methodological Criticisms 31

3.4 Conclusion . 32

IV. Two Example Applications . 33

4.1 OPNET Network Protocol Testbed 33
4.1.1 Overall Architecture 33
4.1.2 OP-NPT Use Cases. 33
4.1.3 Use Case: Automating Scenario Generation . . 35

4.1.4 Use Case: Specify Desired Protocols 39

4.1.5 Zero-Code Re-Compilation 48

4.1.6 Example . 53

4.1.7 Use Case: Running the Properly Configured Sim-
ulation . 54

4.1.8 Use Case: Interfacing with OP-NPT from Java . 57

4.1.9 OP-NPT Conclusion 57
4.2 OPNET-Unit . 57

4.2.1 Introduction . 57
4.2.2 Overall Architecture 57
4.2.3 OPNET-Unit Node Models 58
4.2.4 Conceptual Model 59

4.2.5 Actual Model 60
4.2.6 A Partial Mock Object 61

4.2.7 Executing Customized Test Simulations with Pre-
cision Control 63

4.2.8 Observing Simulation State 63

4.2.9 OPNET-Unit Conclusion 64
4.3 Conclusion . 65

vii

Page

V. Application and Analysis of Results 67

5.1 OP-NPT . 67
5.1.1 Scenario Generation 67
5.1.2 Mobile/Wireless Scenarios 70

5.1.3 Java Interfaces 71
5.1.4 Verification of OP-NPT Externalizations 71
5.1.5 Verification 3 77
5.1.6 Verification 4 77

5.2 OP-NPT Results Conclusion 80
5.3 OPNET-Unit . 81

5.3.1 Verification of Implementations 81

5.3.2 A Motivating Example 81

5.3.3 Motivating Example 2 84

5.4 Conclusion . 85

VI. Conclusion . 87
6.1 Future Recommendations 88

Bibliography . 90

Vita . 93

viii

List of Figures
Figure Page

1.1. Long-Term Toolkit Development Plan 2

2.1. Fowler’s “Naive” Example . 16

2.2. Dependency Injection Example 17

3.1. Basic OPNET Scenario. 21

3.2. OPNET Node Model. 21

3.3. OPNET Process Model. 22

3.4. OPNET Dependency Model. 24

3.5. OPNET Decoupled Dependency Model. 26

3.6. OPNET “Hook” Process Model. 27

3.7. OPNET Process Model Externalization. 30

3.8. “Packet Dropper” Process Model. 30

4.1. Overall Architecture . 34

4.2. Simple OPNET Scenario. 37

4.3. Scenario Generator UML. 38

4.4. Buffering Strategy 1’s Proxy Node Model 41

4.5. Modified Toolkit Proxy. 42

4.6. Buffering Strategy 1’s Proxy Memory Pool Manager 43

4.7. Memory Pool Manager Refactoring UML 44

4.8. Buffering Strategy 1’s Proxy Port 45

4.9. Proxy Port Refactoring UML 46

4.10. Proxy Queue Process Model 47

4.11. Proxy Queue Refactoring UML 48

4.12. Strategy 2’s Original Proxy Node Model 49

4.13. Final Proxy Version . 50

4.14. Linking Mechanism . 52

ix

Figure Page

4.15. Overall OPNET-Unit Architecture 58

4.16. OPNET-Unit Conceptual Node Model. 59

4.17. OPNET-Unit Actual Node Model. 60

5.1. Basic OPNET Scenario. 68

5.2. Delta of Response Times Between Toolkit Strategic Buffering

Version 1 and Expected Values 75

5.3. Strategic buffering 2 vs. Toolkit Implementation 78

5.4. Strategic buffering 1 vs. Toolkit Implementation, Modified . . . 79

5.5. An Example Process Model Under Test. 82

5.6. Complex Process Model . 86

x

List of Tables
Table Page

3.1. Refactoring OPNET Modules. 29

4.1. Linking Strategies . 52

4.2. OP-NPT Simulation Execution API 55

4.3. OPNET-Unit Simulation Execution API 64

5.1. Control Simulation . 73

5.2. Simulation Settings . 73

5.3. Packet Dropper Verification Results 74

5.4. Verification 2 Settings . 74

5.5. Strategic Buffering Version 1 Verification Results 75

5.6. Verification 2 Settings-Second Run 76

5.7. Verification 2 Results . 76

5.8. Disabled Verification Settings 77

5.9. Verification Result Averages 80

5.10. OPNET-Unit Test Results . 81

xi

List of Listings
Listing Page

3.1 Process Implementation Interface 28

4.1 Programmatically Building a Simple Scenario. 39

4.2 DLL Class Loader Exportation. 53

4.3 DLL Implementation. 53

4.4 StateManager Creation Mechanism Implementation. 54

4.5 Specifying Protocol Implementations. 54

4.6 Batching Simulations Programmatically. 56

4.7 Batching Protocol Implementations. 56

4.8 Kernel Procedure Redefinition . 62

5.1 Toolkit XML Format . 68

5.2 Example Scenario . 69

5.3 Programmatic Scenario Generation 70

5.4 XML Representation of Mobile Scenario 71

5.5 Java Toolkit API Example . 72

5.6 “INIT” State Proto-C. 82

5.7 “Wait” State Proto-C. 83

5.8 Non-Trivial Test Case . 84

xii

Hot Swapping Protocol Implementations in the OPNET

Modeler Development Environment

I. Introduction

Software toolkits provide researchers with the background and support they need

to aid them in their area of study. Design Patterns defines toolkits as “A col-

lection of classes that provides useful functionality but does not define the design

of an application [15].” In the network simulation research community, there exist

a demand for a network simulation toolkit that allows for the design and specifica-

tion of a simulation with key modules of network objects such as routers, easily hot

swappable and re-configurable. Duggan describes “hot swapping” as “the ability to

change or “swap” the module [of] implementation [at run time] without the client

threads noticing the change [7].” With the ability to hot swap individual modules of

a network object’s implementation, researchers can better study their interaction and

effect on the overall network.

Several toolkits are currently available to the researcher that provide similar

functionality. The Click Modular Router [18] is a modular, hot swappable router

implementation architecture. The network research and development community has

borrowed from the modular, fine grained interface design of Click with the develop-

ment of the discrete event simulator called OPNET Modeler. However, while the

OPNET Modeler development effort maintained the modular architecture of Click,

the ability to hot swap implementations was lost. This research seeks to restore this

ability in the OPNET Modeler simulation environment and provide a standardized

application programming interface (API) for the specification, execution, and data

collection of OPNET simulations.

This research is a part of two larger research efforts. The first seeks to build

a similar toolkit that provides simulator independence in addition to hot swapping

1

Figure 1.1: Long-Term Toolkit Development Plan. The ultimate goal of the toolkit
is to provide simulator independence and integration ability with a network visualizer
in addition to API’s for the specification, execution, and data collection of OPNET
simulations.

ability and programmatic control. The second major effort seeks to incorporate the

toolkits together with visualization software in an integrated framework. Development

of the programmatic interface and hot swappable network object implementations are

covered in this research. The software this thesis describes contains rudimentary API’s

for Java network visualization integration, but was not extensively tested or devel-

oped. Additionally, simulator independence via middleware or any other mechanism

was not tackled in this research and remains an area of future development. The

relationships between the necessary development efforts are shown in figure 1.1.

A side effect of choosing a module of implementation at runtime is the notion

of dynamic linking. Dynamic linking refers to delaying the linking of libraries to an

executable from compile time to runtime [12].

The idea of “hot swapping” implementations through the use of dynamic link-

ing has existed since the earliest day’s of modern computing [12]. Since the 1960’s,

researchers have understood the advantages of the ability to dynamically load and ex-

2

ecute sections of code at run time, unknown at compile time. A more modern related

technology also required for runtime inclusion of new code is dependency injection.

Dependency provides a mechanism to decouple the client program from a given im-

plementation [9]. There are many motivations for these technologies. Applications

may require updates, but cannot be shut down for safety or security reasons, such

as critical systems or long-lived server applications [7]. Other applications require

dynamic class loading as a normal functioning of their everyday operations, such as

highly modular applications that support plug-ins [9]. Such an application’s power

and versatility lies in the ability to “hot swap” sections of executable code previously

unknown to the program and unavailable at compile time.

1.1 Motivation

The increase of information flow will be the weapon of choice for tomorrow’s

warfighters in the battlespace of the future. One way to facilitate this increased

communications ability is through hi-bandwidth, directional links, such as lasers or

microwaves. However, these direction oriented links are susceptible to problems not

present in the wireless domain such as link winking (connections between nodes com-

ing in and out of service) and other physical limitations such as a node being limited

to the number of other nodes with which it can communicate (finite number of lasers

on each node, etc.) Previous research in the area of Net-Centric Warfare has sought

to overcome these obstacles and increase of information flow through research efforts

in strategic buffering, to overcome link winking; dynamic topology, to best utilize lim-

ited communications resources at each node; fault tolerance, and stochastic estimation

control of queues.

Several of these research efforts were implemented and studied using OPNET

Modeler, a network research and development environment. Unfortunately, these

research efforts were carried out independently. Each researcher implemented their

own protocol the best way they saw fit, with no regard for future integration or com-

patibility with other systems. The only grain of compatibility between the different

3

protocol implementations was the adherence to the OPNET Modeler development

paradigms of network models (scenarios), node models, and process models.

1.2 Problem Statement

The AFIT research community posses a rich and powerful tools to evaluate the

effectiveness of any single network protocol through the use of OPNET Modeler; how-

ever, there does not exist a tool or technique for studying unrelated OPNET protocol

implementations in conjunction with each other. The research community needs an

OPNET toolkit that allows “hot swapping” functionality of OPNET Modeler imple-

mented algorithms. This proposed new environment would facilitate “hot-swapping”

between various networking protocols and re-combining them into different configu-

rations, allowing for a careful study of the algorithms’ interactions. This proposed

framework would be modeled after other plug and play environments such as Apache’s

Tomcat [30], Autumn [1], and Spring [28]. These software packages all share the

thread of commonality that users must provide implementations for critical pieces of

infrastructure, but the infrastructure its self is not dependent on the implementations

that the user provides. In fact, many of these frameworks allow for a simple “drag

and drop” interface to specify new implementations, with limited other configuration

required.

1.3 Research Objectives

The strategy this thesis describes, to provide the hot swapping ability of OPNET

Modeler implemented networking algorithms, is dependency injection in conjunction

with DLL’s, as described by Martin Fowler [9] [10]. By turning OPNET Modeler into

a dependency injection environment, users may realize the full benefits of algorithm

inter-operability and swappability.

The motivation for focusing on algorithms developed exclusively with OPNET is

that it allows the toolkit to capitalize on the fundamental similarities of the implemen-

tations from a technical standpoint. Providing for integration of generic algorithms

4

or algorithms developed with another platform in mind, such as NS-2 is, in fact, a

different problem. A contrast of these seemingly similar, but vastly differing problems

appears in chapter 3.

The purpose of this research is twofold:

• Develop an inversion of control container for OPNET utilizing dependency in-

jection to facilitate implementation hot swapping.

• Exercise the framework to show its utility.

The framework will be exercised through the design and implementation of two

applications. The first application provides an application programming interface

(API) for the following:

• Building OPNET scenarios.

• Selecting networking algorithms, post compile time through the dependency

injection framework.

• Running the simulation and collecting the data.

The second application is a unit testing framework that allows for the unit

testing of OPNET process model implementations and provides for the following:

• Generation of different test cases.

• Automation of test case execution.

• Automation of axiom enforcement.

1.4 Implications

The programmatic control of OPNET simulations, coupled with the ability to

remove the dependencies between OPNET and key protocol implementations, opens

the door for several new uses for the OPNET Modeler development environment.

First, simulations can be run as external libraries, called from other processes. The

5

configuration of the simulation, as well as the results of the simulation can all be con-

trolled programmatically through an API. This provides for new applications that

require use of OPNET simulations as part of a larger research effort. Second, the

dependency injection mechanism allows for the effective unit testing of process model

implementations as described in chapter 4 of this thesis. The ability to effectively

unit test OPNET implementations could facilitate a move to new simulation devel-

opment methodologies, incorporating lessons learned from the software engineering

community about software testing and agile development methodologies. These new

methodologies could show a marked increase in protocol implementation quality, and

allow for faster and more accurate validation of results.

1.5 Preview

Chapter 2 discusses other relevant work in software library design, network pro-

tocol research, and dependency injection testing frameworks. Chapter 3 describes the

design methodology for the framework, with important design decisions and tradeoffs

noted and explained. Chapter 4 describes the inclusion of two strategic buffering

protocols into the toolkit. Chapter 5 discusses experiments designed to verify the

toolkit’s protocol implementations. Chapter 6 discusses implications of the framework

as well as directions for future research.

6

II. Background

Many advances have been made in the area of modular object-oriented toolkit

design. Put simply, a software toolkit is “a collection of classes that provides

useful functionality but does not define the design of an application [15].” There

are several critical design philosophies that toolkit developers grapple with to pro-

vide maximum functionality to the client program while reducing the amount of low

level manipulation required. “The design of software toolkits embodies a fundamen-

tal tension. On the one hand, it aims to reduce programmer effort by providing

prefabricated, reusable software modules encapsulating common application behav-

iors. On the other, it seeks to support a range of styles of application behavior [6].”

This chapter is divided into three fundamental sections: section one describes the

fundamental principals of software library design that influenced the libraries in this

thesis and related design philosophies used in other application domains. The second

section describes the philosophy of “Dependency Injection” used extensively in this

thesis. Lastly, the third section provides a brief overview of the two previous theses

integrated using the framework.

2.1 Toolkits and Library Design Principles

2.1.1 Polylithic Versus Monolithic Designs. Benderson [2] demonstrated

in the area of graphical toolkit design that this fundamental tension is often mani-

fested in a design decision between a polylithic and a monolithic design methodology.

Polylithic designs are characterized by many small classes with limited—but clear—

functionality. This design favored the client aggregating these many small classes at

runtime into a larger, domain-specific module. Monolithic designs are characterized

by a few large classes containing core and generic functionality. These designs fa-

vor the client application specializing the larger generic classes through inheritance.

Benderson concludes that the optimum design methodology depends on the target

audience of the toolkit. Polylithic designs offer the client “greater freedom to design,

modify, and extend and maintain the toolkit [2]...” Benderson notes that this comes

7

at the cost of the associated classes representing more abstract constructs and places

a greater burden on the client to recognize the relationship between the numerous

objects. On the other hand Benderson notes that monolithic designs are far better

suited to novice users. Monolithic designs provide for large concrete classes that offer

a broad host of functionality that inexperienced users can simply specialize through

inheritance. However, Benderson notes that this severely limits the toolkit user from

modifying critical policies set forth by the toolkit designers. Thus, he concludes that if

the toolkit designer is in a position to accurately anticipate the future requirements of

the toolkit, then a monolithic design is better suited. However, if optimal reusability

by expert users is the goal, a polylithic design methodology is more appropriate [2].

2.1.2 The Click Modular Router. Kohler [18] describes a similar toolkit de-

sign philosophy with the design of Click, a modular router. The design motivation of

Click centered around the need for a flexible, extendable, software router for network

administrators and research groups to extend an existing router with new function-

ality. Kohler describes the Click architecture as a polylithic. “Click routers are

built from fine-grained components; this supports fine-grained extensions throughout

the forwarding path [18].” As Kohler explains, this has the side effect of each of

the fine-grained components, called elements, to posses small and simple interfaces.

However, because the router is built from such small building blocks, users can easily

extend the functionality of just a small piece without dealing with the complexities of

other elements. Kohler’s polylithic router architecture facilitates UNIX style compo-

sition, with many small re-usable programs linked together in various combinations

to form different high level applications. However, this style of architecture imposes

a performance penalty. Kohler noted that handing of the packet between each of the

Click routers’ subsystems requires roughly 70 nanoseconds of overhead, with a total

overhead of a millisecond for processing overhead of the entire router. Special tools

were required to circumvent the overhead costs.

8

2.1.3 OSKit. Others have tackled toolkit design issues in operating systems

development. Ford [8] describes another important aspect of toolkit design through

the use of OSKit: implementation encapsulation through well-defined interfaces. OS-

Kit provides a “bare-bones” framework for operating systems development, with the

intent that the users of OSKit will then have more time to concentrate on the “real”

issues of operating system development. As a part of this minimal framework, the

designers have to provide generic implementations of common operating system pro-

cedures, such as drivers, file systems, and network protocol stacks. However, Ford

notes that these bodies of code–borrowed from industry–are often rapidly changing.

Rather than assimilate the volatile code into OSKit and require frequent revisions

and rewriting of the changing subsystems each time a new release is issued, Ford in-

troduces the concept of “glue code” that servers as an interface between the volatile

subsystem and the framework of OSKit. This well defined interface provided a buffer

that required a small amount of maintenance, at the benefit of re-using existing im-

plementations without affecting the rest of OSKit’s structure. Thus, with the “glue

code,” Ford was able to make liberal re-use of existing software subsystems, mostly

or even completely unmodified from their original form, and provide this added func-

tionality to clients of OSKit [8].

2.1.4 Oasis. Madhyastha introduces a toolkit, Oasis, for utilizing network

overlays, such as Akamai, Kazaa, and Bittorrent. Madhyastha describes the motiva-

tion as the need for “a system and a toolkit that enables legacy operating systems to

access overlay-based packet delivery services [20].” Madhyastha describes four key

concepts that need to be addressed in all toolkits, and particularly network related

toolkits:

1. Fine-grained control

2. Do no harm

3. Extensibility

9

4. Deployability

Interestingly, Madhyastha shows that the design goal of fine-grained control by the

user does not necessitate large numbers of fine-grained objects as in the polylithic

model. Instead Madhyastha favors a large, coarse grained architecture with more

complex implementations. This is also motivated by the design objective of ex-

tensibility, to which the larger classed monolithic model lends itself. Additionally,

Madhyastha raises the issue that the toolkit should not incur a significantly more

overhead, either in execution time or memory requirements, than if the client had not

utilized the toolkit. Madhyastha’s research shows that their toolkit incurs minimal

overhead when utilizing the additional layer for downloads. However, because of

overhead in dealing with an extra layer of abstraction interfacing with the operating

system, Madhyastha notes that it is unusable at upload speeds of 3Mbs. Although

Oasis provided the benefit of fine-grained control and extensibility, it provided these

benefits at the cost of massive overhead in certain situations [20].

2.1.5 Intelligent Network Configuration Optimization Toolkit. The Intelli-

gent Network Configuration Optimization Toolkit (INCOT) was developed by Stottler

Henke Associates for the Air Force [25]. The primary goal of INCOT “is to provide

an intelligent interface to OPNET products, allowing rapid design and optimization

of communications networks without requiring the user to have programming skills

or knowledge of the underlying OPNET simulation products [25].” Richards and

his associates provide a platform for Air Force network engineers to build optimized

networks that meet specific requirements and achieve the goals and objectives set

fourth by the engineers without requiring the users of the system to understand the

underlying complexities of network simulation tools such as OPNET. Richards and

his associates abstract the complexities of OPNET through the use of artificial intel-

ligence (AI). The artificial intelligence algorithms use the input rules, objectives and

policies from the user and construct and configure the optimized network simulation

in OPNET. Through its interface with OPNET, the toolkit can then return the vi-

10

sualization and results of the simulation back to the user for review. Thus, INCOT

facilitates rapid development of network design for engineers unfamiliar with OPNET

products, and perhaps more importantly, concentrates the paradigm of thinking in

network design to that of the underlying requirements and goals of the network, not

the physical design.

2.1.6 Visualization Toolkit. Schroeder [26] describes the design goals and

important object oriented design philosophies surrounding the creation of his Visu-

alization Toolkit (vtk). Schroeder et. al. take their object-oriented (OO) design

methodologies from researchers such as Booch and Rumbaugh and implement the

toolkit in the OO language, C++. Schroeder et. al. describe their philosophy:

“One important lesson we learned is that building large, monolithic
systems is detrimental to software flexibility. As a result, we wanted to
create a sharply focused object library that we could easily embed and
distribute into our applications....The key here is that the pieces must
be well defined with simple interfaces. In this way they can be readily
assembled into larger systems [26].”

Through their highly cohesive object library, Schroeder et. al. followed the

polylithic design philosophy described by Benderson [2]. Schroeder et.al outlined five

key principles central to the success of their toolkit: Interpreted Language Interface,

Standards Based Design, Portability, and Simplicity. The interpreted language inter-

face utilized by Schroeder allowed for quick application development and debugging

of high-level parts of the system. The standards based design approach directly

enabled the portability of the toolkit. Previous iterations of the toolkit utilizing in-

house technologies proved to be difficult to maintain and convince researchers in other

organizations to develop. As a result, Schroeder decided to switch to a standard’s

based approach, resolving all the aforementioned problems. Lastly, the principle of

simplicity enabled wider use by users of the visualization toolkit and ease of mainte-

nance.

11

One interesting OO design paradigm that Schroeder et. al. deviated from is

encapsulating data structures and the methods that operate on them into one class.

While this is certainly good OO programming practice, Schroeder noticed that this

“would result in excessively large objects [26].” Thus, Schroeder opted to separate

out these two main components into separate objects for greater simplicity and to

provide greater comfort to users.

2.1.7 ET++. Andre Weinand et. al. [31] developed ET++, which “is

based on MacApp and integrates a rich collection of user interface building blocks

as well as basic data structures to form a homogeneous and extensible system [31].”

ET++ allows for the rapid generation of user interfaces in the UNIX environment.

Weinand et. al utilize many fundamental OO programming concepts present in all

OO, modular and extensible toolkits. The heart of the ET++ was a layered approach

that allowed for the abstraction of details maintained lower in the class hierarchy,

particularly those related to hardware specific implementations. Thus, in the 3-tiered

architecture, the highest level presents the interface that users of the toolkit utilize.

Here, common graphical elements found in all toolkits are implemented. Services

that these top level implementations require are implemented in the middle layer,

known as the abstract system interface which defines “the minimal set of low-level

functions necessary to implement ET++ [31].” Thus, this middle layer provides a

virtual windowing environment to insulate the top level ET++ implementations from

low level platform related windowing system.

Beyond the layered architecture, ET++ makes use of many standard OO design

patterns. Among these are the strategy pattern. The strategy pattern enables

multiple forms of similar algorithms to be incorporated seamlessly by presenting a

common algorithm interface to the client. This decouples the implementation of the

algorithm from it’s use in the client. The decision of which algorithm to execute

can then be deferred to run time, allowing greater flexibility. ET++ utilizes the

strategy pattern to incorporate various line breaking algorithms in text boxes. By

12

utilizing the strategy pattern, the client of the toolkit can decide which line breaking

algorithm to use easily without any recompilation or re-factoring of code. Similarly,

developers can add new line breaking algorithms easily without modifying code in the

client because of the decoupling properties of the interface.

2.1.8 Executable Protocols and OPNET Simulation Environment. Lew et.

al [27] developed a simulation framework and associated API for interfacing OPNET

simulations with various networking protocols implemented externally to OPNET.

Lew explains that verifying current protocol implementations involves building the

equivalent process model in OPNET Modeler. This process is both time consuming

and error prone, as it is difficult to establish that the process model developed in fact

represents the real-world implementation. By building specialized OPNET process

models and creating special .NET wrapper API’s, third party code can make the

appropriate calls to the API and thus be unaware of any OPNET couplings. Thus,

OPNET can then simulate protocol implementations meeting the API specification.

Lew notes a few shortcomings of the framework, mainly that the API is protocol

specific–not generic, so verification engineers must make frequent modifications to

the interface as new protocols are developed. Additionally, the API does not contain

any mechanism for passing statistical data between the simulation and any external

interfaces, so the framework dumps all data into a flat text file [27].

2.1.9 Distributed Link 16 Simulation Demonstration. Ryan Cooper [4]

sought to simulate distributed link 16 implementations in a real-world scenario using

OPNET co-simulation. Cooper’s simulation scenario centered around an air-to-air

“dog fighting” scenario with four F-15s pitted against four enemy F-15s. A separate

co-simulation written in Java simulated the pertinent scenario activities (node mobil-

ity, when packets should be generated, and the effect of packet drop/delay). This

information was then fed to a NETWARS co-simulation (NETWARS is a simpli-

fied subset of OPNET Modeler tailored for military applications). The NETWARS

simulation then returned the status of the various packets involved in the simula-

13

tion (arrived, dropped, latency, etc.). The co-simulation functioned by utilizing the

standard HLA interface implemented with an RTI. The NETWARS “Commander”

component controlled timing between the Java dog fighting scenario and the NET-

WARS co-simulation through the RTI [4].

2.1.10 Middleware Based Approaches. Dadarlat [5] describes the advantages

of breaking down complex algorithms, such as routing protocols, related to network-

ing toolkit design into modular classes that interact at the middleware layer. “The

approach analyzes protocol functionality based on the idea of decomposing routing

protocols into fundamental building blocks and identifying the role of each compo-

nent.” Dadarlat describes the current trend in protocol implementation is to produce

“compact, monolithic” code “specific to each vender.” Thus, to facilitate the design of

new routing protocols, the design is decomposed into “fundamental building blocks,”

built as “collections of distributed objects.” This new modular design allows new

routing protocols to be assembled from the underlying find grained objects.

Critical to the success of Dadarlat and his associates’ endeavors, was the cre-

ation of a binding model–determining how the most basic modules would be dependent

upon, and thus coupled, to other modules. The success or failure of these basic mod-

ules depends heavily on the design and standardization of the interfaces between the

modules. Dadarlat divides the modules in to three main categories: generic classes,

routing component classes, and protocol specific classes. The generic classes provide

services common to all protocols. The routing component classes were designed to

be extensible and allow for the design of new routing mechanisms through the use

of specialization. Lastly, the protocol specific classes sit at the highest level in the

class hierarchy, and provide the remainder of the services necessary for the execution

of the protocol that are unavailable at lower levels in the class hierarchy. Thus, by

decomposing routing protocols in to smaller, well-defined modules, the designers of

the toolkit were able to construct new routing protocols by simply re-combining the

interactions between classes.

14

2.1.11 Sphere. Similarly to Dadarlat and associates, Stachtos et. al [29] also

seek to reduce the time and complexity involved with the development of new routing

protocols, by providing a developmental toolkit that abstracts away the fundamental

routing protocol services into fine-grained re-usable modules [29]. To develop their

toolkit, the designers began by studying the design of current routing protocols to

ascertain commonalities between the various protocols. Similar to Dadarlat, common

services were abstracted away into their own re-usable modules. Moreover, a binding

model was developed, as with Dadarlat, to determine the nature of the interfaces

between the modules. The modules were then organized into a reusable software

development kit consisting of 3 types of modules: generic classes, routing compo-

nent classes, and routing protocol classes. Similarly to Dadarlat, the generic classes

sit at the lowest layer and implement services common to all upper layers. Such

services include databases, thread-management, and network-connections. The rout-

ing component classes “represent the building blocks that can be used to construct

different routing architectures [29].” One example is the routing database. The rout-

ing database extends the more generic database module from the layer below, and

“provides information about network nodes and their associated paths, which can be

used for performing route entry lookups [29].” Lastly, similarly to Dadarlat’s design,

the routing protocol classes sit at the highest layer in the architecture and imple-

ment services specific to each routing protocol. Thus, through their efforts, and the

establishment of their binding model, the authors were able to construct numerous

routing protocols with the development kit. Moreover, the authors were able to plug

in different modules on the fly, and thus change the routing mechanisms dynamically.

2.2 Inversion of Control and Dependency Injection

Many large software frameworks make use of a design principle known as In-

version of Control (IoC) [10]. A framework implementing IoC is said to be an “IoC

container.” The hallmark of an IoC container is a module of the program looking up

a particular implementation, a “plug-in”, at runtime without maintaining a depen-

15

Figure 2.1: Fowler’s “Naive” Example. In this example, MovieFinderImpl sub-
classes the MovieFinder interface. The MovieLister then depends on both the super
and subclasses.

dency to the implementation. Fowler further defines the principles of IoC with the

“dependency injection” pattern. Martin Fowler describes Dependency Injection (DI)

as a method of “linking classes during configuration rather than compilation.” [10]

The motivation for the principle is the ability to specify differing implementations for

behaviors based on the runtime environment–a fact unknown at compilation time. To

demonstrate the effectiveness of the dependency injection architecture, Fowler [10] of-

fers a concrete example in figure 2.1, with a paraphrase of his description reproduced

here.

Suppose we had the application depicted in figure 2.1. The purpose of this

simple application is to read a colon delimited text file of movies and their associated

directors, and print out a list of movies by a particular director. The MovieLister

class calls the MovieFinder interface. Then, MovieFinderImpl, the implementation

of the interface, reads the colon delimited file and returns all movies and directors. The

MovieLister filters through the information and returns only the ones with the spec-

ified director. In this setup, the MovieLister class depends on both the MovieFinder

interface and, MovieFinderImpl, an implementation of MovieFinder. However, if the

users want to expand the software to include a new type of MovieFinder (to read other

file formats: XML, comma delimited, etc.), users must also modify MovieLister and

recompile both classes. Fowler recommends reorganizing the classes such that a third

16

Figure 2.2: Dependency Injection Example. In Fowler’s “Injector” example, the
MovieLister depends solely on the MovieFinder interface. The assembler assumes the
role of selecting a MovieFinderImpl and “injecting” the dependency into the MovieLis-
ter post-compile time. The introduction of the Assembler breaks the coupling between
the MovieLister and the MovieFinderImpl, thus allowing new MovieFinderImpl’s to
be used without need for re-compilation of the MovieFinder.

party decides which implementation of MovieFinder the MovieLister uses (Figure

2.2).

With the inclusion of the Assembler, the only dependency the MovieLister re-

tains is that of the MovieFinder interface. The assembler now decides, as a separate

compilation unit, which implementation the MovieLister should use. There are sev-

eral ways the Assembler can notify the MovieLister which particular implementation

it should use.

1. Type I: Interface Injection. Define and use interfaces to perform the injection.

2. Type II: Setter Injection. Assembler sets a field in the client to the proper

implementation.

3. Type III: Constructor Injection. When the client object is created, it requires

the desired implementation as an initialization parameter.

No matter the form of injection used, the Assembler encapsulates decisions

about which implementation the MovieLister should use. Thus, the MovieLister’s

dependency on a particular MovieFinderImpl is said to have been “injected” by

17

the Assembler. Now, users wishing to utilize the functionality of the MovieLister

can install their own type of MovieFinder post compile time to correctly handle

their custom file format (run-time environment); the MovieLister has no need for

re-compilation.

The libraries described in this thesis utilize type II dependency injection (setter

injection).

! Dependency injection forms the backbone architecture of the libraries
described in chapter 3 of this thesis. The libraries transform OPNET in to a
setter injection based dependency injection framework, with OPNET acting
as the MovieLister, and the toolkit, as a whole, functioning as the Assembler.
The hot swappable implementations then fulfill the role of the MovieFinder-
Impl’s.

2.3 Related Thesis Work

The primary long-term goal of the toolkit is to incorporate network protocol

related algorithms into one simulation. The algorithms that I will integrate are two

different strategic buffering mechanisms.

2.3.1 Strategic Buffering. In the domain of directional wireless communica-

tion between nodes, the link between two nodes often “winks.” That is there are not

long periods of service, followed by long periods of no service, the link’s connectivity

continually changes as trucks, clouds, or other environmental conditions disrupt the

link. Traditional TCP/IP protocols do not deal with the case of the “winking” link.

In previous AFIT research, Maj. Duane Harmon showed that by buffering packets

smartly, i.e. strategically, at the nodes on either side of a winking link, the efficiency

of the network increases. New algorithms for handling the case of the winking link

are still underdevelopment, and the toolkit libraries will allow future research to more

easily compare and contrast the performance of different buffering mechanisms [16].

18

2.4 Conclusion

This chapter covered two main areas of interest in the background of this re-

search. First, the chapter covered a general review of effective library designs in a

variety of software systems in related domains. The main decision a library having to

make is that of a polylithic versus a monolithic design. The chapter provided several

examples of each with pro’s and con’s of each. Precedent indicates that monolithic de-

signs contain relatively few numbers of large classes meant to be extended. Polylithic

designs contain large numbers of small objects meant to be aggregated by the user

to various purposes. Lastly, the chapter describes the basic principles of dependency

injection as described by Martin Fowler. Dependency injection allows an application

to delay the linking classes from compilation time to configuration time (runtime).

Thus, the application can configure itself based on the runtime environment of an

application.

19

III. Design Methodology

This chapter describes the fundamental design and implementation details of the

toolkit libraries. The top level goal of the toolkit libraries, as described in

chapter 1, is twofold:

1. Develop an inversion of control container for OPNET utilizing dependency in-

jection.

2. Exercise the framework to show its utility.

The most important of these goals, to transform the OPNET Modeler into a

dependency injection framework, allows the implementations of network objects in an

OPNET simulation to be determined at runtime rather than compile time–a feature

not available in OPNET. The other two requirements of the toolkit libraries, API’s

for building scenarios and controlling simulation execution are fundamentally already

available from OPNET. Consequently, this chapter focuses on the second require-

ment and describes the design used to achieve this functionality with a discussion of

necessary design tradeoffs.

Three factors the methodology aims to take into account are the following:

1. Preservation of OPNET’s polylithic design.

2. Elimination of the coupling between simulations and key implementations.

3. Eliminate constraints caused by OPNET’s proprietary nature.

The first section describes the OPNET scenario generation mechanism. The

second section describes the design and important implementation details of the de-

pendency injection mechanism, with a case study of a simple example. The third

section describes the API design for controlling simulation execution, and the last

section describes the mechanisms for statistic collection.

20

Figure 3.1: Basic OPNET scenario. This scenario contains a client and a server
connected by an intermediate packet dropping mechanism.

Figure 3.2: This is a basic OPNET node model. Similarly to the Click Modular
Router, boxes represent separate modules of processing ability inside a particular node
in a scenario.

3.1 OPNET Fundamentals

3.1.1 OPNET Organization/Operation. The OPNET simulation environ-

ment introduces three distinct levels of development that are pertinent to implemen-

tation decisions of the toolkit. The first and highest level of development is the

“Scenario” level of simulation modeling. Figure 3.1 shows the scenario level of de-

velopment, representing the fundamental network objects: clients, servers, routers,

switches, etc.

21

Figure 3.3: OPNET process model. Process models are state transition diagrams
with executable proto-C, that executes when each state is reached.

Within each object at the scenario level, is a node model (Figure 3.2). Node

models consist of one or more (typically dozens) of nodes. Similarly to the Click

Modular Router, users wire together the nodes with a node model in various ways,

yielding different behaviors of the corresponding object at the higher scenario level,

be it a router, client, or some user defined network object. Lastly, the third and

lowest fundamental paradigm of development is the process model (Figure 3.3).

An OPNET process model defines the implementation of each node in the node

model. Process models are essentially user-defined state transition diagrams, with

OPNET proto-C code contained in each state that OPNET executes when the path

of execution reaches that state. Each state is a function that OPNET calls via

a procedural style function call. After a state executes, the conditions of all of

the state transitions to other states are then evaluated. If more than one path

evaluates to true, then the simulation produces an error and terminates, otherwise the

simulation execution follows the single path that evaluated to true and the OPNET

kernel executes the next state’s corresponding code.

22

3.1.2 Existing Protocol Implementations. Previous research efforts imple-

mented the existing protocols that we wish to incorporate into the toolkit in this

fashion, using one or more nodes within a node model defined by their respective

process model implementations. Thus, to alter the implementation of a protocol is

to change the implementation of one or more of the underlying process models of the

nodes in a given scenario object’s node model.

3.2 Specifying Process Model Implementations With Dependency In-

jection

3.2.1 Motivation. Ideally, developers performing protocol research want to

change the implementation of a node (i.e. it’s process model) post-compile time. In

terms the OPNET domain, this research defines post-compile time as the following

two-fold condition:

1. A node’s process model has already been compiled, including all child processes.

2. The node model that contains the node in question has already been “saved”

i.e. cannot be modified at runtime.

This first condition exists because one could conceivably define each of the pro-

cess models under research as OPNET child processes. A root process could dispatch

all network traffic to a specific child process depending on which model was being

tested. While having the desired effect of “swapping” the node’s implementation,

this is still a solution for the specific case; OPNET requires that all child processes

be “declared” for purposes of compilation. Adding child processes introduces a de-

pendency between the OPNET simulation and both the protocol interface and the

protocol implementation; as the OPNET documentation states:

“A complete list of child process models that it [a parent process] intends
to instantiate must be declared prior to simulation as part of the process
model definition. Attempting to create a process based on a process model
that is not declared may result in an error during simulation [23].”

23

Figure 3.4: OPNET Dependency Model. This is the dependency structure that
results from utilizing the mechanism of a root process delegating to one or more sub-
processes as a strategy for dynamic algorithm selection. The dependency structure is
identical to the structure of the “Naive” example referenced in Chapter 2.

This technique would require process model re-compilation, and thus this method

will not work for post-compilation specification of process model implementations.

Figure 3.4 highlights the dependency structure caused by a root process delegating

to sub-processes to achieve the effect of run-time implementation selection.

Moreover, if the OPNET simulation were dependent on both the implementation

interface, and the implementation itself, additional implementations would cause the

simulation to likewise depend on each new implementation. The elimination of these

dependencies is critical, and described in the next section.

The second condition exists because one could simply adjust the node specifi-

cation to be defined by the target process model desired for testing. However, this

is not a viable option because a distinctly programmatic interface for specifying the

implementation to use is necessary for practical protocol examination. OPNET pro-

vides a programmatic interface for defining node models (External Model Access or

EMA), however, rebuilding an entire node model from scratch solely for the purpose of

changing a node’s implementation is wasteful, akin to rebuilding a house for purposes

24

of changing the light bulbs. Dependency injection solves all of these problems, by in-

stalling the equivalent of a standard socket, to which a user can install any standard

light bulb (implementation) into the socket without re-building the house.

3.2.2 Alternate Methodology 1. Chapter 1 alluded to the problem of inte-

grating generic process implementations, or implementations developed for another

simulation platform, such as NS-2. This problem is substantially different from the

problem tackled here. In fact, Lew et. al. tackled this problem specifically in [27].

Their solution involves creating a wrapper for certain OPNET kernel procedures with

a specific custom API for each implementation desired for integration with OPNET.

This research is different because it involves taking an external algorithm and inte-

grating it with OPNET without creating coupling between the algorithm and OP-

NET. The problem solved in this thesis with dependency injection involves taking

an implementation developed with OPNET and decoupling it from the simulation

without significant re-factoring or loss functionality. Lew’s solution is case-specific,

with frequent modifications of the interface API necessary to maintain compatibility.

The methodology discussed in this thesis depends solely on OPNET’s process model

methodology, which is stable from version to version.

3.2.3 Dependency Injection. The principles of dependency injection (DI)

and the more general term, inversion of control (IoC), have long been used in many

frameworks for the ability to defer establishing dependencies from compile time to a

configuration period at run time. Moreover, these principles reduce dependencies of

components on specific implementations of other components in a given system [10]

[21]. Frameworks such as Autumn (C++), Spring (Java, .NET), and PicoContainer

(Java, .NET) all utilize DI and IoC [1] [22] [24] [28].

Thus, in order to remove the coupling between the OPNET simulation and the

process model implementation, a module external to the simulation must assume con-

trol of choosing the appropriate implementation (in this case, the toolkit libraries) and

provide the implementation to the OPNET simulation. This achieves the end goal

25

Figure 3.5: OPNET Decoupled Dependency Model. This is the dependency struc-
ture that results from the use of the toolkit with dependency injection for dynamic
algorithm selection. The OPNET simulation is no longer coupled to the algorithm
implementation.

of the OPNET simulation being dependent only on an interface for the implemen-

tation, and having no compile-time dependency on the implementation. The toolkit

utilizes type 2 IoC, called “setter injection” by Martin Fowler [10]. In this method

of dependency injection, the assembler module (a toolkit component) calls a setter

method on the client (the OPNET simulation) and sets a field with a reference to

the appropriate implementation. In the OPNET simulation domain, use of an OP-

NET Co-Simulation with an Esys (External System) interface achieves effect of setter

injection. The framework controls the execution of the simulation as an external li-

brary, and the Esys interface allows for information passing (through shared memory)

between the simulation and any external module utilizing the Esys API (Figure 3.5).

3.3 Process Model Refactoring

In order to utilize the advantages of dependency injection in the context of

the OPNET simulation platform, the implementation that is to be injected must be

available to the assembler for selection and subsequent injection through the setter in-

26

Figure 3.6: The OPNET “Hook” Process Model. This is the process model that
the toolkit users must install in to processes that are candidates for integration with
the toolkit. This “dummy” process delegates all incoming interrupts received by the
process to the externalized process model via the ProcessInterface.

terface. Because the testing environment is external to OPNET, the implementation

must be externalized as well. In the OPNET domain, the implementation is a process

model, as described earlier. The process model shown in figure 3.6 replaces the origi-

nal process model in the node under test. This new model stalls in the “GET IMPL”

unforced state until it receives an interrupt from the Esys interface delivering a ref-

erence to the implementation that is to be used for this particular execution. After

this has occurred, interrupts received by the node under test trigger a call to the

externalized implementation.

All external code implementations for process models conform to the simple

interface shown in listing 3.1. The interface’s most important method is the process

Interrupt() method which takes no parameters and returns void. The framework

guarantees that this method will be called by the simulation every time the node

under test receives an interrupt of any type. The interrupt type and other associated

information need not be specified in the interface because the OPNET kernel main-

tains this information, and the external implementation can simply ask the kernel

27

class State ;
class Pro c e s s I n t e r f a c e
{
public :

virtual void p ro c e s s I n t e r r up t () =0;
virtual void i n i t i a l i z e () =0;

P r o c e s s I n t e r f a c e () ;
virtual ˜ P ro c e s s I n t e r f a c e () ;

} ;

Listing 3.1: Process Implementation Interface. This is the interface to which all
process implementations must comply. The initialize() method is guaranteed to be
the first method invoked by the toolkit. Anytime the simulation invokes an interrupt
to an object in the simulation, the simulation calls the processInterrupt() method.

for any associated information it may need for proper execution. Additionally, the

interface contains an initialize() method which is guaranteed to be called by the

framework before the first call to processInterrupt(). This allows the underlying

implementation to perform any simulation related initialization procedures, such as

initializing state variables based on externally set model attributes.

3.3.1 The framework State Pattern. Strictly speaking, all that is required

of an implementation to be used by the framework is that it complies with the afore

mentioned interface. The implementation details of the externalized OPNET process

model need not bare any resemblance to the original OPNET implementation. How-

ever, under the principle of least representational gap, developers will often find that

the best refactoring of the original OPNET process model is to the “State Pattern”

as described in [15].

The toolkit contains several supporting modules that make this transition seam-

less. First, the software contains a StateManager that implements the

ProcessInterface interface. The StateManager provides acceptable default imple-

mentations, with the initialize() method likely being the only method with cause

for users to override. Second, the framework contains a State class that handles logic

28

Table 3.1: Refactoring OPNET Modules. This table shows the relationships be-
tween standard OPNET modules and the corresponding modules in the framework.

Refactoring OPNET Modules

OPNET Module: Refactored Module:

States Subclass State
State Variables Struct or StateVariable class

State Transitions Handled by each state
Function Block Utilities class
Process Model Subclass StateManager

associated with forced and unforced process model states. Developers need only to

subclass State and provide implementations for the enter and exit executives. Lastly,

because the implementation handles the state transitions and not the OPNET kernel,

the states themselves must inform the StateManager of the next state to execute, by

simply calling its setCurrentState() method. Table 3.1 summarizes the necessary

refactorings.

Figure 3.7 shows the UML for the refactoring of the original OPNET process

model containing only an “INIT” state and a “Wait” state.

3.3.2 Stochastic Packet Dropper: A simple proof of concept. In order to

verify the methodology, the concepts discussed previously are demonstrated in the

context of a simple node model containing one single node: a packet dropping mech-

anism. Thus, the required refactorings related to the packet dropper are identical to

those required by any other node model and thus serves as an archetypal blue print

for how to proceed in future protocol refactorings. The initial process model (Figure

3.8) contains four states: INIT, DROP, WAIT, and IDLE. In order to refactor the

process model, I re-create the states and the state transitions contained in the process

model utilizing the state pattern (Figure 3.7).

Thus, once all of the code that was once in the OPNET process model has been

converted to an external state pattern based module, I replace the old OPNET process

29

OPNET

StateMangerState

11

INIT WAIT DROP IDLE

ProcessInterface

1 1..*

<<utility>>

StateVariables
1 1

Figure 3.7: OPNET Process Model Externalization. This UML represents the nec-
essary refactoring of process implementations (models) for use with the toolkit. The
refactored implementation assumes control of state transitions via the State pattern
as described in [15].

Figure 3.8: “Packet Dropper” Process Model. This is the process model by Maj.
Harmon that implements a packet dropping mechanism based on various random
inputs.

30

model with a simple “hook” process model that retrieves the interrupts generated by

simulation activity from the OPNET kernel and passes it to the interface (Figure 3.6).

The code in the “hook” simply invokes the “processInterrupt” method of the

interface:

manager->processInterrupt();

The specific mechanism for providing the implementation to the hook process

model falls on the shoulders of the application layer, and is discussed in Chapter 4.

3.3.3 Methodological Criticisms. There are two ways to view the method-

ology this chapter described. At best, the methodology is a clever use of the features

available in OPNET, taking full advantage of the most powerful options afforded by

OPNET, mainly the ability to execute arbitrary C/C++. However, critics could ar-

gue that the methodology is an exploitation and gross abuse of the features available

in OPNET. To properly implement the functionality this methodology affords with-

out “exploiting” OPNET features would require modifying the mechanism by which

the OPNET interacts with the process implementations. Because of the proprietary

nature of OPNET, these modifications are not easily possible.

However, there are other motivations for utilizing the “out-of-the-box” features

to implement the methodology. The major advantage is that the features utilized

the methodology’s implementation are all standard, public, published, and well doc-

umented interfaces. Even if the interfaces are not ideal for our uses, the utilization of

standard, published, and publicly facing interfaces allows the methodology to make no

assumptions about internal implementation details of the OPNET kernel. Moreover,

OPNET kernel developers have a motivation to keep previously published interfaces

stable to allow backwards compatibility and facilitate a stable development environ-

ment for users. There is no such motivation for the unpublished internal interfaces.

Thus, there is a higher probability that this methodology will work with future ver-

sions of OPNET than if internal interfaces had been utilized. Lastly, because this

31

methodology does not interfere with OPNET’s internal mechanisms for executing

process implementations, the burden for ensuring the large body of legacy process

implementations remain compatible fall on OPNET, not the methodology’s imple-

mentation.

3.4 Conclusion

Through the externalization of process models into stand alone C/C++ and

through customized “hook” process model implementations, a framework can realize

the full benefits of dependency injection. The incorporation of dependency injection

into the OPNET Modeler development environment decouples the OPNET simulation

from the process implementations that define the behavior of network objects. This

enables an external entity to select a particular process implementation for any given

simulation execution post compile-time.

32

IV. Two Example Applications

In order to best demonstrate the utility of the mechanisms described in the pre-

vious chapter, I demonstrate the design and implementation of the OPNET Net-

work Protocol Testbed (OP-NPT), a collection of libraries that enables programmatic

specification of OPNET scenarios, run-time selection of protocols, and execution of

simulations. Building on these libraries, I then discuss OPNET-Unit, a library uti-

lizing many of the toolkit libraries that facilitates OPNET process implementation

unit testing. Accordingly, this chapter is divided into two sections. First appears the

design and implementation of OP-NPT followed by the design and implementation of

OPNET-Unit. Each section first presents a minimal set of top-level use cases for the

library or application. The design and implementation of the portions of the library

or application fulfilling each use case then follow.

4.1 OPNET Network Protocol Testbed

4.1.1 Overall Architecture. The OPNET Network Protocol Testbed (OP-

NPT) under development must integrate with several other concurrent development

efforts. The ultimate goal is for a single network simulation scenario to be run into

two toolkits: one interfacing with OPNET, and another interfacing with Network

Simulator 2 (NS2). The toolkits will provide the necessary services specific to each

simulation platform for the running and management of simulations. Additionally

and most importantly, the toolkits will provide a programmatic interface for all lev-

els of net-centric warfare algorithm simulation integration: 1) scenario generation, 2)

inclusion of specific implementations of NCW algorithms under research, and 3) man-

agement of simulation results. Both toolkits will yield results to a common interface,

usable by a visualization framework (Figure 4.1).

4.1.2 OP-NPT Use Cases. The toolkit, as with all toolkits, is simply

a collection of libraries–not a program proper with an associated “main” method.

Craig Larman states that “use cases are text stories, widely used to discover and

record requirements [19].” Thus, the use cases below are provided to gain a better

33

Figure 4.1: Overall Architecture. This diagram shows the relationship between the
OP-NPT toolkit written using the OPNET IoC container libraries and other concur-
rent research efforts. The network visualization passes information to the toolkits,
and the toolkits, intern, interact with their respective simulation platforms. Addi-
tionally, the ultimate goal is for a feedback loop to exist between the toolkits and the
visualization, offering information about the simulation under execution.

34

UC1: Generate Scenario
Main Success Scenario: Developer begins development of their application
with the proper toolkit libraries installed in their development environment.
The developer make the appropriate method calls to the library’s API. The
program using the library produces the corresponding OPNET compatible
scenario file.

Alternate Scenarios : The user uses the library incorrectly. When the
library detects a problem, exceptions are thrown. The user’s code handles
thrown exceptions, or uncaught exceptions terminate execution.

understanding of the functionality that a user of the libraries should expect. Be-

cause OP-NPT is a toolkit, the use cases are not from the perspective of the user of

polished application, but those of an application developer who wants to utilize the

functionality of the OP-NPT toolkit libraries. The “main success scenario” is the best

case usage scenario for interaction with the libraries, while the “alternate scenarios”

describe exceptional cases.

4.1.3 Use Case: Automating Scenario Generation. OPNET already pro-

vides an external API for programmatically generating OPNET readable scenarios.

The API, known as External Model Access (EMA) is essentially a large array consist-

ing of all of the objects contained in the simulations and objects and sub-objects rep-

resenting all the related configuration information associated with various simulation

components. Unfortunately, this style is not efficient or particularly human–readable.

Even purely pedagogical scenarios consisting of a client and a server with a duplex

link connecting them can contain 55,830 lines (Figure 4.2).

Thus, it is unreasonable to assume that clients of the toolkit will be able to make

the appropriate calls to the complicated OPNET EMA API. To solve the problem

of scenario generation, the builder pattern as described in Design Patterns [15] was

employed. The builder pattern, as employed here, functions by providing a simple in-

terface for constructing scenarios, consisting of a simple, coarse-grained API with such

methods as addLink(), and addNode(). Concrete subclasses implement the specified

35

UC2: Specify Desired Protocols
Main Success Scenario: Developer continues development of their application
with the proper toolkit libraries installed in the development environment.
The developer utilizes the supporting toolkit libraries, such the State class
and the DLL template, and produces the necessary toolkit DLL implementa-
tion of algorithms they wish to utilize. The developer then makes necessary
modifications to config files, etc. User writes C++ program utilizing OP-NPT
libraries to initialize the simulation, and specifies the desired algorithms with
the necessary method calls.

Alternate Scenario1 : The user provides a mal-formed DLL implementa-
tion. When the library detects a problem, exceptions are thrown. The user’s
code handles thrown exceptions, or uncaught exceptions terminate execution.

Alternate Scenario2 : The user improperly modifies config file. When
the library detects a problem, exceptions are thrown. The user’s code handles
thrown exceptions, or uncaught exceptions terminate execution.

Alternate Scenario3 : The user specifies non-existent protocols. When
the library detects a problem, exceptions are thrown. The user’s code handles
thrown exceptions, or uncaught exceptions terminate execution.

UC3: Running Properly Configured Simulation
Main Success Scenario: Developer continues development of their application
with the proper toolkit libraries installed in the development environment.
Developer make the appropriate calls to the simulation libraries to attributes
of the simulation to execute, such as duration, promoted attributes from
implementations, etc. The developer utilizes the API for executing the
simulation and the simulation runs properly.

Alternate Scenario1 : The user provides mal-formed initialization infor-
mation. When the library detects that the simulation has terminated with an
error code, exceptions are thrown. The user’s code handles thrown exceptions,
or uncaught exceptions terminate execution.

Alternate Scenario2 : The simulation terminates with any error code.
When the library detects that the simulation has terminated with an error
code, exceptions are thrown. The user’s code handles thrown exceptions, or
uncaught exceptions terminate execution.

36

UC4: Collecting Results
Main Success Scenario: Developer continues development of their application
with the proper toolkit libraries installed in the development environment.
Developer runs the simulation according to use case 3. The simulation records
all raw data. Via SQL queries, the user can then programmatically calculate
and recover statistics.

Alternate Scenario1 : The user provides mal-formed SQL queries. The
libraries simply return the result of the queries to the user, be it the expected
result set or an error message.

UC5: Interfacing with OP-NPT from Java
Main Success Scenario: Developer begins development in a Java environment.
The developer utilizes the JNI enabled “Java API” wrapper library supplied
with the toolkit. The user then configures, builds, and runs the simulation and
collects results.

Figure 4.2: Simple OPNET Scenario. Even this small example requires upwards of
56 thousand lines of EMA code representation

37

Link

getNode1() : void
getNode2() : void
getName() : void
setName() : void

Scenario

ScenrioBuilder

addNode() : void
addLink() : void
addLinkAttribute() : void
addNodeAttribute() : void
clearScenario() : void
getScenario() : Scenario

StandardScenarioBuilder

<<utility>>

CommandLineUtility

<<utility>>

IconLookup

EMAWriter

writeEMA(Scenario : Scenario,String : name) : void

Node

addAttribute() : void
setName() : void
setNodeModel() : void
getNodeModel() : void
newOperation() : void

XMLParser

1..* 2

0..1

0..*

0..1
1

0..* 1

Produces an OPNET readable
file as output

0..1

0..*

Figure 4.3: Scenario Generator UML. This diagram describes the collaboration of
objects that generate OPNET readable network model files required by the OPNET
kernel. The generator constructs an object representation of the scenario and then
generates the appropriate EMA API calls via the Builder pattern as described in [15]

interface, producing a single Scenario object as a product. The Scenario object is

then passed to a ScenarioBuilder utility that generates the appropriate OPNET EMA

calls to produce the OPNET readable scenario file (Figure 4.3).

This approach has several benefits. First, because an intermediate Scenario

object is created with the builder, various constraints can be checked and enforced

during the build process, such as enforcing that a link cannot involve a nonexis-

tent node. These constraints can be checked, with the appropriate object-oriented

exception throwing mechanisms present in C++ utilized, giving the client code a

reasonable opportunity to handle exceptional situations–a feature not present in the

OPNET API. Secondly, by enabling an interface with a concrete subclass providing

38

Scenar i oBu i lde r ∗myBuilder = new StandardScenar ioBui lder () ;
try{
myBuilder−>addNode (2 , 2 , ”node1” , ”” , ”txX” , ”rxX”) ;
myBuilder−>addNode (2 , 2 , ”node2” , ”” , ”txX” , ”rxX”) ;
myBuilder−>addLink (” l i nk1 ” , ”ppp adv” , ”node1” , ”node2”) ;
myBuilder−>addLinkAttr ibute (” l i nk1 ” , ” a t t r i bu t e 1 ” , ”5000”) ;
}
catch (addNodeException e) {
// e r r o r handl ing code
}
catch (addLinkException e) {
// e r r o r handl ing code
}
catch (addLinkAttr ibuteExcept ion e) {
// e r r o r handl ing code
}
Listing 4.1: Programmatically Building a Simple Scenario. This listing utilizes the
toolkit API’s and supporting libraries to build the scenario shown in Figure 5.1.

the implementation, subsequent implementations complying to the interface standard

can be plugged in, enabling generation of scenarios with different constraint checks

and implementations.

Listing 4.1 utilizes OP-NPT to build the scenario depicted in Figure 5.1:

Instead of the some 55,000 lines of code needed to generate the OPNET readable

scenario, an application utilizing OP-NPT can achieve the same with just 10 lines

of code. A decrease the number of lines of code, and a substantial decrease in

complexity. Additionally, the objects in the toolkit libraries utilize the exception

handling capabilities of C++, enabling the application to take appropriate action

should a given action cause problems. For example, from lines 3-6 in Listing 4.1,

several exceptions may be thrown. The author of the application can then choose to

catch the exceptions (lines 8-16) and perform any pertinent actions he see’s fit.

4.1.4 Use Case: Specify Desired Protocols. As stated previously, in the

context of OPNET, the fundamental unit of a protocol implementation is the OP-

NET process model. Thus, to swap a protocol in a network object from protocol A

to protocol B requires “swapping” one or more process models from one simulation

39

execution to another. As previously described, the underlying dependency injection

framework handles the swapping mechanism. However, in the context of realistic sim-

ulation scenario, two additional services are needed by the application layer. First,

because the swapping of protocols will likely consist of multiple process models (or

even multiple versions of different process models), a configuration management sys-

tem is needed to aid the user of the application layer in the proper selection of process

model implementations that correspond to the appropriate protocol implementations.

Second, in keeping with the spirit of dependency injection, it is highly desirable that

the addition of new process model implementations, and thus new protocols (or new

versions of protocols) does not require re-compilation of any code, specifically the code

involved in the configuration management.

4.1.4.1 Implementation Installation. When building simulations us-

ing OP-NPT, users must use specialized node models for the representation of node

objects. These node models contain an OPNET Esys (External System) interface

process in place of any process in the node model that the user wishes to be swap-

pable. In the interface specification for the Esys process, the user specifies a name

for the interface. When OP-NPT initializes the a simulation, it inspects the nodes

and recovers all of the interface names and logs them in a table as required imple-

mentations. If the user does not specify an implementation for each interface, then

the simulation cannot execute. Figure 4.4 shows the original node model for buffer-

ing strategy 1’s proxy. The process of the node model that control the buffering

mechanism are the port processes, and the “Proxy Mempool Manager.” These five

nodes combined together form the essence of the buffering protocol. Thus, to swap

from a regular, non-buffering router to the buffering mechanism requires changing the

original process implementations in each of the port process, and then adding a new

node, the “Proxy Mempool Manager.”

Because the toolkit implementation does not change the node model or build

it on the fly, the designer of the node model must take care to ensure that the node

40

Figure 4.4: Buffering Strategy 1’s Proxy Node Model. This is the original node
model constructed to provide a buffering mechanism inside the router.

model design is sufficiently modular and re-usable. Fundamentally, the toolkit can

swap any process model implementation A with any other process model implemen-

tation B, however, the interaction between the process models is dictated by the

node model, not by the toolkit, and thus must be designed accordingly. The node

models available from OPNET already follow this modular paradigm, with each layer

of the OSI network stack having its own node representation. Moreover, different

routing mechanisms are often encapsulated in their own processes within a router’s

node model. For example, a router that supports various routing methods often has

separate processes for RSVP, OSPF, IGRP, and RIP.

Thus, to make the protocol implementation swappable, we change the pertinent

processes with OPNET Esys interface processes. Each of the Esys processes contains

a specialized “hook” process model that replaces the original process model. This

specialized process model, in conjunction with the Esys Node it defines, advertises

the type of interface it expects. The process model ensures that the externalized

41

Figure 4.5: Modified Toolkit Proxy. This node model shows the necessary mod-
ifications on the original proxy for integration with the toolkit. The main changes
required include replacing “swappable” processes with Esys interface nodes, defined
by the toolkit’s “Hook” process implementation.

process model is initialized when it is installed. Additionally, the process model

serves as a final line of defense against mal-formed simulations (simulations that are

run without all of the implementations specified), by preventing the de-referencing of

NULL pointers.

4.1.4.2 Integrating Buffering Strategy 1. The first proxy buffering

mechanism was implemented by Maj. Duane Harmon in previous AFIT research

efforts. Figure 4.4 shows the proxy’s node model. The following sections describe

the incorporation of his implementations, using the methods described in Chapter 3,

into OP-NPT. Harmon’s buffering protocol consisted of just two process models: a

memory pool manager and proxy port at each of the ports of the proxy enabled router.

We modify the node model of the proxy router to include OPNET Esys processes in

place of each of the pertinent aforementioned processes in the node model. The

process models defining the process we wish to make swappable are replaced with the

42

Figure 4.6: Buffering Strategy 1’s Proxy Memory Pool Manager. This process
model represents the original state transition diagram that defines the memory pool
manager’s process implementation.

specialized toolkit Esys process models discussed in Chapter 3. The two processes,

the memory pool manager and the proxy port, must be externalized and re-compiled

as DLL’s as discussed in chapter 3 (Figure 4.5).

4.1.4.3 Proxy Mempool Manager Externalization. In accordance with

the methods outlined in chapter 3, the process model of the “Proxy Mempool Manager”

(Figure 4.6) must be externalized. Utilizing the OP-NPT state pattern templates,

the process model was converted to a stand-alone object oriented C++ library. This

library is then compiled into a DLL to allow dynamic loading by the operating system

in to OP-NPT.

Figure 4.7 shows the resulting refactoring of the OPNET process model. Each

state in the OPNET state transition model becomes a separate class of type “State”

in the resulting refactoring. The process model’s function block becomes a static

utility, and the state variables likewise become their own class. The StateManager

43

OPNET

StateMangerState

11

INIT Arrivial Svs_Start Svc_Compl Idle

ProcessInterface

1 1..*

<<utility>>

StateVariables
1 1

Figure 4.7: Memory Pool Manger Refactoring UML. This UML diagram shows the
necessary refactorings of the original process model for integration with the toolkit.
The implementations stay the same from process model to refactored externalization-
only the overriding structure changes.

class manages which state the current externalized process model occupies, as well

as managing access to the state variables and providing the implementation of the

ProcessInterface interface to which the OPNET simulation interacts.

4.1.4.4 Proxy Port. Similarly to the Proxy Mempool Manager, we

refactor the proxy port process model (Figure 4.8). As in the previous process model,

all the states in the original process model, both forced and unforced, become sep-

arate classes in the refactoring (Figure 4.9). Usually in the code refactorings, the

OPNET proto-C implementations from the process model states appear unchanged

in the classes of the externalized refactorings. However, this was not the case of

the proxy port process. Harmon made use of a supporting library that ships with

OPNET as part of his implementation. This supporting library requires a call to an

initialization function before any other function in the library can be called. In the

context of the OPNET development environment, users are not required to call this

method explicitly–the OPNET kernel takes care of this for the developer. However,

44

Figure 4.8: Buffering Strategy 1’s Proxy Port. This process model represents the
original state transition diagram that defines the proxy’s port process implementation.

45

OPNET

StateMangerState

11

INIT Handle_Packet Handle_Timer EndSim manager_msg

ProcessInterface

1 1..*

<<utility>>

StateVariables1 1

Wait AwaitResponse

Figure 4.9: Proxy Port Refactoring UML. This UML diagram shows the necessary
refactorings of the original process model for integration with the toolkit. The imple-
mentations stay the same from process model to refactored externalization, only the
overriding structure changes.

in the externalized implementation, we lose this benefit, and must call any required

initialization functions on OPNET provided supporting libraries explicitly.

4.1.4.5 Protocol Configuration Management. Constructs within OP-

NPT allow the user to register new protocols, and specify the various implementations

that define the protocol. OP-NPT can then perform configuration management ser-

vices and ensure that the user can simply choose a given protocol and rely on the

toolkit to install the right set of implementations into the underlying node model.

Moreover, the user can specify multiple protocols, and the proper set of implemen-

tations will be installed. If two protocols are incompatible (requiring different im-

plementations for a given interface) then the toolkit can detect this and notify the

user.

4.1.4.6 Integrating Buffering Strategy 2. The second buffering strat-

egy was implemented by Matthew Weeks, an intern, during the summer of 2007.

Weeks was hired to investigate improvements to Harmon’s strategic buffering mech-

anism. Weeks’ improvements involved the quality of the implementation, as well as

modifications to the protocol itself.

46

Figure 4.10: Proxy Queue Process Model. This is the proxy’s Queue process model
added in buffering strategy 2. The state transitions of the process model are un-
changed from those provided by OPNET. However, several custom modifications were
performed to the internal implementation of the queue.

4.1.4.7 Proxy Port Version Two. Weeks maintained Harmon’s im-

plementation for the Proxy’s memory pool manager, but performed significant code

refactorings on the Proxy’s port process. However, these changes were to the imple-

mentations inside each of the states (as well as his own method of implementation

externalizations). Thus, the state transition model used by Weeks is identical to Har-

mon’s model. As a result of this continuity between the implementations, the toolkit’s

externalization of Weeks’ Port process implementation is identical in structure (iden-

tical UML) to the externalization created for Harmon’s model, differing only at the

source code level.

4.1.4.8 Queue. Although Weeks maintained the same state transitions

for his Port process implementation, he added an entirely new “Queue” process imple-

mentation. Figure 4.10 shows the queue process added by Weeks. As in the previous

externalizations, the process implementation was externalized using the supporting

libraries and the state pattern.

47

OPNET

StateMangerState

11

INIT Arrivial Svs_Start Svc_Compl Idle

ProcessInterface

1 1..*

<<utility>>

StateVariables
1 1

Figure 4.11: Proxy Queue Refactoring UML. This UML represents the externalized
version of Weeks’ modified version of the OPNET “acb fifo” queue.

As in all of the previous refactorings, the process implementation is externalized

using the methods previously outlined (Figure 4.11).

Thus, we must modify Weeks’ proxy port node model (Figure 4.12) with the

necessary Esys model interfaces on the pertinent nodes (Figure 4.13). Because the

node model specification for the proxy needs to accommodate both buffering imple-

mentations, the final toolkit-enabled proxy must contain a superset of all the necessary

processes utilized in the implementations. For implementations that do not require

use of all of the processes, such as the first buffering strategy, a no-op “do nothing”

implementation will be installed by the toolkit. This “do nothing” implementation

simply forwards all packets it receives with zero processing time. Thus, this technique

allows for the discrepancy in the number of utilized processes between the two imple-

mentations without affecting the logic of the implementations or their functioning.

4.1.5 Zero-Code Re-Compilation. One of the major requirements of OP-

NPT is to be able to add new process implementations, and thus define and use new

protocols, without re-compiling any code. Of particular interest is the part of code

that maintains references to the available implementations of processes, called the

48

Figure 4.12: Strategy 2’s Original Proxy Node Model. This node model is identical
to strategy 1’s Proxy node model (Figure 4.4), with the exception of the addition of
the queueing process between the transceiver and the port process.

49

Figure 4.13: Final Proxy Version. This node model shows the final installation of
the Esys modules on the pertinent processes. Because Weeks’ node model contains an
extra process, this node model represents the superset of processes between Harmon
and Week’s Proxy implementations.

50

assembler. The addition of a new implementation would require that the assembler

be able to instantiate new implementations on the fly at runtime without need for re-

compilation. To achieve this functionality, process implementations compiled for use

with the toolkit are compiled as dynamically linked libraries (DLL’s). This allows the

toolkit to leverage the power of the operating system to load new implementations at

run-time without need for re-compilation. However, the DLL still needs to provide a

mechanism for class instantiation. DLL’s can be loaded in two ways under Windows.

First, the client can statically link to a library that handles DLL interaction. This

has the advantage that the DLL can contain a class and export information about

the class for use in the client application. However, the loading of the DLL is

handled at program startup via compiler pre-processor directives, and thus deciding

at runtime which DLL to dynamically link is not possible. The second method of

DLL loading does allow for runtime decisions about which DLL to link against at

runtime. However, in the Windows API, the DLL can only export functions as

simple function pointers, not the more complicated typing information associated

with classes. Java, for example, does allow the dynamic loading of classes at runtime

via the class loader. Thus, to circumvent the absence the equivalent of the Java

class loader in the C/C++ based Windows API environment, the implementations

compiled as DLL’s for use with the toolkit export one simple function that returns a

reference to the class’s underlying static instantiation method (Figure 4.14). Thus,

client code can dynamically load a new DLL that contains a particular object oriented

implementation, receive a reference to the implementation’s instantiation method,

and call the method to create a new instantiation of the class. Table 4.1 summarizes

linking strategies.

Thus, these three factors combined form a C/C++ based dynamic class loader,

similar to that of Java. Unfortunately, this mechanism does not preserve type safety

in the dynamically loaded class. Preserving type safety in dynamically linked imple-

mentations is an open area of software engineering research [7]. Listing 4.2 shows the

DLL getInstance() function.

51

Figure 4.14: Linking Mechanism. The OPNET simulation links to the expected
DLL produced by compiling the hook process model. Because this linking mech-
anism is proprietary, the toolkit’s hook process model must, in turn, reference the
hot swapped implementation DLL. Thus, this provides a public linking mechanism
available and modifiable by clients of the toolkit.

Table 4.1: Linking Strategies. Three linking strategies are in common use today.
Compile-time and incremental linking are theoretically equivalent as both linkers have
the same information available to them that was available to the compiler. Dynamic
linking can add new, previously unknown code to a program at runtime. OPNET
utilizes one of the first two strategies; the toolkit utilizes dynamic linking.

Linking Strategies

Type: Occurrence: Controlled By: Used By:

Compile Time Post-Compile Time Compilers OPNET
Incremental First method/function invocation OS OPNET
Dynamic User Defined Application/OS Toolkit

52

#ifde f DLLDIR EX
#de f i n e DLLDIR d e c l s p e c (d l l e xpo r t) // export DLL in format ion

#else
#de f i n e DLLDIR d e c l s p e c (d l l impor t) // import DLL in format ion

#endif
#include ”StateManager . h”
class Pro c e s s I n t e r f a c e ;
typedef Pro c e s s I n t e r f a c e ∗ (∗GET NEW INSTANCE) () ;

//Export the methods o f the c l a s s we want a v a i l a b l e f o r dynamic
//run−time usage by the DLL c l i e n t .

extern ”C” {
GET NEW INSTANCE DLLDIR ge t In s tance () ;

}
Listing 4.2: DLL Class Loader. This listing shows how the DLL associated with a
particular process implementation

#include ” Stdafx . h”
#include ”DLLCode . h”
#include ”StateManager . h”
GET NEW INSTANCE get In s tance () {

return ((GET NEW INSTANCE) StateManager : : g e t In s tance) ;
} ;

Listing 4.3: DLL Implementation. This listing shows the implementation of the
DLL function exported in listing 4.2. The function returns a function pointer to the
underlying StateManager’s instantiation mechanism.

The getInstance() implementation returns a function pointer to the State

Manager’s getInstance() method, as shown in Listing 4.3. The StateManager’s

getInstance() implementation thus creates a new instance of the StateManager

class (and perform other initialization chores if necessary) and returns a pointer to

the new instance, as shown in Listing 4.4.

4.1.6 Example. There are two ways to specify the proper configuration and

organization of protocol implementations. The first is to drop all process implemen-

tation DLL’s into a single directory, and place an “implementation config” XML file

that defines protocols and the set of implementations that comprise them. When the

53

StateManager ∗ StateManager : : g e t In s tance () {
return new StateManager () ;

}
Listing 4.4: StateManager Creation Mechanism Implementation. The method
simply returns a pointer to a new instantiation of the StateManager class.

//make a new s c ena r i o
Scenar io ∗ s c ena r i o1 = new Scenar io () ;
S imulat ion ∗ sim1 = Simulat ion : : g e t In s tance (s c ena r i o1) ;
// s p e c i f y implementation d i r e c t o r y
sim1−>se t Implementat ionDirectory (”E:\\ Too lk i t \\ implementat ions ”) ;

// s p e c i f y other important d i r e c t o r i e s
sim1−>s e t S t a t i s t i cD i r e c t o r y (”E:\\ Test \\ Stat ”) ;
sim1−>setWorkingDirectory (”E:\\ Test \\Working”) ;

// automat i ca l l y r e g i s t e r p r o t o c o l s based on the c on f i g f i l e
sim1−>init ial izeFromXML (” implementat ion con f i g . xml”) ;

// s p e c i f y which p r o t o c o l s to use f o r t h i s s imu la t i on run
sim1−>useProtoco l (”PacketDropper”) ;
sim1−>useProtoco l (”ProxyPortDFH”) ;
sim1−>useProtoco l (”ProxyQueue”) ;

Listing 4.5: Specifying Protocol Implementations. This code example demonstrates
the API for specifying protocol implementations post compile time.

toolkit initializes, it reads the configuration XML file and automatically registers the

defined protocols. Once the protocols have been registered, the user specifies that

a given protocol be used at the next running of a simulation via the useProtocol()

method. Additionally, there are several methods in the toolkit API that allow the

user to register new protocols themselves programmatically. Listing 4.5 demonstrates

these techniques.

4.1.7 Use Case: Running the Properly Configured Simulation. After the

simulation’s scenario has been specified per use case 1 and the protocols defined

and chosen per use case 2, the user then wants to run the simulation. Running

the simulation requires specifying a mechanism for traffic generation, controlling the

execution of the simulation itself, and collecting the results.

54

Table 4.2: OP-NPT Simulation Execution API. This table shows the API’s available
for simulation execution for applications using the OP-NPT libraries.

Simulation API

Method:

runSimulationToCompletion()
runSimulationToTime(double time)

runSimulationOneEvent()

4.1.7.1 Traffic Generation. The OP-NPT supports all of the built-in

OPNET applications. Users wishing to use one of the built in applications simply

builds a scenario that includes application and profile configuration nodes using the

same mechanism as any other node in the simulation. OP-NPT provides application

and profile configuration nodes that have all pertinent attributes promoted up to the

level of the OPNET command line. This enables the toolkit to manipulate their

values external to OPNET. To set the values of the attributes, OP-NPT provides an

API to set generic name, value attribute pairs for any object in the simulation. OP-

NPT uses these values to generate an OPNET environment file prior to simulation

execution. Thus, when the simulation executes, the proper values for all attributes

are set. Additionally, the user can choose to handle traffic generation completely on

his own using custom implementations of source and sink nodes, for example.

4.1.7.2 Controlling Simulation Execution. Users may control the sim-

ulation execution via the API of the Simulation object. The API provides for

running the simulation to completion as well as other conditions as shown in Table

4.2.

Thus, the user of OP-NPT can harness the full power of C++ when generating

simulation execution scripts, instead of using the restrictive OPNET GUI, or hierar-

chies of Windows batch files which can quickly become unmanageable. For example,

Listing 4.6 executes a simulation 30 times. This is also easily accomplished with a

batch file or through the OPNET GUI. What is far more easily accomplished with

55

for (int i = 0 ; i < 30 ; i++){
sim1−>runSimulationToCompletion () ;
}
Listing 4.6: Batching Simulations Programmatically. Running simulations can be
achieved with

for (int i = 0 ; i < 5 ; i++)
}

sim1−>useProtoco l (protoco lArray [i]) ;
for (int j = 0 ; j < 30 ; j++)
{

sim1−>runSimulationToCompletion () ;
}

}
Listing 4.7: Batching Protocol Implementations. This code example demonstrates
the API for specifying multiple protocol implementations over many simulation runs.

OP-NPT’s programmatic interface is more interesting simulation sequences, such as

Listing 4.7, which runs a simulation 30 times on each of 5 different protocols under

evaluation.

And because OP-NPT’s use of the dependency injection framework prevents

the re-building of OPNET network objects when different protocols are swapped in

and out, the swapping mechanism is instantaneous, and thus suitable for use inside a

loop, as in the previous example.

4.1.7.3 UC4: Collecting Results. The OP-NPT handles the collection

of results via two methods. First, customized link and wireless models record the

sending and receipt of all packets. OP-NPT then stores this as raw data in a SQL-lite

database. Thus, the data can then be exported for statistic calculation, or various

SQL queries can be run on the data to calculate statistics with the database. The

second method of statistic collection capitalizes on OPNET’s built in statistic collec-

tion abilities. The toolkit can specify which previously registered statistics should be

collected before simulation execution via a user created statistic probe. After sim-

56

ulation execution, the OPNET readable (not human-readable) statistic file can be

opened with the OPNET GUI, and various graphs and reports generated.

4.1.8 Use Case: Interfacing with OP-NPT from Java. The OP-NPT li-

braries provide a Java interface for the most utilized API methods. Thus, in addition

to C/C++ programmatic control of OPNET simulations, developers from the Java

community (such as concurrent research efforts in network visualization) can design,

run, and collect data from OP-NPT utilizing a native Java interface.

4.1.9 OP-NPT Conclusion. OP-NPT utilizes the toolkit libraries to pro-

vide a programmatic interface for OPNET scenario generation, selection of specific

implementations of NCW algorithms under research, and management of simulation

results. Additionally, because of the dynamic linking techniques utilized, users can

add new implementations for components without re-compiling any code.

4.2 OPNET-Unit

4.2.1 Introduction. Many OPNET developers already use small, isolated

node models to test process model implementations. However, these testing solutions

provide for only the specific case, with a given process model implementation in mind.

Testing additional process models would require creating new node models, or editing

the existing one. Testing of multiple test cases on a process model would require

defining a separate input generation process model for every type of input needed in

testing. Moreover, managing the batch running of multiple test cases would require

batch execution of multiple simulations. This testing technique quickly becomes un-

manageable. Testing in the general case, i.e. testing any given process model with

minimal OPNET coupling, requires the ability to “inject” the node under test with

a process model implementation post-compile time.

4.2.2 Overall Architecture. The overall architecture (Figure 4.15) of OPNET-

Unit consists of three distinct tiers: 1) The specialized node model which executes in

57

Figure 4.15: Overall OPNET-Unit Architecture. The architecture consists of three
tiers: the OPNET node model, the OPNET co-simulation, and the actual unit tests
as implemented by the user.

the OPNET simulation, 2) the OPNET Co-Simulation, and 3) the unit tests them-

selves. The Co-Simulation defines the entry point for the application, and thus uses

the OPNET simulation platform as an external library. The top application level

contains the actual unit tests the user wishes to execute on the underlying process

model, and uses two libraries: the OPNET-Unit framework to interact with the sim-

ulation, and the actual unit testing library of the user’s choosing such as CppUnit or

CxxTest to enforce assertions and collect test results.

4.2.3 OPNET-Unit Node Models. As described in previous sections, mod-

ules called node models define high level objects participating in an OPNET simula-

tion such as routers. The OPNET-Unit test environment consists of only one generic

high level node which contains a specialized node model, best suited for testing a

given process model. However, the processes in this node model communicate via

OPNET’s Esys interface to the OPNET-Unit framework which makes important de-

cisions about their operation. Thus, an inspection of the node model reveals little

about its intent. To gain a better conceptual understanding of the intent of OPNET-

Unit’s specialized node model, I describe an intent revealing “conceptual” node model

first, and then the actual node model.

58

Figure 4.16: OPNET-Unit Conceptual Node Model. This node model serves as
a communication tool to convey the intent of the actual node model in use by the
framework, figure 4.17

4.2.4 Conceptual Model. The conceptual node model consists of four classes

of nodes: source nodes, sink nodes, “auxiliary” nodes, and the testing node (Figure

4.16). The source nodes connect to the test node via both packet streams and

statistic wires, and the test node connects to the sink nodes in the same manner.

There are anywhere from 0 to N source and sink nodes (limited only by OPNET’s

upper bound)1. Additionally there are anywhere from 0 to N “auxiliary” nodes

which represent all other nodes in the node model which do not possess a direct

connection with the node under test. These nodes come into play if the node under

test needs to communicate with another node in the node model through which it is

not directly connected, via a remote interrupt for example. The node under test can

still communicate via remote interrupts with nodes for which it possesses a packet

stream or statistic wire connection as well.

From the perspective of a user writing unit tests for the node under test, this is

the node model environment. Through this conceptual model, the test environment

1Because of the limitations of OPNET kernel procedures, only the first 10 source and destination
nodes may have statistic wires. All additional nodes will have only packet stream communication
with the node under test.

59

Figure 4.17: OPNET-Unit Actual Node Model. This node model takes extensive
advantage of the OPNET Esys interface specification to communicate with the testing
framework for pertinent information.

can re-create all possible effects on the node under test that an actual simulation

execution could produce.

4.2.5 Actual Model. OPNET-Unit’s actual node model differs substantially

from the conceptual node model previously described (Figure 4.17). All nodes in the

actual node model utilize the OPNET Esys (External System) interface and special-

ized process models define them. Through these mechanisms, the underlying OPNET

simulation can communicate with the OPNET-Unit framework and vice versa.

4.2.5.1 Packet Streams. Three source nodes (a packet source node,

a statistic source node, and an ICI source node) provide “entrance points” for the

testing framework to initiate stream, stat, and ICI interrupts respectively in to the

node model via the Esys interface. Interestingly, the packet source node need not

be connected to the node under test with actual packet streams because of the

op pk deliver() kernel procedure which allows the packet source process to trig-

ger packet arrival interrupts on arbitrary input streams to the node under test. This

ability allows the conceptual model to possess anywhere from 0 to N packet source

nodes. However, this is not the case with statistic interrupts.

60

4.2.5.2 Statistic Wires. In OPNET, communication between nodes

via statistic wires requires that each statistic wire be configured to carry a statistic

that has been defined a priori in a statistic registering system. Thus, OPNET-Unit

pre-defines 25 generic statistic wires, placing an artificial upper bound on the total

number of statistic wires available for testing.

4.2.5.3 Test Node. The single testing node possesses the process

model under unit testing. The node under test processes the incoming interrupts as

it normally would, forwarding packets to whatever output stream it normally would,

generating statistics on the static wires it normally would, and generating any remote

interrupts as it normally would. These three types of outputs, packet stream, statistic,

and remote ICI’s, are all directed via the partial mock object (described in the next

section) to the packet stream, statistic, and remote ICI listening nodes respectively.

These listening nodes, in turn, notify the OPNET-Unit Framework that an event of

importance has occurred so the framework can take appropriate action.

4.2.6 A Partial Mock Object. In order to eliminate changing the pro-

cess model implementation under testing specifically for the purpose of testing–

usually the sign of poor testing practices–some kernel procedures used by the pro-

cess model under test are re-defined in terms of a partial mock object that provides

test specific implementations [13] [14] [21] . This is a partial mock object because

the intent is not to provide test oriented implementations for all of the OPNET

kernel procedures, which would be complicated and unmanageable, but to provide

test-specific implementations for some kernel procedures and default to the origi-

nal implementations for the majority of the procedures. This enables the imple-

mentation under test to execute using the standard OPNET interfaces. Examples

of kernel procedures that must be redefined for purposes of testing are procedures

that require direct information about the surrounding node model to the process

model implementation under test, such as op pk deliver() which requires the im-

plementation to supply the object ID of the destination node. The re-defined ver-

61

// h e a d e r f i l e
#include <opnet . h>
#include ”OPMockObject . h”
#define op pk send (pkptr , outstrm index)

OPMockObject : : mockPKSend(pkptr , outstrm index)

Listing 4.8: Kernel Procedure Redefinition. This example shows the redefinition of
the kernel procedure op pk send() to use the definition provided by the mock object.

sion of this kernel procedure steers all packets sent with op pk deliver() to the

unit testing’s specialized node model’s packet destination node. Other examples

of kernel procedures that require re-definition include op intrpt force remote(),

op intrpt schedule remote(), op ima obj attr get().

Thus, the only change developers must make is to use a “unit testing” opnet.h

include file rather than the regular OPNET include file. This unit testing include

file contains the kernel procedure redefinitions, which define the kernel procedures in

terms of the corresponding methods of the mock object, instead of the usual “prim”

functions that ship with OPNET.

OPNET-Unit provides a basic set of kernel procedure re-definitions, suitable

for handling stream, stat, and remote interrupts generated by the node under test.

Additionally, OPNET-Unit provides re-definitions to allow the testing framework to

supply process model attributes and set-up statistic wire registrations. Users wishing

to unit test more complicated processes will want to further re-define more kernel

procedures and expand the partial mock object library to their particular use case.

Because of OPNET’s procedural style of development, users cannot define new kernel

procedures by sub classing the OPNET kernel and overriding certain kernel proce-

dures, rather, they must add new pre-compiler directives, overriding the old symbol

definitions with the new behavior, as shown in Listing 4.8.

Thus, once developers re-define pertinent kernel procedures with the appropri-

ate mock object method calls, the state of the mock object (and thus the result of

executing the re-defined kernel procedures) can be controlled from the unit testing

62

code in the application layer. An example of this is the re-definition of the kernel

procedure, op ima attribute get() which returns the value of a process model at-

tribute of any object, including its self. Many process models commonly use this

kernel procedure during the initialization stage of many process models to initialize

operating parameters, such as queue size, time-out settings, and other configuration

options. With the kernel procedure re-defined in terms of the mock object, the unit

testing script can pre-set any value for any arbitrary attribute for testing purposes, as

well as modify these values during or between tests as testing requirements dictate.

4.2.7 Executing Customized Test Simulations with Precision Control. Uti-

lizing the OPNET External System Access (ESA) API, the OPNET-Unit Framework

controls the execution of the underlying OPNET simulation with great precision—

down to the event when necessary. Alternatively, the OPNET-Unit framework makes

use of the “observer” design pattern to only interrupt the executing simulation when

events of interest occur. When the framework initializes the simulation, it registers

several call-back methods with the specialized process models located in the listener

nodes of the simulation’s node model. This way, the simulation can run uninter-

rupted, notifying the framework that the node under test has sent a packet, modified

a statistic, or initiated a remote interrupt when that particular event has occurred

and can then decide to check the state of the node under test or continue execution.

Thus, the framework can execute the simulation event by event, checking assertions

all along the way, or execute the simulation until key events, only then pausing the

simulation to check assertions. The framework also recognizes other key events to

pause the simulation and check assertions, as listed in Table 4.3.

4.2.8 Observing Simulation State. In testing a process with OPNET-Unit,

there are two important parts of the simulation that should be observed for testing

purposes. First, the state of the actual process model defining the node under test.

Second, the state of the surrounding simulation (other nodes, packet interrupts, statis-

tics) that the node under test might have altered. Observing the state of the node

63

Table 4.3: OPNET-Unit Simulation Execution API. This table shows
the API related to the control of simulation execution. Modeler offers
incrementUntilOneEvent() out of the box, however the application layer must im-
plement the remainder of the API.

Precision Execution API

Method:

incrementUntilOneEvent()
incrementUntilPacketArrival()
incrementUntilPacketArrivalOnStrm()
incrementUntilStatArrival()
incrementUntilStatArrivalOnStrm()
incrementUntilRemoteInterrupt()
incrementUntilUnforcedStateReached()
incrementUntilUnforcedStateLeft()

under test is largely a matter of the way the tester implemented the process model

which defines the node under test. However, using the OPNET-Unit state pattern

refactoring technique previously discussed, observing such aspects of the node under

test as the status of all the state variables, and the actual state the model is currently

in (via the state transitions) is straightforward, requiring simple method calls. Ob-

serving the state of the surrounding simulation is possible using methods supplied by

the framework. OPNET-Unit’s specialized node model reports pertinent information

such as packet arrival, statistic output, and ICI pointers back to the framework’s pub-

lished interface for access and use from a standard unit-testing library. Using these

methods, a test scenario is possible that sends a packet to the node under test, and

then verifies that the node under test then forwards the packet on a given output

stream, and writes a certain statistic on a given statistic wire.

4.2.9 OPNET-Unit Conclusion. Effective unit testing has been shown to

reduce debugging times for several reasons, most notably through defect localiza-

tion. Utilization of unit testing in the development process frequently distinguishes

advanced programmers from novices [17]. However, in the OPNET simulation envi-

ronment, unit testing via traditional unit testing methods quickly becomes infeasible

64

and unmanageable because of OPNET use of proto-C, process model paradigms, and

heavy reliance on the OPNET simulation kernel. OPNET-Unit proposes a method-

ology and framework for overcoming each of these difficulties by providing access to

process model variables and states, and surrounding simulation state through a clearly

defined interface, suitable for testing in a traditional C++ development environment

using a xUnit testing framework. With the support of the new framework, new

OPNET development methodologies are now possible including TDD (Test Driven

Development) [17] and agile forms of development. Moreover, batteries of unit tests

could ship with the accompanying process models and serve as robust regression

tests, facilitating future OPNET modeler development; researchers seeking to mod-

ify an existing protocol could run the battery of tests after each modification of the

source code, clearly identifying which specifications the modification no longer fulfills.

Lastly, research efforts can improve, as developers implement new protocol designs for

use with the OPNET simulation platform, OPNET-Unit can provide a greater degree

of confidence that their implementations are true to their original protocol designs,

yielding higher quality and more meaningful results.

4.3 Conclusion

This chapter discussed in detail the utilization of the toolkit developed in Chap-

ter 3 into two example applications: The OPNET Network Protocol Testbed (OP-

NPT), and OPNET-Unit, an OPNET unit testing framework. The chapter discussed

the necessary modifications to Maj. Harmon’s buffering proxy router node models.

Additionally, the chapter discussed the inclusion Harmon’s and intern Matt Week’s

process implementations into externalized DLL’s, suitable for use with the framework.

The chapter also discussed the specialized node models used in conjunction

with the underlying dependency injection framework discussed in Chapter 3 for the

implementation of OPNET-Unit. The chapter shows how the framework can be

used to build and execute small test simulations in the context of an xUnit based

65

framework. This framework can then, in turn, become an invaluable tool in the

automation of testing suits for process implementations.

66

V. Application and Analysis of Results

This chapter demonstrates the robust features of the implemented applications

discussed in chapter 4, to include mobile scenarios, wireless scenarios, scenario

generation from XML source files, hot swappable implementations, and Java interface

capabilities. Moreover, the chapter presents an in depth analysis of correctness of the

process implementation externalizations discussed in chapter 4. This analysis is per-

formed by running simulations with the original process implementations, re-running

the same simulation with the framework, and observing the identical results. Lastly,

the chapter provides an analysis of correctness of the OPNET-Unit implementation.

5.1 OP-NPT

5.1.1 Scenario Generation.

5.1.1.1 Generation from XML. The effect of the builder on the pro-

grammatic generation of OPNET readable scenario files is astounding. Without the

use of the library, creating even the simplest of scenarios requires 10’s of thousands

of lines of hard-to-read OPNET API calls. If a developer utilizes the toolkit scenario

generation libraries and a simple XML parser, the developer can generate the same

scenario from an XML persistence of just 30 lines. Moreover, because the toolkit li-

brary API is simple and programmatic, a clever developer could create software that

generated 1,000’s of different OPNET readable scenario files that followed certain

guidelines (constraints on various types of nodes, preference to certain configuration

styles), or even use the results of a simulation run to automatically affect the design

of the next simulation scenario.

Listing 5.1 shows the format of the XML format readable by the built-in XML

parser for the library. Users are free to utilize their own XML parser, toolkit builder

library, and XML format to construct their own scenario generation mechanism. For

convenience, the libraries provide for this format by default. Listing 5.2 shows an

example XML file and figure 5.1 shows the resulting OPNET scenario.

67

<Root>
<Nodes>

<Node name = ”<node name>” type = ”<model name>” numTx = ”<# of
t r an s c e i v e r s >” numRx = ”<# of r e c e i v e r s >” txName = ”<naming
convention>” rxName = ”<naming convention>” xPos = ”<x
coord inate>” yPos = ”<y coord inate>”>

<a t t r i b u t e name = ”<a t t r i b u t e name>” value = ”<value o f
a t t r i bu t e >”/>

</Node>
</Nodes>
<Links>

<NewLink name = ”< l i n k name>” type ”< l i n k model>” node1 = ”<node
1 o f the l ink>” node2 = ”<ndoe 2 o f the l ink>”>

<a t t r i b u t e name = ”<a t t r i b u t e name>” value = ”<value o f
a t t r i bu t e >”/>

</NewLink>
</Links>
<Simulat ion>

<Simulat ionAttr ibutes>
<a t t r i b u t e name = ”<a t t r i b u t e name>” value = ”<value o f

a t t r i bu t e >”/>
</S imulat ionAttr ibutes>

</Simulat ion>
</Root>

Listing 5.1: Toolkit XML Format. This Listing shows the default XML format
readable by the toolkit libraries. Users are required to specify the number of receivers
and transceivers for proper scenario generation. The naming convention allows the
building mechanism to properly link nodes in the OPNET environment.

Figure 5.1: Basic OPNET scenario. This scenario contains a client and a server
connected by an intermediate packet dropping mechanism.

68

<Root>

<Nodes>
<Node name = ” Cl i en t ” type= ”mc ppp wkstn adv” mobile = ”Yes” numTx = ”1

” numRx = ”1” txName = ” ip tx X 0 ” rxName = ” ip rx X 0 ”>
</Node>
<Node name = ” Server ” type= ” ppp server adv ” mobile = ”Yes” numTx = ”1”

numRx = ”1” txName = ” ip tx X 0 ” rxName = ” ip rx X 0 ”>
</Node>
</Nodes>
<Links>
<NewLink name = ” l i nk1 ” type= ”ppp adv” node1 = ” Cl i en t ” node2 = ” Server

”/>
</Links>

<Simulat ion>
<Simulat ionAttr ibutes>
<a t t r i b u t e name = ” durat ion ” value = ”3600”/>
</S imulat ionAttr ibutes>
</Simulat ion>

</Root>

Listing 5.2: Example Scenario. This listing shows an example XML representation
of the scenario depicted in figure 5.1.

69

//Get the standard s c ena r i o bu i l d e r
Scenar i oBu i lde r ∗ bu i l d e r = new StandardScenar ioBui lder () ;

//add two nodes
bu i lde r−>addFixedNode (1 ,1 ,−30 ,60 ,0 , ” C l i en t ” , ”mc ppp wkstn adv5” , ”

ip tx X 0 ” , ” ip rx X 0 ”) ;
bu i lde r−>addFixedNode (1 , 1 , 15 , 60 , 0 , ” Server ” , ”mc ppp server adv5 ” , ”

ip tx X 0 ” , ” ip rx X 0 ”) ;
bu i lde r−>addFixedNode (2 , 2 , 0 , 60 , 0 , ”Winker” , ”

d fh packet d i s carder node mode l 28Dec ” , ”output X” , ” input X”) ;

// l i n k them toge the r
bu i lde r−>addLink (” l i nk1 ” , ”ppp adv” , ” C l i en t ” , ”Winker”) ;
bu i lde r−>addLink (” l i nk1 ” , ”ppp adv” , ”Winker” , ” Server ”) ;

//add the app l i c a t i o n ” nodes ”
bu i lde r−>addFixedNode (0 , 0 , 50 , 50 , 0 , ” P r o f i l e Con f i g ” , ”

mc t o o l k i t g n a p r o f i l e c o n f i g a d v ” , ”” , ””) ;
bu i lde r−>addFixedNode (0 , 0 , 40 , 50 , 0 , ” Appl i ca t ionConf ig ” , ”

mc t o o l k i t g n a a t t r i b d e f i n e r a dv ” , ”” , ””) ;

//add the s t a t i s t i c communication node
bu i lde r−>addFixedNode (0 , 0 , 30 , 50 , 0 , ”Stat Comm” , ”mc stat comm” , ”” , ””) ;

Listing 5.3: Programmatic Scenario Generation. This listing shows the use of the
toolkit’s C/C++ libraries to generate a scenario programmatically.

5.1.1.2 Generation from C++ API. Additionally, simple programs

can programmatically generate scenarios, as shown in listing 5.3. Although OPNET’s

EMA libraries fundamentally provide the same functionality, the toolkit libraries are

more accessible, and greatly reduce the time, effort, and complexities associated with

scenario generation. Additionally, the libraries provide new functionality not found in

OPNET when combined with the toolkits’ programmatic raw data collection mech-

anisms. With these two functionalities combined, users can author applications that

automatically adjust the setup and configuration of the next batch of simulation runs

based on the results of the last batch.

5.1.2 Mobile/Wireless Scenarios. Because OP-NPT does not make any

assumptions about the types of nodes a user may want to insert into a given scenario,

70

<Root>
<Nodes>
<Node name = ” Cl i en t ” type= ”mc wlan wkstn adv”

numTx = ”1” numRx = ”1” txName = ” ip tx X 0 ” rxName = ” ip rx X 0
”/>

<Node name = ” Server ” type= ”mc wlan server adv ”
numTx = ”1” numRx = ”1” txName = ” ip tx X 0 ” rxName = ” ip rx X 0

”/>
<Node name = ” Pr o f i l e Con f i g ” type= ” mc gna p r o f i l e c on f i g adv ”

numTx = ”0” numRx = ”0” txName = ”” rxName = ””/>
<Node name = ”App Config” type= ” mc gna a t t r i b de f i n e r adv ”

numTx = ”0” numRx = ”0” txName = ”” rxName = ””/>
</Nodes>
<PacketDiscarder type = ” dfh packet d i s carder node mode l 28Dec ”/>
<Links>
<!−−No l i n k s needed for w i r e l e s s network!!−−>
</Links>
</Root>

Listing 5.4: XML Representation of Mobile Scenario. This XML shows the
representation of a toolkit compatible mobile scenario. The toolkit intern reads this
XML file and makes the appropriate toolkit API calls.

OP-NPT automatically supports mobile nodes in mobile scenarios as well as wireless

nodes without any extra programming on the part of the user. Listing 5.4 shows the

generation of a mobile scenario.

5.1.3 Java Interfaces. OP-NPT utilizes the native interface capabilities of

Java to create a simplified Java API for the existing C++ based API. This allows

Java applications, such as NetViz, to integrate with the toolkit libraries and take full

advantage of their capabilities. Listing 5.5 builds and executes the same simulation

shown in Figure 5.1.

5.1.4 Verification of OP-NPT Externalizations. Since the previous research

efforts did not have access to OPNET-Unit or any other similar unit testing tool, there

are no regression unit tests to run on the externalized versions of the implementation

externalizations. Thus, in order to perform verification on the externalized imple-

mentations, we must re-create previously run simulations and compare the results.

71

public stat ic void main (St r ing [] a rgs) {
Simulat ion sim = new Simulat ion () ;
sim . gene ra t eScenar i o (” t e s t ”) ;
sim . se t Implementat ionDirectory (”E:\\ Toolk i t \\ implementat ions ”) ;
sim . init ial izeFromXML (” implementat i on con f i g . xml”) ;
sim . useProtoco l (”ProxyMempoolManager”) ;
sim . useProtoco l (”ProxyPortDFH”) ;
S imulat ionExecutor testThread = new Simulat ionExecutor (sim) ;
testThread . s t a r t () ;

}
Listing 5.5: Java Toolkit API Example. This example demonstrates the invocation
of the toolkit’s Java API for use with Java applications The API offers a simplified
subset o the functionalities available in the original C++ API.

If we receive similar results for a variety of different simulation configurations, then

we can be reasonably confident that the re-factored version of the buffering protocols

are equivalent to the original.

5.1.4.1 Setup of Experiments. The verification simulations in this

section were conducted in the following manner. For each simulation, a control sim-

ulation was constructed manually in OPNET utilizing the standard OPNET GUI

options. Next, the simulation was duplicated via an automated OPNET option. In

the duplicated scenario, the original non-toolkit network objects were manually re-

placed with the toolkit enabled network objects. The duplicated scenario was then

run via the toolkit. Although the toolkit has the ability to build the simulations pro-

grammatically, the duplication technique preserves all settings from one simulation

to the next and thus eliminates unwanted variability.

5.1.4.2 Verification 1: The first verification simulation set verified the

“packet dropper” externalization. First, a control simulation was run that consisted of

a client and a server without a winking link. Then, experiments with various settings

and random number seeds were conducted with both the original implementation,

72

Table 5.1: Control Simulation. This table shows the response time of the download
of a 20mb file via the file transfer protocol over an unchallenged link. This simulation
was conducted via the standard OPNET GUI.

Control

Seed: Response Time (Sec.)

128 22.731632879988
256 22.731632879988
512 22.731632879988
768 22.731632879988
1024 22.731632879988

Table 5.2: Simulation Settings. This table shows the settings for the packet dropper
used for the first simulation set.

Application Settings: Set 1

Setting: Value:

Inter-Wink Interval .1
Failure Probability .3

and the toolkit’s version of the implementation. The results are summarized Table

5.1.

This control simulation sequence demonstrates several important points. First,

the response time for the file download remains constant despite changes in the ran-

dom number seed. This is attributable to the configuration of the application settings

in OPNET to constant values, instead of values based on a random distribution. This

is an important fact to note, because it isolates future observed changes in response

times with respect to the random seed to the implementations under observation, and

not the testing set-up and application configuration settings.

This battery of tests shows that a simulation run utilizing the toolkit to dynam-

ically hot swap an implementation behaves identically to the original implementation.

This verifies several key pieces of the toolkit methodology:

• The externalization (refactoring) mechanism of a given implementation does not

change it’s behavior with respect to interaction with the simulation kernel.

73

Table 5.3: Packet Dropper Verification Results. This table shows that the toolkit
implementation behaved identically to the original implementation over a variety of
seeds.

Packet Dropper Verification Results

Seed Expected Observed Delta

128 105.2296836 105.2296836 0
256 38.331074559999 38.331074559999 0
512 54.130632239994 54.130632239994 0
768 104.730596079999 104.730596079999 0
1024 69.930492079998 69.930492079998 0

Table 5.4: Verification 2 Settings. This table shows the settings used for the second
verification simulation.

Application Settings: Set 1

Setting: Value:

Inter-Wink Interval 0.1
Failure Probability 0.01

• The toolkit’s mechanism for dynamically linking and injecting dependencies

into an executing simulation does not affect the behavior of the externalized

implementation.

• Statistics can be effectively collected for analysis.

5.1.4.3 Verification 2: The second verification set compares the re-

sponse time of strategic buffering version 1 with the same statistic gathered from

executing the simulation with the toolkit. As in previous simulations, multiple simu-

lations over several seeds were analyzed. Table 5.5 summarizes the results.

Figure 5.2 charts the differences between the original strategic buffering version

1 implementation and the toolkit’s hot swappable implementation. Interestingly, the

toolkit’s results varied from the expected values in a non-uniform manner. There is

no correlation between seed values and the delta between the observed and expected

values.

74

Table 5.5: Strategic Buffering Version 1 Verification Results. This table shows the
relationship of the original strategic buffering mechanism with the toolkit implemen-
tation. The toolkit implementation’s response time varies from the expected value
with respect to the seed utilized by the OPNET random number generator. The error
between the observed and expected values varied from as much as 3.05711E − 07 to
as little as 1.9235E − 08.

Strategic Buffering Version 1 Response Time

Seed Strategy 1 Toolkit Delta

128 24.149466047411 24.149466028176 1.9235E-08
256 24.191545973788 24.191545938771 3.5017E-08
512 24.098585924821 24.098586198175 -2.73354E-07
768 24.301650322633 24.301650399049 -7.6416E-08
1024 24.191546146677 24.191545840966 3.05711E-07

100 200 300 400 500 600 700 800 900 1000 1100

−3

−2

−1

0

1

2

3

4
x 10

−7 Delta of Response Times vs. Seed

Seed Value

T
im

e
(S

ec
)

Delta Between Observed and Exptected Values

Figure 5.2: Delta of Response Times Between Toolkit Strategic Buffering Version
1 and Expected Values. This chart shows the delta’s between the original strategic
buffering version 1 (expected) and the toolkit’s hot swapped version (observed). The
differences are practically zero.

75

Table 5.6: Verification 2 Settings-Second Run. This table shows the settings used
for the second run of the second verification simulation.

Application Settings: Set 2

Setting: Value:

Inter-Wink Interval 0.1
Failure Probability 0.3

Table 5.7: Verification 2 Results. This table shows the relationship between the
original strategic buffering mechanism and the hot swappable toolkit version. This
test run is similar to that shown in table 5.5, however, the link’s probability of failure
has been increased from 10% to 30%, thus increasing the burden on the buffering
mechanism’s implementation.

Strategic Buffering Version 1 (Response Time)

Seed: Strategy 1: Toolkit: Delta:

128 25.426082457928 25.426082387351 7.0577E-08
256 25.48301636755 25.483016415367 -4.7817E-08
512 24.882090987013 24.882090802223 1.8479E-07
768 25.368778052944 25.368778310676 -2.57732E-07
1024 24.888534344855 24.888534083832 2.61023E-07

The experiments prior to this eliminate some reasons for the discrepancy. First,

the seed values change the response time by more than the delta between the observed

and expected values. This eliminates the random number generation process itself

from causing the difference. Second, the swapping mechanism has been shown to

produce identical results in prior experiments, so it is unlikely to be the cause in this

experiment. This leaves three options left as the cause:

1. Despite best efforts, the simulation settings were not consistent between the

control simulation and the toolkit simulation.

2. The toolkit’s swappable implementation is not the same as the original. The

refactoring process introduced a defect.

3. Rounding and truncation errors in the statistic collection mechanism.

76

Table 5.8: Disabled Verification Settings. This table shows the response time of
the scenario with the router’s buffering mechanism disabled via its own disabling
mechanism. The identical results support the hypothesis that the toolkit’s buffering
mechanism contains a defect. Additionally, a ”no-operation” implementation of the
key processes was implemented that simply forwards all packets. The results from
the no-op implementations were also equivalent to the disabled setting of the original
implementation.

Disabled Buffering

Seed: Version1: Toolkit Disabled: Delta

1024 116.640850319997 116.640850319997 0

Another batch of simulations were run. This time, the link’s probability of

failure is 30%. This second test shows similar discrepancies (Table 5.7). Next, we

compare the results of running the same simulations with the buffering mechanism of

the routers disabled. Table 5.8 shows the results.

5.1.5 Verification 3. Next, we verify the second strategic buffering mecha-

nism. Figure 5.3 shows the relationship between the original implementation and the

toolkit. Delta’s between the observed and expected values varied from as close as .007

seconds to as large as 4.317 seconds. As in the verification of the first strategic buffer-

ing version, the errors do not appear to be systematic–the delta varies unpredictably

from seed to seed.

5.1.6 Verification 4. In the last verification simulation set for OP-NPT,

we use the node model for the router used in buffering strategy 2, and install the

implementations for buffering strategy 1. For the remaining process that requires no

implementation, we install the no-op implementation that simply forwards packets

with zero processing time. Discrepancies between the observed and expected values

are shown in Figure 5.4.

77

100 120 140 160 180 200 220 240

23

24

25

26

27

28

29

30
Response Time vs. Seed

Seed Value

T
im

e
(S

ec
)

Strategic Buffering Version 2

Toolkit Execution of Version 2

Figure 5.3: Strategic buffering 2 vs. Toolkit Implementation. This graph shows the
relationship between the results of the original implementation of the second strategic
buffering mechanism and the toolkit’s execution of the same mechanism. The graph
reveals that although some data points between the two versions are similar, many
are quite different. This is evidence of the original mechanism being fundamentally
altered during the toolkit installation process.

78

100 200 300 400 500 600 700 800 900 1000 1100

24.8

24.9

25

25.1

25.2

25.3

25.4

25.5

25.6

25.7

25.8
Response Time vs. Seed

Seed Value

T
im

e
(S

ec
)

Strategic Buffering Version 1 in Version 2 Node Model Using Toolkit.

Version 1 in Version 1 Node Model.

Figure 5.4: Strategic buffering 1 vs. Toolkit Implementation. This graph shows the
relationship between the results of the original implementation of the first strategic
buffering mechanism integrated into the second buffering mechanisms’s node model.
The graph reveals variance between the two models on the order of less than a second.

79

Table 5.9: Verification Result Averages. This table shows the average delta’s be-
tween the three different verification cases. The most simple case performed the
best with no difference between observed and expected values. More complicated
multi-process implementations performed well in some cases, but less well in others.
Inter-process verification results were similar.

Strategic Buffering Averages (Response Time)

Verification Case Average Delta (sec)

Single Process 0
Multi Process-version 1 1.41947E-07
Multi Process-version 2 1.25
Inter Process-version 1 0.09

5.2 OP-NPT Results Conclusion

The testing and verification of OP-NPT included the testing of five process

implementations, swapped in and out in different combinations in a total of three

distinct node models. The verification process included the following test cases of

swappability:

• Swapping single process implementations.

• Swapping multiple process implementations.

• Swapping between multiple process implementations with differing number of

processes.

The results of the single process implementations were conclusive. The deltas be-

tween the original implementations and the toolkit’s swapped implementations were

consistently zero. Swapping more complicated implementations involving multiple

process implementations introduced some variability. The delta’s for buffering strat-

egy 1 were on the average of 1.41947E-07 seconds. Buffering strategy 2 performed

worse, with an average delta of 1.25 seconds between observed and expected values.

Lastly, swapping buffering strategy 1 into strategy 2’s node model produced a delta’s

on average of 0.09 seconds between observed and expected values.

80

Table 5.10: OPNET-UNIT Test Results. This table shows the results of testing
the “identity” process model, revealing that the framework behaves as expected.

Unit Testing Identity Model Results

Input: Expected Output: Pass:

Packet on streams (0-99) forwarded Y
Stat on streams (0-10) forwarded Y
Remote intrpt with ICI forwarded ICI Y

5.3 OPNET-Unit

5.3.1 Verification of Implementations. In order to verify the implemen-

tation, we install an “identity” process model for testing that follows the following

rules:

1. Forward all packets on the same numbered output stream as the index of the

input stream where a packet arrived.

2. Forward all remote interrupts, re-associating the associated ICI, to an auxiliary

node.

3. Forward all statistic interrupts, preserving the statistic value, on the same index

as the input stream where the statistic arrived.

5.3.2 A Motivating Example. Figure 5.5 shows a simple process model. This

process model performs initialization procedures in the “INIT” state, and then trans-

fers directly to the “WAIT” state where the process blocks until another interrupt

is received. The INIT state initializes all state variables to 0. The WAIT state per-

forms three simple arithmetic operations involving the incoming packet: calculating

the largest, smallest and average packet size. The Code that executes in the “INIT”

state is shown in listing 5.6.

The code that executes in the “WAIT” state when an interrupt is received is

shown in listing 5.7.

81

Figure 5.5: An Example Process Model Under Test. This process model contains
only two states with an “INIT” state performing initializations, and the ”Wait” state
handling all subsequent interrupts.

s i z e t packet max s i ze = 0 ;
s i z e t packe t m in s i z e = 0 ;
s i z e t num packets = 0 ;
s i z e t sum = 0;
double average = 0 ;

Listing 5.6: “INIT” State Proto-C. This listing shows the code contained in the
“INIT” state of the process implementation under test. Line 2 contains a fault.

82

// r e cogn i z e stream in t e r r up t s only
i f (op i n t rp t t yp e () == OPC INTRPT STRM) {

// get the packet
Packet ∗ pkt = op pk get (op in t rp t s t rm ()) ;
// get the packet s i z e
p a c k e t s i z e = op pk bu l k s i z e g e t (pkt) ;

// get the l a r g e s t packet
i f (p a c k e t s i z e > packet max s i ze) ;

packet max s i ze = pa ck e t s i z e ;

// get the sma l l e s t packet
i f (p a c k e t s i z e < packe t min s i z e) ;

packe t min s i z e = pa ck e t s i z e ;
// c a l c u l a t e average
num packets++;
sum += pack e t s i z e ;
average = sum/num packets ;
o p s t a t w r i t e (AvgSizeHandle , average) ;
delete pkt ;

}
Listing 5.7: . “Wait” State Proto-C. This listing shows the code contained in the
“Wait” state of the process implementation under test. Lines 9 and 13 contain faults.

To test the process model, we write several tests to verify proper functioning.

In accordance with good testing practices, we are particularly interested in bound-

ary conditions. In this case, our boundary conditions, and thus test cases, are the

following:

1. No packets sent to the node.

2. One packet sent to the node (size 0).

3. Two packets sent to the node (sizes 0 and INT MAX).

4. Two packets sent to the node (sizes 1 and INT MAX)

Using the CxxTest framework, we can implement the first non-trivial test case

(Listing 5.8).

After running the tests, tests 3 and 4 fail. Utilizing the debugging concept of
slicing discussed in [11], we narrow the bug search to lines 13 and 16 and discover
empty control statements. We replace the statement:

83

void t e s t 2 (void)
{
// get the f i r s t packet
Packet ∗ pkt = harness−>getPacket (0) ;
// send the packet to the node under t e s t on stream 0
harness−>sendPacket (pkt , 0)
harness−>incrementOneEvent () ;
TS ASSERT EQUALS(manager−>ge tS ta t eVar i ab l e s ()−>packet max s ize , 0) ;
TS ASSERT EQUALS(manager−>ge tS ta t eVar i ab l e s ()−>packet min s i z e , 0) ;

TS ASSERT EQUALS(manager−>ge tS ta t eVar i ab l e s ()−>num packets , 1) ;
TS ASSERT EQUALS(manager−>ge tS ta t eVar i ab l e s ()−>sum , 0) ;
TS ASSERT EQUALS(manager−>ge tS ta t eVar i ab l e s ()−>average , 0) ;
}
Listing 5.8: Non-Trivial Test Case. This shows the full implementation of the test
case that ensures axiom 2 holds true.

(13) if(packet_size > packet_max_size);

(14) packet_max_size = packet_size;

with:

(13) if(packet_size > packet_max_size)

(14) packet_max_size = packet_size;

and similarly with the “if” statement in line 16. Retest. Now only test 4 fails.

Again, slicing leads the debugging search directly to line 2 in the initialization state.

We change:

(2) size_t packet_min_size = 0;

with:

(2) size_t packet_min_size = INT_MAX;

and retest. All tests now pass. Even in this small sample of code there were

several common bugs, extra “;’s” and incorrect initializations, that could have been

difficult to debug without an isolated testing environment in which to test axioms

and re-create boundary conditions where program faults frequently lie.

5.3.3 Motivating Example 2. Figure 5.6 shows an actual process model

provided by OPNET and demonstrates the second class of bug that can occur with

84

OPNET process models: faults in the mechanism of the process model execution

(entering the wrong state at the wrong time). OPNET-Unit provides a mechanism to

determine the state in which a particular process implementation resides. Through

careful creation of input conditions, unit tests can verify that various paths through

a given process model are traversed as expected.

5.4 Conclusion

This chapter performed numerous test scenarios on critical parts of the two

major applications developed using the toolkit: OP-NPT and OPNET-Units. The

OP-NPT tests verified that the externalized implementations are logically equiva-

lent to the original process implementations provided by their original authors. The

OPNET-Unit tests using the “identity” process implementation verify the correctness

of the OPNET-Unit framework. Additionally, examples of defect localization utilizing

the OPNET-Unit framework demonstrates its usefulness and overall utility.

85

Figure 5.6: Complex Process Model. This actual process model that ships with
OPNET demonstrates the second class of bug that can occur with OPNET process
models: faults in the mechanism of the process model execution (entering the wrong
state at the wrong time).

86

VI. Conclusion

The future possibilities created by building an IoC container around the OPNET

Modeler environment are literally endless. By the very nature of dependency

injection, the framework breaks the debilitating coupling between an OPNET simu-

lation and the very implementations that define how the simulation functions. This

thesis demonstrated two applications, only now possible because of the breaking of

this coupling, OP-NPT and OPNET-Unit.

Moreover, these two applications are contributions in and of themselves. OP-

NPT allows for the plug-and-play ability of OPNET implementations. Other domains

have long since had this capability, but the proto-C environment coupled with the

mechanisms OPNET uses to process the implementations prevents their plug-and-

play ability. Moreover, once this mechanism was in place, the thesis verified that the

plug-and-play implementations were logically equivalent to their original counterparts.

Lastly, the thesis demonstrated the execution of a simulation with two previously

unrelated algorithms integrated into a framework-enabled router.

OPNET-Unit also demonstrates several contributions. First, it demonstrates

the ability to maintain intimate control over the execution of customized OPNET

simulations through a well-defined interface. This allows native applications to uti-

lize the full power of OPNET without maintaining coupling to a simulation. The

utility of this mechanism was demonstrated through the design and implementation

of OPNET-Unit. OPNET-Unit its self provides several advantages to the OPNET

community. First, automated unit testing in general was not available to developers

utilizing the OPNET paradigms. With the advent automated unit testing, devel-

opers can take advantage of other development methodologies already in use in the

software engineering community such as Agile, XP, and TDD. These alternate de-

velopment methodologies enable developers to spend more time developing, and less

time debugging, thus producing an overall increase in code quality.

In summary the major (possibly publishable) and minor (non-publishable, but

important to the Cyber ANiMAL Lab) are listed below:

87

Major contributions:

1. Transforming OPNET into an IoC container.

2. Developing an demonstrating “hot-swappabe” OPNET compatible protocol im-

plementations and verifying their correctness.

3. Showing the result of the integration of two swappable implementations: strate-

gic buffering mechanisms 1 and 2

4. Developing an OPNET process model unit testing framework that permits the

automation of process implementation testing.

Minor contributions:

1. Developing an object-oriented error-handling OPNET scenario generation li-

brary.

2. Developing an API for precision execution of simulations.

3. Developing an API for “simulation-time” recovery of raw statistics from OPNET

simulations.

4. Developing a JAVA based API for all libraries, useful for integration with JAVA

based applications.

5. Developing an API for dynamic input from users about node and link status.

6.1 Future Recommendations

There is much potential future work with the dependency injection framework.

The OP-NPT application could be expanded to handle other OPNET algorithms

currently under development. Thus, a process implementation database could be

developed and maintained, expanding the impact of this research. Moreover, the

framework does not currently posses a mechanism for simulating dynamic topology

related algorithms. The inclusion of algorithm’s into the framework would require fun-

damentally new infrastructure in many places to facilitate the unique requirements

88

of these types of algorithms. Additionally, the improvement of the integration of the

framework with other research efforts, such as NetViz [3], would prove beneficial to the

research community. Providing interfaces for not only displaying simulation related

information in the visualization, but also for receiving feedback from the visualization

about node and link status for “simulation time” update into the simulation. Lastly,

the development of an abstract event queue with standardized interface would allow

for the integration of non-OPNET based process implementations to be included in

OPNET simulations. Developers working with NS-2 could, for example, provide NS-2

specific implementations of the generalized abstract event queue. This could poten-

tially allow implementations that are simultaneously compatible with both OPNET,

NS-2, and any other platform for which an implementation exists.

89

Bibliography

1. Autumn. http://code.google.com/p/autumnframework/, January 2008.

2. Bederson, Benjamin B., Jesse Grosjean, and Jon Meyer. “Toolkit Design for
Interactive Structured Graphics”. IEEE Trans. Softw. Eng., 30(8):535–546, 2004.
ISSN 0098-5589.

3. Beleue, J. Mark. “Network Visualization Design Using Prefuse Visualization
Toolkit”. Air Force Institute of Technology Thesis, March 2008.

4. Cooper, Ryan F. “Airborne Network and Datalink Technology Analysis Program:
Distributed LInk 16 Simulation Demonstration”. OPNETWORK 2007, 2007.

5. Dadarlat, C. Coffey T., V. Ivan. “A Middleware Based Approach for Designing
Routing Protocols”. Electrical and Computer Engineering, 2002. IEEE CCECE
2002., 3:1436– 1441, 2002.

6. Dourish, Paul and W. Keith Edwards. “A Tale of Two Toolkits: Relating Infras-
tructure andUse in Flexible CSCW Toolkits”. Comput. Supported Coop. Work,
9(1):33–51, 2000. ISSN 0925-9724.

7. Duggan, Dominic. “Type-based hot swapping of running modules (extended ab-
stract)”. ICFP ’01: Proceedings of the sixth ACM SIGPLAN international con-
ference on Functional programming, 62–73. ACM, New York, NY, USA, 2001.
ISBN 1-58113-415-0.

8. Ford, Bryan, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin
Shivers. “The Flux OSKit: a substrate for kernel and language research”. SOSP
’97: Proceedings of the sixteenth ACM symposium on Operating systems princi-
ples, 38–51. ACM Press, New York, NY, USA, 1997. ISBN 0-89791-916-5.

9. Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321127420.

10. Fowler, Martin. “Inversion of Control Containers and the Dependency Injection
Pattern”. http://martinfowler.com/articles/injection.html, January 2004.

11. Francel, Margaret Ann and Spencer Rugaber. “The Relationship of Slicing and
Debugging to Program Understanding”. IWPC ’99: Proceedings of the 7th In-
ternational Workshop on Program Comprehension, 106. IEEE Computer Society,
Washington, DC, USA, 1999. ISBN 0-7695-0179-6.

12. Franz, Michael. “Dynamic Linking of Software Components”. Computer,
30(3):74–81, 1997. ISSN 0018-9162.

13. Freeman, Steve, Tim Mackinnon, Nat Pryce, and Joe Walnes. “jMock: supporting
responsibility-based design with mock objects”. OOPSLA ’04: Companion to the
19th annual ACM SIGPLAN conference on Object-oriented programming systems,

90

languages, and applications, 4–5. ACM, New York, NY, USA, 2004. ISBN 1-58113-
833-4.

14. Freeman, Steve, Tim Mackinnon, Nat Pryce, and Joe Walnes. “Mock roles, ob-
jects”. OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applications, 236–246.
ACM, New York, NY, USA, 2004. ISBN 1-58113-833-4.

15. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

16. Harmon, Duane. “Overcoming TCP Degradation in the Presence of Multiple
Intermittent Link Failures Utilizing Intermediate Buffering”. Air Force Institute
of Technology Thesis, 2007.

17. Janzen, David S. and Hossein Saiedian. “A Leveled Examination of Test-Driven
Development Acceptance”. ICSE ’07: Proceedings of the 29th International Con-
ference on Software Engineering, 719–722. IEEE Computer Society, Washington,
DC, USA, 2007. ISBN 0-7695-2828-7.

18. Kohler, Eddie, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. “The click modular router”. ACM Trans. Comput. Syst., 18(3):263–
297, 2000. ISSN 0734-2071.

19. Larman, Craig. Applying UML and patterns: an introduction to object-oriented
analysis and design. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.
ISBN 0-13-748880-7.

20. Madhyastha, Harsha V., Arun Venkataramani, Arvind Krishnamurthy, and
Thomas Anderson. “Oasis: an overlay-aware network stack”. SIGOPS Oper.
Syst. Rev., 40(1):41–48, 2006. ISSN 0163-5980.

21. Meszaros, Gerard. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley,
2007.

22. Mürk, Oleg and Jevgeni Kabanov. “Aranea: web framework construction and
integration kit”. PPPJ ’06: Proceedings of the 4th international symposium on
Principles and practice of programming in Java, 163–172. ACM, New York, NY,
USA, 2006. ISBN 3-939352-05-5.

23. OPNET Technologies, 7255 Woodmont Avenue, Bethesda MD 20814-7904 USA.
Modeler Documentation Set, 12.0 edition, 1987-2006.

24. PicoContainer. http://www.picocontainer.org/, January 2008.

25. Richards, Robert A. “An Intelligent Tool for Network Configuration and Opti-
mization”.

26. Schroeder, William J., Kenneth M. Martin, and William E. Lorensen. “The design
and implementation of an object-oriented toolkit for 3D graphics and visualiza-

91

tion”. VIS ’96: Proceedings of the 7th conference on Visualization ’96, 93–ff. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996. ISBN 0-89791-864-9.

27. Seck Chai Lew, Ann Foo Cher Edwin, David Shiu Kei Cheung. “A Mix Ex-
ecutable Protocols and OPNET Simulation Environment For Rapid Protocols
Development and Communication System Performance Evaluation”. OPNET-
WORK 2007, 2007.

28. Spring. http://www.springframework.org/about, January 2008.

29. Stachtos, V., M. Kounavis, and A. Campbell. “Sphere: A Bind-
ing Model and Middleware for Routing Protocols”, 2001. URL
citeseer.ist.psu.edu/stachtos01sphere.html.

30. Tomcat. http://tomcat.apache.org/, January 2008.

31. Weinand, Andre, Erich Gamma, and Rudolf Marty. “ET++ an Object Oriented
Application Framework in C++”. OOPSLA ’88: Conference proceedings on
Object-oriented programming systems, languages and applications, 46–57. ACM
Press, New York, NY, USA, 1988. ISBN 0-89791-284-5.

92

Vita

Graduating in 2006, 2d Lt Mark Coyne graduated from The Citadel in Charleston

SC, and was commissioned into the Air Force. After applying for the Direct Acces-

sion program, Mark was accepted to AFIT. In March of 2008, he graduated with a

Master’s Degree in Computer Science, specializing in Software Engineering. Mark

will next travel to Ft. Meade in Annapolis Maryland to work with the National Secu-

rity Agency at the 70th Intelligence Support Squadron in support of the Air Force’s

emerging Cyber Operations career fields.

Permanent address: 2950 Hobson Way
Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

93

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27 March 2008 Master’s Thesis Aug 2006 — Mar 2008

Hot Swapping Protocol Implementations in the OPNET Modeler
Development Environment

ENG 08-175

Mark E. Coyne, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/08-05

Air Force Office of Scientific Research
Robert J. Bonneau
875 N. Randolph Street
Arlington, VA 22203-1768
(703) 696-6565 (DSN: 426-6207), email: david.luginbuhl@afosr.af.mil

Approval for public release; distribution is unlimited.

This research effort demonstrates hot swapping protocol implementations in OPNET via the building of a dependency
injection testing framework. The thesis demonstrates the externalization (compiling as stand-alone code) of OPNET
process models, and their inclusion into custom DLL’s (Dynamically Linked Libraries). A framework then utilizes these
process model DLL’s, to specify, or “inject,” process implementations post-compile time into an OPNET simulation. Two
separate applications demonstrate this mechanism. The first application is a toolkit that allows for the testing of multiple
routing related protocols in various combinations without code re-compilation or scenario re-generation. The toolkit
produced similar results as the same simulation generated manually with OPNET. The second application demonstrates
the viability of a unit testing mechanism for the externalized process models. The unit testing mechanism was
demonstrated by integrating with CxxTest and executing xUnit style test suits.

Discrete Event Simulation, Dependency Injection, Hot Swapping, Unit Testing

U U U UU 107

Maj Scott Graham, PhD

(937) 255-3636, x4918 scott.graham@afit.edu

	Hot Swapping Protocol Implementations in the OPNET Modeler Development Environment
	Recommended Citation

	tmp.1584733625.pdf.J01dC

