
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-27-2008

Using Hierarchical Temporal Memory for Detecting Anomalous Using Hierarchical Temporal Memory for Detecting Anomalous

Network Activity Network Activity

Gerod M. Bonhoff

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Bonhoff, Gerod M., "Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity"
(2008). Theses and Dissertations. 2746.
https://scholar.afit.edu/etd/2746

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/288295173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2746&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F2746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2746?utm_source=scholar.afit.edu%2Fetd%2F2746&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Using Hierarchical Temporal Memory

for Detecting Anomalous Network Activity

THESIS

Gerod M. Bonhoff, 1st Lt, USAF

AFIT/GCS/ENG/08-04

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCS/ENG/08-04

Using Hierarchical Temporal Memory

for Detecting Anomalous Network Activity

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Degree of Master of Science (Computer Science)

Gerod M. Bonhoff, B.S.C.S.

1st Lt, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/08-04

Using Hierarchical Temporal Memory

for Detecting Anomalous Network Activity

Gerod M. Bonhoff, B.S.C.S.

1st Lt, USAF

Approved:

/signed/ 27 Mar 2008

Lt Col (Ret) Robert F. Mills, PhD
(Chairman)

date

/signed/ 27 Mar 2008

Maj (Ret) Richard A. Raines, PhD
(Member)

date

/signed/ 27 Mar 2008

Dr. Gilbert L. Peterson (Member) date

AFIT/GCS/ENG/08-04

Abstract

This thesis explores the nature of cyberspace and forms an argument for it as

an intangible world. This research is motivated by the notion of creating intelligently

autonomous cybercraft to reside in that environment and maintain domain superiority.

Specifically, this paper offers 7 challenges associated with development of intelligent,

autonomous cybercraft.

The primary focus is an analysis of the claims of a machine learning language

called Hierarchical Temporal Memory (HTM). In particular, HTM theory claims to

facilitate intelligence in machines via accurate predictions. It further claims to be

able to make accurate predictions of unusual worlds, like cyberspace. The research

thrust of this thesis is then two fold. The primary objective is to provide supporting

evidence for the conjecture that HTM implementations facilitate accurate predictions

of unusual worlds. The second objective is to then lend evidence that prediction is a

good indication of intelligence.

A commercial implementation of HTM theory is tested as an anomaly detec-

tion system and its ability to characterize network traffic (a major component of

cyberspace) as benign or malicious is evaluated. Through the course of testing the

poor performance of this implementation is revealed and an independent algorithm

is developed from a variant understanding of HTM theory. This alternate algorithm

is independent of the realm of cyberspace and developed solely (but also in a con-

trived abstract world) to lend credibility to concept of using prediction as a method

of testing intelligence.

iv

Acknowledgements

My AFIT experience has provided me with some of the most interesting times

I’ve had in the Air Force. I own every thrilling “ah-ha!” moment to AFIT’s dedicated

faculty and staff.

Of course, no thesis acknowledgment is complete without paying due respect

to the thesis adviser. In my case, however, no simple nod will due for the support

and encouragement provided by Dr. Robert Mills. Under the guise a laissez-faire

research policy I was invisibly guided along an academic path more interesting than

any in my past. Although much of what I learned won’t make it into this thesis,

your encouragement of outside the box thinking was refreshing. I appreciate you

considering my novel ideas with sincerity and for extending that helping hand even

when I didn’t think I needed it. Indeed, at the very end you were there for me when

I needed you the most. I want to thank you for being on the side of exploration and

discovery.

Last but not least, I need to thank my support system both in and out of the

classroom. To the Old Man, the Sabres’ Fan, my ASBC Pal and Racing Gal, thank

you for being both true friends and sounding boards. To the Bagel Lady, thank you

for being a friendly face I could always trust for concern and support. To my parents,

who have supported me through each trial and tribulation of my military career,

thank you for ensuring each is a triumph. Most importantly I want to thank my wife.

For over 18 months you’ve unselfishly made long drives, late night flights, daily phone

calls, and countless care packages. Thank you for ensuring constant company along

the way and for providing a warm home at the bottom of the hill.

Gerod M. Bonhoff

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Abbreviations . xi

I. Introduction . 1
1.1 Research Focus . 3
1.2 Research Impact . 4

1.3 Thesis Organization . 4

II. Literature Review . 6
2.1 Information Warfare . 6

2.1.1 IW/IO OODA Loops 7

2.2 Cyberspace . 10

2.2.1 Defining the Undefined 11

2.2.2 Domain vs. Environment 11
2.2.3 Fly & Fight in Cyberspace 12

2.3 Cybercraft . 14

2.3.1 Vision . 14
2.3.2 Specification: Six Focus Areas 15

2.3.3 Autonomy Challenges 17

2.4 Intelligence . 19

2.4.1 Intelligent Behavior & The Turing Test 20

2.4.2 Prediction: The Essence Of Intelligence 20

2.4.3 The Human Brain 24
2.5 Pertinent Artificial Intelligence Approaches In-summary 28

2.5.1 Artificial Neural Networks 28
2.5.2 Neuro-Fuzzy Networks 29

2.5.3 Bayesian Networks 30

2.5.4 Hidden Markov Models 30
2.5.5 Hierarchical Temporal Memory 31

2.6 HTM Theory In-depth 32

2.6.1 Nuts & Bolts 32
2.6.2 Reality Check 36

vi

Page

III. Methodology - Implementing HTMs 38

3.1 Problem Refinement . 38
3.2 HTM Theory - Applicability 39

3.3 Hypothesis . 40

3.4 Mapping Theory to Algorithm 40

3.4.1 Numenta Inc. 40
3.4.2 Algorithm Overview 41

3.4.3 Previous Experiments 43

3.4.4 Proposed Experiment 45

3.5 Evaluation Framework 46
3.6 Assumptions . 47

3.7 Experiment Configuration: Anomaly Detection 48

3.7.1 Network Setup 49

3.7.2 Sensor Nodes - VectorFileSensor 49
3.7.3 Topology . 52

3.7.4 Data . 52
3.7.5 Specifications & Parameters 54

3.7.6 Procedures . 57
3.7.7 Goals & Expectations 58

IV. Results . 59
4.1 Running Anomaly Detection Experiment 59

4.1.1 Training . 60

4.1.2 Testing . 60

4.1.3 Data Collection 61
4.1.4 Initial Results 62
4.1.5 Analysis . 64

V. Re-Examining Feedback and Prediction 70

5.1 Mapping Theory to Algorithm 70

5.2 Algorithm . 73

5.2.1 Key Concepts Illustrated 75

5.3 Proposed Experiment 82

5.4 Evaluation Framework 88

VI. Conclusions . 89
6.1 Problem Summary . 89

6.2 Interpretation of Results 89

6.2.1 Anomaly Detection Experiment 89

6.2.2 Urban Challenge Experiment 91

vii

Page

6.3 Significance of Research 93

6.4 Recommendations for Future Research 94

Appendix A. NuPIC Cybercraft Python Code - Anomaly Detection . 95

A.1 LaunchCybercraft.py . 95

A.2 CreateCybercraftNetwork.py 99

A.3 TrainCybercraftNetwork.py 104

A.4 RunCybercraftInfrence.py 106

Appendix B. Anomaly Detection - Data 108

B.1 Training Data Excerpt (Input) 108

B.2 Testing Data Excerpt (Input) 109

B.3 Training Data Excerpt (Output) 110

B.4 Testing Data Excerpt (Output) 111

B.5 Lv3T MW3-60K: Week 4 Categorization Statistics . . . 112

Appendix C. BackTalk Code - Urban Challenge 114

C.1 BasicNode.java . 114

C.2 TopNode.java . 118

C.3 Sensor.java . 123

C.4 Message.java . 124

C.5 CreateNetwork.java . 125

C.6 Car.java . 126

C.7 GenerateRoad.java . 127

C.8 RunQualiabear.java . 129

Appendix D. Urban Challenge - Data 132

D.1 Training Data (Input) 132

D.2 Post Training Brain-dump Data (Output) 133

D.3 Testing Data (Input) . 134

D.4 Results Data (Output) 138

D.5 Post Testing Brain-dump Data (Output) 141

Bibliography . 142

Index . 1

viii

List of Figures
Figure Page

1.1. Artistic Rendition of a CyberCraft 2

2.1. Cyberspace: Environment & Domain [26] 12

2.2. Chinese Room Thought Experiment [1] 21

2.3. Parts of the Human Brain . 25

2.4. Cortical Theory Flow Chart [14] 26

2.5. Neocortical/HTM Theory - Visual Sensor: Perception & Predic-

tion [9] . 27

2.6. Hierarchical Brain Neurons [9] 28

2.7. HTM Theory - Beliefs & Invariant Representations [1] 33

2.8. HTM Theory - Hierarchical Networks [1] 35

2.9. HTM Theory - Auto-Associative Memory [10] 35

3.1. Graphical Representation Zeta1 Memory Node [7] 42

3.2. Graphical Representation of Bitworms and N-HTM Network Train-

ing [15] . 43

3.3. Example Line Art Input and N-HTM network Recognition Out-

put [9] . 44

3.4. Default N-HTM Network Topology 53

3.5. Wireshark Analyzing TCPdump File 55

3.6. Wireshark Filter . 56

4.1. 4-Level N-HTM Network Topology 63

4.2. Wireshark Filter Packet Calculator 65

4.3. Anomaly Detection Results - Week 4, Monday 66

4.4. Anomaly Detection Results - Week 4, Tuesday 67

5.1. Proposed HTM Network Hierarchy 70

5.2. Categorization via Objects in Context [29] 71

5.3. Illustration: Normal Top Node Operation - Predictive Feedback 76

ix

Figure Page

5.4. Illustration: Normal Basic Node Operation - No Context Change 78

5.5. Illustration: Basic Node Operations - Context Change 79

5.6. Illustration: Top Node Operations - Recording 80

5.7. Illustration: Basic Node Operations - Ignoring Noise 81

5.8. Illustration: Basic Node Operations - Saving Novel Input . . . 82

5.9. Illustration: Top Node Operations - Feedback for IR Persistence

(Saving) . 83

5.10. Example “Songs” for Song Recognition Problem 85

5.11. Example of correct perceptions of “Songs” for Song Recognition

Problem . 86

5.12. Proposed Urban Challenge Experiment 86

5.13. Example of Urban Challenge Experiment Training (A) and Test-

ing (B) Data . 87

x

List of Abbreviations
Abbreviation Page

USAF US Air Force . 1

HTM Hierarchical Temporal Memory 2

IW Information Warfare . 6

IO Information Operations 6

OODA Observe, Orient, Decide, Act 6

IT Insider Threat . 7

AFRL Air Force Reasearch Laboratory 14

C3 Command, Control, and Communications 15

ANN Artificial Neural Network 28

NFN Neuro-Fuzzy Network . 29

HMM Hidden Markov Model . 30

NuPIC Numenta Platform for Intelligent Computing 41

N-HTM Numenta based HTM . 42

MIT Massachusetts Institute of Technology 45

DARPA Defense Advanced Research Projects Agency 45

MW3-60K Monday,Week 3 - 60,000 packets 60

Lv3T 3-Level, “timeless” N-HTM Network 63

IR Invariant Representation 76

xi

Using Hierarchical Temporal Memory

for Detecting Anomalous Network Activity

I. Introduction

Questions defining the nature of cyberspace have become potent in recent months

as the United States government declares the environment of cyberspace as vital

to the national interests as those of land, sea, air, and space. The US Air Force

(USAF) has taken the first steps toward supporting those interests by creating the

nation’s first Cyberspace Command which will have equal footing with their current

charges of air and space. Cyberspace doctrine, attempting to relate the similarities of

military strategies and protocols from historical fronts of war, is under development.

A conceptual cyber-entity known as a “Cybercraft” has been proposed by re-

searchers. The idea is to create a cyber-platform to ease the leap from cyberspace

strategy to tactical, defensive information operations in the cyberspace domain. The

concept is currently being pushed from the theoretical to the engineer’s drawing board

by USAF leadership.

To accomplish operations in cyberspace, cybercraft must be given the ability and

knowledge to perform complex behaviors resulting in mission success. Indeed, one of

the core components a cybercraft design will need to incorporate is ”autonomy” [32].

Moreover, the cybercraft concept [28] implicitly requires a cybercraft employ ”intelli-

gent autonomy” [30]. Although a simple cockroach can be said to be autonomous, the

challenge to cybercraft will be developing intelligent autonomy which is an attribute

currently possessed by the only known intelligent entities: humans.

Developing an intelligently autonomous cybercraft is a tricky endeavor, however,

as humans have difficulty comprehending just exactly what the cyberspace environ-

ment is [26]. Teaching any intelligent entity (artificial or otherwise) is difficult if the

teacher dosn’t know what it is that must be taught. Because humans have evolved in

1

Figure 1.1: Artistic Rendition of a CyberCraft

the physical world, they have no internal model of other, more unusual worlds [11],

like cyberspace. Examples of such intangible worlds include “weather worlds” (with

their complex, and as of yet, not fully understood, ”butterfly-effect” weather patterns)

and the two-dimensional “interstate world” a smart-car might traverse [11].

So, just as human beings operate in the physical realms of Earth, cybercraft

must operate intelligently and autonomously in cyberspace — a seemingly intangible

world. Endowing such abilities to machines, like cybercraft, is the primary goal within

the field of AI. Although the list of the AI community’s accomplishments is long and

distinguished, there does not currently exist any known method of creating intelligence

comparable to that of a human. Certainly, training a machine to be intelligent in a

world humans have difficulty comprehending presents a more in-depth problem.

The founders of the cybercraft initiative call for reasoning abilities that seem to

go beyond the algorithms currently entrusted to play chess or even fly aircraft. Such

sapient abilities are required to recognize new problems and solve them for the success

of a higher mission. Yet, in a mere coincidence, at about the same time the cybercraft

was proposed, a machine learning language was offered that claims to hold the key for

solving such problems [11]. Like most AI concepts, Hierarchical Temporal Memory

(HTM) is based on a conceptual theory of how the human brain might work [11]. The

2

primary difference with HTM theory and other proposals is that HTM claims to be

able to perform a measure of unsupervised learning to make predictions in unusual

worlds (i.e. cyberspace) where humans do not exist.

Motivated by intelligent autonomy requirements of cybercraft, this research in-

vestigates the claims of the machine learning method of HTM and the cortical theory

on which it is founded. The thesis begins with investigations into what it means to be

intelligent and the underpinning connections to HTM theory. This paper concludes

with experiments implementing an HTM network algorithm as an anomaly detection

system. The ability of an HTM network to understand the difference between nomi-

nal computer network traffic and malicious computer network activity would support

HTM theory’s claims and potentially lead to it’s adaptation for various cyberspace

activates, including those of cybercraft.

1.1 Research Focus

This thesis researches many ideas, concepts, and theories with regard to cy-

berspace and intelligence. The primary focus is an analysis of the claims of HTM

theory, its software implementations, and its viability to evolve the concept of AI into

cyber-worlds.

This thesis studies the cortical theory which claims intelligence is built on the

basic ability to predict outcomes. This research will focus on developing support

for HTM theory, specifically in its ability to provide accurate predictions in unusual

worlds. In the course of this exploration a commercial software implementation of

HTM theory is presented and tested for viability in a cyberspace environment. Addi-

tionally, a algorithm is built from scratch to study the introduction of feedback, a key

concept left out of the commercial implementation, within an HTM network. Both

experiments are designed to employ a measure of unsupervised learning within the

confines of an unusual world.

A final analysis of HTM theory, its implementations, and viability for cyberspace

applications (such as anomaly detection) is offered.

3

1.2 Research Impact

The impact of this research is two fold. First, this research intends to inves-

tigate the claims that prediction can be used as a primary measure of intelligence.

Secondly, evidence (both informational and experimental) is gathered to support the

applicability of HTM theory as a feasible option for generating accurate predictions

in unusual worlds.

1.3 Thesis Organization

The thesis is organized into five main sections. The next section reviews per-

tinent information and previous research applicable to the thesis. This background

information includes a look at cyberspace, cyber-operations, the need for cybercraft,

the relation of intelligence to the program, theories of intelligence, and AI approaches.

Of primary focus is an in-depth look at HTM theory.

The section that follows reviews the problem domain [21] and the HTM applica-

ble solution. It maps HTM theory to algorithm and the implementation. The HTM

application is introduced and discussed. Here, the anomaly detection experiment is

proposed to test the HTM implementation along with a framework for evaluation.

The next section is an detailed look at the proposed experiment. Specifications

on experiment design, HTM incorporation, and procedures are provided. Addition-

ally, goals and expectations are discussed.

The subsequent section reviews the results of the experiment. Data is presented

and discussed. Modifications and refinements to experiment along with explanations

for their use are presented. Finally, analysis of all results is performed.

Before conclusions are drawn, a section is provided where an independent im-

plementation of HTM Theory (designed from the author’s understanding of key HTM

concepts) is demonstrated. Here, results are analyzed independent of the anomaly de-

tection experiment. The goal of this section is to provide a mere glimpse into aspects

4

of HTM Theory that are not currently implemented in the commercial system and

thus not covered by the primary experiment.

In the last section, conclusions are drawn from the experimental results with

respect to background research and initial expectations. Interpretations of the findings

are provided along with any perceived significance. In conclusion, recommendations

for further research and additional experiments are proposed.

5

II. Literature Review

Before this thesis can move towards the realization of its title, a firm foundation

must be established. As such, this section has two major goals. The first goal is

to solidify a general understanding of ideas critical to the theories presented later in

this paper. To this end, background information on understood concepts, such as “In-

formation Warfare” and “Artificial Intelligence,” will be summarized. Additionally,

abstract terms such as “cyberspace,” “cybercraft,” and “intelligence” will be clarified.

The second goal is to provide a comprehensive review of the theory of Hierarchical

Temporal Memory.

2.1 Information Warfare

In 1996 the Institute for the Advanced Study of Information Warfare defined

Information Warfare (IW) as “the offensive and defensive use of information and

information systems to exploit, corrupt, or destroy an adversary’s information and

information systems, while protecting one’s own. Such actions are designed to achieve

advantages over military or business adversaries” [26]. Information is a resource, a

commodity, like rice or oil. Although offensive and defensive operations to exploit

those resources may more accurately qualify as non-combative [26], conducting IW

(or Information Operations (IO) as it is referred to in Joint Publication 3-13 [26]) can

have just as severe an impact on resources, informational or physical.

IO is currently defined as the “integrated employment of the core capabilities of

electronic warfare, computer network operations, psychological operations, military

deception, and operations security, in concert with specified supporting and related

capabilities, to influence, disrupt, corrupt or usurp adversarial human and automated

decision making while protecting our own” [26]. The last part of this definition is

important because it begins to touch upon how IW/IO doctrine is to be created for

cyberspace. As with other military operations, the heart of activities revolves around

a notion, proposed by military strategist John Boyd, known as the OODA Loop. The

6

concept refers to the cyclic flow of command and control functions through “Observe,

Orient, Decide, Act” phases.

2.1.1 IW/IO OODA Loops. Problems arise when the various IW/IO con-

cepts and disciplines (Information Dominance, Net-Centric Warfare, Defensive Infor-

mation Operations, Information Security, Information Assurance, Information Surviv-

ability, etc.) are attempted within an OODA Loop framework for cyberspace. Each

phase is hindered by unique difficulties associated with various aspects of IW/IO. The

OODA Loop concept suffers due to the unique environmental factors of cyberspace.

Causes and problems associated with each phase are proposed and illustrated below:

2.1.1.1 Observe. Observation is “the collection of data by means

of the senses ” [17]. Observing the environments of the real-world (along with the

associated operations) comes easily to humans. However, performing such surveillance

or reconnaissance missions in cyberspace is more difficult. Two generic reasons are

proposed:

• First, observation of certain insider threat (IT) activity is difficult on a network.

This is because the covert, pre-authorized, and traitorous nature of such oper-

ations are difficult for logic based security systems to comprehend [2]. While a

human might find distinguishing between the treacherous activity of an insider

and normal actions of trusted users less difficult, such abilities are not currently

possessed by computers.

Consider a social engineering IT attack: If a human were fully aware of (and

strictly compliant to) operational security regulations they could easily listen-in

on and foil an insider’s attempt to gain protected information. However, the

only system capable of the functional requirements of such flawless, unemotional

monitoring is a computer system, not a human. Unfortunately, computers cur-

rently can not understand such a conversation. In short, some observations can

7

be conducted better with human sensing capabilities but would be improved by

computer abilities.

• The second reason is the inverse of the first. Observation of network activity

is something very difficult for a human to understand, not for a lack of com-

prehension, but for the lack of an appropriate set of sensors appropriate to the

network environment. Eyes and ears are probably not the ideal sensors for pre-

senting the world of cyberspace to humans. Computers, on the other hand, can

be given sensors unlike that of any human. Such sensors would enable machines

the unique capability to observe the network environment better than humans.

Unfortunately, computers do not have the intelligence to efficiently utilize those

observations.

Consider detecting suspicious activity: A human would see someone riffling

though a file cabinet at 0230 in the morning suspicious. Similarly, if they saw

someone looking at secret network files they would also take note. The problem

is that detecting someone sifting though databanks is not as simple as seeing

a light on in the office during the wrong time of day. Yet, a computer could

sense network activity with ease. However, determining the malicious nature of

the network activity is an ability currently beyond that of machines. In short,

some observations can be conducted better with computer sensing capabilities

but would be improved by human abilities of perception or understanding.

2.1.1.2 Orient. Human orientation of any observations in cyberspace

also has two areas of difficulty. Because orientation means “analysis and synthesis of

data to form one’s current mental perspective,” [17] two areas of concern immediately

become apparent given the issues with observing cyberspace:

• First, as mentioned above, humans often have need for computers to analyze

data due to limited human capabilities when dealing with large amounts of

complex data. While human understanding is required, the ability to access and

8

synthesize information from copious data sources would improve with computer-

like abilities. It would be a painfully slow process for a human to check months

network traffic logs to attain the appropriate mental, network status “picture”.

• Secondly, due a lack of the appropriate senses for cyberspace, humans lack

an accurate model of the “cyberspace world.” As such, attaining an accurate

“mental picture” becomes difficult and the perspective is prone to error. Just

as if a baby were exposed to holographic fire their entire life, as an adult, he

might make a deadly decision about evacuating from a house fire.

2.1.1.3 Decide. Determining a course of action based on a current

mental perspective [17] is the essence of the decide phase. Besides the aforementioned

difficulties making appropriate decisions with imperfect observations and an incorrect

orientation, there is a larger difficulty faced at this stage. Poor performance of the

decision phase in the cyberspace environment has two contributing factors:

• Due to the revolutionary development and rapid growth of cyberspace, under-

standing observations or the orientation can be limited if decision makers are

unfamiliar with the environment of cyberspace. Misinformation, poorly com-

municated issues, different understandings of the environment itself, or even

a lack of basic technical skill and knowledge all affect decision making. If a

briefer is explaining to a commander (a decision maker) a jamming attack on

satellite communications but the commander only understands cyberspace as

the Internet, the commander may inaccurately order a rerouting of information

be taken. Such a re-routing of information over the Internet is simple and au-

tomatic. However, re-routing information flow over limited satellite resources

could have a far-reaching impact.

• The more obvious issues with decision making in a cyberspace environment

is time. In an environment in which operations take place at the speed of

light, slowing down the decision making process to any slower speed could have

9

disastrous consequences. Assume a commuter virus has just attacked an or-

ganization’s e-mail servers. In the time it takes to compile the data form the

orientation into a slide presentation, and brief the aforementioned commander,

the viruses could have already taken down the entire system.

2.1.1.4 Act. This is the most critical aspect of the OODA Loop and

is where, perhaps, the biggest issues with the application of the theory to cyberspace

lie. Despite all the issues presented above, it is an assumption of this research that

humans cannot truly act in cyberspace until it is better understood and controllable.

Before cyberspace can transition from an environment to a domain, in which an

OODA Loop (or any doctrinal practices) could take place, the concept of cyberspace

must be explored for answers to the questions: “What is cyberspace?” and “How can

it be controlled?”

2.2 Cyberspace

The term “cyberspace” was coined by science fiction writer William Gibson

in his 1984 novel Neuromancer where he described it as a vast “dataspace” or a

“world in wires” [20]. Although Gibson’s cyberspace has more in common with the

popular movie The Matrix than modern networks, parallels can be drawn between

such fictional imaginings and reality. In fact the connectivity of Gibson’s “world in

wires” could be thought of as tantamount to the modern Internet which connects

networks of computers to other networks [20]. The Internet currently spans the globe

and has become a common tool for facilitating information transfer at the speed of

light.

However, although the terms cyberspace and Internet are often used synony-

mously, they are distinctly different concepts. In 2007, Lt. Col. Forrest B. Hare,

working for the US Air Force Cyberspace Task Force, authored a whitepaper entitled

Five Myths of Cyberspace and Cyberpower [8]. In his second myth, Hare cautions that

considering cyberspace to be only the Internet would be “catastrophic” for the United

10

States [8]. He insists that cyberspace should not be viewed as a “cognitive concept”

and states that we must “quickly convey the understanding that the [cyberspace]

domain goes well beyond the Internet and is anything but virtual... [and] appreciate

that the domain is a physically manifested space with closed/wired segments as well

as free space segments.” [8].

So then, if cyberspace is more than a concept but encompasses more than just

the tangible, physical Internet, what is cyberspace?

2.2.1 Defining the Undefined. According to the National Military Strategy

(NMS) “cyberspace is characterized by the use of electronics and the electromagnetic

spectrum (EMS) to store, modify, and exchange data via networked systems and

associated physical infrastructures” [6]. Today, communication infrastructures are

being assimilated into a vast information medium. It is this new medium, born out

of the integration of electronics and computers with analog phone lines, digital data

cables, and wireless radio waves which fully represents cyberspace.

Hare goes further to explain how this definition relates cyberspace to other

environments. “In the cyberspace domain, the electromagnetic spectrum (EMS) is

the maneuver space also governed by laws of physics” [8]. Hare draws an analogy

between the electromagnetism of cyberspace and the fluid dynamics of the maritime

environments. He further stresses that “just as the boundaries between air and space

can be blurred, cyberspace can occur within the other physical domains. If we do

not recognize cyberspace as a physical domain, occurring any place where we are

interlinking the EMS and electronic systems, we allow for seams and access points for

our adversary to hold us at risk” [8].

2.2.2 Domain vs. Environment. To be clear, while the terms environment

and domain may seem to be interchangeable, they are, in fact, completely different

concepts. Webster’s Dictionary defines domain as “a territory over which dominion is

exercised;” “a sphere of knowledge, influence, or activity” [25]. An environment has

11

Figure 2.1: Cyberspace: Environment & Domain [26]

unique physical properties but, just as land is not naturally color coded by country,

environments lack the qualities of a domain until regional influence and control is

exercised within. Table 2.1 is provided to help define the environment and domain of

cyberspace [26]. Cyberspace is a new environment where all imaginable information,

whether presented as text, voice, image, sound, or video, can coexist.

2.2.3 Fly & Fight in Cyberspace. In December 2005, Chief of Staff of the Air

Force (CSAF) T. Michael Moseley modified the mission of the US Air Force (USAF)

“The mission of the United States Air Force is to deliver sovereign options for the

defense of the United States of America and its global interests - to fly and fight in

Air, Space, and Cyberspace” [35].

To meet this new mission, the USAF must address a very important question:

‘can humans wage war in this environment?’ Can humans control cyberspace asserting

dominion over the environment? Is cyberspace a domain? Certainty military related

operations can be, and are, executed using cyberspace to benefit real-world operations

- but is this enough for true control?. A crucial assumption of this research is that it

is not enough.

IW/IO are currently undertaken using the environment of cyberspace but not

in a domain of cyberspace. Attacks using cyberspace can be said to simply resolve

thought set of specific, EMS-related properties (like, protocols or software rules for

networks). A cyber attack is only noticed after it has impacted the physical, real

world directly. However, there are no battles in cyberspace determining that impact

12

because humans currently cannot attain dominion over the environment. Humans do

not reside in the environment so they cannot control it directly.

To illustrate this concept an analogy can be drawn. The difference between

fighting a war using cyberspace instead of in cyberspace can be seen as the difference

between using SCUD missiles to attack ground forces verse performing dogfights in

an air battle. Currently, “cyber SCUD missiles” are launched from one computer

impacting another computer. The only defense is pre-programmed, “cyber patriot

missiles.” Both use the environment of air but do not actively fight in it. Yes, a

resourceful enemy can redesign their “cyber SCUDs” to fly higher, faster, or in a

different flight path to avoid such defensive measures. The “cyber patriot missiles”

can also be modified and thus the game of “spy vs. spy” continues indefinitely. This

analogy is directly mapped to such current IW practices such as computer viruses vs.

antivirus software and remote computer control vs. intrusion detection.

Just as with the “cyber SCUD” scenario, the parallel strategy is also assumed

to be true. To wage war in cyberspace humans must gain cyberspace superiority in

the same manner in which air superiority is currently attained. A strict interpretation

of this scenario indicates that conscious beings must actively fight each other directly

in the environment for the ability to impact the enemy through that domain. Thus,

cyberspace superiority requires, just as with air superiority, that real-world impact

should only resolve after conscious battles are waged in that environment. A simple

examination of the facts reveals that there are currently no such cyber dogfights

for cyberspace superiority because there are no conscious or intelligent beings in

cyberspace providing human influence over that environment. It seems that, upon

review of the available definitions, a strict interpretation of the concepts concerning

domain and environment yields the information that cyberspace is not technically a

domain — yet.

Humans must implement some way to understand the environment of cyberspace,

this intangible world, to efficiently and effectively practice dominion and claim cy-

13

berspace superiority. So then, the new question becomes “how can humans begin

to truly control cyberspace?” If cyberspace superiority is the answer [32], how can

humans enter into, and do combat within, cyberspace. Tanks, ships, and aircraft cur-

rently carry human consciousness into the respective environments (creating a domain

thereof). However, there does not currently exist any technology, any true “cyber-

craft,” that can carry a human into cyberspace. Any human actively operating a

computer is still allowing cyber attacks to resolve in the real-world (on that com-

puter) before the human even knows to react. The cyber-OODA loop needs to run

faster, and that means limiting reliance on the human equation [26]. But how can

you remove the only intelligent being from the decision making process?

The problem is thus distilled: Control of cyberspace from within the environ-

ment is required for the establishment of a cyberspace domain with appropriate doc-

trine. Only then can IW/IO be performed for true cyberspace superiority. America

needs autonomous, intelligent cybercraft to dominate cyberspace.

2.3 Cybercraft

The concept of the cybercraft, as imagined in the previous section, was first

taken from the realm of science fiction to applicable science theory by Dr. Paul W.

Phister, Jr. and his team at the Air Force’s Research Laboratory (AFRL) in Rome,

New York [28]. In 2004, Phister published his paper CyberCraft: Concept Linking

NCW Principles with the Cyber Domain in an Urban Operational Environment. In

this paper Phister defines a vision for a working cybercraft and outlines the research

required for such an endeavor.

2.3.1 Vision. Ultimately, cybercraft essentially will enable the transition of

cyberspace from an environment to a domain, facilitating cyberspace superiority [32].

Phister envisions that cybercraft will use “the cyber domain to conduct military

operations within a military environment...[They will have] significant potential to

create the desired effects with either little or minimal collateral damage” [28].

14

In Phister’s vision, cybercraft are essentially command, control, and communi-

cations (C3) platforms. They provide a view of cyberspace and autonomously achieve

mission objectives through a pre-loaded set of payloads.

Phister states the characteristics of cybercraft will include “the ability to be

launched from a network platform, the ability to embed control instructions within the

craft, the ability to positively control the cybercraft from a remote network location,

the capability for the craft to self-destruct upon being recognized, the capability for

the craft to operate with minimal or no signature/footprint, and the ability for the

cybercraft to rendezvous and cooperate with other friendly cybercraft” [28].

Having an achievable concept is one thing, planning to build it is a far more

difficult task.

2.3.2 Specification: Six Focus Areas. With the concept of a cybercraft

preliminarily defined, the process of construction could begin. To this end, Phister

posed 6 crucial questions of development:

1. How can we “trust” the “cybercraft” to “do the right thing”?

2. How do you control the “cybercraft”?

3. How can a “cybercraft” determine the “landscape” or “terrain” of an
adversary’s network?

4. How do you provide stealthy feedback mechanisms?

5. What would be possible missions of the “cybercraft”?

6. What effect measures would the “cybercraft” have to gather?
[28]

To help answer these questions, the cybercraft initiative has re-defined them as

six fundamental focus areas summarized below:

• Map and Mission Context: This area focuses on creating a strategic and

operational picture of cyberspace. This requires “[combining] data to paint

15

a single multilayered Common Operating Picture (COP) of the [new] cyber-

domain” [32]. The idea here gets back to doctrine and strategy in the cyber-

domain. A traditional mapping of mission context would be a Civil War era

General ordered to defend a local town. The General would undoubtedly use

current doctrine and strategy to take certain hills based on the most current

maps and reconnaissance. In the same way, a commander in charge of defend-

ing cyberspace will need to communicate his mission objectives and intentions

based on an understanding of the current cyberspace “maps,” “weather,” enemy

movements,” etc.

• Environment Description: This area focuses on giving the cybercraft the

ability to, ultimately, describe its environment to leadership for strategic and

operational planning. This area “is closely tied with mapping, as the system

uses the description of the environment to graphically display it to the user” [32].

Developing a way to understand what the cybercraft is “seeing” is important as

humans have no way to see cyberspace that way a cybercraft will. As a seeing-

eye-dog communicates the state (dangerous or safe) of a crosswalk to a blind

man, so too will the cybercraft need to communicate the state of cyberspace to

its operators.

• C3 Protocols and Architecture: This area requires the development of C3

protocols to facilitate coordinated cybercraft operations based on the mission

context [32]. Just as dispersed naval ships or aircraft require the ability to

communicate with leadership, so too do cybercraft. In the same way, cybercraft

also require rules and regulations from which to operate by in the case of a loss

of communications, enemy detection, capture, etc.

• Formal Model and Policy: Here the goal is to prove the cybercraft does

what it should. A formal model and policy for Cybercraft must be created to

assure leadership that cybercraft behavior conforms to the commander’s intent.

To this end, a “formal model must be built to describe the set of states that

the cybercraft can be in [this model] must mathematically prove [all] the state

16

transitions...so thatthe system is predictable” [32]. Once a policy is in place, the

cybercraft would become provably reliable, a far cry from their human operators.

• Self Protection Guarantee: Tied to both the Formal Model and Policy area

and the C3 Protocols and Architecture area, this area focuses directly on defin-

ing cybercraft characteristics required to “conduct assured operations” [32].

This incorporates (but is not necessarily limited to) anti- tamper/software pro-

tection research [32]. Additionally, there must specifically be some “mechanism

to identify a compromised agent so that a compromised agent does not pollute

the data used by [other cybercraft]” [32].

• Interfaces and Payloads: This last area, also related to C3 Protocols and

Architecture, is tasked with creating standard, extendable, flexible interfaces.

Basic interfaces “between the agent and the host OS, the agent and the network,

and the payloads” will be required [32]. Interfaces will need to evolve with the

rapidly changing cyberspace environment and perpetually changing missions

and payloads.

2.3.3 Autonomy Challenges. As cybercraft development breaks into six,

interdependent, focus areas, the need for new research in certain areas becomes ap-

parent. Based on an AFRL/IF MURI proposal, Phister outlined 7 areas of research

that should be pursued to answer the crucial development questions [28]:

1) Simulations of multiple, interdependent infrastructures. Includes re-
search into interdependencies and emergent behaviors of complex adaptive
systems;

2) Basic research that connects decision-making behaviors (desired
political-military outcomes at the operational and strategic levels) to spe-
cific physical effects (operations and military actions);

3) Intelligent agent based systems to collaborate, coordinate and solve
problems, automatically without human intervention. These agent based
systems will have the ability to sense there environment and based on goals
and constraints, provided by the user, achieve the objectives assigned;

4) Real-time updating of simulations. Includes real-time data ingestion
and updating, dating mining, data validation, and methods of handling
extremely large, dynamic datasets;

17

5) Self-organized modeling with the basic ability to have the models
automatically organize themselves based on present conditions and predict
the future battlespace environment;

6) Cyber defense and offense techniques including new ways of detect-
ing attacks and executing attacks, countering adversary attacks, respond-
ing, performing forensics and anti-forensics and gaining real-time cyber
situational awareness/understanding; and,

7) C2 theories such as control theory, uncertainty management and
decision making theory.

[28]

Prominent in areas of research above, and potentially required by all six focus

areas, is a call for exploration into intelligent autonomy of the cybercraft, not mere

autonomy. Dr Stephan Kolitz and Dr. Michael Richard define this concept of intelli-

gent autonomy as “the ability to plan and execute complex activities in a manner that

provides rapid, effective response to stochastic and dynamic mission events. Thus,

intelligent autonomy enables the high-level reasoning and adaptive behavior for an

unmanned vehicle...” [30]. Plucking requirements from Phister’s research areas above

clarifies the need for cybercraft autonomy and intelligent reasoning.

This thesis breaks Phister’s specifications down in to 7 Challenges to Intelligent

Cybercraft Autonomy.

Cybercraft will:

1. Have “the ability to sense their environment.”

2. Gain “real-time cyber situational awareness/understanding.”

3. Be able to “collaborate, coordinate and solve problems.”

4. Use known “goals and constraints... [to] achieve the objectives assigned.”

5. Be able to apply “decision-making behaviors... [for] specific physical effects.”

6. Provide “new ways of detecting attacks, ... countering adversary attacks, re-

sponding[to/recovering from attacks], ...and performing [cyber-] forensics.”

7. Do all this “automatically without [much] human intervention.”

18

Indeed, this appears that each challenge to intelligent cybercraft autonomy is

directly related to the three primary challenges to intelligent autonomy as outlined

by Kolitz and Richard, which are:

1) Developing and executing plans of activities that meet mission ob-
jectives and honor constraints.

2) Dealing with uncertainty.
3) Providing a capability for dynamically adjusting a vehicle’s plan in

real time.
[30]

With regards to these 7 challenges to intelligent cybercraft autonomy, challenge

7 relates directly to the second intelligent autonomy challenge. Challenges 4-6 and

1-3 apply to the first and third intelligent autonomy challenges, respectively. Yet,

engineers cannot simply replicate intelligence and “add it”’ to autonomous protocols.

No, intelligence itself should first be understood before any engineering of artificial

intelligence or evaluation of theories can take place.

2.4 Intelligence

Before attempting to create “autonomous, intelligent cybercraft to dominate

cyberspace,” the term intelligence must be discussed. Merriam-Webster’s Dictionary

defines intelligence as “the ability to learn or understand or to deal with new or trying

situations to apply knowledge to manipulate one’s environment or to think abstractly

as measured by objective criteria; the skilled use of reason” [25]. Yet, a simple dictio-

nary solution is far from sufficient to completely encompass this mammoth concept.

Indeed, in 1986 two dozen prominent theorists were asked to define intelligence.

It came as no surprise that they gave an equal number of different definitions of

the concept [27]. Although agreement on the nature of intelligence remains eternally

shrouded in philosophical and scientific controversy, this thesis attempts to disam-

biguate the term so that theories of artificial intelligence can be presented.

19

2.4.1 Intelligent Behavior & The Turing Test. Alan Turing, inventor of the

imaginary Universal Turing Machine, is regarded to be the first to tackle the question

“Can machines think?” [34] Turing first had to identify what he thought it meant to

“think” [11]. He proposed that thinking was the inevitable act performed during any

question and answer discourse among humans. “The question and answer method,”

Turing deduced, “seems to be suitable for introducing almost any one of the fields of

human endeavor that we wish to include” [34]. Turing’s test for intelligence, which

he called the “Imitation Game” was thus formed and proceeds as follows:

It is played with three people, a man (A), a woman (B), and an inter-
rogator (C) who may be of either sex. The interrogator stays in a room
apart front the other two. The object of the game for the interrogator is
to determine which of the other two is the man and which is the woman.
He knows them by labels X and Y, and at the end of the game he says
either “X is A and Y is B” or “X is B and Y is A.” [34]

Turing implies that a similar game consisting of a machine (A) and any hu-

man (B) would force the interrogator (C) to conclude “A is indeed intelligent” if C

could not, short of random guessing, honestly determine if X or Y were certainly B. To

complete the illusion, Turing proposed that tones of voice must not help the interroga-

tor and that “the answers should be written, or better still, typewritten. The ideal

arrangement is to have a teleprinter communicating between the two rooms” [34]. To-

day, the idea has evolved to something similar to the imitation game being performed

via some instant messaging system.

2.4.2 Prediction: The Essence Of Intelligence. Proposals explaining the

inability of previous AI attempts to pass Turing’s test range from a lack of compu-

tational power to an argument that the Turing Test itself, which defined and shaped

AI theory, is wrong [11]. This research follows the later notion, that Turing’s test

might be premature. While Turing suggested that behavior is an indicator of intelli-

gence [11], it has been proposed this alone is not the true essence of intelligence.

20

Figure 2.2: Chinese Room Thought Experiment [1]

“Cogito, ergo sum”. “I think, therefore I am,” was a philosophical phrase, first

used by Ren Descartes, which can help sum up why Turing’s test for intelligence

fails. While the Turing Test focused on behavior, it neglects the fact that the act of

thinking requires no behavior. Can an entity be conscious or intelligent and exhibit

no behavior to indicate it? This is exactly what happens when you lay on your bed

in a dark room and think [11]. So what separates a human lying on the bed thinking

about astrophysics and a computer calculating pi? The simple answer is thought,

understanding, sapience.

But if a lack of behavior in intelligent beings illustrates the error in designing

intelligent computers to take the Turing Test, does that invalidate the test itself? If a

computer could pass the test would it not still be intelligent? John Searle, in his famed

article Minds, Brains, and Programs, proposes the “Chinese Room” mind experiment

to argue that passing the Turing Test does not constitute an intelligence. Only un-

derstanding (being sapient) can define intelligence. The experiment’s presentation is

thus summarized:

You are locked in a room and given a large batch of Chinese charac-
ters together with a set of English rules for correlating said characters.
No explanation is given, simply instructions like “when you see this set
of characters write this set.” Suppose furthermore that you know no Chi-
nese, either written or spoken. To you, Chinese writing is just so many
meaningless squiggles. The instructions enable you to correlate one set
of formal symbols with another set of formal symbols and so on. Now
imagine that people provide you sheets of paper with Chinese sentences

21

on them through a slot in the room. Unknown to you, this is a story,
written in Chinese followed by a set of questions also written in Chinese.
You take the paper and transcribe symbols at the bottom as the instruc-
tion book indicates and pass the paper back through the slot. You have
written answers to the questions which are absolutely indistinguishable
from those of native Chinese speakers. Nobody just looking at the an-
swers can tell that you don’t speak a word of Chinese. From the external
point of view (e.g. from the point of view of someone reading the an-
swers), are these solutions to the Chinese questions are correct. As far as
understanding Chinese is concerned, you don’t because you have simply
behaved like a computer; performed computational operations on formally
specified elements. [11,31]

With this experiment Searle illustrates that any computer passing the Turing

Test is not (necessarily) intelligent because it lacks understanding. As shown, un-

derstanding is a requirement of sapience and intelligence. Therefore, the Turing Test

does not screen for intelligence.

Jeff Hawkins has proposed a new test for intelligence. Instead of looking at what

demonstrates thinking in an intelligent being, Hawkins tried to determine what would

show understanding [11]. The conclusion proposed is prediction. Hawkins proposes

that prediction is the essence of intelligence. Hawkins is not alone in his conviction

that prediction is the root of sapience and intelligence. Calvin also forwarded a com-

plimenting theory saying “This idea neatly covers a lot of ground: finding the solution

to a problem or the logic of an argument, happening on an appropriate analogy, creat-

ing a pleasing harmony or guessing what’s likely to happen next” [3]. He observed “we

all routinely predict what comes next, even when passively listening to a narrative or

a melody. That’s why a joke’s punch line or a P.D.Q. Bach musical parody brings you

up short—you were subconsciously predicting something else and were surprised by

the mismatch” [3]. Notable neurobiologist Horace Barlow of the University of Cam-

bridge framed his agreement suggesting that “intelligence is all about making a guess

that discovers some new underlying order” [3]. To illustrate Hawkins’ “prediction is

intelligence” theory he propose the following thought experiment:

22

When you come home each day, you usually take a few seconds to go
through your front door. You reach out, turn the knob, walk in, and shut
it behind you. It’s a firmly established habit, something you do all the
time and pay little attention to. Suppose while you’re out, someone sneaks
over to your house and changes something about your door. It could be
almost anything. The knob could be moved over an inch, changed from
a round knob to a thumb latch, or changed from brass to chrome. The
door’s weight or color could be changed, hinges could be made squeaky
and stiff, or a peephole could be replace by a window. When you come
home that evening and attempt to open the door, you would quickly detect
that something is wrong. It might take you a few seconds’ reflection to
realize what exactly had changed. [11]

But the fact is you have noticed a change. You noticed a change because you had

an expectation, you made a prediction, of what you would encounter as you walked

through the door. While prediction thus seems to proceed behavior, the question

may still exist: How does prediction lead to intelligent understanding with or without

behavior? The answer is in the above thought experiment.

Can it not be said that you understood your door? Better still, tie prediction into

the Chinese Room experiment. Would you, as the transcriber of Chinese characters,

not understand Chinese if you could make some prediction of what to expect after

each character, phrase, sentence, etc.? In English, if you were told the Chinese story:

“Jack and Jill went up the” you would predict the word “hill.” You probably did just

predict exactly that word in your head before you saw the word written—assuming

you had ever heard the nursery rhyme. You then would probably make a prediction

of what Jack and Jill were going to do. Furthermore, you could predict a moral for

the story and even answer questions asked of you about the moral of the story. You

can do all of this because of your ability to predict the outcome based on a learned

experience.

The analogy between prediction, intelligence, behavior, and current AI methods

becomes clear. It will take you a fraction of the time it would take a computer to

discover what was wrong with the door (it is too heavy), predict a solution to the new

23

input (don’t push as hard), and proceed with your intelligent behavior of entering the

house. A computer robot would simply fall down.

It is now clear why current AI approaches have seen limited success. When you

walk thought your door you are not cycling though all the endless possibilities of doors

to see if the door has changed. No, you make quick, intuitive, accurate predictions on

what the door will look, sound, and feel like from memory. Prediction is at the heart

of Hawkins cortical theory and, indeed, prediction (a strictly mental or expressed in

behavior) is the proposed yardstick to determine intelligence — that understanding

has occurred .

2.4.3 The Human Brain. But how are computers supposed to be built to

emulate the predictive elements that seem to be the basis for human intelligence? The

first step is to replicate the how the human brain functions. Using the human brain

as a constraint and a guide (not as an antiquated model of an intelligent machine, as

traditional AI approaches do) intelligent computers could be created.

About 60% of human brain is composed of a component called the neocortex

(or simply “cortex”’) [9]. The cortex is the part of the brain responsible for almost

all high-level thought and perception in humans [9]. Because such sapient brain

functions have been shown to resolve to the prediction element of the intelligence

equation, modeling a computer after the construction of the cortex is a logical first

step in creating intelligent agents.

To create such a model, a working theory of how the brain operates from a

functional and algorithmic level must first be deduced. Jeff Hawkins claims to have

proposed the world’s first comprehensive theory on neocortical function [11]. Because

of its uniform structure, “neuroscientists have long suspected that all its parts work

on a common algorithm” [9]. Conceptually, this means the brain “hears, sees, under-

stands language, and even plays chess with a single, flexible tool” [9]. Hawkins has

gone further and proposed that an auto-associative hierarchy, based on both spatial

and temporal patterns, is responsible for all memory storage and cognitive (predic-

24

Figure 2.3: Parts of the Human Brain

25

Figure 2.4: Cortical Theory Flow Chart [14]

tive) behavior in humans [11]. To summarize the cortical theory at an elementary

level, sensors (eyes, ears, skin, etc.) send a signal to a neuron, a memory element (or

node) in the brain. If the sensor is an eye and it sees a German Shepherd, the signal

which represents “seeing the dog’s tooth” will be sent to a memory node. “Nearby”

memory nodes may get signals for another “tooth”, “a lip”, “gums”, etc (See Figure

2.5 - Level 1). These all send what they perceive up to a higher memory node which

perceives a “jaw.” This node, in conjunction with other nodes, will send similar repre-

sentations up to another, higher node which may perceive “a dog’s head” (See Figure

2.5 - Level 2). The process continues until the perception or understanding of seeing

a “German Shepherd” is attained (See Figure 2.5 - Level 3) [9].

Critical to this process is auto-associative feedback based on spatial-temporal

patterns or learned experiences. At each level the nodes send information back down

to the lower nodes, essentially saying “I have seen this before, it is a ‘dog head’ and

you can expect to see a ‘dog tail’ if you look at the other end of the dog.” This

information is passed down in the hierarchy as appropriate sub-representations until

26

Figure 2.5: Neocortical/HTM Theory - Visual Sensor: Perception & Prediction [9]

an eye sensor gets the command to look at the dog’s tail for verification that a dog

is, indeed, perceived - it predicts that a “dog tail” will be seen at a certain location

by the sensor [9, 11].

While this explanation is simplistic, the basic concepts are sound. Because this

thesis is not biological in nature, going into the Hawkins’ explanation on the physical

structures and interactions of neural cells is not required. However, Hawkins’ theory

is exhaustive with respect to the functional aspects of his brain theory and the direct

mapping of those aspects to physical cellular structures in the brain [11]. In particular,

evidence for the hierarchical structure of Hawkins’ theory, along with the principle of

feedback, can be seen in the cortex’s primary neural structure, a hierarchical, 6-layered

“column” (Figure /redbraincols) [11].

A algorithm built on this memory framework should allow software to perceive,

predict, and understand its world. Hawkins’ dubbed this memory framework Hierar-

chical Temporal Memory (HTM). An overview of the key components of HTM follows

in Section 2.6

27

Figure 2.6: Hierarchical Brain Neurons [9]

2.5 Pertinent Artificial Intelligence Approaches In-summary

AI research has seen great attention since the publication of Turing’s Comput-

ing Machinery and Intelligence in 1950. Since the late ‘50s, algorithms have been

designed around theories of human brain function and structure. However, accord-

ing to Hawkins, because of the behavioral focus of the Turing Test, AI research has

traditionally taken an approach of imitating human behavior [11]. Not until recently

have purely predictive cortical theories been adapted into computer algorithms [11].

Although many promises of AI have gone unfulfilled to date, many of the dis-

cipline’s methods and concepts will play an important foundation role in any new

research. The most pertinent of AI approaches are summarized here.

2.5.1 Artificial Neural Networks. Artificial Neural Networks (ANNs) are

“parallel, distributed information processing structure consisting of processing ele-

ments (which can possess a local memory and can carry out localized information

processing operations) interconnected together with unidirectional signal channels

called connections” [12].

28

Each processing element outputs a signal to any number of other elements [12].

Incoming signals are only able to be processed with local element data or currently

incoming data [12]. In this way networks of elements are connected together to pro-

cess and feed data forward in the network. In addition to feed forward connections,

each element is capable of sending backwards a simple “error feedback” signal during

network training [12].

Modifications to ANNs result in a wide assortment of algorithms. Backprop-

agation ANNs use a cycle of input, output, and error signals to tune and generate

appropriate weights. The cycles can be repeated for durations but ultimately results

in “inputs to the network ‘bubbling up’ from the bottom to the top and then the

errors ‘percolating down’ from the top to the bottom” [12]. Careful tuning or “train-

ing” of the each element (including all the internal or ‘hidden’ elements) results in

limited categorization of a diverse set of inputs.

Even with backpropagation, ANNs still require humans to be highly involved

in the tuning, training (weighting) of the network elements to afford the appropriate

outputs. ANNs can have difficulty adapting and filtering new, heterogeneous inputs

accurately.

2.5.2 Neuro-Fuzzy Networks. “Fuzzy logic” was introduced in 1965 by Lotfi

Zadeh whose fuzzy set theory provided a way of “characterizing non-probabilistic

uncertainties” [18]. The categorization of unpredictable inputs fits AI so well that

hybrid ANNs, known as Neuro-Fuzzy Networks (NFNs), were soon developed. In

their purest form, NFNs are ANNs that use fuzzy logic rules to derive fuzzy sets.

Fuzzy reasoning allows implications on a ranging scale. If, for example, given

the true implication fact “if the tomato is red then it is ripe.” Fuzzy logic would allow

inference from that fact to a true rule of (say) “the tomato is ‘kind of’ red then it is

‘kind of’ ripe” [18]. Fuzzy reasoning (or “approximate reasoning”) [18] can be used to

“derive conclusions from a set of fuzzy if-then rules.” ANN backpropagation training

29

techniques allows the rules of such a fuzzy inference systems (FIS) to be more easily

defined.

2.5.3 Bayesian Networks. A Bayesian network is “an annotated directed

graph that encodes probabilistic relationships among distinctions of interest in an

uncertain-reasoning problem” [13]. In the early 1990s, AI researchers began to use

these probabilistic models to develop new learning methods for the networks [13,

19]. Bayesian networks were infused with prior knowledge of a data set to provide

probabilistic reasoning of the data. So then a learning Bayesian network amounts to

“searching for network-structure hypotheses with high relative posterior probabilities”

[13].

Bayesian networks are, at their hearts, decision graphs [19]. If there were a

“wine tasting” Bayesian network, wine might be broken down into whites and reds.

A certain percentage of “warm fruit,” “oak flavor,” and “buttery finish” in a blind

taste of wine might lead such a Bayesian network to conclude that a particular wine is

a white (with 95% certainty), and specifically a chardonnay (with, 80% certainty). If

the Bayesian network were pre-trained with enough information it could potentially

choose between vineyards or even vintages. As such, the main purpose of a Bayesian

networks is to “give estimates of certainties for events” /citebn2.

A dynamic Bayesian network is a Bayesian network that “represents sequences

of variables.” These sequences commonly include data that is in a time-series, like

human speech. The ability to deal with such data makes dynamic Bayesian network

useful for solving many time-linked problems, including speech recognition [17].

2.5.4 Hidden Markov Models. The Hidden Markov Model (HMM) is based

on a Markov assumption. At the simplest level, this process uses a known set of

data to probabilistically determine unknown or “hidden” data based on observable

patterns [5, 17]. The hidden Markov model can be considered as the “most simple

dynamic Bayesian network” using time-sequenced variables as initial patterns [17].

30

HMMs are commonly used to model “stochastic processes” and variable se-

quences in current speech recognition software [5]. Their multidimensional cousins

(i.e. 2D HMMs) are frequently used in picture or handwriting identification applica-

tions [5, 22]. HMMs have predetermined topologies and estimated parameters. They

also need algorithmic solutions to “acuminating” or “canonical” problems; that is

they require problem reduction to simplest form without loss of generality. These

problems are [5]:

1. Calculating the likelihood of a sequence

2. Finding the most probable state sequence

3. Estimating the parameters of a model

2.5.5 Hierarchical Temporal Memory. The thesis of this paper revolves

around recent AI theory and is the subject of in-depth analysis in later sections. In

general, Hierarchical Temporal Memory (HTM) theory combines concepts of ANNs,

NFNs, Bayesian networks, and HMMs.

Like ANNs, HTM networks have many processing elements or nodes but HTM

networks are always organized as a tree-shaped hierarchy. Also like ANNs, backprop-

agation feedback techniques are also used but play a far more critical role. Unlike

some ANNs, each node implements a “common learning and memory function” [10].

Additionally, similar to NFNs, HTM networks have an inference ability that allows

them to categorize uncertain data.

HTMs are similar to Bayesian networks in structure and topology. However,

HTM networks differ from Bayesian networks in the way that “time, hierarchy, action,

and attention are used” [10]. Further, compared to HMMs, the temporal and feedback

aspects in an HTM network have a more centralize role. Unlike HMMs, HTM networks

do not calculate futures states based on a single past state.

31

2.6 HTM Theory In-depth

It is common for designers to “seek a good combination of simplicity and power;

in other words, elegance...only the field as a whole can determine whether they have

succeeded” [4]. HTM theory does not claim to be definitively correct or to be a com-

pletely new idea. It is a combination of old AI methods, new theories of intelligence,

and innovative ideas on human brain function.

2.6.1 Nuts & Bolts. HTM Theory is so named for the three unique qualities

of the theory which combine to create this new idea.

• Hierarchical:

As the name implies, HTM Networks are organized as a tree-shaped hierar-

chy of sensor and memory nodes similar to Bayesian Networks [9,14]. An HTM

Network requires a connected graph where “each node in the graph represents a

belief or set of beliefs” [10]. From earlier in the paper these beliefs were known

as invariant representations [11]. “Lower-level nodes receive large amounts of

input and send processed input up to the next level” [14]. In this way, HTM

Networks abstract the information and are able to pass that information up the

hierarchy as an invariant representation [9] (See Figure 2.7).

There are two primary types of nodes in an HTM Network hierarchy:

– Memory Nodes are nodes which process sensory data using both spatial

and temporal algorithms. If a pattern is recognized its invariant represen-

tation is sent up the hierarchy, if the data seems novel, a representation is

created and then passed up as a seemingly new representation. [9–11,14]

– Sensor Nodes are the nodes which send spatial data, based on environ-

mental inputs, up the hierarchy of memory nodes. These are equivalent

32

Figure 2.7: HTM Theory - Beliefs & Invariant Representations [1]

to the eyes or ears in humans but, more critically to a cyberspace appli-

cation, could be programmed to detect any environmental stimulus (i.e.

TCP packets, network traffic volume, destinations, etc.). [9–11,14]

• Temporal (Spatial-Temporal patterns) :

HTM applications are presented with spatial data as it changes over time.

Figure 2.7 is an illustration of an instance of spatial data as it is presented

up the hierarchy. The lowest memory node receives sensor data from sensor

nodes. Each node essentially “votes” on what it believes to be the correct

invariant representation of the spatial data based on prior memory and (most

critically) temporal patterns, and passes that up to the next memory node in

turn [9–11,14].

This temporal element is critical. Both HTM and the theoretical cortical al-

gorithm expect sensory input that changes gradually over time. With respect

33

to the nursery rhyme example from earlier, perceiving the invariant representa-

tion of “Jack” may mean nothing or literally nothing. It is the spatial-temporal

pattern associated with the word, the invariant representation, that defines it.

Learning a nursery rhyme as a sequence of words enables HTM technology to

simultaneously predict the following words “and Jill” but create an invariant

representation of nursery rhyme. [9–11,14]

• Memory:

HTM applications work in two stages. In the first stage the network’s memory

is given training (either supervised or unsupervised). The second stage uses that

memory to interpret new inputs and potentially continue learning. “During

training, the HTM Network learns to recognize patterns in the input it receives.

In the fully trained HTM Network, each level in the hierarchy knows - has in

memory - all the [invariant object representations] in its world” [14].

There are two key concepts critical to each stage:

– Invariant Representations:

In HTM Networks, invariant representations (IRs) are based on the

spatial and temporal patterns presented up the hierarchy from sensor

nodes. In the example above the invariant representation of “dog head”

is stored at a mid-level memory node while the invariant representation of

“German Shepherd” is stored at the topmost memory node. How invari-

ant representations are learned and stored depend on the implementation,

however, Figure 2.8 is an illustration of the concept of IR belief in HTM

networks. [9–11,14]

– Auto-Associative:

HTM theory is loosely based on auto-associative neural networks [11].

The concept of auto-associative memory in HTM can be abstracted and

summarized to mean feedback which is pushed down to the lower levels

34

Figure 2.8: HTM Theory - Hierarchical Networks [1]

Figure 2.9: HTM Theory - Auto-Associative Memory [10]

at each stage of the hierarchy. This allows for the important “predic-

tive” nature of HTM networks and is critical to its application for creating

and predicting invariant representations [11]. Expected invariant repre-

sentations of objects are fed back down the hierarchy and used to create,

perceive, predict, and act upon spatial and temporal patterns (See Figure

2.9).

HTM applications are proposed as software solutions based on Hawkins’ cortical

theory. This would allow computers to theoretically perceive, predict, and interact

with the world. Under the definitions and assumptions in this research, such software

35

could technically become sapient, possess conscious understanding, and be intelligent.

Cyberspace software programmed to use HTM Networks might actually allow for the

first truly intelligent computer to understand cyberspace. Such intelligence applied to

a cybercraft could meet the aforementioned requirements for cyberspace superiority.

2.6.2 Reality Check. HTM theory is not a “magic key,” to unlock the secrets

of all previously unsolvable problems. The biggest constraint on HTM networks is

the viability of training and learning. As explained in Section 2.4.5, HTM networks

are based on the neocortex in the human brain. As such, the problems for which

an HTM network solution is appropriate should fall into one of the following two

categories [16]:

• Inferring the Cause of Novel Input [16]. This category covers those func-

tions which humans perform very well but that computers cannot do reliably

(i.e. facial recognition, environmental interaction/reaction, etc.).

• Discovering Causes in Sensory Data [16]. This category covers those areas

where human-like understanding and inference would enable computers possess-

ing exceptional sensors and/or residing in unique environments the ability to

discern inputs and make predictions in unusual worlds.

It seems that aspects of creating intelligent cyberspace software agents fall into

not one, but both categories above. However, this is not enough to select HTM

technology as a solution for the problem. The feasibility of training the HTM network

must also be considered. The two primary factors are provided:

• The time allotted for training is critical [16]. Because both humans and HTM

Networks require training before they are able to reliably solve problems it is

crucial that the time needed to train the HTM network effectively be available.

Some problems require a one-time training session of a few moments while others

may require hours or days of training or training that, like humans, continues

indefinitely.

36

• The alternatives to solving the problem with HTM technology must also be

considered. Problems that can be currently solved, to similar degrees of accu-

racy, with modern computer science applications and techniques may not be an

appropriate use of HTM Networks [16]. Although the problem could be solved

with HTM technology it doesn’t mean it should.

If HTM is a viable option, if there exists enough training time, and if current

techniques fall well short of the desired result, then HTM technology should be a good

fit to solve the problem. However, the data needed to train the HTM network should

meet the following criteria:

• The quantity of data available for training is key [16]. Many problems, while

perfect for a HTM solution, lack the vast amounts of data required for the

network to build correct invariant representations of the world to which it is

exposed.

• The quality of the data is important as well [16]. Validation to the accuracy

of sensory input data should be performed to eliminate the potential of tainted

data. If an HTM network were to be given flawed input to sensors it would

perceive a different world model than the one which was intended.

• Most importantly the data should represent a spatial-temporal hierarchy which

corresponds to the world from which it was taken [16]. As defined in Section

III, the concepts of spatial and temporal hierarchies are crucial to both human

and HTM network learning.

If training an HTM with vast amounts of accurate, spatial-temporal data is feasi-

ble and suitable for the problem, HTM technology is a good fit [16]. Provided suitable

data can be obtained, training intelligent software to reside/react in cyberspace could

be an attainable goal. The next chapter explores the challenges of implementing HTM

theory.

37

III. Methodology - Implementing HTMs

HTM applications are proposed as software solutions based on Hawkins’ cortical

theory. This would allow computers to theoretically perceive, predict, and

interact with unusual worlds. Perhaps software programmed with HTM networks

could help addressing the three challenges to intelligent autonomy. Such capabilities

are central to cybercraft, the understanding cyberspace, and providing superiority in

such a domain.

The ultimate goal of this research is not production of such intelligent, au-

tonomous cybercraft. Sapient cybercraft is a vision which Chapter 2 indicates might

be attained with by concentrating on the 7 challenges to intelligent cybercraft auton-

omy. This paper can provide important steps towards the realization of this vision

by first refining the problem into a preliminary set of goals and then investigating

potential solutions.

3.1 Problem Refinement

If cybercraft are to autonomously defend cyberspace with a reasonable expec-

tation of success, intelligent, reasoning abilities should be acquired. The fundamental

research questions of this paper are then: “Can HTM implementations provide an un-

derstanding into the abstract world of cyberspace and are the predictive foundations

of intelligence supported by such HTM implementations?”

HTM theory claims to combines many positive aspects of proven AI methods.

Like many such methods, HTM builds on a comprehensive, biological theory of the

only known, functioning, intelligent machine - the human brain. However, unlike

many other AI methods, HTM theory is unique in asserting the ability for unsuper-

vised learning of intangible worlds. It further claims the ability to model such worlds

with enough accuracy to enable intelligent predictions [11]. Although first proposed

in 2004, this particular claim of the theory has gone relatively untested in favor of

supervised learning of known worlds (See section 3.4.3) [14].

38

The problem domain [21] is then formed: Could HTM theory be used as a basis

for an intelligent cybercraft? More directly, does HTM theory provide computers

or software with predictive abilities, specifically (but not uniquely restricted) to cy-

berspace? This last question is broken down into 4 specific problem areas that need

to be addressed:

Problem 1: Modeling the unknown environment of cyberspace could be

impossible due to the very ambiguity of the environment.

Problem 2: Making predictions in an ambiguous model is mere guesswork

if the model of cyberspace is not understood to begin with.

Problem 3: Inability to act or react based on unknown predictions.

Problem 4: Difficulty adapting to changes unanticipated, and thus not rep-

resented, in the model without human intervention.

3.2 HTM Theory - Applicability

To answer the problems as proposed, the problems should show applicable map-

pings [21]to known (supposed) solutions claimed by HTM theory.

Problem 1: HTM theory addressed the generation of a model by allowing

the self-generation of invariant representations of the environment via supervised or

unsupervised training. Programming a model is not required, observation of a world

is all that is needed. HTM theory specifically acknowledges that through multiple

sensors but one algorithm, even alien environments like cyberspace can be internal-

ized.

Problem 2: The model itself is generated using the natural spatial-temporal

patterns in the observed world. Not only does this generate a known model of the

world (at least to the observer) but it directly facilitates predictions based on the

presumed reoccurrence of familiar patterns.

39

Problem 3: In HTM theory, predictions are continuously made and provided

as feedback to an HTM network. Actions and reactions to input are simply those

predictions. As such, those predictions can change as the input is or is not anticipated.

Problem 4: The ambiguity of inputs can be resolve up the hierarchy of

an HTM network thus reducing previously un-modeled inputs to a predictable (if

potential and initially incorrect) conclusion [11]. When predictions are shown to be

incorrect, continual learning can occur and uncertainty removed from future inputs

of that type. Thus, when novel, unanticipated changes occur and ultimately become

unpredictable, this new pattern is added to current spatial-temporal patterns. If

this novel input occurs enough, it becomes anticipated and predictable. In this way,

HTM theory resolves situational adaptation via unsupervised learning without human

intervention.

3.3 Hypothesis

Given the above applicability of HTM theory to this problem domain [21], a

hypothesis can be stated.

With appropriate spatial-temporal data and sensors, an HTM network should be

able to create an internal representation of an environment, make predictions, and

take appropriate actions based on said predictions.

The objective is then to test implementations of HTM theory with respect to

accuracy of this hypothesis, specifically within a cyberspace environment.

3.4 Mapping Theory to Algorithm

Mapping HTM theory to a working algorithm is the next step [21]. Algorithms

can then be implemented and tested with respect to the hypothesis.

3.4.1 Numenta Inc. Since 2003, Hawkins has worked diligently with the

Redwood Center for Theoretical Neuroscience at the University of California at Berke-

40

ley to develop his HTM theory. In, 2005 he co-founded a company called Numenta

Inc., dedicated to developing an implementation of his HTM theory [14].

3.4.2 Algorithm Overview. In March of 2007, Numenta released what they

claimed was a “research implementation” of HTM theory called Numenta Platform

for Intelligent Computing (NuPIC). The algorithm used by NuPIC at this time is

called “Zeta1.” NuPIC was released as an open source software platform and binary

files of the Zeta1 algorithm. Because of licensing, this paper is not allowed to discuss

the proprietary implementation aspects of Numenta’s Zeta1 algorithm [14]. There

are, however, generalized concepts of implementation that can be discussed freely.

The two most important of these are how the Zeta 1 algorithm (encapsulated in each

memory node of the network hierarchy) implements HTM theory.

To implement any theory in software, an algorithmic design for each aspect of

the theory must be addressed [21]. The most important design decision Numenta

adopted was to eliminate feedback within the hierarchy and instead choose to sim-

ulate this theoretical concept using only data pooling algorithms for weighting [15].

This decision is immediately suspect and violates key concepts of HTM. Feedback,

Hawkins’ insists, is vital to cortical function and central to his theories. Still, Numenta

claims that most HTM applicable problems can be solved using their implementation

and proprietary pooling algorithms [14].

Additionally, NuPIC implement these independent temporal and special pool-

ing algorithms at each node [15]. Numenta’s white paper entitled HTM Learning

Algorithms discuses these concepts (See Figure 3.1):

• Spatial Pooler: Learns a mapping from a potentially infinite num-
ber of input patterns to a finite number of quantization centers. The
output of the spatial pooler is in terms of its quantization centers [7].

• Temporal Pooler: Learns temporal groups - groups of quantization
centers - according to the temporal proximity of occurrence of the

41

Figure 3.1: Graphical Representation Zeta1 Memory Node [7]

quantization centers of the spatial pooler. The output of the temporal
pooler is in terms of the temporal groups that it has learned [7].

To summarize, NuPIC essentially attempts to implement HTM theory in a feed-

forward system. It uses temporal and special pooling algorithms at each node in the

hierarchy to build an internal representation of the world. Such abilities could solve

Problems 1 & 2 above. However, feed-forward architecture automatically eliminates

NuPIC from solving Problem 3 as the solution provided by HTM theory requires

feedback. Finally, without feedback, the NuPIC implementation will depend solely

on the accuracy of the constructed model to comprehend unanticipated inputs. Until

the model is constructed, NuPIC’s ability to solve Problem 4 remains unknown.

Numenta’s decision to implement only the feed-forward aspects of true HTM

theory leaves a high representational gap between implementation and Hawkins’ cor-

tical hypotheses. To prevent confusion and to underscore Numenta’s design compro-

mise with regards to feedback and the biological foundations of HTM theory, HTM

networks created using NuPIC will be referred to (in this paper) as N-HTM networks.

42

Figure 3.2: Graphical Representation of Bitworms and N-HTM Network Training
[15]

3.4.3 Previous Experiments. Despite their variation on HTM theory, Nu-

menta has shown positive performance in many of its initial NuPIC experiments. Prior

to NuPIC’s release, Numenta had performed several tests which now come bundled

with the platform as downloaded from Numenta’s website. Two notable experiments

are the Bitworm and Pictures experiments.

• Toy Experiment - “Bitworm”

NuPIC’s “hello world” experiment is known as the Bitworm example [15]. It is

an entirely fictional problem that simply, yet effectively, demonstrates the power of

Numenta’s HTM implementation and NuPIC. “Bitworms” are 16-bit vectors (arrays)

and are of two varieties: solid and textured (See Figure 3.2) [15].

As in Figure 3.2, the bitworm is briefly “scanned” by the N-HTM network sensor

node over sequential “time units” collecting the appropriate spatial-temporal data.

Each line represents a “modified look” at the same bitworm. During training the

N-HTM network builds its own invariant representations of both solid and textured

bitworms [15]. When exposed to a set (file) full of 420 different bitworms of various

textured or solid patterns (i.e. 0000011111000000 or 000010101000000) the N-HTM

network accurately recognizes and correctly classifies the bitworms 97.86% of the time

(411 of 420 bitworms correctly identified) [15]. That is to say an N-HTM network

trained on a limited number of pre-categorized “specimens” (consisting of both solid

and textured baitworms) can accurately categorize a large, randomized list composed

43

Figure 3.3: Example Line Art Input and N-HTM network Recognition Output [9]

of members of each “species.” Such an N-HTM is thus able to categorize a bitworm

0000000011111110 as solid, even if it has never seen a bitworm with seven 1’s so far

to the end of the any solid bitworm.

• Line Art Recognition - “Pictures”

The second experiment, the Pictures example, is far less trivial and truly begins

to demonstrate the a robustness for the NuPIC platform. Explanation and analysis

of the experiment and N-HTM network is available from Numenta, but Figure 3.3

effectively conveys both problem and impact.

To summarize, NuPIC is fed dozens (three of which are seen in Figure 3.3) of

basic line art graphics. Each graphic is know to programmers by names like “dog”

or “mug,” however NuPIC has no English word for such images. NuPIC fully scans

each image during training by “moving it’s eyes” (moving the picture) right, left, up,

down, in, and out. It is then it is fed an assortment of line art representations of

similar, but imprecise images. As seen in Figure 3.3 the network is able to easily

identify an image despite noise, distortion, and/or reorientation [14].

44

Clearly Numenta’s implementation, while not proven by these examples, cer-

tainly seems viable enough to warrant experimentation in understanding the alien

environment of cyberspace.

3.4.4 Proposed Experiment. Because NuPIC has already been shown to

work on small toy experiments, in addition to success on more complicated experi-

ments, it can be tested as a solution within the proposed problem domain. Because

NuPICs ability to act or react to environmental stimulus is impeded do to the miss-

ing feedback mechanisms, any cyber-oriented experiment most solely concentrate on

NuPIC’s categorization abilities.

• Cyber-Experiment - Anomaly Detection

The proposed experiment is an anomaly detection application. Given NuPICs

categorization focus, it should be possible to create an N-HTM network which can

categorize network traffic as normal (recognized as benign) or anomalous (potentially

malicious).

Using the Python script interface to NuPIC, an N-HTM network can be created

to sense any environment with custom sensors [15]. If the sensors of said N-HTM net-

work were given packets of network traffic, the N-HTM network should (theoretically)

be able to model cyberspace as presented by those packets. The first step towards

this goal is to find sufficient, benign data that fits HTM training requirements and

corresponding test data which contains packets of a malicious nature.

One “standard” benchmark of readily available network traffic for intrusion de-

tection testing is found on the Massachusetts Institute of Technology’s (MIT) Lincoln

Laboratory website [33]. The DARPA-led collection of network traffic data (i.e.“TCP

dumps”) for network anomaly detection was performed though the years of 1998,

1999, and 2000 [33]. Each year contains control data and test data captured during

network attack exercises [33].

45

Although the data sets are known to have corrupt data during some periods,

instances are documented sufficiently to be avoided [24]. Additionally, criticism of

the sterile nature of the data is noted [24] but this is not applicable as the sterility

is considered consistent in the testing data — maintaining potential spatial pattern

consistency. The data may not be the best, but it’s all that is available in enough

documented quantity.

This anomaly detection experiment will use the 1999 MIT data sets. This data

contains large TCPdump files that contain network packets captured in sequential

order. The packets themselves contain many spatial characteristics including source

address, ports, packet size, and even time delta (the time elapsed since the last packet

captured). The sequential ordering of the packets fulfills the temporal requirements.

Control data representing “normal” network activity is used to train an N-HTM net-

work. Using the internal model generated from this training, the N-HTM network is

then given the corresponding test data. The N-HTM flags any unrecognized pack-

ets as anomalous network activity. If Numenta’s implementation of HTM theory is

correct, the majority of anomalous packets will correspond to packets of a computer

network attack.

3.5 Evaluation Framework

The evaluation framework for the Numenta HTM implementation should be

evaluated based on a “reasonable expectation for success.” Success will be based

on how the implementation solves the problem in the experiment. Success in this

experiment will lend important support for HTM theory’s applicability for potential

predictions of the unusual world of cyberspace.

Reasonable expectations for any anomaly detection system includes a balance

between two main elements:

1. All malicious network activity is flagged as abnormal. That is, test data should

present the N-HTM network with spatial-temporal patterns that do not match

46

any invariant representation previously internalized during training. No mali-

cious packets should be perceived as having “been seen” before.

2. Low percentage of benign network traffic flagged as abnormal (a low rate of

“false-alarms”). That is, normal network traffic within the test data should

rarely be flagged as anomalous.

With respect to the experiment, success can be summarized as the N-HTM

network creating new categories for malicious packets in testing data. These categories

are the anomalies detected. Such malicious categories would (theoretically) not have

been created from the normal (benign) training data. Consequently, malicious packets

should not be categories as recognized from training. Additionally, the formation of

new categories for novel, but benign, network activity should be lower than the number

of malicious categories perceived (for rate of false-alarm).

3.6 Assumptions

Per the data requirements of HTM implementations, the assumption must be

made that spatial-temporal patterns exist in the data representing the environment.

For example, although TCPdumps contain spatial-temporal data (Section 3.4.1.3),

the assumption that spatial-temporal patterns exist must be assumed. Until found,

there is no proof that such a pattern exists in cyberspace.

Another assumption is consistency between training and testing data. Both

the data used to create an HTM network model of the world and the data used to

test that model should be assumed to accurately represent the same world. That is,

predictions can only be made from knowledge and experience. The concept is similar

to the automobile driver who is given an airplane. Assuming he has been licensed only

for cars and never taught anything about flying, the driver should not be expected to

know how to fly the plane (maybe only drive it around).

Finally, the idea that data manipulations preserve pattern integrity must be

assumed. For experiments with NuPIC, TCPdump data must be greatly altered

47

before a N-HTM network can sense a packet. Specifically, filtering or parsing the

packets of TCPdump data should not destroy inherent (or create artificial) spatial-

temporal patterns. This assumption is verified by the company [14,15].

3.7 Experiment Configuration: Anomaly Detection

The previous chapter introduced the NuPIC application for creating, training,

and testing N-HTM networks. Previous experiments were able to successfully pre-

dict and categories textual and image data. The Anomaly Detection experiment, as

required by this research, extends previous experiments in two specific ways:

1. Make Predictions from an Unusual World - Both the Bitworm and Pictures

experiments make predictions from well understood environments - attempting

to perform a task humans can do well, only more efficiently. These experiments

demonstrate NuPIC’s capability for solving the first set of problems HTM the-

ory was proposed to solve (Section 2.6.2 - Inferring the Cause of Novel Input).

The Anomaly Detection experiment will be the first, NuPIC-based, HTM imple-

mentation designed to solve the second set of problems [14]: Discovering Causes

in Sensory Data.

2. Perform Without Supervision - Both the Bitworm and Pictures experiments

utilize an optional, NuPIC-specific concept of a Category Node for supervised

learning. These elements of the N-HTM network hierarchy allow programmers

to teach each application the category to which a newly learned spatial-temporal

pattern belongs (i.e. “Solid” in Bitworm or “Dog” in Pictures). This is simi-

lar to teaching a 2-year old that the red, shiny fruit they are eating is called

an “Apple.” However, HTM theory does not require a “Name” be provided for

perceived invariant representations (e.g. not knowing an apple is called “Apple”

does not prevent a 2-year old form grasping the concept its existence - a fruit

with characteristics that differ from an orange or a mouse). The Anomaly De-

tection experiment will be one of few NuPIC experiments utilizing unsupervised

48

learning techniques. A lack of supervision makes intuitive sense with unknown

environments (humans do not have a word for, nor would they recognize, the

supposed spatial-temporal pattern that provides an invariant representation of

the cyberspace environmental anomaly: “HTTP Tunnel”).

3.7.1 Network Setup. Constructing the hierarchical network topology is

the first step in creating an N-HTM network. Five NuPIC node types were used for

constructing the anomaly detection network.

3.7.2 Sensor Nodes - VectorFileSensor. The first node of any HTM network

will be the sensor node. These bottom-level nodes take appropriate environmental

data and convert the input signal into the language the common language the HTM

network understands. This function is analogous to eyes processing visual images

and ears processing auditory information. Each environmental signal is encoded and

presented to the brain (per HTM theory) as neural impulse patterns.

The sensor node used in this experiment is the VectorFileSensor which reads

vectors from a data file. Except for the initial line of a data file, each line is a vector

and the element of the vector must be floating point (or integer) values. Each element

is separated by a single space. The first line of a data file is a single integer which

instructs the VectorFileSensor how many elements to read from (or are contained in)

each vector.

Example VectorFile Format (5 vectors of 7 elements):

7

1 23 4.5 12 8 3456 0.234

2 24 5.0 13 9 3356 0.123

3 24 5.5 14 10 3256 0.234

4 26 6.0 15 11 3156 0.345

5 27 6.5 16 12 3056 0.456

As an advanced option VectorFileSensors can be directed to send the value from

any vector to any number of other memory nodes. In this way, having multiple sensor

49

nodes is only required if data is physically located in another file. It is recommended

that data spread across multiple files be combined into one rather than having multi-

ple sensors. NuPIC also provides connectivity for programmers who whish to create

specialized sensor nodes for reading incompatible data. Often, pre-formatting incom-

patible data (if possible) is recommended. Instead of creating a new sensor node to

read TCPdump files, performing data to fit the VectorFile format was the option

employed in this experiment.

3.7.2.1 Memory Nodes - Zeta1Nodes. The primary nodes in NuPIC

are the Zeta1Nodes which implement the Zeta1 learning algorithm. Zeta1Nodes an-

alyze data received from lower nodes, execute the Zeta1 spatial and temporal pooler

algorithms, and then send output to any number of higher nodes. All Zeta1Nodes

have several different node parameters that are configurable through node instantia-

tion fields and will affect the learning behavior.

Of the parameters which can be set, this experiment specifies 6 important fields

of the Zeta1Nodes [15]:

• maxDistance is a required part of the spatial pooler algorithm. “The parameter

sets the maximum Euclidean distance at which two input vectors are considered

the same during learning.”

• topNeighbors specifies “how many simultaneous coincidences to consider when

computing groups” and is a required part of the temporal pooler algorithm.

“To form temporal groups, the node walks through the transition matrix. The

transition matrix shows how likely it is for each coincidence to precede another

coincidence.”

• spatialPoolerAlgorithm allows the programmer to select the method of “coin-

cidence detection inference.” The algorithm for bottom-level nodes (above the

sensor) is always Gaussian. With this algorithm “each coincidence output is

a similarity score based on the Euclidian distance between the input and that

50

coincidence.” Nodes at other levels can be given a product or dot algorithm.

With the product or dot method each coincidence output is the product or

sum, respectively, of the child input values corresponding to that coincidence.

• symmetricTime takes a boolean value for which, if true, the algorithm assumes

that if data arriving in a certain order is equally as likely to arrive in the reverse

order.

• transitionMemory“specifies how many true steps of history to keep in the tem-

poral pooler to track the time structure of coincidences.”

• temporalPoolerAlgorithm allows the programmer to select the method of “com-

puting output probabilities.” When maxProp, is selected, the node “computes

a more peaked score” for temporal groups. If sumProp is selected, the node

computes a “smoother score” temporal groups.

3.7.2.2 Top Nodes - Zeta1TopNode. The highest level learning node

in an N-HTM network is the Zeta1TopNode. This node functions like a Zeta1Node

with the additional ability to interact with Category Nodes (used only for supervised

learning and unused in this experiment as previously mentioned). The Zeta1TopNode

is also connected to Effector Nodes.

3.7.2.3 Effectors Nodes - VectorFileEffector. Nodes in an HTM-based

network which can provide a meaningful way of using the predictive and categorization

abilities of the networks are called Effector Nodes. Motor reflexes and conscious move-

ment represent biological effectors in humans. In NuPIC the primary Effector Node

used is the VectorFileEffector. This node combines sensory input (via PassThrough

Nodes) with assigned categories and writes the information to a file. NuPIC also

offers the ability to create unique Effector Nodes which could potentially connect to

a user interface or other N-HTM networks.

3.7.2.4 Other - PassThroughNodes. NuPIC allows for direct sensory

input to effectors. Because N-HTM process input in phases according to hierarchical

51

levels, PassThroughNodes are available to connect input directly to output with no

manipulation or learning. In this way, Effector Nodes can be told what sensory

information should be added to the categories received from the N-HTM network.

3.7.3 Topology. N-HTM networks should provide a low representational

gap between sensory input and network topology. To this end, the network packets

provided to the NuPIC should be appropriately distributed to nodes in the network.

Preprocessing of data (See Section 4.2.3.2) has yielded a 31 element vectors to rep-

resent each packet. 16 packet header and information fields were initially chosen for

NuPIC analysis. Each field is provided below preceded by the vector elements from

which they are composed. An ID number for packet reference was also added as the

first element in each vector.

— (0)ID — (1)timeDeltaBetweenPackets — (2-6)sourceMAC — (7-
11)destinationMAC — (12)type — (13-16)sourceIP — (17-20)destinationIP
— (21)totalLength — (22)identification — (23)protocol — (24)flagsIP —
(25)sourcePort — (26)destinationPort — (27)sequenceNum — (28)Ac-
knowledgementNum — (29)flagsTCP — (30)windowSize —

Each field is fed to a Level 1 Zeta1Node. The output of these nodes is in turn fed

to Level 2 Zeta1Nodes representing the network protocol layer from which the fields

were derived. Output from Level 2 nodes is combined with the time delta information

(from Level 1) at a the Zeta1TopNode of Level 3. The Zeta1TopNode is connected

with a VectorFileEffector which combines the networks output categories with the ID

number (first element of each vector) via PassThroughNodes present at each level of

the hierarchy. The resulting network is illustrated in Figure 3.4.

3.7.4 Data. As previously mentioned, the 1999 MIT data sets that will be

used contain both training and testing data. In 1999, five 5-day weeks of data was

collected. Each day, well over a million network packets were captured an saved into

a TCPdump file. Weeks 1 and 3 contain attack-free network traffic. Weeks 2, 4, and

5 contain both the normal network traffic of day-to-day operations along with packets

corresponding to various network attacks.

52

Figure 3.4: Default N-HTM Network Topology

53

3.7.4.1 Filtering TCPdump Files - Wireshark. All network traffic was

captured in the TCPdump files, not just those packets of a particular protocols (i.e.

TCP and IP). Because the fields chosen for analysis require a consistent set of layered

protocols, packets using protocols disruptive to this consistency were filtered out (i.e.

UDP). To do this an open source software program called Wireshark (See Figure 3.5)

was used to open and filter the TCPdump files.

Packets without an Ethernet, IP, TCP protocol structure were eliminated using

the filter command seen in Figure 3.6. This filtered file was then saved into K12

format. The first 3 (filtered) packets of a Monday (Week 3) TCPdump are seen below

in (abbreviated) K12 format.

+---------+---------------+----------+

13:00:19,888,838 ETHER

|0 |00|10|7b|38|46|32|00|c0|4f|a3|58|23|08|00|45|00|00|2c|00|74|00|00|40|06|4d|1b|c4|25|4b|9e|ac|10|71|69|04|00|00|19|8c|6c|0f|3b|...

+---------+---------------+----------+

13:00:19,893,523 ETHER

|0 |00|c0|4f|a3|58|23|00|10|7b|38|46|32|08|00|45|00|00|2c|01|1f|00|00|3f|06|4d|70|ac|10|71|69|c4|25|4b|9e|00|19|04|00|37|4d|41|c0|...

+---------+---------------+----------+

13:00:19,893,723 ETHER

|0 |00|10|7b|38|46|32|00|c0|4f|a3|58|23|08|00|45|00|00|28|00|75|40|00|40|06|0d|1e|c4|25|4b|9e|ac|10|71|69|04|00|00|19|8c|6c|0f|3c|...

3.7.4.2 Converting TCPdump to NuPIC Vector Form. To convert the

K12 format to VectorFile format readable by the N-HTM network, a Java-based parser

was written. This parser converts the hexadecimal representations into consistent

integer and float representations and distributes them into a vector. The first 3

packets of the filtered Monday (Week 3) K12 file are seen below in VectorFile format:

31

1 0 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 44 116 6 2 1024 25 2355892027 0 0 512

2 0.004685 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 44 287 6 18 25 1024 927809984 2355892028 0 32736

3 0.0002 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 40 117 6 16 1024 25 2355892028 927809985 0 32120

...

3.7.5 Specifications & Parameters. Numenta concedes that there is no way

to truly know how the fields of the Zeta1 nodes should be set. Settings based on

educated guesses refined by trial and error is the only recommended method. As

54

Figure 3.5: Wireshark Analyzing TCPdump File

55

Figure 3.6: Wireshark Filter

such, the following were used as the default experiment parameters for the Zeta1

applicable nodes:

maxDistance = 0.0

Justification: No two packets would reasonable be perceived to be identical. Each

packet should lend critical information to any model of the cyberspace environment.

topNeighbors = 2

Justification: This must be greater than 0. With over 1 million packets captured

each day, checking for coincidences at a time should be sufficient.

symetricTime = False

Justification: Just because one packet is followed by another there is no reason

to assume the reverse ordering is true considering all other aspects which affect the

order in which packets are captured over a network.

transitionMemory = 100

Justification: It would seem reasonable to assume packets of any “object” in

cyberspace might be up to 100 packets long.

The default algorithm settings for nodes at each level are as follows:

Level 1 (Numenta recommended):

56

patialPoolerAlgorithm = "gaussian" temporalPoolerAlgorithm = "sumProp"

Level 2:

spatialPoolerAlgorithm = "gaussian" temporalPoolerAlgorithm = "sumProp"

Level 3 (Numenta recommended):

spatialPoolerAlgorithm = "dot" temporalPoolerAlgorithm = "sumProp"

3.7.6 Procedures. The procedures taken for the experiment were quite

straightforward:

1. Training : A VectorFile formatted training data file must be selected from

attack-free data sets. Training is unsupervised and the objective is to build

a world model for the “normal” network environment of cyberspace. Because

training the N-HTM with all, 1 million plus, packets would take weeks, the num-

ber of vectors will be limited initially to facilitate the trial and error methodology

required for parameter tuning. Additionally, because training is the most time

consuming aspect of N-HTM creation, limiting the number of packets results in

more time alluded for testing. Based on training vectors used with other NuPIC

experiments, several thousand vectors will be required for appropriate, initial

training.

2. Testing : Once a N-HTM network is trained, it will be used to test an entire

day of packets from a week where attacks were conducted (e.g. Week 4) on

the network. In this way several days worth of attacks can be observed and,

hopefully, categorized in a category not created during training.

3. Analysis : The categories assigned to packets in the testing data will be checked

for uniqueness against old categories derived from training. New categories

assigned to malicious packets will be considered successful. New categories

assigned to benign packets or old categories assigned to malicious packets should

be considered a failure of the anomaly detection system.

57

3.7.7 Goals & Expectations. Although a superior anomaly detection method

is not expected to emerge from this experiment, a generalized indication that the N-

HTM network is capable of categorizing malicious network packets as different from

benign packets is anticipated. Although false-alarms will probably be higher in this

experiment than with other anomaly detections system, limited success might point

towards future success of HTM networks or, more precisely, Numenta’s interpretation

and implementation of HTM theory.

58

IV. Results

This chapter reports the results of the Anomaly Detection experiments. To be-

gin, a summarized account of the experiment’s administration will precede the

corresponding results. In the course of conducting said experiments, unanticipated

adjustments are sometimes made to the proposed experimental specifications. Such

alterations, as applicable, are documented here along with any pertinent consequences

of their implementation. Finally each set of developed results is explained and ana-

lyzed.

4.1 Running Anomaly Detection Experiment

For this experiment, several extensive and different variations were run to ensure

adequet conclusions could be drawn. In addition to several trial experiments, 32,

large-scale (similar to the ones presented in this paper) experiments, as specified in

Chapter 4, were performed with NuPIC. Performing 32 trials was not premeditated,

instead it’s just happened to be the case that after 32 trials of consistent results,

analysis could be resolved and conclusions could be drawn.

In accordance with Numenta’s recommended “trial and error” method, modifi-

cations were constantly made to input data, parameters, and even network topology.

The training data (days of packet captures from Weeks 1 and 3) was constantly varied

as were the testing data sets (Weeks 2 and 4). Modifications or the initial parame-

ters including fields affecting spatial and temporal poolers, were attempted. In some

experiments, network topology was even modified to incorporate a 4th level (See Fig-

ure 4.1). Training in a “supervised” manner was attempted at one point (per the

NuPIC guide) by adding a line of 31 zeros to separate packets into artificial, tempo-

ral frames. Even certain input vectors elements were, at times, ignored to increase

variation between packets.

The details of experiments recounted in this section are those implementations

which showed the best results.

59

4.1.1 Training. Numenta insists that the data used for training is critical

to success. For this reason, data from both Weeks 1 and 3 were used for training

the N-HTM network. Each day is capable of offering TCPdump files in two different

ways. Some days provide TCPdump files representing network activity from “inside”

the network while others captured packets originating from “outside” the network.

Some days may only provide one or the other. Although both types of TCPdump

files were used, for anomaly detection the assumption was made that network traffic

originating from outside a network would present more potential abnormalities.

Additionally, the first day (Monday) of Week 3 was favored because it seemed

to have captured one of the more “average sized days” outside the network. That is,

the size of the outside TCPdump file for this day was not the largest or the smallest.

The assumption was made that moderate network traffic loads would be most typical.

Perhaps the second most important aspect of training is how much is provided.

Of the 32 experiments performed, N-HTM networks were successfully trained using

100, 300, 1,000, 3,000, 10,000, and 60,000 packets from varying days. Training with

120,000 packets was even attempted but failed to produce a N-HTM due to memory

constraints.

All results presented in this paper are derived from an N-HTM network trained

with the first 60,000 packets of Monday’s outside (Week 3) TCPdump file. This

network will be referred to as network “MW3-60K.”

4.1.2 Testing. Testing was performed by running many packets through the

trained N-HTM network for categorization. Weeks 2 and 4 provided 5 days each of

TCPdump containing attacks. Both outside and inside variations were uses through

training. Testing was performed on each day of Weeks 2 and 4. The number of

packets used was often determined by were certain attacks were located within a

day’s TCPdump file. In an attempt to preserve any spatial-temporal patterns located

for an attack, no fewer than 300 packets were provided to the N-HTM at any one

time. More often, an entire day’s collection of packets was given to the N-HTM for

60

categorization. The largest successful categorization was performed on all 1,544,574

packets of Thursday from Week 4 with the MW3-60K network.

4.1.3 Data Collection. All training results and testing results were output by

the network’s VectorFileEffector to files called “training results.txt” and “test results.txt”

respectfully. Results were in a two-element vector where the first element is the as-

signed category and the second vector is the packet’s ID number. See the three

following example outputs (important for later examples):

1234.5 1

2345.6 2

1357.9 3

A Java “visualization” program was created to aid in the analysis of such files

and was customized to each experiment. Customization was required, among other

reasons, to reformat scientific notation (used by NuPIC for integers over 1 million) into

integer form. Results formatted in this way were saved in “test results.format.txt”

files (training files had do need for this formatting as they were always composed of

far fewer than 1 million packets).

This Java program also produced “training results.report.txt” and

“test results.format.report.txt” files which contained a corresponding list of the cate-

gories formed from each phase. Additionally, this program calculated the number of

initial categories created by the N-HTM network during training and the number of

new categories discovered after testing.

To aid in quick, visual inspection of test result files, the Java program also

produced a filtered file called “test results.format.out.txt.” In this file, packets were

“zeroed out” if they were assigned a category previously derived from training. These

zeros help with analysis and the distinction is important for interpreting results. To

aid in future understanding in this thesis, the following example shows the “out.txt”

61

file corresponding to the previous example of three testing outputs. Here it is shown

that categories 1234.5 and 1357.9 where identified from training:

0

2345.6 2

0

4.1.4 Initial Results. The reason all 32 experiments are not discussed in

detail is because no single variation provided a significant advantage over the others.

Two specific variations did, however, prove far worse than the majority.

The inclusion of a time delta as a spatial element in the packet was identified as a

problem early in initial experiments. The time delta proved problematic as abnormally

large time deltas seemed to unduly influenced the N-HTM. These large time deltas

were attributed to the filtering out of all packets but those that containing Ethernet,

IP, and TCP protocol layers. Although this filtering is critical for automated parsing

of a million (plus) packets, an unanticipated side affect occurred. For example, if 500

UDP packets arrived between two TCP packets, the time delta would appear to be

very large between the first and second TCP packets. Time delta thus could become a

far too powerful spatial element when perceived and weighted by the N-HTM during

categorization. Just a few packets filtered out from between two included packets

would produce a immensely abnormal time delta resulting in an equally and radically

different category.

The solution was to remove the connections between the first memory node and

the sensor for the time delta element of each vector. This results in a packet vector

type called “timeless” in this paper and the Python code. This is not to mean the

temporal aspects were affected in anyway as the time delta is only an element of the

spatial pattern.

62

Figure 4.1: 4-Level N-HTM Network Topology

The second variation was to allow for the dynamic allocation of a 4th level to

the hierarchy (See Figure 4.1). A Zeta1Node was placed between the three protocol

nodes and the top node. The result was far fewer categories. In fact, no (or very

few) new categories were able to be created during testing. These poor results limited

useful testing of the 4-level N-HTM (in this configuration).

The most comprehensive experiments were those done with a 3-Level, “timeless”

MW3-60K network (Lv3T MW3-60K) used to test every packet in each day (Monday-

Friday) of the Week 4. Although testing results were obtained from each day of Week

4, only the accuracy of anomaly detection for Monday and Tuesday is presented in

this paper.

63

The categorization statistics (provided by the Java visualization program) for

each day of the week are provided in Appendix B. A glance at these statistics indicate

what was observed: N-HTM categorization was consistent across each day. So too,

the ability of the Lv3T MW3-60K network to detect anomalous activity was the same

for each day of the week. Monday and Tuesday results are presented below because

they contain a representative cross-section of attacks performed throughout Week 4.

4.1.5 Analysis. The attacks that were performed over Week 4 fall into 5

classes [33]:

1. Denial of Service (DOS): “An attack in which the attacker makes some com-

puting or memory resource too busy or too full to handle legitimate requests,

or denies legitimate users access to a machine” [33] These attacks include “pro-

cesstable,” “mailbomb,” and “land.”

2. User to Root Attacks : “Exploits are a class of exploit in which the attacker

starts out with access to a normal user account on the system (perhaps gained

by sniffing passwords, a dictionary attack, or social engineering) and is able to

exploit some vulnerability to gain root access to the system” [33] These attacks

include “ps,” “loadmodule.” “sqlattack,” and “sechole.”

3. Remote to Local Attack : “Occurs when an attacker who has the ability to send

packets to a machine over a network but who does not have an account on

that machine exploits some vulnerability to gain local access as a user of that

machine” [33]. These attacks include “sshtrojan,” “xsnoop,” “snmpget,” “guest-

telnet,” “ftpwrite,” “httptunnel,” and “phf.”

4. Probes : “Automatically scan a network...to gather information or find known

vulnerabilities” [33] The attack included here is “portsweep.”

5. Data: These attacks “involve someone (user or administrator) performing some

action that they may be able to do on a given computer system, but that they

are not allowed to do according to site policy. Often, these attacks will involve

64

Figure 4.2: Wireshark Filter Packet Calculator

transferring ‘secret’ data files to or from sources where they don’t belong” [33].

The attack given here is denoted “secret.”

Of the attacks performed over Monday and Tuesday of Week 4, at least one

attack (included above) from each of the 5 attack-classes was present. Each attack’s

start time is indicated in the MIT documentation. For the purposes of evaluation,

the packet at this time is considered the target or start of anomalous behavior. Ide-

ally, anomalous behavior would end when the attack resolves. In accordance with a

reasonable expectation of success, this experiment makes distinctions between new

categories (anomalies) assigned to the start packet and 10 packets above or below

that start packet. This is done to allow for potential variance in spatial-temporal

patterns learned from this unusual world. I is reasonable that the N-HTM might

predict anomalies (thus notifying users) before they have started or take some time

to realize they have begun. Either circumstance is conceivable from HTM theory.

It is important to note that the protocol filtering performed by Wireshark dis-

rupts packet ID numbers. Because time is only visible before conversion to K12

format, Wireshark must be used to analyze and find start packets (Pkt) and infer the

filtered start packet (Filtered Pkt). That is, if an attack starts with Pkt=400 but 50

packets have been filtered out prior to this ID number, the Filter Pkt=350 will be

the VectorFile ID number. As seen in Figure 4.2, Wireshark provides a calculator for

finding the correct Filter Pkt given a start Pkt.

65

Figure 4.3: Anomaly Detection Results - Week 4, Monday

When the attacks (and corresponding start times) are used to find the re-

spective Pkt and Filtered Pkt, anomalies can be determined from the N-HTM net-

work output. In this way, the tables in Figures 4.3 and 4.4 are constructed. If a

test result.format.out.txt file contains a Filter Pkt (equal to the ID number of the

packet vector and line number of the out.txt file) assigned to a new category, an

anomaly is said to have been detected.

66

Figure 4.4: Anomaly Detection Results - Week 4, Tuesday

Filter Pkt 19510 of Monday shows an anticipated outcome for anomalies. What

is not anticipated is that the corresponding category 2827.6 for this attack appears 60

other times in this 1,167,661 packet file. However, the attack for which it is designated

(sshtrojan) occurs far less!

The next attack starts at Filter Pkt 204698. While new category 2923.4 is also

given to this attack (xsnoop), the data below shows two other anomalies (in this case

the same category) within 10 packets above and below. This category is also common

in the categorization of packets this day in spite of the xsnoop attack appearing only

once.

The expectation would be to find a block of anomalies starting with that first

Filter Pkt. An example of this expectation can be seen in the below data from the

sqlattack denoted in Tuesday’s table by Filter Pkt 506596.

67

Again, it is observed that thousands of these anomaly blocks exist in the data,

even when there is nothing but normal network activity occurring. From the category

statistics in Appendix B and the innumerable false-alarms indicated in visual review of

the data, it would seem as if anomalies were nominal. Indeed, the majority of attacks

indicated in both tables go unnoticed by the N-HTM while anomalies or consistently

detected elsewhere within the benign packets of the results.

The overall performance statistics also show the common trends. From Mon-

day’s result table, a strict interpretation of the anomaly detection column shows that

only 4 of 24 anomalies (16%) would have been detected. Expanding this window of

detection to the 10-packet “grace period” for detection (both above and below) would

yield the notion that 14 anomalies (58% of those available for detection) were, indeed,

predicted.

While this number appears promising, the false alarm rate tells the rest of the

story. On Monday, 181,849 packets were predicted to be anomalous. Even if all

anomalous and near-by anomalous packets (51 packets as indicated in the results)

were considered accurate, this still means that 181,798 packets are false alarms. Al-

though these false positives make up less than 16% of all 1,167,661 packets tested,

the seemingly randomized distribution of false anomalies shows little indication that

they are connected with any of the malicious events (i.e. there is no “clumping” of

anomalies during attacks as anticipated). This falls alarm Similar results were found

the rest of the week including Tuesday which had 302,470 anomalies detected with

only a handful to potentially indicating malicious activity.

Further, in every N-HTM test, the number of new (anomalous) categories cre-

ated was nearly equal (See Appendix B) to the number learned during testing. If

learning had occurred then these new categories would be clustered around attacks as

packets never before seen. The randomized nature of new category appearance in the

datasets (often in sections of network traffic that are considered “normal”) indicates

that no true learning had occurred.

68

Comparing these results to other machine learning anomaly detection systems is

not favorable. Matthew Mahoney has constructed several experiments with the MIT

datasets from 1999 [23]. One of his more published packet header anomaly detection

systems, aptly named “PHAD”, produced detection rates far superior to the N-HTM

while accurately locating their arrival (i.e. not grace period) [23]. In a telling example,

PHAD 87% of portsweep attacks (13/15) while the N-HTM detects only 14% (2/14)

accurately or 64% (8/14) if the arbitrary grace period window is used [23]. PHAD

also has a superior false alarm rate of “10 per day” [23] compared to a staggering

181,798 for the N-HTM on Monday alone. In the end, although PHAD was trained

on an entire week’s work of normal network traffic [23], the system still detects more

types of network attacks, more accurately and more often than the N-HTM.

69

V. Re-Examining Feedback and Prediction

Cautious of Numenta’s implementation, which omits HTM theory’s essential feed-

back mechanisms, a second implementation is proposed to more adequately test

this aspect of the theory and its affect on prediction. The goal of this project is to de-

sign an HTM algorithm that closely resembles Hawkins cortical theory as interpreted

by this research. An implementation of that algorithm will be used to solve a “toy

problem”, similar to Numenta’s “Bitworm.” This thesis will refer to this algorithm

and its implementation as BackTalk.

5.1 Mapping Theory to Algorithm

To implement a software solution for each of the 4 Problems proposed in Chapter

3, mapping HTM theory to an algorithm is required [21]. In keeping with Hawkins

theories, the BackTalk algorithm will be designed around a Bayesian hierarchical

framework.

From a structural view, BackTalk’s HTM network topology is similar to NuPIC’s

implementation. However, BackTalk must address three major differences between

an N-HTM network and a true HTM network:

1. Instead of passing up temporal groups of quantization centers like an N-HTM

network, a true HTM network must only forward invariant representations of a

perceived spatial-temporal pattern.

Figure 5.1: Proposed HTM Network Hierarchy

70

Figure 5.2: Categorization via Objects in Context [29]

2. Feedback mechanisms are absent in an N-HTM network. In accordance with

cortical theory, a true HTM network must percolate predictions back down the

hierarchy as feedback.

3. In N-HTM networks, memory is static after training. HTM theory requires any

implementation to dynamically learn novel inputs during and after training.

Additionally, for any HTM algorithm to be accurate to HTM theory and func-

tional for experimentation, the 4 problems presented in this paper must be addressed.

To solve Problem 1 the algorithm must facilitate self-generation of invariant

representations of a world environment via supervised or unsupervised training. In

order for an algorithm to do this it must be shown as set of objects and “told” what

was just observed. This is known as supervised learning and it is exactly the way

NuPIC learns the difference between bitworms or pictures. Unsupervised learning

means learning is done without guidance towards proper categorization. However,

to perform unsupervised learning, something must be used to determine a category

shift. Otherwise everything learned would be put into one category.

This is where the concept of context becomes central to the design of the Back-

Talk algorithm. Semantic context (or simply “context”) is the expected probability

of an object’s relation to “nearby” objects. Categorizing objects within a context has

proven important in recent applications [29]. This idea of context is illustrated in

Figure 5.2.

Assume an avid tennis player observes the first illustration in Figure 5.2 without

seeing (or being allowed to see) the rest of the picture. You can imagine that the initial

perception that the yellow dot could be a lemon. However, the following image reveals

71

more information and thus a lemon on a tennis court does not make sense given the

context of the nearby tennis racquet and tennis player. When objects are perceived to

be “out of context,” a more “fitting” explanation of the round object can be offered.

In this case, acknowledging that a lemon is out of context with a tennis court leads

to the assumption that the lemon is, indeed, really a tennis ball [29].

The proposed BackTalk algorithm will use the context of spatial-temporal pat-

terns to provide a guide for unsupervised learning. For BackTalk, initial context will

be provided in a supervised manner. In this way, if BackTalk predicts a known spatial-

temporal pattern but perceives a novel pattern the current input is said to be “out of

context” and learning of this new, novel pattern can begin. In the same way, an anal-

ogy can be drawn between the way humans focus attention from a “dog” to “fur” or

even “animal” and the way a BackTalk application uses context to govern perception.

This change in focus or perception could be used to facilitate unsupervised learning.

Context also plays a critical role in BackTalk algorithms by allowing for adap-

tation to change. Once a change in context is detected, BackTalk could not only learn

new and unanticipated patterns, it can act and react according to the patterns being

learned (or previously learned). This application of objects in context is similar to a

human looking away from the dog in the front yard to the car on the street. A change

in context has triggered either the learning of a new concept of “street with cars” or,

if previously learned, the human can predict the car’s movement down the street.

Applying the concept of an object’s context could allow a BackTalk algorithm to

solve Problems 2, 3 and 4. Detecting context change requires prediction from higher

levels of an HTM network hierarchy. This illustrates the significance of feedback

within the a proposed HTM network. It would seem the lack of feedback in N-HTM

networks inhibits the concept of “context.” Accordingly, N-HTM networks are unable

to perform true, unsupervised learning, nor can such feed forward systems hope to

adapt to changing environments.

72

5.2 Algorithm

The following is a generalized algorithm of BackTalk functionality as laid out

in the initial overview:

Step 1 - Predict

(Top Node):
Initial Case:

No predictions are made by Top Node

Normal:
Case 1 - No sequence can be determined from perceived sequence:

Predict to children last perceived code as a an IR to children.
Case 2 - Currently playing (or other saved) sequence is determined

to be correct:
Predict the next code in current sequence as an IR to children.

Note: When currently playing sequence has finished (no prediction can
be made) use perceived sequence to make next prediction. If no prediction
is found, result is Case 1.

(Other Node):
Initial Case:

No Operation performed (n/a per Top Node).
Normal:

Whenever a parent provides an IR, determine matching code in
self then pass that code as an IR to children.

Step 2 - Sense

(Sensor Nodes):
Feed Forward:

Convert ASCII character to integer (code)
Check for novelty:

If - Code is new:
Add code to tracking list.
Set novel input flag to true.

Else - Code already exists:
Set novel input flag to false.

Check for context change:
If - Code is not predicted:

Set context changed flag to true.
Else - Code is predicted:

Set context changed flag to false.
Pass code and flags to parent.

73

Feedback:
If sensors are set to act as effectors, perform task.

Note: HTM theory proposes that feedback facilitates learning through
prediction but ALSO acts as commands for responses. In the upcoming
experiment, the sensor, which is given the feedback based on the expecta-
tions, tells a potential output mechanism to act on the prediction in the
hopes that the prediction is correct.

Step 3 - Perceive Input

(Top & Basic Nodes):
When all children have reported:

Convert child integer values to spatial input pattern.
Check for novelty:

If - Pattern is new:
Add to tracking list and create new code to forward.
Set novel input flag to true.

Else - Code already exists:
Use existing code to potentially forward.
Set novel input flag to false.

Check for context change:

Note: Context change in this algorithm can be determined by any
number of other algorithms (i.e. probabilities, majority rule, or poten-
tially NuPIC’s Spatial & Temporal Pooling). For the Urban Challenge
toy problem, majority rule will be sufficient for testing and so this algo-
rithm is written accordingly.

If - context changed (e.g. majority of children perceive that the
context has changed):

Set context changed flag to true.
If - new code & can make a best guess:

Note: If the context has changed and the perceived input from some
children is new, there is a chance that a guess can be made as to the
true novelty of the input at this level. That is, sometimes a minority of
children see undesired “noise” in an otherwise understandable pattern. If
the majority of children perceive a recognized, but out of context, pattern
then the chance exists that the minority who perceived new input are
seeing noise. This can be thought of as a human viewing a car obscured
by a fire hydrant. Most of the mind recognizes the perception of seeing a
car and the fire hydrant is ignored. Again, many algorithms can be used
to determine noise, here majority rule is again used. Further, guesses

74

are made by picking the first code from known patterns where the values
determined to be noise are “wild card” or don’t-care-states.

Iff - guess pattern found:
Return guess as code to forward.
Set novel flag to false.

Else - predicted code (via parent IR) is perceived:
Set context changed flag to false.
Use expected code as code to forward.

Pass code and flags to parent if not a Top Node.
If Top Node, go to Step 5.

Step 4 - Repeat Step 3 if not a Top Node
Step 5 - Modify Sequences

(Top Node)
Add code to perceived sequence.

Trim - sequence to max length (i.e. if max = 4 then sequence
has is four codes long).

If novel input:
Call feedback to save parent codes as IR in all childrenrecurse

to sensor nodes.
If context is not changed:

Go to - Step 1.
Check for sequence matches:

If - recording a new sequence:
Check for match in this recording.

If - match found stop recording, add recording to saved
sequences, set currently playing sequence to this sequence.

Check for matches in all saved sequences.
Else - not recording a new sequence:

Check for match in saved sequences.
If - match found set currently playing sequence to this se-

quence.
Else - start recording perceived sequence.
Go to Step 1.

5.2.1 Key Concepts Illustrated. Without going down every possible path

the BackTalk algorithm could take, there still are some basic concepts that can be

better explained with examples. Important ideas like predictive feedback, saving

feedback, context change, novel input, and recording are expounded upon in this

section. The complete BackTalk source code, implementing the Urban Challenge

experiment (Section 4.3), can be found in Appendix C.

75

Figure 5.3: Illustration: Normal Top Node Operation - Predictive Feedback

First, it is important to make a distinction. Numbers in the algorithm (see

Figures) do not represent their numerical values. Instead, they are a simple (and

easily incremented) placeholder for the concept of the invariant representation (IR).

IR:4 could just as easily be replaced with a letter like ‘Q’ or even a word like “boat,”

“keel”, or “rivet.” Secondly, this programmer originally used the term “Quale” (or its

plural term “Qualia”) synonymously with IR in programming variables. Diagrams

reflect variable names used in code but do not reflect any proven connection between

qualia and the concept of IR.

The first step in the algorithm is prediction feedback from the Top Node. In

Figure 5.3, the Top Node has perceived a sequence that is within the context of its

currently playing sequence. The Top Node predicts the next invariant representation

it expects to perceive (IR:4) and provides it as feedback to child nodes.

76

Because only invariant representations are communicated in HTM theory, all

nodes that receive feedback must learn to understand parent invariant representa-

tions and discover node-specific IR evoked by parent invariant representations. Say

the Top Node predicts IR:7 (an IR for “Dog”) to its children. A child node of the

that Top Node must have some way of understanding IR:7. The child node has no

understanding of higher-level complex concepts like “Dog,” only component concepts

like “Head,” “Foot,” or “Tail.” It may mean that when the parent, Top Node predicts

“Dog,” this child would know to expect to see a “Tail” (or IR:2). In this way the

Basic Node in Figure 5.4 knows that a prediction of IR:7 means it can expect to see

an IR:2. In this example, a parent IR code of IR:2 will also trigger child IR code IR:2,

but these codes do not mean the same thing as they are at different levels. Similarly,

an IR:2 code in a sibling of this child will not necessarily mean the same thing as it

does to this child and their parent’s IR:7 code may trigger IR:53 in the sibling.. This

(each) child’s IR code (in this child IR:2) is also then fed back down to its child nodes

as a parent until each node in the network has an expectation of what should be seen

next.

In Figure 5.4, the Basic Node has received sensory inputs from its children

post-feedback. The majority of children concur with the prediction and agree that

the expectations have been met and the pattern perceived is in context. In this way,

the Basic Node forwards the confirmation to its parent node.

When a Top Node’s predictions are not met, the context change can force a

search for a new sequence from which to make predictions. As illustrated in Figure

5.5, the expectation was to perceive a sequence 1:2 but instead a sequence of 1:1 was

perceived. Because this new perceived sequence matches a previously saved sequence,

a prediction of IR:1 can be made.

Sometimes a context change at the Top Node can force a search for a known

sequence, but no sequence is matched. In Figure 5.6, such a search has just failed and

the result is the initiation of a new sequence to record. By default, this implementation

77

Figure 5.4: Illustration: Normal Basic Node Operation - No Context Change

78

Figure 5.5: Illustration: Basic Node Operations - Context Change

79

Figure 5.6: Illustration: Top Node Operations - Recording

simply predicts the last perceived invariant representation if no prediction is possible

from known sequences.

As explained in the algorithm, sometimes known objects may be perceived to

be new objects (or novel input) due to noise. In Figure 5.7, the Basic Node has

perceived a novel input pattern from its children due to a new perception forwarded

by the third child. Per the guessing algorithm, the Basic Node attempts to discern

if the pattern could be recognized if not for the noise of IR:5 in pattern 1:3:5. The

child’s input value of IR:5 could be akin to a branch partially obscuring the view of a

building recognized by pattern 1:3:3. In this way, the Basic Node is able to forward

a best guess for what it has perceived. Since the nodes internal code of IR:3 is out of

context (the parent had predicted IR:2) the context is said to have changed.

80

Figure 5.7: Illustration: Basic Node Operations - Ignoring Noise

81

Figure 5.8: Illustration: Basic Node Operations - Saving Novel Input

Often, however, the case exists where input patterns are undoubtedly new. In

Figure 5.8, the novel input pattern 1:4:5 is out of context. Although a guess is

attempted, no previously known pattern fits and thus 1:4:5 is added to the knowledge

pool of the tracker list and forwarded. If a Top Node concurs with the novelty of a

pattern, it will instruct all nodes in the hierarchy to assign a new IR to the perceived

input. That is, the parent will instruct all its children (including this Basic Node) to

save their actual perceptions as registered to a new parent invariant representation.

Such feedback for saving novel input is illustrated in Figure 5.9 where the novel input

has also triggered the recording of a new sequence.

5.3 Proposed Experiment

The viability of HTM networks to make predictions in unusual worlds cannot be

completely dismissed via the success (or failure) of a single experiment, such as the

82

Figure 5.9: Illustration: Top Node Operations - Feedback for IR Persistence (Sav-
ing)

83

anomaly detection system. The BackTalk algorithm has strengths and weaknesses

but seems is strongest where Numenta’s implementation appears most vulnerable —

incorporating feedback into prediction and learning.

A BackTalk implementation will next be tested in addition to the NuPIC im-

plementation. However, where the more developed NuPIC can be tested with the

anomaly detection experiment, the never-before implemented BackTalk requires a

“hello world” experiment. BackTalk testing will be performed on a concept of “song

recognition” as presented by Hawkins [11]. This concept is then extended into the

primary experiment known as Urban Challenge.

• Sequence Recognition - The Song Concept

The idea that music or songs are recognized as spatial-temporal patterns is easy

to understand. Humans hear the (spatial) sounds or words of a song (in temporal

order) and are able to subconsciously predict the sounds. In this way, humans notice

when a temporal pattern of (say) notes are wrong. The Monday Night Football jingle

goes “Dun Dun Dun Da... Bum Bum...” not “Bum Dun... Da Bum Dun Dun.”

The spatial pattern is more complicated to explain in songs but spatial data of

a song can be understood as accompanying characteristics of any instance of sound.

In keeping with the Monday Night Football example, the “Dun” of the song has

more characteristics that are heard by simple phonetically pronunciation of the ono-

matopoeia. These spatial qualities may include the pitch, note, key, etc. In this way

too, humans are able to pick out when songs are played in a new tempo or if sung

“off-key.”

Additionally, consider hearing a song (say) on a radio station. Assume the

DJ changes the song in mid-play to the middle of some other recognized song. The

human brain is able to recognize the difference (perhaps after a momentary bout of

confusion) and discern that a second song is now being played.

84

Figure 5.10: Example “Songs” for Song Recognition Problem

BackTalk should be able to act in the same manner. To clarify, a pedagogical

problem can thus be stated:

Consider a song “Song 1” to be a temporal sequence composed of spatial el-

ements: notes, keys, pitches, and sounds. Let each spatial element variance be

represented by alphabetic symbols (A, B, C, etc.). Let the spatial element in this

song be represented at each temporal unit by a 4-element ”word” vector (i.e. ABCD,

AABB, etc.). Let Song 1 and Song 2 consist of the sequence of 10 words in Figure

5.10.

After supervised learning of each song, BackTalk, given Song 1 or Song 2, should

be able to distinguish which song is playing. Additionally if part of Song 1 and Song

2 are merged together, BackTalk should be able to tell when Song 1 playing and when

Song 2 is playing (See Figure 5.11.

• Initial Experiment - “Urban Challenge”

From the song recognition problem, the following experiment is proposed.

Let each song represent a text-based segment (See Figure 5.12) of road where:

85

Figure 5.11: Example of correct perceptions of “Songs” for Song Recognition Prob-
lem

Figure 5.12: Proposed Urban Challenge Experiment

86

Figure 5.13: Example of Urban Challenge Experiment Training (A) and Testing
(B) Data

I = Interstate
W = White Line
C = Curb
G = Grass
O = Car Location

These segments can be read by BackTalk during training. A stretch of road

containing ‘O’ would be an example of how to teach BackTalk to keep the car centered

during a left turn in the road (See Figure 5.13.A).

Notice that the correct location of a car is provided at each step of the road.

After a short training period, the BackTalk should be “set free to drive itself”’ on a

given stretch of random road without car placement. Using the algorithm’s predictive,

learning, and context distinguishing abilities, the BackTalk should be able to predict

the placement of the car. A sample of road used for testing can be seen in Figure

5.13.B.

Notice that BackTalk has never seen an elongated, gradual turn in a stretch of

road. Nor does this stretch of road move all the way over to the end of the text vector

as in training. It will be BackTalk’s job to place the car (O-symbol) on the road

without running over the curb. If HTM theory is correct (and correctly implemented)

the BackTalk algorithm should learn, adapt, react, and predict how to stay off the

grass given a random stretch of text-road.

87

5.4 Evaluation Framework

Reasonable expectation of BackTalk success is, ultimately, as follows: BackTalk

must keep the “car” on the “interstate.” More precisely, Quiliabear should be able to

perform the following:

1. Ability to learn from initial training in an unsupervised way. That is, the Back-

Talk application should be shown a small set off driving maneuvers and it should

self-internalize what it perceives as invariant representations of spatial-temporal

patterns.

2. Show intelligent predictive ability while driving. That is, BackTalk should be

able to perceive the current state of the road and provide an accurate prediction

of where the car should be driven next. Predictions resulting in car placement

either on a “curb” or the “grass” should be evaluated in this experiment to

be incorrect placement. Placement on the “interstate” or even a “white line”

should be considered correct car placement.

3. Poses the capability to adapt to and learn from novel input. That is, after

training in how to “drive straight,” “turn left,” and ”turn right,” the BackTalk

should learn to handle turns of any magnitude or straight driving at any required

point based on these initial invariant representations of its model. Random roads

should not “throw off” the driving BackTalk.

88

VI. Conclusions

This chapter attempts to coax significance from knowledge learned during back-

ground research and analysis of each HTM experiment. The problems which

this paper attempts to solve are recounted before experimental results are examined.

Finally, any significant conclusions are provided along with suggestions for future

work.

6.1 Problem Summary

Two questions were posed in this research and can be quickly summarized. Can

HTM provide an understanding into the abstract world of cyberspace? That is, can

an HTM network show that it has learned spatial-temporal patterns in network traffic

despite the lack of a human teacher that could recognize those same patterns. Can

those learned patterns then be use by the HTM network to make accurate, intelligent

predictions and decisions? The second question is, are the predictive foundations of

intelligence supported by HTM? Unless the premises is false, it is reasonable to expect

an HTM theory-based algorithm to use accurate predictions to solve problems in an

intelligent manner. If predictions are made but the problem cannot be solved by those

predictions, mere prediction as a foundation of intelligence seems unlikely.

6.2 Interpretation of Results

Because of the vast differences between the two HTM implementations, their

respective experiments, and the experimental focus/goals, the corresponding results

must be interpreted completely separately and independently.

6.2.1 Anomaly Detection Experiment. The overall assessment of NuPIC and

N-HTM networks as a viable option for predictive, understanding of the cyberspace

environment is not favorable. In fact, according to every set of results attained form

over 30 varied experiments, not a single NuPIC created N-HTM network was able to

function as a mediocre (let alone good) anomaly detection application.

89

The complete failure of even the most promising (Lv3T MW3-60K) N-HTM

network to detect a difference between malicious, attack-packets and benign, nominal-

packets is hard to deny. The only problem presented by the results is the cause of the

failure. One thing seems certain, Numenta’s HTM implementation seems unable to

provide users a credible means to interpret intangible worlds as the theory indicates

is possible.

But are the disappointing results symptomatic of a fundamental flaw in HTM

theory itself? Perhaps the root cause are the obvious inconsistencies between Nu-

menta’s N-HTM networks and the quintessential HTM network proposed from Hawkins’

cortical theories. On the other hand, poor performance could simply be bugs that

cause NuPIC to perform inappropriately. Maybe the N-HTM network topology needs

to be reworked from the ground up. Perhaps the Python code used to construct, train,

and test the N-HTM is written incorrectly (Source Code can be found in Appendix

A) due to oversights or fundamental flaws in the operation of NuPIC.

Because extensive testing was performed and results obtained, the inappropriate

use of NuPIC seems improbable. Although (per Appendix B) a nearly equal number

of categories were typically perceived in testing data as were created from training,

the fact that the testing data was (at times) 25 times larger than that used in training

indicates that NuPIC is operating correctly.

Perhaps far more training than 60,000 packets is required to construct an accu-

rate model of “normal” cyberspace. PHAD, after all, used and entire week’s worth of

data for training [23]. If this is the case, NuPIC must be redesigned to accommodate

the gigantic memory requirements of (potentially) several million training vectors.

Such a suggestions begs the question, how is using a N-HTM network better than us-

ing traditional AI approaches or cyber-defense software where all possible conditions

are programmed into memory for comparison.

HTM theory seems, if nothing else, to be an elegant, theoretical solution to the

complex problem of intelligence. Backed up by both biological data and philosophical

90

hypotheses, the cause of the problems do not immediately point to the incorrectness

of HTM. A failure of NuPIC to perform predictions in cyberspace is not as devastating

to HTM theory as the implementation is loosely tied to HTM theory to begin with

(i.e. not feedback).

In fact, Numenta so greatly diverged from vital concepts in HTM theory that

the term N-HTM networks was coined in this paper to indicate the disparity. This

divergence between theory and implementation point to the most likely culprit of

the failure. Indeed, Numenta’s basic disregard for consistency between their NuPIC

implementation and Hawkins’ HTM and cortical theories might be a cause of inept

anomaly detection through an N-HTM network.

For this reason, the failures associated with this experiment can be said to

indicate that NuPIC and N-HTM networks are not viable candidates for unsupervised

learning and prediction in unusual worlds. However, because NuPIC is currently the

only accepted HTM implementation readily available, a conclusion of HTM theory’s

inability to make predictions in unusual worlds must still be considered.

6.2.2 Urban Challenge Experiment. Although other AI methods certainly

could solve the Song Recognition or Urban Challenge problems easily, finding the

most efficient and effective way to solve such problems was not the goal of BackTalk

experimentation. Indeed, a simple “if given this string move the car here” approach

would solve the Urban Challenge problem faster, more effectively, and with far less

code than used in the BackTalk solution. However, the purpose for the BackTalk

experiments is to provide indications of the worth of feedback in HTM networks and

the applicability of prediction to the intelligence equation.

In must be emphasized that the following results, especially on a toy prob-

lem, would have no bearing on HTM theory’s applicability to the understanding

cyberspace. The obvious addition to this statement is to point out BackTalks fur-

ther, direct applicability to the cybercraft program. Additionally, there is no reason

to suggest that this programmer’s interpretation is a more accurate representation

91

of an HTM implementation. To that end, in many ways, Numenta’s implementa-

tion (i.e. weighted learning of invariant representations) may be more accurate. This

implementations has three main proposes:

1. Test the importance of feedback to unsupervised learning of spatial-temporal

patterns.

2. Test the importance of feedback in an HTM model for accurate predictions.

3. Test the predictive foundations of intelligence.

It is with pleasant and curious surprise, however, that BackTalk exceeds all

expectations by never once causing a car to run off the road and into the ditch

(overlaying an ‘O’ on the static ’C’ or ’G’ characters of a text-road). Although the

“driving” of BackTalk can be erratic at times (in some trials - see Appendix D), the

fact that the car never crosses the white line is (seemingly) impressive.

Of more interest to the questions regarding the correctness and applicability of

feedback and prediction in HTM theory, is the way in which the BackTalk learns. The

unsupervised, continuous learning adequately follows learning as proposed in HTM

theory. Further, the sequences learned by the Top Node often seem nonsensical but

sufficiently match the concept of invariant representation. Additionally, the fact that

every BackTalk performed flawlessly, despite learning varying numbers and classes

of sequences is consistent with the individuality accounted for in cortical and HTM

theory.

Perhaps, most the significant interpretation of BackTalk results is the apparent

affirmation or the important, dual-nature of prediction and feedback in HTM the-

ory. Predictions (as only invariant representations) fed back down the HTM network

appear to adequately facilitate learning and reactionary behavior.

Similarities between BackTalk’s HTM implementation and the feedback, topol-

ogy, and statistical analysis characteristics of other AI methods (i.e. ANNs, Baysian

networks, or HMMs) seem to exist. Perhaps BackTalk more adequately falls under

92

one of those other methods than HTM. Or, perhaps, HTM theory, itself, falls under

one of those methods. Either way, the classification of BackTalk’s methodology is

not important and is in no way meant to detract from proven AI methods. What is

important is that BackTalk was built solely from study of HTM theory (mixed with

an applicable concept like context). Resemblance to other AI methods is provably

coincidental.

So, does BackTalk testing indicate the importance and usefulness of feedback

in HTM theory? Because of the essential nature of feedback to the Urban Challenge

experiment, and because of BackTalk’s development from HTM theory, this conclusion

is supported. Additionally, feedback appears important to learning both to HTM

theory and the success of this algorithm. There may even be a correlation between

the intelligent behavior of BackTalk and the predictive foundations of HTM theory

due to the HTM basis of the applied algorithm. From that assertion a conclusion

could be drawn that accurate intelligence predictions in HTM theory can benefit

from feedback within an HTM network.

6.3 Significance of Research

The research conducted by this thesis has several implications.

1. The predictive foundations of intelligence appear to be supported by this re-

search.

2. The biological foundations which establish HTM theory are reinforced.

3. Feedback appears beneficial to some successful applications of HTM like the

implementation known as BackTalk.

4. HTM theory, although proclaimed to be able to interpret intangible worlds,

shows no evidence of being able to understand anything as complicated as cy-

berspace. Even the successful navigation of the alien text world presented to

BalkTalk is not complicated enough to validate these claims.

93

6.4 Recommendations for Future Research

The tantalizing research on the nature of intelligence is combined with the results

and analysis from two experiments to encourage potential studies into HTM theory

and implementations.

The first proposal is for a similar anomaly detection experiment be attempted

with a grander, cleaner BackTalk implementation. Additional uses and experiments

for similar, unsupervised BackTalk implementations may include UAV target tracking

or robotics navigation.

Another avenue for research is the re-testing of new NuPIC versions with the

anomaly detection framework. Numenta is constantly refining and developing their

algorithms. Their research website indicates that, in the near future, a Zeta2 memory

node will be released that incorporates the missing elements of feedback. Once such

feedback is added to a N-HTM network, re-testing could be warranted.

94

Appendix A. NuPIC Cybercraft Python Code - Anomaly Detection

This appendix provides the pertinent Python code to implement the Anomaly Detec-

tion experiment under NuPIC version 1.3 for Microsoft Windows.

A.1 LaunchCybercraft.py

"""

@file

Cybercraft Anomaly Detection Analysis Program.

The goal of this program is to show the ‘‘cybercraft" N-HTM network

TCPdump data using the Numenta Tools and see if it can then detect

anomolus patterns. To run it, type:

python LaunchCybercraft.py

from the command line.

The domain is that of Ethernet+IP+TCP packets convered to the float vector format:

SENSOR INPUT EX:

31

1 0 192 79 163 87 219 16 123 56 70 51 2048 172 16 114 148 197 218 177 69 44 238 6 2 1025 21 2850393447 0 0 512

| (ELEMENT) NAME |

| (0)ID |

| (1)timeDeltaBetweenPackets |

| (2-6)sourceMAC | (7-11)destinationMAC | (12)type |

| (13-16)sourceIP | (17-20)destinationIP | (21)totalLength | (22)identification | (23)protocol | (24)flagsIP |

| (25)sourcePort | (26)destinationPort | (27)sequenceNum | (28)AcknowledgementNum | (29)flagsTCP | (30)windowSize |

Textual Spec of Network:

(FILE)EFFECTOR - LV3[NODE] - LV2[NODE] - LV1[NODES] << SENSOR

/------[P]---------[P]---------[P] << SENSOR

/ /-------------------[0] << SENSOR

/ /--------[0]---------[1-3] << SENSOR

(file)---X----------[0]---------[1]---------[4-9] << SENSOR

\--------[2]---------[10-15] << SENSOR

The N-HTM Network will create a statistical model of this world and use this model

to distinguish between patters it learns. No programming is performed.

The cybercraft program goes through the following steps:

1. Create a N-HTM Network with default parameters.

2. Create a trained network using training data file.

3. Test the network by running inference on the original training set.

4. Further test the network by running inference on an independent test set.

If set correctly, this program will test a trained cybercraft on many test files.

Please refer to the Numenta Programmer’s Guide for further details.

"""

95

from CreateCybercraftNetwork import createCybercraftNetwork

from TrainCybercraftNetwork import trainCybercraftNetwork

from RunCybercraftInference import runCybercraftInference

from nupic.analysis import Visualizer

import os

import shutil

##from GenerateReport import generateReport

#===

The main routine

#===

def launchCybercraft():

"""

Run one cycle of N-HTM training and testing.

"""

pick = raw_input("Would you like to quick launch the cybercraft? <y/n>>> ")

if pick == "y" or pick == "Y":

slow = False

else:

slow = True

print " Initializing parameters... \n"

if slow:

pick = raw_input("Would you like to reconstruct the cybercraft? <y/n>>> ")

if pick == "y" or pick == "Y":

Create the cybercraft network.

print "\nBuilding Cybercraft N-HTM Network..."

createCybercraftNetwork(untrainedNetwork = untrainedNetwork,

inputSize = inputSize,

maxDistance = maxDistance,

topNeighbors = topNeighbors,

maxGroups = maxGroups,

transitionMemory = transitionMemory,

maxGroupSize = maxGroupSize,

timeless = timeless,

level4 = level4)

print " Cybercraft N-HTM Network construction complete.\n"

if slow:

pick = raw_input("Would you like to retrain the cybercraft? <y/n>>> ")

if pick == "y" or pick == "Y":

Train the network

print "\nTraining Cybercraft N-HTM Network with "+str(numTrainingVectors)+" vectors..."

trainCybercraftNetwork(untrainedNetwork, trainedNetwork, trainingFile, numTrainingVectors,level4)

print " Cybercraft N-HTM Network training complete.\n"

Ensure the network learned the training set

print "\nValidating autonomous cybercraft intuition...."

runCybercraftInference(trainedNetwork, trainingFile, trainingResults, numTrainingVectors)

print " Independent learning confirmed: Cybercraft intuition validated.\n"

96

if slow:

pick = raw_input("Would you like to test the cybercraft? <y/n>>> ")

if pick == "y" or pick == "Y":

print "\nCommencing packet categorization of test data with "+str(numTestVectors)+" vectors..."

Run inference on test set to check generalization

runCybercraftInference(trainedNetwork, testFile, testResults, numTestVectors)

Write out a report of the overall network progress

print " All test data has been categorized.\n"

if slow:

pick = raw_input("Would you like to create a HTML Histogram the cybercraft? <y/n>>> ")

if pick == "y" or pick == "Y":

print "\nBuilding cybercraft visualization..."

SLOW METHOD

FOR ALL

v = Visualizer(trainedNetwork, "bar_graph")

v.visualizeNetwork()

PICK A PIECE

v = Visualizer(trainedNetwork, "bar_graph")

v.visualizeNetwork("Level1.*")

v.visualizeNetwork("Level2.*")

v.visualizeNetwork("Level3.*")

if level4:

v.visualizeNetwork("Level4.*")

FAST METHOD

v = Visualizer(trainedNetwork, "blank")

v.visualizeNetwork()

print " Cybercraft visualization complete.\n"

print "\nEnding processes...DONE"

pick = raw_input("Hit Enter to exit>>> ")

#===

List of parameters used in the example

#===

Learning/Network creation parameters

maxDistance = 0.0

topNeighbors = 2

maxGroups = 16000

maxGroupSize = 2000000

transitionMemory = 100

inputSize = 31

timeless = True

level4 = False

#!!Experiment Information!!

experimentDateTime = "241007_1315"

trainingData = "Wk3Mon_out"

97

trainingMax = False

numTrainingVectors = 60000

testingData = "Wk4Mon_out"

testingMax = True

numTestVectors = 1000000

Training/Inference parameters

#TRAINING#

if trainingMax:

if trainingData == "Wk1Mon1":

numTrainingVectors = 1369134-1

elif trainingData == "Wk1Tue2":

numTrainingVectors = 1153247-1

elif trainingData == "Wk1Wed3":

numTrainingVectors = 1574274-1

elif trainingData == "Wk3Thr18":

numTrainingVectors = 1152296-1

elif trainingData == "Wk1Fri5":

numTrainingVectors = 1363645-1

elif trainingData == "Wk3Mon_out":

numTrainingVectors = 1454465-1

#TEST#

if testingMax:

if testingData == "Wk2Mon8":

numTestVectors = 1364563-1

elif testingData == "Wk2Tue9":

numTestVectors = 1482408-1

elif testingData == "Wk2Wed10":

numTestVectors = 922164-1

elif testingData == "Wk2Thr11":

numTestVectors = 1474671-1

elif testingData == "Wk2Fri12":

numTestVectors = 1280621-1

elif testingData == "Wk4Mon_out":

numTestVectors = 1167662-1

Various file names

#Locatiuon of cybercraft project

homeDir = "D:\\Documents and Settings\\gbonhoff\\My Documents\\nupic-1.3\\share\\projects\\cybercraft\\"

#Locatiuon of cybercraft training/testing data

dataLocation = homeDir+"data\\vectorForm\\"

lv = "Lv3"

t = ""

if level4:

lv = "Lv4"

if timeless:

t = "T"

dataUsed = lv+t+"_"+trainingData+"_"+str(numTrainingVectors)+"-"+testingData+"_"+str(numTestVectors)

#Locatiuon of cybercraft files/reports/results

birthingPlace = homeDir+"data\\cybercraft\\"+experimentDateTime+"\\"

if not os.path.isdir(birthingPlace):

os.mkdir(birthingPlace)

birthingPlace = homeDir+"data\\cybercraft\\"+experimentDateTime+"\\"+dataUsed+"\\"

if not os.path.isdir(birthingPlace):

98

os.mkdir(birthingPlace)

shutil.copyfile(homeDir+"LaunchCybercraft.py",birthingPlace+"LaunchCybercraft.py")

shutil.copyfile(homeDir+"CreateCybercraftNetwork.py",birthingPlace+"CreateCybercraftNetwork.py")

untrainedNetwork = birthingPlace + "untrained_cybercraft.xml" # Name of the untrained network

trainedNetwork = birthingPlace + "trained_cybercraft.xml" # Name of the trained network

trainingFile = dataLocation + "training_data_"+trainingData+".txt" # Location of training data

trainingResults = birthingPlace + "training_results.txt" # File containing inference

results for each training pattern

testFile = dataLocation + "test_data_"+testingData+".txt" # Location of test data

testResults = birthingPlace + "test_results.txt" # File containing inference

#===

When invoked from command line, create network, train it, and run inference

#===

if __name__ == ’__main__’:

print "Cybercraft protocol initiated..."

launchCybercraft()

A.2 CreateCybercraftNetwork.py

"""

@file

This class generates the untrained HTM Network for the Cybercraft.

This file is templated on Bitworm which is Copyright (C) 2007 Numenta Inc

"""

from nupic.network import *

"""

This class generates a 3(or 4)-level network. The network

consists of 8-9 nodes: 1 input sensor node, no category sensor nodes,

15 unsupervised level 1 nodes, 3 unsupervised level 2 nodes,

1 (maybe) unsupervised level 3 nodes with a Zeta1TopNode (3rd or 4th level as appl)

and an effector node (4rd or 5th level as appl)at the top.

"""

def createCybercraftNetwork(untrainedNetwork,

inputSize=31,

topNeighbors=4,

maxGroups=2000,

maxGroupSize=2000000,

maxDistance=0,

transitionMemory=10,

timeless = False,

level4 = False):

"""

Generates the HTM Network using the parameters.

Creates each of the nodes types for each level and

then links them together into regions, finally it links the

regions and saves the resulting network in a file.

@param name The name of the output network file

"""

#--

Step 1. We create a Net instance and initalize phase = 0

99

net = Network()

phase = 0

#--

Step 2. We create each node type, applicable regions,

and add them to the network

Create and add sensor to read in the data file

sensor = CreateNode("VectorFileSensor",

phase=phase,

dataOut= inputSize)

net.addElement("Sensor", sensor)

L1SPA = "gaussian"

L1TPA = "sumProp"

Create level 1 unsupervised node region and add it to the net

phase = phase+1

addysPorts = CreateNode("Zeta1Node",

#SPATIAL SETTINGS

bottomUpOut=1+maxGroups,

spatialPoolerAlgorithm= L1SPA,

maxDistance=maxDistance,

maxGroupSize=1,

##sigma=,

#TEMPORAL SETTINGS

temporalPoolerAlgorithm= L1TPA,

topNeighbors=topNeighbors,

transitionMemory=transitionMemory,

symmetricTime=False,

#OTHER SETTINGS

detectBlanks=0,

phase=phase)

net.addElement("Level"+str(phase), Region (7, addysPorts))

timeNode = CreateNode("Zeta1Node",

#SPATIAL SETTINGS

bottomUpOut=1+maxGroups,

spatialPoolerAlgorithm= L1SPA,

maxDistance=0.0001,

maxGroupSize=maxGroupSize,

##sigma=,

#TEMPORAL SETTINGS

temporalPoolerAlgorithm= L1TPA,

topNeighbors=topNeighbors,

transitionMemory=transitionMemory,

symmetricTime=False,

#OTHER SETTINGS

detectBlanks=0,

phase=phase)

net.addElement("Level"+str(phase)+"_time",timeNode)

ipSize = CreateNode("Zeta1Node",

#SPATIAL SETTINGS

bottomUpOut=1+maxGroups,

spatialPoolerAlgorithm= L1SPA,

maxDistance=512,

maxGroupSize=maxGroupSize,

100

##sigma=,

#TEMPORAL SETTINGS

temporalPoolerAlgorithm= L1TPA,

topNeighbors=topNeighbors,

transitionMemory=transitionMemory,

symmetricTime=False,

#OTHER SETTINGS

detectBlanks=0,

phase=phase)

net.addElement("Level"+str(phase)+"_sizeIP",ipSize)

tcpSize = CreateNode("Zeta1Node",

#SPATIAL SETTINGS

bottomUpOut=1+maxGroups,

spatialPoolerAlgorithm= L1SPA,

maxDistance=512,

maxGroupSize=maxGroupSize,

##sigma=,

#TEMPORAL SETTINGS

temporalPoolerAlgorithm= L1TPA,

topNeighbors=topNeighbors,

transitionMemory=transitionMemory,

symmetricTime=False,

#OTHER SETTINGS

detectBlanks=0,

phase=phase)

net.addElement("Level"+str(phase)+"_sizeTCP",tcpSize)

Create level 2 unsupervised node region and add it to the net

phase = phase+1

nodesLevel2 = CreateNode("Zeta1Node",

#SPATIAL SETTINGS

bottomUpOut=1+maxGroups*((phase-1)*2),

spatialPoolerAlgorithm= "gaussian",

maxDistance=maxDistance,

maxGroupSize=maxGroupSize,

##sigma=,

#TEMPORAL SETTINGS

temporalPoolerAlgorithm= "sumProp",

topNeighbors=topNeighbors,

transitionMemory=transitionMemory,

symmetricTime=False,

#OTHER SETTINGS

detectBlanks=0,

phase=phase)

net.addElement("Level"+str(phase), Region (3, nodesLevel2))

if level4:

print "Adding a 4th level..."

phase = phase+1

addInLevel = CreateNode("Zeta1Node",

#SPATIAL SETTINGS

bottomUpOut=1+maxGroups*((phase-1)*2),

spatialPoolerAlgorithm= "product",

maxDistance=maxDistance,

maxGroupSize=maxGroupSize,

##sigma=,

101

#TEMPORAL SETTINGS

temporalPoolerAlgorithm= "sumProp",

topNeighbors=topNeighbors,

transitionMemory=transitionMemory,

symmetricTime=False,

#OTHER SETTINGS

detectBlanks=0,

phase=phase)

net.addElement("Level"+str(phase), addInLevel)

Create Supervised node that can learn mappings for X categories

phase = phase+1

topNode = CreateNode("Zeta1TopNode",

phase=phase,

spatialPoolerAlgorithm= "dot",

mapperAlgorithm= "sumProp",

categoriesOut=1+maxGroups*((phase-1)*2))

net.addElement("Level"+str(phase), topNode)

Create Effector for sending output to a file

phase = phase+1

effector = CreateNode("VectorFileEffector", phase = phase)

net.addElement("FileOutput",effector)

#--

Step 3. We create each link

#0=sm, 1=dm, 2=sip, 3=dip, 4=sp, 5=dp, 6=fip, 7=time, 8=ipSize, 9=tcpSize

Link sensor to unsupervised node

net.link("Sensor","Level1_time", SingleLink("dataOut",1,1,"bottomUpIn"))

net.link("Sensor","Level1[0]", SingleLink("dataOut",2,5,"bottomUpIn"))

net.link("Sensor","Level1[1]", SingleLink("dataOut",7,5,"bottomUpIn"))

#REMOVED# net.link("Sensor","Level1[3]", SingleLink("dataOut",12,1,"bottomUpIn"))

net.link("Sensor","Level1[2]", SingleLink("dataOut",13,4,"bottomUpIn"))

net.link("Sensor","Level1[3]", SingleLink("dataOut",17,4,"bottomUpIn"))

net.link("Sensor","Level1_sizeIP", SingleLink("dataOut",21,1,"bottomUpIn"))

#REMOVED# net.link("Sensor","Level1_time", SingleLink("dataOut",22,1,"bottomUpIn"))

#REMOVED# net.link("Sensor","Level1_sizeIP", SingleLink("dataOut",23,1,"bottomUpIn"))

net.link("Sensor","Level1[6]", SingleLink("dataOut",24,1,"bottomUpIn"))

net.link("Sensor","Level1[4]", SingleLink("dataOut",25,1,"bottomUpIn"))

net.link("Sensor","Level1[5]", SingleLink("dataOut",26,1,"bottomUpIn"))

#REMOVED# net.link("Sensor","Level1[12]", SingleLink("dataOut",27,1,"bottomUpIn"))

#REMOVED# net.link("Sensor","Level1[13]", SingleLink("dataOut",28,1,"bottomUpIn"))

#REMOVED# net.link("Sensor","Level1[14]", SingleLink("dataOut",29,1,"bottomUpIn"))

net.link("Sensor","Level1_sizeTCP", SingleLink("dataOut",30,1,"bottomUpIn"))

Link unsupervised node to unsupervised node

net.link("Level1[0]","bottomUpOut","Level2[0]", "bottomUpIn")

net.link("Level1[1]","bottomUpOut","Level2[0]", "bottomUpIn")

#REMOVED# net.link("Level1[3]","bottomUpOut","Level2[0]", "bottomUpIn")

net.link("Level1[2]","bottomUpOut","Level2[1]", "bottomUpIn")

net.link("Level1[3]","bottomUpOut","Level2[1]", "bottomUpIn")

net.link("Level1_sizeIP","bottomUpOut","Level2[1]", "bottomUpIn")

net.link("Level1[6]","bottomUpOut","Level2[1]", "bottomUpIn")

#REMOVED# net.link("Level1_sizeIP","bottomUpOut","Level2[1]", "bottomUpIn")

#REMOVED# net.link("Level1_sizeTCP","bottomUpOut","Level2[1]", "bottomUpIn")

net.link("Level1[4]","bottomUpOut","Level2[2]", "bottomUpIn")

net.link("Level1[5]","bottomUpOut","Level2[2]", "bottomUpIn")

102

net.link("Level1_sizeTCP","bottomUpOut","Level2[2]", "bottomUpIn")

#REMOVED# net.link("Level1[13]","bottomUpOut","Level2[2]", "bottomUpIn")

#REMOVED# net.link("Level1[14]","bottomUpOut","Level2[2]", "bottomUpIn")

#REMOVED# net.link("Level1[15]","bottomUpOut","Level2[2]", "bottomUpIn")

Link unsupervised node to unsupervised node

net.link("Level2","Level3", SimpleFanIn("bottomUpOut", "bottomUpIn"))

if timeless:

print "Time delta packet data omitted from hierarchy!\n"

else:

print "Configuring for time delta in hierarchy..."

net.link("Level1_time","Level3", SingleLink("bottomUpOut", "bottomUpIn"))

print "Done!\n"

if level4:

Link Level4 node’s output to the file writing effector

net.link("Level3","bottomUpOut","Level4", "bottomUpIn")

net.link("Level4","FileOutput", SingleLink("categoriesOut", 0, 1, "dataIn"))

print " Level 4 added sucsessfully!"

else:

net.link("Level3","FileOutput", SingleLink("categoriesOut", 0, 1, "dataIn"))

#--

Step 3.5 Link Sensor to FileOutput node

For the Sensor connection, we use PassThrough nodes to avoid a

level-skipping connection, which would prevent the pipeline scheduler from

working propertly (advanced)

passThrough1 = CreateNode("PassThroughNode",

phase=1,

realOut=1)

net.addElement("PassThrough1", passThrough1)

passThrough2 = CreateNode("PassThroughNode",

phase=2,

realOut=1)

net.addElement("PassThrough2", passThrough2)

passThrough3 = CreateNode("PassThroughNode",

phase=3,

realOut=1)

net.addElement("PassThrough3", passThrough3)

if level4:

passThrough4 = CreateNode("PassThroughNode",

phase=4,

realOut=1)

net.addElement("PassThrough4", passThrough4)

net.link("Sensor", "PassThrough1", SingleLink("dataOut", 0, 1, "realIn"))

net.link("PassThrough1", "realOut", "PassThrough2", "realIn")

net.link("PassThrough2", "realOut", "PassThrough3", "realIn")

if level4:

net.link("PassThrough3", "realOut", "PassThrough4", "realIn")

net.link("PassThrough4", "realOut", "FileOutput", "dataIn")

else:

net.link("PassThrough3", "realOut", "FileOutput", "dataIn")

#--

Step 4. We save the network in a file

net.writeXML(untrainedNetwork)

#===

103

If invokedfrom the command line, just create network and save it

#===

if __name__ == ’__main__’:

createCybercraftNetwork(’untrained_cybercraft.xml’)

print "Saved HTM network to file ’untrained_cybercraft.xml’"

A.3 TrainCybercraftNetwork.py

"""

@file

This class trains the network for the bitworm example.

This file is templated on Bitworm which is Copyright (C) 2007 Numenta Inc

Note: there is one extra setInference command after Level2.* training is complete:

session.execute(’Level2.*’, [’setInference’, ’1’])

This turns on inference in the top node for subsequent testing (unlike prior

releases, in NuPIC 1.2, inference is off by default.) This command is missing in

the code fragment quoted in the Programmer’s Guide.

"""

from nupic.session import Session

import sys

import os

##def trainNetwork(untrainedNetwork, trainedNetwork, trainingFile,

trainingCategories, numVectors):

def trainCybercraftNetwork(untrainedNetwork, trainedNetwork, trainingFile, numVectors, level4):

"""Take the given training data files and train the network using Sessions.

After training, the working directory will contain a trained network in

the filename specified in trainedNetwork.

"""

#--

Setup

Prepare session and data files we will use.

session = Session(os.path.join("sessions", "cybercraft"))

session.addFiles(trainingFile)

session.addFiles(trainingCategories)

session.start()

Load network file and disable all nodes. We will enable select nodes later.

session.loadNetwork(untrainedNetwork)

session.disableNodes()

Load training data into sensors

session.execute("Sensor", ("loadFile", trainingFile, "0"))

session.execute(’CategorySensor’, ("loadFile", trainingCategories, "0"))

#--

Train Level 1

Only enable Sensor and Level1.* nodes when training Level 1

print ’Training level 1’

session.enableNodes("Sensor")

session.enableNodes("Level1.*")

104

session.enableNodes("Level1_time")

session.enableNodes("Level1_sizeIP")

session.enableNodes("Level1_sizeTCP")

session.execute(’Level1.*’, [’setLearning’, ’1’])

session.execute(’Level1_time’, [’setLearning’, ’1’])

session.execute(’Level1_sizeIP’, [’setLearning’, ’1’])

session.execute(’Level1_sizeTCP’, [’setLearning’, ’1’])

session.compute(numVectors)

session.execute(’Level1.*’, [’setLearning’, ’0’])

session.execute(’Level1_time’, [’setLearning’, ’0’])

session.execute(’Level1_sizeIP’, [’setLearning’, ’0’])

session.execute(’Level1_sizeTCP’, [’setLearning’, ’0’])

session.execute(’Level1.*’, [’setInference’, ’1’])

session.execute(’Level1_time’, [’setInference’, ’1’])

session.execute(’Level1_sizeIP’, [’setInference’, ’1’])

session.execute(’Level1_sizeTCP’, [’setInference’, ’1’])

#--

Train Level 2

While level 2 is being trained, level 1 needs to be in inference mode

print ’Training level 2’

Make sure the sensors start at the beginning of the file.

session.execute("Sensor", ("setParameter","position", "0"))

#session.execute(’CategorySensor’, ("setParameter","position", "0"))

#session.enableNodes("CategorySensor")

session.enableNodes("Level2.*")

session.execute(’Level2.*’, [’setLearning’, ’1’])

session.compute(numVectors)

session.execute(’Level2.*’, [’setLearning’, ’0’])

session.execute(’Level2.*’, [’setInference’, ’1’])

#--

Train Level 3

While level 3 is being trained, level 2 needs to be in inference mode

print ’Training level 3’

Make sure the sensors start at the beginning of the file.

session.execute("Sensor", ("setParameter","position", "0"))

#session.execute(’CategorySensor’, ("setParameter","position", "0"))

#session.enableNodes("CategorySensor")

session.enableNodes("Level3.*")

session.execute(’Level3.*’, [’setLearning’, ’1’])

session.compute(numVectors)

session.execute(’Level3.*’, [’setLearning’, ’0’])

session.execute(’Level3.*’, [’setInference’, ’1’])

#--

if level4:

#--

Train Level 4

While level 4 is being trained, level 2 needs to be in inference mode

print ’Training level 4’

Make sure the sensors start at the beginning of the file.

session.execute("Sensor", ("setParameter","position", "0"))

#session.execute(’CategorySensor’, ("setParameter","position", "0"))

#session.enableNodes("CategorySensor")

session.enableNodes("Level4.*")

105

session.execute(’Level4.*’, [’setLearning’, ’1’])

session.compute(numVectors)

session.execute(’Level4.*’, [’setLearning’, ’0’])

session.execute(’Level4.*’, [’setInference’, ’1’])

#--

Save the network and retrieve trained network file from bundle

print ’Training complete’

session.saveRemoteNetwork(trainedNetwork)

session.stop()

session.getLocalBundleFiles(trainedNetwork)

session.setCleanupLocal(False)

#===

If invoked from the command line, do nothing

#===

A.4 RunCybercraftInfrence.py

"""

@file

This class trains the network for the bitworm example.

This file is templated on Bitworm which is Copyright (C) 2007 Numenta Inc

"""

from nupic.session import Session

import sys

import os

def runCybercraftInference(trainedNetwork, testFile, resultsFile, numVectors):

"""Take the given training data and the network we’ve generated,

add it to the bundle, and run inference on the network. After inference,

the results will be in the file ’outputFile’

"""

#--

Setup

Prepare session and data files we will use

session = Session(os.path.join("sessions", "cybercraft"))

session.addFiles(testFile)

session.start()

Load network file. All nodes will be enabled by default

session.loadNetwork(trainedNetwork)

session.execute(’Sensor’, (’loadFile’, testFile, ’0’))

We would like to keep the effector outputs, so set the filename

where they will be stored (inside the bundle)

session.execute("FileOutput", (’setParameter’, ’outputFile’, resultsFile))

#--

Disable the CategorySensor, as the categories are not known

during inference.

session.disableNodes("CategorySensor")

106

#--

Run through training patterns

print ’Running inference’

session.execute("FileOutput",

("echo", "Numbers show Level 3 node output followed by the sensor output"))

session.compute(numVectors)

#--

Retrieve the results file and cleanup

session.stop()

session.getLocalBundleFiles(resultsFile)

session.setCleanupLocal(True)

print "Inference complete; results in ", resultsFile

#===

If invoked from the command line, do nothing

#===

107

Appendix B. Anomaly Detection - Data

B.1 Training Data Excerpt (Input)

First 50 input packets (vectors) from Monday, Week 3 in VectorFile format:

31

1 0 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 44 116 6 2 1024 25 2355892027 0 0 512

2 0.004685 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 44 287 6 18 25 1024 927809984 2355892028 0 32736

3 0.0002 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 40 117 6 16 1024 25 2355892028 927809985 0 32120

4 0.196696 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 126 298 6 24 25 1024 927809985 2355892028 0 32736

5 0.019231 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 40 122 6 16 1024 25 2355892028 927810071 0 32120

6 0.026168 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 65 123 6 24 1024 25 2355892028 927810071 0 32120

7 0.000505 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 66 299 6 24 25 1024 927810071 2355892053 0 32736

8 0.000475 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 65 124 6 24 1024 25 2355892053 927810097 0 32120

9 0.00081 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 87 300 6 24 25 1024 927810097 2355892078 0 32736

10 0.000326 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 81 125 6 24 1024 25 2355892078 927810144 0 32120

11 0.000821 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 88 301 6 24 25 1024 927810144 2355892119 0 32736

12 0.000371 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 80 126 6 24 1024 25 2355892119 927810192 0 32120

13 0.000837 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 79 302 6 24 25 1024 927810192 2355892159 0 32736

14 0.000306 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 46 127 6 24 1024 25 2355892159 927810231 0 32120

15 0.010984 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 40 303 6 16 25 1024 927810231 2355892165 0 32736

16 0.004283 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 90 304 6 24 25 1024 927810231 2355892165 0 32736

17 0.001132 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 1064 128 6 24 1024 25 2355892165 927810281 0 32120

18 0.014558 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 40 305 6 16 25 1024 927810281 2355893189 0 32736

19 0.000229 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 135 129 6 24 1024 25 2355893189 927810281 0 32120

20 0.015773 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 59 306 6 24 25 1024 927810281 2355893284 0 32736

21 0.00024 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 46 130 6 24 1024 25 2355893284 927810300 0 32120

22 0.000753 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 64 307 6 24 25 1024 927810300 2355893290 0 32736

23 0.000851 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 40 308 6 17 25 1024 927810324 2355893290 0 32736

24 0.000176 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 40 131 6 16 1024 25 2355893290 927810325 0 32120

25 0.001069 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 113 105 40 132 6 17 1024 25 2355893290 927810325 0 32120

26 0.000699 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 196 37 75 158 40 309 6 16 25 1024 927810325 2355893291 0 32735

27 31.042633 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 44 143 6 2 1026 25 3803014164 0 0 512

28 0.004815 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 44 665 6 18 25 1026 1349254056 3803014165 0 32736

29 0.000199 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 40 144 6 16 1026 25 3803014165 1349254057 0 32120

30 0.049387 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 125 679 6 24 25 1026 1349254057 3803014165 0 32736

31 0.011425 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 40 149 6 16 1026 25 3803014165 1349254142 0 32120

32 0.035783 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 63 150 6 24 1026 25 3803014165 1349254142 0 32120

33 0.000831 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 66 684 6 24 25 1026 1349254142 3803014188 0 32736

34 0.000483 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 63 151 6 24 1026 25 3803014188 1349254168 0 32120

35 0.00082 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 85 685 6 24 25 1026 1349254168 3803014211 0 32736

36 0.000317 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 75 152 6 24 1026 25 3803014211 1349254213 0 32120

37 0.000808 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 82 686 6 24 25 1026 1349254213 3803014246 0 32736

38 0.000361 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 76 153 6 24 1026 25 3803014246 1349254255 0 32120

39 0.000814 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 75 687 6 24 25 1026 1349254255 3803014282 0 32736

40 0.000305 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 46 154 6 24 1026 25 3803014282 1349254290 0 32120

41 0.002317 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 90 688 6 24 25 1026 1349254290 3803014288 0 32736

42 0.001141 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 1064 155 6 24 1026 25 3803014288 1349254340 0 32120

43 0.01734 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 40 690 6 16 25 1026 1349254340 3803015312 0 32736

44 0.000993 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 1051 156 6 24 1026 25 3803015312 1349254340 0 32120

45 0.003849 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 59 691 6 24 25 1026 1349254340 3803016323 0 32736

46 0.000244 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 46 157 6 24 1026 25 3803016323 1349254359 0 32120

47 0.000746 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 64 692 6 24 25 1026 1349254359 3803016329 0 32736

48 0.001002 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 84 197 182 91 233 40 693 6 17 25 1026 1349254383 3803016329 0 32736

49 0.000203 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 40 158 6 16 1026 25 3803016329 1349254384 0 32120

50 0.007256 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 84 40 164 6 17 1026 25 3803016329 1349254384 0 32120

108

B.2 Testing Data Excerpt (Input)

First 50 input packets (vectors) from Monday, Week 4 in VectorFile format:

31

1 0 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 44 310 6 2 1024 25 2758648148 0 0 512

2 0.000347 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 44 364 6 18 25 1024 3449610373 2758648149 0 32736

3 0.002809 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 40 311 6 16 1024 25 2758648149 3449610374 0 32120

4 0.25269 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 126 375 6 24 25 1024 3449610374 2758648149 0 32736

5 0.013744 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 40 316 6 16 1024 25 2758648149 3449610460 0 32120

6 0.029191 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 66 317 6 24 1024 25 2758648149 3449610460 0 32120

7 0.000232 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 66 376 6 24 25 1024 3449610460 2758648175 0 32736

8 0.001032 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 66 318 6 24 1024 25 2758648175 3449610486 0 32120

9 0.000239 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 88 377 6 24 25 1024 3449610486 2758648201 0 32736

10 0.000878 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 82 319 6 24 1024 25 2758648201 3449610534 0 32120

11 0.000247 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 89 378 6 24 25 1024 3449610534 2758648243 0 32736

12 0.00096 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 79 320 6 24 1024 25 2758648243 3449610583 0 32120

13 0.000235 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 78 379 6 24 25 1024 3449610583 2758648282 0 32736

14 0.000818 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 46 321 6 24 1024 25 2758648282 3449610621 0 32120

15 0.00052 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 90 380 6 24 25 1024 3449610621 2758648288 0 32736

16 0.002412 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 1004 322 6 24 1024 25 2758648288 3449610671 0 32120

17 0.000851 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 59 381 6 24 25 1024 3449610671 2758649252 0 32736

18 0.000748 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 46 323 6 24 1024 25 2758649252 3449610690 0 32120

19 0.000259 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 64 382 6 24 25 1024 3449610690 2758649258 0 32736

20 0.000588 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 40 383 6 17 25 1024 3449610714 2758649258 0 32736

21 0.000438 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 40 324 6 16 1024 25 2758649258 3449610715 0 32120

22 0.001677 16 123 56 70 50 192 79 163 88 35 2048 172 16 112 194 196 37 75 158 40 325 6 17 1024 25 2758649258 3449610715 0 32120

23 0.000194 192 79 163 88 35 16 123 56 70 50 2048 196 37 75 158 172 16 112 194 40 384 6 16 25 1024 3449610715 2758649259 0 32735

24 33.588621 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 197 182 91 233 44 337 6 2 1025 79 3698898158 0 0 512

25 0.000334 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 105 44 501 6 18 79 1025 543102587 3698898159 0 32736

26 0.002755 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 197 182 91 233 40 338 6 16 1025 79 3698898159 543102588 0 32120

27 0.0002 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 197 182 91 233 45 339 6 24 1025 79 3698898159 543102588 0 32120

28 0.017274 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 105 40 502 6 16 79 1025 543102588 3698898164 0 32731

29 0.000684 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 197 182 91 233 42 340 6 24 1025 79 3698898164 543102588 0 32120

30 0.019294 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 105 40 503 6 16 79 1025 543102588 3698898166 0 32729

31 0.191384 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 105 260 506 6 24 79 1025 543102588 3698898166 0 32736

32 0.000125 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 105 40 507 6 17 79 1025 543102808 3698898166 0 32736

33 0.000794 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 197 182 91 233 40 341 6 16 1025 79 3698898166 543102809 0 31899

34 0.002729 16 123 56 70 50 192 79 163 88 35 2048 172 16 113 105 197 182 91 233 40 342 6 17 1025 79 3698898166 543102809 0 32120

35 0.000164 192 79 163 88 35 16 123 56 70 50 2048 197 182 91 233 172 16 113 105 40 508 6 16 79 1025 543102809 3698898167 0 32735

36 24.866747 16 123 56 70 50 192 79 163 88 35 2048 172 16 114 169 135 13 216 191 44 374 6 2 1027 25 1945073538 0 0 512

37 0.000315 192 79 163 88 35 16 123 56 70 50 2048 135 13 216 191 172 16 114 169 44 516 6 18 25 1027 3748813214 1945073539 0 32736

38 0.002799 16 123 56 70 50 192 79 163 88 35 2048 172 16 114 169 135 13 216 191 40 375 6 16 1027 25 1945073539 3748813215 0 32120

39 0.024053 192 79 163 88 35 16 123 56 70 50 2048 135 13 216 191 172 16 114 169 123 527 6 24 25 1027 3748813215 1945073539 0 32736

40 0.019396 16 123 56 70 50 192 79 163 88 35 2048 172 16 114 169 135 13 216 191 40 380 6 16 1027 25 1945073539 3748813298 0 32120

41 0.025469 16 123 56 70 50 192 79 163 88 35 2048 172 16 114 169 135 13 216 191 64 381 6 24 1027 25 1945073539 3748813298 0 32120

42 0.000329 192 79 163 88 35 16 123 56 70 50 2048 135 13 216 191 172 16 114 169 66 528 6 24 25 1027 3748813298 1945073563 0 32736

43 0.000971 16 123 56 70 50 192 79 163 88 35 2048 172 16 114 169 135 13 216 191 64 382 6 24 1027 25 1945073563 3748813324 0 32120

44 0.000242 192 79 163 88 35 16 123 56 70 50 2048 135 13 216 191 172 16 114 169 86 529 6 24 25 1027 3748813324 1945073587 0 32736

45 0.000863 16 123 56 70 50 192 79 163 88 35 2048 172 16 114 169 135 13 216 191 79 383 6 24 1027 25 1945073587 3748813370 0 32120

46 0.003624 192 79 163 88 35 16 123 56 70 50 2048 135 13 216 191 172 16 114 169 86 530 6 24 25 1027 3748813370 1945073626 0 32736

47 0.000926 16 123 56 70 50 192 79 163 88 35 2048 172 16 114 169 135 13 216 191 74 384 6 24 1027 25 1945073626 3748813416 0 32120

48 0.000244 192 79 163 88 35 16 123 56 70 50 2048 135 13 216 191 172 16 114 169 73 531 6 24 25 1027 3748813416 1945073660 0 32736

49 0.000814 16 123 56 70 50 192 79 163 88 35 2048 172 16 114 169 135 13 216 191 46 385 6 24 1027 25 1945073660 3748813449 0 32120

50 0.000531 192 79 163 88 35 16 123 56 70 50 2048 135 13 216 191 172 16 114 169 90 532 6 24 25 1027 3748813449 1945073666 0 32736

109

B.3 Training Data Excerpt (Output)

First 50 input packets (vectors) from Monday, Week 3 in VectorFile format:

1294.7 1

1423.4 2

1296.13 3

1423.37 4

1296.13 5

1296.24 6

1423.6 7

1296.24 8

1423.52 9

1296.24 10

1423.6 11

1296.24 12

1423.6 13

1296.24 14

1423.55 15

1423.6 16

1296.2 17

1423.55 18

1296.24 19

1423.6 20

1296.24 21

1423.6 22

1423.47 23

1296.13 24

1296.11 25

1421.82 26

1294.85 27

1423.21 28

1296.34 29

1424.47 30

1296.34 31

1297.47 32

1424.48 33

1297.47 34

1424.48 35

1297.47 36

1424.48 37

1297.47 38

1424.48 39

1297.47 40

1424.48 41

1297.23 42

1423.74 43

1297.47 44

1424.48 45

1297.47 46

1424.48 47

1423.38 48

1296.34 49

1296.2 50

110

B.4 Testing Data Excerpt (Output)

First 50 input packets (vectors) from Monday, Week 4 in VectorFile format:

1421.01 1

1297.04 2

1422.44 3

1297.07 4

1422.44 5

1422.56 6

1297.32 7

1422.56 8

1297.32 9

1422.56 10

1297.32 11

1422.56 12

1297.32 13

1422.56 14

1297.32 15

1422.56 16

1297.32 17

1422.56 18

1297.32 19

1297.16 20

1422.44 21

1422.39 22

1295.49 23

1419.42 24

1293.16 25

1422.61 26

1424.07 27

1295.25 28

1424.09 29

1295.25 30

1296.31 31

1295.2 32

1422.61 33

1421.52 34

1295.26 35

1431.67 36

1306.07 37

1427.72 38

1306.22 39

1427.72 40

1427.78 41

1306.22 42

1427.78 43

1306.22 44

1427.78 45

1306.22 46

1427.78 47

1306.22 48

1427.78 49

1306.22 50

111

B.5 Lv3T MW3-60K: Week 4 Categorization Statistics

Training Week: Week 3

Day: Monday

N-HTM Network: "Timeless," 3-Level

Packets Captured From: Outside

Number of Training Vectors Used: First 60,000

Number of Categories Created: 1877

Testing Week: Week 4

Day: Monday

File: test_results.format.txt

Packets: 1167661

Categories In File: 2096

New Categories From Testing: 1017

Old Categories Recognized Testing: 1079

TOTAL Unique Categories: 2894

51.47900581359863% Old Categories

48.52099120616913% New Categories

Day: Tuesday

File: test_results.format.txt

Packets: 1218628

Categories In File: 3040

New Categories From Testing: 1509

Old Categories Recognized Testing: 1531

TOTAL Unique Categories: 3386

50.361841917037964% Old Categories

49.638158082962036% New Categories

112

Day: Wednesday

File: test_results.format.txt

Packets: 1224543

Categories In File: 3152

New Categories From Testing: 1579

Old Categories Recognized Testing: 1573

TOTAL Unique Categories: 3456

49.904823303222656% Old Categories

50.095176696777344% New Categories

Day: Thursday

File: test_results.format.txt

Packets: 1544574

Categories In File: 3374

New Categories From Testing: 1753

Old Categories Recognized Testing: 1621

TOTAL Unique Categories: 3630

48.04386496543884% Old Categories

51.95613503456116% New Categories

Day: Friday

File: test_results.format.txt

Packets: 1229260

Categories In File: 2768

New Categories From Testing: 1321

Old Categories Recognized Testing: 1447

TOTAL Unique Categories: 3198

52.27600932121277% Old Categories

47.72398769855499% New Categories

113

Appendix C. BackTalk Code - Urban Challenge

This appendix provides the pertinent Java v1.5 code to implement the Urban

Challenge experiment under the BackTalk algorithm (also known in code as

Qualiabear) implementation.

C.1 BasicNode.java

import java.io.PrintStream;

import java.util.LinkedList;

import java.util.List;

import java.util.HashMap;

import java.util.HashSet;

import java.util.Map;

import java.util.Set;

public class BasicNode {

// NODE CONNECTION PARMS

// every node has a single parent (null in Top Nodes)

protected BasicNode parent;

// every node has 1 or more children (sensors do not have children)

protected List<BasicNode> children = new LinkedList<BasicNode>();

// DATA STRUCTURES FOR QUALIA & PATTERNS

// each node creates an invarient representation (IR) for each spatial code

// percived

// i.e. input pattern 2,3,2 might be code = 12

protected List<String> code_pattern_trackerList = new LinkedList<String>();

// during feedback, each parent is able to give children a IR, a qualia of

// what is expected

// these qualia (could) have a 1-to-many relationship within a given child

// node

// i.e parent might tell this node to expect a qualia of ’3’

// the child knows that qualia ’3’ = code ’12’. It may happen that qualia

// ’4’ = code ’12’ too

// **A node’s code is ’qualia’ to children**

protected Map<Integer, Integer> qualiaToCodeBook = new HashMap<Integer, Integer>();

// Percent of nodes that must agree with a prediction for it to be in

// context

private static double similarityThreshold = 66.66; // Percent

// LOCAL NODE VARIABLES

// ACCESSABLE DIRECTLY BY OTHER NODES

// currenly assigned code of input pattern

protected int actualCode = 999;

// if guessing was requierd, the code is saved here

protected int guessCode = 999;

// Provided in feedback from the parent

protected int expectedQuale = 999;

// Derived from expectedQualia

114

protected int expectedCode = 999;

// actual input pattern as percived by children

protected String inputPattern = "";

// if children percive new patterns, a guess pattern will have a X (don’t

// care state) for that input element

protected String guessPattern = "";

// NOT USED or TESTED - meant to help with analysis

protected double predictionCertainty = 100.0;

// Denotes if this node percives a context change

protected boolean contextChange = false;

// Denotes if this node percives input as ’never before seen’

protected boolean novelInputFlag = false;

// denotes if a guess is requiered

protected boolean guess = false;

// File I/O

PrintStream write = null;

// What is passed up to parrents/recived from children

protected Message output = new Message();

// creates/stored incoming child values (their codes) which create a pattern

// order is not importaint if is is consistent

protected Set<Message> inputValues = new HashSet<Message>();

// //

// ////////////////////////FEED FORWARD FUNCTIONS////////////////////

// //

protected void feedforward() {

output = new Message();

if (guess) {

output.setChildCode_AKA_aParentValue(guessCode);

} else {

output.setChildCode_AKA_aParentValue(actualCode);

}

output.setContextChange(contextChange);

output.setNovelInputFlag(novelInputFlag);

output.setPredictionCertainty(predictionCertainty);

parent.receiveChildInput(output);

}

public void receiveChildInput(Message input) {

// Add child’s input to parent’s knowledge pool

inputValues.add(input);

inputPattern = inputPattern + input.getChildCode_AKA_aParentValue()

+ ":";

if (input.getNovelInputFlag()) {

guessPattern = guessPattern + "X:";

} else {

guessPattern = guessPattern + input.getChildCode_AKA_aParentValue()

+ ":";

115

}

// If all "votes are in" then infer from pattern

if (inputValues.size() == children.size()) {

updateTrackerList();

perceiveInputs();

feedforward();

guessPattern = "";

}

}

// //

// ////////////////////////PERCEPTION FUNCTIONS//////////////////////

// //

protected boolean canBestGuess() {

if (guess) {

String[] guessElements = guessPattern.split(":");

for (int i = 0; i < code_pattern_trackerList.size() - 1; i++) {

String[] currentElements = code_pattern_trackerList.get(i)

.split(":");

int numberCorrect = 0;

for (int j = 0; j < currentElements.length; j++) {

if (guessElements[j].equals("X")

|| guessElements[j].equals(currentElements[j])) {

numberCorrect++;

}

}

if (numberCorrect == children.size()) {

guessCode = i;

guessPattern = "";

return true;

}

}

}

guessPattern = "";

return false;

}

protected void updateTrackerList() {

// if any child has novel/new input then flag as new

if (!code_pattern_trackerList.contains(inputPattern)) {

novelInputFlag = true;

// tell children that it is new and needs to be saved under new IR

code_pattern_trackerList.add(inputPattern);

actualCode = code_pattern_trackerList.size() - 1;

} else {

novelInputFlag = false;

actualCode = code_pattern_trackerList.indexOf(inputPattern);

}

inputPattern = "";

}

protected void perceiveInputs() {

contextChange = false;

double numberCorrect = 0.0;

double numberNew = 0.0;

double numberTotal = inputValues.size();

116

double cumulativeAverage = 0;

// Look to see if the votes support our expectations

for (Message m : inputValues) {

// count the number of children who recognize their inputs

if (!m.getContextChange()) {

numberCorrect++;

}

if (m.getNovelInputFlag()) {

numberNew++;

}

// for calculating the average correctness of the perception

cumulativeAverage = cumulativeAverage + m.getPredictionCertainty();

}

if (novelInputFlag) {

if (numberNew == 1) {

guess = true;

} else {

guess = false;

}

}

// the average correctness of the perception

predictionCertainty = (cumulativeAverage / numberTotal);

// decide if you agree with the qualia or have a suggestion

if (similarityThreshold <= ((numberCorrect / numberTotal) * 100.0)) {

contextChange = false;

} else {

contextChange = true;

}

guess = canBestGuess();

inputValues = new HashSet<Message>();

}

// //

// ////////////////////////FEEDBACK FUNCTIONS////////////////////////

// //

protected void saveQualiaContext(int newQuale) {

qualiaToCodeBook.put(newQuale, actualCode);

for (BasicNode c : children) {

c.saveQualiaContext(actualCode);

}

}

protected void removeNovelAsNoise() {

if (novelInputFlag) {

novelInputFlag = false;

code_pattern_trackerList

.remove(code_pattern_trackerList.size() - 1);

}

for (BasicNode c : children) {

c.removeNovelAsNoise();

}

}

protected void feedback(int nextExpectedQuale) {

setExpectedQuale(nextExpectedQuale);

for (BasicNode c : children) {

117

c.feedback(expectedCode);

}

}

protected void setExpectedQuale(int quale) {

expectedQuale = quale;

expectedCode = qualiaToCodeBook.get(quale);

}

// //

// ////////////////////////SETUP/MISC FUNCTIONS//////////////////////

// //

public void setChildren(List<BasicNode> children) {

this.children = children;

for (BasicNode c : children) {

c.setParent(this);

}

}

private void setParent(BasicNode parent) {

this.parent = parent;

}

public void setWrite(PrintStream write) {

this.write = write;

for (BasicNode c : children) {

c.setWrite(write);

}

}

protected void println(String s) {

if (write != null) {

write.println(s);

}

System.out.println(s);

}

protected void print(String s) {

if (write != null) {

write.print(s);

}

System.out.print(s);

}

}

C.2 TopNode.java

import java.util.LinkedList;

import java.util.List;

public class TopNode extends BasicNode {

// tracks the temporal elements of patterns

private List<List<Integer>> sequenceSet = new LinkedList<List<Integer>>();

// number of IRs to track for a temporal sequence

118

private int maxSequeceMatchSize = 2;

// the sequence that is perceived, length <= maxSequenceMatchSize

private List<Integer> perceivedSequence = new LinkedList<Integer>();

// if learning a new sequence, it is saved here until learning is over

// then it is saved to the sequenceSet

private List<Integer> recordingSequence = new LinkedList<Integer>();

// if a sequence is perceived, this points to it

private List<Integer> currentPlayingSequence = null;

// the number of the sequence as numbered in the sequenceSet

private int currentPlayingSequenceNum;

// the predicted next LIST INDEX of a playing sequence

private int currentPlayingSequenceNextIndex;

// ’tolerence’ for objects out of context - dynamic based on

// maxSequeceMatchSize

// if inContextCounter is 0, then a change in context HAS occurred

// if inContextCounter is >= maxSequeceMatchSize, then objects out of

// context (if so) are tolerated

private int inContextCounter = 0;

// if learning id taking place, true

private boolean recording = false;

// if a sequence should be chosen from the sequenceSet OR recordingSequence,

// true

private boolean newSequenceSearch = false;

public TopNode() {

super();

}

// modified for printing to files/screen

@Override

public void receiveChildInput(Message input) {

// Add child’s input to parent’s knowledge pool

inputValues.add(input);

inputPattern = inputPattern + input.getChildCode_AKA_aParentValue()

+ ":";

if (input.getNovelInputFlag()) {

guessPattern = guessPattern + "X:";

} else {

guessPattern = guessPattern + input.getChildCode_AKA_aParentValue()

+ ":";

}

// If all "votes are in" then "make the call"

if (inputValues.size() == children.size()) {

super.updateTrackerList();

super.perceiveInputs();

guessPattern = "";

updateSequences();

checkRecognition();

println("Song=" + currentPlayingSequenceNum + ":"

+ currentPlayingSequence);

119

println("Prediction:" + expectedCode);

println("Recording:" + recordingSequence);

for (BasicNode c : children) {

c.feedback(expectedCode);

}

}

}

// update the perceivedSequence with appropriate IR

private void updateSequences() {

// Trim the perceived sequence so that it is = maxSequeceMatchSize

if (perceivedSequence.size() == maxSequeceMatchSize) {

perceivedSequence.remove(0);

}

println("");

print("Top Node Decision: ");

if (!contextChange) {

println("noChange");

perceivedSequence.add(expectedCode);

removeNoise();

} else if (guess) {

println("addGuess");

perceivedSequence.add(guessCode);

expectedCode = guessCode;

removeNoise();

} else if (!novelInputFlag) {

println("codeRecognized");

perceivedSequence.add(actualCode);

expectedCode = actualCode;

} else {

println("newCode");

code_pattern_trackerList

.remove(code_pattern_trackerList.size() - 1);

inputPattern = "";

for (BasicNode c : children) {

inputPattern = inputPattern + c.actualCode + ":";

c.saveQualiaContext(actualCode);

}

code_pattern_trackerList.add(inputPattern);

perceivedSequence.add(actualCode);

expectedCode = actualCode;

inputPattern = "";

}

print("perceived Code Seq: " + perceivedSequence.get(0));

if (perceivedSequence.size() != 1) {

print("," + perceivedSequence.get(1));

}

println("");

if (contextChange) {

if (!(inContextCounter == 0)) {

inContextCounter--;

}

} else {

if (!(inContextCounter == maxSequeceMatchSize)) {

inContextCounter++;

}

}

setNewSequenceSearch();

}

120

// checks to see if a new sequence should be tried and flags accordingly

private void setNewSequenceSearch() {

if (!(currentPlayingSequence == null)) {

if (inContextCounter > 1) {

newSequenceSearch = false;

} else {

newSequenceSearch = true;

}

} else {

newSequenceSearch = true;

}

}

// checks to see if a prediction can be made from the perceivedSequence

// If not, then the previouse pridiction is repeated

private void checkRecognition() {

if (newSequenceSearch) {

if (perceivedSequence.size() == maxSequeceMatchSize) {

if (recording && recordingSequence.size() > maxSequeceMatchSize) {

if (inRecording(perceivedSequence)) {

// automatically saved and stopped

expectedCode = currentPlayingSequence

.get(currentPlayingSequenceNextIndex);

return;

}

}

if (!isRecognizedSequence(perceivedSequence)) {

if (recording) {

recordingSequence.add(perceivedSequence

.get(maxSequeceMatchSize - 1));

} else {

startRecodring();

}

currentPlayingSequence = null;

} else {

if (recordingSequence.size() > maxSequeceMatchSize) {

stopRecordingSave(true);

} else {

stopRecordingSave(false);

}

expectedCode = currentPlayingSequence

.get(currentPlayingSequenceNextIndex);

return;

}

}

// NOT A NEW SEQUENCE (PREDICTED)

} else {

currentPlayingSequenceNextIndex++;

if (currentPlayingSequence.size() == currentPlayingSequenceNextIndex) {

currentPlayingSequenceNextIndex = maxSequeceMatchSize;

expectedCode = currentPlayingSequence

.get(currentPlayingSequenceNextIndex);

} else {

expectedCode = currentPlayingSequence

121

.get(currentPlayingSequenceNextIndex);

}

}

}

private void startRecodring() {

recordingSequence.addAll(perceivedSequence);

recording = true;

}

private void stopRecordingSave(boolean save) {

if (save) {

sequenceSet.add(recordingSequence);

}

recordingSequence = new LinkedList<Integer>();

recording = false;

}

// checks recordingSequence for a sequence = seq

private boolean inRecording(List seq) {

List l = recordingSequence;

int length = l.size();

int start = 0;

int end = length - maxSequeceMatchSize;

for (int i = start; i < end; i++) {

if (seq.equals((l.subList(i, i + maxSequeceMatchSize)))) {

sequenceSet.add(recordingSequence);

currentPlayingSequenceNum = sequenceSet.size() - 1;

currentPlayingSequence = sequenceSet

.get(currentPlayingSequenceNum);

currentPlayingSequenceNextIndex = i + maxSequeceMatchSize;

stopRecordingSave(false);

return true;

}

}

return false;

}

// checks sequenceSet for an seqence = seq

private boolean isRecognizedSequence(List seq) {

for (List l : sequenceSet) {

int length = l.size();

int start = 0;

int end = length - maxSequeceMatchSize;

for (int i = start; i < end; i++) {

if (seq.equals(l.subList(i, i + maxSequeceMatchSize))) {

currentPlayingSequence = (LinkedList<Integer>) l;

currentPlayingSequenceNum = sequenceSet.indexOf(l);

currentPlayingSequenceNextIndex = i + maxSequeceMatchSize;

return true;

}

}

}

return false;

}

122

public final List<List<Integer>> getSequenceSet() {

return sequenceSet;

}

// Called if top node determins that the input is predicted or something

// seen before

// This removes unneeded codes from nodes that were deemed to be "wrong"

// either these nodes saw something as new that was simply noise

// or the top node did not percive a context change

private void removeNoise() {

removeNovelAsNoise();

for (BasicNode c : children) {

c.removeNovelAsNoise();

}

}

}

C.3 Sensor.java

public class SensorNode extends BasicNode {

Car car;

int name;

public SensorNode(int name, Car car) {

super();

this.name = name;

this.car = car;

}

// performs no perception functions

// forwards a code for the sensed value

// sets novelty of input

// sets inital context of input

public void sense(int i) {

output = new Message();

actualCode = i;

predictionCertainty = 100.0;

if (qualiaToCodeBook.containsValue(actualCode)) {

novelInputFlag = false;

} else {

novelInputFlag = true;

}

if (actualCode == expectedCode) {

contextChange = false;

} else {

contextChange = true;

}

feedforward();

}

@Override

protected void removeNovelAsNoise() {

123

}

// If this sensor is told where the ’O’ should be, tell the car

@Override

protected void feedback(int nextExpectedQuale) {

setExpectedQuale(nextExpectedQuale);

if (Character.getNumericValue(’O’) == expectedCode) {

car.setNewLocation(name);

}

}

// Convert integers to ints

public void sense(char c) {

sense(Character.getNumericValue(Character.toUpperCase(c)));

}

}

C.4 Message.java

public class Message {

// HTM Theory says only IRs are passed up and down the hierarchy

// this is the IR

private String childCode_AKA_aParentValue;

// Biological means of detecting novel input (per hawkins) is simply

// simulated here

// by passing novelty as a boolean field

private Boolean novelInputFlag = false;

// The addition of changing context is not laid out in HTM Theory

// with no basis in HTM, context is simulated here as a boolean field

private Boolean contextChanged = false;

// Not used in unsupervised learning

private String passThroughValue = "";

// NOT USED or TESTED - meant to help with analysis

private double PredictionCertainty = 100.0;

public double getPredictionCertainty() {

return PredictionCertainty;

}

public void setPredictionCertainty(double predictionCertainty) {

PredictionCertainty = predictionCertainty;

}

public Message() {

}

public Boolean getContextChange() {

return contextChanged;

}

124

public void setContextChange(Boolean contextChanged) {

this.contextChanged = contextChanged;

}

public Boolean getNovelInputFlag() {

return novelInputFlag;

}

public void setNovelInputFlag(Boolean novelInputFlag) {

this.novelInputFlag = novelInputFlag;

}

public String getPassThroughValue() {

return passThroughValue;

}

public void setPassThroughValue(String passThroughValue) {

this.passThroughValue = passThroughValue;

}

public final String getChildCode_AKA_aParentValue() {

return childCode_AKA_aParentValue;

}

public final void setChildCode_AKA_aParentValue(Integer value) {

this.childCode_AKA_aParentValue = Integer.toString(value);

}

}

C.5 CreateNetwork.java

import java.io.PrintStream;

import java.util.LinkedList;

import java.util.List;

public class CreateNetwork {

// Setup the levels of the HTM network

// bottom level must be made of sensors

private List<BasicNode> sensorList = new LinkedList<BasicNode>();

// middle levels can be made of basic nodes

private List<BasicNode> lev1List = new LinkedList<BasicNode>();

// top level must be a single top node

private BasicNode topNode = new TopNode();

@SuppressWarnings("unused")

private PrintStream write = null;

// car is created with the network

Car car = new Car();

public CreateNetwork(PrintStream write) {

this.write = write;

125

this.initializeNet();

}

public CreateNetwork() {

this.initializeNet();

}

private void initializeNet() {

// these sensors must be able to contact the car

// there is one sensor for each character of the text-road segment

for (int i = 0; i < 9; i++) {

sensorList.add(new SensorNode(i, car));

}

// the middle level has 3 basic nodes

// make each mid-level node, add sensors as children, and add it to the

// level

BasicNode node = new BasicNode();

node.setChildren(sensorList.subList(0, 3));

lev1List.add(node);

// make each mid-level node, add sensors as children, and add it to the

// level

node = new BasicNode();

node.setChildren(sensorList.subList(3, 6));

lev1List.add(node);

// make each mid-level node, add sensors as children, and add it to the

// level

node = new BasicNode();

node.setChildren(sensorList.subList(6, 9));

lev1List.add(node);

// set all mid-level nodes as children of the top node

topNode.setChildren(lev1List);

}

public List<BasicNode> getSensorList() {

return sensorList;

}

public BasicNode getTopNode() {

return topNode;

}

public Car getCar() {

return car;

}

}

C.6 Car.java

import java.io.PrintStream;

public class Car {

String[] currentRoadIn;

126

int carLocation = 4;

String carInRoad = "";

// Cars respond over time, this little function moves a car left or right

// when told to do so by Qualiabear

public void setNewLocation(int name) {

if (carLocation > name) {

carLocation--;

}

if (carLocation < name) {

carLocation++;

}

}

// Reads what the road currently looks like so Qualiabear can tell car

// to place an ’O’ over any of the road locations.

public void readRoadIn(String[] splitLine) {

this.currentRoadIn = splitLine;

}

// Place a ’O’ where Qualiabear tells the car to drive next

public void writeRoadOut(PrintStream write, boolean autoPilot) {

if (autoPilot) {

carInRoad = "";

currentRoadIn[carLocation] = "O";

for (int i = 0; i < currentRoadIn.length; i++) {

carInRoad = carInRoad + currentRoadIn[i] + " ";

}

write.println(carInRoad);

}

}

}

C.7 GenerateRoad.java

import java.io.BufferedReader;

import java.io.DataOutputStream;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintStream;

import java.util.HashMap;

import java.util.Map;

import java.util.Random;

public class GenerateRoad {

// The only possible road segments

private Map<Integer, String> roadViews = new HashMap<Integer, String>();

127

// The length a sequence of road will be

private static int MAX;

@SuppressWarnings("static-access")

public GenerateRoad(String path, int MAX) {

this.MAX = MAX;

setRoadViews();

}

private void setRoadViews() {

roadViews.put(0, "I I I W C G G G G");

roadViews.put(1, "I I I I W C G G G");

roadViews.put(2, "I I I I I W C G G");

roadViews.put(3, "W I I I I I W C G");

roadViews.put(4, "C W I I I I I W C");

roadViews.put(5, "G C W I I I I I W");

roadViews.put(6, "G G C W I I I I I");

roadViews.put(7, "G G G C W I I I I");

roadViews.put(8, "G G G G C W I I I");

}

public void generateRoad(File trainingFileIn, File testingFileOut) {

// Setup the random generator

Random generator = new Random();

int rand = generator.nextInt(3);

int currentLocation = 4;

String line = "";

try {

// File I/O parms

FileReader fr = new FileReader(trainingFileIn);

BufferedReader read = new BufferedReader(fr);

FileOutputStream out = new FileOutputStream(testingFileOut);

DataOutputStream dos = new DataOutputStream(out);

PrintStream write = new PrintStream(dos);

// Add the training file to the begining of the testfile

line = read.readLine();

while (line != null) {

write.println(line);

line = read.readLine();

}

// Produce a random road

int count = 0;

while (count != MAX) {

if (rand == 0 && currentLocation != 0) {

currentLocation--;

}

if (rand == 2 && currentLocation != 8) {

currentLocation++;

}

write.println(roadViews.get(currentLocation));

rand = generator.nextInt(3);

count++;

}

128

// close file I/O parms

write.close();

dos.close();

out.close();

read.close();

fr.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

C.8 RunQualiabear.java

import java.io.BufferedReader;

import java.io.DataOutputStream;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintStream;

public class RunQualiabear {

public static void main(String[] args) {

// Path of input/output files (must contain trainingRoad.txt)

String path = "C:\\Documents and Settings\\WilyPuma\\My Documents\\AFIT\\eclipseWorkBench\\QualiaProjects\\qualiabear\\";

// Input file of training road for the Qualiabear

File trainingFile = new File(path + "trainingRoad.txt");

// Output file for the combined training and testing road

File inFile = new File(path + "genTestingRoad.txt");

// Output file containing car location resulting from Qualiabear driving

// Overlays an ’O’ on the infered location where the car should be on

// the test road

File outFile = new File(path + "genTestingRoad.results.txt");

// Output file of TopNode perception at each step

// Last lines are a ’Brain-dump’ of the TopNodes sequeces

File dbFile = new File(path + "genTestingRoad.step_results.txt");

try {

// Setup File I/O

FileReader r = new FileReader(inFile);

BufferedReader read = new BufferedReader(r);

FileOutputStream out = new FileOutputStream(outFile);

DataOutputStream dos = new DataOutputStream(out);

PrintStream write = new PrintStream(dos);

FileOutputStream dbOut = new FileOutputStream(dbFile);

DataOutputStream dbDos = new DataOutputStream(dbOut);

PrintStream dbWrite = new PrintStream(dbDos);

129

// File I/O variables

String line;

String[] splitLine;

// Create HTM network per CreateNetwork.java file specs

// to write only to he screen use CreateNetwork() constructor

CreateNetwork HTMnet = new CreateNetwork(dbWrite);

// Set topNode pointer to the TopNode of the HTM netowrk created

TopNode topNode = (TopNode) HTMnet.getTopNode();

// Set car pointer of the car created by default with network

Car car = HTMnet.getCar();

// Set the TopNode to output perception to file (as well as screen)

// if commented input is only written to the screen

topNode.setWrite(dbWrite);

// Generate a random stretch of road (length: X text-road segments)

// saved in file: inFile with training

// from file: trainingFile at the start.

// new GenerateRoad(path,X).generateRoad(trainingFile,inFile);

new GenerateRoad(path, 4000).generateRoad(trainingFile, inFile);

// Begin reading the inFile

line = read.readLine();

while (line != null) {

splitLine = line.replaceAll(" ", ":").split(":");

// Assume that each new line of road may requier autopilot

boolean autoPilot = true;

car.readRoadIn(splitLine);

topNode.print("Current Input: ");

// Feed each input character to it’s sensor node

for (int i = 0; i < splitLine.length; i++) {

topNode.print(splitLine[i]);

if (splitLine[i].equals("O")) {

// if ever a ’O’ is in the input stream, it is

// considered training

// if training, disable autopilot and do not let

// Qualiabear drive

autoPilot = false;

}

((SensorNode) HTMnet.getSensorList().get(i))

.sense(splitLine[i].toCharArray()[0]);

}

// If Qualiabear is driving (autopilot - true) car will place an

// ’O’ (move the car) as

// directed by the Qualiabear predictions.

car.writeRoadOut(write, autoPilot);

topNode.println("");

line = read.readLine();

}

// Add a ’Brain-dump’ of the TopNodes learned invarrient

// representaion sequences

topNode.println("Number of sequences learned: "

+ topNode.getSequenceSet().size());

for (int i = 0; i < topNode.getSequenceSet().size(); i++) {

130

topNode.println("Seq#:" + +i + " = "

+ topNode.getSequenceSet().get(i));

}

// close file i/o parms before exiting

write.close();

dos.close();

out.close();

dbWrite.close();

dbDos.close();

dbOut.close();

read.close();

r.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

}

}

131

Appendix D. Urban Challenge - Data

This appendix provides the training data and samples of corresponding testing

and result data used in the Urban Challenge experiment. Included also are pre

and post testing “Brain-dumps” of the Top Node’s invariant representations.

D.1 Training Data (Input)

Below are the standard 31 vectors created to train BackTalk on the basics of

driving:

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

W I I O I I W C G

I I O I I W C G G

I O I I W C G G G

O I I W C G G G G

I O I I W C G G G

I I O I I W C G G

W I I O I I W C G

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

G C W I I O I I W

G G C W I I O I I

G G G C W I I O I

132

G G G G C W I I O

G G G C W I I O I

G G C W I I O I I

G C W I I O I I W

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

C W I I O I I W C

D.2 Post Training Brain-dump Data (Output)

Below are the the sequences of invariant representations learned by the Top

Node of BackTalk after training:

Number of sequences learned: 3

Seq#:0 = [0, 0, 0]

Seq#:1 = [0, 1, 2, 3, 4, 3, 2, 1, 0]

Seq#:2 = [0, 5, 6, 7, 8, 7, 6, 5, 0]

133

D.3 Testing Data (Input)

The first 100 vectors of a randomly generated, 500-vector testing file are as sent

to the Sensor Nodes are presented below:

G C W I I I I I W

C W I I I I I W C

G C W I I I I I W

G G C W I I I I I

G C W I I I I I W

G C W I I I I I W

C W I I I I I W C

W I I I I I W C G

I I I I I W C G G

W I I I I I W C G

W I I I I I W C G

C W I I I I I W C

G C W I I I I I W

G G C W I I I I I

G G C W I I I I I

G G G C W I I I I

G G G G C W I I I

G G G C W I I I I

G G G C W I I I I

G G G G C W I I I

G G G G C W I I I

G G G G C W I I I

G G G C W I I I I

G G G G C W I I I

G G G C W I I I I

G G G G C W I I I

G G G C W I I I I

134

G G C W I I I I I

G G G C W I I I I

G G G C W I I I I

G G C W I I I I I

G G C W I I I I I

G G C W I I I I I

G G C W I I I I I

G G C W I I I I I

G C W I I I I I W

G G C W I I I I I

G C W I I I I I W

G C W I I I I I W

G C W I I I I I W

C W I I I I I W C

W I I I I I W C G

C W I I I I I W C

W I I I I I W C G

I I I I I W C G G

W I I I I I W C G

W I I I I I W C G

W I I I I I W C G

I I I I I W C G G

I I I I I W C G G

I I I I I W C G G

I I I I W C G G G

I I I I I W C G G

W I I I I I W C G

I I I I I W C G G

W I I I I I W C G

I I I I I W C G G

W I I I I I W C G

135

C W I I I I I W C

C W I I I I I W C

G C W I I I I I W

G C W I I I I I W

C W I I I I I W C

G C W I I I I I W

G G C W I I I I I

G G C W I I I I I

G C W I I I I I W

G C W I I I I I W

G C W I I I I I W

G C W I I I I I W

G C W I I I I I W

G G C W I I I I I

G G C W I I I I I

G C W I I I I I W

G C W I I I I I W

C W I I I I I W C

C W I I I I I W C

G C W I I I I I W

G C W I I I I I W

G G C W I I I I I

G G C W I I I I I

G G G C W I I I I

G G C W I I I I I

G G C W I I I I I

G G C W I I I I I

G C W I I I I I W

C W I I I I I W C

C W I I I I I W C

C W I I I I I W C

136

W I I I I I W C G

I I I I I W C G G

W I I I I I W C G

I I I I I W C G G

W I I I I I W C G

W I I I I I W C G

C W I I I I I W C

C W I I I I I W C

G C W I I I I I W

C W I I I I I W C

G C W I I I I I W

137

D.4 Results Data (Output)

The first 100 vectors of the previous testing file are overlaid with the represen-

tation ‘O’ (for BackTalk’s driving) as output by the Effector Nodes to the simulated

car below:

G C W I I O I I W

C W I I O I I W C

G C W I I O I I W

G G C W I I O I I

G C W I I O I I W

G C W I I O I I W

C W I I O I I W C

W I I O I I W C G

I I O I I W C G G

W I I O I I W C G

W I I O I I W C G

C W I I O I I W C

G C W I I O I I W

G G C W I I O I I

G G C W I I I O I

G G G C W I I O I

G G G G C W O I I

G G G C W O I I I

G G G C W I O I I

G G G G C W I O I

G G G G C W O I I

G G G G C O I I I

G G G C W I O I I

G G G G C W I O I

G G G C W I O I I

G G G G C O I I I

138

G G G C W I O I I

G G C W I I I O I

G G G C W I O I I

G G G C W O I I I

G G C W I I O I I

G G C W I I O I I

G G C W I I O I I

G G C W I I O I I

G G C W I I O I I

G C W I I O I I W

G G C W I I O I I

G C W I I O I I W

G C W I O I I I W

G C W I O I I I W

C W I I O I I W C

W I I O I I W C G

C W I I O I I W C

W I I O I I W C G

I I O I I W C G G

W I I O I I W C G

W I I I O I W C G

W I I I O I W C G

I I I O I W C G G

I I O I I W C G G

I O I I I W C G G

I I O I W C G G G

I I I O I W C G G

W I I I O I W C G

I I I O I W C G G

W I I I O I W C G

I I I O I W C G G

139

W I I I O I W C G

C W I I O I I W C

C W I I O I I W C

G C W I I O I I W

G C W I O I I I W

C W I I O I I W C

G C W I I O I I W

G G C W I I O I I

G G C W I I I O I

G C W I I I O I W

G C W I I O I I W

G C W I O I I I W

G C W I O I I I W

G C W I O I I I W

G G C W I O I I I

G G C W I I O I I

G C W I I O I I W

G C W I O I I I W

C W I I O I I W C

C W I I O I I W C

G C W I I O I I W

G C W I O I I I W

G G C W I O I I I

G G C W I I O I I

G G G C W I I O I

G G C W I I O I I

G G C W I O I I I

G G C W I I O I I

G C W I I O I I W

C W I I O I I W C

C W I I O I I W C

140

C W I I O I I W C

W I I O I I W C G

I I O I I W C G G

W I I O I I W C G

I I O I I W C G G

W I I O I I W C G

W I I I O I W C G

C W I I O I I W C

C W I I O I I W C

G C W I I O I I W

C W I I O I I W C

G C W I I O I I W

D.5 Post Testing Brain-dump Data (Output)

The output below represents the sequences of invariant representations learned

by the Top Node of Qualibaer after testing:

Number of sequences learned: 13

Seq#:0 = [0, 0, 0]

Seq#:1 = [0, 1, 2, 3, 4, 3, 2, 1, 0]

Seq#:2 = [0, 5, 6, 7, 8, 7, 6, 5, 0]

Seq#:3 = [5, 5, 5, 0]

Seq#:4 = [1, 1, 0]

Seq#:5 = [6, 6, 6]

Seq#:6 = [8, 5, 0]

Seq#:7 = [2, 4, 4, 4]

Seq#:8 = [4, 1, 0]

Seq#:9 = [2, 2, 2]

Seq#:10 = [6, 8, 8, 8]

Seq#:11 = [7, 5, 0]

Seq#:12 = [3, 1, 0]

141

Bibliography

1. Ahmad, S. “A Technical Overview of NuPIC”, 2007.
URL http://www.numenta.com/for-developers/education/

NuPIC Technical Overview.pdf.

2. Bishop, M. and M.A. Bishop. Computer Security: Art and Science. Addison-Wesley
Professional, 2003.

3. Calvin, W.H. “The Emergence of Intelligence”. Scientific America, Inc., 1998.

4. Carriero, N. and D. Gelernter. “A computational model of everything”. Communica-

tions of the ACM, 44(11):77–81, 2001.

5. Fine, S., Y. Singer, and N. Tishby. “The Hierarchical Hidden Markov Model: Analysis
and Applications”. Machine Learning, 32(1):41–62, 1998.

6. Franz, Maj. T.P., Maj. M.F. Durkin, Maj. P.D. Williams, Maj. (Ret) R.A.
Raines, and Lt Col(Ret) R.F. Mills. “Defining Information Operations
Forces: What Do We Need?” Air & Space Power Journal, 2007. URL
http://www.airpower.maxwell.af.mil/airchronicles/apj/apj07/sum07/franz.html.
Information extracted is unclassified.

7. George, Dileep and Numeta Inc. Bobby Jaros. “The HTM Learn-
ing Algorithms. numenta.[en ĺınea]”. Technical White Paper, Numeta

Inc, 2007. URL http://www.numenta.com/for-developers/education/

Numenta HTM Learning Algos.pdf.

8. Hare, F. “Five Myths Of Cyberspace And Cyberpower”. SIGNAL-FALLS CHURCH

VIRGINIA THEN FAIRFAX–, 61(10):89, 2007.

9. Hawkins, J. “Why Can’t a Computer be more Like a Brain?” Spectrum, IEEE,
44(4):21–26, 2007.

10. Hawkins, J., D. George, and N. Inc. “Hierarchical Temporal Memory. Concepts, Theory
and Terminology. numenta.[en ĺınea]”. Technical White Paper, Numeta Inc, 2007. URL
http://www.numenta.com/ Numenta HTM Concepts.pdf.

11. Hawkins, Jeff and Sandra Blakeslee. On Intelligence. Times Books, 2004. ISBN
0805074562.

12. Hecht-Nielsen, R., HNC Inc, and CA San Diego. “Theory of the backpropagation neural
network”. Neural Networks, 1989. IJCNN., International Joint Conference on, 593–605,
1989.

13. Heckerman, D., D. Geiger, and D.M. Chickering. “Learning Bayesian networks: The
combination of knowledge and statistical data”. Machine Learning, 20(3):197–243, 1995.

14. Inc, Numenta. “Official Website”, 2007. URL http://www.numenta.com.

15. Inc., Numeta. “Numenta Platform for Intelligent Computing Programmers
Guide”. Technical NuPIC Programming Guide, Numeta Inc, 2007. URL
http://www.numenta.com/for-developers/education/ nupic prog guide.pdf.

142

16. Inc., Numeta. “Problems that Fit HTMs. numenta.[en ĺınea]”. Technical White Pa-

per, Numeta Inc, 2007. URL http://www.numenta.com/for-developers/education/

ProblemsThatFitHTMs.pdf.

17. Inc., Wikimedia Foundation. “Wikipedia: The Free Encyclopedia”. Encyclopedia on-
line, 2007. URL http://en.wikipedia.org.

18. Jang, J.S.R. and C.T. Sun. “Neuro-fuzzy modeling and control”. Proceedings of the

IEEE, 83(3):378–406, 1995.

19. Jensen, F.V. Bayesian Networks and Decision Graphs. Springer, 2001.

20. Kitchin, R.M. “Towards geographies of cyberspace”. Progress in Human Geography,
22(3):385–406, 1998.

21. Lamont, G.B. “Lecture Notes/Handouts/Example Reports”, 2007. CSCE686.

22. Li, J., RM Gray, and RA Olshen. “Multiresolution image classification by hierarchical
modeling with two-dimensional hidden Markov models”. Information Theory, IEEE

Transactions on, 46(5):1826–1841, 2000.

23. Mahoney, M. and P.K. Chan. “PHAD: Packet Header Anomaly Detection for Identifying
Hostile Network Traffic”. Florida Institute of Technology Technical Report CS-2001-04,
2001.

24. Mahoney, M.V. and P.K. Chan. “An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection”. RAID 2003, 220–237, 2003.

25. Merriam-Webster. “Merriam-Webster Online Dictionary”. Dictionary on-line, 2007.
URL http://www.merriam-webster.com/.

26. Mills, R. “CSCE 525 - Intro to Information Warfare Course Slides”. CD-ROM, 2007.

27. Neisser, U., G. Boodoo, T. Bouchard, A. Wade Boykin, N. Brody, S. Ceci, D. Halpern,
J. Loehlin, R. Perloff, R. Sternberg, et al. “Intelligence: Knowns and Unknowns”,
1996. URL http://faculty.mwsu.edu/psychology/Laura.Spiller/4503 Tests/

intelligence knowns and unknowns.pdf.

28. Phister Jr, P.W., D. Fayette, and E. Krzysiak. “CyberCraft: Con-
cept Linking NCW Principles with the Cyber Domain in an Urban Oper-
ational Environment”. MILITARY TECHNOLOGY, 31(9):123, 2007. URL
http://www.au.af.mil/au/awc/awcgate/afrl/cybercraft.pdf.

29. Rabinovich, A., A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie. “Objects in
Context”. unknown, 2007.

30. Ricard, M. and S. Kolitz. “The ADEPT Framework for Intelligent Autonomy”. Research

and Technology Organization: Technical Publications, RTO-EN-022, 2002.

31. Searle, J.R. “Minds, brains, and programs”. Behavioral and Brain Sciences, 3, 1980.

32. Stevens, Capt. Michael. Use of Trust Vectors in Support of the CyberCraft Initiative.
Master’s thesis, Air Force Institute of Technology, 2007.

33. of Technology: Lincoln Laboratory, Massachusetts Institute. “Official Website”, 2001.
URL http://www.ll.mit.edu/IST/ideval/.

143

34. Turing, AM. “Computing Machinery and Intelligence”. Mind, 59(236):433–460, 1950.

35. US Air Force. Cyberspace as a Domain In which the Air Force Flies and Fights, 2006.
URL http://www.af.mil/library/speeches/speech.asp?id=283.

144

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2008 Master’s Thesis Sept 2006 — Mar 2008

Using Hierarchical Temporal Memory
for Detecting Anomalous Network Activity

N/A

Gerod M. Bonhoff, 1Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management(AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/08-04

Dr. Steven K. Rogers
USAF AFRL/RY
2241 Avionics Circle
Area B Bldg 620
WPAFB, OH, 45433
DSN 674-9891 (steven.rogers@wpafb.af.mil)

Approval for public release; distribution is unlimited.

This research is motivated by the creation of intelligently autonomous cybercraft to reside in the
intangible environment of cyberspace and maintain domain superiority. Specifically, this paper offers 7 challenges to the
development of such a cybercraft. The focus is analysis of the claims Hierarchical Temporal Memory (HTM). In
particular, HTM theory claims to facilitate intelligence in machines via accurate predictions. It further claims to be able
to make accurate predictions of unusual worlds, like cyberspace. The primary objective is to provide evidence that HTM
facilitates accurate predictions of unusual worlds. The second objective is to lend evidence that prediction is a good
indication of intelligence. A commercial implementation of HTM theory is tested as an anomaly detection system and its
ability to define network traffic (a major aspect of cyberspace) as benign or malicious is evaluated. Through the course of
testing the performance of this implementation is poor. An independent algorithm is developed from a variant
understanding of HTM theory. This alternate algorithm is independent of cyberspace and developed solely (but also in a
contrived abstract world) to lend credibility to the use of prediction as a method of testing intelligence.

Anomaly detection, prediction, cyberspace, hierarchical temporal memory, Bayesian network

U U U UU 144

Lt Col (Ret) Robert F. Mills, PhD, AFIT/ENG

(937) 255–3636, ext 4527 (robert.mills@afit.edu)

	Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity
	Recommended Citation

	C:/Documents and Settings/WilyPuma/Desktop/ToBurn/Thesis/LaTeX/Official/AFIT.dvi

