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Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by
enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of
communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured
data. *e Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has
shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of
“winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are
computed between exemplars and PVs, and PVs are iteratively moved to accurately represent the data. GRLVQI extends LVQ
with a sigmoidal cost function, relevance learning, and PV update logic improvements. However, both LVQ and GRLVQI are
limited due to a reliance on squared Euclidean distance measures and a seemingly complex algorithm structure if changes are
made to the underlying distance measure. Herein, the authors (1) develop GRLVQI-D (distance), an extension of GRLVQI to
consider alternative distance measures and (2) present the Cosine GRLVQI classifier using this framework. To evaluate this
framework, the authors consider experimentally collected Z-wave RF signals and develop RF fingerprints to identify devices.
Z-wave devices are low-cost, low-power communication technologies seen increasingly in critical infrastructure. Both classi-
fication and verification, claimed identity, and performance comparisons are made with the new Cosine GRLVQI algorithm. *e
results show more robust performance when using the Cosine GRLVQI algorithm when compared with four algorithms in the
literature. Additionally, the methodology used to create Cosine GRLVQI is generalizable to alternative measures.

1. Introduction

Cyber-physical systems (CPSs) are increasingly found in
critical infrastructure (CI) applications to enable the in-
dustrial Internet of *ings (IoT), with ever-increasing se-
curity implications (e.g., [1]). CPS in industrial uses, e.g.,
energy systems, integrates computing, communications, and
control and must be dependable, safe, and secure and enable
real-time operations [2]. Due to the gravity of CI systems,
accurate identification and authentication of communica-
tion devices is important. Radio frequency (RF) finger-
printing extracts RF signals and develops classifier models to
provide discrimination between communication devices

[3, 4]. RF Distinct Native Attributes (RF-DNA) finger-
printing extends this general process by developing statis-
tical features from regions of RF signals and has been shown
to robustly enable biometric-like identification at the serial
number level [4]. For this task, one needs classifier algo-
rithms from which one can build models to discriminate
between classes based on minute differences, as well as
providing reliable authentication during masquerade attacks
[4, 5].

Recent advances in classifier applications for RF fin-
gerprinting include (1) discriminant analysis, (2) General-
ized Relevance Learning Vector Quantization Improved
(GRLVQI), (3) learning from signals (LFS), and (4) random
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forests [6, 7]. Of these methods, the GRLVQI is one of the
most robust methods, but algorithmically, GRLVQI has
limitations that need to be addressed when considering the
minute variations inherent when discriminating devices as
the serial number level.

GRLVQI and the LVQ family of algorithms, in general,
are gradient-descent-based algorithms that compute a dis-
tance from each exemplar to the nodes, termed prototype
vectors (PVs), and then find the nearest PV to the exemplar
[8]. *e standard distance measure in GRLVQI, and all LVQ
algorithms, is the linear squared Euclidean distance measure
[9]. However, Euclidean distances present limitation because
they are adversely affected by high levels of dimensionality
[10]. In addition to this, Euclidean distances are scale variant
while being translational invariant [11]; alternatively, for
example, a cosine distance is translational variant but scale
invariant [11]. A measure that is scale invariant but trans-
lational variant provides a potential to enable better clas-
sification of groups which differ based on minute,
fingerprint-like variations.

*is work extends GRLVQI, and LVQ in general, to use
a cosine distance measure. *is is a nontrivial modification
since the distance measure is an implicit part of the cost
function in all LVQ algorithms. Updating LVQ algorithms
for alternative distance measures thus requires computing
the first derivative (gradient) of the new distance measure to
appropriately incorporate it into a revised cost function.*is
is an important matter to consider and often neglecting, e.g.,
[12–15]. *is paper addresses this limitation by presenting
GRLVQI-D (distance) which is a straightforward framework
for incorporating distance measure extensions of GRLVQI
and LVQ in general, with an example using a cosine distance
measure. Modifying GRLVQI is notably complex since it
includes multiple embellishments, e.g., both a sigmoid-based
cost function and a relevance learning approach. *e new
Cosine GRLVQI classifier is then applied to an example CPS
application in the form of RF fingerprinting an experi-
mentally collected Z-wave wireless personal area network
(WPAN) dataset. Classification results show that Cosine
GRLVQI offers a distinct performance advantage over the
original GRLVQI, as well as over (1) the original GRLVQI
with optimized settings and (2) MDA.

*is paper is organized as follows: Section 2 discusses the
CPS environment and the need for reliable CPS identifi-
cation methods. Section 3 discusses LVQ algorithms in
general and GRLVQI in specific. Section 4 develops a
straightforward approach to changing the distance measures
in GRLVQI to any differentiable measure, with a specific
example presented using cosine distance. Finally, results are
presented in Section 5 showing a distinct classification
performance advantage when using cosine GRLVQI over the
baseline squared Euclidean distance method. Section 6 then
concludes the paper.

2. Cyber-Physical System (CPS)
Device Identification

CPS serve as a backbone for IoT connectivity ranging from
critical infrastructure to home automation. Of interest is

adopting a biometric-inspired approach, which involves
three important steps: library creation, classifier model
development, and classifier model verification [16]. Library
creation involves selecting and measuring appropriate sig-
natures, classifier model development involves selecting
appropriate algorithms which can discriminate between
signatures, and classifier model verification involves the
robustness of the trained classifier to a claimed identity.
Assembled effectively, a library and quality classifier model
facilitate characterizing the system and understanding
normal operations, while the verification approach enables
monitoring for intrusion detection and thus fits into general
autonomic visions of self-protecting IoT systems [17].

Security in CPS largely focuses on bit-centric Network
(NKW) layer and Media Access Control (MAC) sublayer
improvements [18]. One can view the various security
measures as [18]

(1) “Something you know” (NWK—encryption keys)
(2) “Something you have” (MAC—MAC address)
(3) “Something you are” (PHY—RF fingerprints)

Such commonsense understandings relate how bit-level
device identification credentials are easily spoofed and
exploited by hackers. In a biometric understanding, one can
consider aMAC address as the claimed identity to be verified
using PHY-layer knowledge.

PHY-based security measures provide one remedy to
these deficiencies and operate by either (1) incorporating
physically traceable components to devices [19] or (2) RF
fingerprinting which exploits inherent characteristics of the
signal [20, 21]. Herein, RF fingerprinting is primarily of
interest since it does not require retrofitting CPS devices or
changing well-established CPSmanufacturing approaches to
include physically traceable components.

2.1. Radio Frequency (RF) Fingerprinting. Fingerprinting in
communication systems considers physical layer (PHY)
attributes, which are intrinsic to a specific device. RF fin-
gerprinting extracts statistical features from RF signals and
enables biometric-like identification of communication
devices [3, 4]. *us, principles from biometrics (see [16, 22])
and digital forensics (see [23]) are leveraged to develop,
select, and identify RF features which have the general
biometric qualities of universality, distinctiveness, perma-
nence, and collectability [24]. A variety of RF fingerprinting
approaches exist to accomplish this, which includes both
transient and steady-state methods [24, 25].

Steady-state methods are of interest herein and consider
specific segments of RF emissions. Of interest in steady-state
RF fingerprinting is comparing emissions from predefined
signal characteristics, e.g., preambles, to discriminate devices
via unique features, i.e. from production variations [4, 26].
*us, one can be divorced from attack modes, e.g., the types/
volumes of data being transmitted, and focus on identifying
individual devices based on minute variations in the selected
region [24].

Of interest, herein, is employing the systematic RF
Distinct Native Attributes (RF-DNA) approach [4], which
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adopts the steady-state methodology. RF-DNA finger-
printing, conceptualized in Figure 1, works by (1) extracting
the region of interest (ROI) of a signal, (2) performing signal
processing to extract features (instantaneous amplitude (a),
phase (ϕ), and frequency (f )) from the ROI, (3) computing
statistical fingerprint features (variance (σ2), skewness (c),
and kurtosis (κ)) from the signal processing features, and (4)
developing and deploying classifier models with these fea-
tures [24].

In the RF-DNA fingerprinting process conceptualized in
Figure 1, RF fingerprints are computed as statistical features
from time-domain responses of instantaneous amplitude
(a), phase (ϕ), and frequency (f ) [4]. Each response is then
divided into NR contiguous, and equal length, intervals [4].
Within each interval statistics of variance (σ2), skewness (c)
and kurtosis (κ) are computed along with additional features
for the entire response [4].

2.2. Classification Algorithms for RF Fingerprinting. To dis-
criminate between RF fingerprints and provide accurate
identification of individual CPS devices, one needs to de-
velop and train an effective classifier model. Herein, su-
pervised classification is considered to develop a classifier
model that takes labelled data, i.e. RF signatures and known
identities, from the library of authenticated devices. From
here, pattern recognition algorithms are employed to de-
velop a mapping that separates the known identities (or
groups) [27].

A variety of classifier algorithms have been considered
for RF fingerprinting, see [6] for one example. Both GRLVQI
and Multiple Discriminant Analysis (MDA) have seen
consistent and successful use in RF fingerprinting dis-
crimination [6]. MDA is considered, consistent with [6], to
evaluate baseline performance. MDA operates via an
eigenspace projection to find optimal linear separation
between groups, where the underlying process extends
Fisher’s discriminant analysis to multiple classes [6]. MDA is
computationally inexpensive, easy to interpret, and com-
petitive with more complex algorithms [6]. Conversely,
GRLVQI is more computationally intensive, but various
applications can benefit from the nonlinear mappings in-
herent in GRLVQI and thus GRLVQI outperforms MDA
depending on application [6].

Notably, GRLVQI and machine learning algorithms in
general are highly sensitive to hyperparameter settings, such
as learning rates and architecture size [28]. Although work
has considered finding optimal settings for such algorithms,
e.g., GRLVQI-SD, GRLVQI with optimized hyper-
parameters for Stochastic Optimization via Sequential De-
sign of [28], such approaches are computationally costly
with dozens of iterations needed to obtain improved algo-
rithm settings. Additionally, such highly tuned hyper-
parameter values are often specific to the scope of the data
and thus not useable on other datasets. Of interest herein is
considering the well-known GRLVQI classifier in this do-
main and improving them to be a better fit to data that varies
in only small, minute, dimensions, e.g., RF fingerprinting
data. *is extended classifier algorithm will then be

compared against MDA, the baseline GRLVQI algorithm,
and the optimized GRLVQI-SD.

2.3. Classification and Verification Performance. Assessing
classifier performance involves using the appropriate per-
formance measures. In RF fingerprinting and biometrics, in
general, classification considers authorized fingerprints,
which best discriminates them in a “1-vs-many” situation
[24]. In contrast to this, verification takes the trained
classifier model and a claimed identity, e.g., from a MAC
address, and evaluates that claim as a device attempts to gain
network access, e.g., a “1-vs-1” assessment [24]. Classifica-
tion accuracy is considered as average percent correctly
classified versus SNR (dB) operative points. Verification is
considered as percentage correctly authorized in a one vs
one claimed MAC address identity scenario [29]. Within
both performance evaluation paradigms, a few measures are
considered.

2.3.1. Classification Accuracy Measures. To evaluate classi-
fication performance, a plot of average percent correct
classification (%C) versus SNR is considered [29]. At each
discrete SNR point on the plot, a classifier model was de-
veloped and trained for data at that SNR level. To provide for
assessment and comparison of methods, both a gain mea-
sure and a Relative Accuracy Percentage (RAP) measure can
be used [29].

Gain is defined, per [24, 29] as the reduction in required
SNR, in dB, for a method to achieve the same %C as a
reference method. Generally, gain is evaluated at an arbitrary
benchmark of %C� 90% accuracy [24, 29]. As stated in the
study by Bihl et al. [29], gain values, GSNR are interpreted as
follows:

(1) GSNR< 0.0 (negative gain), wherein a given method
underperforms a baseline method by achieving the
same %C as the baseline at a higher SNR

(U) Region of interest (ROI)

Signal of interest

1 2 3 4 5 NR

NR + 1

FR3

Arbitrary feature sequence

σ2–Variance
γ–Skewness
κ–Kurtosis

Figure 1: Conceptualization of RF fingerprinting from a given
signal’s region of interest (ROI).

Security and Communication Networks 3



(2) GSNR � 0.0, wherein a given method is in-
distinguishable in performance to the baseline
method by achieving the same %C at the same SNR

(3) GSNR> 0.0 (positive), wherein a given method out-
performs a baseline method by achieving the same%
C at a lower SNR

However, GSNR can be insufficient for relative perfor-
mance comparisons because it only considers one part of the
%C vs. SNR curve [29]. To alleviate this deficiency, the authors
introduced the RAPmeasure in the study by Bihl et al. [29] to
provide classifier assessment over the entire curve.

RAP measures are computed by first taking the %C vs.
SNR curve and computing the area under this curve via
trapezoidal approximation [29]. *is is known as the Area
Under Classification Curve (AUCC). Since the x-axis is not
bounded on a simple 0 to 1 interval, it can be nonintuitive to
interpret raw AUCC values. *us, the RAP measure enables
relative comparisons by considering

RAPmethod �
AUCCmethod

AUCCbaseline
, (1)

where AUCCmethod is the AUCC of a given method and
AUCCbaseline is the AUCC of the baseline algorithm [29]. As
developed in the study by Bihl et al. [29], RAP is interpreted
as follows:

(1) RAP< 1.0 indicates that a given method achieves
overall lower %C than the baseline across all SNR

(2) RAP� 1.0, a given method achieves an overall %C
comparable to the baseline

(3) RAP> 1.0 indicates that a given method achieves
overall better %C than the baseline across all SNR

2.3.2. Verification Accuracy Measures. For verification,
signatures are considered in a claimed identity scenario, e.g.,
authorized user attempting to access the network or a
masquerade attack [5], where an “unknown” device claims
the bit level credentials (e.g., MAC address). *e RF fin-
gerprint features are computed for this signature and the
classifier model is used to compare these RF fingerprints
against trained model. Verification performance is evaluated
at a specified SNR, typically at the lowest SNR a %C� 90%
accuracy threshold, by taking the trained classifier model
and querying it [29]. For evaluation, Receiver Operating
Characteristic (ROC) curves are used, as described in Bihl
et al. [24] and Dubendorfer et al. [30]. For authorized de-
vices, ROC curves are plotted as True Verification Rate
(TVR) versus False Verification Rate (FVR).

From the ROC curves, two approaches are used to
evaluate performance, per the study by Bihl et al. [29]:

(1) *e percentage authorized (%Aut) at an arbitrary
TVR≥ 90% at FVR≤ 10% threshold

(2) *e mean area of the ROC curves (AUCM)

*e AUCM approach was developed in the study by Bihl
et al. [29] to avoid dichotomous performance results since%
Aut reflects coarse sampling.

3. Learning Vector Quantization
(LVQ) Classifiers

LVQ is an artificial neural network (ANN) approach that
classifies data via lower-dimensionality maps. LVQ provides
a supervised learning extension unsupervised self-organiz-
ing maps (SOMs) or vector quantization (VQ). Epistemo-
logically, SOM algorithms are self-organizing ANNs [31],
and a general example is conceptualized in Figure 2, which
compares a typical three layer (input, hidden, and output)
ANN in Figure 2(a) with a typical LVQ network in
Figure 2(b). Of note is that the LVQ network does not have
an outer layer, which maps the response of a typical ANN to
the output class; LVQ networks operate differently and work
to move the nodes, prototype vectors (PVs), to represent the
underlying data through an iterative training process [8, 33].
LVQ considers each PV as associated with a specific class
resulting in a “winner take all” approach where one and only
one PV will win for each exemplar [8, 34–38].

*e operation of LVQ is as follows: a distance measure is
used to compute the distance of a given exemplar to all PVs.
*e PV that is closest to the exemplar is then selected for
modification. If this PV has the same class label as the
exemplar, it is moved closer to the exemplar; however, if the
exemplar is misclassified, the PV is moved away [8]. *e
update process for PVs employs a general gradient descent:

w(t + 1) � w(t) − ε(t)∇C(w(t)), (2)

to train PVs with t being the training iteration number, ε(t)

being the learning rate, w(t) being a given PV, C(w(t))

being the cost function, and ∇ implying the gradient
[6, 9, 39]. *e cost function in LVQ is the squared Euclidean
distance used to find the distance between an exemplar and
the PVs. Generally, LVQ algorithms train PVs by moving
correctly classified PVs closer to a given class, and in-
correctly classified PVs are moved away from a given class.
*us, LVQ is considered as a nearest neighbor approach to
learning, and the nearest PV is iteratively moved to char-
acterize the data [40].

Various extensions and embellishments of LVQ have
been developed, differing in cost function, update logic, and
the inclusion of additional computational steps (e.g., rele-
vance computations) [41]. Kohonen [42] first extended LVQ
by creating variants (e.g., LVQ2 and LVQ2.1) that improved
the PV update strategy to updates involving both in-class and
nearest out-of-class PVs. Further major LVQ variations are
reflected through the addition of letters to the LVQ acronym,
c.f. [41, 43]. One such algorithms is GRLVQI, which is
decoded as follows: G (generalized): a sigmoidal cost function
[44, 45], R (relevance): relevance learning [39, 46], and I
(improved): PV update logic and operation [9, 47].

Relevance LVQ (RLVQ) extended LVQ by incorporating
a relevance weight for each data feature, which is learned
during the training process [46]. GLVQ extends LVQ by
improving class boundary approximations through the in-
corporation of a sigmoid cost function [44]. GRLVQ of
Hammer and Villmann [39] combined the innovations of
both GLVQ and RLVQ to create a GLVQ algorithm that
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learned the input dimension weights to provide relevance
information regarding each feature. GRLVQ was then
further extended by Mendenhall [9] through improvements
resulting in the GRLVQI algorithm. In GRLVQI, GRLVQ is
extended with the conscience learning of DeSieno [48],
improved PV update logic, and a frequency-basedmaximum
input update strategy [9, 47]. Despite any embellishment
differences, all LVQ algorithms similarly employ the gra-
dient-descent process seen in equation (1) to train PVs via
nearest neighbor approaches.

3.1. Generalized Relevance Learning Vector Quantization
Improved (GRLVQI). GRLVQI has been applied to RF
fingerprinting due to its inherent nonlinearities and po-
tential to better learn nonlinear data manifolds over MDA
and linear methods. For GRLVQ and GRLVQI, the un-
derlying cost function for equation (2) is

C(w(t)) � 

NSamples

m�1
f μ x

m
( ( , (3)

where f(μ(xm)) is a sigmoid and ψ are the relevance scores:

f μ x
m

( (  �
1

1 + e− μ xm( )
, (4)

and μ(xm) is a relative distance difference:

μ x
m

(  � τ
dJ − dK( 

dJ + dK( )
, (5)

with τ being a GRLVQI rate (implicitly, in GRLVQ τ � 1),
and dJ and dK being distances between the exemplar xm and
the in-class PV, wJ and out-of-class PV, wK, respectively
[9, 39]. Nominally, dJ and dK are computed via a squared
Euclidean distance as

d
J,K

� x
m

− w
J,K

����
����
2
. (6)

To determine the PV update expressions for equation (3),
the gradient descent for GRLVQ-type algorithms is then the
gradient by chain and quotient rules multiplied by the learning
rate, ε(t), and a differential shifting. *e process yields

w
J,K

(t + 1) � w
J,K

(t) ±
4ε(t) zf/zμ xm( )( dK,J

dJ + dK( )
2 Ψ · x

m
− w

J,K
 ,

(7)

where the superscript indicates if a positive (+) update, for
in-class PVs, or a negative (–) update, for out-of-class PVs, is
performed. In equation (7), the numerator includes the
distance dK,J, indicating that dK is used for wJ and dJ is used
for wK. Relevance learning in GRLVQI then involves a
further gradient descent:

ψ(t + 1) � ψ(t) − ξ(t)∇C(ψ), (8)

where for a specific q-th feature, the derivative is computed
with respect to the relevance ψ [9] as

ψq � ψq − ξ(t)f′

μ xm

q 
⎛⎝

dK

dJ
λ + dK

λ 
2 x

m
q − w

J
q 

2

−
dJ

dJ
λ + dK

λ 
2 x

m
q − w

K
q 

2⎞⎠.

(9)

4. Distance Extensions for GRLVQ and
GRLVQI Classifiers

Despite the various extensions, GRLVQI, as well as many
LVQ variations, relies on the linear squared Euclidean
distance measure. As noted above, in the introduction,

K–th neuron

Output nodes

x1

xp

x2

x3

x4

(a)

K–th (PV)

x1

xp

x2

x3

x4

(b)

Figure 2: General conceptualization of an LVQ neural network, adapted from [32]. (a) Feedforward neural network. (b) Learning vector
quantization.
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Euclidean distances present limitations because they are (1)
adversely affected by high levels of dimensionality and (2)
scale variant while being translational invariant. Of interest
is thus extending GRLVQI to use non-Euclidean distances.
Focusing on only one distance measure variation is not
efficient, and thus, developing a framework to incorporate
any desired distance measure is of interest. While distance
extensions of GRLVQ were introduced by [49, 50], these
were not easily generalizable. Of interest is thus developing
a straightforward approach to incorporating alternative
distances.

4.1. GRLVQI-D: Distance Extension Framework for GRLVQI.
Because LVQ algorithms are trained using gradient descents,
changing the distance measure necessarily requires com-
puting the first derivative of the distance measure for ap-
propriate inclusion into the cost function. Herein, distance-
based extensions of LVQ, specifically GRLVQ and GRVLQI,
are considered as a gradient-descent process. We can de-
velop GRLVQI-D, a straightforward approach to changing
GRLVQI distance measures by considering the various
derivational pieces that are represented in equation (7).
Using the developed derivative framework, GRVLQ and
GRLVQI could be further extended with any differentiable
distance measure. To accomplish this, we can represent
equation (7) as

w
J,K

(t + 1) � w
J,K

(t) ± cε(t)FμRdDm, (10)

and equation (9) as

ψq � ψq − ξ(t)Fμ Rdd
J,K

− Rdd
J,K

 , (11)

where c is a constant, c� 4 for nominal GRLVQI, and

(1) Fμ � zf/zμ(xm); the component related to the de-
rivative of the cost function and sigmoid equations
(3) and (4)

(2) Rd � dK,J/(dJ + dK)2 ; the component related to the
derivative of the relative distance difference metric
equation (5)

(3) Dm � Ψ(xm − wJ,K) ; the component related to the
derivative of the squared Euclidean distance with
relevance

*us, for example, if one changes the distance measure,
only Dm must be changed in equation (10), whereas the
remainder of the expression is unchanged.

One final extension must be considered. Squared Eu-
clidean distances are always positive and ensures that in
equation (4), μ(xm) ∈ [− 1, +1], which is desirable to avoid
μ(xm) from creating unstable results. Nonsquared distances
do not necessarily ensure a positive distance. *us, the
authors extend equation (5) to

μ x
m

(  � τ
dJ( 

2
− dK( 

2

dJ( )
2

+ dK( )
2 . (12)

*is creates a squared measure to ensure that μ(xm) ∈
[− 1, +1].

4.2. Cosine GRLVQI. As an example of using the straight-
forward GRLVQI-D process presented in Section 4.1, the
authors will use this process to derive a Cosine GRLVQI
algorithm. As mentioned previously, a cosine distance could
be useful for discriminating exemplars that are similar in
operational characteristic but differ based on minute
characteristics, e.g., biometrics. A cosine distance measure is
a similarity measure that computes the cosine angle of two
vectors [51], i.e. a measure of orientation and not magnitude
of the distance (translation variance but scale invariance).
*e cosine distance measure can be formulated as

dcos � 
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Following the discussion in Sections 3.1 and 4.1, a rel-
evance learning can be formulated as
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with its derivative via the quotient rule being
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Considering equation (14) with a derivative for relevance
yields the following:
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Since cosine distance measures do not ensure a positive
distance, the formulation of equation (12) will be used.
Applying the quotient rule to equation (16) with
v � (dJ)2 + (dK)2, u � (dJ)2 − (dK)2, and v2 � ((dJ)2+

(dK)2)2 yields
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+ dL( )
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2, (17)

where z(dJ,K)2/ zwJ,K is the product of 2dJ,K and equation
(11) for Cosine. Taking Dm � z/zwJ,K[(dcos)

2] and inserting
equation (17) into equations (10) and (11) produces the
Cosine GRLVQI update expressions.

5. Application and Example Results

To enable the industrial IoT, CPS devices are finding in-
creasing use in critical infrastructure, smart metering, and
home automation [2, 52]. CPS devices employ either open or
proprietary protocols, with open protocols offering more
aftermarket security options, but possibly more threats,
while proprietary protocols offer “security through obscu-
rity,” but less additional aftermarket security options [53].
Of the proprietary wireless protocols, the most commonly
used are Z-wave, which is based on the International
Telecommunications Union—Telecommunications (ITU-T)
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G.9959 recommendation [52]. Since Z-wave is known to
have security vulnerabilities [54], vetting the claimed
identity of Z-wave devices through RF fingerprinting is
important.

5.1. Z-Wave Devices. Z-wave wireless communication de-
vices are low-cost WPAN technologies used primarily for
residential automation and similar in operations yet simpler
to work with when compared with previously described
devices [55–58]. However, Z-wave is generally considered as
less secure than other WPAN technologies due to (1) an
original lack of built in encryption [56] and (2) a proprietary
standard that makes it difficult for third parties to provide
enhancements [58].

Integration of Z-wave devices with IoT largely involves
vendors. To produce a Z-wave device, and thus gain access to
the proprietary Z-wave standard, a vendor must coordinate
sign a Non-Disclosure Agreement (NDA) with Sigma De-
signs [59]. Vendors then gain access to hardware and
software to develop Z-wave [59]. However, without a signed
NDA, only general characteristics of the Z-wave protocol are
known [59].

General Z-wave signal characteristics are known and
presented in Figure 3 and Table 1. To facilitate incorporation
of Z-wave with other communication devices, Z-wave fol-
lows the ITU-T G.9959 protocol at the physical layer (PHY)
and medium access (MAC) layer [61]. However, the routing
and application layer specifications are proprietary. *us,
third-party security at the network and routing levels is very
difficult.

To identify Z-wave devices, Z-wave communications
follow a predefined preamble and Start of Frame (SoF) [60],
which is conceptualized in the PHY packet structure seen in
[56, 58, 60]. Since the preamble and SoF should not vary
from device to device, of interest is collecting such regions of
interest for comparison and fingerprinting of devices at a
serial number level.

5.2. Signal Collection and Dataset Generation. Consistent
with [54, 62], ND � 3 Aeotec Z-Stick S2 WPAN devices were
considered in this research. Experimentally, each device was
placed 10 cm from a vertically oriented LP0410 log periodic
antenna [54]. *e antenna was connected via a Gigabit

Ethernet cable to an NI USRP-2921 software defined radio
with in-phase and quadrature (I/Q) samples collected as
16-bit integers, sampled at 2 Msps [62]. Amplitude-based
leading edge detection with a − 6 dB threshold was used for
transmission (burst) detection [54]. Using this setup, a total
of NP � 230 preamble signals (the first segment of the signal
per Figure 3(b), and the first 8.3ms of the signal) were
collected per device [54].

*e collected data had Signal-to-Noise Ratio (SNR) at
SNRC � 24.0 dB and was like filtered [54]. To provide mul-
tiple operating points to consider noisy environments,
Additive White Gaussian Noise (AWGN) was added to
collected signals to achieve SNR ∈ (0 24) dB operating points
in 2 dB steps [54]. Since the data collected were for 3 devices,
this research does not consider identity impersonation at-
tacks by “rogue” devices, and all devices were considered as
“authorized.”

Following the RF-DNA fingerprinting process in Sec-
tion 2.1, Z-wave fingerprint generation parameters in-
cluded the NTD � 3 (a, ϕ, f ) time-domain responses. Within
each response, NR � 20 regions per signal were considered,
andNS � 3 (σ2, c, κ) RF fingerprint statistics were computed
per region. *us, a full-dimensional feature set had
NF � 189 features, which included statistics computed for
each entire region. *e Z-wave fingerprint features were
divided into classifier model development, Training (TNG),
and sequestered model assessment, Testing (TST), datasets
using a 50% split. *us, with ND × NP/2, a total of
NTng � 345 TNG fingerprints and NTst � 345 sequestered
TST fingerprints were available per AWGN realization,
each with 189 features. *e TNG sets were used for

Application layer

Transport layer

Network layer

Data link

Physical (PHY) layer

Application layer

Routing layer

MAC (transfer) layer

Physical (PHY) layer

TCP/IP Z-wave

Vendor
specifications

ITU-T
G.9959

(a)

Home ID Source ID Header Payload

Preamble SoF Payload EoF

Known Z-wave signal characteristics

MAC and
transport
sublayer

PHY
layer 

(b)

Figure 3: Z-wave characteristics: (a) protocol, and (b) signal. Extended from discussions in [56, 58, 60].

Table 1: General Z-wave device characteristics.

Device Z-wave
Standard Proprietary
Frequency 906MHz
Bit rate 40 kbits/s

Security None (200 and 300 series models)
AES 128 (400 series models)

Latency ∼1000ms
Range 30–100m
Message size (bytes) 64 (max)
Topology Star, cluster, mesh

Security and Communication Networks 7



classifier model development with TST sets were used to
confirm results.

5.3.ClassifierAlgorithmPerformance. Classifier models were
developed for the Z-wave dataset using four classifiers: (1)
the proposed Cosine GRLVQI (Section 3.2), (2) MDA, (3)
the baseline GRLVQI of Harmer et al. [6], and (4) the
GRLVQI-SD of Bihl and Steeneck [28]. Consistent
with [24, 62], for these classifiers, the following process of
Algorithm 1 was employed for each SNR.

Hyperparameter settings, e.g., learning rates, are critical
to classifier performance and reproducibility. Developing
and finding high-performing hyperparameter settings is
research in itself [28, 29]. *e hyperparameter settings used
for classifiers in this paper are presented in Table 2. For both
Cosine GRLVQI and the baseline GRLVQI, nominal algo-
rithmic settings were used, consistent with [6], with (1)
ε � 0.025, gradient descent learning rate; (2) ξ � 0.005,
relevance learning rate; (3) c � 2.0, conscience rate 1; (4)
β � 0.35, conscience rate 2; and (E) NPV � 10 PVs per class.
GRLVQI-SD uses settings obtained from Stochastic Opti-
mization via Sequential Design after 28 iterations. MDA has
no distinct operational settings and was performed as de-
scribed in [24].

Following the process of Algorithm 1 for each classifier
presented in Table 2, we first evaluate classification per-
formance at each SNR point. Figure 4 presents the classi-
fication results for each classifier on the sequestered TSTset.
Classification performance was evaluated in Figure 4 as
Average Percent Correct (%C) on the y-axis and SNR (dB)
on the x-axis, consistent with [6, 29]. Visible in Figure 4 is
that both MDA and GRLVQI underperform Cosine

GRLVQI and require higher SNR to achieve the same %C.
GRLVQI-SD is seen to outperform Cosine GRLVQI at only
SNR> 20 dB, where performance of all algorithms is largely
over %C� 90%. Overall, at testing, Cosine GRLVQI is seen
to provide over +6.00 dB gain at 90%C relative to MDA
testing performance, whereas baseline GRLVQI offers only
+3.32 dB gain at 90%C relative toMDA testing performance.

Verification performance is considered in Figure 5
as Receiver Operating Characteristic (ROC) curves. In
Figure 5, models were evaluated at SNR� 20 dB where

Select subset of {amplitude, frequency, phase}
Select subset of {variance, skewness, kurtosis}
Select classifier model {Cosine GRLVQI, GRLVQI, GRLVQI-SD, MDA}
Select classifier hyperparameters
for SNR� 0 to 24 dB in 2 dB steps do

Select training data
Train selected classifier model
Classify test set
Record classification accuracy

end for
Select appropriate SNR and evaluate all possible combinations for
verification accuracy
Record verification accuracy

ALGORITHM 1: Classifier training process for RF fingerprinting.

0 5 10 15 20 25
SNR (dB)

30

40

50

60

70

80

90

100

A
ve

ra
ge

 p
er

ce
nt

 co
rr

ec
t (

%
C)

Cosine GRLVQI, Tst
GRLVQI-baseline, Tst

MDA, Tst
GRLVQI-SD, Tst

Figure 4: Classification performance with average percent correct
versus SNR for testing (Tst) performance for Cosine GRLVQI,
GRLVQI, MDA, and GRLVQI with settings optimized per [28].

Table 2: Classifier hyperparameter settings.

Classifier
Algorithm settings

A B C D E
Cosine GRLVQI (proposed herein) 0.025 0.005 2.5 0.35 10
GRLVQI-SD optimized [28] 0.078 0.016 2.527 0.319 7
GRLVQI (baseline) [29] 0.025 0.005 2.5 0.35 10
MDA [29] N/A N/A N/A N/A N/A
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baseline GRLVQI %C� 90%, consistent with the results and
process of Bihl et al. [54]. Verification performance shows
MDA (dashed grey lines) and Cosine GRLVQI (solid black
lines) both outperforming the baseline GRLVQI (solid grey
lines) and GRLVQI-SD (dashed black lines). Notably,
baseline GRLVQI only correctly authorizes 2 Z-wave de-
vices, missing the third device by a considerable margin, e.g.,
the solid grey line that intersects TVR� 0.80 and FVR� 0.20.

When comparing MDA, Cosine GRLVQI, and
GRLVQI-SD, the results are less clear. *e insert in Figure 5
enlarges the 0–20% FVR and 80–100%TVR range and shows
that the performance of these three classifiers for verification
is very close, and that while only MDA provides 100%
verification accuracy, both Cosine GRLVQI and GRLVQI-
SD only barely miss the dichotomous %Aut threshold for
this experiment. Since dichotomous results, e.g., for ND� 3
devices %Aut ∈ [0, 33, 66, 100], are not always reliable, as
seen inspecting Figure 5, the authors also investigate AUCM
to enable relative performance differences to be evaluated
between competing classifiers.

Table 3 presents performance for training (TNG) and
testing (TST) data and shows an advantage of Cosine
GRLVQI over GRLVQI-SD, GRLVQI, and MDA for

classification. Verification performance in Table 3 was
evaluated with binary grant/deny network access decisions
based on a verification criteria, e.g., TVR≥ 90% at
FVR≤ 10% with %Auth ∈ [0, 33, 66, 100] for ND � 3. When
evaluating AUCM, the results show that these three methods
(MDA, Cosine GRLVQI, and GRLVQI-SD) perform very
similarly in verification performance with Cosine GRLVQI
slightly outperforming all algorithms. As noted in discussing
Figure 5, Cosine GRLVQI and GRLVQI-SD barely miss
%Auth� 100%. Considering Table 3 overall, both MDA and
Cosine GRLVQI outperform the baseline GRLVQI and
GRLVQI-SD, while Cosine GRLVQI provides the best
classification performance for this problem, thus illustrating
the benefit of changing the cost function in GRVLQI.

6. Conclusions

Herein, the authors addressed problems in identifying
cyber-physical systems (CPS) using radio frequency (RF)
emissions. *e authors considered the Generalized Rele-
vance Learning Vector Quantization-Improved (GRLVQI)
classifier algorithm, which is known to accurately classify
RF fingerprint features but underperforms other methods
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Figure 5: Verification performance at SNR� 20 dB for Cosine GRLVQI, GRLVQI, MDA, and GRLVQI with settings optimized per [28].
Inset shows performance in the [0%, 20%] FVR and [80%, 100%] TVR range.

Table 3: Classification and verification performance for each algorithm.

Method

Performance results

Classification Verification at
SNR� 20 dB

GSNR (dB) at %
C� 90% RAP

%Aut AUCM

TNG TST TNG TST
Cosine GRLVQI (proposed herein) +5.23 +6.00 1.14 1.14 66 0.973
GRLVQI-SD optimized [28] +5.16 +5.05 1.16 1.17 66 0.965
GRLVQI (baseline) [29] +3.72 +3.32 1.14 1.13 33 0.936
MDA [29] +1.68 0.00 1.23 1.0 100 0.971
Performance results bolded are the best values and those within 5% of the best values.
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in the literature when protecting against masquerade at-
tacks. Prior work optimized GRLVQI classifier settings to
find improved operating points, but this is computationally
costly and not generalizable. Since GRLVQI, and the LVQ
family of algorithms, revolves around a distance measure to
train their architecture, logically changing this distance
measure can change results. However, LVQ algorithms are
gradient descent based with the distance measure being
related to the cost function of the gradient descent itself,
thus changing the distance measure requires changing the
derivatives. Since this can be complex, it has not been
pursued previously.

*e authors thus developed GRLVQI-D, a straightfor-
ward modularization of the GRLVQI algorithm and de-
veloped an update methodology which facilitates changing
the distance measure of GRLVQI and GRLVQ, as well as
other LVQ algorithms. To illustrate the application of the
update methodology, the authors further developed a Cosine
GRVLQI algorithm. Example results were then then pre-
sented for experimentally collected Z-wave RF data. RF
fingerprints were developed for these devices to create a
biometric library. *en, following a general biometric
process, both classifier model development and identify
verification were considered. Results show that the proposed
Cosine GRLVQI algorithm outperforms both MDA and
baseline squared Euclidean GRLVQI in classification and
verification accuracy. Additionally, the results presented for
Cosine GRLVQI were better than the iteratively obtained
optimal results of GRLVQI-SD, which required 28 iterations
to obtain improved algorithmic settings. Naturally, future
extensions of this work would be to find optimal Cosine
GRLVQI, per the approach of [28].
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