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Abstract 
 

 The purpose of this thesis is to examine the secular effects of the J2 oblateness 

perturbation on close proximity satellites.  The main objective is to analyze the deputy’s 

position and velocity with respect to the chief and adjust the initial conditions of the 

deputy in an attempt to minimize the secular effects of J2 perturbations.  Previous work 

has provided a method of obtaining a closed form solution for J2 invariance with co-

planar orbits.  Therefore, this work will primarily consider deputy orbits that experience 

motion outside of the chief’s orbital plane.   

Upon determining the required initial conditions, the invariance will be verified 

through numerical integration.  The method will be considered successful when it is able 

to reduce secular effects to near numerical tolerances.   
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MINIMIZING SECULAR J2 PERTURBATION EFFECTS ON SATELLITE 

FORMATIONS 

 

I. Introduction 

 

Objective 
The concept of satellite formations opens the possibility for multiple applications.  

One important example is distributed aperture surveillance.  Multiple sensors at different 

locations may observe an object, and the multiple vantage points allow the images to be 

refined.  The result is a finer resolution than the sensors could provide individually.  

Another advantage of a cluster of small satellites would be the distribution of both 

capabilities and redundant systems.  This would increase survivability and reliability by 

distributing redundant, mission critical systems amongst several smaller, individual 

satellites.   

There could also be more flexibility when forced to reassign assets.  If the 

formation has mission capable redundancies distributed amongst several smaller 

satellites, operators would have the option of reassigning redundant systems while 

keeping the primary assets on the current task.  If the formation had a distribution of 

capabilities amongst several satellites, this could also allow flexibility in the case of rapid 

reassignment.  In this situation would be possible to deploy mission critical assets 

quickly.  This would allow these assets to accomplish more time sensitive tasks.   

Meanwhile, if the other assets in the cluster are less time sensitive a smaller, more fuel 

efficient maneuver can be made.  This would allow for the completion of mission 

objectives without consuming more fuel than necessary.   
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While there are many benefits of satellite formations, there are some 

disadvantages, as well.  One disadvantage is the amount of fuel required to maintain the 

formation.  In the presence of perturbation accelerations, formations require significant 

fuel consumption in order to maintain the desired relative trajectories.  For a Low Earth 

Orbit (LEO), the primary perturbations are due to the atmospheric drag, solar pressure, 

and the earth’s oblateness.  While drag forces are an important factor for individual 

satellite dynamics, the satellites would be affected similarly if the satellites were identical 

and maintained the same orientation.  Therefore, the relative position and velocity will 

not be greatly affected.  The perturbation acceleration due to the oblateness of the earth, 

commonly referred to as the J2 perturbation, has the greatest effect on the relative motion 

and, effectively, the rate of fuel consumption.   

It has been proposed that by adjusting the initial conditions of the formation, the 

perturbing accelerations may be reduced.  Because the primary perturbation acceleration 

for LEO orbits is the J2 oblateness perturbation, the objective of this thesis is to determine 

a method of adjusting the initial conditions to minimize the secular effects of the J2 

perturbation. 

Approach 
 

This thesis will attempt to minimize the secular effects of the J2 perturbation 

accelerations while keeping in mind the desired relative geometry.  The problem will be 

presented in the form of a fixed chief orbit and desired Relative Orbital Elements, and the 

solution will include a process of making changes to the desired set of Relative Orbital 

Elements in order to achieve near J2 invariance. 

In order to accomplish the objectives stated above, the approach taken in this 

research was to first describe the secular effects of the J2 perturbation on the formation 
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parameters as a function of the relative geometry and the chief’s Classical Orbital 

Elements (COE).  The parameters used to describe the relative geometry were Relative 

Orbital Elements (ROE), an intuitive set of parameters that describe the size, shape, and 

orientation of the motion relative to the chief, in a manner analogous to how the COE 

describe the orbital motion about the earth.   

Once the secular effects were defined in terms of the ROE, a nonlinear approach 

was developed to compute adjustments in the ROE, which reduced the effects of the 

secular drift. 
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II. Literature Review 
 
 Although the approach investigated in this work provides new insights into the 

effects of J2 perturbations described by ROE, it is by no means the first attempt to 

understand and minimize the effect.  In previous literature, the method is often referred to 

as establishing a “J2 Invariant Formation”, a term first coined by Schaub and 

Alfriend (6:78).  Many others including Wiesel, Breger and How, and Sabitini and 

Tragesser have also added to the literature on this problem.   

J2 Invariance Method    

One method to solve for J2 invariant orbital elements has been established by 

Hanspeter Schaub and Kyle T. Alfriend (6:77-85).  The method determined was based on 

momentum equations found from the first-order expansion of the Hamiltonian with 

respect to J2.  The system produced two equations that are functions of the chief’s 

momentum elements.  These were then converted back into classical orbital elements, 

resulting in expressions that were functions of the chief’s classical orbital elements and 

three orbital element differences:  δa, δi, and δe.  This allows for one of the desired 

values to be fixed and a closed form solution obtained for the other two.   

Though a solution is produced, the method does not allow for a significant 

amount of physical interpretation due to the solution set existing in momentum space.  In 

addition, though this solution was based on a non-circular chief, the solution allows for a 

secular drift in the differences in the argument of perigee.  In the event that the arguments 

of perigee become out of phase for a moderately eccentric chief and deputy, it becomes 

clear that the relative positions could vary greatly from the desired conditions.  Also, the 

solution includes the tangent of the chief’s inclination.  Therefore, a singularity arises for 
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nearly polar orbits.  Although a perfectly polar orbit cannot be obtained, a solution still 

exists; however, this solution requires considerably large contributions from to the other 

components.   

Partial J2 Invariance 
 

Another method that approached partial J2 invariance was presented by Breger 

and How (1:1-9).  The method refers to “Partial Invariance” due to considerable 

restrictions needing to be imposed to achieve total invariance.  The used a state 

propagation matrix, a matrix that is a function of the initial time and a given final time. 

When multiplying a state transition matrix with the array of initial conditions, the product 

is the array of conditions at the final time.  The state transition matrix used by Breger and 

How included the effects of J2 perturbations in the form of osculating elements.  The drift 

produced was then multiplied by a weighted norm, allowing for a definition of more and 

less favorable drift components.  The method also included a contribution due to the 

amount of fuel required to overcome the secular drift, once again allowing for the 

multiplication of a weighing value.  Both of these values were used to create a cost 

function.  This value was then optimized, resulting in the most desirable initial conditions 

for the given weighed values.   

Special Inclinations from Genetic Algorithm 
 

In addition, the results of this J2 invariant method were used by Sabitini, et al 

(5:97-100).  The method used a genetic algorithm with the refined initial conditions, 

established through use of the method determined by Alfriend and Schaub.  The 

algorithm spanned the range of inclinations and used a value function to determine the 

method’s accuracy at canceling out the secular drifts after 100 orbits.  The paper 
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concluded that the method was fairly consistent and was able to reduce the secular effects 

of perturbation to approximately two thirds to one percent of the initial formation; 

however, for two angles and their complements the method was significantly more 

effective: 

 i=63.4°; 116.6° 

 i=49°; 131° 

The first two angles are known as the critical inclinations, the inclinations where 

the secular drift of the argument of perigee is zero.  The second pair has been labeled by 

the author as “special inclinations” continuing to reserve the previously established title 

of critical inclination for the previous pair.   

Active Control 

 One method of overcoming the secular effects of perturbations was approached 

by William Weisel (10:74-78).  The method included optimizing two-impulse control 

maneuvers on satellite formations by allowing the satellite to follow more natural 

dynamics.  The method used a Floquet method of propagation that included fourteenth 

order geopotential as well as air drag and used the natural perturbation forces to aid in 

minimizing the amount of impulse required to maintain the cluster.  However, the paper 

stated that the fuel required to maintain specific geometries would far exceed practicality 

and looked more at formations intent on maintaining relative distances.  To contrast, this 

thesis will assume that certain aspects of the relative geometry are required and will try to 

obtain minimum drift rates while achieving those specifications. 
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Defining a Relative Orbit 

The method of obtaining relative geometry between satellites starts with the 

declaration of the primary satellite.  This satellite will be labeled the “chief” and the other 

satellites will be considered “deputies.”  For this thesis, a single deputy was considered; 

however, the concepts can be applied for multiple satellite formations.  When describing 

the relative position, the most commonly used coordinate frame is Hill’s frame.  This 

frame is an orthogonal coordinate system whose origin is located at the chief’s position.  

The x-axis is in the radial direction of the chief.  The y-axis is in the direction of the 

chief’s velocity, and the z-axis is normal to the chief’s orbital plane with a right-handed 

orientation.  In this coordinate frame a linear set of differential equations describing the 

relative motion was established by Hill as well as Clohessy and Wiltshire, with a slightly 

different orientation.  Because these equations are much alike, the differential equations 

established are referred to as Hill’s equations, Clohessy-Wiltshire (CW) equations, and 

Hill-Clohessy-Wiltshire (HCW) equations.  In the simplest form these differential 

equations can be expressed as:  

 

2

2

2 3
2 0

0

x ny n x
y nx
z n z

0− − =
+ =

+ =
 (1) 

 
Where n is the mean motion of the chief’s orbit and can be expressed as: 

 3a
n μ
=  (2) 

 This particular form of these differential equations is based on three assumptions.  

One is that the only acceleration is gravitational acceleration from a point mass.  The 

second is the assumption of a circular chief orbit.  The third is that the relative vector is 
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considerably smaller than the chief’s position vector, allowing the second order terms to 

be neglected (9:282-285): 
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 It should be pointed out that these differential equations are independent of the 

deputy’s position in y-direction.  This means that for unperturbed motion, there are 

certain significant initial conditions: 
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The resulting relative motion for these initial conditions would be unchanged and has 

been used repeatedly due to its stable relative position.  This particular formation is 

commonly referred to as the leader-follower formation.  In addition to being invariant to 

displacements in the y-direction, the equations are also decoupled in the z-direction.  

Consider the following initial conditions: 

 ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

0

0

0

0
0

0

z

z
y

z
y
x
z
y
x

X  (5) 

This would produce a relative orbit that is invariant in the x and y directions, while 

oscillating in the z-direction.  Though it is possible for large oscillations in the z-direction 
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to make contributions in the negative x position, due to the deputy’s position projected 

onto the chief’s orbital plane, these linear differential equations do not account for this.   

Defining ROE 
 

Though Hill’s frame coordinates accurately describe the relative position and 

velocity, much like Earth Centered Inertial (ECI) position and velocity vectors for a 

single satellite, these usually do not allow for a very good understanding of the relative 

orbit.  To correct this inconvenience, the Relative Orbital Elements (ROE) were 

introduced by Lovell and Tragessor (3:2-4) .   These orbital elements are defined by the 

following six equations: 
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 (6)  

      
Where atan2 is an inverse tangent function that puts the first term over the second term, it 

also uses the signs of each to eliminate quadrant ambiguity.   

For a circular chief and a deputy with a matching period, the deputy would follow 

a two-by-one ellipse whose semi-major axis is in the direction of the chief’s velocity 

vector and is designated by, ae.  The center of the two-by-one ellipse is located on the 

point (xd, yd).  The angle β, represents the deputy’s position on the ellipse.  It is defined as 

the angle from the negative x-axis to the deputy’s position projected on the chief’s x-y 
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plane.  For a circular chief this would correspond to the deputy’s mean angle from its 

own perigee.  The deputy’s maximum displacement in the z-direction defines the element 

zmax.  The angle γ is sometimes referred to as the relative ascending node, but is in fact 

opposite in sign to that angle.  This angle represents the difference in the oscillation angle 

in the z-direction and the angle β.  For further clarification, please refer to Figure 29 in 

Appendix B. 

Linear Approach 
 

One approach, to minimize the secular effects of J2 perturbations, was used by 

Tragessor and Skrehart (8:1-15) and is one that I will refer to as the linear approach.  The 

time rate of change of the orbital element differences was written in relative orbital 

parameters resulting in the following equations: 
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Where η and C are defined as: 

  (9) 2/12 )1( e−=η

 
42

2
2

2
3

ηa
nRJC e=  (10) 

Their previous work concentrated primarily on fixing the size of the relative orbit, 

ae, and solving for the resulting semi-major axis shift, xd, and out of planar motion, zmax 
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resulting in both of the equations producing zero secular changes.  The resulting solution 

was incredibly effective at establishing invariance for co-planar orbits.  However, when 

out of planar motion was introduced, the method was much less successful.  By 

attempting to choose both a size ae and fixing a magnitude of the out of planar motion, 

zmax, the two equations became over-constrained with the only apparent remaining 

variable being the difference in semi-major axis, xd.  This would suggest that the system 

of equations had no solution.  Essentially, this required zeroing out two independent 

equations while only being able to adjust one variable.  Upon removing the constraint on 

ae, the system was still considerably constrained due to both equations’ relative 

insensitivity to changes in ae. 

  When an orbit was propagated for ten orbits without modification to the initial 

conditions, the corresponding in-plane drift was approximately fourteen meters per orbit.  

With an out of plane drift of approximately 5 cm per orbit, the decision was made to use 

period matching to cancel the drift in the orbital direction.  This reduced the drift in the y 

direction to 1.4 meters per orbit. 
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III. Methodology 
 
 This work began by establishing how the initial conditions are defined.  

Afterwards the secular effects of the J2 perturbation on the ROE were determined, and the 

conditions for establishing invariance were defined.  Then, the linear method presented 

Tragesser and Skrehart was modified and analyzed.  Finally, a non-linear method was 

introduced, and the accuracy was determined through numerical integration. 

Determining Initial Conditions 
 

 During the course of this thesis the initial conditions for the chief will be set.  

These initial conditions will be given in classical orbital elements: 
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Schaub (7:606-611)6. Schaub, H.  and Alfriend, K.  T., “J2 Invariant Relative Orbits for 
Spacecraft Formations,” Flight Mechanics Symposium, (Goddard Space Flight 
Center, Greenbelt, Maryland), January 18-20, 2002, Paper No. 11, pp. 77-95 

 
7 currently has a method for converting orbital elements and orbital element differences 

into a relative position vector in Hill’s frame.  The process begins by defining two arrays 

that contain the chief and deputy’s initial conditions in the following orbital elements: 
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Where the elements q1, q2, and θ have been used to cancel out the singularity in the 

argument of perigee for a zero eccentricity orbit, and have been defined as: 

 
1
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q e
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  (13)  

Due to small eccentricities the true anomaly, υ, will be approximated with the mean 

anomaly, M. The symbol δeoe in Eq. (16) would represent the array containing the 

differences in orbital elements between the deputy and the chief:  

 

 coedoeoe rre −=δ  (14) 

The values in this vector are then described as follows: 
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This conversion is in the form of:  

 [ ] oeeAX δ=   (16) 

The transformation matrix [A] is given with perturbations, by Gim (2:962).  A version 

without the perturbation terms can be found in Luck (4:1) and is seen in Appendix A.  

The vector output of this expression is a 6x1 array that contains both the relative position 

and velocity in Hill’s frame: 
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Though the state transition matrix, [A], allows for non-circular chief orbits, the 

complexity of the equations reduces the understanding of the resulting equations.  

Therefore, the transformation matrix was significantly simplified with the assumption of 

a circular chief orbit.  The resulting vectors in Hill’s frame are as follows: 

 Ω+=

++−=

−=
Ω−=

Ω+=
−−=

θδθδ

θδθδδ

θδθδ
δθθδ

δδθ
θδθδδ

sinsincos

sin2cos2
2

3
cossin

sincossin
cos

sincos

21

21

21

ianianz

qanqanany

qanqanx
iaiaz

iaay
qaqaax

 (18)   

  
 

James Luck (4:1-4) used these equations and substituted them into Eq. (6) to produce the 

following expressions, which can be used to transform small changes in COE to ROE: 

 

2 2
1 2

1 2

2 2
max

1 2 1 2

2 ( ) ( )

cos 2 (sin cos )

( ) (sin )
atan2(sin cos ,cos sin )
atan2(sin cos sin ,cos sin sin )

e

d

d

a a q q
x a
y a a i a q q

z a i i
q q q q
i i i i

δ δ
δ
δθ δ θδ θδ

δ δ
β θδ θδ θδ θδ
γ θδ θ δ θδ θ δ β

= +

=

= + Ω− −

= + Ω

= − +
= − Ω + Ω −  

(19)   

 These expressions may then be used to determine the contributions due to the 

secular effects of the orbital elements and orbital element differences. 
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Defining ROE Invariance 
 

Though Eq. (19) was established with an orbital element s set specifically 

designed to minimize singularities near zero eccentricity, it is easier to understand the 

perturbation effects when the expressions are written in classical orbital elements and 

classical orbital element differences.  After simplifying the expressions to reflect classical 

orbital elements and orbital element differences the equations become:  

 

( )
( )

2 2
max

2

cos 2 sin( )

( ) (sin )
atan2 sin( ),cos( ) ( )

atan2 sin cos sin ,cos sin sin

e

d

d d

d d d

a a e
x a
y a a i a e

z a i i

i i i i

δ
δ
δθ δ δ θ ω

δ δ

β θ ω θ ω θ ω

γ θδ θ δ θδ θ δ β

=
=
= + Ω− −

= + Ω

= − − = −

= − Ω + Ω −

 (20) 

 
It is clear to see that one of the deputy’s classical orbital elements, the argument 

of perigee, remains in the equations; fortunately, this allows for an easier understanding 

of the secular drift of the ROE containing that element.   

It is clear to see that with the circular chief the ROE ae and xd will not experience 

secular drift due to purely periodic perturbations in the semi-major axis and 

eccentricities.  In the equation for yd, the periodic effects of δθa  and )sin(2 dea ωθδ −−  

are equal and opposite for unperturbed dynamics.  This is easier to spot when 

replacing Ω+ δδθ iaa cos  with y and by replacing )sin(2 dea ωθδ −−  with )sin(βea− . 

 βsined ayy −=  (21) 

Therefore, in order to cancel out secular perturbations in yd it is essential to minimize the 

drift rates in y.  It can be seen that the only secularly affected components of y are due to 

secular contributions in the form ofδθ andδΩ .  Therefore, by matching the secular drift 

rates in the argument of latitude and the longitude of the ascending node, this ROE will 
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not vary secularly.  In addition, it can be seen that zmax is also a function of  and that 

minimizing this will also establish reduced secular effect in zmax.  This has been shown 

time and again for invariant formations and could be expected.   

Ωδ

 In addition, in order to establish true invariance in the ROE, other terms would 

also have to be taken into consideration.  Canceling out secular perturbations found in 

β and γ would require a different definition.  Due to the rapid rate of change of β , an 

invariant drift rate could be defined by stating a desired β for a given angleθ .  In order 

to maintain this desired initial condition, the secular drift of the deputy’s argument o

perigee would have to be zero.  This is possible, but would require the deputy to be 

located at the critical inclination.   

f 

 If the secular drift in β would be considered zero when there are no longer any 

affects of J2, then the following condition would have to be met: 

 ( )c c dω ωΜ + =  (22) 

It can be seen that in order for this and δθ to both be zero, the secular drift rate of the 

deputy’s mean anomaly would have to be zero.  This would also impose a restriction on 

the deputy’s inclination; now requiring a 54.7°.  Although both of these would be 

possible, the imposed inclination restrictions would severely restrict the orbits.  

Therefore, canceling out the secular effects in the angle β  will not be required to 

establish invariance. 

δΩFurthermore, because γ  is equal to a function of δΩ  minusβ ; once  is near 

zero the value for γ will have a rate of change equal and opposite to that ofβ .  Therefore, 

with a circular chief a J2 invariant relative orbit will require zero secular drift in yd and 

zmax.   
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Defining Initial Conditions 
 

The purpose of this thesis is to take a set of initial conditions for the chief and a 

desired set of ROE and adjust the ROE slightly in order to reduce the secular effects of 

the J2 perturbation.  The method will then be verified with numerical integration.  The 

verification process will begin by using the ROE to determine the orbital element 

differences.  The classical orbital elements for the deputy are then calculated.  Both sets 

of orbital elements are then individually transferred into vectors in the Earth Centered 

Inertial (ECI) frame.  These were then integrated using a fourth order numerical 

integrator.  The output was then converted back into classical orbital elements, and the 

relative vectors were then calculated in Hill’s frame.  The ROE were then calculated for 

each time step. 

Due to the effects of the J2 perturbation being inversely proportional to the semi-

major axis, satellites in Low Earth Orbit will be analyzed.  The primary semi-major axis 

used in this thesis is 7000 km.  This orbit should be small enough to produce non-trivial 

effects of J2, while still remaining high enough that the effects of J2 will remain the 

dominant perturbation.  The first case will consider a chief orbit with an inclination of 

thirty degrees.  This inclination has been chosen because it is near the 28.5° launch 

latitude of Cape Canaveral and it has not shown any traits that would render it an 

exceptional case.  This case takes into consideration both the effects due to changes in 

eccentricity, as well as out of planar motion.  The unmodified set of initial conditions is 

as follows: 
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Figure 1 is a plot of the chief’s position, (0,0), and the deputy’s relative orbit about that 

position.  In the graph the nearly horizontal line represents the direction of the orbit 

travel.  The nearly vertical line points in the negative x direction representing the 

direction of the center of the chief’s orbit and terminates at approximately the deputy’s 

initial position.  In Figure 2 the chief is again located at (0, 0) and the deputy’s projection 

onto the x-y orbital plane follows the outside trajectory beginning at (0, -250m) and 

proceeding in the anti-clockwise direction.  Also plotted, beginning at (0, 0) and drifting 

in the negative y direction, is xd vs.  yd.   
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Figure 1: 3-Dimensional J2 Drift for Uncorrected IC 
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Figure 2: Orbital Plane J2 Drift for Uncorrected IC  

 
The figures above allow for better understanding of the relative motion, as well as 

a slightly better understanding of the effects of the secular drifts and.  In Figure 2 the x 

and y components of the data have been plotted in the chief’s orbital plane.  It is apparent 

in this graph that this method produces the classic two-by-one ellipse that defines a 

relative orbit about a circular chief orbit.  Though it is difficult to determine the 

magnitude of the secular drift from this graph, it is apparent that a secular drift is present 

and the plot of (xd,yd) shows that the deputy is drifting in the negative y-direction.  To 

allow for a better determination of the rates of change, the following figures plot the y-

position in meters vs. time in orbits. 
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Figure 3: Relative Y-Position vs.  Time for Uncorrected IC 
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Figure 4: Maximum Displacement in Y-Direction for Uncorrected IC 

 

From Figure 3 it is apparent that the primary motion in the y-direction is a 

periodic oscillation.  However, because of the scale it is hard to distinguish the secular 

effects that have been introduced due to perturbation accelerations.  Figure 4 is a close up 

of the maximum displacements in the y-direction.  The figure shows that there is a 
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negative drift of approximately negative one meter per orbit.  Likewise the following two 

graphs plot the displacement in the z-direction vs. time.   
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Figure 5: Out of Plane Position vs.  Time 
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Figure 6: Maximum out of Plane Position vs.  Time 

 
Once again, Figure 5 shows a dominant harmonic oscillation in the z-direction; 

however, the scale in Figure 6 allows for a better understanding of the drift in the z-

direction. This drift is nonlinear, increasing about 70 cm over 25 orbits. 
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Pure Out-of-Plane Relative Motion   
 

In the event that the relative motion desired is a pure oscillation in the z-direction, 

the value of ae will be set to zero.  This will cause both β and γ to lose definition, as both 

become a function of zero divided by zero.  However, because this singularity exists in 

the transformation from Hill’s Frame components into ROE, declaration of these values 

will produce legitimate initial conditions in Hill’s frame that can be propagated to 

determine the relative motion.   

This relative motion would include a harmonic oscillation in the z-direction that 

intersects the chief’s orbital plane at (yd, xd).  Therefore, in order for the initial conditions 

to be more realistic this case will include a non-zero yd to prevent a collision with the 

chief satellite.  However, due to previously established independence to displacements in 

the y-direction this will not affect the stability of the relative orbit. 

The initial conditions have been established as follows: 

    Chief orbit       Desired ROE 

0
0
0
30
0

km 7000

=

=

=Ω

=

=
=

ν

ω

i
e
a

 

max

0 m
0 m

25 m

0
0
500 m

e

d

d

a
x
y

z

β

γ

=
=
= −

=

=
=

 

 
These initial conditions were numerically propagated and can be seen in Figures 7 

and 8. 
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Figure 7: Maximum Displacement in Y-Direction 
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Figure 8: Maximum out of Plane Position vs.  Time 

 
 

In Figure 7, it can be seen that it is no longer necessary to scale the figure in order 

to determine the secular drift in the y-direction, due to the absence of the large harmonic 

oscillations that were present for ae=500 m.  This figure also shows a significant amount 

of secular drift in the orbital direction, approximately -7 meters per orbit.   
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Figures 6 and 8 show that in both cases, the drift in the z-direction appears 

parabolic.  This is partly because the primary contribution to zmax is due to a difference in 

inclinations.  Given the time derivative of zmax:
 

 

2
max

2 2

( ) sin
( ) (sin )

d z a i
dt i i

δ δ
δ δ

Ω Ω
=

+ Ω  
(23) 

 

For 2( )iδ >> the equation is approximately equal to: 2(sin ) ,iδΩ

 

2
max( ) sind z a i

dt i
δ δ
δ
Ω Ω

≈
 

(24)  

With a relatively constant value of  the value Ωδ Ωδ  would increase linearly.  

Therefore Eq. (24) would increase linearly, resulting in parabolic growth of zmax.  This 

would be indicative of a chief orbit with fairly low inclination, in which much of the out 

of plane motion is due to the difference in inclination as opposed to the right ascension of 

the ascending node.  This is the case with the two previous scenarios, and helps explain 

the growth of zmax in Figures 6 and 8. 

In the event that >> 2(sin )iδΩ 2( )iδ  the equation can be approximated as: 

 
max( ) sind z a i

dt
δ≈ Ω

 
(25)  

This equation would produce linear drift that would be expected due to secular effects.  

This would represent a chief orbit that is near polar, where most of the out-of-plane 

motion is due to difference in the right ascension of the ascending node.  In both cases, a 

zero secular drift in the difference in the longitude of the ascending node would result in 

zero rate of change of zmax.  Therefore, the secular drift rate of the difference in the 

longitude of the ascending nodes will be analyzed in more depth. 
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Secular Expansion 
 

The equation for the secular drift in the differences of the longitude of the 

ascending node is as follows: 
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(26) 

After including the assumption of circular chief orbit and writing strictly as a function of 

the chief’s orbital elements and the orbital element differences the equation becomes: 
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(27) 

Because the orbital element differences are considerably smaller than the terms they are 

grouped with, the expressions containing the differences can be expanded about the 

dominant value.  After performing the expansions and combining the higher order terms, 

the expression becomes: 
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  (28) 

 In order to better understand the accuracy of the expression it would be 

worthwhile to consider the approximate order of magnitude of the higher order terms.  

For a semi-major axis of around 7000 km, in order to produce a zmax equal to or less than 

5km the maximum δi will be on the order of 10-4.  Likewise, for an ae on the order of 

1km, the resulting δe will be on the order of 10-5.  Also, because secular drift due to 

differences in mean motion is highly dependent on differences in semi-major axis, J2 

invariance will often require δa smaller than 10-4 km.  Therefore, higher order terms 

inside the parenthesis will be on the order of 10-12 radians per second.  The resulting 
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round off error would create a secular drift of zmax on the order of millimeters per orbit.  

After cancellation and prioritizing by approximate maximum orders of magnitude the 

equation becomes: 

2 2
22

2

3 cossin 2cos cos . . .
2 2

eJ R n i i ai i i e i H O T
a a

δ δδ δ δ
⎛ ⎞−

Ω = + + − +⎜ ⎟
⎝ ⎠   

(29) 

Once again, if a 1 km zmax was created strictly with a change in inclination, the 

first term could be on the order of 10-4, whereas the remaining terms would be 

approximately four orders of magnitude smaller.  This suggests that the largest step 

towards establishing J2 invariance of this orbital element difference is to minimize the 

difference in the inclinations.  However, Eq. (20) shows that the magnitude of the out of 

planar motion, zmax, is created by a combination of δi and δΩsini.  Therefore, for any 

chief orbit without a near zero inclination this would not limit zmax; this would only limit 

the contribution resulting from the difference in inclinations.   

Linear Approach 
 
With this idea in mind, the linearizations put forth by Tragesser and Skrehart were then 

taken into consideration.  Previous work has shown that these produce practical results 

for co-planar orbits; however, when out-of-planar motion is introduced the method 

becomes much less successful due to the sensitivities in the equation to small changes in 

zmax.  However, if it was possible to nearly zero out the coefficients of zmax the equations 

would become much less sensitive to out-of-plane motion and it would be possible to re-

establish the stability shown for co-planar orbits.  Therefore, the coefficients of zmax will 

be considered in more depth:   
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Two terms that are present in both coefficients of zmax are a-1 and sini.  Though it 

would be possible to increase the magnitude of the variable a to the point where both 

equations become nearly independent of zmax, and even more possible to choose a chief 

with a zero inclination, the resulting orbits would be considerably constrained.  There is 

however another term that shows up in both equations: 

 [ ])(cos βγθ +−  (31) 

This term is bound between one and negative one.  In theory, if it is possible to 

choose the correct combination of θ, γ, and β it should be possible to nearly zero out the 

contributions of zmax and re-establish the same stability displayed for co-planar 

formations.   

Because γ is the angular difference between the oscillation angle in the z-direction 

and the position-based angle β, )( βγ + simplifies to the angle of the oscillation in the z-

direction and will be labeled as γz.   

 ( )tan 2 ,z a nz zγ γ β= = +  (32) 

 [ ] )cos()(cos zγθβγθ −=+−  (33) 

These angles left inside the parenthesis are increasing at a given frequency.  For 0dy =

[ ])

 

both angles would increase at a rate equal to the mean motion.  Resulting difference is 

relatively constant.  Because there are now two components that are functions of relative 

orbital elements, it is possible to fix zmax and replace the expression (cos βγθ +−  with 

a new variable zγ. 
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 )cos( zz γθγ −=  (34) 

Furthermore, if ae
2 is also chosen, two of the main components of the relative 

geometry have been fixed; the magnitude of the two-by-one ellipse, ae
2, and the 

magnitude of the out of plane motion, zmax.  By setting the difference in drift rates equal 

to zero and bringing the now constant contribution of ae
2 to one side the expression can 

be written as:  
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(36)  

 

 

This gives a closed form solution for both zγ and xd in the form: 

 
 (37) [ ] [ ] 21

e
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 Note that since zγ is a function of the sumγ β+ , we can arbitrarily select β and 

still satisfy the conditions by choosing the correct γ to satisfy Eq. (32).  This means that 

for a given zmax and ae the full solution is now a solution set whose relative positions lay 

on the two-by-one ellipse offset by the chief’s orbital plane by a distance of max sin zz γ .  
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This would allow for multiple satellites to occupy the same solution set, with different 

angles β and γ but still maintaining the same zγ.  In addition, because the cosine function 

is even, both a positive and negative angle γz fulfill the requirements for zγ.  Combine this 

with yd independence, and this allows for β, zmax, ae, and yd to be set arbitrarily.  This 

allows the ROE xd and γ to be adjusted in order to establish the desired invariance.   

Analysis of Linear Approach for Circular Deputy 
 

To investigate the effectiveness of this method to reduce the effects of the J2 

perturbations on a formation, numerical simulations were performed.  This method will 

include the initial conditions established previously for a pure oscillation in the z-

direction.  Once again, this initial condition causes β and γ to lose physical interpretation 

and become undefined; however, because zγ remains defined, the initial value of β will 

once again be set to zero and the value for the initial condition of γ will be computed.   
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After substituting these values into the previously established equations the initial 

conditions are determined to be: 

 

 

0 km
0

dx
zγ

⎛ ⎞ ⎡ ⎤
=⎜ ⎟ ⎢ ⎥
⎣ ⎦⎝ ⎠

 (38) 
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The zγ allowed for a γ= ± 90°.  For this case the positive value of gamma will be chosen.  

The resulting initial conditions are as follows: 
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Figure 9: Maximum Displacement in Y-direction 
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Figure 10: Maximum Displacement in Z-direction 
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As Figure 9 shows, this method is highly successful at reducing the secular drift 

in the y-direction.  The resulting secular drift is approximately -1 mm/orbit as opposed to 

over -7 m/orbit drift seen in Figure 7.  Likewise, Figure 10 also shows a drift multiple 

times smaller than the drift observed in Figure 8.   

 It is also worth mentioning that the apparently trivial solution seen in Eq. (38) 

allows for a slight amount of understanding of the modifications to the initial linear 

method.  Had the system of equations been used as they were previously in Eqs. (7) and 

(8), to solve zmax and xd, the solution set would have required a zero maximum 

displacement in the z-direction.  This would limit the solution to a leader-follower 

formation observed in Eq. (4).  However, by solving for zγ the solution now allows for 

displacements in the z-direction, resulting in the initial conditions previously mentioned 

in Eq. (5). 

Analysis of Linear Approach for Non-Circular Deputy 
 

Though this method produces accurate results for near zero ae, for moderate ae 

this method produces much less desirable results.  The following initial conditions are 

identical to the previously chosen initial conditions with the exception of a 500 meter ae: 

 For a given chief orbit: Desired ROE: 

7000 km
0
30
0
0
0

a
e
i

ω

ν

=
=

=

Ω =

=

=

    

max

500 m
0 + TBD Correction
0

0
TBD
500 m

e

d

d

a
x
y m

z

β
γ

=

=
=

=
=
=

 

 

 31



For this particular formation Eq. (37) establishes -0.031 mmdx = and .  The 

graph below shows the projection of the deputy’s orbit projected onto the chief’s orbital 

plane. 
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Figure 11: Relative Orbit from Linear Results ae of 500 m 
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Figure 12: Maximum Positive Displacement in Y-direction from Linear Results 

 
The Figures 11 and 12 clearly show that yd is drifting in the positive y-direction at a rate 

of over 5 meters per orbit.  A second run with xd = 0m gave almost identical results.  
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When also considering that positive displacements in xd result in negative drifts, it can 

safely be deducted that xd should have been larger in magnitude and positive.  However, 

this case still shows that this method is still highly successful at reducing the secular drift 

in zmax, as shown in Figure 13. 
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Figure 13: Maximum Displacement in Z-Direction 

 
Due to the less than desirable accuracy of the linear solver, a more accurate method of 

determining xd was required.   

Single Variable Nonlinear Solver  
 

Since the linear approach was unable to cancel out the secular drift in the orbital 

direction, a nonlinear approach was taken to find values of  and γ which would result 

in: 

dx

 max

0
0

dy
z

=
=  

In order to determine 
d

d

x
y
δ
δ  the initial conditions from the linearization were 

numerically propagated for four orbits.  The time and position of the maximum 
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displacement in the y-direction were recorded and run through a linear best fit to help 

reduce error.  The slope that was produced through best fit was considered the secular 

drift in the y-direction, .  This was repeated for a second xd.  The difference in the 

slopes produced by the linear best fit, over the differences in xd was and 

dy

d

d

x
y
δ
δ was 

determined.  The secular drift 0dy was the error and the new dx  was calculated: 

   
0r d

d
d r

d

e y
y

=

de x
x

δy δ
δ

= +  (39)  

Setting  equal to zero and solving for xd produces: dy

 0

d
d r

d

d d d

xx e
y

x x x

δδ
δ

δ

= −

= +  
(40) 

Due to non-linearity in the equation this method had to be repeated until the drift rate was 

within desired tolerances.  The xd was then re-introduced into the secular drift rate of  

to solve for

Ωδ

γ .   

Thirty Degree Inclination  
 

After using the non-linear approach to the previous set of initial conditions 

resulted in the following relative orbit:  

For a given chief orbit:  Desired ROE: 
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The resulting relative orbit is shown in Figure 14. 
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Figure 14: Corrected Relative Orbit with 30˚ Inclination Chief 
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Figure 15: Maximum Y Displacement vs.  Time with 30˚ Inclination Chief  
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Figure 16: Maximum Z Displacement vs. Time with 30˚ Inclination Chief 

 
 

It can be seen from Figures 14 and 15 that this method is successful at 

significantly reducing the secular drift rate in the orbital direction, while Figure 16 shows 

that the method has also maintained accuracy in the out-of-plane direction.  This case was 

for verification purposes only; therefore, the iterations were stopped at an accuracy of 

approximately 1 cm drift per orbit in the y-direction.  When the method is used to 

maximize accuracy the iterations will continue until the secular drift in the orbital 

direction is less than 1 mm per orbit. 

Two Variable Nonlinear Method 
 

Although the single variable method is effective at reducing the secular effects of 

the J2 perturbation, it is possible to further reduce the secular drift in the out-of-plane 

direction by expanding the non-linear method to solve for both variables simultaneously.  

The method begins with a propagation of the initial conditions for the previously 

established four orbits.  The secular drifts in the y and z directions are determined.  

Afterwards the obit was propagated once again with only a small change in xd and then 
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again with only a small change in γ.  The resulting rates of change of the maximum 

displacements in the y and z directions were once again determined.  These values were 

then used to express the differences in the rates of change of the error over the differences 

in the initial conditions.   

 
max max

d d

d

d

y y
x z

z z
x z

γ

γ

Δ Δ⎡ ⎤
⎢ ⎥Δ Δ⎢ ⎥
⎢ ⎥Δ Δ
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 (41) 

The error was then defined as: 
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The initial conditions for the next iteration were then determined by the following 

equation: 
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After applying this method to the initial conditions previously established for the 

thirty degree chief inclination, the following initial conditions describe the chief’s orbit 

and the relative orbit. 

For a given chief orbit:  Desired ROE: 
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These initial conditions were propagated for twenty-five orbits and the drift rates in the y 

and z directions are shown in Figures 17

 

and

 

18. 
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Figure 17: Secular Drift in Y-Direction from Two-Variable Non-Linear Method 
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Figure 18: Secular Drift in Z-Direction from Two-Variable Non-Linear Method 

 38



Figures 17 shows that the secular drift in the y-direction has been successfully r

under 5 cm for the propagation period shown.  Figure 

educed to 

e z-direction to approximately 3 cm for the 

propagation period. This is a significant improvement over the approximately 20 cm seen 

with the single variable method.   

18 shows that this method has been 

able to reduce the secular drift in th
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V.  Results and Discussion

  After verifying that the single-variable non-linear method was now successful, a 

series of inclinations were used to further analyze this method.  Additional inclinations 

will include the inclination of the international space station, the critical inclination, a 

true polar orbit, and a sun-synchronous orbit.  The initial conditions are 

Circular Chief 

 Chief Orbital Elements: ROE: Chief Inclinations: 
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After applying this method for these chief inclinations the resulting initial conditions 

were determined and can be seen in Table 1. 

Inclination xd γ 
30° Inclination 67.2 cm 89.582° 
International Space Station (51.6º) 67.7 cm 90.213° 
Critical Inclination              (63.4 º) 68.1 cm 90.173° 
Polar Orbit                           (90º) 67.8 cm 90° 
Sun Synchronous                 (95.4º) 67.8 cm 90.463° 

Table 1: Determined Initial Conditions for Propagated Orbits 

After propagating the initial conditions for the given cases the drift in the z and y 

directions was plotted in Figures 19 and 20.  The magnitudes of the deviation were taken 

and all cases were plotted together in order to allow for a better visual comparison. 
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Magnitude of the Deviation in the Maximum Y Direction
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Figure 19: Magnitude of the Deviation in the Maximum Y-Direction 
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Figure 20: Magnitude of the Deviation in the Maximum Z-Direction 

 
Figure 19 shows that this method is quite successful at canceling out secular drift in the 

orbital direction, with the worst case producing less than 5 cm drift over the twenty-five 

orbit propagation period.  Also, with approximately three centimeters separating the best 

from the worst case, this method appears highly consistent across the range of 

inclinations tested.  Figure 20 shows that the ability to minimize the secular drift in the z-

direction is much less consistent across the inclinations tested.  This figure does however 

show that this method appears highly successful at inclinations at and near 90º.  In order 

to confidently establish the approximate rates of change, these values were put through a 

linear best fit.  The slopes were determined in units of centimeters per orbit and have 

been listed in Table 2. 
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Inclination Drift Rate of zmax (cm/orbit) Drift Rate of yd (cm/orbit) 
30° Inclination -1.48 -0.13
International Space Station 0.43 -0.19
Critical Inclination 1.08 -8.80E-02
Polar Orbit -1.02E-02 -7.04E-02
Sun Synchronous 4.11E-03 0.12

Table 2: Drift Rates of Maximum Displacements in Z and Y Directions in cm/orbit 

Non-Circular Chief  
 

This method allows for a J2 invariant solution for two satellites by establishing 

and both equal to zero.  However, if it is possible to also set )( ωδ +Μ Ωδ ωδ  to zero 

then it might be possible to lift the circular chief assumption.  Fortunately, if both 

satellites were operating at the critical inclination then this condition would be met.  The 

eccentricity of the chief was chosen such that the difference between the radius at perigee 

and apogee would be 1000 km.  Also, the semi-major axis has been increased to 7500 km 

to keep a safe altitude while at the radius of perigee.  The eccentricities have been chosen 

to produce a difference in the radii of apogee and perigee of approximately 1000 km and 

100 km respectively. 

The following initial conditions have been chosen: 

 Chief Orbital Elements: Desired ROE: 
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The corresponding calculated values for the initial conditions are shown in Table 3. 

 Eccentricity xd γ 
Case 1 0.0667 77 cm 90.241°
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Case 2 0.00667 60.8 cm 90.190°
Table 3:  Initial Conditions for Non-Circular Chief 

 

 
Figure 21: Magnitude of Drift in Y-Direction for Non-Circular Chief Orbits 

 

 
Figure 22: Magnitude of Drift in Z-Direction for Non-Circular Chief Orbits 
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Figure 21 shows that the case of a moderately eccentric chief is not as successful 

at canceling the drift in the orbital direction; while the case for small eccentricity chief 

produced results as accurate as those produced for a circular chief.  Unfortunately, Figure 

22 shows that this method is nowhere near as successful at eliminating the drift in the z-

direction for the moderate eccentricity chief orbit. 

Although it is difficult to see due to the scale of Figure 22 the drift rate in the z-

direction is approximately thrice the drift seen for the circular chief with the same 

inclination.  It is true that the difference in semi-major axis is approximately 500 km; 

however, the case was rerun at a matching semi-major axis and produced similar results.  

In order to determine if these results were an isolated case, the same eccentricity of .0067 

was also simulated at the ISS inclination.  The resulting ROE are given in Table 4.  

  Eccentricity Inclination xd γ 
Case 1 0 63.4º 68.1 cm 90.173° 
Case 2 0.0067 63.4º 68.1 cm 90.2128° 
Case 3 0 51.6 67.7 cm 90.213° 
Case 4 0.0067 51.6 70.0 cm 90.1781° 

Table 4: Initial Conditions for Circular and Near Circular Comparisons 

 
The initial conditions were propagated once again for 25 orbits, producing the results 

shown in Figure 23. 

 44



 

Figure 23: Deviation in the Z-Direction for Circular and Near Circular Chief Orbits 

It can be seen from Figure 23 that the method appears to produce larger out-of-plane drift 

for a near circular chief multiple than it does for a circular chief.   

Additional Drift Rates 

With the previous case for non-circular chief at ISS inclination, the initial primary 

concern was the drift secular drift in the argument of perigee.  In order to determine the 

effects due to secular drift of the argument of perigee, the maximum displacement in the 

x-directions were also compared.  It turns out that the previous notion of occupying the 

critical inclination in order to reduce the secular drifts in the difference of the argument 

of perigee was somewhat effective; however, even when the chief occupied the ISS 

inclination the secular drift in the x-direction was considerably smaller than the drift in 

the z-direction, as seen in Figure 24. 
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Figure 24: Magnitude of the Deviation in the Maximum Value of X for Non-Circular Chiefs 

It turns out that the drift rate produced in the x-direction is not only small, but it is 

actually less than the drift in the y-direction.  This is partially due to the initial conditions 

that established the difference in the argument of perigee, δω, to be near zero.  Applying 

this to a small angle approximation would result in the drift in the x-direction to be 

approximately on the order of the δω2.  In an attempt to maximize the drift rate in the x-

direction the case was run again with the arguments of perigee with a 90° separation.  In 

this case the secular drift for the 25 orbit propagation was approximately 7.5 cm.  

However, the size of the relative orbit was increase drastically.  If taking into 

consideration that the new ae had increased to over 100 km, it is easy to see that the 

percent difference between the secular drift and the relative major axis is considerably 

small.  Unfortunately, with such an increase in the size of the relative orbit, it was also 

concluded that this method is considerably less flexibility in the initial value of β. 

Therefore, in order to maintain the flexibility in the ROE the case if a non-circular chief 

will be deemed impractical and additional work in this thesis will only consider the case 

of the circular chief reference orbit. 
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Two-Variable Non-Linear Method  
 
 After determining from Figure 20 that the single-variable method was unable to 

produce accurate results for all inclinations, the two-variable method was used at 30° 

chief inclination. The results are plotted in Figure 25. 

 
Figure 25: Comparison of Secular Drifts in Z Direction 

 

It is easy to see in Figure 25 that for a chief inclination of 30°, the two-variable non-linear 

method is much more successful at reducing the secular drift in the z-direction than the 

single-variable method.  Therefore, the method will be applied to the other inclinations 

whose secular drifts from the single-variable method were still large.  The following 

initial conditions will be used with chief orbital inclinations 30°, ISS inclination, and 

Critical Inclination. The resulting ROE were calculated and are displayed in Table 5. 
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Chief Orbital Elements:   Desired ROE: 

    

7500 km
0
0
0
0

a
e

ω

ν

=
=

Ω =

=

=
0

m 500
m 0

m 500

max

=

=
=
=

β

z
y
a

d

e

 

 

Inclination xd γ 
30° Inclination 68.35 cm 90.444° 
International Space Station (51.6º) 67.86 cm 90.031° 
Critical Inclination              (63.4 º) 67.87 cm 90.044° 

Table 5: Initial Conditions for Two-Variable Non-Linear Method 

 
 After propagating these initial conditions the secular drift in the z-direction was 

plotted in Figure 26. 

 

 
Figure 26: Secular Drift in Z-Direction for Multiple Chief Inclinations 

 
Figure 26 shows that this method is successful at reducing the secular drift in the z-

direction to fewer than 5 cm over the propagation period of 25 orbits. The secular drift in 

the y-direction is plotted in Figure 27. 
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Figure 27: Secular Drift in Y-Direction for Multiple Chief Inclinations 

 
It is apparent from Figures 26 and 27 that the method has successfully reduced the 

secular drifts in both directions to the same order.  

 After verifying that the method has successfully reduced the secular drift in the z-

direction the two-variable method’s initial conditions for these three inclinations were 

compared with the single-variable near-polar results. 

 
Figure 28: Comparison of Single-Variable and Two-Variable Non-Linear Methods 

 

Figure 25 shows that the two-variable method has produced significantly more 

accurate results than the single-variable method for a 30° chief inclination.  However, 
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Figure 28 shows that the method is still dependant on the chief’s inclination; with the 

critical-inclination being the only inclination in this set that is able to produce results as 

accurate as the near-polar results for the single-variable method.  
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VI. Conclusion 

 
This thesis approached the problem of establishing J2 invariant formations by 

setting the chief’s COE and stating a desired set of ROE.  It was then determined that the 

two ROE, xd and γ, could be adjusted in order to reduce the secular effects of this 

perturbation acceleration.  This work consisted of establishing a non-linear method for 

determining the ROE xd.  Once this method had produced desirable tolerances in the 

secular drift rate in the orbital direction the value of xd was used in a linear function to 

solve for the angle of the oscillation in the z-direction.  With this value and an arbitrary 

selection of the angle β the angle γ was calculated, completing the set of initial 

conditions.   

After establishing a single-variable non-linear method to produce the initial 

conditions, the process was run with various chief inclinations.  The results showed that 

the method was consistent at producing secular drifts of approximately two to five 

centimeters drift in the orbital direction over the 25 orbit propagation period.  

Unfortunately, the secular drift rate in the out-of-plane direction was less consistent 

across the inclinations, with the worst drift being 1.4 centimeters per orbit at an 

inclination of 30° and the best being approximate 41 micrometers per orbit at 95°.  This 

suggests that the ability of this method to reduce the secular drift in the z-direction is 

somewhat dependent on the inclination.  According to the paper done by Sabatini (5:97-

100) this is also the case with the J2 invariant method developed by Schaub and Alfriend 

(6:77-95).  However, the previous method showed most desirable results at the critical 

inclination, whereas this method produces optimum results at near polar orbits. 
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When the method was extended to include non-circular chief orbits, the method 

was less successful at producing small drifts in the out-of-plane direction; producing drift 

rates of over 3 centimeters per orbit.  However, it was shown that the method was still 

able to produce relative stability in the x-direction, with less than 2 centimeters drift after 

propagating the initial conditions for 25 orbits.  Unfortunately, when attempting to 

control the initial relative angle β the size of the relative orbit increased by over 100 km. 

This is due to the moderately large eccentricity of the chief’s orbit and the difference in 

the argument of perigee required to induce the initial relative angle. This suggests that in 

order to maintain flexibility of the deputy’s position on relative orbit the chief will have 

to be at a near zero eccentricity. 

After determining that the single-variable method was unable to produce desirable 

drift rates for all inclinations, the single-variable method was then extended to solve for 

both variables simultaneously. This two-variable non-linear method produced 

significantly more accurate results for the lower inclinations; however, even with 

increased accuracy in the lower inclinations, the method was not always able to 

reproduce the accuracy established by the single-variable method for near polar orbits. 

This suggests that if it is possible to place a formation at inclinations around or above the 

critical inclination, one of these two methods will be able to establish near J2 invariance.  

Fortunately, even if this is not possible, these results do show that the two-variable non-

linear method will be able to significantly reduce the secular drifts due to the perturbing 

accelerations.  

Future Work 
 

Further work on this subject could include considering the stability of multiple 

satellite formations. By declaring certain deputies as “sub-chiefs” it would be possible to 
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determine the ROE between the sub-chiefs and the deputies.  This could be repeated until 

the relative geometry between all of the satellites in the formation has been determined.  

This would allow for a better understanding of more advanced formations; where the 

relative geometries between the chief and deputies are a concern, as well as the relative 

geometries between deputies.  This information could also simplify the task of 

deconflicting the trajectories of multiple deputies, and decreasing the possibility of a 

collision.  Additional work could attempt to further refine the relative positions in an 

attempt to achieve specific geometric shapes at a desired argument of latitude.  This 

could aid in spreading the system out normal to a point of interest, and allow for a 

broader distributed aperture system. 
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Appendix A: State Transition Matrix  
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Appendix B: Figure of Relative Orbital Elements 
 

 
Figure 29: Figure of Relative Orbital Elements  
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