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Abstract 
 

 
Pulsed Detonation Engines are currently limited in operating frequency to the 

order of 40 Hz due to lengthy ignition and deflagration to detonation transition (DDT) 

times.  An experimental study is conducted to determine the requirements necessary to 

eliminate these constraints through the concept of direct initiation.  A branched 

detonation crossover setup is constructed and the operational requirements are 

determined.   

This research demonstrates the ability to directly initiate a detonation in a vacant 

tube from a detonation obtained through detonation branching.  Using a hydrogen-air 

mixture, a tail-to-head detonation branching is achieved in which a detonation is seen to 

propagate from a spark ignited detonation tube, through a crossover tube and across a 1:2 

diameter expansion ratio into a vacant second detonation tube.  This effectively 

eliminates the ignition and DDT times associated with the conventional operation of the 

second tube.  The closed-end pressure trace of a transferred detonation as deemed 

successful through wave speed measurements is analyzed and further solidifies the 

findings. 
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DIRECT INITIATION THROUGH DETONATION 

BRANCHING IN A PULSED DETONATION ENGINE 

 

I. Introduction 
 
Motivation 
 

Interest in the field of Pulsed Detonation Engines (PDE) has increased greatly in 

recent years due in part to the potential for increased thermal efficiency derived from 

constant volume combustion as opposed to a constant pressure process as in turbine 

engines (Eidelman et al., 1991:1).  In addition, PDEs are relatively inexpensive and the 

thrust produced has been previously shown to be scalable through the operating 

frequency and resulting cycle time (Schauer et al., 2001:1).  The increase of the engine 

operating frequency through a reduction in cycle time directly relates to the thrust 

produced. 

 
Pulse Detonation Engine Cycle 
 
 A PDE is an unsteady propulsion device that operates a series of single open-

ended detonation tubes on a continuous fill-fire-purge cycle.  A fuel-oxidizer mixture is 

injected into the tube and ignited from the closed end.  Through the employment of 

Schelkin-like spirals or similar obstructions and an ignition source, the requirements for 

the formation of a detonation wave are met.  The detonation is formed and through a 

constant volume process thrust is produced as it exits the tube.  The thrust created is 

proportional to both the size of the detonation tube and the frequency of the detonations 

produced.  The research presented here is conducted using a valved PDE consisting of 

three phases of equal time: fill, fire, and purge.   
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Fill Phase 

During the fill phase, a fresh fuel-air mixture is allowed to enter into the 

detonation tube through the fill valves as shown in Figure 1.  The ratio of the volume of 

the fuel-air mixture introduced to the volume of the detonation tube is referred to as the 

fill fraction (FF).  Upon the closure of the fill valve, the fill phase is considered complete.  

                    

Beginning of Fill Phase of Spark Ignited 
Detonation Tube 

Fill Valve Open 

Spark 
Plug 

End of Fill Phase of Spark Ignited 
Detonation Tube 

Detonation Tube Fills Purge Valve 
Closed 

Fill Valve Closed 

Detonation Tube 
 (FF = 1 illustrated) 

Spark 
Plug 

Purge Valve 
Closed 

 
Figure 1. Schematic of the fill phase 

 
Fire Phase 

 The fire phase is comprised of four different sub-phases: spark delay, ignition, 

detonation to deflagration transition (DDT), and blow down.  The spark delay is a user 

specified pause between the closure of the fill valve and the spark deposit.  The relevance 

in the current research is twofold: 1) to prevent backfires during research and 2) to allow 

the detonation created in the primary detonation tube to act as the ignition source for the 

second branch ignited detonation tube.  The ignition time is defined as the time elapsed 

from spark deposit to the formation of combustion in the fuel-air mixture, which for low 

vapor pressure fuels is approximately 7-9 msec.  The DDT time is that required for a 
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deflagration wave formed by the spark deposit to transition to a detonation wave as it 

travels downstream, as illustrated in Figure 2, and can be estimated to be approximately 

2-2.5 msec.  The detonation wave formation process will be discussed in greater detail 

later.  The final sub-phase of the fire phase is known as blow down.  This is the time 

required for the newly formed detonation wave to exit the detonation tube and an 

expansion wave to propagate back upstream to equilibrate pressure.  This is the thrust 

producing phase of the PDE. 

                                 

Beginning of Fire Phase of Spark Ignited 
Detonation Tube 

End of Fire Phase of Spark Ignited 
Detonation Tube 

Fill Valve Closed 

Deflagration Wave Forms 

Spark 
Plug 

Purge Valve Closed 

Fill Valve Closed 

Detonation Wave Forms Downstream 

Spark Deposited 

Spark 
Plug 

Purge Valve Closed 

Figure 2. Schematic of the fire phase 

 
Purge Phase 

 The purpose of the purge phase is to expel hot combustion products produced 

during the fire phase and to cool the tube walls in order to prevent auto-ignition of the 

next fuel-air mixture introduced.  The purge phase begins when the purge valve opens 

and air enters the detonation tube as shown in Figure 3.  Similar to the fill fraction, the 

ratio of the purge gas volume introduced during this phase to the tube volume is known 

as the purge fraction (PF).   
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Beginning of the Purge Phase 
Fill Valve Closed 

Purge Valve Open 

End of Purge Phase 
Fill Valve Closed 

Detonation Tube 
(PF ≈ 0.5 as illustrated) 

Purge Valve Closed 

 
Figure 3. Schematic of purge phase 

 

Problem Statement 

For PDEs to produced adequate amounts of thrust and hence be a viable means of 

propulsion, they must be able to operate at high frequencies (Schauer et al., 2001).  To 

obtain such higher frequencies, the individual cycle times must be reduced.  Until 

recently the ignition time has proven to be a limiting factor in PDE operating frequencies.  

For example, a valved PDE using a long-chain hydrocarbon fuel has approximate fire 

sub-phase times as follows; 1) an ignition time of 7 msec, 2) a DDT time of 2 msec, and 

3) a blow down time of 0.5 msec resulting in the total fire phase time of 9.5 msec.  For a 

PDE consisting of three equal phases, the total time for one complete cycle would total 

28.5 msec resulting in a corresponding maximum engine frequency of 35 Hz.  Branch 

detonation has been shown to decrease ignition time and increase cycle performance in 

PDEs operating with hydrogen and n-heptane fuels (Tucker et al., 2003; Panzenhagen et 

al., 2004).  The concept of detonation branching is that rather than igniting the detonation 
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with a relatively low-energy spark, a detonation from a neighboring source is used to 

ignite the fresh fuel-air mixture as illustrated in the idealized schematic of Figure 4. 

                          

Beginning of Fire Phase of Detonation Ignited Tube 

End of Fire Phase of Detonation Ignited Tube

Fill Valves Closed 

Purge Valves Closed 

Fill Valves Closed 

Detonation Wave 

Branch Detonation 

Branch Detonation Tube 

Purge Valves Closed 

Figure 4. Schematic of branch detonation ignition 
 
 Upon introduction to the second detonation tube, a number of scenarios can be 

constructed by the branched detonation.  On one extreme, the detonation can successfully 

mitigate the expansion into the second detonation tube and propagate downstream as a 

detonation.  At the other end of the spectrum, the shock wave and combustion front can 

decouple at the expansion into the larger area and the combustion will continue 

downstream as a deflagration.  With both cases, the ignition time is virtually eliminated 

and with the first case, the DDT time is also eliminated as the detonation is sustained 

throughout the transfer. 

 The intrinsic goal of all detonation branching research is to eventually serve as the 

foundation for the concept of a self-sustaining engine in which a detonation will 

continuously travel around the detonation tubes, igniting each successive tube at the 

correct time, as illustrated in Figure 5.  The research presented here is a vital step towards 

the eventual implementation of this continuous PDE design.  
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Figure 5. Concept of a self-sustaining continuously branched PDE 
 

Various factors should be considered for the crossover tube as it is a non-thrust 

producing element. It should be sized to reduce thrust specific fuel consumption, ease the 

fabrication process and increase the practicality of use on future aircraft.  These factors 

however, are vital to the eventual implementation of the crossover detonation branching 

setup on an aircraft and as such are not addressed to a great extent for the current 

research.  Successful splitting of a detonation into a ¾ inch tube using hydrogen has been 

previously demonstrated (Rolling et al., 2002).  Rolling verified the success of branching 

a detonation through an analysis of wave speeds.  It was determined that successful 

detonation splitting can be obtained with numerous geometries and also that branch 

detonation can be harnessed to result in the strong ignition of a secondary detonation 

tube.  Research performed by Panzenhagen was the first attempt at branch detonation 

with a flash vaporized liquid hydrocarbon fuel, n-heptane, and was conducted at a single 

equivalence ratio (Panzenhagen, 2004).  Panzenhagen also recorded that ignition and 

DDT times were greatly reduced through the use of detonation branching.  The research 

presented herein will further develop that presented initially by Rolling and Panzenhagen 

by utilizing the technique of detonation branching to directly initiate a second detonation 

tube.  The eventual outcome will be determined through the analysis of wave speed 

measurements along all lengths of the experimental setup.  The ignition and DDT times 

of a branch ignited detonation tube have both been extensively documented in prior 

research and as such will not be the focus of analysis herein. 
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Objectives and Procedure 

 The goal of this research was to construct an experimental setup and successfully 

demonstrate a direct initiation produced through detonation branching thereby providing 

a basis for a continuously branched PDE.  The procedure required to meet said objective 

is as follows: 

1. Design and construct a one inch crossover tube and branch detonation hardware.   

2. Successfully perform detonation branching and deliver detonations to a second 

detonation tube. 

3. Directly initiate a vacant second detonation tube using only the transferred 

detonation. 

4. Analyze head pressure traces and wave speeds recorded in the second detonation 

tube to validate direct initiation. 

 
Units 

 Unfortunately, the PDE community maintains little continuity pertaining to a unit 

system.  Some authors use the international standard of units (S.I.), while others use the 

English system as a standard.  As such, most dimensions here will be in the English 

system with the primary exception being wave speed measurements. 

 

Organization 

 Chapter I served as a brief introduction to pulse detonation engine technology. In 

addition, the motivation, problem statement, and the goals for this work are discussed.  

Chapter II provides the theoretical background for this research starting with a discussion 
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on deflagration and detonation waves, pulse detonation engine theory, and the global 

reaction theory.  Previous research and other information pertinent to the present research 

are then presented.  In Chapter III, the facility, pulse detonation engine, instrumentation, 

test configurations, and methodology are discussed.  Chapter IV is a summary of the 

results obtained from the data collected, complete with current pressure trace analyses 

compared to previous branched detonation data.  Chapter V houses the all encompassing 

conclusions from the previous chapters and provides recommendations for further 

research. 
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II. Background and Theory 

 
Ignition Time 

 In order for combustion to commence, the requirements for ignition of the fuel-air 

mixture in the tube must first be met.  When the energy added to the constant volume 

system through spark deposition is greater than that of the activation energy, Ea, ignition 

will occur.  Activation energy is simply the energy required to initiate the combustion 

reaction of a given fuel-oxidizer mixture; typically reported in units of J/mol.  When this 

activation threshold is exceeded, the fuel reacts with the oxidizer to form highly reactive 

radicals.  The number of radicals formed increases with the amount of fuel consumed, 

resulting in a localized explosion.  The rapid release of energy consumes the reactants 

until a chemical equilibrium has been achieved.  Chemical reactions obey what is 

commonly known as the Arrhenius Rate Law which relates the reaction temperature to 

the reaction rate.  The corresponding ignition time is directly proportional to the reaction 

rate.  As mentioned, ignition time is that elapsed from when the energy is deposited to the 

system to the point of ignition.  The reaction rate is directly related to the temperature and 

pressure as stated below (Kuo, 2005:242): 

       
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−−=∝ TR
E

jmn u

a

eoxydizerfuelp
ARR

meIgnitionTi ][][11                        (1) 

 
where RR is the reaction rate, A is the Arrhenius constant, p is the pressure, [fuel] is the 

fuel concentration, [oxidizer] is the oxidizer concentration, Ru is the universal gas 

constant, Ea is the activation energy,  and T is the mixture temperature.  The exponents n, 

m, and j are properties of the specific fuel analyzed.  It is apparent from intuition and 
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verified by Equation (1) that raising the temperature or pressure results in a decreased 

ignition time.   

 

Deflagration and Detonation Waves 

There are two distinct modes of combustion that may be present during the 

operation of a pulsed detonation engine, deflagrations and detonations.  A deflagration 

wave is a subsonic flame sustained by heat transfer produced through a chemical 

reaction.  A detonation wave however, is a supersonic flame sustained by compression 

waves sent forth from a trailing reaction zone.  The primary differences between 

deflagration and detonation waves are the wave speeds and pressure gradients. Table 1 

summarizes the physical properties for deflagration and detonation waves, where 

subscripts one and two denote the conditions within the reactants and products region 

respectively as shown in Figure 6.  

Table 1. Qualitative differences between detonation and deflagration properties (Kuo, 2005:357) 
 

Detonation Deflagration

u1/a1 5 - 10 0.0001 - 0.03
u2/u1 0.4 - 0.7 4 - 6
P2/P1 13 - 55 ~0.98
T2/T1 8 - 21 4 - 16
ρ2/ρ1 1.7 - 2.6 0.06 - 0.25  

 
Figure 6. Schematic of stationary combustion wave 
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 It is, among a number of items, the increase in density obtained through the 

presence of a detonation wave that provides the momentum change required to produce 

thrust for the PDE.  A brief review of combustion wave theory is necessary to correctly 

understand the physical principles that govern detonation and deflagration flames. 

 
Hugoniot Relations 
 
 The Hugoniot equation results in a plot containing all possible downstream 

solutions of density and pressure (ρ2 and p2 respectively) given the upstream values (ρ1 

and p1) and the heat released per unit mass, q.  The basis of this relation is derived from 

the conservation of mass, momentum, energy and the equation of state as shown in 

Equations (2), (3), (4), and (5) respectively: 

 
2211 uu ρρ =                                                           (2) 

 
2
222

2
111 upup ρρ +=+                                                    (3) 

 
2 2
1

1 2 2p p
uC T q C T+ + = + 2

2
u                                                (4) 

 
2222 TRp ρ=                                                          (5) 

 
where p is the pressure, ρ is the density, u is the velocity, Cp is the specific heat at a 

constant pressure, T is the temperature, q is the heat of combustion, and R is the universal 

gas constant.  The equations assume one-dimensional flow, no body forces, no external 

heat addition, negligible species inter-diffusion effects, and no change in temperature or 

velocity over distance (Kuo, 2005:358).  This type of representation allows the 

combustion event to be collapsed into a discontinuity; the combustion wave.  The gas is 

assumed to be calorically perfect, and therefore both Cp and the ratio of specific heats, γ 
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are assumed to be constant.  Well know definitions of Cp and γ are used to obtain the 

relationship: 

RCp 1−
=

γ
γ                                                          (6) 

 
Substituting Equations (6) and (5) into Equation (4), an updated expression for the 

conservation of energy is obtained (Kuo, 2005:360): 
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Combining Equations (2) and (3) yields expressions for the velocities: 
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Note Equation (8) is the equation of the Rayleigh line that is capable of being derived 

without the use of any equation of state (Glassman, 1996:227).  The combination of 

Equations (7), (8) and (9) form Equation (10), also known as the Hugoniot equation 

(Kuo, 2005:360): 
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 A plot of pressure (p) versus the inverse of density (1/ρ) given initial values of p1, 

ρ1 and q, where q is the difference in the heats of formation: 
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where Yi is the mass fraction of the reactants and is the heat of formation of the 

reactants (Kuo, 2005:359).  The resulting figure is the Hugoniot Curve which contains all 

possible values of 1/ρ

ifh ,Δ

2 and p2.  The curve has historically been divided into five separate 

regions as shown in Figure 7. 

 

Figure 7. Representative Hugoniot curve with Rayleigh lines on P versus 1/ρ plane 
 
 The Rayleigh lines, which are drawn from the origin, A, at a tangent to the curve, 

create two points known as the upper (U) and lower (L) Chapman-Jouguet (CJ) points.  

The CJ points correspond to speeds at which detonations or deflagrations will propagate 

in a self-sustained fashion.  The measured gaseous wave speed is the customary metric in 

determining the existence of a detonation in a PDE environment.  The other regions (II, 

III, and V) are created by drawing lines of constant pressure (horizontal) and the inverse 
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of density (vertical) through the origin.  Though the curve is representative of all possible 

solutions to the Hugoniot equation, not all are physically feasible or possible.  The upper 

CJ wave speed for liquid hydrocarbon/air mixtures with equivalence ratios near one is 

between 1,750 and 2,000 m/s (Glassman, 1996:247).  The upper CJ wave speed for the 

stoichiometric hydrogen-air mixture used predominantly throughout this research is 

known to be approximately 1971 m/s (Glassman, 1996:245). 

 To validate the first four regions, the ratio of uΔ  to u1 can be analyzed for 

compression and expansion trends.  The particle velocity, Δu, is obtained by solving 

Equations (8) and (9) for u1 and u2 and determining their difference.  Dividing Δu by the 

square root of Equation (8) yields the following relationship: 

( )
( )1

2

1 /1
/11

ρ
ρ

−=
Δ
u
u                                                         (13)    

 
This ratio is used to determine the feasibility of the output solutions. 
 

In regions I and II, 1/ρ2 < 1/ρ1 causes the right hand side of Equation (13) to be 

positive, yielding that u1 is greater than u2.  This reveals that in detonations the hot gases 

follow the wave which agrees with the mathematical and physical understanding of 

compression waves and thus returns that regions I and II are feasible solutions.  Further 

research reveals that region I is a transient state in which the detonation wave temporarily 

travels faster than the CJ speed; such an occurrence is known as a strong detonation or 

overdriven wave and is not self-sustained.  Region II represents weak detonations where 

the pressure of the products is less than that of the pressure of the upper CJ point.  Weak 

detonations have been found to occur only in the presence of fast acting chemical 

kinetics. (Kuo, 2005:361-365) 
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Inversely in regions III and IV, 1/ρ2 > 1/ρ1 which forces the right hand side of 

Equation (13) to be negative.  The low-velocity waves previously classified as 

deflagrations are present in these regions as indicated by the presence of expansion waves 

(Glassman, 1996:231).  The strong deflagrations defined as region IV require the gas 

velocities relative to the wave front to be accelerated from subsonic to supersonic flow.   

ch forces the right hand side of 

Equation (13) to be negative.  The low-velocity waves previously classified as 

deflagrations are present in these regions as indicated by the presence of expansion waves 

(Glassman, 1996:231).  The strong deflagrations defined as region IV require the gas 

velocities relative to the wave front to be accelerated from subsonic to supersonic flow.   

Lastly, region V states p2 > p1 and 1/ρ2 > 1/ρ1 and according to Equation (8), the 

Rayleigh-line expression, u1 would result in an imaginary number.  Thus, region V is not 

a possible solution (Kuo, 2005:361).  A result seen in this region would mandate a 

compression wave to overcome an impossible scenario by moving in the negative 

direction (Glassman, 1996:231). 

Lastly, region V states p2 > p1 and 1/ρ2 > 1/ρ1 and according to Equation (8), the 

Rayleigh-line expression, u1 would result in an imaginary number.  Thus, region V is not 

a possible solution (Kuo, 2005:361).  A result seen in this region would mandate a 

compression wave to overcome an impossible scenario by moving in the negative 

direction (Glassman, 1996:231). 

  
Deflagration to Detonation Transition Process Deflagration to Detonation Transition Process 
  
 The previous section detailed a one-dimensional analysis of the physics governing 

all combustion waves; the focus is now turned on the formation of detonation waves from 

deflagrations.  The deflagration to detonation transition (DDT) process can best be 

illustrated using schematics of the tubes of the research PDE.  As described previously in 

the PDE phase cycle discussion, a relatively long, slender tube with a single open end is 

filled with a vaporized fuel air mixture.  A spark is deposited into the closed end of the 

tube and a laminar deflagration wave forms as illustrated in Figure 8. 

 The previous section detailed a one-dimensional analysis of the physics governing 

all combustion waves; the focus is now turned on the formation of detonation waves from 

deflagrations.  The deflagration to detonation transition (DDT) process can best be 

illustrated using schematics of the tubes of the research PDE.  As described previously in 

the PDE phase cycle discussion, a relatively long, slender tube with a single open end is 

filled with a vaporized fuel air mixture.  A spark is deposited into the closed end of the 

tube and a laminar deflagration wave forms as illustrated in Figure 8. 

Compression 
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Products Reactants

                                        
Deflagrating 
Flame Front 

Figure 8. Deflagration wave acceleration is due to the presence of compression waves Figure 8. Deflagration wave acceleration is due to the presence of compression waves 
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The flame front will travel at the speed of sound based on the static temperature of the 

reactants as determined by the common speed of sound Equation (14):  

 a RTγ=                                                              (14) 
 
where a is the speed of sound, γ is the ratio of specific heats, and R is the specific gas 

constant of the products.   

 Through the presence of compression waves, the combustion process increases 

the static temperature and the specific volume of the products relative to the reactants and 

causes the flame to increase in velocity to a point where turbulence is introduced.  As the 

deflagration wave continues down the tube, product temperatures and specific volume 

continue to increase, furthering the formation of compression waves.  This sequence of 

events causes the compression waves to coalesce into a shock wave ahead of the flame 

front (Kuo 2005:389).  The shock wave is the source of further turbulence in the products 

inducing a virtual explosion within an explosion resulting in a strong spherical shock 

prior to the formation of the detonation wave (Kuo, 2005:389) as shown in Figure 9. 

              
Figure 9. Shock wave forms prior to detonation wave 

 
 The spherical shock expands and reflects off the side wall and in the process 

forms transverse waves.  A portion of the spherical shock travels through the products as 

a sonic retonation wave; the remainder acts to accelerate the shock front causing an 

overdriven detonation wave (Kuo, 2005:389) as seen in Figure 10.  The overdriven wave 
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falls into the transient region I of Figure 7 and will eventually settle to the upper CJ 

speed. 

 
Figure 10. Detonation wave formed; overdriven at origination 

 
The transition lengths are on the order of one meter for highly reactive mixtures 

and as such are not viable to eventual aircraft implementation.  In order to minimize this 

limitation to the greatest extent, turbulence causing obstacles such as the Schelkin spirals 

are placed inside the detonation tubes to induce quicker DDT times and shorter DDT 

distances.  The added turbulence and compression wave interactions cause the formation 

of hot spots that encourage the explosions in explosions and decrease the transition 

distance (Tucker, 2005).  It is well known that the reduction in drag coupled with the 

DDT event causes the detonation wave speeds to be overdriven at the end of the spiral. 

 

The Zel’dovich-von Neumann-Döring Model 
 

The previous sections focused on the different properties of deflagration and 

detonation waves as well as the details pertaining to the formation of a detonation wave.  

This section delves further into the specifics of the detonation wave including the 

prerequisites for sustainment.  Zel’dovich, von Neumann, and Döring independently 

developed a one dimensional model of a detonation wave known as the Zel’dovich-von 

Neumann-Döring (ZND) model (Kuo, 2005:381).  The ZND model has become known 

Products 
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as the classic example of detonation propagation.  Using four key assumptions (Fickett, 

1979: 42): 

• The flow is one-dimensional 
• The shock is a jump discontinuity 
• The reaction rate is zero ahead of the shock and finite behind; the reaction 

is also considered reversible 
• All thermodynamic variables (other than the chemical composition) are 

everywhere in local thermodynamic equilibrium 
 

they postulated a detonation wave can be modeled in three zones; the short duration 

shock wave, a longer duration induction zone, and a similarly long reaction zone.  Figure 

11 contains a hypothesized model in the form of a graphical representation of the 

important physical parameter variations (temperature, pressure and density) as a function 

of spatial distribution through each of the three zones.   

                  
Figure 11. Generic graphical representation of the variations of physical parameters through a 

typical detonation wave as introduced by the ZND model 
 
 The thickness of the shock is on the order of several mean free paths and is, as 

mentioned, assumed to be a jump discontinuity.  All three thermodynamic properties, 

pressure, temperature and density realize a severe spike increase as caused by the shock 

wave and allow for quick reaction rates which are required to sustain the detonation.  It is 
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in essence the presence of the shock wave that allows a detonation wave to sustain.  The 

region immediately trailing the shock wave, known as the induction zone, is where the 

reaction rate slowly begins to rise while there is negligible variation in the gas properties.  

The reaction zone however produces a large increase in specific volume that creates the 

compression waves also necessary to sustain the detonation front.  The entire distance of 

all three zones is on the order of 1cm (0.39 inch) in thickness. (Kuo, 2005:381-382) 

 
Detonation Structure 
 

The one-dimensional detonation wave is well described through the ZND model; 

however an actual detonation is multidimensional in structure.  Analysis of the detonation 

wave structure provides insight to wave propagation characteristics and also a basis for 

design requirements.  Three-dimensional effects are most important when the width of 

the channel in which the detonation propagates is greater than the natural transverse-wave 

spacing (Fickett, 1979:298).  The current experimental setup for this research however 

utilizes long narrow detonation tubes in which two-dimensional effects dominate the 

behavior of the detonation wave. 

Generally speaking there are two distinct types of detonation structures; multi-

head and single-head spin.  A multi-head detonation structure is modeled in a long 

narrow channel and assumed to be governed solely by two dimensional effects.  The 

structure of a fully developed detonation can be obtained experimentally by allowing a 

detonation wave to propagate along a soot-coated film in a channel.  The result is a fish-

scale type pattern deposited in soot on the smoke film (Kuo, 2005:384).  Figure 12 

illustrates an ideal representation of the structure recorded on smoke foil from the passing 

of a detonation wave. 
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Figure 12. Idealized two-dimensional representation of a detonation’s cell structure 

 
 The detonation front is composed primarily of traversing shock waves called the 

Mach stem and incident shock which are sustained by energy released in the combustion 

of the fuel-air mixture within the channel.  The junction of the three waves that compose 

a detonation, Mach stem, incident shock and reflected shock, results in a shear 

discontinuity commonly referred to as the triple point.  It has been postulated that the 

fish-scale pattern, also known as the triple point track, is due in part to the high vorticity 

coupled with the slip discontinuity which erases the soot as the detonation travels 

downstream (Glassman, 1996:255).  Each individual fish-scale is known as a cell and is a 

characteristic of the particular detonation.  As illustrated in Figure 12, the transverse 

spacing is the cell size while the longitudinal spacing is referred to as the cell length. Cell 

size (λ) is the basis for many important design criteria when performing detonation 

branching and in general, PDE related research. 

Single-head spin detonations tend to occur most commonly in smooth circular 

tubes and represent the lowest stable mode of a detonation (Kuo, 2005:403).  They are 

formed by an increased transverse wave strength that in turn amplifies the three 

dimensional effects associated with the detonation.  The result is the formation of a 

detonation consisting of a single shock front with a trailing flame front that rotates about 

the tubes longitudinal axis.  The absolute wave velocity is that of the CJ speed but a 
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simply measured axial velocity would be reduced due to the tangential velocity 

component (Kuo, 2005:403).  A typical spherical wave front path associated with a 

single-head spin detonation is shown in Figure 13. 

 
 Single-head 

wave front path  

 
 
 
 
 
 
 
 

 
Figure 13. Illustration of the path followed by a single-head detonation wave in a tube 

 
 The onset of a single head spin detonation at a specific fuel concentration and at 

the minimum tube diameter can experience a phenomenon known as galloping.  When a 

single head spin detonation encounters an obstacle, it can lose and then almost 

instantaneously regain its wave structure.  Galloping can cause velocity fluctuations in 

excess of 10% of the CJ speed (Kuo, 2005:410).  

 
Critical Diameter 

As stated previously, the branched detonation tube does not create usable thrust 

and should be constructed in such as fashion as to reduce specific fuel consumption.  The 

minimum tube diameter required to sustain a single-head spin detonation, also known as 

the critical diameter, was determined by Kogarko and Zel’dovich and later verified by 

Lee through the relationship: 

∗= dπλ                                                               (16)   
 

Detonation Tube 
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where λ is the previously defined cell size and d* is the critical diameter (Kuo, 2005:406).  

Equation (16) establishes the design requirement necessary for a multi-head spin 

detonation to transition and propagate as a single-head spin detonation through a tube of 

similar geometry and a restricted diameter; all of which are required during the current 

research involving detonation branching. 

 
Cell Size Sensitivity 
 

Cell size is a function of many conditions such as fuel type, dilution ratios, fuel-

air ratio and wave speed.  The cell sizes of various low vapor pressure hydrocarbon fuels 

have been determined experimentally and categorized according to the energy necessary 

to initiate a direct detonation, also known as the direct initiation detonation energy.  A 

typical low vapor pressure hydrocarbon fuel combusted at a stoichiometric fuel air ratio 

requires approximately 1MJ of energy to obtain a directly initiated detonation (Tucker, 

2005:25).  The relationship between cell size and direct initiation detonation energy has 

been determined by a best-fit curve through the experimental data and is captured by the 

expression: 

 
3375.3 λ=DIDE                                                           (17) 

 
where EDID is the direct initiation detonation energy and λ, again, is the cell size.  It 

should be noted that the direct initiation detonation energy varies with the cube of the cell 

size.  Figure 14 visually illustrates the experimentally obtained data; it also shows that 

heavier molecular weight fuels typically result in larger cell sizes. 
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Figure 14. Experimentally determined relationship between cell size and direct initiation energy for 

various stoichiometric mixtures (Tucker, 2005:25) 
 
 The presence of nitrogen dilution causes an exponential increase in the cell size 

and initiation energy which is also captured in Figure 14.  This is verified by the fact that 

hydrogen-air combustion has a considerably larger cell size than hydrogen-oxygen 

combustion and therefore, requires more energy to initiate a detonation.  Related to the 

concepts of direct initiation energy and nitrogen dilution is equivalence ratio.  

Equivalence ratio, Φ , is known to be the ratio of the actual fuel air ratio to that of the 

stoichiometric fuel air ratio as shown in Equation (18): 
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where is the fuel mass flow rate, is the air mass flow rate and the subscripts 

actual and st stand for the actual and stoichiometric cases respectively.  If Φ <1, the 

mixture is considered lean due to an excess of air, and the inherent excess nitrogen will 

fuelm airm
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increase the detonation cell size.  The lean limit is the lower limit of the equivalence ratio 

at which no combustion can take place.  If Φ >1, there exists a rich environment in which 

the reduced percentage of air is not suitable to fully combust the fuel.  Similar to the lean 

limit, a rich limit exists in which a large amount of excess fuel quenches the combustion 

process completely.  Figure 15 illustrates the relationship between equivalence ratio and 

cell size for the primary fuel-oxidizer combination used throughout this research, 

hydrogen-air.  

 
Figure 15. Cell size versus equivalence ratio for hydrogen-air (Kaneshige and Shepherd, 1997) 

 
 A couple general observations can be made from a further analysis of Figure 15: 

1) the minimum cell size is obtained at or slightly above the stoichiometric equivalence 

ratio, 2) the slope of the curve formed by the data leads one to believe that a slightly rich 

mixture will not lead to an increased cell size as quickly as the alternate.  This is further 
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verified by the fact that areas of localized lean conditions can possibly exist due to poor 

mixing of the fuel and air or incomplete fills. 

Detonation cell size is seen to decreases when a detonation wave is in an 

overdriven state, which is defined as any time the velocity of the detonation is greater 

than that of a corresponding CJ detonation wave (Saretto, 2005).  It has been experienced 

that an overdriven wave can result in a decrease in cell size to approximately one tenth of 

that associated with a CJ wave.  This variation in cell size is temporary due to the 

transient stage of an overdriven wave discussed earlier and will increase as the wave 

speed decrease to the upper CJ speed; this process typically occurs within the distance of 

10-15 widths of the combustion channel (Saretto, 2005). 

 
Detonation Diffraction 

 The practice of detonation branching utilizes a detonation which originates from 

one tube to ignite a second.  When the detonation exits the crossover tube, used as a 

means of transfer, into the larger area of the second detonation tube, it undergoes a 

process known as diffraction.  A thorough understanding of this process is essential to the 

success of a direct initiation of the second tube.  Diffraction is the expansion from a 

planar detonation to one with spherical geometry.  This event is experienced during 

abrupt changes in area such as that when the branched detonation exits the crossover tube 

(Schultz, 2000:37).   

 As the planar detonation wave emerges, the shock front energy is reduced through 

the presence of strong expansion fans at the tube walls.  This loss of energy can be 

overcome if the energy released from the combustion front is greater than that lost due to 

expansion effects, resulting in a successful sustainment of the detonation.  When the 
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expansion effects dominate, the shock wave and combustion front decouple and the 

detonation transitions to a spherical deflagration wave. (Schultz, 2000:39) 

 Degrees of diffraction are categorized into three distinct cases: super-critical, 

near-critical and sub-critical (Schultz, 2000:5).  Schultz used hydrogen detonation waves 

which propagated from a 25mm (0.98 inch) diameter tube into a 152mm (6 inch) square 

test section.  The test section was equipped with transparent viewing areas which enable 

the ability to record shadowgraphs of diffractions in each of the three regimes. 

 

Super-critical 

The super-critical case is defined as that in which detonations successfully 

transition into an unconfined region.  Empirical data indicates that for a detonation to 

survive the diffraction process from a circular tube into an unconfined space, the tube 

must be sized such that its diameter is at least thirteen times the cell size, or 13λ 

(Glassman, 1996:259).  A detonation that is at least 13 λ in size produces enough energy 

through the combustion process to overcome the expansion losses associated with 

diffraction.  The shadowgraph of Figure 16 illustrates the evolution of a super critical 

detonation wave in which the shock wave remains connected with the combustion front 

and the detonation wave survives the expansion process. 
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Detonation and 
combustion wave 
remain coupled

Figure 16. Shadowgraphs of super-critical detonation diffraction of hydrogen-oxygen mixture 
(Schultz, 2000:114) 

 

Near-critical 

 The diffractions of the near-critical case results in a partial failure as the shock 

wave decouples from the combustion front near the edges of the detonation tube.  The 

detachment of the shock wave from the combustion front is noted and well illustrated in 

Figure 17(b).  Surviving portions of the detonation front however produce localized 

explosions which result in a highly non-uniform formation that bursts outward to re-

initiate the detonation front (Schultz, 2000:116). 
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Combustion Front 

Detonation Wave 
Reforms 

Figure 17. Shadowgraphs of near-critical detonation diffraction of hydrogen-oxygen mixture 
(Schultz, 2000:119) 

 
Sub-Critical 
 
 The sub-critical diffraction case is one in which a complete failure of the 

detonation wave occurs.  The sudden expansion causes the shock wave to decouple from 

the combustion front as seen in Figure 18(c) which results in a spherical deflagration 

wave as seen in Figure 18(d).  The necessary energy is not present in the original 

detonation to maintain a coupling of the combustion front and shock wave. 
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Shock Separation

Combustion Front 

Figure 18. Shadowgraphs of sub-critical detonation diffraction of hydrogen-oxygen mixture (Schultz, 
2000:117) 

 
 For all cases, the shadowgraphs indicate ignition of the hydrogen-air mixture in 

the expanded test section is instantaneous.  The fuel is ignited by the coupled shock wave 

and combustion front when the diffracting detonation is of the super-critical or near-

critical variety.  If the entering detonation is sub-critical however, the fuel-oxidizer 

mixture is ignited by the combustion front of the resulting deflagration wave. 

 
Chapter Summary 

 The ignition of a fuel-air mixture produces a deflagration wave which, through 

the aid of certain hardware, can result in a detonation wave thereby producing thrust as it 

exits a detonation tube.  The structure of a detonation wave is known to exist in two 

forms; multi-head and single-head spin.  Multi-head detonation waves are characterized 
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by cells that are the result of shear discontinuities caused by the intersection of three 

distinct shock waves.  The tube diameter that can sustain a successful CJ wave speed 

detonation is directly related to the detonation cell size.  The cell size depends greatly 

upon the properties of the fuel used, nitrogen dilution, and equivalence ratio.  A 

detonation wave expanding into an unconfined space is categorized into three different 

regimes.  To successfully transition a detonation without failure the wave diffraction 

must be super-critical or near-critical.  In all cases, ignition of the fuel-air mixture in the 

unconfined space is considered to be instantaneous. 
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III. Materials and Methodology 
 
 

Pulsed Detonation Research Facility (D-Bay) 
 

The current research was conducted at the Pulsed Detonation Engine Research 

Facility located at Wright Patterson AFB, Dayton, Ohio, Building 71A, D-Bay.  The 

facility is managed and sponsored by the Air Force Research Laboratory, Propulsion 

Directorate, Turbine Engine Division, Combustion Sciences Branch (AFRL/RZTC) with 

day-to-day operations handled by Innovative Scientific Solutions, Inc. (ISSI) contractors. 

D-Bay is comprised primarily of the large test cell, a control room and the liquid 

fuel room.  The research rig itself is housed in the 21,200 m3 (748,670 ft3) explosion 

proof test cell originally intended for turbojet testing which has since been retrofitted for 

PDE research.  Similarly, the fuel and control rooms have been modified to meet the 

demands of the present PDE research requirements.  The cell contains a static thrust stand 

capable of handling thrusts upwards of 267,000 N (60,024 lbf) and acts as a base for a 

smaller damped test stand upon which the research PDE engine is mounted (Schauer, 

2001).  Directly downstream of the research PDE engine is a fan equipped exhaust tunnel 

to aid in the vent of combustion products during operation.  The overly large facility also 

contains adequate workspace and tools to perform engine maintenance and minor 

fabrication tasks. 

The test cell, fuel room and control room are all adjacent one another and are 

separated by two foot thick, steel reinforced concrete walls.  All engine operations are 

regulated remotely through the use of a control panel established in LabVIEW control 

software and run on a dedicated computer.  This program provides real-time monitoring, 

acts as a graphical user interface to all controllable engine parameters and records low-
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speed data.  High speed data such as wave speeds and pressure traces were collected on a 

separate dedicated computer operating another in house program created in LabVIEW.  

The fuel room and engine operation have the ability to be visually monitored and 

recorded through the use of closed circuit cameras displayed in the control room. 

 
Air Supply System 
 
 The compressed air required for both the fill and purge cycles is provided by 

Ingersoll-Rand Pac Air Compressors (Model# PA 300V) capable of producing 40 m3/min 

(1412 ft3/min) of compressed air at pressures up to 6.8 atm (100 psi) individually and 

stored in a 4.5m3 (159 ft3) receiver tank (Serial# 10894, Buckeye Fabrication Co.).  Due 

to size requirements and noise levels, the compressors and receiver tank are housed in a 

separate but attached room commonly referred to as the compressor room.  The 

compressed air is routed from the compressor room into the test cell where it is split into 

the main and purge lines.  Critical flow nozzles are installed in line with the air lines and, 

when a choked flow is established, provide a known mass flow rate for a given upstream 

pressure.  This pressure is collected in both main and purge lines by upstream pressure 

transducers; similarly the temperature of the air is collected with upstream T-type 

thermocouples.  These pressures and temperatures are assumed to be stagnation values 

and are used to determine the mass flow rate of the air in both lines.  The various 

components of the air supply system are noted in Figure 19. 
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Main Air Line 

Critical Flow Nozzles 

Purge Air Line 

Figure 19. Research PDE air supply with important features noted 
 
 The aforementioned upstream main and purge temperature and pressures are 

monitored in the control room and are used by the LabVIEW control program to calculate 

the necessary air mass flow rate using Equation (19) 

 
(# )( )( )( )( )tubes tubefreq V FF Pm

RT
=                                          (19) 

 
where #tubes is the number of tubes used in the experimental setup, freq is the engine 

frequency, Vtube is the tube volume, FF is the fill fraction, P is upstream air pressure, R is 

the specific gas constant for air and T is the upstream air temperature.  The variables of 

Equation (19) are either monitored by or a user input to the control program.  Tescom 

Electropneumatic PID controllers (Model# ER 1200) actuate dome loader type pressure 

regulators through the use of high pressure nitrogen to obtain the desired pressure as 

dictated by Equation (19).  Surge tanks are located further downstream to attenuate any 

possible effects of compression waves as the air travels through the nozzles.   
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 Prior to the main (often referred to as fill) and purge manifolds, the fill air is 

routed through a Chromalox Circulation Heater (P/N 053-500870-187) which is also 

controlled by the LabVIEW program through the use of the Chromalox temperature 

controller (Model# 2104).  The upper temperature limit is determined by the temperature 

controller via a translated user input amperage in the control program. 

 
 
The Pulsed Detonation Engine 
 

The core of the PDE used in this research is a General Motors (GM) Quad 4 

engine head with dual overhead camshafts.  The head is equipped with two intake and 

two exhaust valves per cylinder as well as a mounting plate which allows a maximum of 

four detonation tubes to be mounted, as labeled in Figure 20. 

 
Figure 20. GM Quad 4 engine head used as the PDE research engine with the detonation tube mating 

points and manifold injection lines labeled 
 

The conventional poppet style valves are mechanically actuated by their respective 

camshafts which are in turn driven by a variable speed Baldor Electrical motor (Model# 
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M4102T).  The intake valves are used to provide fresh fuel-air mixture to the tubes 

during the fill phase while the exhaust valves similarly provide purge air during the purge 

phase.  The fill manifold mates to the engine from above while the purge manifold 

attaches from below.  In order to obtain the desired combination of tubes for a given 

experiment, each connection from the manifold (be it fill or purge) to the head is done so 

via a ball valve.  The intake manifold is typically shrouded with insulation, which was 

removed for the photograph shown in Figure 20, and is designed to minimize heat loss 

when heating the intake air. 

Engine cooling is obtained by running water from a radiator/reservoir setup via a 

1.5 hp Teel electric water pump (Model# 9HN01) through the existing cooling ports in 

the engine head.  Lubrication of the head valve train is obtained in a similar fashion only 

using filtered automotive oil which is pumped from a reservoir via a Viking electric oil 

pump (Model# FH432). 

 
Ignition System 

 The heart of the PDE ignition is a 12VDC MSD brand Digital DIS-4 system used 

to provide the energy necessary to initiate combustion and is also controlled by the 

LabVIEW control program.  A BEI brand optical encoder (Model# H25) is used to 

determine the angular position of the camshaft which is then used by the control 

computer to determine valve position and subsequent firing times.  Depending upon the 

user input spark delay, the control program next transmits a signal to a 12 VDC MSD 

Digital DIS-4 ignition system through a relay box.  During each fire cycle, the ignition 

system provides four sparks of 105-115 mJ each per tube, resulting in total ignition 

energy on the order of 420-460 mJ.  The research engine uses modified NGK automotive 
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spark plugs which have the grounding electrode removed and a small piece of tube 

welded to the end.  It can be noted now that the GM Quad 4 engine has a native firing 

order of 1-3-4-2. 

  
Detonation Tubes 
 
 The hardware for the research presented consisted primarily of two detonation 

tubes mounted to consecutive firing order positions 1 and 3 on the engine head.  The 

detonation tubes will be referred to interchangeably by their corresponding head locations 

as well as by their function as primary and secondary detonation tubes.  Tube one, the 

primary detonation tube, is the spark ignited detonation tube used throughout this 

research with a sole purpose of producing repeatable and consistent detonations.  The 

secondary detonation tube, number two, is the branched ignited tube.  A later examined 

crossover tube allows detonation branching to occur from near the tail of the spark 

ignited tube and directs the detonation towards the closed (or head) end of the secondary 

tube.  The material used to construct the primary and secondary detonation tubes 

consisted of Schedule 40 two inch (nominal dimension) piping.  The crossover tube was 

fabricated from one inch by 0.065 inch wall thickness stainless steel tubing and was 

chosen for the crossover tube to meet the minimum diameter criterion of a single-head 

spin detonation as determined by Equation (16).  In each case, off the shelf materials 

were utilized to minimize expense and to expedite the fabrication process.  The 

detonation tubes attach to the engine with 0.5 inch steel mounting plates that have been 

threaded to accept the detonation tubes and are notched to mate the head bolt pattern.  

The connections were sealed with a stock head gasket which was placed between the 

mounting plate and the head. 
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Spark Ignited Tube  

There are five major components that combine to construct the primary 

detonation tube: a mounting plate, steel pipes, a spiral, a T-like junction and a reducer.  

The pipe components are, as mentioned, nominal 2 inch schedule 40 steel pipes which are 

threaded with a standard male national pipe thread taper (MPT).  As the primary source 

of fabrication materials was the onsite supply, ion probe ports are located seemingly 

randomly along all pieces that were not constructed specifically for this research.  The 

only wave speed recorded from the spark ignited detonation tube was that which will be 

referred to as the pickup wave speed.  This was the wave speed recorded from ion probes 

located on either side of the T-like component which is where the detonation branches 

into the crossover tube.  All other existing ion probe locations were capped during the 

runs.  The detonation was obtained through the use of a Schelkin-type spiral strategically 

placed such that the overdriven wave obtain at the end of the spiral was present at the 

pickup location.  It has been shown that detonation branching is more successful when 

conducted in the presence of an overdriven wave which has the characteristic of a 

reduced cell size as mentioned earlier (Panzenhagen, 2004).  The final piece is the 

reducer which resulted in a 25% reduction in tail-end diameter and an unquantified 

pressure rise within the tube. 

 

Crossover Tube 

 The crossover tube is approximately 51 inches long and is constructed of one inch 

by 0.065 inch wall thickness stainless steel tubing.  The wall thickness resulted in an 
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internal diameter of approximately 0.87 inches.  It is equipped with Swagelock 

compression fittings on either end; one mates to the T-like fitting on the primary 

detonation tube while the other completes the connection to the union piece near the head 

of the secondary detonation tube shown in Figure 21.  It is equipped with numerous ion 

probe ports which offer many available combinations through which to obtain wave 

speed measurements. 

 

Detonation Ignited Tube 

 The secondary detonation tube is similar in construction to the primary detonation 

tube.  One of the few differences is the lack of any type of detonation initiating hardware.  

Second, is the innovative method in which the transferred detonation is introduced to the 

secondary tube.  The crossover tube was joined to the second detonation tube in a manner 

that forced the flow to undergo two consecutive 90 degree turns.  The section of the 

secondary tube to which the crossover tube is joined is again a two inch Schedule 40 pipe 

that was attached to the head via a mounting plate and equipped with a Swagelock 

compression fitting for the crossover tube to connect.  This transition piece, seen in 

Figure 21, forces the transferred detonation to enter the secondary tube perpendicular to 

the flow.   

     

Figure 21. Union point of crossover tube and secondary detonation tube 
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           The remainder of the secondary tube was composed of steel union fittings, other 

various lengths of Schedule 40 piping equipped with ion probe ports (to make it 

approximately of equal length as the primary detonation tube) and is finished with a 

reducer similar to that of the primary detonation tube.  As mentioned, a stock engine head 

gasket was used to create a seal between the engine block and the detonation tube 

mounting plates.  A picture of the setup, sans reducers, is shown in Figure 22 and a 

schematic of the setup is given in Figure 23. 

 
Figure 22. Branch detonation test setup using engine head locations one and three 
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Figure 23. Test setup schematic with approximate locations of ion probes indicated 
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Engine Timing 

 As mentioned previously, the firing order of the tube locations as based on the 

valve operations via the camshaft is 1-3-4-2 with each tube location being 90o of 

camshaft rotation out of phase with its predecessor.   Also, the spark delay (SD) has been 

defined as the time allotted between the fill valve closure and the spark deposition in the 

primary detonation tube.  In order to prevent backfiring into either the purge or fill 

manifolds, a SD was selected such that the transferred detonation would not arrive in the 

secondary tube until the fill valve had closed in the secondary tube.  The two cylinders 

chosen are next to each other in the engine firing order, thereby allowing the detonation 

from the primary tube to act as the ignition source for the secondary tube.  The SD is 

directly related to the engine frequency (f) of which various values are tabulated and 

displayed in Table 2.  The majority of the data collected during this research was 

conducted at an engine frequency of 10Hz (highlighted in Table 2) which resulted in an 

approximate SD of 25 milliseconds.   
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Table 2. Various spark delays shown vs. engine frequency 
Frequency 

(Hz)
Time/Cycle 

(ms)
Time/Phase 

(ms)
Spark Delay 

(ms)
2 500.000 166.667 125.0
4 250.000 83.333 62.5
6 166.667 55.556 41.7
8 125.000 41.667 31.3
10 100.000 33.333 25.0
12 83.333 27.778 20.8
14 71.429 23.810 17.9
16 62.500 20.833 15.6
18 55.556 18.519 13.9
20 50.000 16.667 12.5
22 45.455 15.152 11.4
24 41.667 13.889 10.4
26 38.462 12.821 9.6
28 35.714 11.905 8.9
30 33.333 11.111 8.3
32 31.250 10.417 7.8
34 29.412 9.804 7.4
36 27.778 9.259 6.9
38 26.316 8.772 6.6
40 25.000 8.333 6.3  
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Instrumentation 

 The instrumentation for each of the tests performed remained relatively constant 

with small variations concerning the combination of ion probes used; the head pressure 

transducers, and thermocouples were consistent throughout.  The temperature of the fill 

fuel-air mixture was measured directly upstream of the entrance to the PDE using a 1/8 

inch T-type thermocouple.  Similarly, the temperature of the purge air was monitored; 

both to ensure an immediate ignition cutoff should the temperature spike due to a 

backfire.   

 A PCB pressure transducer was situated in the head cavity of both detonation 

tubes; S/N 15010 and S/N 17994 primary and secondary respectively.  The data obtained 

was used by the post-processing program (discussed later) to determine ignition time in 

the spark ignited detonation tube and to verify the arrival of detonations to the secondary 

detonation tube.  These particular transducers were previously calibrated and it was 

determined that they exhibited a pressure to voltage conversion factor of 1037 and 883 

psig/V respectively.   

In a PDE environment, thermal shocks accompany the pressure pulses of 

detonations measured by the pressure transducers.  Most pressure sensors are sensitive to 

these thermal shocks, as were the PCB pressure transducers used in this research.  The 

sensor case expands with the heat, resulting in a reduction of the preload force on the 

internals of the sensor and causes a negative-signal output.  This effect was partially 

alleviated through the application of a silicon RTV sealant as a thermal protection 

coating.  Even with such precautions however, the negative-signal output was realized 
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and as will be mentioned again later, the resulting output was used in a 

qualitative/comparative manner only. (PCB Piezotronics, 2008) 

The ion probes used are simply automotive spark plugs acting as capacitors.  

Approximately five volts are applied to a probe and as the ions present in the combustion 

wave pass, the circuit is completed and the voltage is discharged.  The voltage traces of 

numerous ion probes are recorded by the high-speed computer using a custom LabVIEW 

program along with the spark and head pressure data which can be used to determine 

various performance parameters such as ignition time, wave speeds, and DDT time.  

Figure 24 is a photograph showing the placement of the head pressure transducers and a 

limited sampling of the ion probes and locations. 

 
Figure 24. Head of research engine with various instrumentations noted 
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Data Acquisition 

The LabVIEW program collected data at a rate of one MHz which captured 

500,000 individual data points for up to 12 channels during a one-half second run 

duration.  The typical 10 Hz engine operating frequency resulted in the capture of three to 

four complete detonation cycles per run.  The output of the high-speed data acquisition 

program is a binary file containing a continual string of pulse data.  Useful data, wave 

speeds and pressure traces in this case, are extracted from the raw files utilizing a 

separate in-house C++ program named PT Finder (see Appendix A for more 

information). 

 
Test Procedures 

Prior to testing, the fuel and air mass flow rates were calculated and the 

corresponding flow number and critical flow nozzles were installed.  Transformers were 

energized and nitrogen bottles were opened to facilitate cooling, lubrication and control 

of the research engine.  The air compressor was initiated and a blown down of the main 

air lines was conducted to prevent settled rust and water from damaging any components 

of the PDE.  From the control room the critical flow nozzles, number of tubes present, 

tube volume, desired equivalence ratio, purge and fill fractions were entered into the low-

speed control computer.  The engine was brought to the desired operating frequency and 

the spark delay was set through the low-speed LabVIEW control program in the control 

room.  The air, without fuel, is then actuated and permitted to flow through the fill and 

purge lines into the PDE.  
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 To commence engine firing, the low-speed data collection system equipped on the 

control computer was initiated, the igniters were energized and the last chance fuel valve 

was opened to allow fuel flow.  Upon the steadying of the fuel mass flow rate, 

combustion began in the detonation tubes.  The equivalence ratio was then adjusted by 

increasing or decreasing pressure in the fuel line using a previously described Tescom 

dome-type pressure regulator.  Generous amounts of data were collected by the high 

speed computer and are presented later.  Upon completion of data collection, the last 

chance valve was closed and the engine continued to run until the remaining fuel in the 

line was consumed.  The ignition source in the primary detonation tube was discontinued 

and the engine was shutdown in approximately the reverse order of startup. 
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IV. Results and Analysis 
 
 

Due to limitations of the data acquisition system, testing was performed in various 

phases.  The system, as mentioned, is capable of obtaining twelve channels of data 

simultaneously.  Head pressures in both tubes and the spark, which was deposited in the 

primary detonation tube only, were recorded for every run.  This limited the number of 

channels for acquiring wave speed measurements from ion probes to a maximum of nine.  

Also for every run, the pickup wave speed was recorded to ensure that the overdriven case 

was obtained, leaving seven channels for additional ion probes.  As such, the first phase of 

research was limited to data acquisition from only the pickup location and along the 

crossover tube.  These data were used to determine the nature of the detonations produced 

in the primary detonation tube and also those captured in the cross-over tube by detonation 

branching.  It should be noted now that the red dashed lines in the latter wave speed plots 

indicate the span of the crossover tube.  

Subsequent runs focused on locations further downstream along the path of the 

branched detonation.    Numerous parameters were held fast for all runs; Table 3 contains 

a conditions matrix which summarizes those varied, including ion probe locations used. 

 

Table 3. Conditions matrix housing setup parameter for various test runs 
 

Run
Number

Equivalence
Ratio (φ)

Ion Probe
Location Number

Primary Tube 
Reducer

Secondary Tube 
Reducer

1 1 1 - 8 Y N
2 1 1, 2, 7 - 12 Y N
3 1 1, 2, 7 - 12 Y Y
4 0.9 1, 2, 7 - 12 Y Y  
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The wave speeds reported throughout this research are the average wave speeds of the 

midpoint between two ion probes and as such are reported at these midpoint locations.  

The ion probes, and similarly the wave speeds reported later, are located relative to their 

downstream distance from the head of the primary detonation tube and are recorded in 

Table 4. 

 

Table 4. Distance of ion probes from the closed end of the primary detonation tube 
 

Ion Probe 
Location 
Number

Distance from 
Head 1 
(inches)

1 35
2 42
3 42
4 51
5 57
6 67.25
7 72
8 78
9 92
10 95
11 98
12 105.25  

 

Unless other wised noted, the following engine control variables were held 

constant throughout the various phases of testing.  The equivalence ratio (φ) was 

maintained at the stoichiometric value in order to reduce the detonation cell size (λ), as 

illustrated in Figure 15 of Chapter II, which results in an increase of the branched 

detonation pick-up success rate. The fill fraction (FF) and purge fraction (PF), both 

defined above, were held constant at 1.5 and 0.7 respectively.  The over-fill (FF>1) was 

used to ensure complete filling of the crossover tube.  Testing yielded that a fill fraction of 

one did not allow for the crossover tube to fill as indicated by wave speed measurements.  

In typical PDE operation however, the fill fraction should be minimized so as to reduce 
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unnecessary fuel consumption.  A similar relative increase in the PF over a non-crossover 

setup was used.  The engine frequency (f) was held at a constant 10 Hz for all runs. 

Prior to the presentation of data, various terms used throughout the discussion will 

be defined.  Detonation branching is the process of splitting a detonation formed in the 

spark ignited tube into the crossover tube.  Spark ignition is the process of igniting 

combustion through the use of a spark plug.  Direct initiation, as discussed here, is the 

process of a detonation wave successfully sustaining from the crossover tube into the 

secondary tube with no necessity of a second DDT event. 

 
Crossover Tube Wave Speed Measurements – Run 1 
 
 Wave speeds in the detonation and crossover tubes were measured using ion 

probes in locations shown previously in Figure 23.  Two modified renditions of this 

schematic will be presented with the various ion probe locations identified as outlined in 

Table 3.  Figure 25 houses such said schematic illustrating the ion probe locations for 

Run 1 which focused on the crossover tube wave speed measurements.   

 

Figure 25. Schematic of ion probe locations used during crossover wave speed measurements 
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As explained previously, the success rate of detonation branching is increased when the 

branching occurs in the presence of an overdriven detonation.  The CJ wave speed for the 

stoichiometric hydrogen-air mixture primarily used throughout this research is known to 

be approximately 1971 m/s (Glassman, 1996:245).  The characteristics and overall 

stability of the detonations in this research are extrapolated primarily from wave speed 

measurements collected and presented throughout.  As mentioned in Table 3 , only the 

primary detonation tube was equipped with the tail-end area restrictor for Run 1.  

Initially, determining the success of detonations throughout the length of the crossover 

tube was of most importance; these data are presented in Figure 26. 

 
Figure 26. Run 1 wave speeds collected along the crossover tube as a function of distance from the 

head of the primary detonation tube 
 

The overdriven state at the pickup location was obtained as indicated by the local 

average wave speed of 2394 m/s, approximately 21% greater than the CJ value.  The 
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current engine parameters in conjunction with the primary tube restrictor produced 

consistently strong detonations both at the pickup location and also through the measure 

section of the crossover tube.  Physical limitations of the test setup prohibited collecting 

wave speed measurements closer to the delivery end of the crossover.  The wave speed 

throughout the crossover tube was slightly lower than the pickup speed, averaging 2093 

m/s.  The lowest average wave speed recorded for a single location along the crossover 

tube was 1962 m/s; less than the one-half percent away from the CJ speed mentioned 

previously.  With the belief that strong detonations were present throughout the length of 

the crossover tube and being delivered to the union with the secondary detonation tube, 

the focus of wave speed measurements was moved further downstream.  Please refer to 

Appendix A for more information on wave speed calculations. 

 

Secondary Detonation Tube Wave Speed Measurements 

The remaining data presented is that obtained with a focus on the secondary 

detonation tube.  The ion probe locations used for the remainder of the runs are illustrated 

in the schematic of Figure 27.   
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Figure 27. Schematic of ion probe locations used during secondary detonation tube wave speed 
measurements 

 

The data presented in this subsection results from moving the ion probes at locations 

three through six in the crossover tube to locations nine through twelve in the secondary 

detonation tube; this change is visually illustrated in Figure 27.   

 

Run 2 – Initial Measurements in Secondary Detonation Tube 

At this time, no changes other than those to ion probe locations were made 

concerning the physical geometry or engine parameters.  The primary detonation tube 

was again equipped with the restrictor resulting in a 25% tail-end reduction in diameter.  

As mentioned, this caused an un-quantified pressure rise in the primary detonation tube 

and was seen to further aid in the successful detonation branching to the cross-over tube.  

The eight ion probe locations used as shown in Figure 27 resulted in the production of 

five distinct wave speed measurements for the passing of every combustion event through 

the following combination of ion probe locations: 1-2, 7-8, 9-10, 10-11 and 11-12.  These 

data are present in Figure 28 which again displays the consistently overdriven detonations 

at the pickup location with average wave speeds of 2255 m/s.  The conditions near the 
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delivery end of the crossover tube were also similar to those observed during Run 1 with 

wave speeds averaging 2042 m/s. 
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Figure 28. Run 2 wave speeds from the pick-up, crossover, and secondary detonation tube as a 
function of distance from the head of the primary detonation tube 

 
 The low and negative wave speeds observed in the secondary tube (to the right of 

the second red line) are due to weak ion probe drops and indicate a possible decoupling 

of the shock and combustion front upon expansion into the secondary detonation tube.  

Only three sets of data were collected with this setup, during which eleven detonation 

traces were recorded.  The limited amount of data for this phase was due to the 

intermittent analysis conducted during the collection of data which made it apparent that 

the desired outcome was not being obtained. 
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Run 3 – Second Measurements in Secondary Detonation Tube 

 The wave speeds observed in the secondary detonation tube without restrictors 

present (not shown) were poor, as were the results shown in Figure 28 with only the 

primary detonation tube tail-end diameter reduced.  This led to the inspiration of placing 

restrictors on both the primary and secondary detonation tubes.  The 25% reduction in 

tail-end diameter to the second tube was the only change from the previous setup of Run 

2; all other variables were maintained at current conditions.  This resulted in the first 

successful detonations seen to travel from initiation, through the crossover tube and 

transition into the secondary detonation tube without the necessity of DDT hardware in 

the secondary tube.  These data are presented in Figure 29 but as noted, must not be used 

out of context.   
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See Discussion

Figure 29. Run 3 with CJ wave speeds seen in secondary detonation tube are indicative of successful 
detonation transitions 
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 There are nineteen individual wave traces represented in the Run 3 data; thirteen 

traces in which the final measured waves speeds were 1800 m/s (91% of the CJ value) or 

greater.  Downstream of the crossover at the 93.5 inch axial location, it appears that the 

detonations are initially slowing to ~1000 m/s.  One possible cause of this occurrence 

could be due to a partial shock/combustion decoupling event as discussed earlier with 

diffraction.  The broad range of wave speeds at the next axial measurement location 

indicates a possible re-initiation event for some percentage of the cycles.  At the final 

wave speed measurement location of ~102 inches, the individual wave traces appear to 

have separated into detonations with wave speeds greater than 1800 m/s or deflagrations 

with speeds below 1000 m/s.  The average wave speed at pick-up for the data present in 

Figure 29 is 2382 m/s and the final most downstream wave speed including all values 

displayed averaged 1535 m/s.   

 There is concern pertaining to the wave speed measurements observed in the 

crossover tube which are denoted in Figure 29.  While the pick-up wave speeds exhibit 

the same overdriven tendency presented in Run 1 and Run 2, all the wave speeds at the 

75 inch location and approximately half of those at the 85 inch location are either 

negative or very near zero.  There is no direct correlation between these low wave speed 

measurements and the ultimate success or failure of the detonation in the secondary tube 

(as will be evident in a sort of the Run 3 data), indicating that the low wave speeds 

recorded do not signify a complete failure of the detonation in this case.  
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Ion Probe Trace Analyses 

 An examination of the wave speed traces of individual detonations yields that 

near zero and negative wave speeds were the results of weak ion probe readings.  The 

final wave speed measured in the crossover tube (shown at the 75 inch axial location) is a 

product of two ion probe measurements: one at 72 inches and the other at 78 inches from 

the head of the primary detonation tube, locations 7 and 8 from Figure 27 respectively.  If 

the probe at the 72 inch location does not experiences a sharp voltage drop, the program 

used to determine wave speeds will not properly calculate the wave speed shown at the 

75 inch location only.  However, if the ion probe at the 78 inch location experiences a 

weak drop, the wave speeds shown at both the 75 inch and 85 inch locations will be 

improperly calculated due to the same explanation.  These weak ion probe readings are 

possibly due to a lower rate of ions being produced by the combustion process, as would 

be the case in a deflagration rather than detonation combustion.  Oran et al. have 

demonstrated the presence of un-reacted gas pockets in discrete locations behind a 

marginal detonation wave.  In this case, the crossover tube diameter is small enough that 

the detonation wave can be classified as marginal, and it is theorized that the low or 

negative wave speeds resulted from relatively slow ion formations due to deflagration 

occurring within these un-reacted gas pockets. 

 The ion probe traces collected near the end of the crossover tube for two 

combustion events were next analyzed; one with a reasonable wave speed measurement 

and the other not (i.e. negative or extremely low), as deemed by the computer output 

wave speed measurements.  The first resulted in a measured wave speed of 2005 m/s at 

the 75 inch axial location.  Figure 30 contains the ion probe voltage traces from probe 
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locations seven and eight of Figure 27 as a function of time.  The abrupt drops in voltage 

allow the computer program to determine the wave speeds as described in greater detail 

in Appendix A. 

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

0.028 0.03 0.032 0.034 0.036 0.038
Time (s)

V
ol

ta
ge

 (V
)

72
78

 

Figure 30. Ion probe voltage trace resulting in a calculated wave speed of 2005 m/s at the end of the 
crossover tube as a function of time 

 

  As mentioned, the second analyzed wave speed trace resulted in an unrealistic 

wave speed.  In this case, the output value was just slightly negative at the 75 inch axial 

location.  The reason becomes apparent upon inspection of the ion probe voltage traces 

shown in Figure 31 which contain no such abrupt drop necessary for the wave speed 

calculation.  The combustion event for this figure passed near the 0.03 second time mark 

as indicated by the other ion probe traces (not shown for clarity purposes); however the 

majority of the voltage drop occurred approximately 2 milliseconds later.  This may be 
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the deflagration of the suspected unreacted gas pockets formed behind the marginal 

detonation wave discussed above.   
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Figure 31. Ion probe voltage trace resulting in an unrealistic, negative calculated wave speed at the 
end of the crossover tube as a function of time 

 

  

Run 3 (sort) – Chapman-Jouguet Wave Speeds in Secondary Detonation Tube 

 A sort was conducted from the data collected during Run 3 to show only those 

combustion events with a final wave speed in the secondary tube (between locations 

eleven and twelve of Figure 27) greater than 1800 m/s; the result is Figure 32.  This 

criterion was met by 13 of the 19 individual combustion traces.  The successful unaided 

detonation transition occurred only when both detonation tubes were equipped with the 

tail-end restrictors.  These data confirm the belief that the low and negative wave speeds 

recorded near the end of the crossover tube do not directly correlate to the downstream 
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wave speeds.  The pickup detonations presented here are again overdriven to an average 

of 2382 m/s while the final wave speeds measured in the second tube are 1915 m/s, very 

nearly the recognized steady-state detonation CJ speed. 
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Figure 32. Detonation traces from Run 3 with final wave speeds in the secondary detonation tube 
greater than 1800 m/s 

 

 

Head Pressure Analysis of Branched Detonations 

Successful Detonation Transfer 

 In order to obtain more confirmation of the successful direct initiation, the head 

pressure traces recorded during every run were analyzed.  As is customary when 

analyzing pressure traces in a detonation environment, the pressure is plotted as a 

function of non-dimensional time.  This non-dimensional value was obtained using 

another time known as the Chapman-Jouguet time (tCJ) which is defined as the tube 
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length divided by the CJ wave speed.  The data presented in Figure 33 is that obtained 

during a combustion event in which the final measured wave speed was at or very near 

the CJ wave speed for the stoichiometric fuel-air mixture used during Run 3. 
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Figure 33. Secondary detonation tube head pressure trace as a function of non-dimensional time for 
a successful direct initiation 

 

The corresponding wave speeds of the detonation that produced this pressure trace are 

one of those contained in the sort of Run 3 (Figure 32) data and are presented 

individually in Figure 34.  The overdriven case is again obtained at the pickup location 

with a wave speed at this location of 2577 m/s. 
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Figure 34. The responsible accompanying wave speeds for the pressure trace produced by a 
successful direct initiation shown in Figure 33 

  

 The magnitude of the plateau pressure displayed in Figure 33 is well below that of 

a typical detonation wave.  This discrepancy is believed to be a calibration shift due to 

probe heating (Cooper et al., 2002).  This effect was partially alleviated through the 

application of a layer of silicon-based sealant applied in an effort to protect the pressure 

transducers from the harsh environment of the PDE.  It is believed however, that the 

relative pressures indicated by the pressure traces are accurate representations of the 

pressure trends in the head of the secondary detonation tube but are not absolute.  

Although quantitatively inaccurate, the transducers are believed to produce an accurate 

quantitative indication of the pressure in the head during the arrival of the successfully 

transferred detonation.   
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 The head pressure trace of Figure 33 exhibits most characteristics of a direct 

detonation initiation: a brief spike in pressure, an elevated pressure plateau while the 

detonation wave travels the length of the tube and reflects back as an expansion wave and 

a blow down.  There are a number of distinctive yet important differences that must be 

noted.  First is the slight decrease in the plateau pressure at t/tCJ ~ 3.  This decrease is 

proposed to be due to a partial blow down through the crossover tube, resulting from the 

expansion that follows a typical detonation wave through the crossover tube at 

approximately half of the CJ wave speed.  The second feature of notable interest is the 

pressure spike immediately prior to complete blow down.  This is believed to be a result 

of the restrictor present on the tail-end of the secondary detonation tube.  As the 

detonation wave reaches the end of the tube, it encounters a decrease in diameter and it is 

proposed that the wave is reflected back partially as a compression wave from the solid 

surface of the reducer and also as an expansion from the interface with the atmospheric 

air at the opening of the tube.  Arriving back at the closed end of the secondary tube, the 

alleged compression wave followed closely by the expansion wave is seen through the 

pressure transducer as a brief pressure rise followed by blow down. 

 

Unsuccessful Detonation Transfer 

 In order to better verify the successful direct initiation, the head pressure trace of 

a transferred combustion event deemed unsuccessful by wave speeds was analyzed.  

Again the pressure is shown as a function of the non-dimensional time; the result is 

Figure 35.  This data was collected during Run 2 which was the configuration used to 

initially study the secondary detonation tube. 
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Figure 35. Secondary detonation tube head pressure trace as a function of non-dimensional time for 
an unsuccessful direct initiation 

 

It becomes evident by examining the accompanying wave speed measurements shown in 

Figure 36 that the combustion event does not continue down the secondary tube as a 

detonation.  The final measured wave speed for this trace is well below the steady-state 

Chapman-Jouguet detonation wave speed at 672 m/s.   
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Figure 36. The responsible accompanying wave speeds for the pressure trace produced by an 
unsuccessful detonation transfer shown in Figure 35 

 

The immediate decrease in pressure from the arrival of the transferred shock wave is not 

recovered downstream as would be the case if a detonation were to exist.  This solidifies 

the wave speed measurement indication that a detonation is not present.  Also, the 

extended overall duration when compared to the successful case shown above indicates 

that the combustion event was traveling at a much slower speed.  It is believed that this 

slower moving combustion front is responsible for sustaining the slightly elevated 

pressure until it exits the detonation tube and equilibrium is achieved through blow down.  
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Reinitiation Event 

 Figure 37 is a pressure trace similar to those shown previously only in this case, 

the detonation wave appears to initially decouple upon emergence from the crossover 

tube.   
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Figure 37. Secondary detonation tube head pressure trace as a function of non-dimensional time for 
a perceived reinitiation event 

 

This decoupling is indicated by the low wave speeds measured at the 93.5 inch and 96.5 

inch locations shown in Figure 38; the final wave speed however lends to the belief that 

the detonation then reinitiates downstream.   
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Figure 38. The responsible accompanying wave speeds for the pressure trace produced by a 
perceived reinitiation event shown in Figure 37 

 

 This data was collected using the setup parameters for Run 4 as set forth in Table 

3 and was the only run conducted at an equivalence ratio of 0.9.  All other variables, 

engine parameters and physical geometries were maintained the same as for those during 

Run 3.  The pressure plateau recorded is at a lower value than the direct initiation case 

discussed previously and exhibits considerable variation.  At the non-dimensionalized 

time value of approximately 2.5, the pressure rapidly increases likely indicating a 

retonation wave from the re-initiation event.  This is followed by a pressure decrease 

believably corresponding to an expansion caused by the presence of the crossover tube, 

as discussed in reference to Figure 33.  The similarly alleged compression and expansion 

waves traveling back towards the head are believed to result in a similar increase in 

pressure just prior to blow down.  The delay in arrival (when compared to that of a 
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successful detonation transfer pressure trace) is likely due to the additional time required 

for the re-initiation event.  The wave speed traces that accompany the two pressure traces 

presented above may indicate the importance of the pickup detonation wave speed to the 

ultimate success of the detonation propagating into the secondary thrust tube.  For the 

purpose of comparison with Figure 34, the pickup wave speed recorded in Figure 38 is 

below that of the CJ value at 1833 m/s. 

 

Previous Detonation Transfer Comparison 

 This research is the first to consistently directly initiate a detonation through the 

employment of detonation branching.  Previous related work has been conducted by 

numerous people including but not limited to Helfrich, Panzenhagen and Slack.  The 

results produced by these researchers has provided the basis for the current research and 

has virtually eliminated hours of trial and error.  Most effort to date has been placed on 

measuring the effect of detonation branching on the engine characteristics such as 

ignition and DDT time.  The most recent branch detonation work was conducted by Slack 

using the liquid hydrocarbon fuel JP-8.  He conducted a comparison of the head pressure 

data obtained through spark and detonation initiated combustion events (Slack, 2007:56).  

The data was collected using similar pressure transducers and the same data acquisition 

system used for the current research, resulting in pressure data very similar to those 

present above.  The data obtained from the branched detonation setup Slack used was 

modified to match the formatting of the head pressure data presented thus far.  The major 

changes included the calculation of the Chapman-Jouguet time (tCJ) for the different tube 

configuration and displaying the pressure trace data in a format similar to those presented 
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previously here to facilitate ease of comparison.  The result is Figure 39 which contains 

the pressure trace collected during a run fueled with JP-8 of the secondary detonation 

tube head pressure trace.  
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Figure 39. Pressure trace of previous branch detonation work using JP-8 shown as a function of non-

dimensional time (Slack, 2007) 
 
 For similar reasons, the analysis of this pressure trace should be purely 

qualitative.  The first observation that can be made is the difference between the 

amplitude of the pressure spike observed by the transducers upon arrival of the 

detonation wave.  The peak of the initial pressure spike from the previous detonation 

branching data is less than half of that reported from the current research.  The next 

observation is unveiled when focus is directed to the trend of the pressure development.  

The gradual pressure rise after the initial spike is more indicative of the head pressure 

trace associated with a typical spark ignited and hardware initiated detonation setup (not 

shown).  This is to be expected here as the peak in pressure was obtained by the presence 
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of a hardware initiated detonation downstream.  Had there been no DDT hardware in 

place and hence no detonation, the pressure trace would most likely have resembled the 

unsuccessful case above. 

  The sharp pressure rise is an indication of the entrance of the detonation wave.  If 

the shock portion of the detonation wave survived the diffraction process there would be 

a step increase in the pressure trace, as is illustrated in Figure 33.  There is no such step 

pressure increase in Figure 39 indicating that the shock wave failed upon expansion.  

This, coupled with the associated wave speed data from near the head of the secondary 

detonation tube (also not shown), further indicates the detonation wave did not 

successfully transition from the crossover during the previous research.  From the 

previous detonation branching research, it was noted that the head pressures associated 

with detonation branching and spark ignitions were seen to be nearly equivalent in terms 

of peak magnitude when using JP-8, excluding the initial pressure spike of the branched 

case (Slack, 2007: 57).  There is no such comparison for the current research; however 

the plateau magnitude is sustained at a higher level as is revealed between a comparison 

of Figure 33 and Figure 39. 
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V. Conclusions and Recommendations 

Conclusions 

This research was the first to date to present the successful and repeatable direct 

initiation of a detonation in a secondary detonation tube through the employment of 

detonation branching.  The initial focus of this effort was ensuring successful detonation 

branching and sustaining the detonation throughout the entire crossover tube.  This was 

necessary to ensure that strong detonations were presented to the junction of the 

crossover and the secondary tube where the detonation failure was most likely.  Minor 

changes were made to the test setup (i.e. the 25% reduction in tail-end diameter) and the 

goal of obtaining CJ or greater wave speeds in the secondary thrust tube was 

accomplished.  These wave speeds indicate a successful direct detonation initiation in the 

secondary tube and were obtained without the employment of internal DDT hardware 

(i.e. Schelkin-like spirals).  This accomplishment is believed to be due in part to the 

transition device designed specifically for this research which causes a redirection of the 

detonation just prior to entering the secondary detonation tube.   

Qualitative pressure traces were also presented, one which is indicative of a 

detonation striking the closed end of the secondary detonation tube.  A qualitative 

analysis of the pressure traces reveals a characteristic direct detonation initiation in some 

cases and a decoupling/re-initiation in others; both exhibit some hardware-specific 

artifacts.  A comparison with pervious branch detonation work was conducted, further 

solidifying results obtained through the qualitative analysis. 
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Recommendations for Future Work 

 There are numerous research topics that can be examined to determine the 

conditions necessary to continue the field of direct initiation by detonation branching.  In 

order to better understand the method in which the crossover tube is filled and purged, it 

is suggested that a detailed pressure analysis be conducted.  Examining the pressures at 

either end of the crossover tube as a function of time could give much needed insight as 

to the direction from which the crossover tube is filled.  With the wave speed data 

presented here, the detonation wave travel could be superimposed on the fill information 

collected and possible areas of weak reactants or poor mixture quality where the 

detonation may be reduced in strength and/or fail completely could be realized and 

possibly eliminated.   

 Armed with the knowledge of how the detonation branching setup reacts over the 

course of the fill-fire-purge cycle, a subsequent step to the eventual implementation of 

detonation branching technology is to focus on success with more commercially accepted 

fuels (i.e. AV Gas, JP-8, etc.).  Testing the setup with Hydrogen at reduced equivalence 

ratios will increase the cell size to the order of higher chain length hydro-carbon fuels and 

would be a logical first step.   

 Coupled with the alternate fuel work, the internal geometry at the point of union 

between the crossover and the secondary thrust tube may also be a focal point of future 

research.  The concept of shock reflections has been seen to be advantageous in the 

formation of a detonation (de Witt et al., 2005) and as such could be employed at this 

connection to aid in either maintaining the coupling of the shock and combustion front or 

by reinitiating a new detonation altogether. 

71 
 



Appendix A: Data Reduction and Error Analysis 

Data Reduction 

PT Finder 

 The C++ program created to perform data reduction, PT Finder, begins by 

converting the acquired binary data into floating point values using the curve fit 

accompanying the file.  The program then segments the data into separate cycles as 

denoted by the spark signals.  Every spark incident indicates the beginning of a new 

firing cycle.  A number of behind-the-scenes operations take place including, but not 

limited to, a smoothing filter, linear regression calculations, determining of ignition time 

and determining of DDT time and location. The result is a series of output files 

containing time stamps and signal magnitudes that can be displayed for the individual 

combustion events in a fashion similar to that shown in Figure 40. 

 
Figure 40. Example output traces of an individual combustion event from PTFinder 

 
 

Wave Speed Calculations 

 The program then determines the time stamp of the various ion probe discharges 

as required by the user.  As mentioned, the voltage discharge occurs at the time the 
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combustion wave passes the probe due to the completion of the circuit with the ions 

present.  The program averages the first 1000 points in order to determine the baseline 

value of the individual ion probe signal and then searches for the first 500 point 

consecutive drop in voltage.  The probe time is the first of the 500 points and in 

conjunction with the distances between ion probes, the wave speeds are calculated and 

sent to a spreadsheet.  The sharp drops in voltage as indicated by ion probe traces shown 

in Figure 40 are qualitatively indicative of the passing of a detonation. 

 

Error Analysis 

 The total uncertainty of a system is determined through a combination of bias and 

precision error.  Bias error is a measurement of error that remains constant in magnitude 

for all observations; a type of systematic error.   It is also present throughout the process 

of data reduction.  Precision error is more a level of the variation of measurements and 

calculations.  The total uncertainty is determined through a combination of the two: 

22
rrr PBU +=                                                   (21) 

where rU  is the total uncertainty, rB  is the bias, rP  is the precision error, and r  is the 

experimental result of interest (Coleman, 1989:7,94-95). 

 

Precision Error 

 The precision error varies for each data point.  Many average wave speed values 

are reported in the results section of this research.  This average is determined using an 

equation to determine the experimental mean: 
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where x is the average of the data, xi is an individual data point, and n is the number of 

data points in the set (Milton, 2003:203).  The average for a given set of information 

represents the approximate trend of that data.  However, while performing this method 

there is no measure of precision.  To determine the precision of the experimental mean, 

the standard deviation is calculated: 
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where σ is the standard deviation (Milton, 2003:207).   

 

Bias Error 

Various parameters are often measured directly and have an inherent bias error 

due in part to their individual measurement devices.  These are determined by using the 

root-sum-square equation shown below: 
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Often times an experimental factor is a function of numerous different measurements that 

each carries their own bias.  These individual effects of these elemental bias uncertainties 

are combined to determine the desired result using a modified form of the root-sum-

square: 
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Where Br is the bias of the variable of interest, r is the variable of interest, and Bi is the 

bias of each measured variable (Coleman, 1989:79).  Bias errors were calculated for a 

variety of the parameters discussed previously.   

 

Pressure Transducer Uncertainty 

 The pressure transducers used in this research measure a voltage which is 

converted to a pressure reading.  The transducers are calibrated to within 0.1% of the 

measured voltage.  If the maximum voltage is 0.05 V for example, the resulting 

transducer calibration uncertainty would be ±0.05 mV.  The response time associated 

with these pressure transducers is known to be within 1 μsec, thereby resulting in ±0.5 

μsec rise time uncertainty (Helfrich, 2006:73).  These uncertainties most directly affect 

the ignition time calculation of the primary detonation tube which is not addressed in the 

current research. 

 
Air Mass Flow Rate Uncertainty 

 The air mass flow rate is a function of the pressure transducer, thermocouples, 

and critical flow nozzles as described above.  The pressure transducers are accurate to 

0.1% of the full scale value and which is ±413.68 Pa.  The error of the T-Type 

thermocouple used is ±3 K.  The radius of the critical flow nozzles are accurate to within 

±0.0005 in.  The resulting uncertainty of the air mass flow rate is ±0.127 lbm/min. 

 
Wave Speed Uncertainty 

 The wave speed is a function of the distance between the ion probes and their 

response time.  The ion probes response time of 0.1 μsec results in an uncertainty of ±0.5 

75 
 



μsec.  In addition, the ion probe locations were measured to within 1/16 inch which is an 

uncertainty of ±1/32 inch.  This results in an uncertainty of approximately ±7.53 m/s.  As 

mentioned previously, the calculated wave speed is assumed and, therefore, reported to 

be located at the midpoint of the two ion probes used.  In actuality, the wave speed is 

merely an average of the wave speed as it travels between the two probes and could occur 

anywhere between the two locations.  This uncertainty will transmit through to DDT time 

and location calculations.  As neither of these values are analyzed and reported in the 

current research, the further uncertainty analyses are not conducted.   
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