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Abstract

This research focuses on reducing computational time in parameter optimiza-

tion by using multiple surrogates and subprocess CPU times without compromising

the quality of the results. This is motivated by applications that have objective

functions with expensive computational times at high fidelity solutions. Applying,

matching, and tuning optimization techniques at an algorithm level can reduce the

time spent on unprofitable computations for parameter optimization. The objective

is to recover known parameters of a flow property reference image by comparing

to a template image that comes from a computational fluid dynamics simulation,

followed by a numerical image registration and comparison process. Mixed variable

pattern search and mesh adaptive direct search methods were applied using surro-

gate functions in the search step to produce solutions within a tolerance level of

experimental observations. The surrogate functions are based on previous function

values and computational times of those values. The use of multiple surrogates at

each search step provides parameter selections that lead to improved solutions of an

objective function evaluation with less computational time. Previously computed

values for the objective function and computation time were used to compute a time

cut-off parameter that allows termination during an objective function evaluation

if the computational time exceeded a threshold or a divergent template image was

created. This approach was tested using DACE and radial basis function surrogates

within the NOMADm MATLABr software. The numerical results are presented.

iv



Dedication

I dedicate this thesis to my wife and son. Their patience and constant
reinforcement did not go unnoticed. I also want to thank my family and
friends for their support throughout my life and all of my endeavors.

v



Acknowledgements

I would like to thank the members of my thesis committee, Lt. Col. Abramson

and Dr. James W. Chrissis for their efforts in helping accomplish this thesis. I must

express my gratitude to my professor Lt. Col. Abramson for his support, patience,

and understanding while supervising me. His vast knowledge and expertise in many

areas provided an extraordinary technical basis to be taught from. The exceptional

mentorship and generosity of his time was greatly valued. I would also like to thank

those at Los Alamos National Laboratory, Dr. Thomas J. Asaki and Dr. Matthew

J. Sottile who continuously provided test cases and supported this thesis. Their

constant assistance was highly appreciated. A special thanks is given to Dr. John

E. Dennis Jr. for his guidance and expert advice during my thesis. It was a true

honor.

I would also like to give thanks to my peers. Capt Bryan Sparkman was always

there when I was there, working very late nights and always helping. Capt Ryan

Kappedal was also always there offering words of wisdom and ways to reduce stress.

Capt Robert Johnson was always available for the many statistical questions and he

was constantly willing to help with different areas throughout this research. Capt

Ryan Ponack was a true friend that always found a way to get me to do the things

I enjoy outside of work. A special thanks to Capt Todd Paciencia for his patience

and helpfulness with DACE and RBF surrogates, among the many other areas he

helped me throughout my thesis.

David Bethea

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1 Background and Motivation . . . . . . . . . . . . . . . 1-2

1.2 Parameter Optimization Framework . . . . . . . . . . 1-4

1.2.1 Computational Fluid Dynamics Simulation . . 1-6

1.2.2 Numerical Image Registration . . . . . . . . . 1-10

1.2.3 Dual Process Objective Function . . . . . . . 1-14

1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 1-16

2. Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.1 Optimization Using Surrogate Functions . . . . . . . . 2-1

2.1.1 Simplified Physics Models . . . . . . . . . . . 2-2

2.1.2 Functional Data Fit Models: Design and Anal-

ysis of Computer Experiments (DACE) . . . . 2-4

2.1.3 Functional Data Fit Models: Radial Basis Func-

tion (RBF) Surrogates . . . . . . . . . . . . . 2-13

2.1.4 Surrogate Management Framework . . . . . . 2-17

2.2 Generalized Pattern Search . . . . . . . . . . . . . . . 2-18

2.2.1 Mixed Variable Pattern Search . . . . . . . . . 2-23

vii



Page

2.3 Mesh Adaptive Directed Search . . . . . . . . . . . . . 2-27

2.3.1 Mixed Variable Mesh Adaptive Direct Search 2-31

2.4 Surrogates Based on CPU Time . . . . . . . . . . . . . 2-32

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 2-35

3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.1 Mixed Variable Optimization Problem and Notation . 3-1

3.2 Customized Search: Optimization using Multiple Surro-

gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

3.3 Composition of Surrogate Functions . . . . . . . . . . 3-4

3.3.1 Initial Points . . . . . . . . . . . . . . . . . . 3-5

3.3.2 Regression Model . . . . . . . . . . . . . . . . 3-8

3.3.3 Correlation Model and Basis Function . . . . 3-9

3.4 Trust Region . . . . . . . . . . . . . . . . . . . . . . . 3-10

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . 3-12

4. Implementation and Results . . . . . . . . . . . . . . . . . . . . 4-1

4.1 Coding and Processing . . . . . . . . . . . . . . . . . . 4-1

4.2 Test Problem 1: Lid-Driven Cavity . . . . . . . . . . . 4-2

4.2.1 Lid-Driven Cavity Results–MVPS . . . . . . . 4-3

4.2.2 Lid-Driven Cavity Results–MVMADS . . . . . 4-7

4.3 Test Problem 2: Barrier Flow . . . . . . . . . . . . . . 4-10

4.3.1 Barrier Flow Results–MVPS . . . . . . . . . . 4-11

4.3.2 Barrier Flow Results–MVMADS . . . . . . . . 4-14

4.4 Test Problem 3: Liquid Drop . . . . . . . . . . . . . . 4-17

4.4.1 Liquid Drop Results–MVPS . . . . . . . . . . 4-18

4.4.2 Liquid Drop Results–MVMADS . . . . . . . . 4-21

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 4-24

viii



Page

5. Conclusions and Recommendations . . . . . . . . . . . . . . . . 5-1

5.1 Summary and Conclusions . . . . . . . . . . . . . . . . 5-1

5.2 Future Areas of Research . . . . . . . . . . . . . . . . 5-4

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIB-1

Appendix A. Additional Results and Algorithms . . . . . . . . . . . A-1

Appendix B. Code for Optimization Framework . . . . . . . . . . . B-1

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VITA-1

ix



List of Figures
Figure Page

1.1. Parameter Optimization Control Diagram . . . . . . . . . . . 1-5

1.2. Parameter Space Search . . . . . . . . . . . . . . . . . . . . . 1-6

1.3. Computational Fluid Dynamics Simulation Algorithm . . . . 1-10

1.4. Computational Fluid Dynamics Simulation Flow Property . . 1-10

1.5. Numerical Image Registration of Simulated Flow Properties . 1-11

1.6. Numerical Image Registration Algorithm . . . . . . . . . . . 1-14

2.1. Simplified Physics Surrogate . . . . . . . . . . . . . . . . . . 2-3

2.2. Response Surfaces of DACE Surrogates . . . . . . . . . . . . 2-13

2.3. Response Surface of an RBF Surrogate . . . . . . . . . . . . 2-16

2.4. Surrogate Management Framework Algorithm . . . . . . . . . 2-18

2.5. Basic GPS Algorithm . . . . . . . . . . . . . . . . . . . . . . 2-22

2.6. Basic GPS Algorithm-Pictorial Representation . . . . . . . . 2-22

2.7. Mixed Variable GPS Algorithm . . . . . . . . . . . . . . . . . 2-26

2.8. Mixed Variable GPS Algorithm-POLL Step Illustration . . . 2-27

2.9. Basic MADS Algorithm . . . . . . . . . . . . . . . . . . . . . 2-30

2.10. A GPS FRAME . . . . . . . . . . . . . . . . . . . . . . . . . 2-30

2.11. A MADS FRAME . . . . . . . . . . . . . . . . . . . . . . . . 2-31

2.12. Mixed Variable MADS Algorithm . . . . . . . . . . . . . . . 2-32

3.1. Latin Hypercube Samplings . . . . . . . . . . . . . . . . . . . 3-6

3.2. Inscribed Central Composite Design (2-D) . . . . . . . . . . . 3-7

3.3. Trust Region Approach Applied to Surrogates . . . . . . . . . 3-12

3.4. TA–MVMADS Algorithm . . . . . . . . . . . . . . . . . . . . 3-13

3.5. TA–MVMADS Algorithm Continued . . . . . . . . . . . . . . 3-14

x



Figure Page

4.1. MVPS Lid-Driven Cavity Image Results . . . . . . . . . . . . 4-5

4.2. MVPS Lid-Driven Cavity Time vs Obj. Function . . . . . . . 4-7

4.3. CFD Simulation Flow Properties of Barrier Flow . . . . . . . 4-11

4.4. MVPS Barrier Flow Image Results . . . . . . . . . . . . . . . 4-12

4.5. MVPS Barrier Flow Time vs Obj. Function . . . . . . . . . . 4-14

4.6. Lid-Driven Cavity and Barrier Flow Problem Mappings . . . 4-14

4.7. CFD Simulation Flow Properties of Liquid Drop . . . . . . . 4-17

4.8. MVGPS Liquid Drop Image Results . . . . . . . . . . . . . . 4-19

4.9. MVGPS Liquid Drop Time vs Obj. Function . . . . . . . . . 4-21

4.10. Liquid Drop Problem Mapping . . . . . . . . . . . . . . . . . 4-21

4.11. MVMADS Liquid Drop Image Results . . . . . . . . . . . . . 4-23

4.12. MVMADS Liquid Drop Time vs Obj. Function . . . . . . . . 4-24

A.1. CFD Simulation Flow Properties of Lid-Driven Cavity . . . . A-2

A.2. MVGPS Lid-Driven Cavity Obj. and Time Based Surrogates A-2

A.3. MVGPS Lid-Driven Cavity Performance History . . . . . . . A-3

A.4. MVMADS Lid-Driven Cavity Time vs Obj. Function . . . . A-3

A.5. MVMADS Lid-Driven Cavity Obj. and Time Based Surrogates A-4

A.6. MVMADS Lid-Driven Cavity Performance History . . . . . . A-4

A.7. MVGPS Barrier Flow Obj. and Time Based Surrogates . . . A-5

A.8. MVGPS Barrier Flow Performance History . . . . . . . . . . A-5

A.9. MVMADS Barrier Flow Time vs Obj. Function . . . . . . . . A-6

A.10. MVMADS Barrier Flow Obj. and Time Based Surrogates . . A-6

A.11. MVMADS Barrier Flow Performance History . . . . . . . . . A-7

A.12. MVGPS Liquid Drop Obj. and Time Based Surrogates . . . A-7

A.13. MVGPS Liquid Drop Performance History . . . . . . . . . . A-8

A.14. MVMADS Liquid Drop Obj. and Time Based Surrogates . . A-8

A.15. MVMADS Liquid Drop Performance History . . . . . . . . . A-9

xi



List of Tables
Table Page

4.1. MVPS: Lid-Driven Cavity Results . . . . . . . . . . . . . . . 4-4

4.2. MVPS: Lid-Driven Cavity Surrogate Performance . . . . . . . 4-6

4.3. MVPS: Lid-Driven Cavity Iteration Performance . . . . . . . 4-6

4.4. MVMADS: Lid-Driven Cavity Results . . . . . . . . . . . . . 4-8

4.5. MVMADS: Lid-Driven Cavity Surrogate Performance . . . . 4-9

4.6. MVMADS: Lid-Driven Cavity Iteration Performance . . . . . 4-9

4.7. MVPS: Barrier Flow Results . . . . . . . . . . . . . . . . . . 4-11

4.8. MVPS: Barrier Flow Surrogate Performance . . . . . . . . . . 4-13

4.9. MVPS: Barrier Flow Iteration Performance . . . . . . . . . . 4-13

4.10. MVMADS: Barrier Flow Results . . . . . . . . . . . . . . . . 4-15

4.11. MVMADS: Barrier Flow Surrogate Performance . . . . . . . 4-15

4.12. MVMADS: Barrier Flow Iteration Performance . . . . . . . . 4-16

4.13. MVPS: Liquid Drop Results . . . . . . . . . . . . . . . . . . 4-18

4.14. MVPS: Liquid Drop Surrogate Performance . . . . . . . . . . 4-20

4.15. MVPS: Liquid Drop Iteration Performance . . . . . . . . . . 4-20

4.16. MVMADS: Liquid Drop Results . . . . . . . . . . . . . . . . 4-22

4.17. MVMADS: Liquid Drop Surrogate Performance . . . . . . . . 4-22

4.18. MVMADS: Liquid Drop Iteration Performance . . . . . . . . 4-23

xii



IMPROVING MIXED VARIABLE OPTIMIZATION OF

COMPUTATIONAL AND MODEL PARAMETERS USING

MULTIPLE SURROGATE FUNCTIONS

1. Introduction

In optimization the goal is to find a set of parameters that minimizes or

maximizes some objective function f that is typically associated with an application.

The optimization problem considered in this research can be expressed as

min
x∈Ω

f(x), (1.1)

where f : Ω → (R ∪ {+∞}) is computationally expensive to evaluate, and the

domain Ω is partitioned into continuous and discrete variable spaces Ωc and Ωd,

respectively. The space of continuous variables is defined by a finite set of linear

inequality constraints; namely, Ωc = {x ∈ Rnc
: l ≤ Ax ≤ u , l < u}, where

l, u ∈ (Rnc ∪ {±∞}), A ∈ Rm×nc
, and nc is the dimension of Ωc. The space

of discrete variables Ωd ⊆ Znd
can be represented as a subset of the space of nd-

dimensional integer vectors, where nd is the dimension. A solution to (1.1) will be

denoted by x∗ = (x∗c, x∗d) ∈ Ω where x∗c ∈ Rnc
and x∗d ∈ Znd

, and the optimal

solution will be denoted by f ∗ = f(x∗).

The objective f is treated as a black box function, since an analytic expression

for f may not be available. Derivatives are also typically unavailable. The function f

may also be nonsmooth, discontinuous, and possibly fail to return a value for x ∈ Ω

[6, 14, 24]. This work is an extension and generalization of the thesis of Magallanez

[60], who studied problems in which the computational time required to compute an

objective function value f(x) becomes less expensive as x approaches x∗.
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1.1 Background and Motivation

Parameter optimization is straightforward in concept in that the parameter

space is searched until a result is found that meets a user-defined tolerance. How-

ever, this can be effectively impossible in practice, due to the computational cost.

For difficult parameter optimization problems that consists of both computational

and model variables, it is possible to use mixed variable optimization methods that

result in reduced computational costs and improved solutions. In order to study

these methods, the class of mixed variable problems targeted here is motivated by

an application in which a single objective function evaluation requires two processes:

a computational fluid dynamics (CFD) simulation, typically having both computa-

tional and model parameters, and a numerical image registration process for com-

paring CFD simulation output data [60].

In the application, the CFD computational parameters control the fidelity of

the temporal and spatial discretizations used in approximating the Navier-Stokes

equations for describing fluid flow in a region. Model parameters describe the phys-

ical properties of the fluid or the actual simulation. At high temporal and spatial

fidelities, computational fluid dynamics simulations exhibit long runtime behavior,

thus limiting parameter searches to some type of space-filling sampling usually in

a reduced dimension parameter space [16]. Significant computational time is often

spent finding intermediate solutions that have little influence on the final result.

This misspent time can occur due to a choice of computational parameters that

force the simulation to have unnecessarily high fidelity or poor model parameters

that inaccurately describe the physical properties of the fluid flow region.

The thesis of Magallanez [60] focused on optimizing only the model parameters

of experimental observations through the use of the two aforementioned processes

in the objective function, while holding the computational parameters or simulation

fidelity variables constant. Keeping the computational parameters constant implies

a direct correlation between the objective function value and the computational time

1-2



required by the numerical image registration process. The CFD simulation outputs

data as an image of a density map or velocity field based on a set of input model

parameters. This image is then compared to the experimental data image using the

numerical image registration process. Computing resources were carefully monitored

through a metric comparison of the computational time of the image registration

process.

The motivation of this research is to generalize [60] by extending the parameter

optimization to both model and computational parameters. Fine-scale structures of-

ten cannot be validated against experimental observables; therefore, the choice of the

computational parameters should not be extended any further than necessary for the

simulation to reproduce experimental observations [16]. By including computational

parameters in the optimization process, the computing resources can be monitored

more closely using a metric comparison of the computational times. This also im-

plies that computational time will decrease in direct correlation with the objective

function to a certain extent.

At some point during the optimization process, the fidelity of the computa-

tional parameters may need to be increased in order to find the optimal solution. This

implies a possible increase in simulation time and an inverse correlation; however,

the increase in time should ideally be minimal. The minimal simulation fidelity nec-

essary for recovering the experimental observations can potentially be determined.

In general, the primary goal is to reduce the time spent on computations that are

unprofitable for parameter optimization. This will allow a more thorough interro-

gation of the parameter space, and time-intensive and high-dimensional problems,

once thought intractable, might be solved.
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1.2 Parameter Optimization Framework

A black-box parameter optimization problem can be defined in terms of an

interaction between an optimization routine and an objective function [16]. This

interaction is illustrated in Figure 1.1, where the data flow is shown by arrows and

the essential parts are shown by the named boxes. In general, the objective function

f accepts input parameters and returns results based upon its internal processes. In

Figure 1.1, the internal processes of f consist of the CFD simulation and the nu-

merical image registration. The optimization framework determines which parameter

values to test based on a cached history of previous choices and their function values,

initialization information, and termination criteria.

The traditional model, which is represented by the solid lines, is limited in the

interaction between the objective function and the optimization framework. Without

the opportunity to monitor or influence the computational process of the objective

function, the cost may be too great to allow adequate exploration of the parameter

space [16].

To overcome this problem, focus will be placed on the additional data flow

represented by the dashed lines in Figure 1.1. The research of Magallanez [60] was

based on minimizing an objective function similar to (1.1). The difference is that the

objective function in [60] was optimized using only the cached history of the model

parameters and the numerical image registration subprocess CPU times, labeled as

“model parameters” and “cputime2”, respectively. As previously mentioned, this

method implies a direct correlation in the objective function value and computa-

tional time. Model parameters may include Reynolds and Prandtl numbers and

material and physical state properties in fluid flow, such as velocities, pressures,

overall simulation lengths, etc.

The focus of this research extends the optimization of (1.1) to a framework that

makes use of the additional data of the computational parameters λ, such as time

1-4



step ∆t or grid size ∆z, labeled in Figure 1.1 as “computational parameters”. These

simulation fidelity variables control the CPU time of the CFD simulation. The

use of intermediate lower fidelity simulations can possibly guide the optimization

process in a way that recovers model parameters in less overall computational time

while maintaining a correlation between objective function value and computational

time, until higher fidelity simulations are required later in the process, which would

increase the overall computation time. This allows the optimization framework to use

the simulation subprocess CPU times, labeled “cputime1” in Figure 1.1, to choose

the next set of parameter values to test that will most likely minimize the objective

function f and the computational time.

Figure 1.1 Parameter Optimization Control Diagram

These methods encourage the inexpensive parameter space search illustrated

in Figure 1.2 [16]. The solid lines represent the level curves of the CPU time with

ti < ti+1, and the dashed lines represent the level curves of the objective function with

fi < fi+1, i = 1, 2, . . ., superimposed on the parameter space. The parameter space

is divided into model and computational parameters, labeled p and λ, respectively,

with the optimal point shown as x∗ = {p∗, λ∗}. The simulation fidelity, controlled by

the computational parameters, increases by moving to the right. A typical parameter

search is illustrated by the straight dotted line from the initial point x0 at a fixed

1-5



simulation fidelity λ to the solution x̂. The approach taken here hopes to achieve

the search illustrated by the curved dotted path, in which a better solution x∗ is

attained at lower computational cost; i.e., the model parameters are recovered at

the minimum simulation fidelity.

Figure 1.2 Parameter Space Search

1.2.1 Computational Fluid Dynamics Simulation

Numerical simulations are highly important when using mathematical equa-

tions to describe physical processes. These equations usually have no known analytic

solution and are derived from real world observations that are valid at an infinite

number of points spatially and temporally [46]. In a simulation, these equations

are discretized or considered only at a finite number of selected points, so that the

simulation approximates the solution to the underlying mathematical model. The

accuracy of the discrete model and the computational cost of the simulation depend

directly on the “fidelity” of the discretization. This leads to the need for an opti-

mization framework for solving the discretized problem as quickly as possible while

maintaining an accurate approximation of the continuous model.
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Numerical simulations are important in investigating the behavior of fluid flow,

where a fluid is considered to be any substance that does not have the ability to resist

shear stress when at rest [46]. The appropriate mathematical model of the flow of

fluid in a region Ω ⊂ Rn, n ∈ {2, 3}, over time t ∈ [0, tend], is characterized by a sys-

tem of partial differential equations consisting of a conservation of momentum (1.2)

and continuity (1.4) equation. To model temperature or heat flow, thermodynamic

properties of fluids must be considered, and the conservation of energy equation

(1.3) is added to the system of equations. The resulting system is known as the

Navier-Stokes equations, defined as [46]:

∂

∂t
~u + (~u · ∇)~u +∇ p =

1

Re
∆~u + (1− βT )~g, (1.2)

∂T

∂t
+ ~u · ∇ T =

1

Re

1

Pr
∆T + q′′′, (1.3)

div ~u = 0, (1.4)

where ~u ∈ Rn represents the velocity field, p ∈ R is the pressure in the region

determined up to an additive constant, ~g ∈ Rn indicates body forces such as gravity,

Re ∈ R+ (Reynolds number) is the dimensionless ratio of inertial to viscous forces,

Pr ∈ R+ (Prandtl number) is the relative strength of the diffusion of momentum to

heat, β ∈ R is the coefficient of thermal expansion, and q′′′ is the heat source that

causes changes in the temperature T , leading to variations in the fluid’s density and

nonlinear equations that are difficult to treat. The Laplacian (∆) and divergence

(div) operators used in (1.2)–(1.4) are denoted, respectively, by

∆ =
d∑

i=1

∂2

∂x2
i

(1.5)

div =
d∑

i=1

∂

∂xi

. (1.6)
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There is no known analytical solution to (1.2)–(1.4). A finite difference method,

using second-order central differencing for spatial discretization and first-order dif-

ference quotients for temporal discretization can be applied, resulting in a finite-

dimensional problem that can be solved numerically. In the two-dimensional case,

let x = (x
(k)
i,j , y

(k)
i,j ), u = (u

(k)
i,j , v

(k)
i,j ), and g = (gx, gy), where i, j = 1, . . . , m represent

the m × m spatial points in the flow region and (k) indicates the kth iteration .

Spatial variables x and y are incremented by δx and δy, respectively, and time is

incremented by δt.

To fully discretize the momentum equations (1.2), central differencing is ap-

plied to the time-discretized momentum equations [46], yielding:

u
(k+1)
i,j = F

(k)
i,j −

δt

δx

(
p

(k+1)
(i+1),j − p

(k+1)
i,j

)
(1.7)

v
(k+1)
i,j = G

(k)
i,j −

δt

δy

(
p

(k+1)
i,(j+1) − p

(k+1)
i,j

)
, (1.8)

where F and G are given by

F
(k)
i,j = ui,j + δt

(
∆ui,j

Re
−

[
∂(u2)

∂x

]

i,j

−
[
∂ (uv)

∂y

]

i,j

+ gx

)
(1.9)

G
(k)
i,j = vi,j + δt

(
∆vi,j

Re

[
∂(uv)

∂x

]

i,j

−
[
∂(v2)

∂y

]

i,j

+ gy

)
. (1.10)

Equations (1.7)–(1.10) must be altered to incorporate the temperature phenomena

described by (1.3), resulting in:

u
(k+1)
i,j = F̃

(k)
i,j −

δt

δx

(
p

(k+1)
(i+1),j − p

(k+1)
i,j

)
, (1.11)

v
(k+1)
i,j = G̃

(k)
i,j −

δt

δy

(
p

(k+1)
i,(j+1) − p

(k+1)
i,j

)
, (1.12)

F̃
(k)
i,j = F

(k)
i,j − β

δt

2

(
T

(n+1)
i,j + T

(n+1)
(i+1),j

)
gx, (1.13)

G̃
(k)
i,j = G

(k)
i,j − β

δt

2

(
T

(n+1)
i,j + T

(n+1)
i,(j+1)

)
gy. (1.14)
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The final results are the fully discretized temperature-adapted momentum and con-

servation of energy equations:

p
(k+1)
(i+1),j − 2p

(k+1)
i,j + p

(k+1)
(i−1),j

(δx)2
+

p
(k+1)
i,(j+1) − 2p

(k+1)
i,j + p

(k+1)
i,(j−1)

(δy)2

=
1

δt

(
F̃

(k)
i,j − F̃

(k)
(i−1),j

δx
+

G̃
(k)
i,j − G̃

(k)
i,(j−1)

δy

)
(1.15)

[
∂T

∂t

](n+1)

i,j

+

[
∂(uT )

∂x

]n

i,j

+

[
∂(vT )

∂y

]n

i,j

=
1

Re

1

Pr

([
∂2T

∂x2

]n

i,j

+

[
∂2T

∂y2

]n

i,j

)
+ q′′′i,j. (1.16)

Equations (1.7)–(1.16) lead to a CFD algorithm for numerically simulating

fluid flow in a region. To ensure stability of the algorithm and prevent cyclic distur-

bances, Courant-Friedrichs-Lewy (CFL) stability conditions [36], must be imposed

on the stepsizes to ensure that no fluid particle may travel a distance greater than

the mesh spacing δx or δy in time δt [46]. The CFL conditions are implemented

using the relationship,

δt = τ min

(
Re

2

(
1

δx2
+

1

δy2

)−1

,
P rRe

2

(
1

δx2
+

1

δy2

)−1

,
δx

|umax|
,

δy

|vmax|

)
, (1.17)

where τ ∈ [0, 1]. The algorithm for the CFD simulation, which was also used by

Magallanez [60], is summarized in Figure 1.3. Figure 1.4 depicts an image of the heat

transfer flow property within the region, which is the simulation output converted

to image data in both scale and property. Other flow properties of interest may

include velocity, pressure, vorticity, etc. The simulation output images are used by

the numerical image registration process, as will be seen in Section 1.2.2.
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CFD SIMULATION ALGORITHM

• INITIALIZATION: Set t = 0, k = 0, choose δt according to (1.17), and assign
initial values to tend, u, v, p, T .

• WHILE t < tend

Compute T
(k+1)
i,j according to (1.16).

Compute F
(k)
i,j and G

(k)
i,j according to (1.9) and (1.10).

Compute F̃
(k)
i,j and G̃

(k)
i,j according to (1.13) and (1.14).

Compute the right hand side of (1.15) and solve for p
(k+1)
i,j , ∀ i, j.

Compute u
(k+1)
i,j and v

(k+1)
i,j according to (1.11) and (1.12).

t = t + δt and k = k + 1

Figure 1.3 Computational Fluid Dynamics Simulation Algorithm

Figure 1.4 Computational Fluid Dynamics Simulation Flow Property

1.2.2 Numerical Image Registration

Numerical image registration is a fundamental problem found in many physical

image processing application areas. Haber [47] and Modersitzki [62] each define the

image registration problem as a means of finding a suitable spatial transformation

such that the difference between a transformed template image and a reference image

becomes small or the images are reasonably similar. The problem is mathematically
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defined as follows: Given a reference image R(x) created from known parameters

and a template image T (x) created from a different set of parameters, find a trans-

formation u : Rn → Rn such that T (x + u(x)) ≈ R(x), where x ∈ Ω and Ω = [0, 1]n

is the region of consideration in n spatial dimensions. A visual display of this pro-

cess can be seen in Figure 1.5 using the heat transfer flow property from Figure 1.4.

The upper left image is created from computational and model parameters that are

known. The upper right image is created using different values for the same set of

parameters. The lower left image represents a transformation u(x), as applied to

the second image, and the final image displays the difference in the transformed and

original reference image.

Figure 1.5 Numerical Image Registration of Simulated Flow Properties

The most intuitive way to pose the image registration problem is to choose

a distance measure D and minimize the distance between R and T (x + u(x)) with

respect to u [47, 62]. The result is the optimization problem,

min
u

D(T (x + u(x)−R(x)). (1.18)
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A direct solution of (1.18) has drawbacks. The problem is difficult because small

changes in input may lead to large output changes, the solution is not unique since

the problem is not convex, and the transformation may not even be continuous.

The remedy to these situations, suggested in [62], is to add a regularizing parameter

αimage ∈ R+ and a smoothing term S:

min
u

D(T (x + u(x))−R(x)) + αimageS(u). (1.19)

To solve (1.19) numerically, choices must be made for the distance measure D and

the smoothing term S. In defining D, consider the inner product space of squared

Lebesque-integrable functions over the Ω domain, given by

L2(Ω) =

{
f : Ω → R|

∫

Ω

|f(x)|2dx < ∞
}

. (1.20)

In this space, the distance measure of the difference between the transformed and

reference images is defined as

D(u) =
1

2
‖T (x + u(x))−R(x)‖L2(Ω)

=
1

2

∫

Ω

(T (x + u(x))−R(x))2dx. (1.21)

where ‖ · ‖L2(Ω) is the norm induced by (1.20). The smoothing term and regularizer

are defined by the curvature regularizer

S[u] =
1

2

n∑

l=1

∫

Ω

(∆ul)
2dx. (1.22)

To use these building blocks, the Gâteaux derivative (a generalization of the

directional derivative in differential calculus) of the distance measure D and the
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smoothing term S must exist. This derivative applied to (1.21–1.22) yields

d[D(u)] =

∫

Ω

(T (x + u(x))−R(x)) · ∇T (x + u(x))dx

=

∫

Ω

f(x, u(x))dx (1.23)

d[S(u)] =

∫

Ω

A[u](x)dx, (1.24)

where f(x, u(x)) is the force measurement associated with transforming image pixels

over a distance D, and A[u] = ∆2u is a partial differential operator associated with

the smoothing term S. The computed force f is used to transform the template

image T (x) to the reference image R(x), thus defining the transformation u(x).

The approach used by Haber [47] and Modersitzki [62] applies the Euler-Lagrange

equations to (1.23)–(1.24). This yields the system of nonlinear partial differential

equations,

A[u](x)− f(x, u(x)) = 0, ∀ x ∈ Ω, (1.25)

from which a fixed-point iteration scheme is developed to by-pass the nonlinearity

of (1.25):

A[uk+1](x)− f(x, uk(x)) = 0. (1.26)

The iteration scheme (1.26) leads to a numerical algorithm for image registration,

which has two problems that must be solved: the computation of the force used

for the transformation and the numerical solution of the partial differential equa-

tions (1.25). The numerical image registration algorithm, which was also used by

Magallanez [60], is summarized in Figure 1.6.
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NUMERICAL IMAGE REGISTRATION ALGORITHM

INITIALIZATION: Set k = 0, ~x(k) = 0, and ~u(k) = 0

For k = 0, 1, 2, . . .

Compute force ~F (k) = f(~x, ~u(k)) according to (1.23).

Solve PDE A~u(k+1) = ~F (k) according to (1.26), if converged, stop.

end

Figure 1.6 Numerical Image Registration Algorithm

1.2.3 Dual Process Objective Function

As previously stated, the objective function in (1.1) consists of the fluid flow

simulation and the image registration processes given in Figures 1.3 and 1.6, respec-

tively. The objective function takes model parameters, such as Reynolds number,

Prandtl number, velocities, etc., and computational parameters, such as grid size,

step size, etc., associated with fluid flow, and uses them as inputs within the CFD

simulation to create images of certain flow properties, such as the heat transfer flow

property illustrated in Figure 1.4. This template image is then compared to a ref-

erence image for which the input parameters are known. The goal is to recover

the model parameters of the reference image and possibly the minimal set of values

for the computational parameters. As discussed in Section 1.2.2, the image regis-

tration optimization problem (1.19) requires a measure of distance to represent the

differences in the two images, as seen in the process of Figure 1.5. This implies the

optimal transformation u∗(x), which is the solution to (1.19), can be used to define

the objective function in the form of (1.1). This research (and that of Magallanez

[60]) uses the idea of displacement fields as applied to the visual pixels of the image.

Given that u∗(x) represents the optimal displacement or transformation fields, and

ū∗ represents the average displacement field of the image pixels, the objective func-

tion can be defined with respect to the induced L2-norm of the difference of these

two fields:

f(x) = ‖u∗(x)− ū∗‖L2(Ω). (1.27)
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If the images are approximately the same, the value for (1.27) will be close to zero.

This implies that the model parameters used to create the template image are similar

to the actual model parameters of the reference image. This does not necessarily im-

ply that the computational parameters have to be the same between the two images.

For example, allowing a lower fidelity model parameter, such as grid size ∆z, de-

creases both the fidelity and computational time of the fluid simulation. However, it

is possible that the images are approximately the same at this lower fidelity. There-

fore, it takes less computational time for the fluid simulation, and fewer iterations,

or less time for the numerical image registration algorithm to transform the template

image into the reference image. If the images differ greatly, which implies that either

the fidelity of the computational parameters is too low, or the difference in model

parameters between the template and reference images is large, then it takes more

time to transform, and the transformation u∗(x) computed by the image registration

may not yield a zero objective function value. This suggests that a correlation may

exist between objective function values and their associated computational times, in

that computational time decreases as objective function values decrease.

As with [60], this correlation does exist to a certain extent. However, it is

possible to have a template image that differs significantly from the reference image,

with two other outcomes: an increased objective function value with a decreased

computational time, or a decreased objective function value with an increased com-

putational time. This is due to the forces computed in (1.23) that are used to displace

the pixels of the flow property image. For the first case, the forces can be expended

quickly creating a divergent template image (that differs significantly from the ref-

erence image), which causes the image registration algorithm to prematurely exit,

resulting in an increased objective function value with artificially low computational

time. For the second case, the forces are slowly dissipated, resulting in a very high

computational time and a template image still far away from the reference image.

Remedies for these cases are discussed in Chapters 2 and 3.
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1.3 Purpose

The goal of this research is to develop and implement an optimization frame-

work for solving a class of optimization problems that require expensive function

evaluations while reducing the time spent on unprofitable computations. The frame-

work makes careful use of computing resources through the careful employment of

multiple surrogate functions and the utilization of direct search methods to determine

the optimal parameters. Surrogate functions, which require much less computation

time, guide the direct search methods in the optimization framework, such that the

optimal point of the surrogate is easily found and is a potential incumbent of the

objective function. Direct search methods are used to solve the surrogate problem

as well as (1.1), due to the robustness of the method and the lack of derivative

information for the functions.

1.4 Overview

The remainder of this thesis is laid out as follows. Chapter 2 discusses the

results of the previous work of Magallanez [60] and outlines the relevant literature

on surrogate functions and direct search methods. Chapter 3 describes the method-

ology that was developed for using both methods and selectively employing multiple

surrogates. Chapter 4 describes the implementation of the method on several test

problems and presents the results. Chapter 5 finishes with final conclusions and

possible avenues for future research.
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2. Relevant Literature

This chapter reviews the relevant literature related to the development of the

methods to solve the optimization problem (1.1). The first section defines surrogate

functions, including a development of their structure and applicability to compu-

tationally expensive problems through the use of a surrogate-based optimization

framework. The subsequent sections describes certain “derivative-free” direct search

methods and their use in solving nonlinear black-box optimization problems. The

final section discusses the research results of Magallanez [60].

2.1 Optimization Using Surrogate Functions

One of the most challenging issues in using standard optimization techniques in

real world applications is that the objective function can require significant amounts

of computational time [78]. Expensive functions are typically handled by optimizing

some type of less expensive approximation model or surrogate function. In fact, this

idea was the impetus behind response surface methodologies (RSM) introduced by

Box and Wilson [26]. However, in RSM the goal is to optimize the approximation

model for which the coefficients of the approximating polynomial are estimated but

not known. This can lead to a value that differs significantly from the true optimal

point. Direct optimization that employs approximation models, or surrogates, origi-

nated in the 1970s with the work of Smith and Miura [77], and has proven popular for

real world applications [41]. However, one problem with applying surrogates without

evaluating the objective function at a sufficient number of points is the possibility

of failure because there is not enough information to build an adequate model. A

method of mitigating this problem is to build the surrogate with previously evalu-

ated points, and during the optimization process, adapt the surrogate by sampling

the true function at selected points. Supporting mathematical theory has been de-

veloped for this type of approximation-based optimization method. Alexandrov et
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al. [13] and Booker et al. [23], inspired by the ideas of Dennis and Torczon [39],

use the terms surrogate-based optimization and surrogate management framework to

describe these methods for solving optimization problems using a surrogates.

Surrogates used within this type of optimization framework are of two types:

simplified physics models that describe the behavior of the physical system at all

points or functional data fit models that are purely mathematical constructs for

modeling the behavior of the true function through an approximating function.

2.1.1 Simplified Physics Models

A simplified physics surrogate is a lower fidelity physics-based model (with

reduced computational cost) that is used in conjunction with, or in place of, the

costly higher fidelity model. As discussed in [41], simplified physics surrogates can

be categorized by the methods used to reduce the fidelity and may include any of

the following: coarser discretizations, relaxed residual tolerances, omission of certain

modeled physical properties, or reduction in dimensionality.

Examples of one-dimensional simplified physics surrogates are given by the

solid lines in Figure 2.1, where the open circles and dashed line represent the sam-

pled values and an unknown objective function respectively. As noted in [78], a

disadvantage of using this type of surrogate is that it requires knowledge of the be-

havior and complexity of the physical system, thus implying that the use of simplified

physics surrogates is problem-specific.
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Figure 2.1 Simplified Physics Surrogate

Following the methods of Alexandrov et al. [13] and Robinson et al. [72], a

simplified physics model can be used to derive the surrogate under conditions where

the model is defined over the same design space or a lower dimension design space.

Let f : Rn → R represent the objective function to be minimized and x ∈ Rn is

the vector of n design variables that describe the design. A low fidelity model for

f(x) is denoted by g(x̃) where x̃ ∈ Rñ is the low fidelity design vector of dimension

ñ ≤ n (i.e., the model is defined over the same or a lower dimensional space than

the objective function). The low fidelity model is used to derive the surrogate model

f̃(x), which is defined over the same design space as the objective function. An

appropriate simplified physics surrogate f̃(x) that approximates f(x) is at least

first-order accurate at the center of the design region [13]. A consistent surrogate

model can be constructed from the low fidelity model g(x̃) through the use of additive

and multiplicative corrections as well as space mapping transformations for models

defined over a lower dimensional space. A corrected surrogate model for the additive
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and multiplicative cases is given by

f̃(x) = g(x̃) + α(x), (2.1)

f̃(x) = g(x̃)β(x), (2.2)

where α and β are defined as approximations to the correction functions used in [72].

If the low fidelity model g(x̃) is defined over a lower dimensional space then

a space mapping transformation is required. As defined in [21, 72], space mapping

is a method of mapping between models of different dimensionality or fidelity. Let

P denote the space mapping function between the high and low fidelity models.

Bandler et al. [21] provide a detailed method and description for finding optimal

space mapping functions. For the types of problems considered here, initial points

used by g(x̃) are those at which the objective function values have already been

computed. The transformation P is a mapping such that

x̃ = P (x), (2.3)

and the combination of the additive (2.1) and multiplicative corrected surrogate (2.2)

with the space mapping transformation (2.3), respectively, results in the corrected

surrogate models for the two cases:

f̃(x) = g(P (x)) + α(x) (2.4)

f̃(x) = g(P (x))β(x). (2.5)

2.1.2 Functional Data Fit Models: Design and Analysis of Computer Experiments

(DACE)

Complex computer models have become an increasingly popular method of

investigating many scientific phenomena [74, 75]. A feature of using computers to

perform experiments is that the output is deterministic, given that the experiment
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is conducted using the same input parameters. However, these computer models

are usually computationally expensive; therefore, a less expensive method of pre-

dicting their output is desirable. One method of prediction is a functional data fit

model, which is a purely mathematical construct that models the behavior of the

true function through an approximating function and makes no assumptions based

upon physics of the objective function. An example of a functional data fit model is

a “Design and Analysis of Computer Experiments” (DACE) surrogate that repre-

sents the trends of a response over the range of the design variables [74, 75]. DACE

surrogates are defined overall by an initial design of experiments and a kriging sur-

rogate.

Design of experiments can be divided into two types: classical and modern.

Both techniques share the common goal of extracting as much information as possible

from a limited set of laboratory or computer experiments [45]. Classical design of

experiments, such as central composite design and Box-Behnken design, have a rich

history of statistical and mathematical development along with practical application

in scientific and engineering studies [63]. Modern design of experiments methods

aim to generate in the design space a “space-filling” set of points from which to

sample the objective function. Examples include Latin Hypercube sampling [80, 81],

Orthogonal Arrays [69], and nearly uniform designs [59].

Kriging surrogates are motivated by the requirement to sample fewer points

and have been extensively used for approximating deterministic computer models

used in a variety of applications, such as structural optimization, multidisciplinary

design, aerospace engineering, and mechanical engineering [23, 24, 61, 79]. In kriging,

the deterministic response y(x) of a computer model is treated as a realization of

a random function ŷ(x) that consists of a generalized linear regression model and a

random process accounting for the correlation in the residuals between the regression

model and actual objective function values. This allows for the construction of an
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approximating model that can interpolate the observed or known data points of the

actual objective function [61].

The structure and development of the kriging surrogate is given following the

derivations of [56, 61, 64, 74]. The mathematical form of a kriging surrogate has two

components:

ŷ(x) =
n∑

j=1

βjfj(x) + Z(x) = βT f(x) + Z(x), (2.6)

where β = [β1, β2, . . . , βn] ∈ Rn and f = [f1, f2, . . . , fn]. For clarification purposes,

unless specifically referenced, f in this notation is not the same f(x) being optimized

in (1.1). The βT f(x) term is a linear regression function modeling any trends over

the domain, and Z(x) is the realization of a stationary Gaussian random function

with zero mean and a covariance between Z(w) and Z(x) of

V (w, x) = E[Z(w)Z(x)] = σ2R(θ, w, x) (2.7)

that defines the differences between the actual objective function values of f(x) and

the interpolated data. The value of σ2 is the process variance of the response, and

R(θ, w, x) is the spatial correlation function of the kriging model. The correlation

function R with parameter θ is used to control the smoothness of the surrogate,

influence of nearby points, and differentiability of the response surface. For the

purpose of the derivations, the deterministic response at an untried point x̃ can be

expressed as:

y(x̃) =
n∑

j=1

βjfj(x̃) + Z(x̃), (2.8)

where Z(x̃) has a mean of zero and a covariance of

V (x̃, x̃) = E[(Z(x̃))2] = σ2 (2.9)
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that behaves as an approximation error. Under the assumption that β is chosen

correctly, the error will behave as noise [56].

The kriging predictor is constructed using a regression model that is a linear

combination of p functions fj : Rn → R (see by Lophaven et al. [56]) and denoted

by:

F̂ (β, x) = β1f1(x) + · · ·+ βpfp(x)

= [f1(x) · · · fp(x)]T β

≡ f(x)T β, (2.10)

which allows the kriging surrogate (2.6) and the deterministic response (2.8) to be

rewritten, respectively, as

ŷ(x) = F̂ (β, x) + Z(x) ≡ f(x)T β + Z(x) (2.11)

y(x̃) = F̂ (β, x̃) + Z(x̃) ≡ f(x̃)T β + Z(x̃). (2.12)

Given a set of known design points {xi}k
i=1 ⊂ Rn and their responses Y = {yi}k

i=1 ⊂
Rm, denote the design matrix F with [F ]ij = fj(xi) by,

F = [f(x1) · · · f(xk)]
T (2.13)

where f(x) is defined by (2.10). The spatial correlation function R in (2.7) is the

matrix of random process correlations between Z(xi) and Z(xj) at the design points

denoted by,

Rij = R(θ, xi, xj), i, j = 1, . . . , k. (2.14)

2-7



Denote the vector of correlations between Z(xi) at the design sites and Z(x̃) at an

untried point x̃ by

r(x̃) = (R(θ, x1, x̃) · · ·R(θ, xm, x̃))T . (2.15)

The linear predictor of the true value Y = y(x) at an untried point x̃ is given by

ŷ(x̃) = c(x̃)T Y, (2.16)

and the mean square error (MSE) of this predictor is computed over the random

process. The best linear unbiased predictor is found by choosing the coefficients

c(x̃) ∈ Rm that minimize the MSE. The error between (2.16) and (2.8) is

ŷ(x̃)− y(x̃) = c(x̃)T Y − y(x̃). (2.17)

Substituting (2.11)–(2.13) into the right hand side of (2.17) yields:

ŷ(x̃)− y(x̃) = c(x̃)T (Fβ + Z(x))− (f(x̃)T β + Z(x̃))

= c(x̃)T Z(x)− Z(x̃) + (c(x̃)T F − f(x̃))β. (2.18)

In order to ensure the kriging predictor is unbiased the unbiasedness constraint

c(x̃)T F − f(x̃) = 0 (2.19)

is added. This constraint and (2.18) imply that the MSE of (2.16) is derived as

MSE[ŷ(x̃))] = E[(ŷ(x̃)− y(x̃))2]

= E[(c(x̃)T Z(x)− Z(x̃))2]

= E[Z(x̃)2 + c(x̃)T Z(x)Z(x)T c(x̃)− 2c(x̃)T Z(x̃)Z(x)]. (2.20)
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Using the covariance definitions (2.7) and (2.9), as well as the spatial correlation

function definitions (2.14) and (2.15) to simplify (2.20), results in:

E[Z(x̃)2] = σ2,

E[Z(x)Z(x)T ] = σ2R(θ, x, x) = σ2R,

E[Z(x̃)Z(x)] = σ2R(θ, x̃, x) = σ2r,

which simplifies (2.20) further, yielding

MSE[ŷ(x̃))] = σ2(1 + c(x̃)T Rc(x̃)− 2c(x̃)T r). (2.21)

To find the coefficients c(x̃) that minimize (2.21), subject to the unbiasedness con-

straint (2.19), the Lagrangian function is formulated with Lagrange multipliers

λ(x̃) ∈ Rm as

L(c, λ) = σ2(1 + c(x̃)T Rc(x̃)− 2c(x̃)T r)− λ(x̃)T (c(x̃)T F − f(x̃)), (2.22)

and taking the gradient of L with respect to c(x̃) and λ(x̃) yields the first order

necessary conditions,

∇cL(c, λ) = 2σ2(Rc(x̃)− r)− Fλ(x̃) = 0

∇λL(c, λ) = Fc(x̃)− f(x̃) = 0

which yields

⇒ Rc(x̃) + Fλ̃(x̃) = r (2.23)

⇒ Fc(x̃) = f(x̃), (2.24)
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where λ̃(x̃) of (2.23) is defined by

λ̃(x̃) = −λ(x̃)

2σ2
.

Equations (2.23) and (2.24) yield the system of equations,


 R F

F T 0





 c(x̃)

λ̃(x̃)


 =


 r

f(x̃)


 , (2.25)

whose solution is

λ̃(x̃) = (F T R−1F )−1(F T R−1r − f(x̃)) (2.26)

c(x̃) = R−1(r − Fλ̃(x̃)). (2.27)

Substituting the solutions (2.26)–(2.27) into (2.16) yields the predictor

ŷ(x̃) = c(x̃)T Y,

= (r − Fλ̃(x̃))T R−1Y

= rT R−1Y − (F T R−1r − f(x̃))T (F T R−1F )−1F T R−1Y

= rT R−1Y − (F T R−1r − f(x̃))T β∗

= f(x̃)T β∗ + rT R−1(Y − Fβ∗)

= f(x̃)T β∗ + r(x̃)T γ∗, (2.28)

where β∗ and γ∗ are the generalized least squares solutions, given by

β∗ = (F T R−1F )−1F T R−1Y (2.29)

γ∗ = R−1(Y − Fβ∗) ≡ σ2(1 + c(x̃)T Rc(x̃)− 2c(x̃)T r). (2.30)
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Regression models used in (2.6) are polynomials of order 0, 1, and 2 [56]. More

specifically:

Constant (order 0) : f1(x) = 1

Linear (order 1) : f1(x) = 1, f2(x) = x1, . . . , fn+1(x) = xn

Quadratic (order 2) : f1(x) = 1, f2(x) = x1, . . . , fn+1(x) = xn,

fn+2(x) = x2
1, . . . , f2n+1 = x1xn, f2n+2(x) = x2

2,

. . . , f3n = x2xn, . . . , fp(x) = x2
n. (2.31)

The correlation models for (2.7) are typically restricted [56] to the form:

R(θ, w, x) =
n∏

j=1

Rj(θ, wj − xj) =
n∏

j=1

Rj(θj, dj), (2.32)

where dj = wj −xj, j = 1, 2, . . . , n, and Rj(θj, dj) in (2.32) is usually defined by one

of the following functions:

Exponential : exp(−θj|dj|)
General Exponential : exp(−θj|dj|θn+1), 0 < θn+1 ≤ 2

Gaussian : exp(−θjd
2
j)

Linear : max{0, 1− θj|dj|} (2.33)

Spherical : 1− 1.5ξj + 0.5ξ3
j , ξj = min{1, θj|dj|}

Cubic : 1− 3ξ2
j + 2ξ3

j , ξj = min{1, θj|dj|}

Spline : ς(ξj) =





1− 15ξ2
j + 30ξ3

j , 0 ≤ ξj ≤ 0.2

1.25(1− ξj)
3, 0.2 < ξj < 1

0, 1 ≤ ξj.





, ξj = θj|dj|.

The choice of the regression polynomial order, correlation model, and θ can

significantly affect the quality of the surrogate. The correlation functions given in
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(2.33) can be separated into two groups, one containing functions with parabolic

behavior near the origin (Gaussian, Cubic, and Spline), and the other containing

functions with linear behavior near the origin (Exponential, Linear, and Spherical).

The choice of correlation function should be motivated by the underlying phenomena

[56]. If the function representing the underlying physical phenomena is continuously

differentiable, it will likely show parabolic behavior at the origin, implying a Gaus-

sian, Cubic, or Spline correlation model should be used. Functions showing linear

behavior at the origin, imply an Exponential, General Exponential, Linear, or Spher-

ical correlation may perform better. As noted by Lophaven et al. [56], phenomena

are often anisotropic, meaning that different correlations are identified in different

directions; i.e., the behavior of the response surface of the kriging functions may

differ between directions. Allowing for different parameters θj , j = 1, 2, . . . , n, is

accounted for in (2.33).

The values of θj ∈ [0, +∞), j = 1, 2, . . . , n, are typically optimized, based on

data sites, responses, and user-specified or user-computed lower and upper bounds

for each θj. The optimal values of θ are found by solving

min
θ
|R|1/mσ̂2, (2.34)

for the maximum likelihood estimator θ∗, where the corresponding maximum likeli-

hood estimate of the variance is

σ̂2 =
1

m
(Y − Fβ∗)T R−1(Y − Fβ∗). (2.35)

In practice, the unconstrained optimization problem in (2.34) needs lower and

upper bounds on θ to avoid excessive computation and to prevent undesirable choices

of θ. These bounds can be estimated by an iterative process using the correlation

model (2.32) [10]. Lophaven et al. [57, 58] use a modified version of the pattern search

method of Hooke and Jeeves [49] to compute optimal values of θ. The optimization
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only requires an initial value of θ; however, providing upper and lower bounds can

prevent θ from converging to a poor local minimum [57].

Figure 2.2 shows DACE response surfaces (using the DACE MATLABr

software [56]) for an example problem, using an initial guess of [10; 10] with lower

bounds θl = [0.1; 0.1] and upper bounds of θu = [20; 20]. The kriging model used a

2nd order regression polynomial with Exponential and Gaussian correlation models.

Figure 2.2 Response Surfaces of DACE Surrogates

2.1.3 Functional Data Fit Models: Radial Basis Function (RBF) Surrogates

When the functions that are approximated depend on many variables/parameters

and are defined by many data points scattered throughout the domain, Radial Basis

Functions (RBFs) are a well suited approximation approach [31]. RBFs are real-

valued functions that can be used to interpolate data and approximate nonlinear

functions. Following [32, 31, 71, 83], to approximate a real-valued function f(x) by

some interpolating model s(x), given n distinct points x1, . . . , xn ∈ Rn with known
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function values f(x1), . . . , f(xn), the RBF interpolant is of the form:

s(x) = p(x) +
n∑

i=1

λiφ(‖x− xi‖), x ∈ Rn, (2.36)

where p(x) ∈ ∏n
m is the space of polynomials in n variables of degree at most m,

λi ∈ R for i = 1, . . . , n are real-valued weights, ‖ · ‖ is the Euclidean norm, and

φ : R+ → R is the basis function [32]. In (2.36), φ(x) = φ(‖x− xi‖) is a measure of

the distance from x to xi. Therefore, an RBF can be thought of more technically

as a weighted sum of translations of a radially symetric basis function, augmented

by a polynomial term [32].

As suggested in [66] and [71], there are various forms of the basis function,

including the following:

Surface Splines : φ(r) = rk , k ∈ N, k is odd (2.37)

φ(r) = rk log r , k ∈ N, k is even (2.38)

Multiquadric : φ(r) = (r2 + γ2)k , k > 0 , k /∈ N (2.39)

Inverse Multiquadric : φ(r) = (r2 + γ2)k , k < 0 , k /∈ N (2.40)

Gaussian : φ(r) = e−γr2

, (2.41)

where r ≥ 0 is the radius (or distance) from the origin and γ is a positive scalar.

Special cases of (2.37) include the Bi-harmonic and the Tri-harmonic (Cubic Spline)

functions, where k = 1 and k = 3, respectively. A special case of (2.38) is the Thin-

plate Spline with k = 2. Different advantages exist for each of these forms. The

Bi-harmonic and the Tri-harmonic are good choices for fitting functions of three

variables, the Thin-plate Spline is a good choice for fitting smooth functions of

two variables, and the Multiquadric is used for various applications, such as fitting

topographical data [32].
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Regis and Shoemaker [71] and Carr et al. [32] describe how the RBF inter-

polant s(x) is found by solving for the coefficients c = (c1, . . . , cm) of the polynomial

p(x) and the weights λi in the following derivations. A basis function is chosen from

one of the forms (2.37)–(2.41), and matrices φ̂ ∈ Rn×n and Γ ∈ Rn×m are defined by

φ̂ij = φ(‖xi − xj‖) , i, j = 1, . . . , n (2.42)

Γij = pj(xi) , i = 1, . . . , n , j = 1, . . . , m. (2.43)

For f(x1), . . . , f(xn), the weights λi, i = 1, 2, . . . , n, are sought such that the RBF

satisfies

s(xi) = f(xi) , i = 1, . . . , n. (2.44)

This yields a linear system with more parameters than data; namely,

n∑
j=1

λjp(xj) = 0, (2.45)

where the weights λj, j = 1, . . . , n, are imposed to maintain orthogonality and p(xj)

is a polynomial of n variables of degree at most m. In [71], (2.42)–(2.45) are used to

find the RBF that interpolates (x1, f(x1)), . . . , (xn, f(xn)) by solving the system,


 φ̂ Γ

ΓT 0





 λ

c


 =


 F

0


 , (2.46)

where F = (f(x1), . . . , f(xn))T , λ = (λ1, . . . , λn)T ∈ Rn, and c = (c1, . . . , cm)T ∈ Rm.

The value left undetermined is the scalar γ of the various basis functions.

Franke [43] found in his work with the Multiquadric (2.39) basis function, that when γ

was chosen to be close to the average distances between design sites, the interpolation

in two dimensions was more accurate. Nielsen et al. [66] suggests using a value of

γ = 1 in all basis functions; however, as the distances between design sites become
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large, the value of γ affects accuracy minimally. Buhman et al. [30] give error

estimates showing that accuracy increases as γ gets larger. Powell [70] shows that the

interpolants converge uniformly as γ →∞ when the distances between design sites

form an evenly spaced grid. For many basis functions, it would seem advantageous to

choose large values of γ. However, Baxter [22] shows that if the distances form a finite

evenly spaced grid, then the smallest eigenvalues of (2.42) decrease exponentially as

γ → ∞. This implies that the matrix φ̂ in (2.46) can become ill-conditioned, and

“in general, there is no best way to choose a value of γ for the basis functions” [22].

An example of the response surface of an RBF surrogate with n = 20, using a

Multiquadric basis function and 2nd order quadratic polynomial terms can be seen

in Figure 2.3.

Figure 2.3 Response Surface of an RBF Surrogate
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2.1.4 Surrogate Management Framework

The use of approximation models (surrogates) for optimizing expensive com-

puter simulations has become a standard in engineering practice to aid in the guid-

ance of design processes [23, 39]. These models help reduce the number of com-

putationally expensive function evaluations. Booker et al. [23] describe a general

framework for managing surrogate objective functions to facilitate the optimization

of expensive computer simulations based on the ideas of [39]. The surrogate manage-

ment framework uses a sequence of surrogate functions to identify promising regions

in which to use successively better surrogates, either by adopting models with greater

physical fidelity or by constructing approximations from a greater concentration of

design sites [23]. This framework uses pattern search as the optimization method,

but with convergence analysis presented in [51, 52, 82], that allows great flexibility

in the search methods employed to find the next iterate. For example, an extensive

search on the current surrogate can be performed to select new points at which to

evaluate the objective function.

Given the optimization problem (1.1), there are several assumptions defined

in [23, 39]. The first assumption is that there exists a family of approximation

models M = {Mα : α ∈ A}, where α is the index of the possible models in the

set A. The second assumption is that f(x) is computationally expensive, but there

are methods for computing or estimating Mα(x) ≈ f(x) cheaply, where the current

Mα(x) represents the most accurate model of f(x) obtained thus far. The final

assumption is that an algorithm to recalibrate the approximation models Mα(x) is

available. This leads to the surrogate management framework [23], shown in Figure

2.4.

As discussed in [23, 39], careful use of this algorithm can lead to an approximate

model that agrees with the objective function of the optimization problem (1.1). The

optimization algorithms that can be used within Figure 2.4 are discussed in Section

2.2 and Section 2.3.
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SURROGATE MANAGEMENT FRAMEWORK ALGORITHM

• GIVEN a set of initial points xi ∈ Rn, i = 1, 2, . . . , n and an initial approximation
model Mα, where f(xi) = Mα(xi)

• For k = 0, 1, . . . , do the following:

If convergent, then exit; otherwise, continue.

SURROGATE OPTIMIZATION: Apply an optimization algorithm to the
surrogate to construct a trial set Tk = {xj}m

j=1 of “good” points from Mα(x).
If Tk 6= ∅, go to evaluate step, else go to the objective function optimization
algorithm.

EVALUATE: Evaluate f on the points in Tk until an xk+1 is found that
minimizes f on Tk or until all points in Tk have been evaluated.

If such an xk+1 is not found, apply one iteration of an optimization algorithm
to f to try to find an xk+1 for which f(xk+1) < f(xk).

RECALIBRATION: Recalibrate Mα(x) with the new values of f(x)
computed at points in Tk or by the optimization algorithm, return to the
surrogate optimization algorithm with the updated Mα, and increment k.

Figure 2.4 Surrogate Management Framework Algorithm

2.2 Generalized Pattern Search

Generalized Pattern Search (GPS) is a class of direct search methods for non-

linear optimization problems. The term “direct search” was first introduced in the

1960s by Hooke and Jeeves [49] as a method of making direct comparisons of ob-

jective function values without using derivative information. In 1997, Torczon [82]

defined and analyzed the derivative-free class of pattern search algorithms for uncon-

strained optimization problems with continuously differentiable objective functions.

Of importance in [82] was the result showing that a subsequence of pattern search

iterates {xk} ∈ Rn converges to a first order stationary point x∗; i.e., ∇f(x∗) = 0.

The connection between pattern search and the positive basis theory of Davis

[37] was introduced by Lewis and Torczon [51]. Pattern search was subsequently

extended by Lewis and Torczon to problems with bound constraints [52] and a finite

number of linear constraints [53]. In these cases, convergence theory requires the
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directions used by the algorithm to be chosen at each iteration, so that they conform

to the boundary of any nearby constraint.

Audet and Dennis [18], in introducing a slightly generalized version called

generalized pattern search (GPS), added a hierarchy of convergence results for un-

constrained and linearly constrained problems, including a new theory based on the

nonsmooth calculus of Clarke [33]. Abramson [4] studied second-order behavior of

GPS and showed that, under certain algorithmic choices, strict local maximizers

and an entire class of saddle points can be eliminated from convergence considera-

tion. Audet and Dennis [19] extend their approach to handle nonlinear constraints

by adding a filter method [42] for GPS that accepts new iterates if improvement in

either the objective function or an aggregate constraint violation function is found.

Alternatively, Lewis and Torczon [55] handle nonlinear constraints by solving a se-

quence of bound constrained augmented Lagrangian subproblems [34].

As described by Audet and Dennis [18], the GPS algorithm consists of two

distinct steps for evaluating and generating a sequence of iterates with nonincreasing

function values. At each iteration, an optional search and a local poll step are

executed, in which the objective function is evaluated at a finite number of points

that lie on a mesh with the goal of finding an improved mesh point. The mesh

is defined by the set of positive spanning directions D ⊂ Rn, where any vector in

Rn can be expressed as a nonnegative linear combination of these directions [37].

The use of positive spanning directions ensures the existence of at least one feasible

descent direction, provided that f is differentiable and xk is not already a stationary

point. The set D (which is also represented here by a matrix whose columns are its

elements) must be constructed as the product,

D = GZ, (2.47)
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where G ∈ Rn×n is a fixed nonsingular generating matrix and Z ∈ Zn×|D| is a full

rank integer matrix. Thus any direction dj ∈ D is represented by

dj = Gzj,

where zj is a column of Z. The mesh at iteration k is centered around the current

iterate xk and can be defined (see [18]) by

Mk = {xk + ∆m
k Dz : z ∈ Z|D|+ }, (2.48)

where ∆m
k is the mesh size parameter that controls the fineness of the mesh.

The search step does not contribute to the convergence theory. It is simply

an evaluation of a finite number of mesh points that may be generated using a

variety of methods, and with the goal of improving the efficiency and performance

of the algorithm. Examples of these methods may include applying a heuristic, such

as a genetic algorithm or randomly selecting a set of space-filling points using a

Latin hypercube search. As described in Sections 2.1 and 2.1.4, when the objective

function is computationally expensive to evaluate, the search step can be used to

optimize a less expensive surrogate function on the mesh [13, 23, 39, 41, 77, 78].

If the search step fails to return an improved mesh point, the poll step is

invoked. The poll step is necessary for the proof of convergence. This step consists

of evaluating points that are adjacent to the current iterate xk with respect to the

positive spanning directions. This set of points is called the poll set and is defined

by

Pk(xk) = {xk + ∆m
k d : d ∈ Dk ⊆ D}, (2.49)

where Dk is a positive spanning set that is composed from the columns of D. The

points in Pk(xk) are evaluated until an improved mesh point is found or until all
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points of Pk(xk) have been evaluated. If the search or poll step is successful then

the iteration ends immediately with the improved point becoming the new iterate.

The mesh size is retained or coarsened according to the rule,

∆m
k+1 = τw+

k ∆m
k , (2.50)

where τ ∈ (1,∞) ∩ Q remains constant over all iterations and w+
k ∈ [0, w+] ∩ Z is

an integer bounded above by w+ ≥ 0. If neither step finds an improved mesh point,

then xk is said to be a mesh local optimizer, and the mesh size is refined or tightened

according to the rule,

∆m
k+1 = τw−k ∆m

k , (2.51)

where w−
k ∈ [w−,−1] ∩ Z and w− ≤ −1.

The GPS algorithm is summarized in Figure 2.5 [4, 18]. A pictorial represen-

tation of a single GPS iteration is given in Figure 2.6 [9]. The iteration begins with

the evaluation of a feasible point x0 on the mesh, followed by some type of search,

which may include the formation and optimization of a surrogate. Since the surro-

gate optimizer does not produce improvement in the objective function value, the

poll step is invoked, and since no improvement is found, the mesh is refined and a

new iteration begins from the current solution.

To handle the linear constraints in (1.1), GPS is applied using an extreme

“barrier” approach [8, 20]. This algorithm is not applied to f , but to the barrier

objective function fΩ = f + ψΩ, where ψΩ is the indicator function for Ω. If an

evaluated point x does not belong to Ω, ψΩ(x) = ∞, implying that fΩ(x) = ∞, and

f is not evaluated. If x ∈ Ω, ψΩ = 0 and f is evaluated [8]. This becomes very

important in many engineering problems where f is expensive to evaluate.
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A BASIC GPS ALGORITHM

• INITIALIZATION: Let x0 ∈ Ω be such that fΩ(x0) is finite. Let D be a positive
spanning set, and let M0 be the initial mesh defined by an initial mesh size
parameter ∆m

0 and D according to (2.48).

• SEARCH AND POLL: Perform the SEARCH and possibly the POLL steps (or
only part of them) until an improved mesh point xk+1 is found on the mesh Mk.

SEARCH STEP: Evaluate fΩ on a finite subset of trial points on the mesh Mk

using some user defined strategy seeking an improved mesh point.

POLL STEP: If the SEARCH step was unsuccessful or not performed, evaluate
fΩ on the poll set Pk(xk) until an improved mesh point is found or all points in
Pk(xk) have been evaluated.

• PARAMETER UPDATE: If SEARCH or POLL finds an improved mesh point,

Update xk+1 and set ∆m
k+1 ≥ ∆m

k according to (2.50) and go to SEARCH AND

POLL steps
Else, set xk+1 = xk and ∆m

k+1 < ∆m
k according to (2.51) and go to SEARCH AND

POLL steps

Figure 2.5 Basic GPS Algorithm

Figure 2.6 Basic GPS Algorithm-Pictorial Representation
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2.2.1 Mixed Variable Pattern Search

Many optimization problems contain both discrete and continuous variables,

and some discrete variables may not be integer-valued. They can take on categorical

values such as type of material, color, shape, etc. Thus, standard mixed integer

approaches using continuous relaxations with branch and bound to solve these prob-

lems are not possible. Audet and Dennis [17] extended GPS to mixed variable

problems with bound constraints by including user-specified discrete neighborhoods

in the definition of the mesh, where the objective function f is assumed to be contin-

uously differentiable for fixed discrete variable values. The resulting Mixed Variable

Pattern Search (MVPS) algorithm [17] was successfully applied to a thermal insu-

lation system design problem in [50]. Abramson et al. extended the results of [17]

to linear [1] and nonlinear [7] constraints, again making use of the Clarke calculus

[33], and the latter being augmented with a filter [19] to handle the nonlinear con-

straints. Abramson [3] successfully applied the resulting algorithm to the design of

a load-bearing thermal insulation system, which was a modification of the problem

in [50]. These algorithms were also used to quantitatively reconstruct objects from

x-ray radiograph data [12, 68].

In order to describe the mesh and poll sets, the discrete neighbors N (xk) of

xk must be defined. Audet and Dennis [17] and Abramson et al. [7] describe N (xk)

as a necessity for the extension of the algorithm, and local optimality is proved with

respect to this set. The discrete neighbor set N (xk) is finite and consists of the

current iterate xk and other points that at least differ in the discrete values. A

common choice of a discrete neighbor set when the discrete variables are integer-

valued is

N (xk) = {y ∈ Ω : yc = xc
k, ‖yd − xd

k‖1 ≤ 1}; (2.52)
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i.e., each discrete neighbor of xk is constructed by holding the continuous variables

constant and changing one discrete variable at a time by a single unit. However, as

stated in [7, 17], when the discrete variables are categorical, the discrete neighbor

set may not be well-defined since no underlying topology is assumed. Thus, the

local neighborhood must be defined by the user, based on a priori knowledge of the

physical problem.

The definition of local optimality is extended to account for variation of both

the continuous and discrete variables [17]. It is defined as follows [7, 17]. A point

x = (xc, xd) ∈ Ω is said to be a local minimizer of f on Ω with respect to the set of

neighbors N (x) if there exists an ε > 0 such that f(x) ≤ f(v) for all v in the set

Ω ∩
⋃

y∈N (x)

(B(yc, ε)× {yd}), (2.53)

where B(yc, ε) is the open ball of radius ε around yc.

In the mixed variable case, the positive spanning directions are defined slightly

differently than in Section 2.2. For each combination i = 1, 2, . . . , imax of values

the discrete variables can take on, the positive spanning directions Di ⊂ Rnc
are

constructed by:

Di = GiZi, (2.54)

where Gi ∈ Rnc×nc
is a fixed nonsingular generating matrix and Zi ∈ Znc×|Di| is full

rank integer matrix [7]. The mesh Mk at iteration k centered around the current

iterate xk as the product of Ωd with the union of a finite number of lattices in Ωc,

each of which is centered at the continuous part of the current iterate: i.e.,

Mk =
imax⋃
i=1

M i
k × Ωd (2.55)

with M i
k =

⋃
x∈Sk

{xc
k + ∆m

k Diz ∈ Ωc : z ∈ Z|Di|
+ } ⊂ Rnc

,
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where Sk are all the previously evaluated trial points at iteration k [7]. The poll set

in MVPS is defined with respect to the continuous variables, the discrete neighbor

points, and the set of points generated by an extended poll step. At the kth

iteration, let Di
k ⊆ Di represent the set of positive spanning directions for the poll

set corresponding to the ith set of discrete variable values and define Dk =
⋃imax

i=1 Di
k.

The poll set centered at the current iterate xk, as defined by [7], is:

Pk(xk) = {xk} ∪ {xk + ∆m
k (d, 0) ∈ Ω : d ∈ Di

k} ⊂ Mk, (2.56)

where (d, 0) represents the partitioning into continuous and discrete variables re-

spectively, with 0 meaning that the discrete variables remain unchanged; i.e., xk +

∆m
k (d, 0) = (xc

k + ∆m
k d, xd

k).

If the poll step fails to return an improved mesh point from the poll set with

respect to the continuous variables or the discrete neighbors, then MVPS performs

an extended poll step. Given a neighbor y ∈ N (xk) satisfies

f(xk) ≤ f(y) < f(xk) + ξk, (2.57)

where ξk ≥ ξ is a user-specified extended poll trigger, with ξ a fixed positive scalar,

then a finite number of poll steps are evaluated around the points satisfying (2.57)

[7]. The value for ξk is usually chosen as some percentage of the objective function

value, bounded away from zero, such as ξk = max{ξ, 0.05|f(xk)|}. Higher choices of

ξk lead to better solutions but at the cost of more function evaluations, while a lower

value may yield a poorer solution but requires fewer function evaluations [7, 17]. The

set of points evaluated by the extended poll step at iteration k can be expressed

as

Xk(ξk) =
⋃

y∈N ξk
k

Jk⋃
j=1

Pk(y
j
k), (2.58)
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where N ξk

k = {y ∈ N (xk) : f(xk) ≤ f(y) < f(xk) + ξk}. The traditional assumption

that all iterates lie in a compact set ensures that Jk (and thus, the number of points

in Xk(ξk)) is finite.

Given the addition of the extended poll step, the mesh size can be retained

or coarsened according to (2.50), and the mesh size is refined or tightened according

to (2.51). The MVPS algorithm can be seen in Figure 2.7 [1, 7, 17], followed by

a pictorial representation of the algorithm in Figure 2.8 [9]. The only difference

in Figure 2.6 and the Mixed Variable GPS algorithm lies in the poll step. The

evaluation of the poll set, discrete neighbor set, and possibly the extended poll

set of points is represented in the figure.

A MIXED VARIABLE PATTERN SEARCH (MVPS) ALGORITHM

• INITIALIZATION: Let x0 ∈ Ω be such that fΩ(x0) is finite. Let D be a positive
spanning set, and let M0 be the initial mesh defined by an initial mesh size
parameter ∆m

0 and D according to (2.55). Set ξ > 0.

• SEARCH, POLL, AND EXTENDED POLL: Perform the SEARCH and
possibly the POLL and EXTENDED POLL steps (or only part of them) until an
improved mesh point xk+1 is found on the mesh Mk.

SEARCH STEP: Evaluate fΩ on a finite subset of trial points on the mesh Mk

using some user defined strategy seeking an improved mesh point.

POLL STEP: If the SEARCH step was unsuccessful or not performed, evaluate
fΩ at the points in Pk(xk)

⋃N (xk) until an improved mesh point is found or all
points in Pk(xk)

⋃N (xk) have been evaluated.

EXTENDED POLL STEP: If the SEARCH and POLL steps do not find an
improved mesh point, choose ξk ≥ ξ and evaluate fΩ at points in Xk(ξk) until an
improved mesh point is found or all points in Xk(ξk) have been evaluated.

• PARAMETER UPDATE: If SEARCH, POLL, or EXTENDED POLL finds
an improved mesh point

Update xk+1 and set ∆m
k+1 ≥ ∆m

k according to (2.50) and go to SEARCH AND

POLL steps

Else, set xk+1 = xk and ∆m
k+1 < ∆m

k according to (2.51) and go to SEARCH AND

POLL steps

Figure 2.7 Mixed Variable GPS Algorithm
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Figure 2.8 Mixed Variable GPS Algorithm-POLL Step Illustration

2.3 Mesh Adaptive Directed Search

Mesh Adaptive Direct Search (MADS) is relatively a new class of algorithms

introduced by Audet and Dennis [20] as an extension of GPS to solve optimization

problems with nonlinear constraints. It does not make use of filters [19] or penalty

functions [55]. The MADS algorithms are organized in a similar fashion to that of

the frame-based methods of Coope and Price [35]. Audet and Dennis [20] propose

using a less general choice of frame (previously called a poll set), which is easy to

implement and enables the parameter space to be searched in an asymptotically

dense set of directions, thereby leading to stronger convergence theory than that

of GPS [20]. The convergence analysis once again applies the Clarke nonsmooth

calculus [33] to show that a subsequence of iterates of an implementable instance of

MADS (in which positive spanning directions [37] are chosen in a random manner)

converges almost surely to a first-order stationary point. Abramson and Audet [5]

show that under reasonable additional assumptions, a subsequence of MADS iterates

converges to a point that satisfies second-order optimality conditions.
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MADS uses the same two search and poll steps described in Section 2.2.

The search step is the same as in GPS, where the points are restricted to lie on the

mesh Mk, defined by (2.48). This is an idea that makes MADS less general than the

frame methods of Coope and Price [35]. If the search step fails to find an improved

mesh point, the poll step is invoked. This is where the difference in the MADS

and the GPS algorithms lies. The MADS algorithm introduces a new parameter,

known as the poll size parameter ∆p
k ∈ R+, which dictates the maximum distance a

trial point generated by the poll step can be from the current incumbent solution

xk [20]. In GPS, ∆p
k = ∆m

k . In each MADS iteration, the mesh size parameter is

updated as in GPS and the poll size parameter is updated such that ∆m
k ≤ ∆p

k for

all k and

lim
k∈K

∆m
k = 0 ⇔ lim

k∈K
∆p

k = 0 for any infinite subset of indices K. (2.59)

The points evaluated during the poll step are based on the construction of a

MADS frame. The frame is constructed from the current best solution xk (or frame

center), poll size parameter (∆p
k), mesh size parameter (∆m

k ), and a set of positive

spanning directions Dk. This set is different than the poll set in GPS, in that Dk

is not necessarily composed of the columns of D (i.e. Dk * D). The MADS frame

or poll set is defined as

Pk(xk) = {xk + ∆m
k d : d ∈ Dk}, (2.60)

where each d ∈ Dk must satisfy the following three properties [20]:

• d 6= 0 can be written as a nonnegative integer combination of the directions in

D : d = Du for some vector u ∈ Z|D|+ that may depend on iteration number k,

2-28



• The distance from the frame center xk to a frame point xk + ∆m
k d ∈ Pk(xk) is

bounded by a constant times the poll size parameter:

∆m
k ‖d‖ ≤ ∆p

k max{‖d′‖ : d′ ∈ D},

• Similar to Coope and Price [35], the limits of the normalized sets Dk are positive

spanning sets.

The mesh size parameter is updated at each iteration of the algorithm according to

the same methodology presented in Section 2.2. It is coarsened according to (2.50)

and refined according to (2.51).

The MADS algorithm is summarized in Figure 2.9, which is similar to the

GPS algorithm in Figure 2.5 with differences in the poll step and in the addition

of the poll size parameter [5, 20]. To solve (1.1), MADS is applied using the extreme

“barrier” approach described in Section 2.2. The barrier approach is also applied to

nonlinear constraints in MADS.

Figures 2.10 and 2.11, which are taken from [20], illustrate the difference in

the frames of GPS and MADS. The GPS frames in Figure 2.10 are generated such

that ∆m
k = ∆p

k; therefore, the number of positive spanning sets composed of the

columns of D is finite over all iterations. The MADS frames in Figure 2.11 are

generated using ∆p
k = n

√
∆m

k , where n is the dimensionality of the parameter space.

The advantage of MADS over GPS is that the mesh size parameter ∆m
k typically

decreases to zero at a faster rate than the poll size parameter ∆p
k, which allows the

set of directions in Dk used to define the MADS frame (2.60) to be chosen from

increasingly larger sets (as a limit point is approached). Audet and Dennis [20]

show that if this set is dense in the limit, convergence to a stationary point in the

nonsmooth case can be ensured. They also provide an implementable instance, in

which directions are chosen randomly and a dense set of directions is achieved with

probability one [20].
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A BASIC MADS ALGORITHM

• INITIALIZATION: Let x0 ∈ Ω be such that fΩ(x0) is finite. Let D be a positive
spanning set, and let M0 be the initial mesh such that the initial mesh size
parameter ∆m

0 ≤ ∆p
0 according to (2.48, 2.59).

• SEARCH AND POLL: Perform the SEARCH and possibly the POLL steps (or
only part of them) until an improved mesh point xk+1 is found on the mesh Mk.

SEARCH STEP: Evaluate fΩ on a finite subset of trial points on the mesh Mk

using some user defined strategy seeking an improved mesh point.

POLL STEP: If the SEARCH step was unsuccessful or not performed, evaluate
fΩ on the frame Pk(xk) until an improved mesh point is found or all points in
Pk(xk) have been evaluated.

• PARAMETER UPDATE: If SEARCH or POLL finds an improved mesh point,
Update xk+1, set ∆m

k+1 ≥ ∆m
k according to (2.50), and ∆p

k+1 according to (2.59)
and go to SEARCH AND POLL steps

Else, set xk+1 = xk, ∆m
k+1 < ∆m

k according to (2.51), and ∆p
k+1 according to (2.59)

and go to SEARCH AND POLL steps

Figure 2.9 Basic MADS Algorithm

Figure 2.10 A GPS FRAME
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Figure 2.11 A MADS FRAME

2.3.1 Mixed Variable Mesh Adaptive Direct Search

Mixed Variable Mesh Adaptive Direct Search (MVMADS) was introduced as

a generalization of MADS to mixed variable optimization problems by Abramson

et al. [8]. Just as seen in [1, 7, 17], local optimality conditions are defined in terms

of the local neighborhoods discussed in Section 2.2.1. Each iteration of MVMADS

is similar to that of MVGPS with the difference being in the poll and extended

poll steps.

The mesh Mk is consistent with the one defined in [7] and described by (2.55).

The poll step is based on applying the MADS frame defined in [20] and (2.60) to the

poll set (2.56) and the discrete neighborhood (2.52) defined by Audet and Dennis

[17] and Abramson et al. [7]. Due to the categorical variables, there are additional

evaluations using the extended poll step [7, 17], where the set of points to be

evaluated is determined by applying a MADS frame to the set of points described

in (2.58).

The extended poll trigger is chosen consistent with the discussion in Section

2.2.1. The rules for coarsening and refining the mesh size are the same as those

given in (2.50) and (2.51), respectively. The poll size parameter must be updated
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in the same manner described in Section 2.3 while satisfying equation (2.59). The

MVMADS algorithm of Abramson et al. [8] is shown in Figure 2.12.

A MIXED VARIABLE MADS ALGORITHM

• INITIALIZATION: Let x0 ∈ Ω be such that fΩ(x0) is finite. Let D be a positive
spanning set, and let M0 be the initial mesh such that the initial mesh size
parameter ∆m

0 ≤ ∆p
0. Set ξ > 0.

• SEARCH, POLL, AND EXTENDED POLL: Perform the SEARCH and
possibly
the POLL and EXTENDED POLL steps (or only part of them) until an
improved mesh point xk+1 is found on the mesh Mk.

SEARCH STEP: Evaluate fΩ on a finite subset of trial points on the mesh Mk

using some user defined strategy seeking an improved mesh point.

POLL STEP: If the SEARCH step was unsuccessful or not performed, evaluate
fΩ at the points in Pk(xk)

⋃N (xk) until an improved mesh point is found or all
points in Pk(xk)

⋃N (xk) have been evaluated.

EXTENDED POLL STEP: If the SEARCH and POLL steps do not find an
improved mesh point, evaluate fΩ at points in Xk(ξk) until an improved mesh point
is found or all points in Xk(ξk) have been evaluated.

• PARAMETER UPDATE: If SEARCH, POLL, or EXTENDED POLL finds
an improved mesh point,

Update xk+1 and set ∆m
k+1 ≥ ∆m

k according to (2.50), and ∆p
k+1 according to (2.59)

and go to SEARCH AND POLL steps

• Else, set xk+1 = xk and ∆m
k+1 < ∆m

k according to (2.51), and ∆p
k+1 according to

(2.59) and go to SEARCH AND POLL steps

Figure 2.12 Mixed Variable MADS Algorithm

2.4 Surrogates Based on CPU Time

Optimization problems that make use of CPU subprocess times to control how

the next set of parameter values to test are chosen were first studied by Magallanez

[60]. His work consisted of reducing the computation time required to recover model

parameters for problems that exhibit a strong correlation between objective function

values and the computational time associated with obtaining them (in this case, the

numerical image registration process). The use of CPU subprocess times to monitor
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and control computing resources was described in Section 1.2 and displayed as dashed

lines in Figure 1.1, under the “cputime2” label.

Magallanez [60] sought to minimize a computationally expensive black box

function similar to (1.1) but only with continuous variables; i.e. where Ω = {x ∈
Rn : l ≤ x ≤ u} and l, u ∈ (R ∪ {±∞})n for l < u. The problems he studied

exhibited the property that the computational time required to evaluate f , at a

point x decreases as x approaches the solution [60]. To exploit this property, input

and output arguements were added to the function; namely,

[z, t] = f(x, tcut
k ), (2.61)

where x ∈ Ω is the trial point, tcut
k is a computational time cut-off threshold, z is the

function value at x, and t is the time needed to compute z.

The idea used in [60] was that if the computational time exceeded the tcut
k

value, then the evaluation of f should stop because a lower objective function value

will probably not occur in the increased amount of computational time, due to the

CPU-time correlation property. Magallanez [60] used a method that allowed the tcut
k

parameter to change according to the computational time associated with the best

incumbent solution found thus far.

The search step used in [60] was to solve, at little computational cost, four

individually formed surrogate problems to find a point at which to evaluate f . The

four surrogate problems consisted of:

min
x∈Ω

F (x) (2.62)

min
x∈Ω

F (x), s.t. T (x) ≤ tcut
k + ε (2.63)

min
x∈Ω

T (x) (2.64)

min
x∈Ω

T (x), s.t. F (x) ≤ ẑs, (2.65)
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where ε is added to allow for variability in computational time.

The surrogates F (x) and T (x) were constructed based on a set of initial model

parameters values and their associated objective function and computational time

values, respectively. These surrogates are updated each time a new set of parameters

is evaluated by the objective function. The surrogates with constraints, (2.63) and

(2.65), ensure a decline in both functional and time values given a set of input

parameters. The idea is similar to that discussed in Section 2.1.4, where an improved

solution may be found quickly through the use of a surrogate without spending

increased amounts of time on the computationally expensive objective function.

The surrogates (2.62)–(2.65) were constructed using DACE (see Section 2.1.2)

with a second-order regression polynomial and a Gaussian correlation model (see

(2.31) and (2.33), respectively). The choice of polynomial order and correlation

model was based on [63] and [57], where a second-order polynomial showed improved

accuracy as a predictor and a Gaussian correlation model showed behavior similar

to the desired function as the number of known points increases. The set of initial

points was determined using an inscribed Central Composite Design (CCD) that

ensures all initial points are within the feasible region. (A more detailed description

of CCD will be given in Chapter 3.)

To handle the possible ill-conditioning (see Booker [25]) of R(θ, xi, xj), i, j =

1, . . . , k, when solving (2.29) and (2.30) as points begin to cluster during the opti-

mization process, Magallanez [60] periodically reviews the condition number of the

Cholesky factor C of R (where R = CCT is the Cholesky decomposition),

κ(R) ≤ κ(C)2 =
λ2

max(C)

λ2
min(C)

and where λmax and λmin are the largest and smallest eigenvalues of C, respectively.

If κ(C) was too large, the surrogate would not be formed and the search step

would be skipped, allowing only the poll step to execute [60]. The algorithm,
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called MADS-TIME, which executes either GPS or MADS, is fully detailed in

[60].

Magallanez [60] ran the MADS-TIME algorithm on two test problems, which

will be described in Chapter 4: a Lid-Driven Cavity and a Barrier Flow problem.

The results of the implementation of the surrogates (2.62)–(2.65) and the analysis of

these results for the Lid-Driven Cavity problem are given in [60]. The results of the

Barrier Flow problem yielded much different results. GPS and MADS were both

used as the optimization method, but neither was found effective at recovering the

optimal parameters. An additional run was performed to investigate and illustrate

the reasons why it was thought to be impractical to find an optimal solution to this

problem. More details of the results and investigation are discussed in [60].

2.5 Conclusion

This chapter reviewed the relevant literature and provided an introduction to

surrogates and relevant direct search methods. The combination of these two ideas

as applied to solving continuous and mixed variable optimization problems was also

discussed. In the next chapter, a methodology is developed using the combination of

these ideas to numerically solve the mixed variable optimization problem (1.1) more

efficiently.
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3. Methodology

This chapter outlines the approach for solving the optimization problem pre-

sented in Chapter 1, with the goal of recovering the model parameters at minimum

computational expense for this type of application problems. A description to effi-

ciently solve this problem through the use of multiple surrogates and mixed variable

direct search methods within an optimization framework are developed within this

chapter.

3.1 Mixed Variable Optimization Problem and Notation

The mixed variable optimization problem is defined in (1.1) of Section 1 over

the domain Ω (feasible region), which is the union of continuous variable spaces Ωc

across possible discrete variable spaces Ωd; i.e.,

Ω =
⋃

xd∈Ωd

(Ωc(xd)× {xd}),

where Ωc and Ωd are also defined in Section 1. The goal is to find a set of parameters

that minimizes (1.1) as it pertains to an application.

As mentioned in Sections 1.1 and 1.2, the objective is to recover certain model

parameters at minimal simulation fidelity of the computational parameters while

reducing the amount of time spent on unnecessary computations. By extending [60]

to mixed variables, the optimization framework can make use of the computational

parameters to mitigate the expense of an evaluation of (1.1). This implies that

the computing resources required for an objective function evaluation can be more

closely monitored using additional CPU time information, as was illustrated by the

dashed lines (labeled “cputime1” and “cputime2”) in Figure 1.1. As in [60], the first

step was to add this information as an input and output to the objective function;

3-1



namely,

[z, t] = f(x, tcut
k ), (3.1)

where x is a trial point, z is the function value at x, t is the computational time of

computing z, and tcut
k is the computational time threshold allowed for computing z

at the point x. If the computational time exceeds the tcut
k value, the current objective

function evaluation is stopped. This is done to control the amount of time spent on

unprofitable computations, and because a decreased objective value is unlikely to

occur at the current values of the model and computational parameter choices in

an increased amount of computation time. In [60], the tcut
k parameter was updated

based only on the “cputime2”, in Figure 1.1, associated with the minimal objective

function value. However, the inclusion of computational parameters in (1.1) requires

the method used for updating tcut
k to be altered according to both the computational

and model parameters associated with the minimal objective function value; i.e.,

given a current minimal function value zk with associated computational time tk at

iteration k, set

tcut
k = αcuttk, (3.2)

where tk is the CPU time required to compute zk and αcut > 1. For the class

of mixed variable problems targeted here and defined by the CFD simulation and

image registration times associated with the current minimal function value, tk is

given by

tk = tsimk + timage
k . (3.3)

The parameter αcut > 1 is a user-specified multiplier that allows for variation in

computational time of the processes associated with an objective function evaluation.

This allows the tcut
k variable to be set such that function evaluations can occur that

possibly have slightly increased computational times.
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3.2 Customized Search: Optimization using Multiple Surrogates

The optional search step of the direct search methods described in Sections

2.2 and 2.3 can make use of the additional computational time data. Given a set

of evaluated points Xk and associated objective function values and computational

times, surrogate functions F (x) and T (x) are constructed based on function values

and their computational times, respectively. Minimizing F (x) is performed with

little computational expense at each search step, and T (x) is used to determine

the order in which trial points found during the optimization of F (x) are evaluated.

The surrogate optimization of F (x) is solved by applying the same direct search

method (using an extreme barrier approach) as described in Sections 2.2 and 2.3.

However, the discrete variables xd are treated differently in the surrogate optimiza-

tion problem. Both discrete and continuous parameter values of the points in Xk

used in the construction of F (x) are treated as continuous variables during the sur-

rogate optimization process. Since this may yield infeasible search points with

respect to the discrete variables, all trial points must be monitored and, if required,

undergo a transformation according to the following rules:

• Let Sk represent the finite set of nS trial points returned by the search step

while optimizing the surrogate problem on F (x). (The number nS is user-

specified.)

• For each y ∈ Sk such that yd /∈ Ωd, replace y with {(yc, bydc), (yc, dyde)}, where

bydc = max{z ∈ Z : z ≤ yd} and dyde = min{z ∈ Z : z ≥ yd}.

Depending on the number of required transformations, each time the search step is

invoked, the number of trial points returned for objective function evaluation ranges

from m to 2m points.

The surrogate function T (x) is not optimized during the search step. In-

stead, T (x) is used to order the trial points returned from the surrogate optimiza-

tion problem on F (x). This is done with the expectation that trial points with lower
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computational times result in a decreased objective function value, thus not requir-

ing all the trial points to be evaluated and reducing the time spent on unprofitable

computations. The trial points are ordered in the following manner:

• Let the nS to 2nS trial points returned from the optimization of F (x) be

inputs into T (x), where the responses, {T (y) : y ∈ Sk}, are the predicted

computational times associated with the predicted functional values of {F (y) :

y ∈ Sk}.

• The nS best trial points are selected and evaluated in the objective function

based on the increasing predicted computational time.

The search points are evaluated by the objective function until a new incumbent

solution is found or until all points have been evaluated. If a decrease in fΩ is

not found, the search is considered unsuccessful, and the poll (and possibly the

extended poll) step is performed according to the methods described in Sections

2.2.1 and 2.3.1. The collection of trial points evaluated throughout these steps and

their associated objective function response and computational time are added as

design sites and responses, respectively. The surrogate functions are reconstructed

(recalibrated) according to Section 2.1.4. If an objective function value of ∞ is

returned, due to a possible divergent image registration solution (see Section 1.2.3)

or infeasible points not in Ω, the parameter values and responses are not used in the

surrogate function recalibration.

3.3 Composition of Surrogate Functions

The surrogate functions, F (x) and T (x), described in Section 3.2 were con-

structed using either DACE surrogates or RBFs (see Sections 2.1.2 and 2.1.3, re-

spectively). The following subsections discuss the methods for generating the initial

points and the order of the polynomial used for the regression model in both surro-
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gate types. The DACE correlation model and specific RBF types used to predict

the distances between known and unknown points are also described.

3.3.1 Initial Points

Construction of the surrogates requires a set of initial points to be evaluated.

As discussed in Section 2.1.2, the types of designs used can be divided into classical

and modern design of experiments [45]. The goal of the design is to maximize the

amount of information gained while limiting the number of sample points [74, 75].

The idea is that the initial points be “space-filling”, recognizing that it is very

difficult to “fill space” in high dimensions, but enough points are sampled such that

an accurate initial surrogate can be constructed [25]. Several methods from classical

and modern design of experiments can be considered for determining the set of

initial points, including central composite design (CCD), Latin hypercube [80, 81],

and orthogonal array (OA) sampling [69].

Latin hypercube and orthogonal array samplings are commonly performed to

generate a random set of initial points while accurately extracting trend information.

A Latin hypercube design allows the user to tailor the number of design points, based

on a limited computational budget. An example of a Latin hypercube design in R2,

with four design points, is illustrated in Figure 3.1. This design is created by dividing

each of the n dimensions into m intervals of equal length, where m is the desired

number of design points. This creates mn bins for the given space. Random points

within the m random bins are chosen, such that each column for each dimension

is chosen only once [75]. Due to the randomness of the sampling, it is possible to

achieve an ideal sampling (right), but it is also possible to achieve the poor sampling

(left). Not only is the latter sampling a poor arrangement with respect to coverage

of the design space, but the sample sites would have high spatial correlation, which

could lead to an ill-conditioned system when the sites are being used for the surrogate

construction [45].
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Figure 3.1 Latin Hypercube Samplings

Orthogonal array samplings are similar to Latin hypercubes. Orthogonal ar-

ray samplings produce a set of samples in any t-dimensional projection on an n-

dimensional design space, where t is the strength and t < n [45]. For a strength of

t = 1, an orthogonal array is a Latin hypercube. A disadvantage of orthogonal array

sampling is that the user does not have the ability to specify the number of samples

if t ≥ 2. The generation can also be nontrivial, since several valid permutations of

the orthogonal array may exist. These designs possibly need an increased number

of sample points to accurately estimate coefficients of higher order terms in the sur-

rogates. Due to the computational expense of function evaluations, classical design

of experiments methods are used.

To minimize the number of samples while properly estimating higher order

terms in the surrogate, the set of initial points was determined using an inscribed

Central Composite Design (CCD). There are other types of CCDs such as cir-

cumscribed or face-centered, but they have drawbacks. The circumscribed design

maintains orthogonality of sample points but includes points outside the feasible

region, and the face-centered design ensures feasibility of the sample points but does

not maintain orthogonality. The inscribed CCD ensures both orthogonality and fea-
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sibility. This ensures that no unprofitable computations are made while evaluating

the initial points to be used in the construction of the initial surrogate functions.

A minimum of 2n + 2n sample points are required to accurately estimate higher or-

der terms using a circumscribed or inscribed design [63]. If the dimensionality of the

problem is large, the number of sample points grows exponentially causing the evalu-

ation of the initial points to become very expensive. In this case, Latin hypercube or

orthogonal array samplings may be more efficient [45]. The test problems studied in

Chapter 4 do not have this problem, since all of them have very low dimensionality.

Figure 3.2 is an illustration of the two-dimensional inscribed CCD used in this

research, where the model parameters xc ∈ R2 and the computational parameter xd

is held constant during the generation of the initial points. The center point and the

axial points provide accurate estimates of quadratic regression coefficients, while the

(±√2/2,±√2/2) points enable the approximation of linear and interaction terms

[63]. A CCD usually includes multiple replications of the center point; however,

because there is no randomness in the responses and objective function evaluations

are expensive, replications are omitted.

Figure 3.2 Inscribed Central Composite Design (2-D)
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3.3.2 Regression Model

A second-order polynomial is a more accurate predictor of ŷ(x̃) than a polyno-

mial of a lower order form [63]. Therefore, in order to minimize a DACE surrogate

while obtaining a proper estimate of y(x) for an untried point x̃, the following second-

order polynomial predictor was used as the regression model,

ŷ(x̃) = β∗0 +
k∑

i=1

β∗i x̃i +
k∑

i=1

β∗iix̃
2
i +

k∑
i=1

k∑
j<i

β∗ijx̃ix̃j + R(θ, x, x̃)γ∗, (3.4)

where β∗ and γ∗ come from (2.28) and are defined by (2.29)–(2.30), and the selections

for R(θ, x, x̃) are restricted to (2.32)–(2.33), all of which are defined in detail in

Section 2.1.2. For comparison purposes a second-order polynomial was also used for

the RBF surrogates; i.e.,

s(x̃) = p(x̃) +
n∑

i=1

λiφ(‖x̃− xi‖), x ∈ Rn, (3.5)

where p(x̃) is a polynomial of degree two in n variables defined by (2.43), and the

basis function φ is defined by (2.37)–(2.42) and is described in Section 2.1.3. The

coefficients of the polynomial and the weights λi = (λ1, λ2, . . . , λn) on the basis

function φ are the solutions of the system (2.46) that define the RBF interpolant

(2.36).

Initially during the optimization, it is possible that the number of design sites

required to utilize a second-order regression polynomial model may not exist. There-

fore, a lower-order model may be used until enough design points are available to

use the specified regression model. The adaptive algorithm shown in Figures 3.4–3.5

makes use of this idea.
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3.3.3 Correlation Model and Basis Function

The DACE correlation models given in (2.33), exhibit either parabolic or linear

behavior near the origin. A common choice used in practice for physical phenomena

is the Gaussian correlation model (see (2.33)), which shows similar behavior to the

desired function as the number of points increases [57].

Booker [25] observed that as points are added to the initial surrogate for re-

calibration, the points begin clustering as the optimal objective function value is

approached. This results in the matrix R in (2.25) becoming ill-conditioned, which

makes it very difficult to compute R−1 accurately. This can result in a poor solution

for the optimal θ (2.34) or prevent the calculation of β∗ and γ∗ in (2.29)–(2.30).

One solution to the ill-conditioning problem is to use the singular value de-

composition (SVD) of R to approximate the inverse [25]. The SVD of R is given

by

R = USV T , (3.6)

where U and V are orthogonal matrices (i.e., UT U = I, V T V = I) and S is a

diagonal matrix containing the singular values s1 ≥ . . . ≥ sn ≥ 0 as its diagonal

entries. It follows from (3.6) that R−1 = V S−1UT . To approximate the R−1, an ε

cut-off value is used for the singular values, and a diagonal matrix E is constructed

with diagonal entries

ei =





1/si, if si/smax ≥ ε

0, otherwise.
(3.7)

Therefore, the approximate inverse R̃−1 of R is computed as

R−1 ≈ R̃−1 = V EUT (3.8)
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and is used to compute β∗ and γ∗ in (2.29)–(2.30). If R is not ill-conditioned and

is positive definite, the Cholesky factor C of R can be used to compute β∗ and γ∗,

where R = CCT is the Cholesky decomposition.

The choice of basis functions for RBF surrogates, given by (2.37)–(2.41), have

different advantages for each form. A common choice when interpolating points in

two dimensions is the Multiquadric function, given by

φ(r) = (r2 + γ2)k , k > 0 , k /∈ N. (3.9)

Franke [43] performed a numerical study of scattered data interpolation and found

that this basis function provided the most accurate interpolation surfaces of all the

basis function forms for interpolation in two dimensions.

As with DACE surrogates, when points begin to cluster, the matrix φ̂ in (2.46)

can become ill-conditioned. This can lead to inaccurate estimates of the coefficients

c = (c1, . . . , cm) ∈ Rm of the polynomial (2.43) and the weights λ = (λ1, . . . , λn) ∈ Rn

of the basis function (2.42). Therefore, the same method using SVD (3.6)–(3.8) can

be applied to the system (2.46) to help prevent ill-conditioning and compute accurate

estimates of c and λ.

At every iteration, the surrogates are recalibrated and reconstructed. The

condition number of R and φ̂ are monitored after each recalibration. If the value is

too large, even after the implementation of SVD, the surrogate is not used and the

search step is omitted, allowing only the poll step to be executed.

3.4 Trust Region

The trust region approach applied here to the surrogates is based on the “trust

radius” or “move limit” ideas presented in [13]. If a trust region is used, the upper

and lower bounds over which the surrogate is optimized are set as a percentage αTR
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of the original bounds defined by Ω. These surrogate bounds can change at each

iteration based on the trust region and the current incumbent solution.

The user can also specify the number of points allowed for recalibration, based

on the parameter values that are within the trust region at each iteration. If the

number of points is not specified, the trust region sets the surrogate bounds, but

all evaluated points are used for the recalibration. The trust region is formed and

surrogate bounds are updated at each iteration using the following methods:

• Let Xk be the set of all previously evaluated points at iteration k, and let

xk = (xc
k, x

d
k) ∈ Xk be the current best solution, with associated function value

zk.

• For each iteration k = 0, 1, 2, . . . , define the lower and upper bounds, respec-

tively, over which the initial surrogate is optimized, as

SLB
k =


 (1− αTR)xc

k

b(1− αTR)xd
kc


 (3.10)

SUB
k =


 (1 + αTR)xc

k

d(1 + αTR)xd
ke


 , (3.11)

where αTR ∈ [0, 1) is the user-specified percentage to tighten the original

bounds.

• If a reduced number of evaluated points is specified for recalibration, the points

selected are those whose parameter values are within the current surrogate

upper and lower bounds defined by the trust region; i.e.,

X̂k =



y ∈ Xk : SLB

k ≤

 yc

yd


 ≤ SUB

k



 . (3.12)
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The overall goal of this trust region approach is the possible improvement of surrogate

performance by reducing the size of the feasible region over which the surrogate

problem is optimized. An illustration of this approach is given in Figure 3.3. The

parameter values of the red point do not lie within the trust region; therefore, this

point is not evaluated during the surrogate optimization. If a reduced number of

points is specified for recalibration, it would also not be used in the construction of

the surrogate.

Figure 3.3 Trust Region Approach Applied to Surrogates

3.5 Implementation

The ideas presented in this chapter for solving (1.1) were incorporated in the

Time-Adaptive MVMADS (TA–MVMADS) algorithm presented in Figures 3.4–

3.5. The algorithm executes MVPS or MVMADS with surrogates based on func-

tion values, but with function values ordered based on a computational time based

surrogate. The condition number, κ(R) or κ(φ̂), of the function value based sur-

rogate is monitored each time the surrogate is constructed. An updating scheme

for the time cut parameter is applied using the computational times of the objec-

tive function internal processes and the associated current incumbent solution zk.

A scheme is also applied for implementing the trust region approach as specified by

the user. The algorithm will be applied to three test problems in the next chapter.
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TA–MVMADS ALGORITHM

INITIALIZATION AND SEARCH STEP

• initialization:

Given an initial set of points X0, set tcut
0 = ∞, and let x0 ∈ X0 be the current best

solution with associated function value z0 and CPU time t0. Set the initial mesh
M0 satisfying (2.55) for given parameters ∆m

0 ≤ ∆p
0, D, τ and w. Set ξ > 0,

surrogate condition number threshold κ, trust region surrogate bound update
percentage αTR ∈ [0, 1), and time cut constant multiplier αcut > 1. Set k = 0.

• search step:

If a trust region is not used, set αTR = 0. Set the surrogate bounds, SLB
k and SUB

k ,
based on (3.10)–(3.11), and choose surrogate recalibration points X̂k ⊆ Xk based on
(3.12).

Construct F (x) and T (x) from X̂k using the highest order polynomial less than or
equal the specified order for the regression model.

If κ(R) > κ or κ(φ̂) > κ, proceed to poll.

Solve min F (x), yielding a finite set of trial points Sk.

For each y ∈ Sk with yd /∈ Ωd, replace y ∈ Sk with {(yc, bydc), (yc, dyde)}.
Evaluate T (y) at each y ∈ Sk and let Ŝk be the set Sk re-ordered in ascending order
of T (y).

For each y ∈ Ŝk (in order), evaluate [z, t] = f(y, tcut
k )

If z < zk, an improvement has been found.

Set k = k + 1, xk = y, zk = z, tk = t, tcut
k = αcuttk.

Update ∆m
k (2.50) and ∆p

k (2.59).

Return to search.

Figure 3.4 TA–MVMADS Algorithm
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TA–MVMADS ALGORITHM

POLL, EXTENDED POLL, AND CONVERGENCE

• poll step:

Evaluate fΩ at points in Pk(xk)
⋃N (xk) until an improvement has been found or

all points have been evaluated. Specifically, for each y ∈ Pk(xk)
⋃N (xk), evaluate

[z, t] = f(y, tcut
k ),

If z < zk, an improvement has been found.

Set k = k + 1, xk = y, zk = z, tk = t, tcut
k = αcuttk.

Update ∆m
k (2.50) and ∆p

k (2.59).

Return to search.

If all poll points have been evaluated unsuccessfully and the extended

poll trigger condition (2.57) is met, proceed to extended poll step.

Else, set k = k + 1, update ∆m
k (2.51) and ∆p

k (2.59), and proceed to search.

• extended poll step:

Choose ξk ≥ ξ and evaluate fΩ at points in Xk(ξk) (2.58) until an improvement has
been found or all points in Xk(ξk) have been evaluated. Specifically, for each
y ∈ Xk(ξk), evaluate [z, t] = f(y, tcut

k ),

If z < zk an improvement has been found.

Set k = k + 1, xk = y, zk = z, tk = t, tcut
k = αcuttk.

Update ∆m
k (2.50) and ∆p

k (2.59).

Return to search.

If all extended poll points have been evaluated unsuccessfully, set
k = k + 1, update ∆m

k (2.51) and ∆p
k (2.59), update Xk with all evaluated

trial points, and proceed to search.

Figure 3.5 TA–MVMADS Algorithm Continued
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4. Implementation and Results

This chapter focuses on the implementation of the TA–MVMADS algorithm

presented in Figures 3.4–3.5 of Section 3.5 and its numerical performance on three

test problems. For each problem, different variants of the algorithm are compared to

two base cases. The different variations of TA–MVMADS apply either the MVPS

(see Figure 2.7) or MVMADS (see Figure 2.12) algorithm as the optimization meth-

ods, and either DACE or RBF surrogates (with or without a trust region) in the

search step. The base cases apply the same optimization algorithm, but with no

surrogate functions and either a single initial point or a set of CCD points (see

Figure 3.2).

4.1 Coding and Processing

The TA–MVMADS algorithm was executed on a Linux operating system us-

ing three MATLABr software packages: NOMADm [10] implementation of MVPS

and MVMADS, DACE [58] for constructing kriging surrogates, and RBF [10] for

radial basis function surrogates. The NOMADm software requires several input

files for defining the following: objective and constraint functions, variable bounds,

initial points, problem-specific parameters, and discrete neighbor function.

NOMADm also allows a file for defining a customized search step, which

is how the surrogates were implemented in this work. Specifically, this file con-

structs, recalibrates, and optimizes the surrogate functions used within the overall

optimization process. The optimization of the surrogate problem is performed at

each search step using a recursive call to the NOMADm optimizer. During the

optimization of the surrogate, the discrete variables xd are treated as continuous

variables because the DACE and RBF packages cannot handle discrete variables.

The finite number of trial points Sk returned by the search step are monitored, and
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if any yd /∈ Ω, the values are transformed according to the rules described in Section

3.2. The time-based surrogate is then used to order the evaluation of resulting points

by the true objective function. The search step surrogate optimization process also

requires input files, similar to those required for the original problem. All of these

are provided in Appendix B.

4.2 Test Problem 1: Lid-Driven Cavity

The first test problem is known as the Lid-Driven Cavity problem. This prob-

lem has long been used to test or validate new codes or new solution methods. The

standard test problem is represented by a two-dimensional cross section of fluid in

a box with Dirichlet boundary conditions on all sides, three of which are station-

ary, and the remaining one is moves with velocity tangent to the side [44]. Given

a two-dimensional square domain, the Navier-Stokes equations (1.2)–(1.4) describe

the fluid flow properties. Initially, the fluid is at rest, and at t = 0, a constant ve-

locity is applied tangentially along one of the edges. This causes the formation of a

large circular pattern of flow, known as an eddy [46]. At different Reynolds number

values and simulation length times, velocity and viscosity of the fluid cause eddies

to form in different patterns throughout the flow region. The different patterns for

the flow properties of this problem are shown in Figure A.1 of Appendix A. For a

specific Reynolds number, simulation length time, and simulation grid fidelity, the

simulation output data can be captured and converted to image data. The image

data then has noise deliberately added in order to create a reference image that

represents actual experimental data. The goal of the optimization process is to sys-

tematically perform a sequence of simulations and image registrations at different

Reynolds numbers, simulation length times, and simulation grid fidelities, and com-

pare the resulting template and reference images of a certain flow property, in an

attempt to recover the model parameters (Reynolds number and simulation length)

at the minimum simulation fidelity. For this problem the Heat Transfer flow prop-
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erty, as illustrated in Figures 1.4 and 1.5, respectively, is used to compare reference

and template images.

4.2.1 Lid-Driven Cavity Results–MVPS

The results of each test case are shown in Table 4.1. The first two are the base

cases with no search step performed. The first case uses an initial point based on

the geometric center of the continuous domain and a user-specified value of p = 40

for the m × m “grid size” (i.e., discrete (computational) parameter). The second

case uses an inscribed CCD to generate the set of initial continuous parameters,

while using the same user-specified value of the computational parameter. The next

six cases are the three different variants of the TA–MVMADS algorithm, with and

without applying a trust region. The search type labeled DACE/RBF is a search

step that randomly selects which type of surrogate to employ, DACE or RBF, at

each iteration. The time cutoff parameter used for all test problems is updated at

each iteration according to (3.2), with a value of αcut = 2 specified as the multiplier

(which is the same value used by Magallanez [60]). Any value of αcut > 1 can be

specified to allow for fluctuations in the computational time of the CFD and the

image registration process and give flexibility to the time cutoff parameter. For all

variations of the algorithm, certain measures of algorithm performance were collected

to include: objective function value, optimal values of the model and computational

parameters, number of iterations, number of function evaluations, and the overall

CPU time to achieve the solution.
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Table 4.1 MVPS: Lid-Driven Cavity Results

Time Cut With No Trust Region
Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
None Center 0.0411 500.875 5.0938 50 45 154 27.004
None CCD 0.0411 500.875 5.0938 50 45 162 22.973
DACE CCD 0.0411 500.878 5.0942 50 84 157 11.032
RBF CCD 0.0411 500.877 5.0936 50 29 149 10.573

DACE/RBF CCD 0.0411 500.877 5.0938 50 37 165 12.137
Time Cut With Trust Region

Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
DACE CCD 0.0411 500.878 5.0942 50 29 143 7.999
RBF CCD 0.0411 500.877 5.0936 49 36 164 8.629

DACE/RBF CCD 0.0411 500.877 5.0938 50 34 196 12.973
Solution 0.00 500.136 4.9968 50 - - -

In each test case, roughly the same solution was found, which was sufficiently

close to the true solution. The DACE surrogate with a trust region showed the

fastest convergence to the solution, and the RBF surrogate was only about 30 sec-

onds slower. Without a trust region, RBF was 30 seconds faster than DACE. Most

importantly, the worst test variant (DACE/RBF) found the solution in approx-

imately 50% less time than required by the best base case, whereas the DACE

surrogate with a trust region found the solution in approximately 66% less time.

These results were also generated in 93% less time than the previous results of Mag-

allanez [60]. Some improvement was expected, since Magallanez [60] held the values

for computational parameters constant instead of including them as variables to be

optimized. The inclusion of simulation fidelity as an optimization variable results in

a reduction in overall computation time.

Figure 4.1 is a visual representation of the solution, where the top left image

is the reference image, the top middle image is the template image captured at the

parameter values found by the DACE surrogate with a trust region, the top right

image is the warped image after the image registration process, the bottom left is

the pixel-by-pixel difference between the warped and reference images, the bottom

middle shows the forces required in the x and y directions to warp the template
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image, and the bottom right image is the objective function value computed using

the L2-norm of the image differences described by (1.20)–(1.21).

Figure 4.1 MVPS Lid-Driven Cavity Image Results

Tables 4.2 and 4.3 show more detailed performance statistics. Table 4.2 shows

for each type of surrogate strategy (with and without applying a trust region), the

number of search step surrogates implemented with the number and percentage

of successful steps, while Table 4.3 shows the number and percentage of successful

iterations performed by the search, poll, discrete neighbor, and extended poll

steps. For clarification purposes, the percentages found in Table 4.3 and similar

tables for all test problems are calculated using the number found by the current step

divided by the number of incumbents found less the number found by all previous

steps; i.e.,

% Poll =
# Poll

(# Incumbents−# Search)
.
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Table 4.2 MVPS: Lid-Driven Cavity Surrogate Performance

Time Cut With No Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
None Center - -
None CCD - -
DACE CCD 35 8(22.8%)
RBF CCD 29 5(17.2%)

DACE/RBF CCD 37 10(27.1%)
Overall 101 23(22.8%)

Time Cut With Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
DACE CCD 29 12(41.4%)
RBF CCD 36 6(16.7%)

DACE/RBF CCD 34 7(20.6%)
Overall 99 25(25.3%)

Table 4.3 MVPS: Lid-Driven Cavity Iteration Performance

Time Cut With No Trust Region
Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
None Center 32 - 15(46.8%) 16(94.1%) 0(0.0%)
None CCD 32 - 15(46.8%) 16(94.1%) 0(0.0%)
DACE CCD 17 8(47.1%) 4(44.4%) 4(80.0%) 0(0.0%)
RBF CCD 16 5(31.3%) 6(54.5%) 3(60.0%) 0(0.0%)

DACE/RBF CCD 24 10(41.7%) 11(78.6%) 2(66.7%) 0(0.0%)
Overall 121 23(19.0%) 52(53.1%) 41(89.1%) 0(0.0%)

Overall (Surrogates) 57 23(40.4%) 22(64.7%) 9(75.0%) 0(0.0%)
Time Cut With Trust Region

Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
DACE CCD 16 12(75.0%) 2(50.0%) 1(50.0%) 0(0.0%)
RBF CCD 23 6(26.1%) 4(23.5%) 11(84.6%) 1(50.0%)

DACE/RBF CCD 21 7(33.3%) 5(35.7%) 7(77.8%) 1(50.0%)
Overall 60 25(41.7%) 11(31.4%) 19(79.2%) 2(40.0%)

Tables 4.1–4.3 illustrate the importance of employing surrogates. As seen in

Table 4.3, the search surrogates were successful in finding the incumbent solution

approximately 40%–41% of the time, and when invoked, the discrete neighbor poll

was successful approximately 75%–79% of the time. These percentages, along with

the computational time results of Table 4.1, show that surrogate employment and

the use of mixed variables are crucial in reducing overall computational time. Figure

4.2 shows the relationship between objective function values and CPU times. The

first figure shows the change in objective function value and CPU time throughout

the iterations; the second compares objective function value to computational time.
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In the second figure, the objective function value initially decreases as the compu-

tational time decreases, followed by fluctuations in CPU time. This is caused by

increases in the fidelity of the computational parameters and changes in the adap-

tive time cut parameter of the algorithm as the optimal solution is approached. This

gives an idea of how the search path illustrated by the curved dotted path in Figure

1.2 is achieved. Other figures showing the surrogate construction and problem per-

formance history associated with the best solution are shown in Figures A.2–A.3 of

Appendix A.

Figure 4.2 MVPS Lid-Driven Cavity Time vs Obj. Function

4.2.2 Lid-Driven Cavity Results–MVMADS

The results of each test case, when MVMADS is implemented, are shown

in Table 4.4. These results are similar to those of MVPS, but the computational

times increased modestly. Because of the random nature of the poll step in selecting

points for evaluation, multiple runs (10) were performed, each run yielding essentially

the same results. The best run of each of the test cases is presented.
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Table 4.4 MVMADS: Lid-Driven Cavity Results

Time Cut With No Trust Region
Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
None Center 0.041187 500.8750 5.0195 50 58 199 32.190
None CCD 0.041187 500.8750 5.0195 50 71 211 41.155
DACE CCD 0.041182 500.8601 5.0066 50 88 334 16.109
RBF CCD 0.041080 500.8460 5.0185 50 42 267 12.181

DACE/RBF CCD 0.041183 500.8602 5.0064 50 71 424 19.182
Time Cut With Trust Region

Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
DACE CCD 0.041182 500.8601 5.0066 50 57 255 15.883
RBF CCD 0.041080 500.8460 5.0185 50 46 270 11.804

DACE/RBF CCD 0.041183 500.8602 5.0064 50 47 314 16.736
Solution 0.00 500.1360 4.9968 50 - - -

Contrary to the results of MVPS, the RBF surrogate, with or without a trust

region, was approximately 4 minutes faster than DACE in finding the optimum

point. Again, the key performance measure is the difference in the computational

times between the base cases and the variants using surrogates. The best run of the

worst test variant (DACE/RBF) found the optimal solution in approximately 40%

less time than required by the best base case. The RBF surrogate with a trust region

found the optimal solution in approximately 63% less time. Furthermore, these

results show an 84% reduction in time as compared to Magallanez [60], who did not

include any computational parameters in the optimization. A visual representation

is omitted because it looks identical to Figure 4.1, with the exception of the final

iteration (at which the optimal solution was found).

Tables 4.5 and 4.6 show the surrogate performance and overall iteration per-

formance parameters of the test cases using the MVMADS as the optimization

method.
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Table 4.5 MVMADS: Lid-Driven Cavity Surrogate Performance

Time Cut With No Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
None Center - -
None CCD - -
DACE CCD 88 32(36.4%)
RBF CCD 42 10(23.8%)

DACE/RBF CCD 71 14(19.7%)
Overall 201 56(27.9%)

Time Cut With Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
DACE CCD 57 17(29.8%)
RBF CCD 46 12(26.1%)

DACE/RBF CCD 47 5(10.6%)
Overall 150 34(22.7%)

Table 4.6 MVMADS: Lid-Driven Cavity Iteration Performance

Time Cut With No Trust Region
Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
None Center 43 - 10(23.3%) 32(96.9%) 0(0.0%)
None CCD 31 - 14(45.2%) 16(94.1%) 0(0.0%)
DACE CCD 53 32(60.4%) 4(19.0%) 16(94.1%) 0(0.0%)
RBF CCD 20 10(50.0%) 6(60.0%) 4(100.0%) 0(0.0%)

DACE/RBF CCD 36 14(38.9%) 13(59.1%) 8(88.9%) 0(0.0%)
Overall 183 56(30.6%) 47(37.0%) 76(95.0%) 0(0.0%)

Overall (Surrogates) 109 56(51.4%) 23(43.4%) 28(93.3%) 0(0.0%)
Time Cut With Trust Region

Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
DACE CCD 34 17(50.0%) 4(23.5%) 12(92.3%) 0(0.0%)
RBF CCD 24 12(50.0%) 8(66.7%) 4(100.0%) 0(0.0%)

DACE/RBF CCD 21 5(23.8%) 6(37.5%) 9(90.0%) 0(0.0%)
Overall 79 34(43.0%) 18(40.0%) 25(92.6%) 0(0.0%)

As seen in Table 4.6 the search surrogates were successful in finding the

incumbent solution approximately 43%–52% of the time, and when invoked, the dis-

crete neighbor poll was successful approximately 93% of the time. This, once more,

demonstrates the significance of surrogate employment and mixed variables in the

reduction of overall computational time. A figure similar to Figure 4.2 of Section

4.2.1 comparing objective function value and computational time is illustrated in Ap-

pendix A, Figure A.4. Similar results can be deduced concerning objective function

value, computational time and the fluctuations as a relationship to the search path
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of Figure 1.2. The surrogate response surfaces and problem performance history

associated with the best solution are given in Figures A.5–A.6 of Appendix A.

4.3 Test Problem 2: Barrier Flow

The second test problem has also been extensively investigated, both experi-

mentally and numerically [46]. It applies the Navier-Stokes equations to fluid flow

over an immersed obstacle that acts as a barrier near the top of the two-dimensional

flow region (see Figure 4.3). The fluid is initially at rest. At t = 0, an initial force

is applied to the top of the fluid flow region creating an inflow velocity in the ver-

tical downward direction. As the force moves the fluid past the immersed obstacle,

the structure of the fluid flow undergoes fundamental changes. For different val-

ues of model parameters (Reynolds number and simulation length), the vertical and

horizontal motion of the fluid can achieve different states, and the behavior can be

compared. For example, at lower Reynolds numbers, the fluid separates prior to

passing the obstacle, whereas, for higher Reynolds numbers, the friction along the

surface of the obstacle is not strong enough to reunite the flow segments immediately;

rather, the segments re-emerge further downward in the flow field.

Like the previous problem, Reynolds number and simulation length are the

model parameters, and grid fidelity is the computational parameter to be optimized.

For this problem, Horizontal Velocity is the flow property used for the reference and

template images. This and other flow properties are shown in Figure 4.3.
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Figure 4.3 CFD Simulation Flow Properties of Barrier Flow

4.3.1 Barrier Flow Results–MVPS

The results of each test case are shown in Table 4.7. Each run was conducted in

the same manner as the previous test problem, and similar results were attained with

respect to the relationship between the objective function values, optimal parameter

values, and computational time of the different variants. An important result is that,

in all cases, the simulation grid size fidelity at the optimal solution was lower (36–41)

than what was used to create the reference image (50). This gives evidence of the

ability to recover the optimal model parameter values at the minimal simulation

fidelity.

Table 4.7 MVPS: Barrier Flow Results

Time Cut With No Trust Region
Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
None Center 0.1275 201.734 31.9844 38 40 97 45.387
None CCD 0.1245 201.687 29.7230 41 30 94 40.103
DACE CCD 0.1152 201.635 30.9840 36 28 138 22.032
RBF CCD 0.1219 201.647 29.5926 36 31 172 28.338

DACE/RBF CCD 0.1221 201.655 29.1637 36 26 146 29.564
Time Cut With Trust Region

Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
DACE CCD 0.1152 201.635 30.9840 36 34 149 17.327
RBF CCD 0.1219 201.647 29.5926 36 30 148 28.669

DACE/RBF CCD 0.1221 201.655 29.1637 38 56 221 28.969
Solution 0.00 200.451 30.4260 50 - - -
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The DACE surrogates with trust region approach showed the fastest conver-

gence, finding the solution in approximately 17 minutes, a 57% improvement over the

best base case. Among the surrogates without a trust region, DACE converged with

the lowest computational time of 22 minutes. Figure 4.4 is a visual representation

of the solution using horizontal velocity as the flow property of interest.

Figure 4.4 MVPS Barrier Flow Image Results

Tables 4.8 and 4.9 show the surrogate performance and overall iteration per-

formance parameters of the test cases. The search surrogates found the incumbent

solution approximately 39%–40% of the time. The discrete neighbor poll was suc-

cessful approximately 50%–55% of the time when it was invoked. This percentage

is lower when compared to the Lid-Driven Cavity problem, but the reduced com-

putational times of Table 4.7 and the successes of the surrogate employments again

demonstrate the value of surrogates and mixed variables for this problem.
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Table 4.8 MVPS: Barrier Flow Surrogate Performance

Time Cut With No Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
None Center - -
None CCD - -
DACE CCD 28 7(25.0%)
RBF CCD 31 6(19.4%)

DACE/RBF CCD 26 5(19.2%)
Overall 85 18(21.2%)

Time Cut With Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
DACE CCD 34 8(23.5%)
RBF CCD 30 6(20.0%)

DACE/RBF CCD 56 18(32.1%)
Overall 120 32(26.7%)

Table 4.9 MVPS: Barrier Flow Iteration Performance

Time Cut With No Trust Region
Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
None Center 27 - 24(88.9%) 2(66.7%) 0(0.0%)
None CCD 17 - 15(88.2%) 1(50.0%) 0(0.0%)
DACE CCD 15 7(46.7%) 6(75.0%) 1(50.0%) 0(0.0%)
RBF CCD 18 6(33.3%) 10(83.3%) 1(50.0%) 0(0.0%)

DACE/RBF CCD 13 5(38.5%) 6(75.0%) 1(75.0%) 0(0.0%)
Overall 90 18(20.0%) 61(84.7%) 6(54.5%) 0(0.0%)

Overall (Surrogates) 46 18(39.1%) 22(78.6%) 3(50.0%) 0(0.0%)
Time Cut With Trust Region

Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
DACE CCD 21 8(38.1%) 11(84.6%) 1(50.0%) 0(0.0%)
RBF CCD 17 6(35.3%) 9(81.8%) 1(50.0%) 0(0.0%)

DACE/RBF CCD 43 18(41.9%) 23(92.0%) 1(50.0%) 0(0.0%)
Overall 81 32(39.5%) 43(87.8%) 3(50.0%) 0(0.0%)

The computational time required to solve this problem took approximately

twice as long as the Lid-Driven Cavity problem. Figure 4.5, a comparison of the

Barrier Flow objective function value to computational time, shows more dynamic

fluctuations in computational time, compared to those observed in Figure 4.2 for the

previous problem. Therefore a two-dimensional plot of the objective function versus

Reynolds number was generated for the two problems shown in Figure 4.6 (simulation

length and grid fidelity were fixed at their optimal parameter values). These plots

illustrate how much more dynamic and challenging this problem is, compared to the

Lid-Driven Cavity problem. Illustrations of the surrogate response surfaces and the
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problem performance history associated with the best solution are given in Figures

A.7–A.8, of Appendix A.

Figure 4.5 MVPS Barrier Flow Time vs Obj. Function

Figure 4.6 Lid-Driven Cavity and Barrier Flow Problem Mappings

4.3.2 Barrier Flow Results–MVMADS

Tables 4.10–4.12 give results and surrogate performance data for the TA–

MVMADS algorithm. The results are similar to those of MVPS with respect to the

optimal objective function, model, and computational parameter values. The overall
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computational times required for the different variants either increased slightly or

remained approximately the same. Once again, because of the random nature of the

MVMADS poll step, 10 runs were performed, and each run resulted in approxi-

mately what was shown in the application of MVPS on this problem, and the best

run of each test case is presented.

Table 4.10 MVMADS: Barrier Flow Results

Time Cut With No Trust Region
Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
None Center 0.1253 201.720 29.4844 38 39 123 54.561
None CCD 0.1225 201.557 31.2768 41 60 192 48.438
DACE CCD 0.1152 201.635 30.9645 36 28 138 26.122
RBF CCD 0.1206 201.648 30.9840 36 31 174 28.866

DACE/RBF CCD 0.1214 201.674 29.8871 36 32 167 36.215
Time Cut With Trust Region

Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
DACE CCD 0.1152 201.635 30.9645 38 39 166 20.736
RBF CCD 0.1206 201.648 30.9840 36 30 154 22.875

DACE/RBF CCD 0.1214 201.674 29.8871 38 49 196 35.696
Solution 0.00 200.451 30.4260 50 - - -

Table 4.11 MVMADS: Barrier Flow Surrogate Performance

Time Cut With No Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
None Center - -
None CCD - -
DACE CCD 28 7(25.0%)
RBF CCD 31 6(19.4%)

DACE/RBF CCD 32 7(21.9%)
Overall 91 20(21.9%)

Time Cut With Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
DACE CCD 39 11(28.2%)
RBF CCD 30 6(20.0%)

DACE/RBF CCD 49 12(24.5%)
Overall 118 29(24.6%)
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Table 4.12 MVMADS: Barrier Flow Iteration Performance

Time Cut With No Trust Region
Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
None Center 43 - 10(23.3%) 32(96.9%) 0(0.0%)
None CCD 31 - 14(45.2%) 16(94.1%) 0(0.0%)
DACE CCD 53 32(60.4%) 4(19.0%) 16(94.1%) 0(0.0%)
RBF CCD 20 10(50.0%) 5(50.0%) 4(80.0%) 0(0.0%)

DACE/RBF CCD 36 14(38.9%) 13(59.1%) 8(88.9%) 0(0.0%)
Overall 183 56(30.6%) 47(37.0%) 76(95.0%) 0(0.0%)

Overall (Surrogates) 109 56(51.4%) 23(43.4%) 28(93.3%) 0(0.0%)
Time Cut With Trust Region

Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
DACE CCD 26 11(42.3%) 13(86.7%) 1(50.0%) 0(0.0%)
RBF CCD 17 6(35.3%) 9(81.8%) 1(50.0%) 0(0.0%)

DACE/RBF CCD 36 12(33.3%) 22(91.7%) 1(50.0%) 0(0.0%)
Overall 79 29(36.7%) 44(88.0%) 3(50.0%) 0(0.0%)

The search surrogates, accounted for 36%–52% of the new incumbent solu-

tions compared to the 39% found by MVPS on this problem. Although the discrete

neighbor poll showed fewer successes for the surrogates with a trust region as com-

pared to the MVMADS variants of the Lid-Driven Cavity problem, the overall

quality of producing the incumbent when compared to the application of MVPS to

this problem increased to 50%–93%. The reduction in computational time from 48

minutes for the best base case, to 20 minutes for the best surrogate variant, shows

the success and significance of using mixed variables and surrogates for this problem.

A figure similar to Figure 4.5 showing the relationship between objective func-

tion values and computational times is illustrated in Appendix A, Figure A.9. Iden-

tical to the MVGPS results, the computational time required for MVMADS on

this problem was approximately twice that of the Lid-Driven Cavity problem. This

can be attributed mainly to the dynamic nature of the Barrier Flow problem, as

discussed in Section 4.3.1. Illustrations of the surrogate response surfaces and prob-

lem performance history associated with the best solution can be seen in Figures

A.10–A.11 of Appendix A.
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4.4 Test Problem 3: Liquid Drop

The final problem is another classical problem first studied by Harlow and

Shannon [48]. This problem applies the Navier-Stokes equations to a droplet of

fluid falling into a fluid filled basin (see Figure 4.7). Given a two-dimensional cross

section of the domain with dimensions [0, a] × [0, b], the fluid-filled basin occupies

the lower half of this cross section. The droplet has a radius of b/10, is centered

at (a/2, 2b/3), and has an initial vertical velocity of v0 = −2. As time starts, the

droplet impacts the surface of the fluid, a trough is formed, and the structure of

both the droplet and the fluid in the basin begin dynamically changing. The droplet

forces the fluid in the basin to be displaced both vertically and horizontally. The

vertical and horizontal forces displacing the fluid reach the boundaries and each

reflects in the opposite direction. The droplet sloshes back up out of the basin and

falls back in, causing asymmetry and instabilities. This continues until the forces

in the fluid region reach a steady state [46]. As with the two previous problems,

Reynolds number and simulation length are the model parameters and grid fidelity

is the computational parameter to be optimized. The Horizontal Velocity is the flow

property used for the reference and template images. This and other flow properties

are shown in Figure 4.7.

Figure 4.7 CFD Simulation Flow Properties of Liquid Drop
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4.4.1 Liquid Drop Results–MVPS

Each run was conducted in the same manner as the previous test problems;

however, even though the algorithm converged to parameter values close to the

optimal values, it did not obtain optimal solutions, as shown in Table 4.13. The

computational times of each variation increased compared to the results seen in the

previous test problems. Also, the objective function and model/computational pa-

rameter values determined by the optimization process differed among the variations

of the algorithm applications. Because of this and the ineffectiveness of using the

default extended poll trigger value (ξk = max{ξ, 0.01|f(xk)|}) in the other problems,

an additional run was performed using an increased value (ξk = max{ξ, 0.5|f(xk)|}).
The results were identical for each test case except for a 75% increase in the CPU

time, which is attributed to the increase in number of function evaluations incurred

by the extended poll step. These results are not shown because the results were

essentially the same.

Table 4.13 MVPS: Liquid Drop Results

Time Cut With No Trust Region
Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
None Center 9.2032 47.000 9.6152 41 20 72 114.217
None CCD 9.2032 47.000 9.6152 41 20 80 111.951
DACE CCD 3.8762 51.781 11.4976 48 36 147 44.195
RBF CCD 4.3497 48.396 10.4637 41 38 153 57.811

DACE/RBF CCD 4.9326 47.255 11.0162 44 37 144 73.531
Time Cut With Trust Region

Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
DACE CCD 3.8197 52.875 11.6563 48 24 129 39.672
RBF CCD 4.0172 47.367 10.4551 41 19 113 51.381

DACE/RBF CCD 4.8689 46.117 11.2656 44 23 124 71.052
Solution 0.00 50.011 10.0160 50 - - -

The DACE surrogates with a trust region showed the fastest convergence,

finding the best solution of all test cases in approximately 40 minutes. This was

32 and 23 minutes longer, respectively, than for the Lid-Driven Cavity and Barrier

Flow problems. Without a trust region, the DACE surrogate converged to a similar
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solution but required an additional 5 minutes. Figure 4.8 is a visual representation

of the solution with Horizontal Velocity used as the flow property of interest.

Figure 4.8 MVGPS Liquid Drop Image Results

Tables 4.14 and 4.15 show the surrogate performance and overall iteration

performance parameters, respectively, of the test cases. The search surrogates

found a new incumbent solution approximately 37%–42% of the iterations, but fewer

overall incumbent solutions were found than for the other test problems. The discrete

neighbor poll seemed to be almost ineffective, producing a total of only 3 incumbents.

Even though performance measures were worse when compared to the optimal results

of the previous problems, the use of surrogates resulted in roughly a 65% reduction

in computational time.
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Table 4.14 MVPS: Liquid Drop Surrogate Performance

Time Cut With No Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
None Center - -
None CCD - -
DACE CCD 36 6(16.7%)
RBF CCD 38 4(10.5%)

DACE/RBF CCD 27 4(10.8%)
Overall 111 14(12.6%)

Time Cut With Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
DACE CCD 24 7(29.2%)
RBF CCD 19 4(21.1%)

DACE/RBF CCD 23 5(21.7%)
Overall 66 16(24.2%)

Table 4.15 MVPS: Liquid Drop Iteration Performance

Time Cut With No Trust Region
Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
None Center 7 - 5(71.4%) 1(50.0%) 0(0.0%)
None CCD 7 - 5(71.4%) 1(50.0%) 0(0.0%)
DACE CCD 15 6(40.0%) 7(77.8%) 1(50.0%) 0(0.0%)
RBF CCD 11 4(36.4%) 5(71.4%) 1(50.0%) 0(0.0%)

DACE/RBF CCD 11 4(36.4%) 5(71.4%) 1(50.0%) 0(0.0%)
Overall 51 14(27.5%) 27(72.9%) 5(50.0%) 0(0.0%)

Overall (Surrogates) 37 14(37.8%) 17(73.9%) 3(50.0%) 0(0.0%)
Time Cut With Trust Region

Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
DACE CCD 16 7(43.8%) 8(88.9%) 0(0.0%) 0(0.0%)
RBF CCD 11 4(36.4%) 6(85.7%) 0(0.0%) 0(0.0%)

DACE/RBF CCD 11 5(45.5%) 5(83.3%) 0(0.0%) 0(0.0%)
Overall 38 16(42.1%) 19(86.4%) 0(0.0%) 0(0.0%)

Due to the increase in computational time and the less-than-optimal solutions

attained when solving this problem, a two-dimensional plot of the objective function

versus Reynolds number was generated, similar to the one described in Section 4.3.1.

Specifically, Figures 4.9–4.10 show computational time and objective function value,

and objective function value versus Reynolds number, respectively. The fluctuations

in the objective function value and computational times are much more dominant

in this problem than those of the previous two problems, as seen in Figures 4.2 and

4.5. This helps explain the difficulty of finding the true optimal solution and the

overall increase in CPU time. Illustrations of the surrogate response surfaces and
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problem performance history associated with the best solution can be seen in Figures

A.12–A.13, respectively, of Appendix A.

Figure 4.9 MVGPS Liquid Drop Time vs Obj. Function

Figure 4.10 Liquid Drop Problem Mapping

4.4.2 Liquid Drop Results–MVMADS

As with MVMADS results of the other two test problems, multiple (10) runs

were performed. The initial runs showed similar results, but the best of the ten
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runs found a 96% reduction in optimal objective function value with a minimal grid

size fidelity less than that of the reference image. This solution was found with

an increase of 25 minutes in computational time over the results of MVPS. Tables

4.16–4.18 give the results and surrogate performance of the best run of the test

cases. The increase in computational time is possibly attributed to the randomness

of the MVMADS poll step; however, this may be beneficial for problems that have

objective functions with increased fluctuations.

Table 4.16 MVMADS: Liquid Drop Results

Time Cut With No Trust Region
Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
None Center 10.4853 53.000 11.4844 41 28 98 252.784
None CCD 9.0669 46.000 9.8828 41 36 139 215.740
DACE CCD 4.3692 51.488 11.1660 41 35 145 166.748
RBF CCD 2.1845 51.405 11.1055 50 38 240 116.240

DACE/RBF CCD 2.8964 50.197 11.6291 50 35 181 118.455
Time Cut With Trust Region

Search Initial Obj. Re Sim Grid # of # of CPU
Type Pt(s) Val. Num. Len. Size Iters. Evals. Time (min)
DACE CCD 4.1683 51.632 11.2141 41 25 140 88.254
RBF CCD 0.1445 50.614 10.0023 44 22 142 64.228

DACE/RBF CCD 0.2378 49.804 10.5657 41 35 228 72.796
Solution 0.00 50.011 10.0160 50 - - -

Table 4.17 MVMADS: Liquid Drop Surrogate Performance

Time Cut With No Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
None Center - -
None CCD - -
DACE CCD 35 7(20.0%)
RBF CCD 38 7(18.4%)

DACE/RBF CCD 35 6(17.1%)
Overall 108 20(18.5%)

Time Cut With Trust Region
Search Initial # of Search # (%)
Type Pt(s) Surrogates Success
DACE CCD 25 6(23.9%)
RBF CCD 22 7(31.8%)

DACE/RBF CCD 35 7(20.0%)
Overall 82 20(24.4%)
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Table 4.18 MVMADS: Liquid Drop Iteration Performance

Time Cut With No Trust Region
Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
None Center 8 - 6(75.0%) 1(50.0%) 0(0.0%)
None CCD 12 - 10(83.3%) 1(50.0%) 0(0.0%)
DACE CCD 17 7(41.2%) 9(90.0%) 0(0.0%) 0(0.0%)
RBF CCD 13 7(53.8%) 4(66.7%) 1(50.0%) 0(0.0%)

DACE/RBF CCD 12 6(50.0%) 5(83.3%) 0(0.0%) 0(0.0%)
Overall 62 20(32.3%) 34(80.9%) 3(37.5%) 0(0.0%)

Overall (Surrogates) 42 20(47.6%) 18(81.8%) 1(25.0%) 0(0.0%)
Time Cut With Trust Region

Search Initial # of # (%) # (%) # (%) # (%)
Type Pt(s) Incumbents (Search) (Poll) (Neigh.) (Ext. Poll)
DACE CCD 17 6(35.3%) 10(90.9%) 0(0.0%) 0(0.0%)
RBF CCD 12 7(58.3%) 4(80.0%) 0(0.0%) 0(0.0%)

DACE(50)/RBF(50) CCD 12 7(58.3%) 4(80.0%) 0(0.0%) 0(0.0%)
Overall 41 20(48.8%) 18(85.7%) 0(0.0%) 0(0.0%)

The search surrogates found 47%–49% of the incumbent solutions. This is

an increase when compared to the performance of MVPS. The discrete neighbor

poll still showed poor performance, but with respect to finding an improved solution

in the least amount of computational time, the use of surrogates with a trust region

shows a significant decrease in computational time, as compared to the other test

cases. Figure 4.11 gives a visual representation of the solution.

Figure 4.11 MVMADS Liquid Drop Image Results
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Figure 4.12 shows similar, if not increased, fluctuations of objective function

value and computational time, as compared to Figure 4.9. This demonstrates the

effectiveness of the TA–MVMADS algorithm (in this case, with MVMADS as the

optimization method), as applied to this class of problems, when dealing with an

objective function that is dominated by fluctuations in function value and computa-

tional time. Illustrations of the surrogate response surfaces and problem performance

history associated with the best solution are given in Figures A.14–A.15, respectively,

of Appendix A.

Figure 4.12 MVMADS Liquid Drop Time vs Obj. Function

4.5 Summary

The TA–MVMADS algorithm presented in Chapter 3 was applied to three

test problems showing effective results. The algorithm was sucessful in finding the

optimal solution and parameter values on the first and second problems. On the

second problem, the algorithm found the optimal solution at a reduced grid size

fidelity, giving evidence of the ability to recover optimal model parameters while

recovering the minimal simulation fidelity. The third problem proved to be much

more difficult, due to the increased fluctuations in the objective function value and

computational time, but the MVMADS variant of the algorithm was able to ap-

proximately recover the optimal solution and model parameters at a reduced grid

size fidelity with a modest increase in computational time. Chapter 5 offers some

concluding comments and suggests some ideas for future work.
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5. Conclusions and Recommendations

The techniques applied in this research provided an investigation into the

improvement of computational and model parameter optimization of engineering

problems. The focus was placed on the use of mixed variable optimization methods,

multiple surrogate functions, and trust regions to develop an optimization framework

for reducing computational expense in the recovery of optimal parameter values.

Significant reductions in computational times were achieved, as compared to the

only previous study [60] on this class of optimization problems. The remainder of

this chapter gives concluding remarks, summarizes the contributions of this work,

and suggests potential areas of improvement and future research.

5.1 Summary and Conclusions

The three problems studied in Chapter 4 showed different levels of complexity.

This was evident in the computational times required to solve the different prob-

lems. For the first two problems of Section 4.2 and Section 4.3, the TA–MVMADS

algorithm (see Figures 3.4 and 3.5), developed for use in the optimization framework

illustrated in Figure 1.1, demonstrated significant improvement in the computational

times required to recover the optimal parameters when compared to the previous

work of Magallenez [60]. The third problem of Section 4.3 showed different results.

The optimal parameters were recovered by only two variants of the MVMADS

algorithm.

In order to understand the different levels of difficulty, it was important to

study the possible causes of the increase in computational times from one problem

to another. Therefore, a two-dimensional plot of the objective function versus the

Reynolds number was generated for each problem (see Figures 4.6 and 4.10), while

fixing the simulation length and grid fidelity at their optimal values. These plots

illustrate the increased dynamic volatility and fluctuations among the problems.
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The first problem’s objective function was much less dynamic than than that of the

second problem, and both of these had significantly fewer fluctuations than that of

the third problem. Surrogate strategies were implemented in an attempt to guide

the optimization process to a region of the parameter space containing the optimal

solution in the least amount of computational time possible. The increased volatility

witnessed in the second and third problems makes it difficult to construct surrogate

functions that effectively represent the behavior of the true objective function. This

type of dynamic behavior in objective functions can increase the number of function

evaluations required to find an optimal solution, thus causing an increase in the

overall computational time, or it can lead the algorithm to a poor local solution.

This is evident in the results of the third test problem. However, the MVMADS

variant of the algorithm recovered the optimal solution and model parameters at a

reduced grid size fidelity with only modest increases in computational time. This is

possible evidence of the benefits in the randomness of an MVMADS poll step when

dealing with applications that have objective functions dominated by fluctuations.

The following list describes the contributions of this research:

• An algorithm was developed to incorporate the use of mixed variable opti-

mization techniques for reducing the computational time required to recover

optimal model parameters and minimum simulation fidelity in certain classes

of engineering problems. Optimization of computational parameters implies

less computational time for the simulation, faster convergence to optimal so-

lutions, and more (but less expensive) function evaluations, meaning a more

thorough yet efficient search of the parameter space.

• A new strategy was developed for making use of both objective-based and time-

based surrogates. Specifically, the surrogate function F (x) was optimized and

a finite set of trial points were returned. The trial points were then ordered and

selected for evaluation in the objective function using the time-based surrogate

T (x).
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• Radial Basis Functions (RBF) were added to the customized search files as a

class of surrogate functions, which could be compared with DACE surrogates.

Another addition was the surrogate function that randomly selects DACE or

RBF at each iteration. These two additions expand the availability of surro-

gate functions that can be applied to this class of problems. As was seen in

the Chapter 4 results, multiple surrogate function types can add an effective

capability to the algorithm and optimization framework.

• The methods used for construction of both DACE and RBF were improved.

Specifically, a singular value decomposition (SVD) was added to the surrogate

construction process to alleviate problems encountered when the correlation

matrix R or the basis function matrix φ̂ become ill-conditioned. As the opti-

mal objective function value is approached and points are added to the initial

surrogate for recalibration, the points begin clustering, resulting in R and φ̂

becoming ill-conditioned [25]. Singular value decomposition makes it possible

to approximate the inverse of R or φ̂ instead of computing it directly.

• The methods used in this research improved the effectiveness of the compu-

tational time threshold parameter tcut
k . This parameter now uses the overall

computational time of an objective function evaluation; i.e., both the CFD

simulation time and the image registration time associated with the current

best solution are used for updating the value of tcut
k (3.2). This is more efficient

because the CFD simulation times change due to increases/decreases in grid

size fidelity and dynamic behavior of the problem.

• A trust region approach was implemented in the algorithm for setting and up-

dating the upper and lower bounds for the surrogate optimization problem.

This approach reduces the feasible region over which the surrogate functions

are optimized. It can also control the points used for the recalibration of

the surrogate functions. This improves surrogate performance by construct-

ing and optimizing the surrogate in a region of the parameter space showing
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improvement in objective function value. This also helps alleviate incorrect

trends or behaviors and reduce the ill-conditioning of the correlation matrix

or basis function matrix that can occur when the surrogate is constructed and

optimized over the entire feasible region and known design sites.

• Numerical results were generated for the three test problems, and DACE and

RBF surrogate functions were shown to perform similarly. That is, there is

no significant evidence of one outperforming the other, even in the presence

or absence of a trust region. The successful performance in Chapter 4 of the

TA–MVMADS algorithm demonstrates the effectiveness of the algorithm in

certain classes of engineering problems.

5.2 Future Areas of Research

The use of different methods to develop a new technique for solving this class

of problems has provided potential areas of improvement and future research in the

use of mixed variable parameter optimization in engineering problems. These topics

of interest are now discussed.

Different Methods for Generating Initial Points. A CCD is not typi-

cally used for problems of higher dimensionality because, as the number of variables

to be optimized increases, it requires more function evaluations, which makes a CCD

inefficient for computationally expensive problems. During the first stages of this

research, the original domain associated with continuous variables was very large,

and a CCD was used because it generated better surrogates. In this domain, a

“space-filling” sampling would require an increased number of design sites to ex-

tract information over this domain. However, the domain was reduced, based on

expert knowledge of the problems [16], and Latin hypercube sampling, orthogo-

nal arrays, or nearly uniform designs [59] could prove to be more effective than a

CCD at gaining maximum information using a minimal number of sample points.
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These “space-filling” methods can be applied iteratively and possibly be used by

the search step, thus giving more capability to the user. The NOMADm software

and TA–MVMADS algorithm are currently capable of implementing multiple types

of CCDs, Latin hypercube samplings, and nearly uniform designs as experimental

design methods.

A Method for Adapting the αcut Multiplier. The tcut
k parameter used

for all test problems was updated at each iteration according to (3.2), and a value

of αcut = 2 was specified as the constant multiplier. Any value of αcut > 1 can be

specified to allow for fluctuations in the computational time of the CFD and the

image registration process and give flexibility to the tcut
k parameter. The value of

αcut = 2 was chosen because it was used by Magallanez [60]. A method for adapting

the value of αcut could be developed based on the cached history of values of the

tcut
k parameter. For example, if the value of tcut

k has increased over several iterations,

moderately decrease the value of αcut to obtain a more restrictive tcut
k parameter,

and if it has decreased, possibly alter αcut in an opposite manner to obtain a less

restrictive tcut
k parameter. A test of other values of αcut, as applied to these test

problems, would help determine if a method of this type could be effective.

Adapting the Order of the Regression Polynomial Used for DACE

and RBF Surrogates. Both surrogate types used a second-order polynomial as

the highest order for the regression model. A higher order polynomial may have

improved the effectiveness of the surrogate, but the degree of the polynomial deter-

mines how many design points are needed to construct the surrogate. A higher order

polynomial requires more design points, thus increasing the number of evaluations

and computational time. In this work, a high order polynomial could be specified,

but the algorithm would choose the order of the polynomial it could construct based

on the available number of design points, not to exceed the order specified by the

user. Therefore, lower-order polynomials could be used until enough design points

were available to construct the desired polynomial.
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A more robust method for adapting the order of the regression polynomial

could be developed. A method that allows the algorithm to adapt the order of the

polynomial based on performance history throughout the optimization process would

add flexibility and possibly increase the effectiveness of surrogates.

Adapting DACE and RBF Correlation and Basis Function Surro-

gates. The choice of a Gaussian correlation model (see (2.33)) was based on a

suggestion in [57], which describes it as a common choice used in practice for phys-

ical phenomena, and which shows similar behavior to the desired function as the

number of points increases. There are other models available (see (2.33)), such as

Cubic, Spline, Exponential, Linear, and Spherical, one of which may prove to be

more effective at approximating the underlying behavior of objective functions for

this class of problems. Similarly, the choice of a Multiquadric basis function (see

(3.9)) was based on a numerical study of scattered data interpolation, which found

that this basis function provided the most accurate interpolation surfaces of all the

basis function forms for interpolation in two dimensions [43]. It is possible that one

of the other basis function forms in (2.37)–(2.41) may produce more accurate RBFs,

but no other forms were tested.

This research did not use any methods for adapting the type of correlation

model or basis function during the optimization. Just as regression models can be

adapted, the type of correlation model or basis function could be changed based on

performance history. This could help reduce the possible dynamic behavior of the

surrogate response surfaces by choosing the correlation model or basis function that

more accurately represents underlying trend behavior of the true objective function.

Methods to Alleviate Ill-Conditioning. Singular value decomposition was

used to reduce the problem of an ill-conditioned correlation matrix or basis function.

This method is computationally expensive when the number of design sites increases.

An alternative approach suggested by Booker [25] is to model the output as the sum
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of two Gaussian independent processes, one with correlation parameters based on

the initial set of points, and one based on subsequent points.

More Robust Trust Region Approach. The trust region approach applied

here is based on the “trust radius” or “move limit” ideas presented in [13]. The trust

region is applied to the surrogate based on the current best feasible solution, and

the upper and lower bounds over which the surrogate is optimized are tightened by

a user-specified percentage αTR of the original bounds. These surrogate bounds can

change at each iteration. Though fairly simple, this approach proved to be effective

in increasing the surrogate performance by constructing and optimizing the surrogate

in a region of the parameter space showing improvement in objective function value.

The points used for the recalibration of the surrogate functions are also controlled.

This helps alleviate incorrect trends or behaviors and reduce the ill-conditioning of

the correlation model and basis function. There are, in fact, more robust methods

for applying trust regions to manage approximation models [13, 39] that could be

applied. Another approach, mentioned in [60], is a trust region based on the current

frame size ∆p
k or mesh size ∆m

k , where the relationship between the number of points

within a region and the distance between the points would determine the size of the

trust region.

Customized Discrete Neighbor Set. For the purpose of this study, the

discrete neighbor set was a default neighborhood (2.52), in which the continuous

variables are held constant and one discrete variable is changed at a time by a

single unit. Other neighbor sets are certainly allowed and may, in fact, improve

performance. For example, it could be beneficial to allow the discrete variable to

change by n > 1 units at a time – perhaps where n is chosen randomly.

Increase the Dimensionality of the Test Problems. In order to evaluate

the effectiveness of the TA–MVMADS algorithm more thoroughly, classical test

problems that are inherently more difficult could be used. If these types of test
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problems are not readily available, the number of parameters to be optimized (both

continuous and discrete) can be increased.

The results of this study suggest the need for future research in improving

mixed variable optimization techniques involving computational and model param-

eters in engineering problems, and the list just described is by no means exhaustive.

5-8



Bibliography

1. Abramson, M. A. Pattern Search Algorithms for Mixed Variable General Con-
strained Optimization Problems. Ph.D. thesis, Department of Computational
and Applied Mathematics, Rice University, August 2002.

2. Abramson, M. A., C. Audet, and J. E. Dennis, Jr. “Optimization using Surro-
gates for Engineering Design”. IMA Postdoctoral Fellowship Lecture Series,
http://www.ima.umn.edu/talks/workshops/dennis/JuniorUMN.pdf, 2003.

3. Abramson, M. A. “Mixed Variable Optimization of a Load-Bearing Thermal
Insulation System using a Filter Pattern Search Algorithm”. Optimization and
Engineering, 5:157–177, 2004.

4. Abramson, M. A. “Second-Order Behavior of Pattern Search”. SIAM Journal
on Optimization, 16(2):315–330, 2005.

5. Abramson, M. A., and C. Audet. “Convergence of Mesh Adaptive Direct Search
to Second-Order Stationary Points”. SIAM Journal on Optimization, 17(2):606–
619, 2006.

6. Abramson, M. A., C. Audet, and J. E. Dennis, Jr. “Nonlinear Programming by
Mesh Adaptive Direct Searches”. SIAG/Optimization Views-and-News, 17(1):2–
11, 2006.

7. Abramson, M. A., C. Audet, and J. E. Dennis, Jr. “Filter Pattern Search Algo-
rithms for Mixed Variable Constrained Optimization Problems”. Pacific Journal
of Optimization, 3(3):477–500, 2007.

8. Abramson, M. A., C. Audet, J. W. Chrissis, and J. G. Walston. “Mesh Adaptive
Direct Search Algorithms for Mixed Variable Optimization”. GERAD Technical
Report 2007-47. Optimization Letters, to appear.

9. Abramson, M. A. “Mesh Adaptive Direct Search for Derivative-Free Optimiza-
tion”. Los Alamos National Laboratory Data Sciences Seminar, 2007.

10. Abramson, M. A. “NOMADm optimization software”.
http://www.afit.edu/en/ENC/Faculty/MAbramson/NOMADm.html, 2007.

11. Abramson, M. A. “NOMADm version 4.5 Users’ Guide”.
http://www.afit.edu/en/ENC/Faculty/MAbramson/NOMADm.html, 2007.

12. Abramson, M. A., T. J. Asaki, J. E. Dennis, Jr., K. R. O’Reilly, and R. L.
Pingel. “Quantitative Object Reconstruction Via Abel-based X-ray Tomography
and Mixed Variable Optimization”. Technical Report TR07-03, Rice University,
Department of Computational and Applied Mathematics (CAAM), 2007.

BIB-1



13. Alexandrov, N., J. E. Dennis, Jr., R. M. Lewis, V. Torczon. “A Trust Region
Framework for Managing the Use of Approximation Models in Optimization”.
NASA/CR 201745 ICASE Report No 97–50, 1997.

14. Alexandrov, N., and M. Y. Hussaini, editors, Multidisciplinary Design Opti-
mization: State-of-the-Art. SIAM, 1997.

15. Asaki, T. “Elasticity-Based TSWarp Cost Functions”. Los Alamos National Lab-
oratory Report, 2004.

16. Asaki, T. and M. Sottile. “Improving Parameter Optimization Performance”.
Los Alamos National Laboratory Report, 2007.

17. Audet, C. and J. E. Dennis, Jr. “Pattern Search Algorithms for Mixed Variable
Programming”. SIAM Journal on Optimization, 11(3):573-594, 2000.

18. Audet, C. and J. E. Dennis, Jr. “Analysis of Generalized Pattern Searches”.
SIAM Journal on Optimization, 13(3):889–903, 2003.

19. Audet, C. and J. E. Dennis, Jr. “A Pattern Search Filter Method for Nonlinear
Programming without Derivatives”. SIAM Journal on Optimization, 14(4):980-
1010, 2004.

20. Audet, C. and J. E. Dennis, Jr. “Mesh Adaptive Direct Search Algorithms
for Constrained Optimization”. SIAM Journal on Optimization, 17(2):188–217,
2004.

21. Bandler, J. W., Q. Cheng, S. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen,
J. Søndergaard. “Space Mapping: The State of The Art”. IEEE Transactions
on Microwave Theory and Techniques, 52(1): 337–361, 2004.

22. Baxter, B. J. C. The Interpolation Theory of Radial Basis Functions. Ph.D.
thesis, Department of Applied Mathematics and Theoretical Physics, Cambridge
University, August 1992.

23. Booker, A. J., J. E. Dennis, Jr, P. D. Frank, D. B. Serafini, V. Torczon, and M.
W. Trosset. “A Rigorous Framework for Optimization of Expensive Functions
by Surrogates”. Structural Optimization, 17(1): 1–13, 1998.

24. Booker, A. J., J. E. Dennis, Jr., P. D. Frank, D. W. Moore, and D. B. Serafini.
Managing Surrogate Objectives to Optimize a Helicopter Rotor Design - Further
Experiments. Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, St. Louis, Missouri, September,
1998.

25. Booker, A. J. “Well-Conditioned Kriging Models for Optimization of Computer
Simulations”. Technical Report, M&CT-TECH-00-002, The Boeing Company,
2000.

BIB-2



26. Box, G. E. P. and K. B. Wilson. “On the Experimental Attainment of Optimum
Conditions”. Journal of the Royal Statistical Society, 13(1): 1–45, 1951.

27. Bro-Nielsen, M., C. Gramkow. “Fast Fluid Registration of Medical Images”.
Visualization in Biomedical Computing. K. H. Hohne and R. Kikinis (eds.).
Springer–Verlag, pp. 267–276, 1996.

28. Bro-Nielsen, M., C. Gramkow. Comparison of Three Filters in the Solution
of the Navier-Stokes Equation in Registration. Proceedings of the Scandinavian
Conference on Image Analysis, 795–802, 1997.

29. Buhmann, M. D. “Multivariate Cardinal Interpolation with Radial Basis Func-
tions”. Constructive Approximations, 6: 225–256, 1990.

30. Buhmann, M. D. and N. Dyn. “Error Estimates for Multiquadric Interpolation”.
Curves and Surfaces. P.-J. Laurent, A. Le Méhauté, and L. L. Schumaker (eds.).
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Appendix A. Additional Results and Algorithms

The following Appendix contains additional figures and results for the three test

problems referenced throughout the document. The figures of the surrogate response

surfaces, for the test problems, give a visual representation of an approximate model

of the actual objective function response surface. The plots of the performance

history of each test problem illustrate the number of function evaluations required

to converge to the optimal solution.

A-1



Figure A.1 CFD Simulation Flow Properties of Lid-Driven Cavity

Figure A.2 MVGPS Lid-Driven Cavity Obj. and Time Based Surrogates
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Figure A.3 MVGPS Lid-Driven Cavity Performance History

Figure A.4 MVMADS Lid-Driven Cavity Time vs Obj. Function
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Figure A.5 MVMADS Lid-Driven Cavity Obj. and Time Based Surrogates

Figure A.6 MVMADS Lid-Driven Cavity Performance History
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Figure A.7 MVGPS Barrier Flow Obj. and Time Based Surrogates

Figure A.8 MVGPS Barrier Flow Performance History
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Figure A.9 MVMADS Barrier Flow Time vs Obj. Function

Figure A.10 MVMADS Barrier Flow Obj. and Time Based Surrogates
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Figure A.11 MVMADS Barrier Flow Performance History

Figure A.12 MVGPS Liquid Drop Obj. and Time Based Surrogates
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Figure A.13 MVGPS Liquid Drop Performance History

Figure A.14 MVMADS Liquid Drop Obj. and Time Based Surrogates
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Figure A.15 MVMADS Liquid Drop Performance History
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Appendix B. Code for Optimization Framework

The following Appendix contains MATLABr code for executing the TA–MVMADS

algorithm 3.4–3.5. The files work in conjunction with the NOMADm [10], DACE

[58], and RBF [10] software packages.
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%************************************************************************** 
function [fx] = cpuproblem(x,p) 
%************************************************************************** 
%************************************************************************** 
% CPUPROBLEM IS THE MAIN FUNCTION CALLED BY NOMADM-- 
% SOLVER FOR NONLINEAR AND MIXED VARIABLE CONSTRAINED OPTIMIZATION WHICH IS 
% COPYRIGHT (C) 2001-2007 BY MARK A. ABRAMSON. THIS FUNCTION FILE SETS UP 
% THE VARIABLES TO OPTIMIZE ACROSS, CONSTRUCTS THE TRUST REGIONS(IF USED), 
% AND ALL PARAMETERS USED FOR SURROGATE CONSTRUCTION. IT RUNS THE 
% OPTIMIZATION PROBLEM INVOLVING A DUAL PROCESS OBJECTIVE FUNCTION OF A 
% NUMERICAL COMPUTATIONAL FLUID DYNAMICS SIMULATION AND A NUMERICAL IMAGE 
% REGISTRATION PROCESS. THE TWO PROCESSES ARE CALLED USING THE COSTFUNC 
% FILE 
  
% INPUT VARIABLES: 
%   x--VALUE OF THE CONTINUOUS PARAMETERS 
%   p--VALUE OF THE DISCRETE OR MIXED VARIABLE 
% OUTPUT VARIABLES: 
%   fx--OBJECTIVE FUNCTION VALUE RETURNED FOR THE COSTFUNC 
%************************************************************************** 
%************************************************************************** 
format long 
%************************************************************************** 
% CALLS THE Param DATA THAT IS USED THROUGHOUT THE NOMADm SOFTWARE 
Param = getappdata(0,'PARAM'); 
%************************************************************************** 
%************************************************************************** 
% DISPLAYS THE MADS ITERATION NUMBER 
%************************************************************************** 
display(['MADS ITERATION = ',num2str(Param.madscount)]); 
%************************************************************************** 
% SETS THE NUMBER OF FUNCTION EVALUATIONS 
%************************************************************************** 
Param.count      = Param.count+1; 
Param.data.count = Param.data.count+1; 
%************************************************************************** 
%************************************************************************** 
% CHANGING VARIABLES 
%************************************************************************** 
pvars.Re    = x(1); 
pvars.t_end = x(2); 
pvars.imax  = p{1}; 
pvars.jmax  = round((1/Param.ratio_pres)*p{1}); 
%************************************************************************** 
%************************************************************************** 
% CALL TO THE COST FUNCTION WHICH RUNS THE CFD AND THE IMAGE REGISTRATION. 
% THE VALUE FX RETURNED IS THE OBJECTIVE FUNCITON VALUE WHICH IS THE 
% DIFFERENCE IN THE REFERENCE IMAGE AND THE TRANSFORMED IMAGE. THE VALUE TX 
% IS A STRUCTURE THAT CONTAINING THE TIME TO RUN THE CFD AND THE TIME TO 
% RUN THE IMAGE REGISTRATION 
% ************************************************************************* 
[fx,tx] = costfunc(Param.data,Param.tc,pvars); 
%************************************************************************** 
%************************************************************************** 
% STORES THE CONTINOUS VARIABLES, DISCRETE VARIABLES, AND OBJECTIVE 
% FUNCTION VALUE IN MATRICES FOR USE BY SURROGATES AND POST-PROCESSING  
% *NOTE THE VARIABLE DATA.PLOTCOUNT IS ALSO UPDATED WHICH IS ONLY USED FOR  
% FILE NAMING OF THE IMAGE REGISTRATION PICS AND THE VARIABLE 
% DATA.IMAGEREGPICS IS USED TO DETERMINE WHAT IMAGES TO SAVE; IF 
% DATA.IMAGEREGPICS=1 STORE ONLY THE IMAGES OF THE EVALUATIONS RESULTING IN 
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% A NEW INCUMBENT. IF DATA.IMAGEREGPICS=2 STORE THE IMAGES OF ALL 
% EVALUATIONS 
%************************************************************************** 
Param.x(Param.count,:) = x(:); 
Param.p(Param.count,:) = p{:}; 
Param.f(Param.count,:) = fx; 
if Param.data.imageregpics==1 && fx < min(Param.fmin) 
    Param.data.plotcount = Param.data.plotcount + 1; 
elseif Param.data.imageregpics==2 
    Param.data.plotcount = Param.data.plotcount + 1; 
end 
%************************************************************************** 
%************************************************************************** 
% CHECK TO SEE IF THE WARP TIME RETURNED EQUALS -1 WHICH IMPLIES THAT THE 
% IMAGE REGISTRATION TIME WAS GREATER THAN THE Param.tc.cutoff VALUE WHICH 
% FORMED FROM THE CFD TIME AND WARP TIME ASSOCIATED WITH THE MINIMUM 
% OBJECTIVE FUNCTION VALUE SEEN THUS FAR, OR IT IMPLIES NORM OF THE IMAGE 
% DIFFERENCES RESULTED IN A DIVERGENT IMAGE DURING THE IMAGE REGISTRATION 
% PROCESS. 
%************************************************************************** 
if tx.warp < 0 
    tx.warp = Inf; 
end 
%************************************************************************** 
%************************************************************************** 
% CHECK TO SEE IF NON-DIVERGENT VALUES WERE RETURNED FROM THE CFD AND IMAGE 
% REGISTRATION.  IF THEY WERE, THEN THESE VALUES ARE STORED IN THE 
% FOLLOWING PARAMETERS WHICH ARE USED FOR THE SURROGATE CONSTRUCTION. A 
% CONSTRUCTION OF TRUST REGION UPPER AND LOWER BOUNDS FOR THE SURROGATE 
% FUNCTIONS IS DETERMINED ONLY IF THE USER SPECIFIED THE USE OF A TRUST 
% REGION 
%************************************************************************** 
if fx ~= Inf 
    Param.surcount                        = Param.surcount+1; 
    Param.surxp(Param.surcount,:)         = [x(:);p{:}]; 
    Param.surf(Param.surcount,:)          = fx; 
    Param.surcfd(Param.surcount,:)        = tx.cfd; 
    Param.surtwarp(Param.surcount,:)      = tx.warp; 
    Param.surtotal_time(Param.surcount,:) = tx.cfd + tx.warp; 
    %********************************************************************** 
    % CONSTRUCTION OF TRUST REGION UPPER AND LOWER BOUNDS 
    %********************************************************************** 
    if Param.trust_region == 1 
        [surf_min,index]    = min(Param.surf(1:end)); 
        Param.surLB         = [(Param.surxp(index,1:Param.contdim))'*0.75;...
                              floor(Param.surxp(index,Param.totaldim)*0.9)]; 
        Param.surUB         = [(Param.surxp(index,1:Param.contdim))'*1.25;...
                              ceil(Param.surxp(index,Param.totaldim)*1.1)]; 
        ind_LB              = Param.surLB < Param.surLB_orig; 
        ind_UB              = Param.surUB > Param.surUB_orig; 
        Param.surLB(ind_LB) = Param.surLB_orig(ind_LB); 
        Param.surUB(ind_UB) = Param.surUB_orig(ind_UB); 
    %**********************************************************************   
     end
end 
%************************************************************************** 
%************************************************************************** 
% CHECK THAT ENSURES THE NUMBER OF DESIGN SITES AND RESPONSES USED FOR 
% SURROGATE CONSTRUCTION IS LESS THAN OR EQUAL TO THE 3 TIMES THE MINIMUM 
% NUMBER OF DATA SITES NEEDED FOR THE HIGHEST ORDER POLYNOMIAL REGRESSION 
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% MATRIX. IF MORE THAN 3 TIMES THE NEEDED VALUES EXIST, THE MAXIMUM VALUE 
% IS DELETED FROM THE DESIGN SITES AND RESPONSES TO HELP LEAD TO THE 
% SOLUTION QUICKER. OF NOTE IS THAT THE TRUST REGION MUST BE TURNED ON OR 
% ALL NON-DIVERGENT VALUES ARE USED FOR SURROGATE CONSTRUCTION. THE TRUST 
% REGION BOUNDS PREVIOUSLY CREATED ALSO REDUCES THE PARAMETERS USED FOR 
% SURROGATE CONSTRUCTION ONLY TO THE VALUES THAT ARE WITHIN THE BOUNDS. 
%************************************************************************** 
if (length(Param.surf) > 
3*Param.reg_mincol(find(strcmp(func2str(Param.reg_original),Param.reg_choice)))) && 
(Param.trust_region == 1) 
    [surf_max,index]             = max(Param.surf(1:end)); 
    Param.surxp(index,:)         = []; 
    Param.surf(index,:)          = []; 
    Param.surcfd(index,:)        = []; 
    Param.surtwarp(index,:)      = []; 
    Param.surtotal_time(index,:) = []; 
    %*********************************************************************  *
    % REDUCTION OF PARAMETERS USED FOR SURROGATE CONSTRUCTION BASED ON THE 
    % SURROGATE UPPER AND LOWER BOUNDS DETERMINED BY THE TRUST REGION UPPER 
    % AND LOWER BOUNDS 
    %********************************************************************** 
    tr_LB                              = repmat(Param.surLB,length(Param.surf)); 
    tr_LB(length(Param.surLB)+1:end,:) = []; 
    tr_LB                              = tr_LB'; 
    tr_UB                              = repmat(Param.surUB,length(Param.surf)); 
    tr_UB(length(Param.surUB)+1:end,:) = []; 
    tr_UB                              = tr_UB'; 
    tr_ind_LB                          = Param.surxp < tr_LB; 
    tr_ind_UB                          = Param.surxp > tr_UB; 
    [tr_rind_LB,tr_cind_LB]            = find(tr_ind_LB); 
    [tr_rind_UB,tr_cind_UB]            = find(tr_ind_UB); 
    tr_rind=[tr_rind_LB;tr_rind_UB]; 
    tr_rind=unique(tr_rind); 
    Param.surxp(tr_rind(:),:)          = []; 
    Param.surf(tr_rind(:),:)           = []; 
    Param.surcfd(tr_rind(:),:)         = []; 
    Param.surtwarp(tr_rind(:),:)       = []; 
    Param.surtotal_time(tr_rind(:),:)  = []; 
    %********************************************************************** 
    % UPDATE THE INDEX OF THE PARAMETERS FOR STORING VALUES FOR SURROGATE 
    % CONSTRUCTION 
    %********************************************************************** 
    Param.surcount               = length(Param.surf); 
end 
%************************************************************************** 
%************************************************************************** 
% SET OF TESTS TO DETERMINE IF ENOUGH DATA SITES ARE AVAILABLE FOR THE 
% REGRESSION POLYNOMIAL ORDER CHOSEN FOR THE SURROGATES. IF THERE ARE 
% ENOUGH DATA SITES THEN THE CHOSEN REGRESSION POLYNOMIAL ORDER IS USED. IF 
% THERE ARE NOT ENOUGH THEN IT REDUCES THE POLYNOMIAL ORDER TO THE ORDER 
% THAN CAN BE USED GIVEN THE NUMBER OF DATA SITES. THE POLYNOMIAL ORDER 
% SPECIFIED BY THE USER IS THE HIGHEST ORDER POLYNOMIAL USED IN THE 
% OPTIMIZATION PROCESS. IF A POLYNOMIAL ORDER IS CHOSEN THE SURROGATE WILL 
% BE PERFORMED, ELSE THE SURROGATE WILL BE SKIPPED AND THE POLL, NEIGHBOR 
% AND POSSIBLY EXTENDED POLL WILL BE EXECUTED 
%************************************************************************** 
if Param.count >= Param.initial && length(Param.surf) >= 1 
  Param.reg_choice_ind = find(length(Param.surf)>=Param.reg_mincol,1,'last'); 
    Param.reg = Param.reg_original; 
    switch func2str(Param.reg_original) 
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        case 'regpoly0' 
            if find(strcmp(func2str(Param.reg_original),Param.reg_choice)) < 
Param.reg_choice_ind 
                Param.reg = Param.reg_original; 
            else 
                Param.reg = str2func(Param.reg_choice{Param.reg_choice_ind}); 
            end 
        case 'regpoly2reduced' 
            if find(strcmp(func2str(Param.reg_original),Param.reg_choice)) < 
Param.reg_choice_ind 
                Param.reg = Param.reg_original; 
            else 
                Param.reg = str2func(Param.reg_choice{Param.reg_choice_ind}); 
            end 
        case 'regpoly2' 
            if find(strcmp(func2str(Param.reg_original),Param.reg_choice)) < 
Param.reg_choice_ind 
                Param.reg = Param.reg_original; 
            else 
                Param.reg = str2func(Param.reg_choice{Param.reg_choice_ind}); 
            end 
        case 'regpoly3reduced' 
            if find(strcmp(func2str(Param.reg_original),Param.reg_choice)) < 
Param.reg_choice_ind 
                Param.reg = Param.reg_original; 
            else 
                Param.reg = str2func(Param.reg_choice{Param.reg_choice_ind}); 
            end 
        case 'regpoly3' 
            if find(strcmp(func2str(Param.reg_original),Param.reg_choice)) <  
Param.reg_choice_ind 
                Param.reg = Param.reg_original; 
            else 
                Param.reg = str2func(Param.reg_choice{Param.reg_choice_ind}); 
            end 
    end 
    Param.sur_perform = 1; 
     
else 
    Param.sur_perform = 0; 
end 
%************************************************************************** 
%************************************************************************** 
% DETERMINES THE TYPE OF SURROGATE BEING PERFORMED IF THE SURROGATE CHANGER 
% IS TURNED ON.  THE SURROGATE THAT IS USED DEPENDS ON THE PERCENTAGE SET 
% TO THE VARIABLE Param.sur_changer_per. *OF NOTE THE VALUE SET TO 
% Param.sur_changer_per IS HOW OFTEN THE "RBF" SURROGATE WILL BE PERFORMED* 
%************************************************************************** 
if Param.sur_changer == 1 
    if rand >= Param.sur_changer_per 
        Param.sur_type = 'dace'; 
    else 
        Param.sur_type = 'rbf'; 
    end 
end 
%************************************************************************** 
%************************************************************************** 
% SETS ALL THE VALUES THAT WERE RETURNED FROM THE CFD AND IMAGE 
% REGISTRATION RATHER THEY WERE DIVERGENT OR NOT. THE CFD TIME, WARP TIME, 
% AND OBJECTIVE FUNCTION VALUES ARE STORED. THE TIME-CUT VALUE IS ALSO SET 
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% BASED ON THE CFD AND WARP TIME ASSOCIATED WITH THE MINIMUM OBJECTIVE 
% FUNCTION VALUE.  
%************************************************************************** 
[f_min,index] = min(Param.f(1:Param.count)); 
  
Param.fmin(Param.count,:)      = f_min; 
Param.data.fmin(Param.count,:) = f_min; 
Param.fmax(Param.count,:)      = max(Param.f(1:Param.count)); 
  
Param.cfd(Param.count,:)    = tx.cfd; 
Param.cfdmax(Param.count,:) = max(Param.cfd(1:Param.count)); 
Param.cfdmin(Param.count,:) = min(Param.cfd(1:Param.count)); 
  
Param.twarp(Param.count,:)    = tx.warp; 
Param.twarpmax(Param.count,:) = max(Param.twarp(1:Param.count)); 
Param.twarpmin(Param.count,:) = min(Param.twarp(1:Param.count)); 
  
Param.total_time(Param.count,:)    = tx.cfd+tx.warp; 
Param.total_timemax(Param.count,:) = max(Param.total_time(1:Param.count)); 
Param.total_timemin(Param.count,:) = min(Param.total_time(1:Param.count)); 
  
Param.warp_cfd_fmin = (Param.twarp(index))+(Param.cfd(index)); 
  
if Param.count >= Param.initial 
    Param.tc.cutoff = 2*Param.warp_cfd_fmin+.1; 
end 
%************************************************************************** 
%************************************************************************** 
% VALUE NOT USED BY ANY OTHER FUNCTIONS IN THE OPTIMIZATION PROBLEM, BUT 
% THE HELP FILE SHOWED USING THIS, SO IT IS SET TO 0 AND NEVER CHANGES. 
Param.param = 0; 
%************************************************************************** 
%************************************************************************** 
% SETS THE Param DATA THAT CHANGED IN THIS FUNCTION AND WILL BE USED 
% THROUGHOUT THE NOMADm SOFTWARE 
setappdata(0,'PARAM',Param); 
%************************************************************************** 
  
return 
 
%************************************************************************** 
function Param = cpuproblem_Param 
%************************************************************************** 
%************************************************************************** 
% DATA INPUT FILE FOR THE COSTFUNC OBJECTIVE FUNCTION FILE FOR THE NOMADM-- 
% SOLVER FOR NONLINEAR AND MIXED VARIABLE CONSTRAINED OPTIMIZATION WHICH IS 
% COPYRIGHT (C) 2001-2007 BY MARK A. ABRAMSON 
% THE FOLLOWING FUNCTION INITIALIZES ALL THE PARAM VARIABLES FOR THE 
% CPUPROBLEM--MIXED VARIABLE OPTIMIZATION PROBLEM. 
  
% OUTPUT VARIABLE 
%   Param 
%       .temp--TEMPORARY PARAMETER FOR STORING THE REFERENCE IMAGE 
%       .data.refimage--STORES THE REFERENCE IMAGE 
%       .data.noiselevel--STORES THE NOISE ADDED TO REF IMAGE 
%       .data.property--STORES THE FLOW PROPERTY ie 'HEAT' 
%       .data.imageregpics--STORES TYPE OF OPT IMAGES TO SAVE  
%       .data.prob_name--STORES THE NAME OF THE PROBLEM OPTIMIZING 
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%       .data.sur_type--STORES THE TYPE OF SURROGATE USED 
%       .data.count--STORES THE NUMBER OF ITERATES OF OBJ FUNC 
%       .data.plotcount--STORES THE NUMBER OF IMAGE PLOTS SAVED 
%       .tc.cfd--TIME VALUE OF CFD ASSOC. WITH MINIMUM OBJ FUNC 
%       .tc.warp--TIME VALUE OF IMAGE WARP ASSOC WITH MINIMUM OBJ FUNC 
%       .tc.cutoff--TOTAL TIME ASSOC WITH MINIMUM OBJ FUNC 
%       .prob_name--STORES NAME OF THE PROBLEM OPTIMIZING 
%       .LB--LOWER BOUND OF PROBLEM PARAMETER SPACE 
%       .UB--UPPER BOUND OF PROBLEM PARAMETER SPACE 
%       .redLB--REDUCED LOWER BOUNDS OF PARAMETER SPACE FOR INITPT(IF USED) 
%       .redUB--REDUCED UPPER BOUNDS OF PARAMETER SPACE FOR INITPT(IF USED) 
%       .redBOUNDS--DETERMINES IF REDUCED BOUNDS ARE USED FOR INITPT 
%       .discreteLB--LOWER BOUND OF THE DISCRETE PARAMETER SPACE 
%       .discreteUB--UPPER BOUND OF THE DISCRETE PARAMETER SPACE 
%       .discrete_init--INITIAL VALUE OF DISCRETE PARAMETER 
%       .surLB--LOWER BOUND OF SURROGATE PROBLEM 
%       .surUB--UPPER BOUND OF SURROGATE PROBLEM 
%       .ratio_pres--ratio that preserves the spatial discretization of CFD 
%       .data.imagereg_iters--MAXIMUM ITERS FOR THE IMAGE WARP CODE 
%       .surLB_orig--ORIGINAL LOWER BOUND OF SURROGATE PROBLEM(IF TR USED) 
%       .surUB_orig--ORIGINAL UPPER BOUND OF SURROGATE PROBLEM(IF TR USED) 
%       .DOEtype--TYPE OF DOE TO USE FOR THE INITIAL POINTS 
%       .CCDtype--IF CCD USED FOR INITIAL POINTS, TYPE OF CCD TO USE 
%       .initial--NUMBER OF INITIAL POINTS USED 
%       .count--NUMBER OF FUNCTION EVALUATION 
%       .madscount--NUMBER OF MADS ITERATIONS 
%       .surcount--NUMBER OF SURROGATE IMPLEMENTATIONS      
%       .f--OBJ FUNCTION VALUE 
%       .x--VALUE OF CONTINUOUS PARAMETERS 
%       .p--VALUE OF DISCRETE PARAMETERS             
%       .surxp--STORES THE DISC AND CONT PARAMETERS FOR SURROGATE CONSTRUCT     
%       .surf--STORES THE OBJ FUNC VALUE FOR SURROGATE CONSTRUCT 
%       .surcfd--STORES THE CFD TIME FOR SURROGATE CONSTRUCT 
%       .surtwarp--STORES THE WARP TIME FOR SURROGATE CONSTRUCT 
%       .surtotal_time--STORES TOTAL TIME FOR SURROGATE CONSTRUCT 
%       .fmin--STORES THE MINIMUM OBJ FUNC VALUE 
%       .fmax--STORES THE MAXIMUM OBJ FUNC VALUE 
%       .cfd--STORES THE CFD TIME OF OBJ FUNC EVALUATION 
%       .cfdmax--STORES THE MAXIMUM CFD TIME OF OBJ FUNC EVALUATION 
%       .cfdmin--STORES THE MINIMUM CFD TIME OF OBJ FUNC EVALUATION 
%       .twarp--STORES THE WARP TIME OF THE OBJ FUNC EVALUATION 
%       .twarpmax--STORES THE MAXIMUM WARP TIME OF THE OBJ FUNC EVALUATION 
%       .twarpmin--STORES THE MINIMUM WARP TIME OF THE OBJ FUNC EVALUATION 
%       .total_time--STORES THE TOTAL TIME OF THE OBJ FUNC EVALUATION 
%       .total_timemax--STORES THE MAX TOTAL TIME OF THE OBJ FUNC EVAL  
%       .total_timemin--STORES THE MIN TOTAL TIME OF THE OBJ FUNC EVAL 
%       .warp_cfd_fmin--STORES THE WARP AND CFD TIME ASSOC WITH MIN OBJ VAL 
%       .tc.cutoff--2 TIMES THE WARP AND CFD TIME ASSOC WITH MIN OBJ VALUE     
%       .sur_info--STORES ALL SURROGATE CONSTRUCTION INFO AT EACH SUR BUILD 
%       .no_sur_info--STORES SAME INFO AS ABOVE FOR EACH NO SUR BUILD 
%       .sursearch--STORES THE NUMBER OF SURROGATES IMPLEMENTED 
%       .surnosearch--STORES THE NUMBER OF NO SURROGATE IMPLEMENTATIONS 
%       .surstopsearch--USER SPECIFIED TIME SO THAT NO SURROGATES ARE BUILT 
%       .sur_perform--DETERMINES IF A BUILT SURROGATE IS TO BE SOLVED 
%       .condnum_thresh--THRESHOLD FOR THE CONDITION NUMBER OF SUR BUILD 
%       .condnum--CONDITION NUMBER OF THE SYSTEM ASSOC WITH SUR BUILD       
%       .contdim--DIMENSION OF THE CONTINUOUS VARIABLES 
%       .discdim--DIMENSION OF THE DISCRETE VARIABLES 
%       .totaldim--TOTAL DIMENSION OF PARAMETER SPACE(CONT AND DISC) 
%       .param--VARIABLE THAT IS SET TO ZERO 
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%       .cpu_time--STORES THE OVERALL COMPUTATION TIME OF OPTIM PROCESS 
%       .sur_type--TYPE OF SURROGATE USED DACE OR RBF 
%       .rbfkernel--KERNEL TYPE FOR RBF(IF USED) 
%       .sur_changer--DETERMINES IF OPT PROCESS CAN CHANGE SURROGATE TYPES 
%       .sur_changer_per--PERCENT OF TIME TO CHANGE FROM DACE TO RBF 
%       .dace_surbuilder_count--NUMBER OF DACE SURROGATES BUILT 
%       .rbf_surbuilder_count--NUMBER OF RBF SURROGATES BUILT 
%       .surbuilder_count--NUMBER OF SURROGATES BUILT 
%       .reg--ORDER OF REGRESSION MODEL USED FOR DACE AND RBF 
%       .reg_original--ORIGINAL ORDER OF REGRESSION MODEL(CAN STEP DOWN) 
%       .corr--CORRELATION MODEL USED FOR DACE 
%       .trust_region--DETERMINES IF TRUST REGIONS ARE USED 
%       .theta_init--INITIAL VALUE OF THETA OPTIMIZED BY DACE 
%       .opt_theta--OPTIMAL THETA VALUE RETURNED BY DACE 
%       .reg_mincol--MINIMUM NUMBER OF DESIGN SITES REQ FOR SURR POLY MODEL 
%       .reg_choice--NAME OF ALL POSSIBLE REG MODELS USED BY DACE AND RBF 
%       .reg_choice_ind--INDEX OF THE NAME OF THE REG MODEL USED 
%************************************************************************** 
%************************************************************************** 
% LOAD A REFERENCE IMAGE. WE ARE TRYING TO RECOVER THE SIMULATION PARAMTERS 
% THAT PRODUCED THIS IMAGE 
%************************************************************************** 
Param.temp = struct2cell(load('refimage03.mat')); 
%************************************************************************** 
%************************************************************************** 
% INVERT BECAUSE THE 'HEAT' MAPS ARE OF NEGATIVE VALUES AND WE LIKE 
% POSITIVE VALUED ARRAYS 
%************************************************************************** 
Param.data.refimage = Param.temp{1}; 
%************************************************************************** 
%************************************************************************** 
% SET NOISE LEVEL - NOTE THAT THE CONSTANT FACTOR MUST MATCH THE ACTUAL 
% NOISE OF THE REFERENCE IMAGE. 
%************************************************************************** 
temp2 = struct2cell(load('NOISE.mat')); 
Param.data.noiselevel = norm(temp2{1},'fro'); 
%************************************************************************** 
%************************************************************************** 
% THIS PROPERTY SHOULD NOT BE CHANGED. IT SPECIFIES THAT WE ARE CONSIDERING 
% THE HEAT DISTRIBUTION IMAGE OUTPUT FROM THE SIMULATION (SEE COSTFUNC.M) 
%************************************************************************** 
Param.data.property = 'U'; 
%************************************************************************** 
%************************************************************************** 
% VARIABLES USED TO SAVE THE IMAGE REGISTRATION PICTURES **ENTER A "0" FOR 
% NO PICTURES; ENTER A "1" TO SAVE THE PICTURES OF ONLY THE INCUMBENTS**; 
% ENTER A 2 TO SAVE PICTURES OF ALL EVALUATIONS. THE PROBLEM NAME, 
% SURROGATE TYPE, COUNT, AND PLOTCOUNT ARE USED FOR NAMING THE IMAGE 
% REGISTRATION PICTURES. **VALID VALUES FOR THE PROBLEM NAME ARE: 
% lid-driven cavity, convection, drop and splash, flow past obstacle** 
% **VALID VALUES FOR sur_type are: none, dace, rbf, dace-rbf** 
%************************************************************************** 
Param.data.imageregpics = 0; 
Param.data.prob_name    = 'flow past obstacle'; 
Param.data.sur_type     = 'dace'; 
Param.data.count        = 0; 
Param.data.plotcount    = 0; 
%************************************************************************** 
%************************************************************************** 
% INITIAL TIME-CUT VALUES FOR THE CFD, IMAGE REGISTRATION, AND TOTAL TIME 
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% CUTOFF PARAMETERS FOR THE COSTFUNC AND CWAFIT FILE THAT RUN THE CFD AND 
% THE IMAGE REGISTRATION 
%************************************************************************** 
Param.tc.cfd=Inf; 
Param.tc.warp=Inf; 
Param.tc.cutoff=Inf; 
%************************************************************************** 
%************************************************************************** 
% INPUT FILENAME AND SET UP THE BOUNDS, PRESERVING RATION OF SPATIAL 
% DISCRETIZATION, AND THE MAX NUMBER OF ITERS FOR THE IMAGE WARPING 
%************************************************************************** 
Param.prob_name = 'flow past obstacle'; %CHANGE TO APPROPRIATE PROB NAME 
  
switch upper(Param.prob_name) 
    case 'LID-DRIVEN CAVITY' 
        Param.discreteLB    = 35; 
        Param.discreteUB    = 50; 
        Param.discrete_init = 40; 
        Param.ratio_pres    = 1; 
        Param.LB            = [400; 3]; 
        Param.UB            = [1000; 10]; 
        Param.surLB         = [400; 3; Param.discreteLB]; 
        Param.surUB         = [1000; 10; Param.discreteUB]; 
        Param.data.imagereg_iters = 200; 
    case 'CONVECTION' 
        Param.discreteLB    = 5; 
        Param.discreteUB    = 25; 
        Param.discrete_init = 5; 
        Param.ratio_pres    = 1; 
        Param.LB            = [500; 3000]; 
        Param.UB            = [1500; 6000]; 
        Param.surLB         = [500; 3000; Param.discreteLB]; 
        Param.surUB         = [1500; 6000; Param.discreteUB]; 
        Param.data.imagereg_iters = 200; 
    case 'DROP AND SPLASH' 
        Param.discreteLB    = 35; 
        Param.discreteUB    = 50; 
        Param.discrete_init = 40  ;
        Param.ratio_pres    = 1; 
        Param.LB            = [30; 5]; 
        Param.UB            = [60; 15]; 
        Param.surLB         = [30; 5; Param.discreteLB]; 
        Param.surUB         = [60; 15; Param.discreteUB]; 
        Param.data.imagereg_iters = 200; 
    case 'FLOW PAST OBSTACLE' 
        Param.discreteLB    = 35; 
        Param.discreteUB    = 50; 
        Param.discrete_init = 40; 
        Param.ratio_pres    = 1; 
        Param.LB            = [50; 25]; 
        Param.UB            = [500; 35]; 
        Param.surLB         = [50; 25; Param.discreteLB]; 
        Param.surUB         = [500; 35; Param.discreteUB]; 
        Param.data.imagereg_iters = 200; 
end 
  
Param.redBOUNDS = 0; %0--NO REDUCED BOUNDS; 1--REDUCED BOUNDS 
  
Param.redLB = Param.LB; 
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 CPUPROBLEM X0 9 

Param.redUB = Param.UB; 
  
Param.surLB_orig = Param.surLB; 
Param.surUB_orig = Param.surUB; 
%************************************************************************** 
%************************************************************************** 
% SET UP THE TYPE OF DOE TO USE AND THE TYPE OF CCD(IF USED) 
%************************************************************************** 
Param.DOEtype = 'CCD'; %CCD; LHS; UNICUT; UNIDESIGN; CENTER 
Param.CCDtype = 'inscribed'; %INSCRIBED; CIRCUMSCRIBED; FACED 
%************************************************************************** 
%************************************************************************** 
% INITIALIZATION OF ALL VARIABLES USED THROUGHOUT OPTIMIZATION PROCESS 
%************************************************************************** 
Param.initial       = 0; 
Param.count         = 0; 
Param.madscount     = 0; 
Param.surcount      = 0; 
Param.f             = []; 
Param.x             = []; 
Param.p             = []; 
Param.surxp         = []; 
Param.surf          = []; 
Param.surcfd        = []; 
Param.surtwarp      = []; 
Param.surtotal_time = []; 
  
Param.fmin = [Inf]; 
Param.fmax = []; 
  
Param.cfd    = []; 
Param.cfdmax = []; 
Param.cfdmin = []; 
  
Param.twarp    = []; 
Param.twarpmax = []; 
Param.twarpmin = []; 
  
Param.total_time    = []; 
Param.total_timemax = []; 
Param.total_timemin = []; 
  
Param.warp_cfd_fmin = []; 
  
Param.sur_info       = {}; 
Param.no_sur_info    = {}; 
Param.sursearch      = 0; 
Param.surnosearch    = 0; 
Param.surstopsearch  = 0; % SET TO VALUE GREATER THAN ZERO IF DESIRED 
Param.sur_perform    = 0; 
Param.condnum_thresh = 1/eps; % SET TO LOWER VALUE IF DESIRED 
Param.condnum        = 0; 
%************************************************************************** 
%************************************************************************** 
% SET UP DIMENSION OF PROBLEM 
%************************************************************************** 
Param.contdim  = 2; % CHANGE TO APPROPRIATE NUMBER OF CONT VARIABLES 
Param.discdim  = 1; % CHANGE TO APPROPRIATE NUMBER OF DISC VARIABLES 
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Param.totaldim = Param.contdim + Param.discdim; 
%************************************************************************** 
%************************************************************************** 
% INITIALIZE THE OVERALL CPUTIME AND THE UNUSED VARIABLE .PARAM 
%************************************************************************** 
Param.param          = 0; 
Param.cpu_time       = 0; 
%************************************************************************** 
%************************************************************************** 
% SET UP THE SURROGATE PARAMETERS AND THE TRUST REGION PARAMETERS; CERTAIN 
% SURROGATE COUNTING VARIABLES ARE INITIALIZED 
%************************************************************************** 
Param.sur_type                 = 'dace'; % CHANGE TO 'none', 'dace', 'rbf', 
                                         % 'dace-rbf' 
  
Param.rbfkernel                = 'multiquadric'; % CHANGE TO 'bi-harmonic', 
                                                 % 'tri-harmonic', 
                                                 % 'gaussian', 
                                                 % 'multiquadric', 
                                                 % 'inv-multiquadric', 
                                                 % 'thinplatespline' 
  
Param.sur_changer              = 0; % 0--NO CHANGE FROM DACE TO RBF; 
                                    % 1--CHANGE FROM DACE TO RBF;  
  
Param.sur_changer_per          = 0; % PERCENT OF TIME TO CHANGE FROM DACE 
                                    % TO RBF--VALUE 0 TO 1 
  
Param.rbf_surbuilder_count     = 0; 
Param.dace_surbuilder_count    = 0; 
Param.surbuilder_count         = 0; 
  
Param.reg                      = @regpoly2; % CHANGE TO @regpoly0, 
                                            % @regpoly2reduced, @regpoly2, 
                                            % @regpoly3reduced, @regpoly3 
  
Param.reg_original             = @regpoly2; % MUST EQUAL SAME VALUE AS 
                                            % Param.reg 
  
Param.corr                     = @corrgauss; % CHANGE TO @correxp, 
                                             % @correxpg, @corrgauss 
                                             % @corrlin, @corrspherical, 
                                             % @corrspline, @corrcubic 
 Param.trust_region             = 1; % 0--NO TRUST REGION; 1--TRUST REGION 
 Param.theta_init               = 10*ones(1,Param.totaldim)  ;
Param.opt_theta                = 10*ones(1,Param.totaldim); 
%************************************************************************** 
%************************************************************************** 
% SETS UP THE MINIMUM NUMBER OF COLUMNS REQUIRED FOR A USER SPECIFIED 
% REGRESSION MODEL ORDER; INITIALIZES ALL VALUES USED IN OPTIMIZATION 
% PROCESS THAT ALL THE REGRESSION ORDER TO MOVE TO A LOWER ORDER POLYNOMIAL 
% IF NECESSARY 
%************************************************************************** 
Param.reg_mincol = [1;(1+2*Param.totaldim);((Param.totaldim+1)* 
(Param.totaldim+2)/2);(1+3*Param.totaldim);((Param.totaldim+1)* 
(Param.totaldim+2)/2)+Param.totaldim]; 
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Param.reg_choice = {'regpoly0','regpoly2reduced','regpoly2', 
                    'regpoly3reduced','regpoly3'}; 
Param.reg_choice_ind = 0; 
%************************************************************************** 
%************************************************************************** 
% SETS THE Param DATA THAT CHANGED IN THIS FUNCTION AND WILL BE USED 
% THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
setappdata(0,'PARAM',Param); 
%************************************************************************** 
return 
 
%************************************************************************** 
function [A,l,u,plist] = cpuproblem_Omega(n,p) 
%************************************************************************** 
%************************************************************************** 
% CPUPROBLEM_OMEGA SETS UP THE DOMAIN OF THE MAIN OPTIMIZATION PROBLEM 
  
% INPUT: 
%   n--DIMENSIONALITY OF THE PROBLEM 
%   p--VALUE OF THE DISCRETE PARAMETERS 
% OUTPUT: 
%   A--IDENTITY MATRIX FOR SETTING UP THE BOUND CONSTRAINTS 
%   l--LOWER BOUND OF THE CONTINUOUS PARAMETERS 
%   u--UPPER BOUND OF THE CONTINUOUS PARAMETERS 
%   plist--BOUNDS OF THE DISCRETE VARIABLES 
%************************************************************************** 
%************************************************************************** 
% CALLS THE Param DATA THAT IS USED THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
Param = getappdata(0,'PARAM'); 
%************************************************************************** 
%************************************************************************** 
% SET UP THE CONSTRAINTS AND THE BOUNDS 
%************************************************************************** 
A = eye(n); 
l = Param.LB; 
u = Param.UB; 
plist{1}={Param.discreteLB:Param.discreteUB}; 
%************************************************************************** 
%************************************************************************** 
return 
 
%************************************************************************** 
function iterate = cpuproblem_x0 
%************************************************************************** 
%************************************************************************** 
% CPUPROBLEM_XO DETERMINES THE SET OF INITIAL POINTS BASED ON A DESIGN OF 
% EXPERIMENT AS SPECIFIED BY THE USER. CHOICES OF DESIGNS ARE 
% CCD(INSCRIBED, CIRCUMSCRIBED, OR FACE-CENTERED), LATIN HYPERCUBE, UNIFORM 
% DESIGN, OR A CENTER POINT.  
  
% OUTPUT: 
%   iterate--THE SET OF INITIAL ITERATES EVALUATED BY THE OBJECTIVE 
%   FUNCTION FOR DEVELOPING THE INITIAL SURROGATE FUNCTION 
%************************************************************************** 
%************************************************************************** 
% CALLS THE Param DATA THAT IS USED THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
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Param = getappdata(0,'PARAM'); 
%************************************************************************** 
%************************************************************************** 
% DETERMINE IF REDUCED BOUNDS ARE SPECIFIED BY THE USER. THIS ALLOWS THE 
% USER TO REDUCE THE DOMAIN THE DESIGN OF EXPERIMENTS DETERMINES POINTS 
%************************************************************************** 
if Param.redBOUNDS == 1 
    Param.redLB = ((Param.UB-Param.LB)./8)+Param.LB; 
    Param.redUB = (((Param.UB-Param.LB)./8)*7)+Param.LB; 
end 
%************************************************************************** 
%************************************************************************** 
% DETERMINE THE TYPE OF DESIGN OF EXPERIMENT USED TO FIND THE SET OF 
% INITIAL POINTS 
%************************************************************************** 
switch upper(Param.DOEtype) 
    %********************************************************************** 
    % A CCD DESIGN IS USED. DETERMINE THE TYPE OF CCD: INSCRIBED, 
    % CIRCUMSCRIBED, OR FACE CENTERED. USE THE CCD DESIGN TO FIND THE SET 
    % OF CODED INITIAL POINTS [-1,1] 
    case 'CCD' 
        DOE = ccdesign(Param.contdim,'center',1,'fraction',0,'type', 
        lower(Param.CCDtype)); 
        a   = size(DOE,1); 
        %****************************************************************** 
        % UNCODE THE SET OF INITIAL POINTS [-1,1] TO THE TRUE DESIGN 
        % VARIABLES OVER THE TRUE PARAMETER SPACE. THE DISCRETE VARIABLE IS 
        % HELD CONSTANT FOR THE INITIAL POINTS AND SPECIFIED BY THE USER 
        switch upper(Param.CCDtype) 
            case 'INSCRIBED' 
                for i = 1:a 
                    for j = 1:Param.contdim 
                        dsite = DOE(i,j); 
                        if dsite == 1 
                            iterate(i).x(j,1) = Param.redUB(j,1); 
                            iterate(i).p      = {Param.discrete_init}; 
                        elseif dsite == -1 
                            iterate(i).x(j,1) = Param.redLB(j,1); 
                            iterate(i).p      = {Param.discrete_init}; 
                        elseif dsite == 0 

    iterate(i).x(j,1)=(Param.redUB(j,1)+ 
    Param.redLB(j,1))/2; 

                            iterate(i).p     = {Param.discrete_init}; 
elseif (dsite == -(sqrt(Param.contdim)/Param.contdim) 
      ||dsite == (sqrt(Param.contdim)/Param.contdim)) 

iterate(i).x(j,1)=((Param.redUB(j,1)+ 
Param.redLB(j,1))/2)+((((Param.redUB(j,1)+ 
Param.redLB(j,1))/2)-Param.redLB(j,1))*dsite); 

                             iterate(i).p      = {Param.discrete_init}; 
                        end 
                    end 
                end 
            case 'CIRCUMSCRIBED' 
                for i = 1:a 
                    for j = 1:Param.contdim 
                        dsite = DOE(i,j); 
                        if dsite == 1 
                            dsite = sqrt(Param.contdim)/Param.contdim; 

iterate(i).x(j,1) = ((Param.redUB(j,1)+ 
Param.redLB(j,1))/2)+((((Param.redUB(j,1)+ 
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Param.redLB(j,1))/2)-Param.redLB(j,1))*dsite); 
                             iterate(i).p      = {Param.discrete_init}; 
                        elseif dsite == -1 
                               dsite = -sqrt(Param.contdim)/Param.contdim; 

iterate(i).x(j,1)=((Param.redUB(j,1)+ 
Param.redLB(j,1))/2)+((((Param.redUB(j,1)+ 
Param.redLB(j,1))/2)-Param.redLB(j,1))*dsite); 

                                 iterate(i).p      = {Param.discrete_init}; 
                        elseif dsite == 0 

iterate(i).x(j,1) =(Param.redUB(j,1)+ 
Param.redLB(j,1))/2; 

                                iterate(i).p     = {Param.discrete_init}; 
                        elseif dsite/Param.contdim > 0 
                            iterate(i).x(j,1) = Param.redUB(j,1); 
                            iterate(i).p      = {Param.discrete_init}; 
                        elseif dsite/Param.contdim < 0 
                            iterate(i).x(j,1) = Param.redLB(j,1); 
                            iterate(i).p      = {Param.discrete_init}; 
                        end 
                     end
                end 
            case 'FACED' 
                for i = 1:a 
                    for j = 1:Param.contdim 
                        dsite = DOE(i,j); 
                        if dsite == 1 
                            iterate(i).x(j,1) = Param.redUB(j,1); 
                            iterate(i).p      = {Param.discrete_init}; 
                        elseif dsite == -1 
                            iterate(i).x(j,1) = Param.redLB(j,1); 
                            iterate(i).p      = {Param.discrete_init}; 
                        elseif dsite == 0 

iterate(i).x(j,1) = (Param.redUB(j,1)+ 
Param.redLB(j,1))/2; 

                                 iterate(i).p     = {Param.discrete_init}; 
                        end 
                    end 
                end 
        end 
    %********************************************************************** 
    % A LHS DESIGN IS USED TO FIND THE CODED SET OF INITIAL POINTS [0,1] 
    case 'LHS' 
        rand('state',0) 

  DOE= 
  lhsdesign(Param.totaldim^2,Param.contdim,'iterations',5,'criterion', 
  'maximin','criterion','correlation'); 

        a   = size(DOE,1); 
        %****************************************************************** 
        % UNCODE THE SET OF INITIAL POINTS [-1,1] TO THE TRUE DESIGN 
        % VARIABLES OVER THE TRUE PARAMETER SPACE. THE DISCRETE VARIABLE IS 
        % HELD CONSTANT FOR THE INITIAL POINTS AND SPECIFIED BY THE USER 
        for i = 1:a 
            for j = 1:Param.contdim 
                d
              iterate(i).x(j,1) = ((Param.redUB(j,1)- 

site = DOE(i,j); 

                 Param.redLB(j,1))*dsite)+Param.redLB(j,1); 
                 iterate(i).p      = {Param.discrete_init}; 
            end 
        end 
    %********************************************************************** 
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 CPUPROBLEM X0 14 

    % A UNIFORM DESIGN IS USED TO FIND THE CODED SET OF INITIAL POINTS [0,1] 
case 'UNICUT' 
        rand('state',0) 
        DOE = uniformcut(Param.contdim,Param.totaldim^2); 
        a   = size(DOE,1); 
        %****************************************************************** 
        % UNCODE THE SET OF INITIAL POINTS [0,1] TO THE TRUE DESIGN 
        % VARIABLES OVER THE TRUE PARAMETER SPACE. THE DISCRETE VARIABLE IS 
        % HELD CONSTANT FOR THE INITIAL POINTS AND SPECIFIED BY THE USER 
        for i = 1:a 
            for j = 1:Param.contdim 
                dsite = DOE(i,j); 
                    iterate(i).x(j,1) = ((Param.redUB(j,1)- 
                    Param.redLB(j,1))*dsite)+Param.redLB(j,1); 
                    iterate(i).p      = {Param.discrete_init}; 
            end 
        end 
    %********************************************************************** 
    % A UNIFORM DESIGN IS USED. USE THE LHS DESIGN TO FIND THE SET 
    % OF CODED INITIAL POINTS [0,1] 
    case 'UNIDESIGN' 
        rand('state',0) 
        DOE = uniformdesign(Param.contdim,Param.totaldim^2); 
        a   = size(DOE,1); 
        %****************************************************************** 
        % UNCODE THE SET OF INITIAL POINTS [0,1] TO THE TRUE DESIGN 
        % VARIABLES OVER THE TRUE PARAMETER SPACE. THE DISCRETE VARIABLE IS 
        % HELD CONSTANT FOR THE INITIAL POINTS AND SPECIFIED BY THE USER 
        for i = 1:a 
            for j = 1:Param.contdim 
                dsite = DOE(i,j); 
                iterate(i).x(j,1) = ((Param.redUB(j,1)- 
                Param.redLB(j,1))*dsite)+Param.redLB(j,1); 
                iterate(i).p      = {Param.discrete_init}; 
            end 
        endend 
        end 
    %********************************************************************** 
    % CENTER POINT DESIGN 
    case 'CENTER' 
        iterate.x = (Param.LB + Param.UB)/2; 
        iterate.p = {Param.discrete_init}; 
end 
%************************************************************************** 
%************************************************************************** 
% DETERMINE THE NUMBER OF INITIAL POINTS BEING USED BECAUSE THE TIME CUT 
% PARAMETER IS NOT IMPLEMENTED DURING THE INITIAL POINTS EVALUATION BY THE 
% OBJECTIVE FUNCTION 
Param.initial=length([iterate.x]); 
%************************************************************************** 
% SETS THE Param DATA THAT CHANGED IN THIS FUNCTION AND WILL BE USED 
% THROUGHOUT THE NOMADm SOFTWARE 
setappdata(0,'PARAM',Param); 
%************************************************************************** 
return 
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%************************************************************************** 
function S = searchsurrogate(Problem,Options,Search,delta,pcenter) 
%************************************************************************** 
%************************************************************************** 
% SEARCHSURROGATE IS FUNCTION USED FOR BUILDING AND SOLVING THE FUNCTIONAL 
% SURROGATE OPTIMIZATION PROBLEM. IT ALSO BUILDS A COMPUTATIONAL TIME 
% SURROGATE FOR ORDERING THE FEASIBLE VALUES THAT ARE RETURNED FROM THE 
% FUNCTIONAL SURROGATE FOR EVALUATION IN THE OBJECTIVE FUNCTION 
  
% INPUT 
%   Problem--STRUCTURE THAT CONTAINS ALL THE FILE NAMES ASSOCIATED WITH THE 
%   SURROGATE OPTIMIZATION PROBLEM 
%   Options--OPTIONS OF THE MADS SOFTWARE FOR POLL TYPE, TERMINATION 
%   CRITERIA, ETC FOR THE OPTIMIZATION OF THE SURROGATE PROBLEM 
%   Search--SETS UP ALL OF THE SEARCH OPTIONS; NUMBER OF PTS RETURNED, 
%   TERMINATION CRITERIA, ETC 
%   delta--THE MESH SIZE AT TERMINATION 
%   pcenter--THE CURRENT BEST FEASIBLE SOLUTION 
% OUTPUT 
%   S--THE POINTS RETURNED FROM THE SURROGATE OPTIMIZATION AND ORDERED BY 
%   THE TIME BASED SURROGATE TO BE EVALUATED IN THE OBJECTIVE FUNCTION 
%************************************************************************** 
%************************************************************************** 
% CALLS THE Param DATA THAT IS USED THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
Param = getappdata(0,'PARAM'); 
%************************************************************************** 
%************************************************************************** 
% SET UP THE PROBLEM, DEFAULTS AND OPTIONS FOR THE SURROGATE OPTIMIZATION 
% PROBLEM: PROBLEM FILE NAMES, OPTIONS, TERMINATION CRITERIA USED BY THE 
% MADS SOFTWARE FOR OPTIMIZING THE SURROGATE 
%************************************************************************** 
Defaults = mads_defaults('Surrogate'); % MADS SURROGATE DEFAULTS 
Options  = Defaults.Options;           % MADS DEFAULT OPTIONS 
  
Problem.nameCache   = 'SCACHE'; % CACHE NAME FOR SURROGATE 
Problem.typeProblem = 'STRUTH'; % SURROGATE PROBLEM TYPE 
  
Problem.File.F = 'searchsurrogate_eval';          % FUNCTIONS FILE 
Problem.File.O = 'searchsurrogate_Omega';         % LINEAR CONSTRAINTS FILE 
Problem.File.X = 'searchsurrogate_X';             % CLOSED CONSTRAINTS FILE 
Problem.File.I = 'searchsurrogate_x0';            % INITIAL POINTS FILE 
Problem.File.N = 'searchsurrogate_N';             % DISCRETE NEIGHBOR FILE 

   (MVP ONLY) 
Problem.File.P = 'searchsurrogate_Param';         % PARAMETER FILE 
Problem.File.C = 'searchsurrogate_Cache.mat';     % PREVIOUSLY CREATED CACHE 

    FILE 
Problem.File.S = 'searchsurrogate_Session.mat';   % PREVIOUSLY CREATED 

          SESSION FILE 
Problem.File.H = 'searchsurrogate_History.txt';   % ITERATION HISTORY TEXT 
                                                    FILE 
Problem.File.D = 'searchsurrogate_Debug.txt';     % DEBUG LOG FILE 
Problem.fType  = 'M';                             % TYPE OF FUNCTIONS FILE 
                                                   {M,F,C} 
Problem.nc     =  0;                              % NUMBER OF NONLINEAR 
                                                    CONSTRAINTS 
  
Problem.iterate0 = {}; % SETS ALL THE ITERATE VALUES TO EMPTY SO THAT 
                       % MULTIPLE VALUES CAN BE RETURNED FOR EVALUATION 
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                       % FROM THE SURROGATE OPTIMIZATION IN THE OBJECTIVE 
                       % FUNCTION 
%************************************************************************** 
% SPECIFY SEARCH OPTIONS FOR THE SURROGATE OPTIMIZATION PROBLEM 
Options.nSearches          = 0; % SPECIFY THE NUMBER OF SEARCHES=0 
Search.nPoints             = 4; % SPECIFY THE NUMBER OF POINTS TO RETURN 
                                % FROM THE SURROGATE OPTIMIZATION PROBLEM 
                                % FOR EVALUATION IN THE OBJ FUNC 
  
Options.Poll.type        = 'Standard_2n'; % SPECIFY THE TYPE OF POLL STEP 
                                          % FOR THE SURROGATE PROBLEM; 
                                          % 'Standard_2n' or MADS_2n' OR 
                                          % SEE MADS DEFAULTS FOR OTHER 
                                          % CHOICES 
Options.Poll.order       = 'Consecutive'; % FOR CHOICES, SEE MADS_DEFAULTS 
Options.Poll.center      = 0;             % POLL AROUND N-TH FILTER POINT 
Options.Poll.complete    = 0;             % FLAG FOR COMPLETE POLLING 
Options.EPoll.completeN  = 0;             % FLAG FOR COMPLETE NEIGHBOR POLLING 
Options.EPoll.complete   = 0;             % FLAG FOR COMPLETE EXTENDED POLLING 
%************************************************************************** 
% SPECIFY SEARCH TERMINATION CRITERIA 
Options.Term.delta      = 1e-4;          % MINIMUM MESH SIZE 
Options.Term.nIter      = Inf;           % MAXIMUM NUMBER OF ITERATIONS 
Options.Term.nFunc      = 50000;         % MAXIMUM NUMBER OF FUNCTION EVALS 
Options.Term.time       = Inf;           % MAXIMUM CPU TIME 
Options.Term.nFails     = Inf;           % MAX NUMBER OF CONSECUTIVE POLL FAILS 
%************************************************************************** 
% SPECIFY MESH CONTROL CRITERIA 
Options.delta0          = 1.0;           % INITIAL MESH SIZE 
Options.deltaMax        = Inf;           % BOUND ON HOW COARSE THE MESH CAN GET 
Options.meshRefine      = 0.5;           % MESH REFINEMENT FACTOR 
Options.meshCoarsen     = 1.0;           % MESH COARSENING FACTOR 
%************************************************************************** 
% SPECIFY CHOICES FOR FILTER MANAGEMENT(FOR PROBLEMS WITH NONLINEAR 
% CONSTRATINS 
Options.hmin            = 1e-8;          % MINIMUM INFEASIBLE POINT H-VALUE 
Options.hmax            = 1.0;           % MAXIMUM H-VALUE OF A FILTER POINT 
%************************************************************************** 
% SPECIFY CHOICES FOR THE EXTENDED POLL TRIGGER(FOR MIXED VARIABLE PROBLEMS 
Options.EPoll.fTrigger  = 0.01;          % F-VALUE EXTENDED POLL TRIGGER 
%************************************************************************** 
% SPECIFY CHOICES FOR MADS FLAG PARAMETERS: CACHE, HISTORY, PLOTS, ETC 
Options.loadCache        = 1;            % LOAD PRE-EXISTING CACHE FILE 
Options.countCache       = 1;            % COUNT CACHE POINTS AS FUNCTION CALLS 
Options.scale            = 2;            % SCALE DIRECTIONS USING THIS LOG BASE 
Options.degeneracyScheme = 'random';     % SCHEME FOR DEGENERATE CONSTRAINTS 
Options.saveHistory      = 0;            % SAVES MADS PERFORMANCE TO TEXT FILE 
Options.plotHistory      = 0;            % PLOT MADS PERFORMANCE 
Options.plotFilter       = 0;            % PLOT THE FILTER REAL-TIME 
Options.plotColor        = 'k';          % COLOR OF HISTORY PLOT 
Options.debug            = 3;            % TURN ON STATUS MESSAGES FOR DEBUGGING 
Options.Sur.Term.delta   = 0.01;         % SURROGATE MINIMUM MESH SIZE 
%************************************************************************** 
%************************************************************************** 
% CALL TO SEARCHSURROGATE PARAM FILE USED TO BUILD THE DACE OR RBF 
% SURROGATES 
[opt_theta,min_cond] = searchsurrogate_Param; 
%************************************************************************** 
% CALLS THE Param DATA THAT IS USED THROUGHOUT THE NOMADm SOFTWARE 
Param = getappdata(0,'PARAM'); 
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%************************************************************************** 
% STORES THE OPTIMAL THETA VALUES RETURNED FROM A DACE SURROGATE BUILD, 
% INITIALIZES THETA_INIT FOR THE NEXT DACE SURROGATE BUILD, AND THE 
% CONDITION NUMBER OF THE CORRELATION MODEL OF THE DACE SURROGATE 
Param.opt_theta=[Param.opt_theta;opt_theta]  ;
Param.theta_init=10*ones(1,Param.totaldim); 
Param.condnum=min_cond; 
%************************************************************************** 
% SETS THE Param DATA THAT CHANGED IN THIS FUNCTION AND WILL BE USED 
% THROUGHOUT THE NOMADm SOFTWARE 
setappdata(0,'PARAM',Param); 
%************************************************************************** 
% CHECK FOR THE TIME CUTOFF VALUE BEING LARGER THAN THE USER SPECIFIED TIME 
% THRESHOLD, THE CONDITION NUMBER OF THE CORRELATION MODEL BEING LARGER 
% THAN THE CONDITION NUMBER THRESHOLD, AND IF THE SURROGATE PERFORM FLAG IS 
% TURNED ON 
%************************************************************************** 
if (Param.tc.cutoff > Param.surstopsearch) && (Param.condnum <  
    Param.condnum_thresh) && (Param.sur_perform == 1) 
    %********************************************************************** 
    % UPDATE THE SURROGATE COUNTER, MADS ITERATION COUNTER, AND SETS THE 
    % Param DATA THAT CHANGED IN THIS FUNCTION AND WILL BE USED THROUGHOUT 
    % THE NOMADm SOFTWARE 
    Param.sursearch = Param.sursearch+1; 
    Param.madscount = Param.madscount + 1; 
    setappdata(0,'PARAM',Param); 
    %********************************************************************** 
    % STORE THE SURROGATE INFO SETS THE Param DATA THAT CHANGED IN THIS 
    % FUNCTION AND WILL BE USED THROUGHOUT THE NOMADm SOFTWARE 
     
    Param.sur_info(Param.sursearch,:)={num2str(Param.sursearch), 
    num2str(Param.madscount),Param.sur_type,func2str(Param.reg)}; 
    setappdata(0,'PARAM',Param); 
    %********************************************************************** 
    % DISPLAY THE MADS COUNT AND SURROGATE INFO ON THE SCREEN 
    display(['MADS ITERATION = ',num2str(Param.madscount)]) 
    display([upper(Param.sur_type),' ',upper(func2str(Param.reg)),' ',... 
             'SEARCH SURROGATE = ',num2str(Param.sursearch)]); 
    %********************************************************************** 
    % INITIALIZE THE ITERATE TO BEGIN THE SURROGATE OPTIMIZATION PROBLEM TO 
    % BE THE CONTINUOUS VARIABLES AUGMENTED WITH THE DISCRETE VARIABLES 
    % BECAUSE THE SURROGATE CAN ONLY OPTIMIZE ON CONTINUOUS VALUES 
    iterate0.x = [pcenter.x ; pcenter.p{:}]; 
    iterate0.p = {}; 
    %********************************************************************** 
    % CALL THE MADS SOFTWARE TO SOLVE THE SURROGATE OPTIMIZATION PROBLEM 
    [BestF,BestI,RunStats,SurCache] = mads(Problem,iterate0,Options); 
    %********************************************************************** 
    % RETRIEVE AND EVALUATE THE NUMBER OF POINTS SPECIFIED BY THE USER TO 
    % BE RETURNED FROM THE SURROGATE OPTIMIZATION 
    indFeasible = 1:min(Search.nPoints,length(SurCache.Filter.feasible)); 
    tempS       = SurCache.iterate(SurCache.Filter.feasible(indFeasible)); 
    %********************************************************************** 
    % CREATE A TEMP VECTOR FOR STORING THE BEST 4 ITERATES OF THE OPTIMIZED 
    % SURROGATE FOR FUNCTION VALUE PREDICTOR AND CHANGE THE CONTINUOUS 
    % VALUES ASSOCIATED WITH THE DISCRETE VARIABLES TO THE FLOOR AND 
    % CEILING OF THOSE VALUES 
    tempS = [tempS.x]' 
    %********************************************************************** 
    % IF THE TEMP VECTOR IS EMPTY RETURN THE ORIGINAL POLL CENTER AS THE 
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    % POINT TO BE EVALUATED BY THE OBJECTIVE FUNCTION 
    if  isempty(tempS) 
        S.x = pcenter.x; 
        S.p = pcenter.p; 
    %********************************************************************** 
    % IF THE TEMP VECTOR IS NOT EMPTY CONVERT THE POSSIBLE CONTINUOUS VALUE 
    % ASSOCIATED WITH THE DISCRETE VARIABLE BACK TO DISCRETE VALUES USING 
    % THE FLOOR AND CEILING 
    else 
        tempS = [tempS(:,1:end-1),floor(tempS(:,end));tempS(:,1:end-  
        1),ceil(tempS(:,end))]; 
        %****************************************************************** 
        % EVALUATE THE RETURNED VALUES IN THE TIME BASED SURROGATE FOR 
        % ORDERING IN ASCENDING COMPUTATIONAL TIME AND EVALUATION IN TH  E
        % OBJECTIVE FUNCTION(CALLS AND SETS THE Param DATA USED IN THIS 
        % FUNCTION AND THROUGHOUT THE OPTIMIZATION 
        switch upper(Param.sur_type) 
            case 'DACE' 
                Param = getappdata(0,'PARAM'); 
                [SUR_Tx] = predictor(tempS,Param.dmodelT); 
                setappdata(0,'PARAM',Param); 
            case 'RBF' 
                Param = getappdata(0,'PARAM'); 
                for k = 1:size(tempS,1) 
                    [SUR_Tx(k)] = evalRBF(tempS(k,:)',Param.rbfmodelT); 
                end 
                setappdata(0,'PARAM',Param); 
        end 
        %****************************************************************** 
        % SORT THE VALUES EVALUATED BY THE TIME BASED SURROGATE IN 
        % ASCENDING ORDER OF COMPUTATIONAL TIME AND USE THE INDICES OF THE 
        % SORT TO ORDER THE VALUES OF tempS TO BE RETURNED FOR EVALUATION 
        % BY THE OBJECTIVE FUNCTION 
        [tempSUR_Tx,ind] = sort(SUR_Tx);  
        tempS    = tempS(ind,:)';  
        %****************************************************************** 
        % STORES THE SORTED VALUES BACK INTO THE STRUCTURE FORMAT USED BY 
        % MADS. ONLY HALF THE VALUES ARE RETURNED BECAUSE THE FLOOR AND 
        % CEILING FUNCTION CAN POSSIBLY DOUBLE THE ACTUAL NUMBER OF VALUES 
        % SPECIFIED BY THE USER FOR EVALUATION 
        for k = 1:(length(tempS)/2) 
            S(k).x = tempS(1:end-1,k); 
            S(k).p = {tempS(end,k)}; 
        end 
    end 
%************************************************************************** 
%************************************************************************** 
% IF THE SURROGATE IS NOT PERFORMED THE NO SEARCH COUNTER IS UPDATED, MADS 
% COUNT IS UPDATED, THE NO SEARCH INFO IS UPDATED AND THE VALUE RETURNED 
% FOR EVALUATION IS THE ORIGINAL POLL CENTER 
%************************************************************************** 
else 
    Param.surnosearch=Param.surnosearch+1; 
    Param.madscount = Param.madscount + 1; 

    Param.no_sur_info(Param.surnosearch,:)= 
    {num2str(Param.surnosearch),num2str(Param.madscount), 
     Param.sur_type,func2str(Param.reg)}; 

    display(['MADS ITERATION = ',num2str(Param.madscount)]) 
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    display([upper(Param.sur_type),' ',upper(func2str(Param.reg)),' ',... 
        'NO SEARCH SURROGATE = ',num2str(Param.surnosearch)]); 
  
    S.x = pcenter.x; 
    S.p = pcenter.p; 
end 
%************************************************************************** 
%************************************************************************** 
% SETS THE Param DATA THAT CHANGED IN THIS FUNCTION AND WILL BE USED 
% THROUGHOUT THE NOMADm SOFTWARE 
setappdata(0,'PARAM',Param); 
%************************************************************************** 
%************************************************************************** 
return 
 
%************************************************************************** 
function [opt_theta,min_cond] = searchsurrogate_Param 
%************************************************************************** 
%************************************************************************** 
% SEARCHSURROGATE_PARAM BUILDS THE DACE OR RBF SURROGATE. IF A DACE 
% SURROGATE IS USED UPPER AND LOWER BOUNDS ARE CALCULATED FOR THE THETA 
% VALUE BEFORE THE DACE SURROGATE IS BUILT 
  
% OUTPUT 
%   opt_theta--THE OPTIMIZED THETA VALUE RETURNED FROM A DACE SURROGATE 
%   BUILD 
%   min_cond--THE CONDITION NUMBER OF THE CORRELATION MODEL OR THE BASIS 
%   FUNCTION RETURNED TO THE SEARCHSURROGATE TO DETERMINE IF THE THRESHOLD 
%   TEST IS MET AND IF THE SEARCH STEP WILL USE THE SURROGATE OR NOT 
%************************************************************************** 
%************************************************************************** 
% CALLS THE Param DATA THAT IS USED THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
Param = getappdata(0,'PARAM'); 
%************************************************************************** 
%************************************************************************** 
% DETERMINE THE TYPE OF SURROGATE USED. IF A DACE SURROGATE IS USED THE 
% UPPER AND LOWER BOUNDS FOR THETA ARE OPTIMIZED BEFORE THE DACE SURROGATE 
% IS BUILT 
%************************************************************************** 
if strcmp(upper(Param.sur_type),'DACE') %&& Param.sursearch == 1 
    %********************************************************************** 
    % UPDATE THE SURROGATE BUILD COUNTER AND THE DACE SURROGATE BUILDER 
    % COUNT 
    Param.surbuilder_count      = Param.surbuilder_count + 1; 
    Param.dace_surbuilder_count = Param.dace_surbuilder_count + 1; 
    %********************************************************************** 
    % INITIALIZE THE CONDITION NUMBER OF THE CORRELATION MODEL R TO ZERO 
    % BEFORE THE UPPER AND LOWER BOUNDS ON THETA ARE CALCULATED 
    condR = 0; 
    %********************************************************************** 
    % COMPUTE THE LOWER BOUND ON THETA. WHILE THE CONDITION NUMBER OF R IS 
    % NOT BAD AND THE LOWER BOUND OF THETA IS GREATER THAN OR EQUAL TO 0.01 
    % CONTINUE BUILD DACE MODELS AND DIVIDE THE INITIAL VALUE OF THETA BY 
    % TWO EACH TIME 
    while condR <= 1e8 && all(Param.theta_init >= 0.01) 
        [dmodel] = dacefit(Param.surxp, Param.surf, Param.reg, Param.corr,  
         P
        condR    = condest(dmodel.R); 

aram.theta_init); 
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         Param.theta_init = Param.theta_init/2; 
    end 
    %********************************************************************** 
    % MULTIPLY THE FINAL VALUE OF THETA BY TWO JUST IN CASE THE VALUE IS 
    % LESS THAN 0.01 
    theta0    = 2*Param.theta_init; 
    %********************************************************************** 
    % SET THE LOWER BOUND VALUE 
    Param.lob = theta0; 
    %********************************************************************** 
    %********************************************************************** 
    % INITIALIZE THE VALUE OF THE NORM OF THE GRADIENT TO INF BEFORE 
    % OPTIMIZING THE UPPER BOUND 
    dLnorm = inf; 
    h      = 0.1; 
    %********************************************************************** 
    % COMPUTE THE UPPER BOUND ON THETA. WHILE NORM OF THE GRADIENT BETWEEN 
    % TWO DACE CORRELATION MODELS IS GREATER THAN 0.01 CONTINUE BUILDING 
    % TWO DACE MODELS AND OPTIMIZING THETA AND MULTIPLYING THE THETA LOWER 
    % BOUND VALUE BY 2 EACH TIME 
    while dLnorm > 1e-2 
        theta1 = theta0+h*ones(1,length(theta0)); 
        dmodel0 = dacefit(Param.surxp,Param.surf,Param.reg, Param.corr,   
        theta0); 
        dmodel1 = dacefit(Param.surxp,Param.surf,Param.reg, Param.corr,  
        theta1); 
        G = dmodel0.gamma'; 
        S = dmodel0.sigma2; 
        %****************************************************************** 
        % IF SVD WAS NOT USED FOR OPTIMIZING THETA THE GRADIENT NORM IS 
        % COMPUTED USING THE CHOLESKY FACTOR  
        if isnan(dmodel0.E) 
            C0 = dmodel0.C'; 
            R0 = C0*C0'; 
            R1 = dmodel1.C*dmodel1.C'; 
            dR = (R1 - R0)./h; 
            dL = (G'*dR*G)/(2*S)-trace(C0'\(C0\dR)); 
        %****************************************************************** 
        % IF SVD WAS USED FOR OPTIMIZING THETA THE GRADIENT NORM IS 
        % COMPUTED USING CORRELATION MODEL 
        else 
            R0 = dmodel0.R; 
            R1 = dmodel1.R; 
            dR = (R1 - R0)./h; 
            dL = (G'*dR*G)/(2*S)-trace(dmodel0.E*dR); 
        end 
        dLnorm = norm(dL); 
        theta0 = 2*theta0; 
    end 
    %********************************************************************** 
    % DIVIDE THE FINAL VALUE OF THE UPPER BOUND ON THETA BY TWO TO ENSURE 
    % THE UPPER BOUND IS NOT TO LARGE 
    Param.upb   = theta0/2; 
    %********************************************************************** 
    % SET THE INITIAL VALUE OF THETA TO THE MIDPOINT OF THE OPTIMIZED UPPER 
    % AND LOWER BOUNDS AS THE INITIAL GUESS FOR THE THETA VALUE USED IN 
    % BUILDING THE FUNCTION AND TIME BASED DACE SURROGATES 
    Param.theta = (Param.lob+Param.upb)./2; 
    %********************************************************************** 
    %********************************************************************** 
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    % BUILD THE FUNCTION AND TIME BASED DACE SURROGATES 
    [Param.dmodelF] =    
     dacefit(Param.surxp,Param.surf,Param.reg,Param.corr,Param.theta, 
     Param.lob,Param.upb); 
    [Param.dmodelT] =    
     dacefit(Param.surxp,Param.surtotal_time,Param.reg,Param.corr, 
     Param.theta,Param.lob,Param.upb); 
    %********************************************************************** 
    % COMPUTE THE OPTIMAL THETA VALUE AND THE CONDITION NUMBER OF THE 
    % CORRELATION MODELS FOR USE IN THE OPTIMIZATION PROCESS FOR 
    % DETERMINING IF THE CONDITION NUMBER THRESHOLD IS MET AND SETTING THE 
    % NEXT VALUE OF THETA TO USE DURING A DACE SURROGATE BUILD 
    opt_theta = Param.dmodelF.theta; 
    condRF    = condest(Param.dmodelF.R); 
    condRT    = condest(Param.dmodelT.R); 
    min_cond  = min(condRF,condRT); 
    %********************************************************************** 
    % DISPLAY THE SURROGATE BUILD INFORMATION 
    display(['SURROGATE BUILD = ',num2str(Param.surbuilder_count),... 
             ' (',upper(Param.sur_type),' ',upper(func2str(Param.reg)),')']) 
    display([upper(Param.sur_type),' SURROGATES BUILT = ',... 
             num2str(Param.dace_surbuilder_count),' : THETA = ',... 
             mat2str(opt_theta),' ','CONDITION NUMBER = 
             ',num2str(min_cond,'%10.8e')]); 
%************************************************************************** 
%************************************************************************** 
% DETERMINE IF AN RBF SURROGATE IS TO BUILT AND BUILD THE RBF SURROGATE 
%************************************************************************** 
elseif strcmp(upper(Param.sur_type),'RBF'); 
    %********************************************************************** 
    % BUILD THE FUNCTION AND TIME BASED RBF SURROGATE 
    [Param.rbfmodelF] =    
     buildRBF(Param.surxp,Param.surf,Param.rbfkernel,Param.reg); 
    [Param.rbfmodelT] =  
     buildRBF(Param.surxp,Param.surtotal_time,Param.rbfkernel,Param.reg); 
    %********************************************************************** 
    % UPDATE THE SURROGATE BUILDER COUNT AND THE RBF SURROGATE BUILD COUNT 
    Param.surbuilder_count      = Param.surbuilder_count+1; 
    Param.rbf_surbuilder_count  = Param.rbf_surbuilder_count + 1; 
    %********************************************************************** 
    % IF A THE DACE-RBF SURROGATE IS BEING USED AND A DACE SURROGATE HAS 
    % BEEN BUILT MAINTAIN THE OPTIMAL THETA VALUE FOR THE NEXT DACE 
    % SURROGATE BUILD AND THE CONDITION NUMBER ASSOCIATED WITH DACE 
    % CORRELATION MODEL 
    if Param.dace_surbuilder_count >= 1 
        opt_theta = Param.dmodelF.theta; 
        condRF    = condest(Param.dmodelF.R); 
        condRT    = condest(Param.dmodelT.R); 
        min_cond  = min(condRF,condRT); 
        %****************************************************************** 
        % DISPLAY SURROGATE INFORMATION 
        display(['SURROGATE BUILD = ',num2str(Param.surbuilder_count),... 
                 ' (',upper(Param.sur_type),'  
                 ',upper(func2str(Param.reg)),')']) 
        display([upper(Param.sur_type),' SURROGATES BUILT = ',... 
                 num2str(Param.rbf_surbuilder_count),' : THETA = ',... 
                 mat2str(opt_theta),' ','CONDITION NUMBER =  
                 ',num2str(min_cond,'%10.8e')]); 
    %********************************************************************** 
    % ELSE IF THE DACE-RBF SURROGATE IS BEING USED AND A DACE SURROGATE HAS 
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    % NOT BEEN USED MAINTAIN THETA AND CONDITION NUMBER AT THEIR INITIAL 
    % VALUES 
    else 
        opt_theta = Param.theta_init; 
        min_cond  = Param.condnum; 
        %****************************************************************** 
        % DISPLAY SURROGATE INFORMATION 
        display(['SURROGATE BUILD = ',num2str(Param.surbuilder_count),... 
                 ' (',upper(Param.sur_type),'  
                  ',upper(func2str(Param.reg)),')']) 
        display([upper(Param.sur_type),' SURROGATES BUILT = ',... 
                 num2str(Param.rbf_surbuilder_count),' : THETA = ',... 
                 mat2str(opt_theta),' ','CONDITION NUMBER =  
                ',num2str(min_cond,'%10.8e')]); 
    end 
end 
%************************************************************************** 
%************************************************************************** 
% SETS THE Param DATA THAT CHANGED IN THIS FUNCTION AND WILL BE USED 
% THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
setappdata(0,'PARAM',Param); 
%************************************************************************** 
%************************************************************************** 
return 
 
%************************************************************************** 
function SUR_Fx=searchsurrogate_eval(x) 
%************************************************************************** 
%************************************************************************** 
% SEARCHSURROGATE_EVAL IS THE SURROGATE OBJECTIVE FUNCTION TO BE OPTIMIZED 
% DURING THE SURROGATE OPTIMIZATION PROCESS 
  
% INPUT: 
%   x--SET OF PARAMETERS TO BE EVALUATED BY THE SURROGATE OBJECTIVE 
% OUTPUT: 
%   SUR_Fx--SURROGATE OBJECTIVE VALUE RETURNED DURING SURROGATE OPT 
%************************************************************************** 
%************************************************************************** 
% CALLS THE Param DATA THAT IS USED THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
Param = getappdata(0,'PARAM'); 
%************************************************************************** 
%************************************************************************** 
% DETERMINES THE TYPE OF SURROGATE BEING USED AND EVALUATES THE SET OF 
% PARAMETERS IN THE SURROGATE APPROXIMATION MODEL 
%************************************************************************** 
switch upper(Param.sur_type) 
    case 'DACE' 
        [SUR_Fx] = predictor(x,Param.dmodelF); 
    case 'RBF' 
        [SUR_Fx] = evalRBF(x,Param.rbfmodelF); 
end 
%************************************************************************** 
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%************************************************************************** 
% SETS THE Param DATA THAT CHANGED IN THIS FUNCTION AND WILL BE USED 
% THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
setappdata(0,'PARAM',Param); 
%************************************************************************** 
%************************************************************************** 
return 
 
%************************************************************************** 
function [A,l,u] = searchsurrogate_Omega(n) 
%************************************************************************** 
%************************************************************************** 
% SEARCHSURROGATE_OMEGA SETS UP THE DOMAIN OF THE SURROGATE OPTIMIZATION 
% PROBLEM 
  
% INPUT: 
%   n--DIMENSIONALITY OF THE PROBLEM 
% OUTPUT: 
%   A--IDENTITY MATRIX FOR SETTING UP THE BOUND CONSTRAINTS 
%   l--LOWER BOUND OF THE CONTINUOUS PARAMETERS 
%   u--UPPER BOUND OF THE CONTINUOUS PARAMETERS 
%************************************************************************** 
%************************************************************************** 
% CALLS THE Param DATA THAT IS USED THROUGHOUT THE NOMADm SOFTWARE 
%************************************************************************** 
Param = getappdata(0,'PARAM'); 
%************************************************************************** 
%************************************************************************** 
% SET UP THE CONSTRAINTS AND THE BOUNDS 
%************************************************************************** 
A = eye(n); 
l = Param.surLB; 
u = Param.surUB; 
%************************************************************************** 
%************************************************************************** 
return 
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%******************************************************************************* 
% CODE FOR IMPLEMENTING SINGULAR VALUE DECOMPOSITION TO REDUCE ILL-CONDITIONING 
% IN THE DACEFIT FUNCTION USED FOR OPTIMIZING THETA 
%******************************************************************************* 
function [obj,fit] = objfunc(theta,par) 
  
% Initializ  e
obj = inf;  
fit = struct('sigma2',NaN,'beta',NaN,'gamma',NaN,'C',NaN,'Ft',NaN,'G',NaN, ... 
             'R',NaN ,NaN); ,'E'
m   = size(par.F,1); 
  
% Set up R 
r   = feval(par.corr, theta,par.D); 
idx = find(r > 0); 
o   = (1:m)'; 
mu  = (10+m)*eps; 
R   = sparse([par.ij(idx,1);o], [par.ij(idx,2);o], [r(idx);ones(m,1)+mu]); 
  
% Cholesky factorization 
fullR = full(R+R'-diag(diag(R))); 
[C,rd] = chol(R); 
 
% Do SVD if R is not postive definite or it is ill-conditioned 
C = C'; 
if rd || condest(fullR) >= 1/eps 
   [U,S,V] = svd(fullR); 
   s       = diag(S); 

DACEFIT [10] 

ALTERED TO 

USE SVD 

   e       = zeros(length(s),1); 
   ind     = s/max(abs(s)) >= eps; 
   e(ind)  = 1./s(ind); 
   E       = V*diag(e)*U'; 
   Ft      = E*par.F; 
   Yt      = E*par.y; 
   detR    = prod(s.^(2/m)); 
else 
  
   % Get least squares solution 
   Ft    = C\par.F; 
   Yt    = C\par.y; 
   detR  = prod(full(diag(C)).^(2/m)); 
   E     = NaN; 
end 
[Q,G] = qr(Ft,0); 
  
% Check ill-conditioning of G (or Ft) and F 
if rcond(G) < 1e-10 
   if cond(par.F) > 1e+15  
      T = sprintf('F is too ill-conditioned\nPoor combination of regression model

and design sites'); 
      %error('dace:IllConditioned',T); 
   else 
      return 
   end 
end 
 % Do SVD if G is ill-conditioned 
if condest(G) >= 1/eps 
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    [U,S,V] = svd(G); 
    s       = diag(S); 
    e       = zeros(length(s),1); 
    ind     = s/max(abs(s)) >= eps; 

DACEFIT [10] 

ALTERED TO 

USE SVD     e(ind)  = 1./s(ind); 
    Ginv    = V*diag(e)*U'; 
    beta    = Ginv*(Q'*Yt); 
else 
    %Compute beta via LU factorization 
    beta   = G\(Q'*Yt); 
end 
  
rho    = Yt - Ft*beta; 
sigma2 = sum(rho.^2)/m; 
obj    = sum(sigma2)*detR; 
if nargout > 1 
  fit = struct('sigma2',sigma2,'beta',beta,'gamma',rho'/C,'C',C,'Ft',Ft,... 
               'G',G','R',fullR,'E',E); 
end 
return 
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