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Abstract

Finite unit norm tight frames provide Parseval-like decosipons of vectors in terms of redundant components of
equal weight. They are known to be exceptionally robustragadditive noise and erasures, and as such, have great
potential as encoding schemes. Unfortunately, up to thistpthese frames have proven notoriouslffidult to
construct. Indeed, though the set of all unit norm tight fesrmrmodulo rotations, is known to contain manifolds of
nontrivial dimension, we have but a small finite number ofwnaonstructions of such frames. In this paper, we
present a new iterative algorithm—gradient descent ofriéu@é potential—for increasing the degree of tightness of
any finite unit norm frame. The algorithm itself is trivialitoplement, and it preserves certain group structures ptese
in the initial frame. In the special case where the numberashg elements is relatively prime to the dimension of the
underlying space, we show that this algorithm convergesiatanorm tight frame at a linear rate, provided the initial
unit norm frame is already fliciently close to being tight. By slightly modifying this afgach, we get a similar, but
weaker, result in the non-relatively-prime case, prowidin explicit answer to the Paulsen problem: “How close is a
frame which is almost tight and almost unit norm to some uoitmtight frame?”

Keywords: frames, finite, tight, unit norm, frame potential, gradidascent

1. Introduction

Framesprovide numerically stable methods for finding overcompticompositions of vectors, and are ubiqui-
tous in signal processing applications [16, 17]. As exmdibelowtight framesandunit normframes are particularly
useful. However, it is diicult to construct frames which possess both of these priepaitnultaneously, calleahit
norm tight frameqUNTFs). In this paper, we present a new method for overcgrttiis dificulty, namely an it-
erative procedure which, when applied to a given finite unithm frame, asymptotically produces a UNTF. To be
precise, under the additional assumptions that the nunflfeame vectors is relatively prime to the dimension of
the underlying space and that our initial unit norm frameui$icently close to being tight, we are able to show that
our method, namely a gradient descent offtlagne potentiglconverges to a UNTF at a linear rate. That is, from a
tightness perspective, our algorithm takes a good unit fcame and makes it perfect. As such, it can be viewed as
a frame-theoretic analog @uto-TunéM, the software commonly used in the music industry to petfeetpitch of
lesser vocalists. Moreover, in the non-relatively-prirase we can slightly modify our argument to yield an explicit
answer to théaulsen probleni2]:

“How close is a frame which is almost tight and almost unitmao some UNTF?”

To make these notions precise, considerdiethesis operatoof a sequence of vectors = {fn},’}':1 in a real or
complexM-dimensional Hilbert spacéy, namelyF : CN — Hy, Fg:= Zr’:‘zl g(n) f,. That s, viewingHy asRM
or CM, F is theM x N matrix whose columns are thig's. Note that here and throughout, we make no notational
distinction between the vectors themselves and the syistbpsrator they induce. The vectdfsare said to be a

Email addressMatthew.Fickus@afit.edu (Matthew Fickus)

Preprint submitted to Applied and Computational Harmoni@alysis June 3, 2018


http://arxiv.org/abs/1009.5562v1

framefor Hy, if there existdframe bound® < A < B < oo such thatd)|f||2 < ||F*f||? < BJ|f|? for all f € Hy. In this
finite-dimensional setting, havirig be a frame is equivalent to having tii¢s spanHy, necessitating/ < N, with
the optimal frame bound& andB corresponding to the least and greatest eigenvalu&s$-of In particular,F is a
tight framewhenA = B, that is, wher-F* = Al. Tight frames are useful in applications, as they providesBval-like
decompositions

N
f=4FF =20 ff,, VfeHy, (1)
n=1

despite the fact that th§’s are not required to be independent. Indeed, the tightrasdition FF* = Al does not
require the columns d¥, that is, thef,’s, to be orthogonal, but rather, it requires the row$db be orthogonal and
have equal normyA. Meanwhile,F is aunit normframe whenj|f,|| = 1 foralln = 1,..., N. When a frame is both
unit norm and tight—a UNTF—it breaks vectors into possil@gundant components of equal weidht (1), with the
tight frame constanA being the redundancﬂﬁ. UNTFs are known to be exceptionally robust against adslitivise
and erasures|[l7, 12,113, 14]. Unfortunately, UNTFs are ad¢oriously dificult to construct: we warl x N matrices

F that have unit norm columns and orthogonal rows of equalrxacqhaorm%. To be clear, UNTFs are known to exist
foranyM < N: one may either invoke the classical theoryntdjorizationfor matrices, or more simply, consider the
harmonic frameobtained by truncating aN x N discrete Fourier transform (DFT) matrix [12]. Another ta@jue

is to build an operator with a flat spectrum using weighted Feicks; thisspectral tetrismethod yields extremely
sparse UNTFs [6]. However, these techniques only produtainexamples of UNTFs, while the set of all UNTFs,
modulo rotations, contains nontrivial manifolds wheneNer M + 1 [10]. That is, these methods produce but a few
samples from the continuum.

In this paper, we provide a new method for starting with aigiveme and producing a nearby UNTF from it. Such
techniques are very useful in real-world problems, as tileyaone to take a given transform, carefully crafted to
have certain application-specific properties without geight andor unit norm, and to correct, dune its algebraic
properties while changing the transform itself as littlepassible. In terms of mathematics, these techniques are
important because they help in solving the Paulsen problerbe precise, a compactness argument of D. Hadwin [2]
shows that indeed, if a frame isflgiently close to being both tight and unit norm, then it isfact, close to a
UNTF. Current work on this problem therefore focusefiowclose these UNTFs are, as well as developing practical
schemes to obtain them. Unfortunately, finitely-iterat®ehniques using Givens rotationsl|[8, 14] have, to thistpoin
produced UNTFs that are not necessarily close to the otigina

More recent approaches to solving the Paulsen problem,Ipahae of [2] and the present method, rely upon the
fact that given any framE, it is straightforward to produce a unit norm frame fromitmply replace eaclf, with ”I: -
Moreover, one can also convert any frame into a tight framayiged one has the computational power to taLe the
inverse square root of the frame operator: consiﬂﬂ”‘ﬁ‘% F. However, combining these two operations—dividing
by the root of the frame operator and then normalizing theltieg vectors, or vice versa—does not yield UNTFs, as
these two operations do not commute. Nevertheless, by osie@f these two techniques, one may assume without
loss of generality [2] that either the initial frame is eXgdight and nearly unit norm or, alternatively, that thetiali
frame is exactly unit norm and nearly tight. The former agglois that taken by [2]: starting with a tight frame that
is not unit norm, they solve aflierential equation that minimizéeame energyhile preserving tightness, flowing
towards a UNTF,; this led to the first genuine solution to thelg&n problem in the special case wh&teandN are
relatively prime. The latter approach is the one we pursue.he

In particular, starting with a frame that is already unitmowe try to produce a UNTF from it. Preliminary results
to this end were reported in the conference proceedings fdip&Ve accomplish this task by descending against the
gradient of thérame potentiglnamely the square of the Hilbert-Schmidt norm of the Grartrimm&*F, regarded as
a function oveiN copies of the unit sphef®y, := {f € Hy, : ||f|| = 1}

N N
FP:SN >R, FPE) = IFFlids= > > K fu)?

n=1n=1

Introduced in[[1], the frame potential is the total potelgiaergy contained within a given collection of points on the
sphere under the ag:tion offame forcewhich encourages orthogonality. As discussed in the neticse one can
show that FPF) = &= +||[FF* — N1|2¢ for anyF € S},. That s, the frame potential is bounded belowy with
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equality if and only ifF is a UNTF. The main result of [1] gives that evecal minimizers of FP are UNTFs. As such,
even if no explicit constructions of such frames were knothiry must exist: FP is a continuous function over the
compactse$N , and as such, possesses a global minimizer, which is neitgadacal minimizer, which is necessarily

a UNTF. This existence argument has been generalized torousiether settings|[3} 5,111,/15, 18| 19, 20]. Moreover,
this fact implies that every local minimizer of FP is necei#ga global minimizer, which is a nice property to have
when performing gradient descent; even here, this taskriin@l however, as there are nonoptimal arrangements at
which the first derivative of the frame potential vanishds [1

The novelty and significance of our work is best gauged byregting it with the current state-of-the-art of the
Paulsen problem: the technique lof [2]. Both approacheswgilid solutions to the Paulsen problem and have certain
applications for which they are preferable to the othertdad of assuming our frame is already tight and seeking to
become increasingly unit norm [2], we assume we are alreadyhorm and seek tightness. Rather than needing to
solve a dfferential equatior [2], we have an iterative, gradient-desbased algorithm; our approach only becomes
a differential equation when the step size is forced arbitrampls While the relative primeness & andN is an
important consideration in both methods, the techniqu&pis[only guaranteed to converge in this case, while our
convergence argument generalizes to the non-relativétyepcase, albeit in a weaker form. Also, as shown below,
our method preserves the group structure of certain UNTFtooactions, such as Gabor frames and filter banks,
whereas!][2] does not.

In the next section, we introduce the fundamental concegd@d to compute the gradient of the frame potential
(Theoreni?) and study its group invariance properties @siipn[3). In Section 3, we find ficient conditions that
guarantee that gradient descent of the frame potentialerges to a UNTF at a linear rate (Theoildm 6). In the fourth
and final section, we show that thesdf®ient conditions are indeed met provideldandN are relatively prime and
the initial frame is already dficient tight, yielding an answer to the Paulsen problem is daise (Corollari]8). We
further discuss how these arguments generalize to theelatively-prime case (Theordml11).

2. The gradient of the frame potential

In this section, we lay the groundwork for our approach to ifyaa given unit norm frame so as to decrease its
distance from tightness. As such, our first priority is tonfiatly define this distance. Lénm},’}]"zl be the eigenvalues
of the frame operatdf F* of some unit norm sequenée= {fn}r’:‘zl. Note that since

M N
> Am=THFFY) = TI(F'F) = > IIfalP =N,
m=1 n=1

the average value of these eigenvalue%isMoreover,F is a UNTF if and only ifFF* = %I, that is, if and only
if all the A’s are equal toM. As such, in the past, théistance from tightnessf a unit norm frameF has usually
been defined as maxim — 1;|. However, as there is no closed-form expression for eigaagaxist, we propose an

alternative measure of tightness, namely the 2-norm of éihéeg{ 1, — %},“T’Ll:

M
D - )2 = |FF - NP = TH(FF)?] - 28 Tr(FF7) + MTr(1) = FPF) - . )
m=1

In particular, we see that FP) > NVZ with equality if and only ifF is a UNTF. It therefore makes sense to define
2

our notion of thedistance from tightnessf F to be the easily computable quantjfiyF* — %llle = (FPF) - Nv) .
Written in this language, the version of the Paulsen proldarwhich we focus is the following:

Given positive integers M and N, find possibl, N)-dependent constanss C ande such that given
any unit norm sequence F such thj&t-* — %llle < 4, there necessarily exists a UN'H-such that

IF = Fllus < C||FF* - #1||\'s. ©)



One way to get a ballpark estimate on what these param&t€sand @ should be, under the best possible
circumstances, is to solve a weaker problem: given a uninrfeameF, find F such thatrF* = N w! and such that
IE = E|lus is minimized; here, we do not require tiiabe unit norm. Similar problems have been extenswely studie
in the past—see [2] for references. In brief, we have thatafor suchF andF, ||IF - F|| = 2N — 2ReTrE*F).
Taking the singular value decompositién= UXV and lettingE = U*FV* so thatF = UEV, we are therefore
seeking to maximize ReTh?C‘F) = ReTrE*x) subject to the restriction thats* = NI As X is “diagonal,” this
maximum is achieved by letting also be “diagonal” with entrles%)z implying

M
~ ~ 1 2
IF - Fl2s = 2N — 2ReTrE's) > 2N - 2(N)2 Z A = Z CHE
m=

Multiplying the terms in these summands by their conjugaﬁes (%)% then yields

2

XN M
. 2
IF - F||as>Z 52 N D Um=3)° = RIFF - fills
m=1 /lm+( ) m=1
To summarize, the UNTF which is closest td= necessarily satisfigd- — F|lys > (%)%HFF* - —I||HS As such, in

our version of the Paulsen problef (3), the heste should expect ig = 1. Indeed, in the case whek¢ andN

are relatively prime, we show that= 1 is achievable, providedl andC are suitably chosen. Meanwhile, whish
andN have a common divisor, a simple example, given in Sectiomdws that the best one can expectris %

As we shall see, the key issue with the non-relatively-priaige is that there exist UNTFs which can be partitioned
into mutually orthogonal subcollections; at such framis,deometric structure of the set of surrounding UNTFs is
extremely complicated [10].

2.1. The gradient of the frame potential

Now that we have formally defined the distance from tightress unit norm frame- to be||[FF* — I||HS, and
having further posed the problem we are trying to solve v@h\(ve turn to our specific approach: a gradlent descent
of the squared distance from tightness, which, sjide* — I|| = FPF) - -, reduces to a gradient descent of the
frame potential. Here, as the domain of optimizaﬁﬁjﬂs a product of spheres as opposed to the entire Qﬁ%pe
this version of gradient descentfdirs from the one most commonly used. In particular, givea { f,}\_, in S} and
G = (g, inell f+ = {{gn)}., € H}, : (fn,gn) = 0, ¥n}, we use Lemma 2 of [3] along with Taylor’s theorem to
estimate the change in frame potential as efadh pushed along a great circle with tangent velogity

Proposition 1. For any F = {fi}N., € SN and G = {gn}l\; € @, s, let fi(t) := cos(gnllt) f, — SiN(Ignllt) 72

whenever g # 0, and let f(t) := f, otherwise. Then, §) = {fn(t) 1 € SN for any te R and satsifies

llgnll

IF(t) - Fils < tzz gl (4)
n=1

N N
FPF()) < FPF) - 4tRe Y (FF* fo, go) + 8NE )" llgal” (5)
n=1 n=1

Proof. Itis straightforward to show thdff,(t)|| = 1 foralln=1,..., N and allt € R. To show[(4), note that for any
such thag, # 0, we have

l1a(t) = fall? = (cos(gnllt) — 1)* + sirP(lignllt) = 4 Sirf(lignllt/2) < lIgnl*t%. (6)

As (6) also immediately holds for amysuch thag, = 0, we may suni{6) over afi to conclude[(#). To prové]5), we
apply Taylor's theorem te(t) = FP((t)) att = 0

#(t) < ¢(0) + 14(0) + 3t* maxig(s). (7)
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To compute the terms ifil(7), note thiatt) = —||gnll SinIgnllt) f, — cos(|gnllt)gn for anyn such thag, # 0, a fact that
also holds trivially whery, = 0, sincef,(t) is constant. In particulaf,(0) = —g, foralln=1,...,N. The expression
for ¢(t) given in Lemma 2 ofi[3] then gives

N N
((0) = 4ReT(F"(0)F (0)F*(0)F (0)) = 4ReT(-G"FF'F) = —4Re ) (G'FF"Fey, &) = ~4Re ) (FF"fy,0n), (8)
n=1 n=1

where{ey)N | is the standard basis &ify. Next, asfn(t) = —Ignll? f(t) for anyn, we further have
. N . N . N
Tr(F*(OFOF (OF () = Z(F*(t)F(t)F*(t)F(t)en, en) = Z(F*(t) fa(t), F* () fn(D)) = - Z llgnlPIIF* @) fa®)I%. (9)
n=1 n=1 n=1

Substituting[() into the expression feft) given in Lemma 2 ofi[3] yields
N . . .
B0 = =4 " IgllPIIF* @O ()1 + AIF OF Ol + 2IFOF 1) + FOF 2. (10)
n=1
To bound[ID), note thaF (112 = Zn, Ifa()IZ = N andlIF(1)IIAg = ShL Ifa()I? = S, lIgnll?, and thus
N . . .
B0 < 4 IgalPIF* O f O + 4IF OF Olifs + 2IFOF O + FOF Ol3s
n=1

N
<43 lglPIFOIZI @I + 4IF* OF ©3s + 2(IFOF ®)llns + IFQOF Ollus)
n=1

N
<4 ) IglPIFOIRs + 12IFOIRsIF Ol
n=1

N
= 16N > lignll®. (11)
n=1
Substituting[(B) and(11) int@X7) yieldsl (5). O

Considering the Taylor expansion of FR{)) given in [4), one might expect thggadientof FP overS’,t',l, namely
the choice of vectorsgn}r’;‘zl, modulo positive scalar multiples, which maximizes the¢interm RQ],’:‘Zl(FF* frs On)s
to be given byg, = FF*f, foralln = 1,..., N. Indeed, one may show that this would be the correct gradierd
regarded the frame potential as a functional over the espxaedl—]l’,\“,, However, since we are optimizing 0\@;, we
require thatgn)\, € ® , f+-. Therefore, we instead takgn}) , to be the projection ofFF* fy}N., onto@  f. In
the next result, we formally verify that such a choice is yati.

Theorem 2. Pick F = {f)N.. € S',\“,,, and let R, denote the orthogonal projection frofifiy onto the orthogonal

n=1
complement of,f Then, the minimizer of the bound(@) over allte R and{gn}r’:‘:l € ear“]‘:lfnl is given by t= ﬁ and
On=PoFF fo = FF fy = (FF" f, f)fn, n=1,...,N. (12)
Moreover, for any € R, this choice for{gn}r’:‘:l gives
N
IF(®) - Flis < > IPaFF folP, (13)
n=1
N
FPF (1) < FPF) — 4t(1 - 2Nt) Z IPaFF* 2. (14)
n=1
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Proof. We seek to minimize

N N N
— 4tRe > (FF*f, gn) + 8NE > llgnlP = 2 > Re(-FF* fy + 2Ntgy, 2Ntgy) (15)
n=1 n=1

n=1

over aII{gn}r’:':1 € S',j, and allt € R. We note immediately froni (15) that the optirmjglq},’}‘:1 andt are not unique,
though we now show that their product is. Indeed, we g = g,, and therefore

Re(—FF*f, + 2Ntg,, 2Ntg,) = R&(—FF* f, + 2Ntgh, 2NtP,gn)
Re(—PhFF* f, + 2Ntgh, 2Ntgh)
#(I=PnFF" fo + ANtgnll* — [|-PaFF* fol?)
> —3lIPaFF* full?,

with equality if and only if—~P,FF*f, + 4Ntg, = 0. Thus, to minimize[(T5), and consequently to minimize thpar
bound in[5), we may take= ﬁ andg, = P,FF*f,, as claimed. Moreover, substituting these choiceg, sfinto (4)
and [3) yields[(IB) and[{5), respectively. O

Note that for anyt € (0, ﬁ), Theoreni R prescribes a direction and step size to travsl & givenF € S’,Q‘A which
guarantees a predictable decrease in frame potentialughowt the remainder of this paper, we fix any stieind
repeatedly apply Theorelm 2 to produce a sequence of itesatihich, in many cases, is guaranteed to converge to
a UNTF. One may also consider what happens to this sequeritegaifons ag is taken ever smaller; as— 0, we

expect to approach a solution to the system of nonlineanargiditerential equations:
fa(8) = = (F(IF (9 Ta(9) = (FOF (9 Ta(9), fa(9) Ta(9Ta(9) ), ¥n=1,....N,

a matter we leave for future research.

2.2. The preservation of group structure

Many popular examples of unit norm frames, such as oversahfjiler banks and Gabor frames, have a group
structure. In particular, such frames are tinkit {U; f;}ic jes Of a collection of unit vector§f;} e under the action of
a collection of unitary operatof$);}icy. While such frames inherently consist of unit norm vectitrsan be dificult
to ensure their tightness [9,/11]. As such, it would be valiab have a technique which increases the tightness of
such frames without sacrificing their group structure. Thetmesult shows that the technique of Theofém 2 does
precisely this, provided the unitary operators are knowecotmmute with the frame operator.

Proposition 3. Let the orbit F= {fj j}icr jes = {Uifjlier, jes Of unit vectors have the property that every unitary matrix
U; commutes with its frame operator FFThen, pushing these vectors along the tangent direct@fker, jcs given
in (I2) produces new collections of vectors which possess this geoup structure: Kt) = {U; f;(t)}ier,jeq-

Proof. We havef; j(t) = cos(|g; lIt) i ; — siangi,th)%” whereg; ; := P jFF*fi ;. Thatis,
g, = FF*U; fj - <FF*Uifj,Uifj>Uifj = UiFF*fJ‘ - <UiFF*fj,Uifj>Uifj = Ui(FF*fj - <FF*fj, fj>fj) = Uigj,
whereg; := FF*f; — (FF*fj, f;)f;. We thus have thak ;(t) = U;fi(t), as claimed:

fii(t) = cos(Uig; iU f; — sin(IUig;lI) gy = Ui(cosgjt fj — sinflgjlit ;) = Uifi(q). O
For example, consider the space of discriétgeriodic signal?(Zm) = {f : Z — C: f(m+ M) = f(m), Ym}.
Letting M = AC, thesynthesis filter bankssociated with some unit norm vectofgjc s is {TA fi}iC:Bliegf- where T
is thetranslationoperator ()(m) := f(m— 1). As one may verify thaF F*TA = TAFF*, Propositioi B guaran-
tees that evolving thé;’s according to Theorem 2 preserves this filter bank strecturettingM = BD, one can
further consider the Gabor subclass of filter bank frames:Ghbor systemassociated with some unit noriis

{TA‘Eij}fi])%’jEl})l, where E is thenodulationoperator (E)(m) = e f(m). Though the operators E and T do not
6



commute, we nevertheless have that £% TE, a fact which sflices to guarantee th&F*TAEB] = TAEBIFF~,
and so Propositionl 3 guarantees that the method of Thddressmpes the Gabor structure. In particular, one need
only evolvef itself, rather than the entirety of its modulates and traesl. That is, one need only compute

1D-
FF'f = Z  TAEP f)THEPf
i=0 j=0

and considef (t) = cos(|g|lt) f — siangHt)ﬁ, whereg = FF*f — (FF*f, f)f andt € (0, 2N) By iteratively applying
this procedure, one produces Gabor frames of ever-incrgéghtness.

3. Sufficient conditions for linear convergence of gradient descen

We now take a given unit norm sequer€g:= F = {f, }n 1» and iteratively apply the main result of the previous
section—Theorerfll2—to produce a sequeffag,’ , of unit norm sequences of increasing tlghtness To be clear,

fixing anyt € (0, 2N) and given any unit norm sequengg= {f(")}n 1» We first computésy = {gn }

g = POFF 0 = F R F® — (FFER, 10360 yn=1,. . N. (16)

We then defind = {f,ﬁkﬂ)}r’le as follows:

£ 9 _

(K) (K (K) (<)
fo1) { cos(igf1) 10 - sinflgf1) Z-. o an
On” =

While Theoreni 2 guarantees that the valueifrqF; — %IHHS are decreasing, it does not guarantee that this decrease
is strict, nor that it decreases to zero in the limit, nor thatF,’s themselves converge. Indeed, gradient descent of
the frame potential does not necessarily converge to a UN@&$§pite the fact that every local minimizer of the frame
potential is also a global minimizer, there do exist subupticritical frames Fat which the gradien® vanishes|[1].

In this section, we provide conditions whichfBoe to avoid such nonoptimal critical frames, and moreovergntee
that the iterative application of (1.6) arfd{17) producescuseace of unit norm frames which indeed converges to a
UNTF F., = limg Fg that is close td= = Fp. To do this, note that a unit norm sequerkeés critical with respect

to the frame potential if and only if its gradie@t vanishes, which occurs precisely when edglis an eigenvector

of the frame operatoFF*. As noted in|[1], this occurs precisely whénhcan be partitioned into a collection of
subsequences, each of which is a unit norm tight frame fa@piés. Here, the key is to recognize that in this setting,
such orthogonality is actually one’s enemy. To be precigemake the following definition:

Definition 4. A sequencéf, } | € SN is termedorthogonally partitionable (OPIf there exists a nontrivial partition
JTuyg =11, N} such thaﬁ(f., f,>| 0 for everyi € I, j € J. More generally, it is-orthogonally partitionable
(e-OP)if there exists a nontrivial partitiod LI 7 = {1,..., N} such thai(f;, fj)| < e foreveryie I, j € 7.

Thus, one way to ensuf@ # 0 is to have thaF is not OP. Indeed, as we show in the following resulf ifs not
£-OP, then the amourit’'s frame potential decreases in one iteration of gradiesteiat, as given in Theordm 2, is at
least some fixed percentagefgg distance from tightness.

Theorem 5. Lete € (0, £, and take Fe S',\“,, satisfying||FF* — I||Hs < ZM Let B, denote the orthogonal projection
from Hy onto the orthogonal complement gf ff F is note- orthogonally partitionable, then

MI ”HS' (18)

N
2||FF - |||ﬁS < Z IPaFF* foll? < 4N||FF* -
n=1

Proof. Let {/lm}:‘n":l denote the eigenvalues &fF*, arranged in increasing order, with corresponding orthorad
eigenbasi$em},“T’Ll. Decomposing any, in terms of this eigenbasis gives

M M
1= (FF fo, fo) = (FF* )" (fr, emdem, fa) = D Ank(fo @l
m=1 m=1
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That is, eachy, is a convex combination d¥fF*’s spectrum. Since, as noted prewou%yls the average of they’s,
we therefore have,, N w € [41, Am], and so for anynandn,

M
(Am—yn)? < (Am — A1)? < 4 Max(Ar ~ N2 <4 Z(/lm - Ny = 4|FF* - %|||as. (19)
m=1

Also, by the definitions oP, andyn,, we havey N, [IP\FF* |2 = SN I(FF* — y4l) foll>. Decomposing each, in
terms of thea,’s therefore gives

N
S emen = D1 S — 0o P

N
D IPFF fyl 2=
n=1 n=1 m=1
(20)

_7n|)2<fn»ern>ern”

From here, we apply_(19) to get the right-hand inequalityld)(

N N M
D IPFF Gl < 4FF = g 7 > i, eni® = aNFF = Rl

n=1 n=1 m=1

Note that this inequality holds in general, that is, for &y S},. We now seek the left-hand inequality bf118). Since
the largest gap between successive eigenvalues is no sthalfethe average gap, there necessarily existg,ahat
satisfies

/1mo+1 —Amy = g (Am — ) = E(Am — ). (21)

DefineZ :={n:y,< (Anb + Am+1)} I =11, N} \ 7. This partitions they,'s according to where they lie in
relation to the mldpom% (Amy + Amg+1) of the Iargest gap between elgenvalues Thereforelfeelying above this
midpoint are at least half the gap away, namely at Iééﬂs&wl = Amy) 2 5y L (Am — A1) away, from they,’s lying below
the midpoint, and vice versa. In fact, wher> my + 1 andn € 7, or whenm < mp andn € 7, we have

(m =70 2 [R50 — )] = gl maxam — B2 2 zhs > (= B = s |FF* - Mo (22)

m

That said, ifi € 7 andj € 7, then regardless oh, 1, is on one side of the midpoir%t(/lm0 + Amy+1), @nd eithery; or
vj is on the other side, implying

maX{(/lm - yi)zv (/lm - 7])2} VTV EL ”FF* o I”is (23)

Now suppose botli and g are nonempty. Sinck is note-OP, there existse 7 andj € J such that < [(fi, fj)|.
Decomposing over the eigenbasis, we therefore have

M 5 M M
& < I P < () K ek Toaml) <MD I(h e e < M Y minfich, enf (T enB),  (24)
m=1 m=1 m=1

where the last inequality usgd,, en)| < |Ifalllleml| = 1. Recalling[[2D), we isolate th#h andjth terms:

ZuPnFF foll? = ZZ(Am )2 Fn, €l

n=1 m=1
M

> 3 (e = 72K @+ (= 7, @00

m=1
M
= ax{(/lm — )2 (A — 7;)2} min{|<fi, el (£, em>|2}.
m=1
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From here, we apply (23) and (24) to get

N M
DUIPAFF foll2 = = [[FF - Biflis S min{|(fi,em>|2, |<f,-,em>|2} > e |FF - NP
n=1 m=1

Therefore, we indeed have the left-hand inequality_of (b&hi case where both and S are nonempty. We now
turn to the case where eithéror 7 is empty. We have

M
max(in = ) < 3 (m = 37 = [FF* = §ls < G (25)
m=1

where the last inequality follows from one of our assumioFherefore, recallingy from (21), we have

N
D ) = [IF emyl* = (FF e, €m) = dm = A1 > fi — maxdm - 1| = 2. (26)
n=1
where the last inequality is by (P5). In particularZifis empty, we recall{20), isolating itsoth term:
N N M N
D UIPFF Rl = > " (A = 7)o @ = > (dmy = ¥0) 2l Fo, )12, 27)
n=1 n=1m=1 n=1

Sincef = 0, thend = {1, ..., N}, and thus[{2R) holds fan = my and alln. Coupled with[[2B) and(27), this implies

N N
D UIPHFF ol 2 e [[FF* = B[P > (K, o) 2 ge[FF* — 81 2 227 [FF ~ M|
n=1 n=1

where the last inequality use$ < 1 < % This proves the left-hand inequality ¢f {18) in the case relieis empty.
A similar argument—isolating therg + 1)st term in[[2D)—holds in the remaining case whgrés empty. O

The previous result, along with Theoréin 2, guarantees ainattecrease in frame potential, provided the given
frameF is note-OP. In the next result, we show that if, when performing thedgent descent stefds {16) ahdl(17), one
can ensure that each iteratibp is note-OP for somes > 0 independent ok, then gradient descent converges to a
nearby UNTF at a linear rate.

Theorem 6. Fix & € (0,1] and te (0, 2&), take Fy = ()N, e SN satisfyinglIFoF; - Nl|lus < A, and iterate
Fri1 := Fi(t) as in (I8) and ([I7). If, for any fixed K, we have thatcRs nots-orthogonally partitionable for all
k=0,...,K -1, then the Kth iteration k satisfies

IFk = Follus < 2288 |FoFg - i), (28)
K
IFcFic = Mllus < (1 SF05) [FoFy - M1 lus (29)

Moreover, if K is note-orthogonally partitionable for any k, then&:= limy Fy exists and is a unit norm tight frame
within (28) from Fo.

Proof. Definey := 48—,\/2”, and suppos€y is note-OP fork = 0,...,K — 1. Then combining{2)[{14) and the lower
bound in [I8) gives they,; := Fk(t) satisfies

|FieaFins — M|fs = FPE®) -

N
< FPEQ - — 411 - 2ND) > [P RFL 012

n=1

< [1- 4t(1 - 2Nt)y]||FiFy - %'”is

9



From here, one may proceed inductively to find that
* 2 * 2
PRy — B[l < [1 - 4t(1 - 2Nty ]||FoFy - M1|1s: (30)

which proves[(Z9), recalling := 4M4 Next, lets := 4N. To prove[[Z8), we us€(13), the upper boundin (18), and
(30) to obtain

IFi1 — Fullds < 2 Z IPSFFL FRIP < o] FiFy -
n=1

NJ|Pg < 26[1 - 4t - 2Ny |FoFs - Mg (D)

forallk = 0,...,K — 1. In particular, for an)K’ < K, we can boundFx — Fg-||us in terms of a geometric series;
sincet € (0, 2N) andy 4,\;4 with ¢ € (0, 1], this series is guaranteed to converge:

K-1 oo
K *
IFic = Ficlls < ), IFiea = Fullus < t6%( )1~ 4t(2 - 2N0y 12 )[FoF; - H1]4s (32)
k=K’ k=K’

In particular, lettingk’ = 0 in (32) yields[(Z8):

1 1
IFk — Follns < (W)”FOFS - %lan = m”%% - %IHHS’ (33)

where we have used the fact that—(k)% <1- %x.

Now supposd-y is nevere-OP for anyk, and so[(3R) holds for aK’ < K. In particular, as the series in_{32)
vamshes (independently &f) asK’ grows large, we have tha{it:k}k o Is a Cauchy sequence. &%}I is complete,

= limy Fg exists. Taking the limit offl(30) yield§F . F% — I||H3 = 0, and sd~, is a UNTF. Meanwhile, taking
the Iimit of (33) yields our final conclusion, namely thag, also satisfied (28):

1 1
IFes = Follus < 5z [FoFo = il llus = g IFoFo = f1lus: :

4. Solutions to the Paulsen problem

In the previous section, we applied gradient desceffit@& S’,\“,, to produce a sequence of iteratég},’,. We
showed that ifFq is suficiently tight and if all resultind-¢'s are nots-OP for some fixed > 0, then this sequence
converges to a UNTF at a linear rate. In this section, we shat gsuch are always exists, provided! and N
are relatively prime. Meanwhile, in the non-relativelyirme case, we give an example that shows stistare not
guaranteed to exist. In this case, our gradient descentithlgts rate of convergence is threatened whenever our
frame becomes nearly OP; to overcome this threat, we “jumgehifour current iterate to a nearby OP frame, and then
continue gradient descent on the individual subframesthegrrespective subspaces. In so doing, we are able to give
solutions to the Paulsen problein (3) even in the non-retigrime case.

4.1. Casel: M and N are relatively prime

Theoreni 6 guarantees that gradient descent converges tor& &\ linear rate, provided the iterations never
becomes-OP for all arbitrarily smalk’s. WhenM andN are relatively prime, this is not a problem:

Theorem 7. Take Fe SN with M and N relatively prime. IfFF* — —I||HS < M3’ then F is no{ MBNA) orthogonally
partitionable.

Proof. We prove by contrapositive taklé e S with M and N relatively prime, and supposg is s-OP with
g:= M8N4, we show thaf|FF* — —|||HS > M3 SmceF is e-OP, there exists a nontrivial partitiohu 7 = {1,..., N}
such thaf(f;, fj)| < & for everyi € 7, j € J. DefineFr := {fi}icr andFg = {fj}jcs. The frame operatdFF;

has eigenvalue(sll—,m}'\" , and eigenvector®; M, and similarly forF 4 F7.. Without loss of generality, we arrange
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both sets of eigenvalues in decreasing order. Téke MAN, and defineM; = #m: Arm > '}, and similarly for
Mg. We knowM;y > 1, since otherwise we have a contradiction:

M
1< 7] = T(FiF,) = Tr(F,F}) = Zaf,m <M = o<1

m=1

Similarly, My > 1. Moreover, we claimfMy + My < M. Indeed, if not, then Spéey, } 1 N Spanes m},,’ j has
positive dimension, and so we may find a unit veclom this subspace. Sinag , is an elgenvector OoF 7F7 WI'[h

eigenvaluel; m, we have
u= Z(u ermerm = Z(u erm7 > (erm B,
iel

and we have a similar expression wiih Therefore, we apply the triangle inequality to get

My Mg
1=K wP = (Y erm i > erm f>f.,Z<u erm 7 D (erm )
m=1 iel jeg

<> Z > Z T (U, e mll(erm, KU, &7 m)IKes . )

ie7 m=1jeg m=1

Mg
(Z K ermieram 1) 3" kuermlierm f))

ie7 m=1 jeJ m=1

where the last inequality comes frdqf;, fj)| < € andAym, Ag.w = A’. From here, we usg— N2 and Holder’s
inequality to get

Mg 1 Mg
1< Z(ZKu er m>|2) (Z|<e,rm, B ) 2> K ermi) (3 Kerm fj>|2) < &Il < &
m=1

iel m=1 j€egJ m=1

a contradiction. As a partial summary, we knty andM 4 are nonzero ant¥i; + My < M. Now,

7| = Tr(F;F ) = Tr(F;F}) = Zafm = Zafm+ Z Az

m=1 m=Mzr+1

whereZ‘,m My+1Arm < (M = Mp)A. Thereforez 1Arm > 1I] = (M = Mz)2’, and so Jensen’s inequality gives

M, M, 2 2 2 ’
>z > M%(Z AI,m) > 3= (11- (M= Mp)x) > GE - 200w, (34)
m=1 m=1

and similarly forJ. We now consider the frame potentialfef

FPF) = Tr[(FF*)?] = Tr[(FF; + FoFi)?] = TI{(FF;)?] + Tr[(FoF5)?] + 2TF F 3 F o F 7.

Since T{F;F;FsF:] = IF;Fl%s > O, we continue:

My
m=1

T

where the last inequality is by (B4). Moreover, consideliig+ My < M, we have

2 W2 S 2 (NZD? N2 (EIM-MNY? o N2 4
(V7R el v el v e v i v M V1 e v v S v M Vi) (36)

11



where the last inequality uses the fact tvaaindN are relatively prime—that i$/|M — MzN is a nonzero integer—
andMy(M — My) < MTZ. Also, sinceM;, My > 1, we have

LM | TN < (M~ 1)(7] +17) < MN. (37)

’

Therefore, combinind (35),_(86) arld {37) gives FP% NVZ + meaning|FF* — N 1|26 > % O

M3|

Note that Theorei 7 requiresfBaient tightness to guarantee thrais not(ﬁ)-othogonally partitionable. Since
gradient descent only decreases the frame potential, €h&@mwill apply to every subsequent iteration. Therefore,
by Theoreni b, gradient descent converges to a UNTF in thiévallaprime case:

Corollary 8. Suppose M and N are relatively prime. Pick {0, 2N) take Fp € S} satisfyingl|FoFj - N I||HS < M23,

and iterate k1 := Fi(t) as in(@8) and (I17). Then, K, := lim Fy exists and is a unlt norm tight frame satisfying
IFes = Follus < AR [IFoFs — 1l
This solves the Paulsen proble (3) in the case whkendN are relatively prime. To be explicit, takirige N
we haves = 2:M~2, C = 8BM2N®5, anda = 1. These constants are roughly comparable to those préyigiven
in [2], which were obtained using independent methods. Asdearliera = 1 is the best one can hope for in any

case. In the next subsection, we give an example that shawthitse techniques fall apart in the case wilérand
N share a common divisor, and moreover, that in such casesuseset our sights lower with respectdo

4.2. Case ll: M and N are not relatively prime

We continue our solution to the Paulsen problem in the remgicase wherd! andN are not relatively prime.
Let’s begin this case with an example in two dimensions:

Example 9. Take some redF € SN that is,F = (cos@n,sinen)}r'f:l for some collection oby’s. In this case, it is
known [12] thatF is tight preusely when the sum ¢fcos 2, sin 29,)}, vanishes. In fact, one can show that

FPF) - X (Z cos Gn) +2 (Z costh 3|n0n) (nZN; sir? Hn)2 y e %[(Z cos Z)n) (nZN; sin 29n)2],

and sg|FF* - I||Hs = \}_HZn ,(cos @, sin 29)||. That is, given any unit vectors ik?, double their polar angles, and
add the resultlng vectors, base-to-tip; for this chain aftees, the distance between its head and tail is propoitiona
to the original vectors’ distance from tightness. In patée, our physical intuition tells us that if a collection writ
vectors is close to being tight, then their double-anglenteparts must only be slightly perturbed in order to close
their chain, meaning the original vectors are indeed closedNTF. But how close? To begin to answer this question,
consider the following example:

cosd cosd 0 O ~ cos? cos? -sin? sin¢
sing -sing 1 1/ F(0) = siné —siné cosé cosé ’ (38)
One can show thalF ()F*(6) - S5 = 8sirf' 6, while )., IPa(6)F (O)F* (a)f 0|1 = 32sirfocog 6. That said,
unlike in (I8), there is no factoA independent of such thatA||F(9)F*(0) — I||HS < Zn LIPA(O)F (B)F*(6) fn(0)1I?

for all 6. Therefore, at the very least, our analysis of the gradiestent algorlthm given in the previous section,
must be refined in order to guarantee convergence.

Nevertheless, in this example, we can show that gradiemedéslioes, in fact, converge to a UNTF, albeit at a
sublinear rate. Herey(6) = 4 cosysin® 6(— siné, cosd), go(6) = —4 cos sin® 6(sing, cost), andgz(6) = ga(6) = 0
Recalling Propositiofi]1, one can show tip;t) = F(6 — 4tcosdsin’d). That is, each iteration transforms an
arrangement of angleinto a new arrangement with angle- 4t cosg sin® 9; repeated iterations indeed converge to
6 = 0, albeit very slowly. In this way, gradient descent conesrtp{es, e, &, &}, that is, two copies of the standard
basis, which is indeed a UNTF. Note that since the limitirgfe is OP, we know that for eagh> 0, the F¢'s
eventually become-OP—this is why the linear rate of convergence guarante€thigpreni b does not hold here.

12
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This same example can be used to give a baseline on answhesRaulsen problem in the non-relatively-prime
case. Indeed, noting that every real UNTPSQ‘HS the union of two orthonormal bases, we can show that foln eac
6 €[0, 3], F(9)is 1he closest UNTF t&(6). But, [|[F(6) — F(0)llus = 4sm , which is on the order of the square-root of
IF(O)F*(6) - X I||HS as@ grows small. As such[_(38) is a counterexample to the sonestivoiced belief that distance
from a UNTF is at worst a linear function of distance from tigess. In other words, recallingl (3), = 1 is not
possible for everyM andN; even whenM = 2 andN = 4, the best possible is % This leads to three important
questions: 1) For a givell andN, is the version of the Paulsen problem giver{ih (3) even &é®2) If so, what is
the best possible for a givenM andN? 3) Is there a single that works for allM andN, or does performance truly
depend on the number of common factors betwgeandN? Below, we outline an argument that answers the first
question in the firmative; the second and third questions remain open.

As the preceeding example illustrated, gradient descamitiguaranteed to converge in the non-relatively-prime
case, since there is riofor which iterations never beconzeOP. To resolve this issue, we introduce the concept of
“jumping” to a nearby OP unit norm frame:

Theorem 10. Lete € (O, 2M] Then, for every- orthogonally partitionable Fe S, there exists an orthogonally
partitionableF e SN such thaf|F — Fllys < (2N) (M8)3

Proof. We first claim that for every unit vectdr € Hy and every nonzero projection operakon Hy,, there exists
a unit vectorg € P(Hy) such that|f — g < 2||(I — P)f||?. If Pf = 0, we may takey to be any unit vector ifP(Hy),

since that would mealif — g||> = 2 = 2||f||? = 2J|(I — P)f||2.Otherwise, we takg = B> Since
If - % | =[Pf+(-P)f -5y | =@~ EpPi+ (- P)f”
and so the Pythagorean theorem gives
It = ol = @ - 2P R + 10 = PYFIZ = 2(1 - [PF]) < 2(1- [Pf]?) = 2/[(1 - P)fI2 (39)

For simplicity, we takey := ”Pf”, understanding what this means whHeh= 0.

SinceF is e-OP, we havel U J = {1,..., N} such tha{(f;, f;)| < e whenevel € I andj € J. Without loss of
generality, we takes| > | 7]. DefiningF; := {fi}icr, the frame operatdF]Fi; has eigenvalueisi, m}nbl, arranged
in decreasing order, and eigenvectcrztfjs,m},“{'b Taked’ := 2N( )3, and defineMy = #{m: Ay > A’}. We know
M7 > 1, since otherwise

1
N < |7] = Tr(FLF7) = Tr(F,F) = Z/lm< M = D(Me)f < 22N < Y,

ThereforeP = Zm 1 €r.m€} IS a nonzero projection operator biy. Moreover,

M M M M
DO =PI =" > KfermlP = > IFjeral’ = Y (FrFjermerm = > Arm<MA.  (40)

iel iel m=Mz+1 m=Mr+1 m=Mz+1 m=Mz+1

Also, the fact thaer m is an eigenvector dof 7 F; with eigenvaluel; m gives

My
S IPfIP = ZZKf,,eIm» —ZZU» Z<efm,f>f> sZZ%(ZKeIm,f»Kf.,f»)
ieg

€T jeg m=1 jeg m=1 m=1 " Vier

Continuing, we usg fi, f;)| < e andAym > A”:

DUIPRIP < f>|) mAﬂZZZKeIm,f»Z SRR < e, (1)

€T Jejm 1 iel iel jeJ m=1
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where the last inequality comes frofi>(N — |7]) < 42—’\'73 DefineF = {f } ., by f, = |Pf|| whenn € 7, and

£ (1-P)fy

fn = [myy Whenn € 7. Then, combining(39) witH(40) and{41) gives the result

IF ~Flizs = > [Ifi - ol + > 16 - ||E::E;EIIH < 3 20 =PI+ 2APFIZ < 2MA + Bhe = 2N(Me)E. O
el €T el jeg

The previous result tells us how far we must jump in order &am¢form anc-OP frame into one that is exactly
OP. This opens the door for the following procedure for pidg UNTFs in the non-relatively-prime case: given a
collection of unit norm vectors and fixing agye (0, 1], perform gradient descent until one’s vectors becerddP, at
which jump to a OP frame, and then repeat this procedure dn@&abe two subframes. In the following result, we
use Theorenis 6 and]10 to bound how far this procedure willuakeom our original frame.

Theorem 11. Suppose M and N are not relatively prime. Take FS}, such that|FF* — Jlks < (222M?'N')~2,
Then there exist € SN which is either a unit norm tight frame or is orthogonallyrpaonable, with equal redun-
dancies in each of the two partitioned subspaces, such that

IF - Flius < 3M?NZ|FF* - N (42)

s
Proof. Taket := 4y ande = 2:3'M 171||FF* - —I||HS According to Theorerm]6, grad|ent descent will converge to
a UNTF, prowded |terat|0ns never becom®©P. In this way, we either converge to a UNFFor produce am-OP
frame within (N)Z(Me)3 of an OP framé=, by Theoreni 10.Either way, Theorefds 6 &ntl 10 give

IF - Fllus < 8“":2’“% [FF* = Nl s+ @N)E(Me)? = 3 F7TMENE||FF* - N7,

which proves[{4R). Now supposeis OP. Since
|FPF) - FPF)| = Tr[(FF* — FF*)(FF* + FF")]
<IIFF" = FFllnslFF" + FF'llus
< IF = Fllus(IFllus + 1IFllks)(IFIIZs + IFIis).

we usé|Fi2¢ = IFI2s = N to getFPF) — FPF)| < 4N3||F — Flls. Therefore,

2 LANZ|E - Fllus.

FPE) < FPF) + [FPE) - FPE)| = ¥ +||FF* - Ni|2 o + [FPE) - FPE)| < ¥ +||FF" - M|’

1
Continuing, we apply[{42) and use the fact thBE* — N1|2¢ < 4N3(3MIN3(IFF* — Nijj7):

FPE) < 1 + [FF — il +anF(sMINE PP —Rufllg) < i + Zo0ae, < b0 2 a)
SinceF is OP, there exists an orthogonal partitibml J = {1,..., N}. TakeMy to be the dimension of the span of
{fatner- Then,

FPE) = FPEL) + FPEy) > I + QRAF = 10 (oo,
In particular if|I|M MrN # 0, then(|ZIM - MJN)2 > 1, and sinceMy(M — My) < N%, we would have

FPF) > X 1 4 Considering[{43), we may conclude thaM — M;N = 0, and sol¥ = = e O

Repeated appllcatlons of Theorém 11 will provide solutjaliseit inelegant ones, to the Paulsen problem given
in @). To elaborate, Theordml11 states that if a unit normé&E is suficiently tight, then there exists a unit noffn
such that|F — Fllus = O(|IFF*- X wlll? )Whlch is either a UNTF or is OP into components of equal reidlmy Since
we are done i happens to be a UNTF, let's focus on the case wikeig OP, that is, whefr = F; & FJ, where
Fr = {f)icr and FJ = {f }jeq are frames for som&lr- and M y-dimensional subspaces Hiy, respectively, and
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Hl = WU - N We then apply TheorefiilL1 #; andF 4. if each is close to a UNTF, these can be directly summed to

form a 6NTF which is close t& and in turn, toF; if either is OP, we must continue this process in lower-disienal
subspaces. At mo#tl such nested applications of Theoremh 11 are necessary,esicbeaeduces the dimension of the
space in consideration by at least 1. The main issue is tichtaaplication of Theorefn 11 comes at a terrible cost:
“jumping” from ane-OP sequence to an OP sequence can increase one’s framggbbiea constant multiple of the
jump distance In particular, with each application of Teen[11, one’s distance from tightness may Hedaively
raised to a7 power; when one’s distance is very small, this exponeptiatesults in a dramatic increase in distance.
When appliedM times in succession, one would therefore expect a net expoﬁgl— That is, we expect that there
exists an extremely smail> 0 and an extremely largé for which (3) will hold fora = =. It is unknown whether
such anM-dependend is inherent to this problem, or simply a consequence of a vase@lkment on our part.

We emphasize that such issues, while of great mathematiegiest, should cause little worry in real-world ap-
plications. Indeed, the “perform gradient descent and jurhpn approaching OP” method that we employed in the
proof of Theorem II1 produces UNTFs which, for all practiaaigmses, are close to their originals. Nevertheless, the
issue stands: this distance may not be a nice function ofighéness itself. Indeed, this is the heart of the part of
the Paulsen problem that remains open: “Given a unit norméravhich is extremely close to being tight, and is also
extremely close to being OP, how far away, as a function bittigss, is the nearest UNTF?” This problem reveals our
current lack of understanding of the geometry of the setldf/BITFs on very small neighborhoods of OP UNTFs,
and is more than worthy of additional study.
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