
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

8-2010

Windows Operating Systems Agnostic Memory Analysis Windows Operating Systems Agnostic Memory Analysis

James S. Okolica
Air Force Institute of Technology

Gilbert L. Peterson
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Information Security Commons

Recommended Citation Recommended Citation

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/288294992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Ffacpub%2F289&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Windows operating systems agnostic memory analysis

James Okolica*, Gilbert L. Peterson

Department of Electrical and Computer Engineering, Air Force Institute of Technology, USA

Keywords:

Memory forensics

Microsoft windows

PDB files

Operating system discovery

Processes

Registry files

Network activity

a b s t r a c t

Memory analysis is an integral part of any computer forensic investigation, providing

access to volatile data not found on a drive image. While memory analysis has recently

made significant progress, it is still hampered by hard-coded tools that cannot generalize

beyond the specific operating system and version they were developed for. This paper

proposes using the debug structures embedded in memory dumps and Microsoft’s

program database (PDB) files to create a flexible tool that takes an arbitrary memory dump

from any of the family of Windows NT operating systems and extract process, configura-

tion, and network activity information. The debug structures and PDB files are incorporated

into a memory analysis tool and tested against dumps from 32-bit Windows XP with

physical address extensions (PAE) enabled and disabled, 32-bit Windows Vista with PAE

enabled, and 64-bit Windows 7 systems. The results show the analysis tool is able to

identify and parse an arbitrary memory dump and extract process, registry, and network

communication information.

ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Memory analysis is an integral part of effective computer

forensics. Since the DFRWSmemory challenge in 2005 (Digital

Forensics Research Workshop, 2005), there has been signifi-

cant research done in improving analysis of memory dump

files (Betz, 2005; Schuster, 2006b; Walters and Petroni, 2007).

Unfortunately, these techniques still rely on knowing char-

acteristics of the operating system a priori. Furthermore, in

most cases, these tools only work on a small number of

operating system versions. For instance, while Volatility has

extensive functionality, it only works on Microsoft Windows

XP SP2 and SP3. What is needed is a tool that works on an

arbitrary memory dump regardless of the operating system

version and patch level.

This paper is a first step in achieving this generalized

functionality. By incorporating the work of Alex Ionescu and

Microsoft’s program database (PDB) files (Microsoft Support)

into a memory analysis tool, the tool is able to identify the

operating system and version of a memory dump from the

family of Microsoft NT operating systems (i.e., Windows NT4,

Windows 2000, Windows Server 2003, Windows XP, Windows

Vista, Windows Server 2008, and Windows 7). The tool then

uses this information to locate the kernel executable and

extract its globally unique identifier (GUID). With the kernel

name and GUID, the tool retrieves the PDB file from Micro-

soft’s online symbol server and uses it to enumerate the key

operating system structures necessary to parse the memory

dump.

The remainder of this paper presents an overview of the

memory analysis work already done and a methodology for

combining these different pieces of memory analysis and

parsing to make a Windows agnostic tool. Finally, the paper

discusses applying the resulting tool to a memory dump from

a 32-bit Windows XP SP3 with physical address extensions

enabled and disabled, 32-bit Windows Vista with physical

* Corresponding author.
E-mail addresses: jokolica@afit.edu (J. Okolica), gpeterson@afit.edu (G.L. Peterson).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6

1742-2876/$ e see front matter ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2010.05.007

mailto:jokolica@afit.edu
mailto:gpeterson@afit.edu
http://www.elsevier.com/locate/diin

address extensions enabled, and 64-bit Windows 7. In each

case, the tool identifies the operating system version and

memory layout, extract all of the process and registry infor-

mation (including pages stored in page files and memory

backed files), and extract network communication

information.

2. Background

Live forensics examines the most volatile, and generally the

most recent cyber artifacts. Process activity, configuration

changes, and network communication occur constantly and

by examining volatile memory, the most recent instances of

each of these are captured. Furthermore, the kernel execut-

ables residing on disk may not mirror the code actually

running in memory (particularly if malware programs have

hooked them). Examining the operating systemprograms that

are in memory provides themost accurate picture of what the

operating system is actually doing.

Live response information investigators typically seek

include:

� system data and time,

� logged on users and their authorization credentials,

� network information, connections, and status

� process information, memory and process-to-port

mappings

� clipboard contents

� command history

� services, driver information

� open files and registry keys as well as hard disk images

(Prosise et al., 2003).

While ideally, the method for collecting memory should

not affect the operating system, if no collection method has

been implemented a priori, options are limited. In these cases,

the best methodmay be to use software tools that will impact

the operating system as a part of collecting the image. There

are two distinct approaches: starting a new collection process

(Carvey, 2007) or inserting a collection driver into an existing

kernel process. The traditional software collection method is

to start a new process, such as Madiant’s Memoryze, that does

not use operating system application programmer interfaces

(APIs) or graphical user interfaces (GUI) so that it has less

system impact and is less likely to be subverted by an infected

operating system. However, creating a new process still

creates new process records, object tables, and device tables

as well as allocates space within a portion of main memory.

The alternative is adding a driver to an existing kernel process.

The downside of this method is that it modifies the space for

one of the processes that will be captured. This may later call

into question whether other, unintended changes were made

to that process’ space as well, possibly tainting the results.

There are several tools that parse memory dumps and

extract process information. Two of the early tools that

scanned memory dumps to find processes were Chris Betz’s

memparser (Betz, 2005) and Andreas Schuster’s ptfinder

(Schuster, 2006a). In addition, Brendan Dolan-Gavitt has

developed tools for extracting Windows registry information

(Dolan-Gavitt, 2008). More recently, Aaron Walters and others

have developed Volatility (Walters and Petroni, 2007) which in

addition to finding processes and registry information, also

finds the network and configuration information. Further-

more, Volatility 1.3 parses hibernation files. However, what all

of these tools have in common is that they are limited to

specific versions of specific operating systems, e.g., 32-bit

versions of Windows XP SP2 and SP3. The reason for this is

that since the data structures used by an operating system

change from version to version, new versions of the software

are needed each time. However, Barbarosa and Ionescu have

provided a means of discovering from within a memory

dump, the operating system version that was running

(Barbarosa; Ionescu). We combine this with Schreiber’s

method for analyzing the program database files (Microsoft

Support) generated when Microsoft compiles its code

(Schreiber, 2001a,b) to create a Windows agnostic memory

analysis tool.

3. Methodology

By combining work done by (Barbarosa; Dolan-Gavitt, 2008;

Ionescu; Russinovich and Solomon, 2005; Schreiber, 2001a;

Schuster, 2006a; Walters and Petroni, 2007), it is possible to

take an arbitrary memory dump from one of the Windows NT

family of operating systems (i.e., Windows NT4, Windows

2000, Windows Server 2003, Windows XP, Windows Vista,

Windows Server 2008, and Windows 7) and parse it. This

Windows agnostic approach provides several benefits. First,

memory analysis tools no longer need to be coded to a specific

operating system version and patch level; second, memory

dumps that are acquired without operating system interac-

tion (e.g., via direct memory access) may be parsed without

interacting with either the operating system or a system

administrator. Finally, as new versions and patch levels of

operating systems are released, the existing memory analysis

tools should continue to work. Fig. 1 shows the Windows

agnostic memory analysis process.

First, using the work of Barbarosa and Ionescu,

_DBGKD_DEBUG_DATA_HEADER64, _KDDEBUGGER _DATA64

and _DBGKD_GET_VERSION64 records are found and parsed to

determine whether the dump comes from a 32-bit, 32-bit with

physical address extensions enabled, or a 64-bit operating

system. Using this information (Russinovich and Solomon,

2005), the kernel page directory table base is found. With

this information and (Russinovich and Solomon, 2005), virtual

addresses are parsed into physical addresses. Next, the base

address of the kernel executable and of tcpip.sys are found

from _DBGKD_DEBUG_DATA_HEADER64 directly and via

PS_LOAD ED_MODULE_LIST respectively. By examining the

debug section of these two portable executables (Microsoft

Windows Hardware Developer Central), the globally unique

identifier (GUID) and age are extracted and used to download

the correct program database from Microsoft’s symbol server

(Microsoft Support). The PDB file is then parsed (Schreiber,

2001a), and the exported kernel data structures are extrac-

ted. With these data structures, it is possible to parse the

memory dump without any hard-coded offsets (although the

names of the structures (e.g., _EPROCESS) do still need to be

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S49

hard-coded). Finally, using similar techniques, the location of

the symbols in tcpip.sys is extracted from tcpip.pdb allowing

the network communication data to be foundwithin the tcpip.

sys portable executable’s data section. With all of this infor-

mation, it is possible to extract process, registry, and config-

uration information using techniques discussed by Schuster

(2006b), Dolan-Gavitt (2008), and Walters (Walters and

Petroni, 2007) in the same way that other tools (e.g., Vola-

tility (Walters and Petroni, 2007)) do.

The remainder of this section describes the constituent

parts of the process in greater detail.

3.1. Determining the operating system

Memory parsing tools generally need to be given information

about the memory dump (e.g., the processor type of the host

machine, the operating system of the host machine (possibly

including the specific service pack and patches installed), and

whether physical address extensions are enabled). In Micro-

soft’s family ofWindows NT operating systems (i.e., Windows

NT4, Windows 2000, Windows Server 2003, Windows XP,

Windows Vista, Windows Server 2008, and Windows 7), this

information is available in memory (Barbarosa; Ionescu). A

key structure in the include files provided by Microsoft for

developers of dynamic link libraries (DLLs) and debuggers is

_DBGKD_GET_VERSION64 shown in Fig. 2.

When the kernel is running, this structure contains critical

information including the base virtual address of the kernel’s

portable executable, a doubly linked list of the loaded

modules, and whether physical address extensions are

enabled. It also includes the major and minor operating

system build numbers and the type of machine/processor

(Microsoft Windows Hardware Developer Central). Either

immediately preceding or immediately following this struc-

ture in memory is the _DBGKD_DEBUG_DATA_HEADER_64

which contains two fields, an owner tag which is the four-byte

literal KDBG and the size of the _DBGKD_GET_VERSION64

structure and _KDDEBUGGER _DATA64which contains among

other things, the virtual address of all loaded modules and (in

Windows 7) the location of the table of object type pointers.

Our memory parser uses this information to scan a memory

dump searching for KDBG followed by a four-byte field that is

less than 4096 and then extracts the type of machine (i.e., 32-

bit, 32-bit with PAE, or 64-bit). The operating system version,

and the virtual addresses of the kernel executable, the list of

loaded modules, and the object type table.

3.2. Mapping virtual addresses to physical addresses

The one value _DBGKD_GET_VERSION64 does not have is the

kernel page directory table base, which is used to translate

virtual addresses to physical ones. When the processor acti-

vates a process, it loads the process’ page directory table base

into the CR3 register and uses it to convert its virtual

addresses into physical addresses. As a result, all other

memory addresses used by the operating system are virtual

addresses. Interestingly, although user address space is

remapped by process, kernel address space is the same for all

kernel processes. Therefore, finding any single page directory

table base for a kernel process is sufficient to map any kernel

process’ virtual addresses to physical addresses.

Virtual addresses for i386 (32-bit processor) machines

follows one of two formats depending on whether physical

address extensions are disabled or enabled as shown in Fig. 3

(Russinovich and Solomon, 2005).

If physical address extensions are disabled, the highest ten

bits are the index into an entry in the page directory table,

a table composed of 32-bit words. Each entry in the page

directory table points to a page table entry table. These page

table entry tables are also composed of 32-bit words which

32-bit, 32-bit with PAE,
or 64-bit

Kernel Page Directory
Base

Kernel PE LocationAddresses of Loaded
Modules

Address of Object Type
Table (Windows 7)

Kernel GUID & Age
(from PE Debug Section)

Retrieve Kernel PDB
(from Microsoft Symbol

Server)

Kernel Data Structures

tcpip.sys GUID & Age
(from PE Debug Section)

Retrieve tcpip.sys PDB
(from Microsoft Symbol

Server)

Locations of tcpip.sys
symbol in Data Section

UDP and TCP Network
Activity (by process)

Process records and
Registry records

Process information

System Users
(from Registry)

Process information

Process Objects

Fig. 1 e A Windows-agnostic memory analysis process flow.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6S50

point to specific pages in memory. When an i386 processor

with physical address extensions disabled is provided with

a virtual address, it starts with the page directory table base

for the processor. It then takes the high ten bits of the virtual

address, multiplies it by 4 (for 32-bit words) and uses that as

the offset into the page directory table. At that location, it finds

the physical address of the base of the relevant page table

entry table. The processor then uses the next ten bits of the

virtual address, multiplies it by 4 (for 32-bit words) and uses

that as the offset into the page table entry table. At that

location, it finds the physical address of the base of the rele-

vant page of memory. It then uses the last 12 bits as an offset

to find the specific location in physical memory. If physical

address extensions are enabled, and additional level of indi-

rection is introduced as shown in Fig. 3. In this case, the page

directory table base is actual the physical address of a page

directory pointer table. The high two bits of the virtual address

are an offset into this page directory pointer table. The phys-

ical address in the page directory pointer table is then the base

of a page directory table and the remaining process follows as

above (though the indices are nine bits instead of ten). Phys-

ical address extensions change the page directory pointer

table, the page directory table, and the page entry table from

32-bit words to 64-bit words (meaning indices are multiplied

by eight instead of four). The �64 architecture builds on these

three levels, increasing the page directory pointer table to 512

entries and introducing a fourth level of indirection, called the

page map levels as shown in Fig. 3. In the �64 (and IA32-E)

virtual memory model, the first nine bits are the page map

level table index, followed by nine bits for the page directory

pointer table index, followed by nine bits for the page direc-

tory table index, followed by nine bits for the page table entry

table index, followed by twelve bits for the physical page

offset. In each of these four cases, if the large page flag is set in

the page directory entry, there is one less level of indirection

as the page table entry and the page frame offset are

combined to generate an offset into either a two (21 bit offset)

or four megabyte page (22 bit offset).

To find the page directory bases used above, the self-refer-

encingnatureof thepagedirectories shown inFig. 4 isused. For

instance, in32-bitnoPAEoperating systems, thepagedirectory

entry that is 0xC00 from its page directory base points to the

page directory base. In the case of PAE enabled, the first two

(possibly three) entries of thepagedirectory pointer table point

to user space while the last entry is guaranteed to point to

kernel space. As a result, the fourth entry in the page directory

pointer table is the physical address of the first entry. Finally,

the64-bitpointeroffset0x68 fromthepagemap level tablebase

points back to the page map level table base address. While

these observations are not guaranteed to work, heuristically

starting at the beginning of physical memory and proceeding

until the appropriate condition is found results in the page

directory table base of a kernel process.

Ideally, all referenced memory exists as physical addresses

in the memory dump; however, this is often not the case. The

low twelve bits of thepage table entries shown in Fig. 5 areflags

that indicate different items of interest. One particular flag of

interest is bit 0. If bit 0 is 0 than the physical page of memory

referenced is invalid. This may mean that the page frame is

transitioning from memory to disk (if bit 11 is set) or that the

page frame is a prototype page (if bit 10 is set) or that the page

framehasbeenpagedout todisk (ifbits0,10,and11areallzero).

If the page frame has been paged to disk, then the page table

entryneeds tobe interpreteddifferently as shown inFig. 6. Bits 1

through 4 determine which page file the page frame is in (up to

16 page files are possible) and bits 12 through 32 determine the

offset into the page file. If both the page file number and offset

are zero, than the page table entry is referencing a “demand

zero” page, i.e., a page that has been allocated and filled with

zeros but which has yet to have any information stored in it.

In addition to paged to disk page table entries, there are

also page table entries that are prototype page table entries.

Prototype pages are pages that can be shared between two or

more processes (e.g., memory that contains configuration

information). Prototype page table entries have their own

format shown in Fig. 7.

_DBGKD_GET_VERSION64
0x00 UShort MajorVersion
0x02 UShort MinorVersion
0x04 UChar ProtocolVersion
0x05 UChar KdSecondaryVersion
0x06 UShort Flags
0x08 UShort MachineType
0x0A UChar MaxPacketType
0x0B UChar MaxStateChange
0x0C UChar MaxManipulate
0x0D UChar Simulation
0x0E UShort[] Unused
0x10 UQuad KernBase
0x18 UQuad PsLoadedModuleList
0x20 UQuad DebuggerDataList

_DBGKD_DEBUG_DATA_HEADER64
0x00 List_Entry64 List
0x10 ULong OwnerTag
0x14 ULong Size

_KDDEBUGGER_DATA64
0x00 _DBGKD_DEBUG_DATA_HEADER64 Header
0x18 ULong64 KernBase
0x20 ULong64 BreakPointwithStatus
0x28 ULong64 SavedContext
0x30 UShort ThCallBackStack
0x32 UShort NextCallBack
0x34 UShort FramePointer
0x36 UShort PAEEnabled:1
…
0x48 ULong64 PSLoadedModuleList
…
0xA0 ULong64 OBTypeObjectType

Fig. 2 e MS Windows’ debug structures.

Virtual Address – 32-bit with PAE Disabled

Page Directory
Table Index

Page Table
Index

Page Frame Offset

0122231

Virtual Address – 32-bit with Physical Address Extensions

Page Directory
Table Index

Page Table
Index

Page Frame Offset

0122131

Page Directory
Pointer Table
Index

30

Virtual Address – 64-bit

Page Directory
Table Index

Page Table
Index

Page Frame
Offset

0122148

Page Directory
Pointer Table
Index

30

Page Map
Level Table
Index

39

Fig. 3 e Virtual address to physical address translation.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S51

On a 32-bit operating system with PAE disabled, the

prototype page table entry is contained within bits 1 through 7

(0e6) and 11 through 31 (7e27) of the page table entry and is an

offset into the non-paged pool area (located at virtual address

0xe1000000 in 32-bit operating systems). On a 32-bit operating

system with PAE enabled, the high 32 bits contain the virtual

address of the page frame. Finally, if the prototype page table

entry itself is invalid, then the prototype page is actually a file-

backed page (i.e., a memory-mapped file). In this case, the

actual memory is stored within a file stored in non-volatile

memory. In the case of memory-mapped files, the prototype

page table entry is actually a pointer to a subsection. Stored

within the control area of the subsection, is a pointer to the file

object. To determine the base offset into thememory-mapped

file, the subsection base is subtracted from the prototype page

table entry then multiplied by either 4 or 8 (depending on if

PAE is disabled or enabled) and then added to the starting

sector of the subsection. The low 12 bits of the virtual address

are then added to the base offset (multiplied by 4096 to

account for the page size).

3.3. Operating system structures

Once a page directory table base (or equivalent) is found, the

last itemnecessary to determine the operating system version

is to retrieve the major and minor operating system version

from the kernel’s portable executable. Recall that the virtual

address of the kernel’s portable executable is stored in the

_DBGKD_GET_VERSION64 structure. Now that a page direc-

tory table base is known for kernel space, this virtual address

is converted to a physical address and the major and minor

version of the operating system stored in the kernel’s portable

executable (Microsoft Windows Hardware Developer Central)

retrieved. In addition, stored within the debug section of the

kernel’s portable executable is its globally unique identifier

(GUID). This GUID provides the key to improving the versa-

tility of memory parsers.

In general, memory parsers have operating system struc-

tures hard coded for the specific operating system versions/

patch levels that they handle. Unfortunately, as new version/

patches come out, hard-coded parsing tools may become

obsolete. As part of Microsoft’s compilation and linking

process, Microsoft records debug information in a program

database (PDB) file (Microsoft Support) including the exported

structures used by the executable. Whenever Microsoft

releases a patch (or operating system version), it places a copy

of the PDBs for any changed executables on its symbol server.

While the primary purpose of this is for use by Microsoft’s

own debugging tools (e.g., windbg and kdbg), these PDB files

contain information that can be used by any debugging or

32-bit

32-bit with Physical Address Extensions

64-bit

0x55d000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
…
0x55dc00 0x55d000 xxxxxxxx xxxxxxxx xxxxxxxx

0x55d000 xxxxxxxx 00000000 xxxxxxxx 00000000
0x55d010 xxxxxxxx 00000000 0x55d000 00000000

0x55d000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
…
0x55d060 xxxxxxxx xxxxxxxx 0x55d000 00000000

Fig. 4 e Self-referencing nature of directory table bases.

Flags
for

Page Map Level Table Entries
Page Directory Pointer Table Entries

Page Directory Table Entries
Page Table Entries

Flags

012

Bit 0: Valid 1 = Valid 0 = Invalid
Bit 1: Write 1 = Writeable 0 = Read Only
Bit 2: Owner 1 = User Mode 0 = Kernel Mode
Bit 3: Write-through 1 = Write Through
Bit 4: Cache Disabled 1 = Cache Disabled
Bit 5: Accessed 1 = PFN Accessed 0 = PFN not accessed
Bit 6: Dirty 1 = PFN Updated 0 = PFN not changed
Bit 7: Large Page (PDE only) 1 = 4MB/2MB changes 0 = 4K pages
Bit 8: Global 1 = Global
Bit 9: Copy On Write 1 = Copy On Write
Bit 10: Prototype 1 = Prototype page
Bit 11: Transition 1 = Page is transitioning to disk

Fig. 5 e Flags for page map level, page directory pointer,

page directory, and page table entries.

Page Directory Entry and Page Table Entry
for a

Page Table mapped to disk
(Bit 0 = Bit 11 = 0)

Page File PFN Offset Flags Page table

051231 1

Fig. 6 e Page table entry layout for frames paged to disk.

Page Table Entry for a Prototype Page
(32-bit PAE disabled)

Prototype Index (bits 5..24)
Prototype Index
(bits 1..4)

051131 1

Page Table Entry for a Prototype Page
(32-bit PAE enabled)

Prototype Virtual Address

0103263 1

Prototype Virtual Address = Non-paged Pool Base Address
+ Prototype Index * 4

10

1 0

01

Fig. 7 e Page table entry layout for prototype pages.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6S52

memory parsing tool. To retrieve these files, a GET request is

sent to the Microsoft Symbol Server with the name of the

executable, the GUID and the name of the compressed

program database file. Although Microsoft does not release

the format of PDB files, in 2001 Schreiner provided some

insight into its structure (Schreiber, 2001a). In addition, the

PDB file format in use in 2001 (Schreiber, 2001a) is still valid

suggesting that the PDB file format is very stable.

PDB files are structured like file systems. First, there is a root

“stream”that isan indexofallof thestreamscontained inthePDB

file. Second, the file is divided into 400 byte “blocks” and streams

may span multiple non-contiguous blocks. Finally, there are

blocks of “obsolete” data in the file where a block had been

previouslyallocated toastreamandthensubsequently “deleted.”

The PDB file beginswith the PDB file header shown in Fig. 8.

The first field of interest, dPageSize, tells how long each block

of text is (generally 0x400). The next field of interest, Root-

Stream is a “PDB_STREAM” data structure composed of two

parts, the first being the size of the stream. Finally, the last

field in the header, awRootPages, is the stream pointer (i.e.,

the index number of the block) that contains a list of the

stream pointers containing the root stream. For instance,

awRootPages may be 0x30. In that case at byte 0xC400

(0x30 � 0x400), there would be a list of stream pointers (e.g.,

0x2d, 0x2e, 0x2f) describing where the root stream is. The root

stream itself (in the above example, located at block 0x2d, byte

0xB400) begins with a 32-bit word defining the number of

streams contained in the PDB file. This is followed by a 32-bit

word defining the number of blocks contained in each stream

(possibly some of these are 0 block streams). For instance, if

there are seven streams in the PDB file, the root stream might

begin with 0x07 0x02 0x10 0x0 0x01 0x14 0x0a 0x11. Immedi-

ately following the number of streams and the size (in blocks)

of each stream is a list of the blocks containing each stream. In

the above example, the two 32-bit words following the list

would be the blocks containing stream 0; the sixteen 32-bit

words following these would be the blocks containing stream

1; and the next 32-bit word would be the block containing

stream 3 (since the size of stream 2 is zero).

While parsing the PDB file into streams is relatively

straightforward, determining the format and purpose of the

individual streams is less so. It does not appear that a specific

stream number always perform the same function. However,

there are a few heuristics that produce good results. For

instance, the “section”stream(i.e., thestreamthatdescribes the

sections in the associated portable executable) seems to always

begins with the either the literal “.data” or “.text”. The “struc-

ture” stream (i.e., the stream containing information about the

data structures used by the associated portable executable)

seems to always begin with 0x38. In addition, the “symbol”

stream (i.e., the stream containing the symbols used by the

portable executable) ismade up of records that start with a two

byte record size (safe to assume a value of less than 0x100) and

a twobyte literalof 0x110E. Finally, the“symbol location”stream

(i.e., the stream that adjusts the location of symbols in the data

section) seems to always immediately follow the section

stream. While the format of the individual streams is not

available, by comparing the streams with known values, some

observations are made. Specifically, the records in the symbol

stream shown in Fig. 9 are made up of a variable record size

followed by six unknown bytes of data, followed by the 32-bit

unadjusted offset of the symbol in the data section, followed by

the 16-bit type of symbol, followed by the name of the symbol.

The records in the sections stream inFig. 9 aremadeupof an

8-byte section name, followed by the 32-bit virtual size of the

section, followed by the 32-bit virtual address of the section,

followedbyseveralmorefieldsdescribed inMicrosoft’s Portable

Executabledocument (MicrosoftWindowsHardwareDeveloper

Central). The records in the symbol location stream are

a collection of 32-bit word pairs where the first word is the

unadjusted offset and the second word is the adjusted offset.

Unlike the streams described above, parsing the structures

stream is less straightforward. Each record in the structures

PDB Header Structures

#define PDB_SIGNATURE_200 \
"Microsoft C/C++ program database 2.00\r\n\x1AJG\0“

#define PDB_SIGNATURE_TEXT 40

typedef struct _PDB_SIGNATURE {
BYTE abSignature [PDB_SIGNATURE_TEXT+4];

} PDB_SIGNATURE;

typedef struct _PDB_STREAM {
DWORD dStreamSize; // in bytes, -1 = free stream
PWORD pwStreamPages; // array of page numbers

} PDB_STREAM,;

typedef struct _PDB_HEADER {
PDB_SIGNATURE Signature; // PDB_SIGNATURE_200
DWORD dPageSize; // 0x0400, 0x0800, 0x1000
WORD wStartPage; // 0x0009, 0x0005, 0x0002
WORD wFilePages; // file size / dPageSize
PDB_STREAM RootStream; // stream directory
WORD awRootPages []; // pages containing PDB_ROOT

} PDB_HEADER;

typedef struct _PDB_ROOT {
WORD wCount; // < PDB_STREAM_MAX
WORD wReserved; // 0
PDB_STREAM aStreams []; // stream #0 reserved for stream table

} PDB_ROOT;

Fig. 8 e PDB file header.

Symbol Stream
0x00 UShort Record Size
0x02 UShort Unknown1
0x04 ULong Unknown2
0x08 ULong Offset
0x0C UShort Type

0x0E *Char Symbol Name

Section Stream
0x00 *Char Name (not null terminated)

0x08 ULong Virtual Size
0x0C ULong Virtual Address
0x10 ULong Raw Size
0x14 ULong Raw Pointer
0x18 ULong Relocation Pointer
0x1C ULong Line Pointer
0x20 UShort Relocation Count
0x22 UShort Line Count
0x24 ULong Characteristics

Symbol Relocation Stream
0x00 ULong Relocation Address
0x04 Ulong Data Address

Structure Stream
0x00 UShort Record Size
0x02 STRUCTURE_RECORD

Fig. 9 e PDB stream structures.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S53

stream shown in Fig. 10 is a “field” with an index that begins at

zero and proceeds sequentially. This index is important

because later fieldsmake reference to earlier fields via the field

index. Each field begins with a record size. This is followed by

a data type [source]. The one oddity is if the offset for

LF_MEMBER is 0x8004 or the size for LF_UNION, LF_STRUC-

TURE or LF_ARRAY is 0x8004, or the value for LF_ENUMERATE

is 0x8004, then an additional 32 bits are added to the size of

these structures and the next 32 bits are the offset, size, or

value respectively. Additionally, LF_STRUCTURE, LF_UNION,

and LF_ENUM are often defined twice, once as a placeholder

(e.g., to handle self-referencing) and once with a complete

structure. In this case, the first definition is a shell with

a record size of zero and the second definition contains all of

the relevant information including the name.

3.4. Finding and instantiating processes in memory

Once the memory model and the operating system data

structures are known (by extracting them from the kernel’s

PDB file), they are used to parse thememory dump and extract

configuration and process information. For instance, process

information is stored in the _EPROCESS structure. The first

field in _EPROCESS is itself a structure called _KPROCESS.

Within _KPROCESS, the first field is another structure called

_DISPATCHER_HEADER. Two fields present in the _DIS

PATCHER_HEADER are a two byte tag field and a two byte size

field providing the size of _KPROCESS in 32-bit words (repre-

senting the size in 32-bit words is true regardless of whether

the operating system is 32-bit or 64-bit). With this informa-

tion, it is possible to create a signature for processes (Schuster,

2006b). By using the structures from the PDB file, the size of

KPROCESS is calculated. Further, for all operating system

versions through Windows 7, the type for a process is 0x03

(determined empirically throughMicrosoft’s kernel debugger).

With this information, a _DISPATCHER_HEADER template is

created and populated using the above values and the

structures from the PDB file. This template may then be used

as a “process signature” for scanning memory with. Once the

_EPROCESS structure is found, instantiating it is straightfor-

ward using the structures in the PDB file. For instance, the

page directory base is stored in the _KPROCESS structure

within the _EPROCESS record while a pointer to the object

table is located directly in the _EPROCESS structure. Although

the location of the fields within these structures is found at

run-time using the PDB file, the names of these fields, e.g.,

_EPROCESS, is hard-coded and is assumed to remain static

across all versions of the operating system (the one known

exception to this is the change inWindows 7 from a pointer to

_OBJECT_TYPE in the _OBJECT_HEADER field to having an

index into the obObjectTypeTable). Other fields of interest

include the amount of kernel and user time the process has

consumed, the time the process was created, the name and

unique id of the process, the process’ token (which relates

back to the user who created the process), the priority of the

process, and the number of read, write, and other operations

the process has performed. A final item of interest is the

process environment block which contains, among other

items, the loader table for all modules loaded by the process,

the parameters the process was started with, as well as the

operating system version and number of processors.

3.5. Finding and instantiating configuration
information in memory

While finding configurationmanagement “hives” (i.e., registry

entries) in memory is also done with a signature key, the

instantiation is less straightforward (Dolan-Gavitt, 2008). The

configuration manager is composed of several “hives” with

each hive having a specific purpose. For instance, under

Windows XP SP2, there are hives for the NTUser, UsrClass,

currently logged in user, LocalService user, NetworkService

user, template user (“default”), Security Account Manager

(SAM), SYSTEM, SECURITY, SOFTWARE, and two volatile hives

that have no on-disk representation (HARDWARE (hardware

installed on the particular machine) and REGISTRY (a header

hive that provides a unified namespace)) (Dolan-Gavitt, 2008).

Each of these configurationmanagement hives (_CMHIVE) has

a field named signature with a value of 0xbee0bee0. With the

signature, it is possible to find potential configuration

manager hives in memory (and then remove any false posi-

tives by examining their structures). Once these hives are

found, they still need to be parsed. Hives are broken down into

fixed length 0x1000 byte binswith variable lengths cells within

them. The cells are generally of one of two types: key nodes

and value nodes. Key nodes provide the directory structure

while value nodes provide the values for the configuration

keys. References to cells in a bin are made using a cell index.

The high bit of the cell index indicates whether the cell index’s

main storage is stable (on-disk) or volatile (only in memory).

The next 10 bits are the directory index and work the hive’s

map to point to a hive table. Bits 12e20 are the table index and

provide an offset into the table found using the directory

index. Finally, the low 12 bits are the cell offset for the hive

table found previously (Dolan-Gavitt, 2008).

Key nodes have a name followed by either values for the

count of subkeys and a cell index containing the LF records (an

LF_FIELDLIST
list of fields

LF_STRUCTURE
UShort Element Count
UShort Properties
ULong Field Index
ULong Derived
ULong Vshape
UShort Size
Char* Name

LF_POINTER
ULong Underlying Type
ULong Pointer Array

LF_MEMBER
UShort Properties
ULong Underlying Type
UShort Offset

Char* Name
LF_UNION

UShort Element Count
UShort Properties
ULong Field Index
UShort Size
Char* Name

LF_ARGLIST
ULong Element Count
ULong[] Arguments

LF_PROCEDURE
ULong Return Value Type
UChar Call Type
UChar Unknown
UShort Element Count
ULong Field Index

LF_ENUM
UShort Element Count
UShort Properties
ULong Underlying Type
ULong Field Index
Char* Name

LF_ENUMERATE
UShort Properties
UShort Value
Char* Name

LF_ARRAY
ULong Underlying Type
ULong Index Type
UShort Size
UShort Unknown

LF_BITFIELD
ULong Underlying Type
UChar Size
UChar Offset
UShort Unknown

Fig. 10 e PDB structures.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6S54

arrayof cell indicesandsubkeyabbreviations) or a list of values

(which also is a count followed by cell indices). Consider, for

example, translatingaprocess token intoausername. First the

SOFTWARE hive is located. Then the key node tree is traversed

to find the value list for Microsoft/Windows NT/Current

Version/Profile List. At each level (starting from the root index),

a locationof thesublist is found.Eachentry in thesublistpoints

to a key node with a name. From the SOFTWARE hive, the first

sublist is traversed until a key nodewith the nameMicrosoft is

found. Then the sublist at that key node is traversed until

WindowsNT is found. This is repeated until the Profile List key

node is found. At this point, the sublist is traversed looking for

aname thatmatchesa string representationof the token.Once

this key node is found, the sublist is traversed to find the Pro-

fileImagePath key node. This key node has a value list with

(in this case) a single value for thehomedirectory of that token.

Ingeneral thefinal subdirectoryof thatpathshouldcorrespond

to the name of the user who started the process.

3.6. Finding and instantiating network activity in
memory

In addition to containing the data structures of the executables,

the PDB files also contain the symbols used by an executable.

This is particularly important since the Windows operating

system kernel does not directly handle communication.

Windows uses tcpip.sys (a portable executable) to handle its

TCP/IP communication. Furthermore, the data structures (i.e.,

symbols) used to store the communication activity are not

exported. Instead, thenamesandstructuresof the relevantdata

structures must be determined via reverse engineering. For

instance, inWindowsXP, the symbol _AddrObjTable isa tableof

process IDs and TCP connections while _TCBTable is a table of

process IDs and UDP connections. The structure of these

symbols (along with the symbols for their sizes, _AddrObjTa

bleSize and _MaxHashTableSize respectively)must be found by

manually examining the tcpip.sys portable executable.

Once these symbols are known, the memory analysis tool

uses the PDB file for tcpip.sys to find the location of these

symbolswithin the tcpip.sysexecutable resident in thememory

dump. Within the PDB file, there are two streams used to

calculate the location of the symbols. The first, provides a list of

the symbols along with their offsets. The second, is an adjust-

ment for these offsets. This second stream is a tablewhere each

entryhas twovalues. Thefirst is a virtual address (relative to the

image base address) and the second is the sumof the offset and

the relative virtual address of the data section (found in the

section stream). Once the adjusted locations of these symbols

within the portable executable resident in memory is known,

thememory tool extracts the local and remote socket addresses

as well as the process they are associated with.

4. Analysis of results

Theanalysis tooldevelopedfollowingtheprocess inFig. 1parses

a memory dump (with associated page files and potentially

memory-mapped files) from aWindows NT family of operating

systems to provide information on user accounts, theWindows

Registry, and running processes. The tool outputs system,

process, registry, and user information in a standalone tool that

runs without API calls or high level language interpreters.

To test the tool’s functionality, memory dumps are

generated from 32-bit Windows XP with PAE enabled and

disabled, from 32-bit Windows Vista with PAE enabled, and

from 64-bit Windows 7. The output is then compared with

output from Microsoft’s netstat and SysInternals psinfo,

pslist, logonsessions, handles, and listdlls utilities

(Russinovich). The system information examined includes

operating system version, number of processors, and number

of processes. The process information examined includes

process creator, files opened, registry keys accessed, modules

loaded, and network activity. Several application programs

are started on the machine including Internet Explorer, Word,

PowerPoint, Visual Studio, Calculator, Kernel Debugger, and

two command line shells. One of the command line shells is

hidden by the FUTo rootkit (Silberman, 2006).

Test results demonstrate that the memory analysis tool

provides the same or equivalent information to the infor-

mation provided by the SysInternal utilities. In addition, in

the case of Windows XP, the Windows-agnostic tool

provides the same information provided by Volatility (since

Volatility is limited to Windows XP, it could not be tested on

Windows Vista or Windows 7). In all cases, the operating

system version, processor count, process count, user IDs,

loaded modules, files, registry keys, and network activity

matched.

While these tests were performed only on a subset of the

Windows NT operating systems, it should be straightforward

to extend the Windows-agnostic tool to all Windows NT

operating systems. There is, however, one issue. Since the

names of structures are still hard-coded, any changes to the

names of the variables would require changing the memory

analysis tool. For instance, the memory analysis tool assumes

there is a structure called _EPROCESS that has process infor-

mation and that there is a structure contained within

_EPROCESS called DirectoryTableBase that contains the page

directory base for a process. If in a future version of

aWindows operating system, Microsoft changes the names of

the structures, the tool will have no way of knowing what the

newnames are. In fact, this did occur whenMicrosoft released

Windows 7 and changed the method of associating an object

type with an object from a pointer within the _OBJEC-

T_HEADER record to an index into the Object Type Array

pointed to by obpObjectTypeTable.

Data structure names have also changed in each operating

system release of tcpip.sys.While in the case of kernel objects,

the new structure names are generally published making any

required coding changes straightforward, this is not the case

for tcpip.sys. Changes in tcpip.sys are not publically available

and can only be found by reverse engineering the new system

module. This means that extracting network activity across

operating systems continues to require manual operating

system specific coding.

5. Conclusions and future work

By incorporating the debug structures and PDB files, memory

analysis tools can handle a much larger range of operating

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S55

systems. Tests performed on 32-bit Windows XP with and

without physical address extensions, 32-bit Windows Vista

with physical address extensions enabled and 64-bitWindows

7 show that Windows agnostic memory analysis tools can

provide the same level of detail as the current state of

Windows specific memory analysis tools with one exception.

Given the degree that the data structures in tcpip.sys change

from operating system version to operating system version,

memory analysis tools need to remain operating system

specific for network communications.

While greater understanding of the PDB file structures is

needed, these same techniques should extend to searching for

malware in the portable executables found inmemory dumps.

With this additional functionality, even memory-resident

malware becomes visible to the forensic investigator. This

provides access to a two new classes of malware: (1) malware

that is downloaded only after a stub is executed and (2) mal-

ware that is packed (encrypted) and only unpacks (decrypts)

when it is loaded into memory.

Finally, there is no reason that these techniques have to

be limited to memory dumps. By incorporating them either

into system modules or into an underlying hypervisor, these

tools can function as sensors for intrusion detection

systems.

r e f e r e n c e s

Barbarosa E. (Opcode), Finding some non-exported kernel
variables in Windows XP, http://www.rootkit.com/vault/
Opc0de/GetVarXP.pdf.

Betz C. memparser, http://sourceforge.net/projects/memparser;
2005.

Carvey H. Windows forensic analysis. Syngress; 2007.

Digital Forensics Research Workshop. DFRWS 2005 forensic
challenge e memory analysis, http://www.dfrws.org/2005/
challenge/index.shtml; 2005. Accessed February 19, 2010.

Dolan-Gavitt B. Forensic analysis of the windows registry in
memory. In: Proceedings of the 2008 Digital Forensic Research
Workshop (DFRWS); 2008. p. 26e32.

Ionescu A. Getting Kernel variables from KdVersionBlock, Part2,
http://www.rootkit.com/newsread.php?newsid¼153.

Mandiant. Memoryze, http://www.mandiant.com/software/
memoryze.htm. Accessed August 15, 2009.

Microsoft Support. Description of .PDB and of the .DBG files,
http://support.microsoft.com/kb/121366.

Microsoft Windows Hardware Developer Central. Microsoft
portable executable and common object file format
specification, http://www.microsoft.com/whdc/system/
platform/firmware/PECOFF.mspx.

Prosise C, Mandia K, Pepe M. Incident response & computer
forensics. 2nd ed. McGraw-Hill/Osborne; 2003.

Russinovich M, Solomon D. Microsoft Windows internals. 4th ed.
Microsoft Press; 2005.

Russinovich M. SysInternals suite, http://technet.microsoft.com/
en-us/sysinternals/bb842062.aspx. Accessed August 15, 2009.

Schreiber S. Undocumented Windows 2000 secrets:
a programmer’s cookbook. Addison Wesley, http://www.
informit.com/articles/article.aspx?p¼22685; 2001a.

Schreiber S. Undocumented Windows 2000 secrets:
a programmer’s cookbook. Addison Wesley, http://
undocumented.rawol.com/; 2001b.

Schuster A. PTfinder, http://computer.forensikblog.de/en/2006/
03/ptfinder_0_2_00.html; March 2, 2006a.

Schuster A. Searching for processes and threads in Microsoft
Windows memory dumps. In: Proceedings of the 2006 Digital
Forensic Research Workshop (DFRWS); 2006b. p. 10e6.

Silberman P. FUTo, http://www.uninformed.org/?v¼3&a¼7&t¼
sumry; Jan, 2006.

Walters A, Petroni N. Volatools: integrating volatile memory
forensics into the digital investigation process. Blackhat Hat
DC 2007, www.blackhat.com/presentations/bh-dc./bh-dc-07-
Walters-WP.pdf; 2007.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6S56

http://www.rootkit.com/vault/Opc0de/GetVarXP.pdf
http://www.rootkit.com/vault/Opc0de/GetVarXP.pdf
http://sourceforge.net/projects/memparser
http://www.dfrws.org/2005/challenge/index.shtml
http://www.dfrws.org/2005/challenge/index.shtml
http://www.mandiant.com/software/memoryze.htm
http://www.mandiant.com/software/memoryze.htm
http://support.microsoft.com/kb/121366
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
http://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
http://www.informit.com/articles/article.aspx?p=22685
http://undocumented.rawol.com/
http://undocumented.rawol.com/
http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html
http://computer.forensikblog.de/en/2006/03/ptfinder_0_2_00.html
http://www.uninformed.org/?v=3&a=7&t=sumry
http://www.blackhat.com/presentations/bh-dc./bh-dc-07-Walters-WP.pdf
http://www.blackhat.com/presentations/bh-dc./bh-dc-07-Walters-WP.pdf
http://www.rootkit.com/newsread.php?newsid=153
http://www.informit.com/articles/article.aspx?p=22685
http://www.uninformed.org/?v=3&a=7&t=sumry

	Windows Operating Systems Agnostic Memory Analysis
	Recommended Citation

	Windows operating systems agnostic memory analysis
	Introduction
	Background
	Methodology
	Determining the operating system
	Mapping virtual addresses to physical addresses
	Operating system structures
	Finding and instantiating processes in memory
	Finding and instantiating configuration information in memory
	Finding and instantiating network activity in memory

	Analysis of results
	Conclusions and future work
	References

