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Nondestructive Electromagnetic Characterization of
Uniaxial Sheet Media Using a Two-Flanged
Rectangular Waveguide Probe

Neil Rogers, Michael Havrilla, Member, IEEE, Milo Hyde, Member, IEEE, and Alexander Knisely

I. INTRODUCTION

ECENT advancements in fabrication capabilities have

renewed interest in the electromagnetic characterization
of complex media, as many metamaterials are anisotropic
and/or inhomogeneous. Additionally, for composite materials,
anisotropy can be introduced by load, strain, misalignment, or
damage through the manufacturing process [1], [2]. Methods
for obtaining the constitutive parameters for isotropic materials
are well understood and widely employed [3]-[8]. Therefore, it
is crucial to develop a practical method for the electromagnetic
characterization of anisotropic materials.

Characterization methods for anisotropic media are signifi-
cantly more difficult, due to the inherent complexity of the
resultant form of Maxwell’s equations and the requirement for
a greater number of measurements. Destructive, free space,
and cavity methods, such as those detailed in [9]-[16] can
be very useful, but require a precisely cut sample, which is
not always available for many practical scenarios. Recently,
the two-flanged waveguide measurement technique (tFWMT)
employed in [5], [8], [17] has been demonstrated effectively
in extracting both permittivity (¢,) and permeability (p,) of
isotropic materials. Additionally, the coaxial clamped probe
(CCP) method was employed [18] in extracting the constitutive
parameters of anisotropic materials. However, due to well-
known issues with characterizing low-permittivity materials,
the uncertainty associated with the CCP method is greater than
that of the tFMWT.

This paper advances the state-of-the-art with regards to non-
destructive electrogmagnetic characterization by extending the
theory of the tFMWT to account for uniaxial anisotropy and
furthermore presents the significant result of demonstrating
the method experimentally. It is shown the present method
reduces much of the uncertainty associated with the CCP, but
maintaining similar accuracy. Additionally, this work provides
a promising foundation for the electromagnetic characteri-
zation of more general classes of complex media, such as
gyrotropic.
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The theoretical development of the tFWMT for uniaxial media,
is presented in the first section. Following the previous work,
this analysis focuses on the derivation of the theoretical
scattering parameters for uniaxial media, which are ultimately
required for permittivity and permeability extraction. These
parameters are formulated by first applying Love’s equivalence
principle and then enforcing the continuity of tangential fields.
The resulting coupled system of Magnetic Field Integral
Equations (MFIEs) is subsequently solved for the theoretical
scattering parameters using the Method of Moments (MoM).
Lastly, the desired complex permittivity and permeability
tensor elements are determined via a nonlinear least squares
minimization of the difference between the theoretical and
measured scattering parameters.

To validate the new tFWMT, experimental results of two
non-magnetic honeycomb materials are presented in Sec-
tion III. The permittivity tensor results obtained using the
extended tFWMT are compared with those obtained using a
traditional destructive characterization method. The tFMWT’s
sensitivities to common experimental errors are also investi-
gated.

II. TWO-FLANGED WAVEGUIDE MEASUREMENT
TECHNIQUE

In general, the complex permittivity and permeability tensor
elements, ¢ = &de, + YlJer + 23e, and § = ZTp +
Yyps + 221, can be determined via a nonlinear least squares
minimization of the difference between the theoretical and
experimental scattering parameters:

S (f.dier ey piz) — S (f
S (f.dierexy s piz) — S5y (f
SY(f.dier e piz) — S35 (f
Sy (f.dyer e, i) — 55 () 11,

where f is the frequency and d is the thickness of the material
under test (MUT). Note, in the case of Figure 1, S1; is
not independent from Sss, nor is Sy; independent from Sio,
therefore only enough independent measurements are available
to extract two of the four uniaxial constitutive parameters.
The dependent measurements are included to minimize ex-
perimental errors. In order to extract all four parameters, an
additional set of independent measurements is necessary. For
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Figure 1: Geometry of the tFWMT. The MUT, of thickness
d and parameters ¢ and ,17, is clamped between two free-
space-filled infinitely-flanged a x b rectangular waveguides.
The complex amplitudes of the incident mode, the reflected
modes, and the transmitted modes are specified by af, a;

q
+ .
and by, respectively.

some materials, a two-thickness method (TTM) [3] could
be used (when a suitable second thickness of the MUT is
available) or the two-layer method (TLM) [19].

In developing the theoretical coefficients, Love’s equivalence
principle, continuity of tangential fields, and the MoM are
utilized to arrive at a set of coupled MFIEs. The MFIEs
contain six integrals, which if calculated numerically, would
require tremendous computational resources given the number
of function evaluations required by the nonlinear least squares
solver. Therefore, the integrals are evaluated in the spectral
domain using complex plane analysis resulting in a single
remaining integral which is evaluated numerically.

A. MFIE development and MoM solution

The physical configuration of the tFWMT geometry is shown
in Fig. 1. The first step in developing the MFIEs is to
determine the fields in each region (I, II, and III). Since
boundary conditions are enforced at z = 0 and z = d, only
the tangential fields, indicated by the subscript ¢, are reported
here. The tangential fields in Regions I and III are

Q
o) +> -1z - z
Eir=ajée ™ +Zaq éqee
g=1

2

Q
7 _ P M1z -7 z
Hy1=afhe ™ —Zaq hge
q=1

2

and

Q
o _ 2 + 2 —v4(2—d
Eu[[] = bq €q€ a( )
q=1

o : 3)
Hogrr = Y b lge =)

q=1

where ¢ represents the mode index (m, n combination), €, and
f_iq are the tangential components of the rectangular waveguide
electric and magnetic field distributions (both TE* and TM?),
respectively [20], and v, = \/(mw/a)2 + (n7/b)* — k2.
Here, kg = w./éopo is the free-space wavenumber and
w = 27 f. Note that the tFWMT symmetry condition discussed
in [5] holds here. Therefore, ¢ = 1 describes the TEf, mode,
g = 2 describes the TE%, mode, etc. A list of the first 20 values
of ¢ and the corresponding modes is given in [21].

In anticipation of enforcing the continuity of tangential fields
and a subsequent MoM solution, the electric field given in (2)
is evaluated at z = 0 (denoted by é,1) and tested using the
q"" mode of the electric field. Rearranging (2) and utilizing
mode orthogonality, one obtains

aq_ = ng'galds - aqul (4)
S1
with
1 ...q=1
0g1 = . 5
a {0 g#1 ®)

Performing similar operations on the electric field of (3)
evaluated at z = d (denoted by €}2), one finds

b = f &, EundS. (©)
Sa

Substituting (4) and (6) into the magnetic fields of Regions
I and III evaluated at z = 0 and z = d, respectively,
yields

Q
ﬁt,](Z = 0) = 2&?51 — Z (:J é‘q.é‘alds hq (7)
g=1
— Q —
Hi(z=d) = Z f€q-é’a2d5 hy. (8)
q=1

Next, an expression is obtained for the tangential magnetic
field in the parallel-plate region of the tFWMT (Region II).
This expression is given in the familiar Green’s function form
via Love’s equivalence principle:

2
AP = 3 [ Gunlpelteel) Tl 2)ds!. - ©)
c:ls
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Defining Xp = &y + 9y and d?\, = d\,d)\,, the dyadic
spatial-domain Green’s function of (9) is the inverse trans-
form of the spectral-domain Green’s function, which is given
explicitly in [22]:

th(ﬁ 7', 2")

o0
]_ = . o = =/
=1 JG (Xp, 2|27 )e?™e (p=p )d2)\p
—0

with ‘j;'l,l = —Zx gal and j;ﬂ =2ZXx é'ag.

In the summation notation used in (9), the ¢ index refers
to the aperture under consideration. Note that because the
tFWMT is a two-port device, there will be a “self” term and a
“cross” term to account for the two source and observation
points (2, 2 = 0 and 2, 27 = d). Here, the unprimed
coordinates correspond to the observation points, while the
primed coordinates refer to the location of the source. The
single overset tilde represents a quantity that has been Fourier
transformed on the transverse spatial variables, x and y. The
first h in the hh subscript on the Green’s function refers to
the observed transverse magnetic field, while the second h
refers to the source which maintains the field—an equivalent
transverse magnetic surface current in this case.

Finally, enforcing the continuity of the tangential magnetic
fields at z = 0 and z = d leads to the desired system of
coupled MFIEs:

Q 2
o oo e 1
2a; hy —qgl (J €q*€a1dS | hy = ;1(_1) m@m (11)
and
Q . 2
> fé'q-é‘szdS hg =Y. (= 47r2®2“ (12)
qg=1 y c=1
where
o0 b a o
0= [ [ Gn ity e
00 (13)
eI Ao (P=F )dac/dy’}dQ)\p
and
0 b a =
Ou = [[{ [ | G Rzl [ x 2]
- Y00 (14)

ejxp-(ﬁ*ﬁ')dxfdy/ a2\,

In ©. and O, zf’ is the position just to the right of
z = 0 and z, is the position just to the left of z = d.
The subscript index c¢ denotes the appropriate aperture for
the source terms. Furthermore, throughout this paper, primed
variables correlate with source terms and unprimed variables
correlate with observation terms. The MoM is used to solve

the above system of MFIEs. The unknown aperture electric
fields are expanded using the tangential rectangular waveguide
electric field distributions given in (2) and (3), namely

o (15)
€a2 = Z afCﬁ)Q)gu,
w=1

Note that the generic mode index ¢ has been replaced with a
mode index w, which refers specifically to the basis functions
to represent the TE?/TM?* modes. As was previously men-
tioned, w = 1 refers to the TE;y mode, w = 2 refers to the
TE3p mode, etc. Furthermore, in some cases it is necessary
to distinguish between whether the x and y variations in
the modes, which are typically denoted by m and n, are
specifically associated with the testing or basis functions.
In these cases, the testing functions are designated by the
notation TE/TM?, .~ and the basis functions by the notation
TE/TM3, .. The resulting equations are then tested using the
tangential rectangular waveguide magnetic field distributions
also provided in (2) and (3). In this case, v is used as the
mode index for the testing modes, namely,

ﬁv(ﬁl)-{(ll)}dsl
: (16)
ﬁv(ﬁg)-{(m)}dsg

Lo

n

2

where the expansion indices represent the total number of
modes considered, thus determining the accuracy of the
theoretical solution. After applying the testing and expan-
sion functions, a 2Q) x 2@ system of equations is formed,
namely,

A0 40D [cM]  [BOD
[A@l) A(m)] [Cm] = [Bm)]’ (a7
S Y~

2Qx2Q 2Qx 1 2Q x1
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(18)

Here, the double integrals depicted by the A notation represent
the total observed (unprimed variables) and source (primed
variables) magnetic fields at a given aperture (a subscript).
Furthermore, the Z,, terms represent the wave (and mode)
impedance for the waveguide region. Note that « = 1,2 and
Aﬁ?) = A%), Aq(,%,}) = Aq(ﬁf) due to the symmetry of the
tFWMT and electromagnetic reciprocity, respectively.

Solving for C in (17) leads to the theoretical scattering
coefficients necessary to solve (1) via nonlinear least squares.
The theoretical scattering coefficients are found from the MoM
expansion coefficients, (4) and (6), by

gy 4o (19)
aq
b+

Sy = - =, (20)
ay

where the theoretical transmission and reflection coefficients
are found from the first element in each subarray of C,
which corresponds to the dominant propagation mode in the
waveguide. Note, solution convergence is typically reached
using a small number, @, of higher-order modes.

B. Evaluation of the ), integral via complex plane analy-
Sis

Although a complete solution to the minimization problem
in (1) has been determined, the solution may be expedited
considerably by the analytical evaluation of some of the
integrals of (18). Evaluation of the Kv and Kw spatial integrals
over the observation variables x and y and the source variables
2’ and 3/, respectively, is very straightforward. Furthermore,
in one of the main departures from the isotropic case, the

4

Green’s function is a dyad with off-diagonal elements, thereby
requiring ex%)ansion of the dot products. Here, the MoM matrix
elements Avlu}) are evaluated. The evaluation of the others
follows in a similar manner.

After evaluating the Kv and Kw spatial integrals, Aq(,%ul ) takes
the form

AGY = du () [028)*+ )] (14 6u)

Zw

@ 0
(11) h o+ ik 5 400
~ {AM f le,MzwkmkmAythm

—0o0
+ ME M) Eookyw e Ay Gih 2y
+ MM koo kyw e Ay Goh e

—00

h oqrh 2 /500
+ My, My kyokyw A Gy

Ay, }dAI

21

(1= (=meedren) (1—(—1)mwe I Aee)
= ()\:c+kmv) (Ax_kxv) ()\x"_kmw) ()\m_kzw)

(22)

1—(=1)"veirwb) (1—(—1)"we=IAvb
Y (Aythyo) Ay—kyo) Ay + Eyw) (Ay — kyw)

where the notation for the Green’s functions has been con-

densed such that

é%%’mx = C:'hh,m(z = 0|Z, = 0).

(24)

Here, the M and Z terms are dependent on whether the mode
is TE* or TM*:

M:iloz = ksa/Za

M;‘a = kya/Za

Za = jw,U/O/’yza

...for TE?

MaNa

My, = kya
M, = _kla )

yo

Zo = 'Yza/ (jW50)

where ko = mam/a; kyo = nem/b; and a = v, w (specify-
ing the testing or basis functions, respectively). Additionally,
since propagation in only the z—direction is assumed, ~y, has
been written as ., where, again, « specifies either the testing
or basis mode.

...for T™M7,

In order to analytically evaluate the spectral-domain inte-
grals, Cauchy’s Integral Theorem (CIT), Jordan’s Lemma, and
Cauchy’s Integral Formula (CIF) are utilized. It is shown that
only one of the spectral integrals can be handled analytically,
as a branch cut appears in the second integral which requires
much more complicated analysis. Here, the )\, integral is
evaluated analytically; the A, integral is evaluated numeri-
cally.

Upon inspection of the AS}J) term, one notes that the poles lo-
cated at +£,,, dictate how the ), integral must be evaluated—
the other poles not being dependent on n,. As such, five
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possible cases manifest for (21) depending on the values of
N, and n,,:

I ny=n4=0
II n, #0,n, =0
I n, =0,n, #0
IV ny, =ny #0
Vng, #n,#0.

Each of these cases must be considered independently. This
paper gives a short overview of the process for I, which
contains the dominant mode-only assumption.

For I, n, = n, = 0, which leads to ky, = ky, = 0.
Therefore, the A\, integral of (21) simplifies to
o]
J MI M Kook (jAZQA?c) cos (X.pd)
)\73 A%w,ut sin (A,od)
% , (25)

[(1—61*1/*’) + (1—e_j)‘?/b)] }d)\y

where g = /K7 — pu/ps (N2 +X2) and ky = wy/Eifir
Examining the exponentials, one concludes that upper half
plane (UHP) closure is required for the exp (jA,b) term,
while lower half plane (LHP) closure is required for the other.
Both cases are considered separately and combined for the
final result. Additionally, the spectral-domain Green’s function
consists of a TE? contribution and a TM? contribution; these
are also considered separately. For the sake of brevity, only
the TE? case in the UHP is considered here.

The complex plane contour used in evaluating (25) is drawn
in Fig. 2. In the UHP, the semicircular contour CE is shown
and its contribution to the overall integral is considered in the
limit as R — o0. Note that the other poles arise from the
spectral-domain Green’s function, i.e., the poles at +j\, and

i e/ 1 — 1
for calculating the value of (25) over a simply closed contour
in the complex plane:

— A2. The CIT provides a means

o pe g f @)
—©cof cf, Xc¢f
[-¢+4+¢ @7)
o c o Cf, e
= jmRes (A, = 0) + j27Res (A, = j\;)
(28)

+j2m ) Res (Mg = £7F) ’
l

where the contribution from C;; — 0 as R — o0, as stipulated
by Jordan’s lemma. The CIF is then employed to calculate the
residue of each pole. Repeating this process for the TE* LHP

5

UHPC

Ay,re

LHPC

Figure 2: The integrand of (25) in the complex )\, plane.
The branch cut arises from the square root term in \,9 and
is removable due to the fact that the integrand is even in
X.9. Note that the distance between the paths around the
singularities are exaggerated to give a better view of the
overall contour path for implementing CIT. In reality, they
lie on top of each other.

contribution and the TM?* UHP and LHP contributions and
combining the results yields

0
Sow  Zu

A =g~ 4{ J On [ 43 + B

- (29
11 11
+0V + D )]d)\x}
where
Cy, =

(I=(=1)mre?) (I—(=1)™ee™A) 1. (30)
(/\ac + kxv) (>\x - kx'u) (>\3:+k9cw) (Ax_kxw)

In (30),
40D _ MpP M° mymy, \ [ 727bA%, [ cos (A%,d)
Ay a? Wity sin (A%,d)

1 — e_p‘ywb)

(771) (I —eMue?)
Mo (Vo +22)
47rw5 i (1 —c Aylwb) |
=0 Uh,b (

X2, +A2) 1+ 6o,

Yiy

47mz

wpid

Bf\u) _ C,(\H) _ D(n) ~0
Y Y y (31)
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where
A \/uz/ut[ — (im/a)*| = A (32)
Ay \/Ez/st [kf—(lw/d)Q]—Ag (33)
= k2 — /2. (34)

The A'! term for the other four cases as well as the other
MoM matrix elements (i.e., A'2, A?!, and A??) are evaluated
in a similar manner.

Although evaluating these integrals is onerous, the gain in
terms of code efficiency is significant, especially when con-
sidering a large number of modes in the MoM solution.!
Finally, note that a branch cut appears in the )\, complex plane
through the terms \¥,, A, and A, . Since the integrand is
not even in those terms, the branch cut contribution is not
removable. Therefore, as mentioned previously, the A, integral
is evaluated numerically.

ITI. VALIDATION
A. Experimental configuration

Material measurements were made using the configuration
shown in Fig. 3, capturing both the transmission and reflection
measurements from an Agilent Technologies E§362B PNA.
The clamped waveguide configuration consisted of 15.24 cm
x 1524 cm x 0.635 cm (6 in. x 6 in. x 0.25 in.) aluminum
flanges attached using precision alignment pins and screws
to two Maury Microwave precision X-band waveguides. The
waveguides were mounted on a stable platform using optical
table components and custom machined waveguide clamps,
providing excellent repeatability and precision during the
measurement process.

The system was calibrated using the well-known Thru-Reflect-
Line [23] technique, which is conducted using the built-in
calibration routine of the PNA. Here, the thru measurement
was made with the rectangular waveguides connected to
the flange plates, which were then clamped together. For
the reflect measurement, a highly reflective brass plate was
placed between the flanges. Since the typical line standard
would require precise custom fabrication, the normal A/4 line
standard was replaced with a modified measurement, in which
the two rectangular waveguides were directly connected and
a negative phase delay of 43.730ps was manually entered to
compensate for the thickness of the two 0.635 cm (0.25 in.)
flange plates. This time delay correlates to the thickness of the
plates.

For the plots, error bars take into consideration uncertainties
in the real and imaginary parts of each of the S-parameters
and the thickness of the material. Therefore, we have the

IThis is simply a factor of evaluating fewer integrals, as numerical
integration is computationally expensive. In the most extreme cases, the
nonlinear least squares solver will require dozens of function evaluations at
each frequency to converge; therefore, calculating 1 integral numerically is
significantly more efficient than calculating 4.

uncertainty for a given solution at a single frequency value

as:
2 2 da 2
2 Z [ S (8513,%:11)]

i=1j5=1
+i2[ ()]
=1j=1 Sirim aS?ﬂj,imag

<El (F)]

In the absence of analytical expressions for the required
partial derivatives, we compute the approximate numerical
derivatives using the finite difference formula, with h a small
change:

Q0= Eg, Ex i, My

(35)

of(x) _ fle+h)—
or h
Previous work has shown that material thickness is the largest
contributor to uncertainty [17]. All errors bars are plotted as
+20.

f(x)

(36)

Because the constitutive parameters are still contained in a
complex integral over )., a non-linear least squares method,
in particular, MATLAB® ’s Isqcurvefit, is utilized to extract the
constitutive parameters. This algorithm is based on the Trust
Region Reflective (TRR) method and is not overly sensitive to
the initial guess, based on the experience gained through pre-
vious work and MATLAB® documentation. However, it should
be noted that this method requires a number of iterations to
converge, which can increase computation time. In order to
minimize the impact of convergence time, the code updates
its initial guess based on previous values. This leads to more
rapid convergence over the frequencies under consideration.
Furthermore, it is well known that nonlinear least squares
methods are sensitive to outliers. This paper takes accurate
and precise calibration as the most practical remedy.

In order to test the validity of the code, the method was
utilized to extract permittivity and permeability (by assuming
et = €, and puy = p.) on isotropic materials; the results
showed excellent agreement with well-known methods, such
as Nicholson-Ross-Weir. This provided good confidence to
proceed with uniaxial materials.

B. Experimental results

1) Characterization of 3D-printed honeycomb: Materials with
occlusions arranged in a lattice structure (such as honeycomb)
can be expected to demonstrate uniaxial characteristics. With
recent advances in 3D printing technology and ease of access
to such devices, patterned materials can be generated in CAD
software and rapid prototyping of engineered materials is a
fairly simple matter. In the course of this work, a Connex 500
was used for producing prototype materials. The “ink” used
in the printer was a white nylon polymer and was utilized
to make a honeycomb patterned material. Due to resource
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Figure 3: The tFWMT apparatus shown measuring a white
nylon material. The tFWMT is supported in a mounting
platform and clamps are used to ensure good contact between
the MUT and the flange plates. The mounting platform and
the clamps allow for excellent repeatability and precision in
the measurement process.

Figure 4: Samples of the honeycomb material used for the
tFWMT and WRWS measurements. The center-to-vertex spac-
ing of each regular hexagonal cell was 1.7 mm. The center-
to-center spacing of each cell was 3.5 mm.

limitations, the white nylon polymer was the only material
available for use in the 3D printer. Therefore, the occlusions
of the prototype materials consisted of air. As a result, the
measurements in the rest of this paper are limited to non-
magnetic uniaxial materials.

Due to the low-loss nature of the lattice material and the
air-filled hexagonal cells, the measured S-parameters were
time-gated to eliminate the reflections from the edges of the
plates using the method described in [17]. A photograph
of the 3D-printed honeycomb samples is shown in Fig. 4.
In order to compare the values extracted via the tFWMT,
the method described in [24]-[26] was used to extract the
permittivity. This technique, called the waveguide rectangular
to waveguide square (WRWS) technique, utilized a waveguide
that slowly tapers from the standard X-band aperture to a
square aperture, allowing for the measurement of a precisely
cut cube sample. In this case, the sample was measured at
orthogonal orientations and the values were extracted using
an iterative root finding method. The WRWS ¢; and ¢, results
are shown in Figs. 5 and 6.

Figure 5 shows the dominant-mode-only results using the
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Figure 5: The results from the tFWMT extraction performed
on the honeycomb material using only the dominant mode.

tFWMT on the 3D-printed honeycomb sample. It is clear from
Fig. 5 that the results for the transverse permittivity ¢; agree
very well with the WRWS method. The longitudinal permit-
tivity £ is not as stable nor as well in agreement with WRWS
results as the €, results. This is somewhat expected considering
the measurement configuration. In a rectangular waveguide
probe, the dominant mode is TE7,, which does not contain
a z—directed electric field component; thus, the tFWMT
weakly interrogates €,. Even so, the tFWMT configuration
produces improved results over those reported using a similar
nondestructive measurement geometry, where, in some cases,
the €, were not reported due to their instability [9].

With regards to the inclusion of higher-order modes, the
authors of [9] hypothesize that higher-order modes do not
significantly affect the results for anisotropic materials. Fig-
ure 6 demonstrates the results when higher-order modes are
considered. In this case, due to the symmetry of the apertures
and for computational efficiency, only TEf,, and TM7
(where ¢ = 0,1,2,...,Q) are considered [S]. From these
results, it is apparent that higher-order modes do not signif-
icantly affect the extracted values for &;, but including the
TE7, and TMj, modes does elicit a significant change on
the Im[e,] results — bringing the values much closer to the
WRWS results. Including the higher order modes does produce
a significant change in the Re[e,] results, but it is not clear
that these results are improved over the dominant-mode-only
results. Therefore, it is difficult to draw concrete conclusions
from the data at hand about the validity of the hypothesis that
dominant-mode-only analysis is sufficiently accurate for most
applications. Note that additional modes beyond these two do
not contribute significantly to either component.

2) Characterization of lossy honeycomb: A uniform insertion
loss carbon-loaded honeycomb core was procured from Cum-
ing Microwave. The cells were manufactured with 0.3175 cm
(0.125 in.) width and the core was loaded with a proprietary
lossy coating rated at 10 dBifinch. Since the material is
available in 30.48 cm x 30.48 cm x 1.02 cm (12 in. x 12 in.
x 0.4 in.) sheets, a free-space measurement was determined to
be the most effective comparison method. The results from the
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Figure 6: The results from the tFWMT extraction performed
on the honeycomb material incorporating higher-order modes.
Only the TEY 5,y and TM7 o,y modes are considered for Q) =
0, 1, and 2.

focused beam measurement technique (FBMT) were obtained
from measurements made at two different angles of incidence,
6; = 0° and 60°.

Figures 7 and 8 plot the results of the extractions. The
agreement between the tFWMT and FBMT results for ¢, is
quite excellent. Similar to the low-loss honeycomb material
results, the agreement between the tFWMT and reference
results in the £, case is not as good. This conflict is likely
due to the measurement configuration limitation discussed
above and noted by other researchers [9]. Another source of
this disagreement is the inhomogeneity of the sample. Like
resistive cards, carbon black was used in the manufacture of
the 10 dBi/inch lossy honeycomb material. It is very difficult
to ensure uniform loading of the carbon black. This issue is
well documented [27]-[30]. Additionally, the slopes of the
curves for the e, parameters indicate that the honeycomb
material is slightly dispersive in the z-direction, which would
not be unexpected for a uniaxial structure. This behavior is also
seen in [31] for similar types of carbon black-based materials.
Therefore, since the z-directed electric field interrogates the
carbon black walls more strongly than the transverse electric
field, the effect is more pronounced in the results for ¢,.

IV. SIMULATION OF HIGHER PERMITTIVITY MATERIALS

In order to more fully characterize the method’s utility, the
materials described in [32] were simulated in the tFWMT
configuration and results compared to Knisely’s work. The
measurement methods utilized in [32] are the Single Port
Waveguide Probe (SPWP) method, and the usual Rectangu-
lar Waveguide (RWG) method for comparison. The SPWP
method differs from the tFWMT only in that one waveguide
probe is replaced with a PEC sheet. Since the SPWP provides a
smaller number of measurements, its utility is inherently more
limited in fully characterizing complex materials. This paper
considers two simulated uniaxial materials for comparison —
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Figure 7: The results from the tFWMT extraction performed
on the lossy 10 dBi/inch honeycomb material using only the
dominant mode. The errors bars are +20.
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Figure 8: The results from the tFWMT extraction performed
on the lossy 10 dBi/inch honeycomb material incorporating
higher-order modes. Only the TEY ,,,) and TM7 5, modes are
considered for n = 0, 1, and 2. Error bars are omitted for
visual simplicity.

a high contrast material and a single slab uniaxial material.
All simulations were full wave and run using CST Microwave
Studio.

A. High Contrast Simulated Material

The high contrast simulated material is composed of a slab ma-
terial with a specified permittivity of 2.5 — j0.2 incorporating
tetragonal inclusions comprised of a material with a specified
permittivity of 9.9 — 70.0. Each simulation is calibrated by
means of a Thru-Reflect-Line (TRL) method. Results of the
comparison are shown in Figure 9. The results demonstrate
similar behavior as with the lossy honeycomb material shown
in Figure 6, to include the periodic shape of the longitudinal
(e,) permittivity curves.

In order to provide one further point of comparison, a single
slab of uniaxial material with known dispersive permittivities,
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Figure 9: A comparison of extraction results, using the high
contrast uniaxial material described in [32]. The Rectangular
Waveguide Probe (RWG) and Single Port Waveguide Probe
(SPWP) results are directly from the referenced paper, while
the tFWMT results utilized the same simulated material in
a tFWMT simulation, performed in CST. The tFWMT was
then employed to extract permittivities from the resulting S-
Parameters. Only the TEY ., and TM7 ,,,) modes are consid-
ered for n = 0, 1, and 2. Error bars are omitted for visual
simplicity.
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Figure 10: A comparison of extraction results using the high
contrast sample of [32]. In this case, instead of modeling the
physical structure of the material, a solid 0.125 inch slab
of material with known uxiaxial parameters was simulated
in the tFWMT geometry, again using CST. Only the TET(%)
and TMT(%) modes are considered for n = 0, 1, and 2. In
this case, the error bars are displayed to highlight the large
uncertainty.

€: and €, similar to the high contrast material, were simulated
in the tFWMT configuration. The results demonstrate similar
behavior to both previous lab and simulation cases for lossy,
high permittivity materials, including a higher uncertainty.
This higher uncertainty was determined to be associated with
the Si2 and Sy; parameters, which further confirms that
this behavior is due to a weak interrogating field in the z-
direction.

V. CONCLUSIONS

The primary focus of this work was to develop and demon-
strate a method for the simultaneous nondestructive extraction
of the permittivity and permeability of a uniaxial anisotropic
media. The method utilized a single fixture in which the
MUT is clamped between two flanged rectangular waveguides.
The transmission and reflection coefficients were measured
and then compared with the theoretical coefficients to find &
via nonlinear least squares. Both low-loss and lossy uniaxial
honeycomb materials were measured using this configuration,
and simulations performed to correlate the results to previously
published works. The results for real part of the transverse
permittivity were shown to converge to a stable solution
utilizing the dominant mode TES, while the imaginary part is
shown to converge with the addition of one higher-order mode,
the TE7, and TM7, hybrid mode. As expected, the extracted
transverse constitutive parameters were in good agreement
with traditional destructive methods. The new technique pro-
duced good, but mildly unstable values when extracting the
longitudinal parameters, as a result of a weak z-directed
electric field component.

With regards to the inclusion of higher order modes, we see
acceptable convergence to a stable solution for the extracted
longitudinal permittivity values when including two additional
modes. This is likely due to the presence of a z-directed
electric field in the higher order modes. Regardless of this lim-
itation, this work is a significant contribution to the scientific
community because the results are a significant improvement
over previous nondestructive methods for anisotropic materi-
als. Therefore, it is recommended to further test this method
on a wider range of materials, including both dielectric and
magnetic uniaxial materials, in order to assess the precision
of the method to simultaneously extract permeability and
permittivity.

Furthermore, we note the two physical MUTs considered
in this paper varied in thickness from 0.25” to 0.4”. As
noted in [5], thicker materials are more accurately measured
when including higher order modes in the MFIEs. This
was indeed the case, as measurement of a thinner, low-loss
honeycomb showed good agreement while only including
the dominant mode. However, the thicker, lossy honeycomb
material required inclusion of higher order modes to show
better agreement with the reference methods.

Finally extraction of &, €, jis, and p, requires another set of
independent measurements, which was not performed due to
limited material availability. However, future work could focus
on incorporating additional set of independent measurements
(such as the TTM) for extraction of a larger number of
parameters. Additionally, it is possible that utilizing a slightly
different configuration, where the waveguides are placed next
to one another and the MUT is backed by a sheet of PEC [7],
[27], will allow for improvements in crack and defect detection
of advanced materials, when access is limited to a single side
of the MUT.
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