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Abstract 

The hybrid cardiovascular modeling approach integrates an in-vitro experiment with a 

computational lumped-parameter simulation, enabling direct physical testing of medical devices 

in the context of closed-loop physiology. The interface between the in-vitro and computational 

domains is essential for properly capturing the dynamic interactions of the two.  To this end, we 

developed an iterative algorithm capable of coupling an in-vitro experiment containing multiple 

branches to a lumped-parameter physiology simulation. This algorithm identifies the unique flow 

waveform solution for each branch of the experiment using an iterative Broyden’s approach. For 

the purpose of algorithm testing, we first used mathematical surrogates to represent the in-vitro 

experiments and demonstrated five scenarios where the in-vitro surrogates are coupled to the 

computational physiology of a Fontan patient. This testing approach allows validation of the 

coupling result accuracy as the mathematical surrogates can be directly integrated into the 

computational simulation to obtain the “true solution” of the coupled system.  Our algorithm 

successfully identified the solution flow waveforms in all test scenarios with results matching the 

true solutions with high accuracy. In all test cases, the number of iterations to achieve the desired 

convergence criteria was less than 130. To emulate realistic in-vitro experiments in which noise 

contaminates the measurements, we perturbed the surrogate models by adding random noise. The 

convergence tolerance achievable with the coupling algorithm remained below the magnitudes of 

the added noise in all cases.  Finally, we used this algorithm to couple a physical experiment to the 

computational physiology model to demonstrate its real-world applicability. 

  



1. Introduction 

Both numerical and experimental approaches have been widely used to model the 
cardiovascular system and medical devices [1–4], albeit each with its own challenges. Numerical 
simulation of closed-loop physiology coupled to geometries with large deformations is still a 
difficult task; studies involving hemodynamic simulations of devices with moving parts and fluid-
structure interactions have mainly prescribed fixed boundary conditions [5,6]. In-vitro studies, on 
the other hand, provide the possibility of direct pressure and flow measurements to capture 
complex fluid phenomena [7–10]; however, they suffer from the excessive number of components 
and connections required to build an intricate vascular model as well as difficulties in accurately 
reproducing closed-loop cardiac response such as preload sensitivities [11–14]. The current 
method of utilizing experimental data in reduced order models is largely for the purpose of model 
parameter estimation [15]. 

A hybrid framework can leverage the strengths of both experimental and numerical 
approaches by coupling an in-vitro experiment to a lumped-parameter network (LPN) simulation 
of cardiovascular physiology. LPN models consisting of elements such as resistance, capacitance, 
inductance, diode and a heart model offer a simplified 0-D approach for simulating the 
cardiovascular system. In-vitro experiments, on the other hand, can directly contain medical 
devices and physical components mimicking cardiovascular mechanics. In a hybrid framework, 
the in-vitro experiment operates in a dynamically changing feedback environment with the LPN 
simulation, allowing for the simultaneous investigation of the behavior of the physical components 
in the experiment and the corresponding impacts in the simulated physiology.  

The hardware-in-loop (HIL) technique is a method that has been used to construct 
cardiovascular hybrid frameworks[16–18]. However, the real-time nature of previous 
implementations results in constraints by signal noise and bandwidth of the hydraulic sensors and 
actuators, limiting the final model accuracy. These limitations motivate the development of a more 
robust technique for performing HIL in a hybrid framework.   

To this end, we have previously introduced the Physiology Simulation Coupled 
Experiment framework [19] and demonstrated the coupling of a 2-branch (one inlet and one outlet) 
in-vitro experiment to an LPN physiology simulation using a proportional-control-based coupling 
algorithm. In the present study, we introduce a Broyden-method-based algorithm capable of 
integrating a multi-branch (i.e. more than two branches) experiment with a computational 
physiology simulation, enabling the closed-loop coupling of the two.  The goal of this work is to 
provide a tool for interfacing the two domains, therefore the qualities of the physical experiment 
and the physiology simulation components themselves remain the responsibility of the user of this 
tool.   
 
2. Methods 

In this study, we use a numerical model of the Fontan physiology as the computational 
domain for demonstrating the operation of the coupling algorithm. This model has been verified 
against clinical data and explained in details in our previous study [20]. The LPN has been 
constructed such that the pressure produced by the single ventricle heart block drivers the flow 
through the pulmonary and systemic circuits. The LPN parameters related to cardiac function and 
vascular resistances and compliances are adjusted according to a patient body size and exercise 
intensity. The closed-loop LPN realistically models the physiological parameters of a Fontan 
patient.  The data from the in-vitro experiment include pressure and flow measurements.  For a 
closed-loop coupling of an experimental section to a physiology simulation to occur, flow and 



pressure data should be interactively communicated between the two domains. The coupling 
algorithm functions as an interface providing the boundary conditions for each domain to create a 
coupled system; it is important to note that this process does not influence the LPN parameters.  

This section begins by introducing the mathematical formulation of the coupling problem, 
followed by the discussion of the iterative procedure used for identifying the solution waveforms. 
Next, we provide an overview of the Broyden’s method including justification for its use in the 
algorithm. Finally, we propose a technique for improving convergence stability and present results 
quantifying the accuracy of the algorithm and its robustness against measurement noise. 

To illustrate the concept of the multi-branch coupling approach, we consider a rigid, 3-
branch (two inlets, one outlet) experimental section coupled to an LPN model of a Fontan patient 
obtained from our previous work [20] (Figure 1). For each branch of the experimental section there 
exists a unique flow waveform that results in the same pressure change from the inlet to the outlet 
in both the experimental and numerical models; this is the solution flow waveform. The aim is to 
identify these solution waveforms in order to achieve a coupled system. 

In Figure 1, a flow waveform (𝑄 ) applied to inlet 1 in both the experimental and numerical 
models gives rise to pressure changes of ∆𝑃  and ∆𝑃  respectively. ∆𝑃  is the resulting 
pressure change from inlet 1 to outlet 3 in the experimental section while ∆𝑃  is the 
corresponding pressure change between points 1 and 3 in the LPN. The same holds true for the 
second inlet. Subsequently, we define an error function for every inlet by subtracting the associated 
pressure changes from each domain. For the scenario in Figure 1, the set of error functions is 
defined as: 
 

 
𝐸 𝑄 ,𝑄 ∆𝑃 ∆𝑃           𝑓𝑜𝑟 𝑖𝑛𝑙𝑒𝑡 1
𝐸 𝑄 ,𝑄 ∆𝑃 ∆𝑃           𝑓𝑜𝑟 𝑖𝑛𝑙𝑒𝑡 2

 (1) 

 
Due to mass conservation in the experimental section, the outlet flow (𝑄 ) is the sum of 

two inlet flows, i.e. 𝑄 𝑄 𝑄 . As a result, we have a system of two nonlinear equations in 
two variables, where each variable is a flow waveform represented by a vector of flow values. 
Solving this set of equations simultaneously, i.e. finding their roots, provides the solution flow 
waveforms that generate identical pressure changes in the physical and numerical domains, i.e. 
∆𝑃 ∆𝑃  for inlet 1 and ∆𝑃 ∆𝑃  for inlet 2. This creates a closed-loop coupling 
between the experimental section and the LPN model. 

We derived an iterative procedure for solving the set of error functions and identifying the 
solution flow waveforms (Figure 2). An initial guess flow waveform is prescribed to every branch 
of the experimental section and numerical physiology simulation and the resulting pressure 
changes from each domain are compared to obtain the error waveforms as described by Eq. 1. 
Then, Broyden’s method, a quasi-Newton method, is employed to update the flow waveforms for 
the next iteration. 

Broyden’s method, utilized here for finding the roots of the error functions, is a variant of 
Newton’s method, which is a powerful and widely used technique for solving nonlinear equations. 
Newton’s method takes advantage of Taylor series expansion to obtain a linear approximation of 
the nonlinear function at the point of interest and uses the root of this linear approximation as the 
next iterate. Although Newton’s method converges quadratically, it requires calculating 
derivatives of the nonlinear functions to form the Jacobian matrix. In our application, the error 
function values are obtained by subtracting the pressure waveforms that consist of experimental 
data points, thus not having analytic form. This necessitates the use of finite differences to 



numerically approximate the Jacobian in Newton’s method, requiring a large number of function 
evaluations. To avoid this, quasi-Newton methods can be used, the most well-known of which is 
Broyden’s method. In Broyden’s update, the Jacobian is replaced by an approximation matrix 
updated at each iteration by adding a low-rank matrix [21]. As a result, the need for derivative 
calculation is eliminated. For the problem at hand, therefore, we employ Broyden’s method in a 
way similar to the work of Malossi et al. [22] to minimize the number of function evaluations and 
experimental runs required. 

In Broyden’s method, the system of nonlinear error functions, derivatives of which are not 
analytically available, are solved by applying the following procedure [23]: 
 

 

𝑫𝒐 𝒇𝒐𝒓 𝒊 𝟎,𝟏, … 

𝑺𝒐𝒍𝒗𝒆 𝐴  𝒔 𝑬 𝑸  𝑓𝑜𝑟 𝒔             𝑤ℎ𝑒𝑟𝑒 𝑸
𝑄
𝑄
⋮

 & 𝑬 𝑸
𝐸
𝐸
⋮

   

𝑸 ∶ 𝑸  𝒔  

𝒚 ∶ 𝑬 𝑸 𝑬 𝑸  

𝐴 ∶ 𝐴 𝜆 
𝒚 𝐴 𝒔 𝒔

𝒔 𝒔
            𝑤ℎ𝑒𝑟𝑒 0 𝜆 1  

 

(1) 

where 𝑄 ,𝑄 , … are the flow waveforms, each corresponding to one branch of the experimental 
section, and A is the Jacobian replacement known as the approximation matrix. A value of 0.01 is 
used for coefficient 𝜆 to reduce the occurrence of singularity in 𝐴 matrices and maintain the 
smoothness of the flow waveforms during the iterative procedure. Assuming that each flow 
waveform consists of N discrete data points, the algorithm solves N distinct sets of error functions. 
In other words, at each iteration of the algorithm, the flow values for all flow waveforms, i.e. 
𝑄 ,𝑄 , …, at time step 𝑡  are updated together, independent of other time steps. For example, for 
the 3-branch coupling case in Figure 1, a set of two error functions is solved for each time point 
of the flow waveforms. For this set of the error functions, there is an associated approximation 
matrix with a dimension of 2 2. The number of approximation matrices updated at each iteration 
is equal to the number of time points on each of the flow waveforms. 

Finite difference estimates of the Jacobian matrices calculated in the first iteration using 
the initial values for Q are chosen as the initial approximation matrices, i.e. 𝐴 𝐽 𝑸  [23,24]. 
Over the succeeding iterations, these matrices are updated using Broyden’s update described above 
(Eq. 2), and the algorithm continues until the residual for each branch defined as follows drops 
below the desired value (chosen to be 0.01 mmHg for algorithm validation and 0.05 mmHg for 
noise investigation in this study). 

 

 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙  
∑ 𝐸 𝑗

𝑁
  (2) 

where N is the number of points in the waveform, and i indicates the ith branch. 
A major drawback of Newton-like methods such as Broyden’s is that their convergence is 

not guaranteed unless the initial guess is sufficiently close to the solution and the Jacobian matrix 
is nonsingular. To ensure that the algorithm progresses towards the solution, determinants of the 
approximation matrices are calculated at each iteration to detect matrices with near-zero 
determinants (nearly singular matrices). If the approximation matrices become nearly singular, the 



linear system 𝐴  𝒔 𝑬 𝑸  cannot be properly solved to determine 𝒔 . As a result, a spike will 
occur in the waveforms at the corresponding point for the next iteration, preventing the algorithm 
from converging to the solution. A mediation to this issue involves perturbing the ill-conditioned 
matrix 𝐴  so that it becomes well-conditioned and then proceeding with the iteration [23]. To do 
so, we replace the ill-conditioned approximation matrix with the finite difference Jacobian matrix 
calculated in the first iteration added with an identity matrix [25]. This procedure mitigates the 
occurrence of singularities, facilitating algorithm convergence. 

 
2.1. Algorithm testing using virtual experiments 

 
For the purpose of testing the coupling algorithm, we use mathematical surrogates to 

represent the experimental section, referring to these surrogates as “virtual experiments”. The 
rationale for using the virtual experiments is that they can be directly integrated into the LPN to 
produce reference data (i.e. the actual model solution) for validating the coupling algorithm. 
Various combinations of HeartWare continuous flow ventricular assist device (VAD), stenosis 
modeled as a quadratic resistance, and linear resistance are used as virtual experiment elements.  
The hemodynamic quantity available from the (virtual or physical) experimental element is the 
pressure difference across the element at a given flow rate.  The following relationships define the 
pressure change across the virtual experiment components used in this study: 
 

 ∆𝑃 𝐴𝑄 𝐵𝑄 𝐶 
∆𝑃 𝑘𝑄  
∆𝑃 𝑅𝑄 

Continuous flow VAD 
Stenosis 

Linear resistance 
(3) 

 
The performance curves of HeartWare describing the pressure increase produced by the 

VAD (∆𝑃) based on the flow (𝑄) passing through it at various rotation speeds are obtained from 
[26]. A, B and C are coefficients determined experimentally during pump characterization [19,27]. 
The pressure drop across a stenosis can be modeled as a quadratic function of flow [9,19]. We used 
a pressure drop coefficient of k = 0.0004 mmHg s2 ml-2 to emulate realistic pressure drops across 
a vascular stenosis. Linear resistances are utilized to model pressure loss through blood vessels, 
which is linearly proportional to the flow rate (𝑄). The values of these constants used in each 
virtual experiment are listed in Table 1. 

The virtual experiments are coupled to the numerical physiology simulation of a single-
ventricle circulation representing a patient with a weight and height of 50 kg and 150 cm, 
respectively, at resting condition [20].  We used a generic sinusoidal waveform as the initial guess 
of all flow waveforms.  We tested five scenarios of virtual experiments, three on the venous side 
and two on the arterial side of the Fontan physiology simulation, to demonstrate the capability of 
the algorithm to identify solution waveforms of different amplitudes and shapes. On the venous 
side, two, three and four branch sections (Figure 3), and on the arterial side, two and three branch 
sections (Figure 4) are coupled to the LPN model.  

More specifically, on the venous side, for the 2-branch coupling case, a HeartWare VAD 
is coupled to the inferior vena cava of the Fontan LPN. In the 3-branch scenario, the virtual 
experiment consists of a stenosis at inlet 1 and a HeartWare VAD at inlet 2. Finally, the 4-branch 
virtual experiment includes a linear resistance at inlet 1, a HeartWare VAD at inlet 2, a pulmonary 
artery stenosis together with a linear resistance at outlet 3 and a linear resistance at outlet 4 (Figure 
3). Two scenarios are considered for the arterial side. The 2-branch case comprises a HeartWare 



VAD connected between the ventricle and aorta, while the 3-branch scenario involves a stenosis 
representing an aortic coarctation at the inlet of the virtual experiment and a pair of a linear 
resistance and an inductor at both outlets (Figure 4). 

To study the relationship between the pressure change across a branch in the experimental 
section and the number of iterations required to achieve convergence, we also examined different 
values of the stenosis coefficient (Table 2) placed at inlet 1 of the venous side 3-branch coupling 
case (Figure 3 B). A higher value of k corresponds to a larger pressure drop across the stenosis. 

To validate the accuracy of the coupling results, the equations describing the virtual 
experiments were integrated directly with the LPN into a monolithic simulation to acquire the “true 
solutions” for comparison against the solutions obtained by the coupling algorithm. We use 
normalized root mean square error (NRMSE) as defined in Eq. 5 below to measure the quality of 
fit between the coupling and validation waveforms represented by 𝑥  and 𝑥 , respectively: 

 𝑁𝑅𝑀𝑆𝐸 𝑥 , 𝑥
𝑅𝑀𝑆𝐸 𝑥 , 𝑥

max 𝑥 min 𝑥
 (4) 

 

The virtual experiments used in this study do not reflect the noisy nature of in-vitro 
experiments. To examine the robustness of the algorithm against uncertainty in the experimental 
measurements, we modified the pressure change waveforms in all test cases. At each iteration of 
the algorithm, we added a random number chosen from uniformly distributed values in the range 
of [0, 0.1] to the amplitudes of the five lowest frequencies of the pressure change waveforms for 
every branch of the virtual experiments. This resulted in up to 0.9 mmHg RMSE variation in the 
pressure change waveforms (Table 3), mimicking realistic in-vitro measurements. To 
accommodate for the added noise, we used a convergence tolerance of 0.05 mmHg for these tests. 

2.2. Demonstration of coupling algorithm applied to a physical experiment 

We applied the coupling algorithm to couple a physical experiment to the Fontan LPN 
using a convergence criterion of 0.1mmHg. The experimental section contained an 85% Inferior 
Vena Cava (IVC) stenosis phantom model with a circular cross section diameter of 19mm (Figure 
5A). The phantom was constructed using a high resolution 3D-printer (Connex 350 Polyjet, 
Stratasys Inc.) and rigid material (VeroClear, Stratasys Inc.). A computer programmable pump 
capable of producing precise pulsatile flow waveforms created the flow through the phantom 
(Figure 5C). The working fluid was a 40%-glycerol solution with a density (1092 kg.m-3) and a 
dynamic viscosity (41×10-4 Pa.s) similar to those of the human blood. Two catheter pressure 
sensors (PEC10C&D, Miller Instruments) connected to a pressure box (PCU 2000, Miller 
Instruments) were installed at the inlet and outlet of the phantom, to monitor the pulsatile pressure 
waveforms. To record the volumetric flow rate a flow probe (16PXL, Transonic Systems) 
connected to a flow meter (TS410, Transonic Systems) was mounted on a Tygon tubing 
downstream of the experimental section as shown in schematic Figure 6. A custom Matlab 
program interfaced via separate National Instrument modules (NI 9205 and NI 9263, National 
Instruments) mounted on a single DAQ chassis (NI cDAQ 9174, National Instruments) were used 
to control the programmable pump and collect pressure and flow signals at a sampling rate of 
1000Hz. Similar to our earlier work [19], we improved the signal to noise ratio by averaging 20 
cycles of each data acquisition and then using a fourth-order low-pass Butterworth filter set at 
20Hz to remove the high-frequency components.  The initial flow for starting the coupling 



algorithm is chosen to be the IVC flow as simulated by the Fontan LPN alone without the IVC 
stenosis. 
 

3. Results 

3.1. Algorithm testing using virtual experiments 

The venous side coupling cases produced excellent agreements between the waveforms 
obtained from the coupling algorithm and of the true solutions with NRMSE values ranging 
between 0.269% ~ 0.855% (Figure 7). Similarly, the small NRMSE (0.378% ~ 0.854%) values for 
the arterial side coupling results demonstrate the accuracy of the algorithm under more pulsatile 
flow conditions (Figure 8). 

We observed that the rate of residual decrease for each branch is proportional to the amount 
of pressure change across the branch; the larger the pressure change, the faster the residual 
decreased for the corresponding branch. For example, in the case of 3-branch coupling on the 
venous side (Figure 3 B), the very small pressure drop across inlet 1 resulted in a slower residual 
decrease rate compared to inlet 2 which had a significantly higher pressure change (Figure 9 A). 
On the other hand, for the arterial side 3-branch case (Figure 4 B), the ratio between pressure drops 
across outlets 1 and 2 was remarkably lower than that for the venous side 3-branch case; therefore, 
the residuals decrease at approximately the same rate (Figure 9 B). In addition, increasing the 
pressure drop across the stenosis at inlet 1 of the venous side 3-branch case (Figure 3 B) by using 
larger pressure drop coefficients resulted in significantly faster convergence (Table 2), 
corroborating the finding that larger pressure change leads to faster convergence rates. 

 
Finally, the number of iterations for all test cases, with and without noise, was in the range 

of 10 ~ 126 (Table 3). At equal convergence tolerance, the added noise increased the number of 
iterations required for all scenarios except for the scenario of the venous side 2-branch coupling 
(Table 3). We also note that the achievable convergence tolerance (0.05 mmHg) was smaller than 
the maximum amplitude of noise added to the pressure change waveforms, which was in the range 
of 0.175 ~ 0.894 mmHg RMSE. 

3.2. Demonstration of coupling algorithm applied to a physical experiment 

The flow solution of the final (30th) iteration revealed a significant effect of the IVC 
stenosis on the IVC flow waveform (Figure 10 A). Overall, the average IVC flow in presence of 
the stenosis decreased by 10% and the solution of the algorithm converged to a residual of 
0.04mmHg (97% decrease in the residual) within 30 iterations (Figure 10 B). In general, each 
algorithm iteration required 6~10 minutes of experimental run time; the total run time of the hybrid 
model was 214 minutes.  

 
4. Discussion 

The choice of the initial guess has a significant impact on the convergence of the Broyden’s 
method; the closer the initial guess is to the solution, the fewer iterations are required to identify 
the solution [23,28,29]. In other words, a strategic initial guess can improve the convergence of 
the algorithm.  This idea is clear from examining the convergence behavior in Fig 10B; if the flow 



waveform of iteration 10 with a residual of ~0.6mmHg is used as the initial guess instead, the 
algorithm would take merely 20 iterations to converge instead of 30.  To demonstrate the 
robustness of our algorithm, we used a generic sinusoidal waveform as the initial guess in all test 
cases. Despite starting from this generic initial guess, the algorithm successfully converged in less 
than 130 iterations for all test cases.  In the practical usage of this algorithm to couple an actual 
experiment to a numerical physiology simulation, an approximate mathematical surrogate of the 
in-vitro experiment can be obtained by applying various flows and measuring the corresponding 
pressure changes. Combining the surrogate with the LPN can provide a better initial guess for the 
algorithm. 

There are a number of alternative techniques for improving the convergence stability of the 
coupling algorithm other than the one implemented in this study. One alternative approach is the 
stationary Newton’s method [28] in which the initial finite difference approximations of the 
Jacobian matrices are used for the succeeding iterations without modification, i.e. 𝐴 𝐽 𝑸  for 
all i = 0, 1, 2, 3, etc. Another approach involves applying appropriate damping coefficients in the 
range of 0 to 1 while updating the flows and approximation matrices to reduce the step size [28,30]. 
In this approach, however, determining the appropriate coefficient values for ensuring convergence 
while minimizing the number of iterations is a challenge. Overall, good choices for initial flows 
and approximation matrices are crucial to the success of the algorithm. A detailed discussion of 
the techniques for dealing with convergence properties can be found in [23,28,29,31]. 

The observation that branches with small pressure changes negatively affect the 
convergence rate means that in a multi-branch experimental section, the branch with the smallest 
pressure change determines the overall convergence rate of the hybrid model. For the five 
scenarios tested in this study, the maximum number of iterations is 126 (Table 3). Considering the 
typical run time for a physical experiment (6 to 10 minutes), the total time required to identify the 
solutions in the worst-case scenario does not exceed 24 hours. Compared to the runtime of modern 
computational fluid dynamic simulations using high-performance computing clusters, which is in 
the range of few days to few weeks [32,33], the run time of our proposed hybrid model can be 
considered reasonably practical. 

By integrating the virtual experiment directly with the LPN into a monolithic model for 
coupling results validation, we confirm that the coupled model has a unique, deterministic solution.  
This is true under the condition that the in-vitro experiment exhibits a consistent behavior, meaning 
that for a given set of periodic inputs, it produces a fixed set of periodic outputs.  If the experiment 
does not possess a consistent behavior, it may not be possible nor meaningful to identify the 
coupled solution using an iterative process.     

The results from Table 3 suggest that the algorithm is robust against measurement noise.  
The algorithm is capable of achieving a convergence tolerance below the maximum amplitude of 
the added noise, suggesting that in an actual application of a hybrid model, this coupling algorithm 
would not be the limiting factor of the model accuracy. 

Application of the algorithm on a physical in-vitro experiment of an IVC stenosis showed 
that the algorithm was able to capture the interaction between the closed-loop LPN and the in-vitro 
experiment. The coupling algorithm continuously decreased residual error across the iterations and 
successfully achieved a convergence tolerance of 0.1mmHg which is equal to the resolution of the 
pressure sensors.  

Limitations: Since the algorithm updates the flow values as well as the approximation matrix 
associated with a particular time step independent of other time steps, it is not designed to handle 



in-vitro models producing a phase shift in the flow and pressure waveforms, for example, a flow 
conduit with a high inductance value. Compliant elements in an in-vitro experiment exhibiting a 
time-rate of pressure change linearly proportional to the flow also create a phase shift in the flow 
and pressure waveforms.  Further study is required to identify a new approach for coupling these 
types of experimental sections to physiology simulations. The algorithm we present here is robust 
against small phase shifts in the experimental section as demonstrated by the coupling results of 
the arterial side 3-branch test scenario where inductors with small values are included, as well as 
its application to the physical experiment where inductances in the flow circuit are present.   
 
5. Conclusion 

In this study, we successfully developed an algorithm for coupling an in-vitro experiment 
containing an arbitrary number of branches to a lumped-parameter physiology simulation. Using 
Broyden’s method, the algorithm solves a set of nonlinear functions to identify the solution flow 
waveforms, resulting in the closed-loop coupling of the experimental and numerical domains.  We 
utilized a convergence stabilization technique for the algorithm that involves replacement of nearly 
singular approximation matrices with nonsingular ones. To confirm the accuracy of the algorithm, 
we coupled mathematical surrogates of five in-vitro experiments to the physiology simulation of 
a Fontan patient, and verified the coupling results against “true solutions” obtained from 
integrating the surrogate models directly with the physiology simulation. The coupling results 
matched the true solutions very closely with NRMSE values ranging between 0.269% ~ 0.855%. 
In all test cases, the algorithm converged with less than 130 iterations. We also added noise to the 
pressure waveforms of the surrogate models to mimic the measurement uncertainty in an actual 
experiment.  In all noise-test cases, the algorithm achieved convergence with a tolerance smaller 
than the maximum amplitude of noise added to the pressure change waveforms. This validated 
algorithm can be used to couple a range of in-vitro experiments containing multiple branches to 
physiology simulations.  Finally, our demonstration of the coupling algorithm applied to a physical 
experiment confirmed its real-world usability. 
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Tables and Table Captions 

Table 1. Summary of coefficient values for virtual experiment components 

Coupling Scenario 

HeartWare VAD k 

[mmHg 

s2 ml-2] 

R 

[mmHg s ml-1] 

L 

[mmHg s2 ml-1] A B C 

Venous side 

coupling 

2-branch 

-0.0037 0.0186 43.674 

- - - 

3-branch 

0.0004 

- - 

4-branch 

Rsvc=5.99×10-2  

Rpa1=1.51×10-1 

Rpa2=2.01×10-1 

- 

Arterial side 

coupling 

2- branch -0.0042 0.0675 122.83 - - - 

3- branch - - - 0.0004 
Ruba=6.87×10-1 

Rtha=8.18×10-2 

Luba=5.48×10-4 

Ltha=1.33×10-3 

 

 

  



Table 2. Comparison of the pressure drop coefficient value, the resulting pressure drop, and 
number of iterations for the venous side 3-branch scenario 

Pressure Drop 

Coefficient (k) 

Inlet 1 Mean Pressure 

Drop [mmHg] 

Inlet 2 Mean Pressure 

Increase [mmHg] 
Number of Iterations 

0.0004 0.54 31.44 101 

0.004 4.02 31.43 48 

0.04 24.17 31.27 15 

0.4 63.30 31.01 13 

 

 

 

 

 

 

 

  



Table 3. Comparison of number of iterations for all test scenarios with and without noise, and the 
maximum amplitude of added noise  

Coupling Scenario 

Number of Iterations  Amplitude of 

Added Noise; Max. 

RMSE [mmHg] 

Without Noise With Noise 

CT* = 0.01  CT = 0.05  CT = 0.05  

Venous side 

coupling 

2-branch 16 10 10 0.175 

3-branch 101 81 96 0.182 

4-branch 86 65 75 0.175 

Arterial 

side 

coupling 

2-branch 27 22 26 0.894 

3-branch 123 
97 126 0.356 

*CT = Convergence Tolerance [mmHg] 
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