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ABSTRACT 
Single ventricle hearts are congenital cardiovascular defects in which the heart has 

only one functional pumping chamber. The treatment for these conditions typically requires a 
three-staged operative process where Stage 1 is typically achieved by a shunt between the 
systemic and pulmonary arteries, and Stage 2 by connecting the superior venous return to the 
pulmonary circulation.  Surgically, the Stage 2 circulation can be achieved through a 
procedure called the Hemi-Fontan, which reconstructs the right atrium and pulmonary artery 
to allow for an enlarged confluence with the superior vena cava. 

Based on pre-operative data obtained from two patients prior to Stage 2 surgery, we 
developed two patient-specific multi-scale computational models, each including the 3D 
geometrical model of the surgical junction constructed from magnetic resonance imaging, and 
a closed-loop systemic lumped-parameter network derived from clinical measurements. 
“Virtual" Hemi-Fontan surgery was performed on the 3D model with guidance from clinical 
surgeons, and a corresponding multi-scale simulation predicts the patient’s post-operative 
hemodynamic and physiologic conditions.  For each patient, a post-operative active scenario 
with an increase in the heart rate (HR) and a decrease in the pulmonary and systemic 
vascular resistance (PVR and SVR) was also performed.  Results between the baseline and 
this ‘active’ state were compared to evaluate the hemodynamic and physiologic implications 
of changing conditions. 

Simulation results revealed a characteristic swirling vortex in the Hemi-Fontan in both 
patients, with flow hugging the wall along the SVC to Hemi-Fontan confluence. One patient 
model had higher levels of swirling, recirculation, and flow stagnation.  However, in both 
models, the power loss within the surgical junction was less than 13% of the total power loss 
in the pulmonary circulation, and less than 2% of the total ventricular power.  This implies 
little impact of the surgical junction geometry on the SVC pressure, cardiac output, and other 
systemic parameters.  In contrast, varying HR, PVR, and SVR led to significant changes in 
theses clinically relevant global parameters. 
Adopting a work-flow of customized virtual planning of the Hemi-Fontan procedure with 
patient-specific data, this study demonstrates the ability of multi-scale modeling to reproduce 
patient specific flow conditions under differing physiological states. Results demonstrate that 
the same operation performed in two different patients can lead to different hemodynamic 
characteristics, and that modeling can be used to uncover physiologic changes associated 
with different clinical conditions. 
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INTRODUCTION 
 Single ventricle physiology, in which the infant has only one functional pumping 
chamber, is one of the most severe forms of congenital heart disease.  Without intervention, 
the condition is not compatible with life, requiring immediate surgical treatment after birth, 
followed by two additional surgeries within the first few years of life.  The surgeries are 
staged such that at each stage the circulation provides adequate systemic oxygen delivery 
without severe, long-term volume overloading of the ventricle.  The final goal is to bypass the 
heart by connecting the entire systemic venous return directly to the pulmonary arterial 
system, resulting in an in-series circulation driven by a single ventricle(1).  

The Stage 1 surgery is performed within the first few days of life, with the patency of 
the ductus arteriosus ensured by infusion of prostaglandin E2 until the operation.  In most 
cases a systemic-to-pulmonary shunt (Fig. 1a) provides balanced flow to the pulmonary 
circulation while maintaining an unrestricted aortic outflow and systemic venous return.  The 
stage 2 surgery is performed at about 6 months of age, after the pulmonary vascular 
resistance has decreased due to lung growth (2).  The surgery removes the systemic-to-
pulmonary shunt, or disconnects the pulmonary artery from the systemic arterial circulation 
(depending on stage 1 anatomy), and attaches the superior vena cava (SVC) to the 
pulmonary artery to provide pulmonary flow.  After a few years of age as the proportion of 
systemic venous return from the lower body increases, the stage 3 surgery, the Fontan 
procedure, is performed, during which the inferior vena cava (IVC) is also connected to the 
pulmonary artery, completing the conversion to single ventricle circulation. 

The transition from Stage 1 to Stage 2 circulation is particularly important as the single 
ventricle is relieved of the workload of providing pulmonary blood flow, which is then solely 
derived from the superior vena cava (SVC).  In addition to requiring low pulmonary vascular 
resistance to allow for effective Stage 2 circulation, the surgical reconstruction required to 
provide a pulmonary blood flow devoid of a ventricular power source must be one that 
extracts little power or energy.  The Hemi-Fontan (HF) operation has been adopted by many 
surgeons as the preferred procedure to achieve these goals.  Figure 1b demonstrates one 
version of this operation, in which the SVC remains connected to the right atrium, and a 
homograft patch is placed to redirect flow to the right and left pulmonary arteries through a 
small pouch or confluence.   
 Due to the lack of animal models for single ventricle physiology, and the fact that direct 
clinical measurements are often difficult, the understanding of the impact of the surgical 
geometries and patient-specific anatomy on important clinical parameters, such as ventricular 
load, thrombotic risk, or systemic pressures and flows, remains challenging.  Computational 
methods have been used to study patient-specific single ventricle physiology, and predict 
hemodynamic changes due to virtual surgery (3-8).  Using a coupled multi-scale and closed-
loop modeling approach, realistic local and global hemodynamic interactions can be mimicked 
and detailed holistic, physiologic information can be extracted for in-depth analysis to better 
compare different surgical options.   
 In this study, we performed virtual HF operation on two patients who had undergone 
clinical investigation prior to conversion from Stage 1 to Stage 2 circulation.  For each patient 
we investigated the local dynamics of the Hemi-Fontan circulation, and analyzed the global 
systemic physiology of each under a normal resting state, as well as an “active” state, which 
mimics voluntary arm and leg movements of the infant with increased heart rate and blood 
flow.   
 
METHODS 
 This study utilizes patient-specific computational models to describe various scenarios 
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after the HF surgery for two single-ventricle patients.  Each computational model contains a 
3D domain of the surgical junction, and a 0D domain that describes the rest of the circulatory 
system.  A total of 4 simulations were performed for this study, encompassing a resting and 
an active condition for the two patients. 
 
Clinical Data Acquisition 

The patients A and B were 5 and 6 months old at the time of surgery, respectively, with 
body surface areas (BSA) of 0.3 m2 and 0.34 m2.  Patients A and B were recruited the 
Medical University of South Carolina, Charleston SC, and the University of Michigan, Ann 
Arbor, MI, respectively. The study was approved by the IRB at each institution.  For patient A 
the MRI was performed 1.5 months prior to surgery, immediately following cardiac 
catheterization under the same general anesthesia.  For patient B the MRI was performed 
immediately prior to surgery under the same anesthetic, and cardiac catheterization was 
performed 3 days prior to the MRI and surgery.  MRI data was obtained using a standardized 
protocol, including a contrast-enhanced 3-dimensional MR angiogram, following the 
administration of 0.2 mmol/kg of gadoteridol (Prohance, Bracco Diagnostics, Princeton, New 
Jersey).  In-plane spatial resolution for the angiogram was 1.0 x 1.0 mm, with slice thickness 
of 2.0 mm, interpolated to 1.0 mm. 
 
Construction of 3D Surgical Junction Geometries 
 Based on magnetic resonance imaging data of each patient prior to the Stage 2 
surgery, we reconstructed the patient anatomy using commercial software (Mimics, 
Materialise NV, Leuven, Belgium).  We selected regions of interest in the imaging data, and 
used a segmentation and region-growing technique (9, 10) to obtain a 3D volume of the 
relevant vasculature.  The resulting 3D model is a representation of the patient's pre-
operative anatomy (Fig. 2b).   
 Once the pre-operative anatomical models are created, these can be manipulated 
using the same software (Mimics) in order to generate virtual post-operative scenarios.  We 
performed the HF virtual surgery by modifying the pre-operative 3D model based on the 
geometric constraints relating to the organs and vessels surrounding the region.  The post-
operative models were created by following the clinical guidelines of the respective 
procedures, and by the same operator who generated the pre-operative models.  The 
imaging-based virtual modification of the patient anatomy allows for patient-specific 
predictions of post-operative geometries.  For example, the post-operative deformation of the 
SVC is affected by the pulmonary artery geometry at the point of anastomosis.  Using this 
method, we can produce a predictive HF post-operative 3D geometrical model for each 
patient (Fig. 2a).  Patient A had a left pulmonary stenosis that was palliated in the virtual 
surgery, mimicking a realistic clinical scenario.  Both the HF virtual surgeries were performed 
by an engineer and a pediatric cardiac surgeon working together, and approved by a second 
surgeon from our research group. 
 
0D Lumped-parameter Network 
 To model the circulatory system outside of the 3D anatomical region, we use a 0D 
lumped-parameter network (LPN).  The LPN consists of five main circuit blocks to model the 
heart, the upper and lower body vasculatures, and the right and left pulmonary vasculatures 
(Fig. 3).  Two time-varying elastances represent the atrium and ventricle, where two 
activation functions properly shifted in time model contraction of the two chambers.  The 
atrio-ventricular and aortic valves are modeled by non-linear diodes allowing for unidirectional 
flow with resistances proportional to the flow rate.  In the lower body we modeled three organ 
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systems (kidneys, liver and intestine) and a venous valve in the leg venous block.  
Corresponding to the outlets of the 3D model, a number of RCR blocks arranged in parallel 
describe the pulmonary circulation.  Coronary circulation, gravity and respiratory effects are 
neglected(11). 
 We prescribed the pulmonary LPN parameter values using a morphometric tree based 
impedance approach (12, 13).  The parameters result from a 3D-0D preliminary study 
utilizing patient-specific preoperative clinical data of the transpulmonary pressure gradient, 
total pulmonary flow, left-right pulmonary flow split, and the size of each pulmonary branch 
outlet (13).  The pulmonary vascular resistance can be calculated as: 

PVR=
PPA − PSA

QPA       (1)   
where PPA, PSA and QPA are the mean pulmonary arterial pressure and atrial pressures, 
and total pulmonary flow, respectively.   
 For the systemic LPN parameters, we began with a set of values representing a 
generic single ventricle subject with BSA=1.8 m2 (14-16) and used allometric equations to 
scale the parameters according to the patient’s BSA (17).  This resulted in a BSA-adjusted 
generic LPN model, with resistance and capacitance values indicated as Ri-BSA and Ci-BSA for 
the ith-block.  We then tuned the LPN to the patient's resting condition using the resistances 
of the upper and lower body (UBSVR and LBSVR, respectively) calculated by: 

                 
UBSVR=

PSysA − P SA

QUBA        
LBSVR=

PSysA − PSA

QLBA      (2)    
where PSysA, QUBA, and QLBA are the pre-operative (stage 1) clinical measurements of the 
mean systemic arterial pressure, upper body flow, and lower body flow, respectively.  
 While maintaining the proportion of impedances among the different blocks, we 
modified the resistances of each block (resulting in Ri) such that the clinically measured 
UBSVR and LBSVR from equations 2 are achieved.  We then calculated the patient-specific 
compliance Ci of the ith-block using (17, 18): 

Ci =Ci− BSA( Ri

Ri− BSA
)
− 4/3

                     (3)    

 Lastly, we manually fine-tuned the parameter values to best match both the mean 
values and waveform tracings from clinical flow measurements made during resting 
conditions.  The heart rate for both patient models is set to 120bpm, which is within the 
range of the measured heart rate in both patients. 
 For each patient, we also prescribed a set of LPN parameter values to reflect an 
“active” condition, which approximates the patient’s physiology during voluntary movements 
of the limbs and increased blood flow.  We chose an “active” state of an infant to parallel an 
“exercise” state of an older patient capable of exercising.  For the active condition, we 
assume an increase in heart rate from 120bpm to 160bpm(19), and decreases in PVR and 
total SVR of 20% and 34%, respectively.  Starting from the patient-specific tuned resting 
condition LPN model, parameters were systematically tuned, as above, to achieve a set of 
desired values to model the active state.  The compliances were modified according to the 
equation:  

Ci− active= Ci(Ri− active

Ri
)
− 3 /4

                                            (4) 

where Ci, Ri are the compliances and resistances of the ith-block in the model under resting 
condition, and Ri-active are the resistances of the ith-block under active condition(20). All other 
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model parameters and fluid properties were kept fixed.  In patient A, the PVR and SVR were 
0.62 and 4.30 mmHgꞏs/ml for the resting condition, and 0.49 and 2.87 mmHgꞏs/ml for the 
active condition, respectively; for patient B the PVR and SVR were 1.07 and 2.68 mmHgꞏs/ml 
for resting and 0.86 and 1.75 mmHgꞏs/ml for active condition, respectively. 
 
Coupled Multi-scale Simulation & Analysis  
 Each of the 3D anatomic models was discretized into an isotropic finite-element mesh 
with a maximum edge size of 0.03 cm and a total of 9.8x105 ~ 1.3x106 linear tetrahedral 
elements using commercial mesh generation software (MESHSIM, Simmetrix, Inc., NY).  
These mesh sizes were similar or higher compared to prior studies of corresponding 
anatomy(21-23).  We coupled the 3D anatomical model to the 0D LPN model to produce a 
final computational model that described the entire circulation, and numerically solved the 
coupled system using custom software (Simvascular, www.simtk.org). Neumann boundary 
conditions were applied at all inlets and outlets of the 3D model using an implicit coupling 
algorithm described in our previous work(24) in which the 3D domain receives pressure 
information from the 0D model, and returns flow information to the 0D model, thus completing 
the two-way coupling between the multi-scale domains.  Flow and pressure in the 0D model 
were computed from a set of algebraic and ordinary differential equations derived from the 
LPN circuit, using a 4th order Runge-Kutta method.  Velocity and pressure in the 3D domain 
were computed using a custom incompressible finite element Navier-Stokes solver, assuming 
rigid walls and a Newtonian fluid with density of 1.06 g/cm3 and dynamic viscosity of 0.04 
dynes-s/cm2.  The solver uses a stabilized scheme (25) and outflow stabilization to prevent 
backflow divergence(26).  The method allows for modular coupling of the 3D and 0D 
domains without the need for intrusive changes to the finite element solver, and eliminates the 
small time step stability restriction imposed by explicit coupling methods in previous work. The 
choice of rigid walls is justified by our recent unpublished work showing little difference in 
energy loss and pressure levels, though non-negligible differences in wall shear stress 
(WSS), in rigid vs. deformable simulations.  For each simulation we used a time step size of 
1 millisecond for the 3D domain, and 1 microsecond for the 0D domain.  12 cardiac cycles 
were simulated and the last cycle was used in the analysis. 
 Based on the computed 3D velocity field from the simulation, we computed WSS and 
particle residence time (PRT), which is the time needed for entering particles to exit the 3D 
HF junction domain.  We also obtained the local hemodynamic power dissipation in the 
surgical region by integrating the difference between the inlet and outlet energy fluxes of the 
3D model, accounting for both the potential and kinetic energy terms(27).  Pressure and flow 
information at various points in the 0D LPN model were also extracted.  The instantaneous 
pulmonary power loss is calculated as the sum of the power losses in all of the pulmonary 
blocks: 

outletSAoutlet
outlets

pul Q)PP(=PW       (5)    

where Poutlet, PSA, and Qoutlet are the pressure at each outlet of the 3D model, the atrial 
pressure, and the volumetric flow through each outlet of the 3D model, respectively.  The 
pulmonary power loss can then be averaged over the cardiac cycle to obtain a mean value.  
The ventricular output power is the difference between the work done to the blood by the 
ventricle, and vice versa, during the ejection and filling phases: 

  
systole diastole

T /   = dt)VP- dtVP(PW SVSVSVSVven    (6)    

where PSV, VSV, and T are the ventricular pressure, ventricular volume, and the cardiac cycle 
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period, respectively. 
 
RESULTS 
 Figures 4a) and 5a) show the volume rendered flow velocity field magnitude (color 
map) and directions (arrows) in the 3D surgical junction for patients A and B.  For both 
patient models, the incoming flow from the SVC tends to glide along the curve of the 
confluence floor. In patient A the SVC flow transitions fairly smoothly into the pulmonary 
arteries.  However, in patient B significant swirling is observed, leading to high velocities 
around the circumference, resulting in a low flow and stagnation region near the center of the 
confluence section.  
 Figures 4b) and 5b) show the WSS distribution in the surgical junction for the two 
patients.  In general, WSS is fairly uniformly distributed, with a band of high WSS 
corresponding to the orientation of the swirling flow in the junction.  The spatial pattern of 
WSS is similar between the resting and active conditions simulated. 
 Table 1 shows the average values of different parameters extracted from each 
simulation.  The junction power loss associated with the HF in patient B is approximately 3 
times of that in patient A, however, the amount of power loss associated with the HF region 
remained less than 13% of the total power loss in the pulmonary circulation, and less than 2% 
of the total ventricular output power in all cases.  

For both patients, the systemic parameters are significantly affected by changes in the 
physiological condition, but with different magnitudes.  The active state led to increased 
cardiac output and pulmonary blood flow, and a corresponding increase in SVC pressures in 
both models.  Coupled with an already higher baseline SVC pressure of 15.5 mmHg, Patient 
B had a much higher SVC pressure in the active condition than Patient A (18.8 vs. 11.7 
mmHg, respectively).  
 Figure 6 shows the ventricular pressure-volume loop and the SVC pressure for all 
cases.  The area inside the pressure-volume loop for the active condition is smaller than that 
for the resting condition in both patients, indicating that less work is performed during each 
individual cardiac cycle.  However, due to the higher heart rate, the ventricular output power 
(work divided by time) in the active condition is higher than that in resting. 
 The mean WSS is higher in the active state compared to the resting state (82% and 
75% higher, for patients A and B, respectively).  The mean PRT, on the other hand, is higher 
in the resting state compared to the active state (50% and 41% higher, for patients A and B, 
respectively).  
 
DISCUSSION 
 This study demonstrates the potential of multi-scale techniques to study the 
hemodynamics and physiology of Stage 2 circulation with the HF procedure in patients with 
single ventricle circulation.  A coupled closed-loop multi-scale modeling approach was used 
to mimic realistic post-operative scenarios in two patients based on pre-operative clinical 
data. This method allowed assessment of both local dynamic and global physiologic 
parameters in a patient-specific manner, and demonstrated that even with the same type of 
operation, differences in hemodynamic outcomes can occur. Moreover, these differences can 
be accentuated by virtually ‘stressing’ the circulation by changing parameters to mimic 
physiologic conditions in an active state. By varying modeling parameters, such as heart rate 
and systemic/pulmonary vascular resistances, this methodology provides important insights 
into the effects of changes in physiologic condition on the Stage 2 circulation.  
 The power loss results are in the same range as reported by previous modeling studies 
of the HF anatomy(22, 23).  The simulation results show significant differences in the 3D 
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velocity patterns in the surgical domains in the two different patients, leading to visible 
variations in power loss.  Patient B exhibited three times higher power loss due to higher 
degrees of flow disturbances and flow rates.  However, relative to the global systemic 
powers, such as the pulmonary circulation power loss and ventricular power, the power loss in 
the surgical domain is small and may not have a large influence on the overall circulation. The 
observed differences in global flow and pressures, for example cardiac output and SVC 
pressure, between Patient A and B were primarily due to differences in patient-specific 
physiologic parameters such as pulmonary vascular resistance. These results therefore imply 
that further refinement of the HF operation and improvements in the surgical junction power 
loss is likely to have minimal impact on the overall immediate post-operative circulation and 
physiology in terms of pressure and flow, at least during resting and regular active conditions.   

Nevertheless, refinement of the HF operation may consider the optimization of 
minimizing thrombotic risk.  Results from computational simulations such as PRT and WSS 
can contribute to assessing the relative thrombotic risks between the different cases.  The 
lower PRT during the active condition may be beneficial for reducing thrombotic risk.  
However, the higher WSS during the active state may pose risks of platelet activation.  The 
peaking levels of WSS observed in the scenarios investigated are within the range where 
shear-induced platelet activation is possible (28). 
 The observation that the active condition increased the surgical junction power loss 
can be explained by considering the junction as a non-linear resistance with a value 
proportional to the square of the flow rate(29).  Auto-regulation mechanisms also act to 
increase vessel diameters during an active state, decreasing vascular resistance in response 
to increased flow (30).  This was included in the models by the chosen changes in PVR and 
SVR.  For these reasons, with increasing cardiac output, the surgical junction power loss 
increases at a faster rate than systemic power losses.  The surgical junction power loss 
relative to systemic losses thus will become more significant at higher cardiac output.  The 
power loss difference between the two HF models could become important and have more 
tangible effects on systemic parameters with more extreme physiological conditions such as 
strenuous activity (27).  As noted in the active condition simulation, the increase in SVC 
pressure for patient B is more exaggerated than patient A, with pressures reaching 19 mmHg.  
This has important clinical ramifications.  While most patients would tolerate an SVC 
pressure up to 15 to 16 mmHg, at 19 mmHg it is likely that patient B would exhibit clinical 
signs of SVC syndrome or superior venous hypertension, with facial swelling, headache, and 
orbital edema, based on prior clinical experience. 
 This study demonstrates that, in the Stage 2 circulation, while differences in local 
dynamics and power loss can exist with the HF procedure between different patients, the 
impact on the global circulation is small compared to those of pulmonary power losses and 
ventricular power.  In addition, the application of a multi-scale model was shown to 
accurately capture single ventricle patient physiology, incorporating clinical data for 
customized virtual planning and prediction of the stage 2 procedure, as well as utility in 
modeling systemic behaviors under different physiological states. Results show that 
differences in hemodynamic factors in different patient geometries can be accentuated by 
higher stress physiologic conditions, such as increased activity.  The unique contributions of 
this study include the examination of different physiological conditions using a closed-loop 
multi-scale model, and the examination of parameters relevant to both thrombotic risk and 
energy loss.  The results of this study provide an evaluation on the relative importance of 
various considerations for the clinical procedure design for the stage 2 surgery. 

Thorough analyses on a sufficient population size are required in order to warrant 
changes in clinical procedures based on virtual simulation results.  Future studies will apply 
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these simulation methods to a larger number of patients, and examine additional parameters 
such as ventricular function, and compare different surgical options for the Stage 2 surgery. 
Limitations of this study include the need for further validation against both clinical and in vitro 
data, use of rigid walls, and a lack of clinical data to precisely model changes in PVR and 
other parameters from the pre- to post-operative state.  
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TABLE AND FIGURE CAPTIONS 
 
 
Table 1.  Mean Values of Simulated Results.  Pressures and flows are as labeled in figure 3. 
 
Figure 1.  Single Ventricle Palliation Surgical Procedures: a) Stage 1, b) Stage 2 Hemi-
Fontan.  (Figure 1a republished with kind permission from Springer Science and Business 
Media, originally published in Pediatric Radiology 2010;40, Cardiovascular magnetic 
resonance imaging of hypoplastic left heart syndrome in children, Dillman JR et al, p264, 
figure 4, illustration by Anne Phillips, University of Michigan Health System, Department of 
Radiology Media Services.  Figure 1b produced by Carolyn Nowak, University of Michigan 
Health System, Department of Radiology Media Services.) 
 
Figure 2.  a)  Work Flow of Model Construction From Imaging Data, and Virtual Hemi-
Fontan Surgery.   b)  Pre-operative 3D Anatomical Models of Patients A & B 
 
Figure 3.  The 0D Lumped-parameter Network Model Coupled to the 3D Anatomical Model. 
 
Figure 4.  Time-averaged 3D Domain Simulation Results for Patient A.  a) Volume-rendered 
velocity magnitude (color map) and directions (arrows), b) Wall shear stress distribution. 
 
Figure 5.  Time-averaged 3D Domain Simulation Results for Patient B.  a) Volume-rendered 
velocity magnitude (color map) and directions (arrows), b) Wall shear stress distribution. 
 
Figure 6.  Simulated Results of Ventricular Pressure-Volume Loop and SVC Pressure for a) 
Patient A, and b) Patient B. 
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Table 1.   
 
 
 
 
 
 
 

Patient A Patient B
Resting Active Resting Active

16.8 21.0 19.2 24.6

8.2 12.7 11.3 16.4

0.54 0.53 0.63 0.62

0.49 0.60 0.59 0.67

4.6 4.8 2.4 3.0

10.0 11.7 15.4 18.8

74.9 62.0 53.1 46.3

10.62 19.34 20.64 36.05

0.27 0.18 0.31 0.22

0.33 1.01 1.26 3.79

5.6 10.7 18.2 30.7

193 209 168 193

Q
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PV 
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PV

Q
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 / Q
AO
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 (mmHg)
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 (mmHg)
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(dynes/cm2)

Particle Residence 
Time (s)

Junction Power 
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Pulmonary Power 
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