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ABSTRACT 

Total hip arthroplasty (THA) is most often used to treat osteoarthritis of the hip 

joint. Due to lack of a better alternative, newer designs are evaluated experimentally using 

mechanical simulators and cadavers. These evaluation techniques, though necessary, are 

costly and time-consuming, limiting testing on a broader population. Due to the 

advancement in technology, the current focus has been to develop patient-specific 

solutions. The hip joint can be approximated as encompassing a bone socket geometry, and 

therefore the shapes of the implant are well constrained. The variability of performance 

after the surgery is mostly driven by surgical procedures. It is believed that placing the 

acetabular component within the “safe zone” will commonly lead to successful surgical 

outcomes [1]. Unfortunately, recent research has revealed problems with the safe zone 

concept, and there is a need for a better tool which can aid surgeons in planning for surgery. 

With the advancement of computational power, more recent focus has been applied 

to the development of simulation tools that can predict implant performances. In this 

endeavor, a virtual hip simulator is being developed at the University of Tennessee 

Knoxville to provide designers and surgeons alike instant feedback about the performance 

of the hip implants. The mathematical framework behind this tool has been developed.  

In this dissertation, the primary focus is to further expand the capabilities of the 

existing hip model and develop the front-end that can replicate a total hip arthroplasty 

surgery procedure pre-operatively, intra-operatively, and post-operatively. This new 

computer-assisted orthopaedic surgical tool will allow surgeons to simulate surgery, then 
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predict, compare, and optimize post-operative THA outcomes based on component 

placement, sizing choices, reaming and cutting locations, and surgical methods. This more 

advanced mathematical model can also reveal more information pre-operatively, allowing 

a surgeon to gain ample information before surgery, especially with difficult and revision 

cases. Moreover, this tool could also help during the implant development design process 

as designers can instantly simulate the performance of their new designs, under various 

surgical, simulated in vivo conditions. 
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CHAPTER 1:  INTRODUCTION 

The hip joint is a ball and socket synovial joint: the ball is the head of the femur, and 

the socket is the acetabulum of the pelvis. There is only one articulating surface between 

the femoral head and the acetabulum. The hip joint serves as the connection between the 

lower extremity and upper body, allowing relative motion between these two parts of the 

body. The hip joint allows for movement in three orthogonal axes and is driven by muscles 

across the joint. The movement in the coronal plane is referred to as the 

adduction/abduction of the hip. The movement in the sagittal plane is known as the 

flexion/extension of the hip. The movement in the transverse plane allows for the 

internal/external rotation of the hip.  

The hip joint is strengthened by four capsular ligaments. The extracapsular ligaments 

consist of the pubofemoral, ischiofemoral, and iliofemoral ligaments. These capsular 

ligaments tighten and prevent an excessive range of motion of the hip joint to occur. The 

intracapsular ligament, sometimes referred as to the femoral head ligament, is attached to 

the acetabulum notch and a depression on the femoral head. This ligament is only stretched 

when resisting hip is dislocation, preventing further displacement. 

Movements of the hip are driven by the activation of multiple muscles crossing the 

hip joint. Most muscles are responsible for more than one type of movement. Modern 

anatomists define 17 muscles crossing the hip joint. According to their functionalities and 

cause of movements, these muscles are divided into three groups: the flexion/extension 

group, the adduction/abduction group, and the internal/external group. For example, the 

muscles that cause the pelvis flexion/extension include the quadriceps muscle group, 
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iliacus, the iliopsoas muscle group, and the gluteus maximus muscle group. Since the 

movements of the hip joint are so complicated, and there are many muscles that become 

activated at once, leading to the assumption of how muscles contribute to human body 

movements. The first assumption is that the muscles with larger physiological cross-

sectional areas can generate larger forces. Similarly, the muscles with a longer moment 

arm are capable of generating larger torques.  

Osteoarthritis is the most common chronic condition of the hip joint which causes 

the cartilage or cushion between joints to degenerate, essentially breaking down and 

leading to pain, stiffness, and swelling. According to Mayo Clinic, the Arthritis 

Foundation, and recent reports, there are more than 3 million people in the US who suffer 

from osteoarthritis each year [2-4]. In the past, people who suffered serious osteoarthritis 

were often forced to live with very limited motion in that joint for the rest of their lives. 

More recently, artificial joints that permit greater movement have been developed [5-7]. 

Ideally an artificial joint should move similarly to the normal healthy joint, while providing 

exceptional patient satisfaction and meeting all patient expectations. Therefore, it allows 

the patient to return to the quality of daily living she/he was used to prior to the diseased 

state. 

Total hip arthroplasty (THA) (Figure 1-1b) is a surgical process that removes the 

damaged areas of the hip joint articulating surfaces and replaces them with artificial 

components that will allow for increased activity for the patient. According to a report in 

2010 [8], the number of total hip arthroplasty cases in the United States was 2.5 million 

individuals. The age distribution is 45 and over. Specifically, the number of THA for 
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younger age groups increased while it decreased for older age groups. 

Regardless of a highly successful rate of total hip arthroplasty, there still exist many 

factors that contribute to the complications of THA. The complications are commonly 

due to osteoarthritis (Figure 1-1a), rheumatoid arthritis (inflammation of the synovial 

membrane), and osteonecrosis (injury to hip resulting in loss of blood supply to femoral 

head). Post-surgery complications are not as high as for other orthopedic surgeries, but 

there remain concerns. These complications include but are not limited to: infection around 

the surgery site, blood clots in the leg, unequal leg length, rough or grinding wear to the 

polymer lining of the cup, hip separation due to misalignment, and even full dislocation of 

the hip joint. 

 

 

Figure 1-1: An osteoarthritic hip (a) and total hip arthroplasty (b). Image from 

(orthoinfo.aaos.org) 
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CHAPTER 2:  LITERATURE REVIEW 

Total hip arthroplasty has been an ideal solution for reducing pain and improving 

joint function in patients with hip arthritis. Long-term follow-up studies of THAs have 

shown a success rate exceeding 97.8% in five years and 95.8% in ten years [9, 10]. Perhaps, 

the most popular problems are in the form of hip dislocation or instability and wear of the 

contact surface between the acetabular cup and the femoral head [11-13]. Among these 

complications, cup positioning has been documented to be the leading cause of dislocation 

[13-15]. An ideal positioning of the cup in a  THA can improve hip function and reduce 

impingement, wear, and dislocation. However, determining the optimal cup position is still 

a controversial problem. It is not a straightforward problem, as it involves several factors.  

Wear of a material is a significant concern when two surfaces moving are in contact 

with each other. Fortunately, the advancement of material science has led to the 

development of high wear-resistant materials that are often utilized in contact-related 

research, especially in designing of artificial joints. In regard to contact pressures, stresses, 

and wear generated in the contact surfaces, a better understanding of in vivo loading at the 

hip joint is required. 

It has been suggested that surgical planning or preoperative planning is the key to 

successful THA [16]. Effective preoperative planning allows the surgeon to understand the 

joint condition better before proceeding to the surgery. This step helps the surgeon to 

determine the impact of different interventions in order to restore the patient’s natural 

anatomy [16]. For total hip arthroplasty, preoperative planning provides surgeons adequate 

information to appropriately choose implant component sizes, equalize the limbs, and 
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reduce the duration of the operation [17]. Particularly, the goal of pre-operative planning 

is to find the optimal femoral stem fit, the level of femoral neck cut, the femoral component 

neck length, the femoral component offset, the size of the acetabular component, and the 

positions of the femoral component and acetabular cup [18].  

Traditionally, conventional radiographs of the hip were used to assist surgeons 

during the preoperative planning process. Size and location of implants were measured by 

overlaying schematics of the implanted components onto the preoperative radiographs. 

Most of the currently available planning tools are in two-dimensions (2D), using X-ray 

images and 2D templates of the implants [19-21]. Determination of the ideal component 

size requires at least two radiographic views of the involved femur: one in the anterior-

posterior (AP) and one in the lateral direction. When templating, the magnification of the 

femur and pelvis will vary according to the distance from the patient and the x-ray source 

to the film. Visible makers on X-ray images will be placed to identify the actual 

magnification of the radiograph [19, 22]. The surgeon will use this information in order to 

anticipate the component size accurately. Even though this approach has been used for 

quite some time now and has led to very good results, this manual process potentially 

carries multiple shortcomings.  

The biggest issue is that the AP X-ray image is the fact that it is 2D in nature while 

the measurement’s objective is to obtain three-dimensional (3D) parameters [19, 20, 23]. 

For example, measurement of the femoral neck shaft angle from the AP X-ray images has 

been documented to be different from its measurement in 3D [24, 25]. Mahfouz et al. has 

shown that the mean difference between 2D and 3D approaches for measuring the femoral 
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neck shaft angle is about 12 degrees in females and 13 degrees in males [24, 25]. Another 

example is that the fit and fill of the femoral component in the proximal femoral canal is 

vastly different in 2D when compared with 3D. As shown in Figure 2-1 the femoral stem 

fits the canal well in the frontal view, similar to what is seen in an AP x-ray of the hip, but 

badly in the sagittal and axial views. 

Recently, 3D planning tools have been introduced to assist the surgeon in the pre-

operative planning process. These software packages often integrate the built-in CT scans 

of the patient and the 3D CAD models of the implants [15, 26-28]. The software package 

allows the surgeon to place the implant components into the proper position of the 3D space 

of the CT data. The surgeon can manually adjust the size of the component between those 

available, while controlling the level of fit and fill achieved, using a contact map analysis 

generated by the program [27].  

For example, Brainlab Inc has developed a surgical planning program that assists the 

surgeon, allowing for the  determination of the best fitting hip implant [29]. This program 

takes the silhouettes of 3D CAD models of the hip implants and overlays them onto the AP 

X-ray image if the hip. This approach is superior to the traditional approach as the 

silhouettes of 3D CAD models can be rotated and translated to fit the X-ray image. In 

addition, the acetabular cup’s version and inclination can be achieved from this program. 

However, using an X-ray image to determine the best fitting implants still lacks accuracy 

due to the nature of the X-ray image itself. On the other hand, other commercial surgical 

planning programs use CT scans, and segmented femoral and pelvis bone models  
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Figure 2-1: The femoral stem fits the canal well in the frontal view (left image), but 

fits badly in the sagittal (middle image) and axial (right image) view. 
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from CT scans to estimate the size of implants [26, 28, 30]. This approach is fully 

conducted in 3D and provides sufficient accuracy to determine the size of the hip implants 

by templating and trying different sizes one by one. However, these software packages are 

completely manual and therefore lack efficiency. 

Measurement of the proximal femoral morphology plays a crucial role in the 

estimation of the size of existing hip arthroplasty implants and the design of new implants. 

However, it has not been prioritized during the surgical planning process as most of the 

surgical planning techniques rely on a templating procedure. Traditionally, the morphology 

of the proximal femur was measured based on radiographs in the frontal and sagittal views 

[31, 32]. The parameters of interest that are often measured are shown in Figure 2-2. 

The canal flare index (CFI), defined as the ratio of the intracortical width of the femur 

at a point 20 mm proximal to the lesser trochanter to that at the medullary isthmus, was 

calculated [31]. Based on the calculated CIF, the femoral shapes are then classified into 

three groups, providing a basis for the design and selection of femoral implants.  

CT scans have been utilized to measure the morphology of the proximal femur for 

more than two decades [32-36]. It has been concluded that using CT scans provide a precise 

technique in experimental conditions. It is superior to the traditional technique of using 

radiographic images in several ways. One advantage is the ability to evaluate specific 

angles of the 3D configuration that cannot be done by a manual or 3D based radiographic 

measurement. Another advantage is that the axis of any portion, such as the femoral neck 

axis or the femoral shaft axis, can be set up from within the structure; this cannot be  
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Figure 2-2: The parameters of interest in the measurement of the proximal femur: 

the femoral offset (A), femoral head diameter (B), femoral head position (C), Canal 

width at 20 mm above the lesser trochanter (D), canal width at the level of the lesser 

trochanter (E), canal width at 20 mm below the lesser trochanter (F), endosteal 

width at the isthmus (G), periosteal width at the isthmus (H), isthmus position (I), 

and femoral neck shaft angle (J). Image from [32]. 
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performed by any other method [37]. However, most of them have relied on a manual 

process that is inefficient and potentially subject to human error. 

Qualitatively, the CFI provides the surgeons with meaningful information to 

approximate the femoral stem size and determine whether he or she needs a smaller or 

larger size for their patient. The CFI does not provide the surgeon with a specific size that 

will fit their patient, due to a lack of the corresponding information of the femoral stems. 

Therefore, there is a need for research to investigate which information of the femoral stem 

is corresponding to the measured morphology of the proximal femur. 

Anatomical landmarks have been used as reference points for measurement of the 

proximal femoral morphology [25, 33, 36, 38]. Obtaining accurate anatomical landmarks 

is needed to have a better morphologic measurement but challenging due to the variation 

of bony geometries. If a manual approach is used, surgeons or engineers have to get CT or 

MRI scans and pick landmarks based on the 3D representation of the scanned data. This 

manual process can be done with a limited number of subjects, but is time-consuming, 

labor expensive, and inefficient when there are a large number of subjects. It is also 

challenging due to population variations and deformity of the bone model resulting from 

arthritis or movement disorder. Therefore, extensive research exists on how to 

automatically obtain anatomical landmarks on a new bone model given a set of known 

landmarks on a known bone model.  

Anatomical landmarking can be achieved using either a statistical shape model or 

template matching [39-43]. Statistical modeling approaches require a large number of 

training data in order to capture population variation [24, 39, 40]. These techniques, though 



11 

 

powerful, robust, and able to capture geometric differences due to population variation, are 

labor expensive and require a large training dataset that is not always available. 

Prediction of anatomical landmarks through the template matching techniques has 

also been extensively investigated. Rigid and non-rigid registrations are the most often 

used techniques in order to predict landmarks on a new bone model [44-49]. Given a known 

template bone model and a new bone model, non-rigid algorithms, like statistical shape 

modeling techniques, deform the template bone model to best match the new bone model 

[49, 50]. The anatomical landmarks are then predicted in the new bone model through a 

non-rigid transformation. These non-rigid algorithms differ from the statistical shape 

modeling techniques in a way, such that, the non-rigid algorithms do not require a large 

number of training datasets. Instead, these techniques are based on the minimization or 

maximization of an objective function or cost function. As is the nature of non-rigid 

algorithms, these techniques can be trapped in the local maxima if the template and new 

bone models have noise or outliners.  

On the other hand, rigid registration techniques map the anatomical landmarks from 

the template to the new bone models though a rigid transformation. These techniques are 

able to maintain the relative positions of the landmarks due to the nature of rigid 

transformation [48, 51]. However, they fail to address the geometric differences due to 

population variation. Therefore, a combination of rigid and non-rigid registration 

techniques is a needed for research, in order to obtain accurate anatomical landmarks and 

improve the landmark prediction process. 
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Prediction of anatomical landmarks, though well investigated, has not been 

prioritized in computational biomechanics or mathematical modeling. In the mathematical 

modeling techniques, there are a large number of anatomical landmarks that need to be 

defined. These landmarks can be muscle and ligament attachment and insertion sites, bone 

references, or even user-defined points. For a single subject simulation, the user can define 

all of these landmarks manually. However, if multiple subjects are needed to simulate, 

prediction of anatomical landmarks would be a powerful tool that helps the user save time 

and work efficiently. 

Regardless of the effort to improve THA performance, it is extremely important to 

evaluate how the THA functions after the surgery.  THA assessment has been done using 

mechanical simulators, cadaveric rig, telemetry, and long-term follow up using 

fluoroscopy [6, 52-59]. These methods produce a direct and accurate measurement of 

motion and interaction forces and moments across at the joint.  These methods, however, 

are either time-consuming, expensive or lack the physiological representation of the human 

hip joint under in vivo conditions. Mathematical modeling is a promisingly, alternative 

theoretical technique that relies on mathematical predictions to quantify new artificial 

joints [60-65]. The development of mathematical modeling can lead to tremendous 

important advantages. 

As a theoretical approach, the most important benefit of mathematical modeling is 

to allow thousands of computer-aided experiments to explore how new THA designs 

perform. THA implants need to be examined carefully before implanting into the human 

body. A mathematical model aims to create a computer-based visualization in which the 
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THA implants mimic the actual human joints during any activity [5]. However, this is a 

very difficult task since the human joints involve a complex musculoskeletal system 

composed of a huge number of tendons, ligaments, soft tissue, and muscles [66]. For 

example, the hip joint consists of more than 17 muscles [61, 63, 67].  With the aid of 

computers, the human hip joint has been successfully modeled by utilizing either 

optimization techniques or reduction methods. The optimization principle allows for the 

solving of a complicated system, which retains most of the joint components [63, 65, 68-

70], while reduction methods remove unnecessary muscles from the simulation and group 

the remaining muscles together. With the assumption that the force of the grouped muscles 

characterizes the best fit estimation of the force acting within each particular muscle, 

researchers can customize input values to investigate how new implants perform in a 

computer-aided environment [5, 60, 61, 71-73]. 

Reduction-based mathematical modeling has been successfully developed in order 

to simulate and predict interaction forces as well as motions not only of the human knee 

but also of the hip [5, 60, 72]. Recently, a fully forward solution model of the hip has been 

developed at the Center for Musculoskeletal Research, the University of Tennessee [61]. 

This model has successfully predicted hip separation, edge loading, impingement of total 

hip arthroplasty. The model also has the capabilities to compare various implant designs 

and surgical conditions. This model has played a foundational role in this dissertation. 
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CHAPTER 3:  RESEARCH AIMS 

Total hip arthroplasty is most often used to treat osteoarthritis of the hip joint. Due 

to lack of a better alternative, newer designs are evaluated experimentally using mechanical 

simulators and cadavers. These evaluation techniques, though necessary, are costly and 

time-consuming, limiting testing on a broader population. Due to the advancement in 

technology, the current focus has been to develop patient-specific solutions. The hip joint 

can be approximated as encompassing a bone socket geometry, and therefore the shapes of 

the implant are well constrained. The variability of performance after the surgery is mostly 

driven by surgical procedures. It is believed that placing the acetabular component within 

the “safe zone” will commonly lead to successful surgical outcomes [1]. Unfortunately, 

recent research has revealed problems with the safe zone concept, and there is a need for a 

better tool which can aid surgeons in planning for surgery. 

With the advancement of computational power, more recent focus has been applied 

to the development of simulation tools that can predict implant performances. In this 

endeavor, a virtual hip simulator is being developed at the University of Tennessee 

Knoxville to provide designers and surgeons alike instant feedback about the performance 

of the hip implants. The mathematical framework behind this tool has been developed.  

In this dissertation, the primary focus is to further expand the capabilities of the 

existing hip model and develop the front-end that can replicate a total hip arthroplasty 

surgery procedure pre-operatively, intra-operatively, and post-operatively. This new 

computer-assisted orthopaedic surgical tool will allow surgeons to simulate surgery, then 

predict, compare, and optimize post-operative THA outcomes based on component 
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placement, sizing choices, reaming and cutting locations, and surgical methods. This more 

advanced mathematical model can also reveal more information pre-operatively, allowing 

a surgeon to gain ample information before surgery, especially with difficult and revision 

cases. Moreover, this tool could also help during the implant development design process 

as designers can instantly simulate the performance of their new designs, under various 

surgical, simulated in vivo conditions. 
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CHAPTER 4:  MATERIALS AND METHODS 

4.1 ANATOMICAL LANDMARKING 

4.1.1 Algorithm Framework 

The algorithm framework for the anatomical landmarking module is represented in 

Figure 4-1. This algorithm aims to predict anatomical landmarks on a new bone model with 

respect to a template bone model having known, identifiable landmarks. Initially, the 3D 

meshes for a template bone and the new bone of question are imported into the program. 

Landmarks on the template bone are also loaded with the import data. Then, the template 

and new bones are located at arbitrary positions within the global coordinate system. If 

they are determined to be placed at different positions with significant differences in 

orientation, the user will need to re-align the bone to ensure that they are close enough for 

the process to commence. 

 

 

Figure 4-1: Anatomical landmark algorithm framework. 
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After initially aligning the bones, the new bone model appears closer to the template 

bone model. The template bone model is then registered to the new model using Iterative 

Closest Point (ICP) with scaling [74], a variant of the ICP algorithm [51], to find the initial 

region of correspondences. For each anatomical landmark on the template, initial 

corresponding landmarks on the new bone model are defined as being its closest point. For 

some applications, the initial landmarks on the new bone model are good enough and can 

be used for further analysis. However, in biomechanical applications, landmarks on the 

new model need to be precise as surgeons and engineers will use those landmarks for 

surgical planning, implant size identification, and possibly for robot-assisted surgery 

(RAS). To refine landmarks on the new bone model, the next step is to determine local 

corresponding regions between the template and new bone models. This task can be done 

by using the landmarks on the template and initial landmarks on the new bone model. For 

each landmark on the template and new bone models, a subsample surface of the mesh 

model is then obtained based on a distance measurement to the landmark. This empirical 

distance is consistently used in both the template and new bone models and for all 

landmarks. Local corresponding regions on the template and new bone models are then 

registered again using the ICP with scaling (ICPs) algorithm to refine the locations of 

landmarks on the new model. 

4.1.2 Initial Alignment 

If the two input models have a significant difference in orientation, they need to be pre-

aligned by the user. In Figure 4-2  two input models are initially positioned in an opposite 

orientation and then reoriented into the required positions. There are several approaches 
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that can be used for the initial alignment of the two bone models. The most popular 

approach is to identify three corresponding landmarks on the template and new bone 

model. This approach is primarily used in the clinical setting as surgeons prefer using 

definable landmarks. However, for general users or engineers, this approach may be 

challenging due to a lack of anatomical background understanding. In this section, a more 

efficient approach is introduced that can be used for both surgeons and engineers. This new 

approach utilizes Visualization Toolkit (VTK) [75], an open source software developed by 

Kitware for 3D computer graphics, modeling, image processing, and scientific 

visualization. The template and new model are loaded into VTK for visualization. The 

VTK software allows for handling and interacting with 3D bone models. Therefore, users 

can transform (rotate and translate) the new bone model using a computer mouse to realign 

the two bone models into proper position (Figure 4-3). This process is straight forward, 

takes less effort, and can be finished in a timely manner as users can visualize and align 

two bone models without extensive knowledge of human anatomy. As shown in Figure 

4-3, the new bone model is covered by a bounding box that allows users to rotate and 

translate the bones. The bounding box will be rotated and translated along with the bone 

model as it moves. In some case, users can scale the model if necessary. However, in this 

application the shape of the new model bone should remain unscaled as landmarks from 

the template bone model will be mapped onto the new bone model. When two models are 

lined up as shown in Figure 4-4, the new model is saved in this orientation to be then used 

for the global registration process. 
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Figure 4-2: Misalignment of input models that needs to be pre-aligned. 

 

 

Figure 4-3: Interactive initial alignment of the template and new model. 
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Figure 4-4: The new model is lined up with the template model. The template model 

is on the left. The new model is on the right. 
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4.1.3 Initial Global Registration 

Since the template and new bone models are properly aligned, the process can 

continue towards initial global registration. The mesh models for the bones are input to an 

initial global registration sequence using the ICPs algorithm [74]. This step aims defines 

the initial alignment between the template and the new bone models and can be completed 

by translating, rotating, and scaling the template to best fit with the new model throughout 

the ICPs algorithm (Figure 4-5). 

The ICP algorithm is the best known as a method to minimize the difference 

between two clouds of points. The algorithm is performed on two sets of points: (1) 

reference or target set, and (2) the source set. The target set is kept fixed, while the source 

set is transformed for the best target match. The algorithm iteratively revises the 

transformation (translation and rotation) to minimize a cost function or an error metric. The 

algorithm proposed in this dissertation [51] uses a mean square error as the cost function. 

The ICP algorithm always converges to the nearest local minimum of a mean square 

error. Therefore, given a certain initial rotation and translation of the source, there always 

exists a combination of the rotation and translation so that the source best matches the 

target. For this reason, the initial registration step mentioned in the previous section is 

crucial to obtain the best alignment between the two models. 

The ICP, with scaling, (ICPs) [74] enhances the ICP algorithm by using a scaling 

factor. As the ICP algorithm iteratively alters the rotation and translation, the ICPs 

algorithm adds a scaling factor to its iterations. Routinely, in biomechanical problems two 

bone models can have different shapes and sizes even when they represent the same part  
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Figure 4-5: Initial global registration. The template model will be transformed 

(rotated, translated, and scaled) to line up with the new model using the ICPs 

algorithm. 
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of the human body. For instance, the femur of a male subject should be different in shape 

and size from the femur of a female subject even though they are both femurs. Apparently, 

they look similar in anatomy but different in geometry. The ICPs algorithm accounts for 

the sizing difference between the two models. In Figure 4-6 it can be seen a comparison of 

the scaled and non-scaled template model using ICPs and ICP algorithm, respectively.  

Figure 4-7 and Figure 4-8 represent a comparison of the scaled and non-scaled model with 

the new model.  

In this application, the objective is to map the landmarks from the template to the 

new bone model. For that reason, the template bone model with landmarks will play a role 

as the source bone model (the moving model) while the new bone model will be the target 

bone model (the fixed model) (Figure 4-5). Once the two bone models are aligned, the 

initial corresponding landmarks on the new bone model are determined as the closest points 

to the landmarks on the template bone model. The process can be seen in Figure 4-9, 

demonstrating the initial landmarks on the new bone model. 

As can occur, the initial landmarks on the new bone can be far from the true 

landmarks so the initial global registration uses the entire bone model during the 

registration process. Initial global registration realigns two separate bones into the best 

position but ignores local regions alignment. As shown in Figure 4-10, initial lesser 

trochanter of the new bone (purple) is the closest point to the lesser trochanter on the 

template bone (green), but not the true lesser trochanter of the new bone. Similar to the 

greater trochanter (Figure 4-11), there still exists deviation to predict landmarks on the new 

bone after initial global registration.  
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Figure 4-6: Comparison of the scaled and non-scaled template model using ICPs 

and ICPs algorithm, respectively. The orange model represents the scaled model 

using the ICPs algorithm while the green model is the non-scaled model using ICP.   

 

 

Figure 4-7: Comparison of the non-scaled model (green) using the ICP algorithm to 

the new model (cyan). 
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Figure 4-8: Comparison of the scaled model (orange) using the ICPs algorithm and 

the new model (cyan). 

 

 

Figure 4-9: The initial landmarks on the new model (purple) are determined to be 

the closest points to the landmarks on the template (green). The template model is in 

orange while the new model is in cyan. 
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Figure 4-10: Initial lesser trochanter on the new bone after initial global 

registration. Landmark on the template model (orange) is in green. Landmark on 

the new bone (cyan) is in purple. 

 

 

Figure 4-11: Initial greater trochanter on the new bone after initial global 

registration. Landmark on the template model (orange) is in green. Landmark on 

the new bone (cyan) is in purple. 
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4.1.4 Determination of Corresponding Regions 

Initial global registration does not define an accurate prediction of landmarks on 

the new bone but does determine the correspondences between two bone models. For each 

matching-pair landmark on the template and new bone models, a local neighborhood of 

vertices on the template and new bone are identified as those vertices within a defined 

sphere having the center as the landmark location and radius being an empirical value. The 

radius of the sphere is kept consistent for all landmarks and set to 5 mm. This empirical 

radius should neither be significantly small nor significantly large. It can vary depending 

on which bone models are analyzed. Ideally, the empirical radius should be sufficient 

enough to capture a meaningful structure of the surrounding area. An example of a 

meaningful structure should consist of high curvatures and extreme points. In Figure 4-12, 

it can be seen that the local area of vertices is located around the initial landmark on the 

femoral head of the new bone. The local neighborhoods of vertices around the femoral 

head ligament landmark on the template model can be seen in Figure 4-13. As shown in 

Figure 4-14 and Figure 4-15 the corresponding local regions between the template and new 

model are defined around the femoral head ligament landmark, lesser trochanter, medial 

and lateral femoral epicondyle, respectively. 

4.1.5 Local Registration 

The local registration process is carried out between two local corresponding 

regions on the template and new model. This step enhances the accuracy of predicting 

landmarks on the new model.  Initially, the global registration is conducted using the ICPs 

algorithm [74]. Figure 4-16 represents the framework of local registration. 
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Figure 4-12: The local neighborhoods of vertices around the initial landmark on the 

femoral head of the new bone. 

 

 

 

Figure 4-13: The local neighborhoods of vertices around the landmark on the 

femoral head of the template model. 
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Figure 4-14: Local Corresponding regions of neighbors around the landmark on the 

femoral head (left) and lesser trochanter (right). 

 

 

Figure 4-15: Local corresponding regions of neighbors of the medial and lateral 

femoral epicondyles.  
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Figure 4-16: Local registration framework. 
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As each landmark has one local area of vertices, the number of corresponding 

regions is the same to the number of landmarks. The transformations that best match the 

corresponding regions on the template to those on the new model will be used to map the 

landmarks on the template bone to the new bone model. Figure 4-17 - Figure 4-22 define 

the corresponding regions on the template and new bone before and after local registration. 

4.1.6 Mapping Landmarks to the New Bone Model 

Once the local regions on the template bone model are registered to their 

corresponding regions on the new bone model, the transformations are used to transfer 

landmarks from the initial global registered-template to the local registered-regions of the 

template. Quite simply, each time the registration algorithm is performed, the landmarks 

on the template bone are transformed along with the registration to realign them closer to 

the true landmarks on the new bone model. The refined landmarks on the new bone model 

are determined to be the closest points to the last transformed landmarks of the template 

bone after the local registration. Figure 4-23 - Figure 4-28 show the process used to define 

the landmarks on the template model after local registration and the refined landmarks on 

the new bone. 

The femoral head ligament landmark on the new bone is also defined after initial 

global registration and local registration processes are completed (Figure 29). White 

landmark represents the initial position after initial global registration while the purple 

point is the refined landmark after local registration. Using this process, the femoral head 

ligament landmark before and after local registration are identical. 
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Figure 4-17: The corresponding regions on the femoral head before (left) and after 

(right) local registration. The cyan point cloud is vertices on the new bone. The 

orange point cloud is the corresponding vertices of the cyan point cloud on the 

template. The red point cloud is vertices of cyan point cloud after local registration. 

 

 

Figure 4-18: The corresponding regions around lesser trochanter before (left) and 

after (right) local registration. The cyan point cloud is vertices on the new model. 

The orange point cloud is the corresponding vertices of the cyan point cloud on the 

template. The red point cloud is vertices of cyan point cloud after local registration. 
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Figure 4-19: The corresponding regions around greater trochanter before (left) and 

after (right) local registration. The cyan point cloud is vertices on the new model. 

The orange point cloud is the corresponding vertices of the cyan point cloud on the 

template. The red point cloud is vertices of the cyan point cloud after local 

registration. 

 

 

Figure 4-20: The corresponding regions around greater trochanter before (left) and 

after (right) local registration. The cyan point cloud is vertices on the new model. 

The orange point cloud is the corresponding vertices of the cyan point cloud on the 

template. The red point cloud is vertices of the cyan point cloud after local 

registration. 
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Figure 4-21: The corresponding regions around medial epicondyle before (left) and 

after (right) local registration. The cyan point cloud is vertices on the new model. 

The orange point cloud is the corresponding vertices of the cyan point cloud on the 

template. The red point cloud is vertices of the cyan point cloud after local 

registration. 

 

 

Figure 4-22: The corresponding regions around the lateral epicondyle before (left) 

and after (right) local registration. The cyan point cloud is vertices on the new 

model. The orange point cloud is the corresponding vertices of the cyan point cloud 

on the template. The red point cloud is vertices of the cyan point cloud after local 

registration. 
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Figure 4-23: Refined femoral head ligament landmark of the new bone (purple) and 

the landmark on the template after local registration (green). Cyan point cloud 

represents the local region on the new model while the red one represents the local 

corresponding region on the template. 

 

 

Figure 4-24: Refined lesser trochanter landmark of the new bone (purple) and the 

landmark on the template after local registration (green). Cyan point cloud 

represents the local region on the new model while the red one represents the local 

corresponding region on the template. 
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Figure 4-25: Refined greater trochanter landmark of the new bone (purple) and the 

landmark on the template after local registration (green). Cyan point cloud 

represents the local region on the new model while the red one represents the local 

corresponding region on the template. 

 

 

Figure 4-26: Refined greater trochanter landmark of the new bone (purple) and the 

landmark on the template after local registration (green). Cyan point cloud 

represents the local region on the new model while the red one represents the local 

corresponding region on the template. 
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Figure 4-27: Refined medial epicondyle of the new bone (purple) and the landmark 

on the template after local registration (green). Cyan point cloud represents the 

local region on the new model while the red one represents the local corresponding 

region on the template. 

 

 

Figure 4-28: Refined lateral epicondyle of the new bone (purple) and the landmark 

on the template after local registration (green). Cyan point cloud represents the 

local region on the new model while the red one represents the local corresponding 

region on the template. 

 



38 

 

 

Figure 4-29: Comparison of refined (purple) and initial (white) femoral head 

ligament landmark on the new model. The blue point is the femoral head ligament 

landmark on the template model after local registration. 
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The lesser trochanter landmarks before and after local registration are also defined 

(Figure 30). The white landmark, slightly a further distance away, represents the location 

before local registration is completed, but the point is still close enough to the true landmark 

location. The local registration process is able to capture surrounding vertices, which can 

then be used to bring the white landmark closer to the purple landmark, which is closer to 

the landmark on the template bone (green). 

Similar to femoral head ligament landmark, the medial epicondyle landmarks 

before and after local registration are very close. It can be seen that a small deviation 

between two landmarks is represented in Figure 4-31. As shown in Figure 4-32, lateral 

epicondyle landmarks before and after local registration is slightly off, but they are still 

very close to each other. At some regions, the final landmarks on the new bone are refined 

to match the landmarks on the template better. Those regions share a similar structure that 

is they contain more geometry details including curves, extreme points.  

Regardless of differences in size, geometry, and initial position, the algorithm has 

proven to be successful in transferring landmarks from the template bone to the new bone 

model. It can be seen in Figure 4-33 that the predicted landmarks on the new model bone 

(purple) are properly defined with respect to the landmarks on the template bone (green). 

4.1.7 Anatomical Landmarking for the Pelvis 

Not only does this anatomical landmarking algorithm work for the femoral bone, 

but it can also be used for any bone geometry. Figure 4-34 shows the comparison of the 

template and new pelvis bones after initial global registration. Even though they are similar 

in structure, in some certain regions they are very different in geometry and size.  
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Figure 4-30: Lesser trochanter before (white) and after (purple) local registration. 

The green point represents the lesser trochanter of the template after local 

registration. 

 

 

 

Figure 4-31: Medial epicondyle before (white) and after (purple) local registration. 

The green point is medial epicondyle of the template after local registration. 
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Figure 4-32: Lateral epicondyle before (white) and after (purple) local registration. 

The green point represents the lateral epicondyle landmark on the template after 

local registration. 

 

 

Figure 4-33: Landmarks on the template are successfully mapped to the new femur 

model using the proposed anatomical landmarking algorithm. The cyan model 

represents the new femur, while the orange model represents the template femur. 

Green points are landmarks on the template while purple points are landmarks on 

the new femur. 
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Figure 4-34: Comparison of the template (orange) and new pelvis (cyan) after initial 

global registration. 
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Figure 4-35 demonstrates the landmarks on the template pelvis bone are mapped to 

the new pelvis bone. Therefore, it can be seen that with the same algorithm, landmarks on 

the new model can be predicted and properly defined. This new algorithm accelerates the 

process of analyzing new subjects and avoids human error while determining new 

landmarks on the bone of new subjects used in the forward solution model. 

4.2 MORPHOLOGY OF THE PROXIMAL FEMUR 

After defining landmarks on the new femoral bone model, the landmark positions 

will then be used to analyze the femoral bone and canal to obtain the morphologic 

parameters (Figure 4-36). This crucial step aims to determine the following parameters of 

the proximal femur and canal. 

1. Femoral head diameter (B) 

2. Femoral head center 

3. Femoral neck shaft axis 

4. Femoral canal morphology 

5. Proximal femoral shaft axis 

6. Femoral offset (A) 

7. Femoral neck shaft angle (C) 
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Figure 4-35: Landmarks on the new pelvis (purple) are successfully mapped from 

landmarks on the template femur (green). 

 

 

Figure 4-36: Proximal femoral morphology. 
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4.2.1 Algorithm Framework 

The anatomical landmarking algorithm framework is revised in a specific manner 

so that it provides more information that can be used to determine the femoral morphologic 

parameters. The revised algorithm is shown in Figure 4-37. 

Using this revised framework, additional information can then be added to the 

template femoral bone model. The mesh of the template femoral bone is segmented to 

smaller regions that contain important information pertaining to the femur. As described in 

Figure 4-38, the femoral bone is intuitively divided into six small regions: the femoral head, 

femoral neck, trochanter region, proximal femoral shaft, distal femoral shaft, and distal 

femur. 

Also, the lesser trochanter landmark is defined and represented as the green sphere 

in Figure 4-38. The initial alignment and the initial global registration are performed in 

exactly the same manner as seen in the anatomical landmarking algorithm. After the initial 

global registration is completed, only three regions are necessarily used to determine the 

correspondences in the template femur bone and the new femoral bone model. The three 

regions previously referred to are the femoral head, femoral neck, and the region around 

the lesser trochanter. In Figure 4-39 and Figure 4-40 represention is shown for the 

correspondence of the femoral head and femoral neck after the initial global registration, 

respectively.  
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Figure 4-37: Measurement of the proximal femoral morphology framework. 

 

 

 

Figure 4-38: User-defined segmented mesh of the femur. 
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Figure 4-39: The corresponding regions of the femoral head on the template (green) 

and the new model (white). 

 

 

Figure 4-40: The corresponding regions of the femoral neck on the template (green) 

and the new model (white). 
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4.2.2 Determination of The Femoral Head Center and Diameter 

Once the femoral head of the new femur bone is obtained, a spherical fitting 

function is used to fit the point cloud for the femoral head. The diameter of the femoral 

head is then determined to be the diameter of the fitting sphere. The fitting sphere of the 

femoral head, given its point cloud is shown in Figure 4-41. 

Since the femoral head is not a perfect sphere, the spherical fitting function is run 

multiple times to account for artifact error. Each run generates a fitting sphere pertaining 

to the femoral head point cloud. The final sphere, representing the femoral head, is 

determined to be an average sphere with respect to all the spheres derived from each run 

of the process. The sphere for each run, pertaining to the femoral head, its center and the 

diameter of this sphere are recorded for each run. The final femoral head center and 

diameter are calculated as the mean of the fitting centers and diameters. The mean fitting 

sphere with respect to the femoral head, with point cloud and without point cloud, 

respectively are shown in Figure 4-42 and Figure 4-43. 

4.2.3 Determination of The Femoral Neck Shaft Axis 

Similar to the determination of the femoral head information, a cylindrical fitting 

function is used, instead of a spherical fitting function, to fit a cylinder to the point cloud 

of the femoral neck. Again, the point cloud of the femoral neck is not representing by a 

perfect cylinder, so the algorithm runs multiple times to estimate the mean cylinder. The 

procedure is carried out using a variant of the Random Sample Consensus (RANSAC) 

called M-estimator RANSAC [76]. RANSAC is an iterative method to estimate parameters 

of a mathematical model from a set of observed data that contains outliers or noise. In this  
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Figure 4-41: A fitting sphere is used to fit the point cloud of the femoral head. 

 

 

Figure 4-42: The mean fitting sphere of the point cloud of the femoral head. 

 



50 

 

 

Figure 4-43: The mean fitting sphere of the point cloud of the femoral head. 
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application, the mathematical model is a cylindrical fitting function. The point cloud of the 

femoral neck plays an important role, as the derived data is used to fit a cylinder 

(mathematical model). M-estimator of RANSAC suggested by Torr et al. [77] provides a 

modification of the RANSAC algorithm to reduce the effect of noise and outliners. This is 

a random process, so after each run, the M-estimator RANSAC yields a different result of 

the mathematical model. With respect to the cylindrical fitting function, after each run, the 

algorithm generates a different set of cylindrical parameters. A set of parameters that are 

needed to define a cylinder includes centers of both sides of the cylinder, the radius, and 

the height. After multiple runs, a set of cylindrical parameters are recorded. The final fitting 

cylinder is estimated to be the mean of all fitting cylinders after all runs.  

The femoral neck shaft axis is then determined to be the axis that goes through two 

centers of two sides of the mean cylinder. As the center of the femoral head and the axis of 

the femoral shaft are estimated separately, it is likely that the estimated femoral head center 

will not lie on the femoral neck shaft axis. In order to correct that problem, additional steps 

are carried out. Before discussing how this problem is fixed, let us review how a line is 

formed. On the Cartesian plane, a line is represented as two points or a unit vector and a 

point. The unit vector represents the direction while the point can be any certain point that 

bisects the line. Two lines are determined to be parallel when they share the same unit 

vector, although the points can be different from each other. With respect to the 

representation of the femoral neck shaft axis, it is represented as two center points on two 

sides of the cylinder or can be represented as a unit vector and a point.  Therefore, the 

refined femoral neck shaft axis is determined by keeping the unit vector of the mean 

femoral shaft axis the same as the mean femoral neck shaft axis, which is shifted to include 
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the femoral head center. The femoral neck shaft axis before and after the correction is 

completed are shown in Figure 4-44. 

4.2.4 Measurement of Femoral Canal Morphology 

Measurement of femoral canal morphology is performed through four steps, which 

are described as follows: 

Step 1: Multi-plane intersection 

Starting from 10 mm below the lesser trochanter landmark location, multiple slices 

in the same plane, that are parallel to each other (equally spaced at 1 mm thickness), and 

parallel to the transverse plane, are used to intersect with the canal to obtain a set of canal 

boundary contours. A canal boundary contour is a set of 3D point clouds, but in each slice, 

the contour is represented as a 2D point cloud. The canal boundary contours in 3D view 

and 2D view (Top View) are shown in Figure 4-45. 

 

 

Figure 4-44: Femoral neck shaft axis before (white) and after (orange) correction. 
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Figure 4-45: Multiple planes are used to slice the femoral canal to obtain a set of 

canal boundary contours. 
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Step 2: Determination of incircles of the canal boundary contours 

The position of each slice in the plane is recorded with respect to the global 

coordinate system. In each slice, the canal boundary contour is represented as a set of 2D 

points. For each canal boundary contour in a certain slice, an incircle is determined to be 

the largest circle that fits inside the canal boundary contour. This incircle represents a 

virtual space where a femoral stem can rotate around its shaft axis. Therefore, assuming 

that a femoral stem fits inside the canal, the femoral stem can then be rotated to find the 

best fitting position for each slice in the chosen plane.  Then, the boundary of the femoral 

component will draw a circle trajectory inside the canal. Therefore, the incircle of the canal 

will work as a constraint that only allows smaller circle trajectories to fit inside. The canal 

boundary contour and its incircle at an arbitrary plane are shown in Figure 4-46. 

 

 

Figure 4-46: At an arbitrary plane, an incircle (yellow) of a canal boundary contour 

(red) is defined as the biggest circle that can fit inside the canal boundary contour. 
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This process is repeated for all slices in the chosen plane through to the proximal 

femur. A set of canal boundary contours and their incircles are recorded for further analysis. 

The canal boundary contours and their incircles are obtained for the entire proximal femur 

are shown in Figure 4-47. 

Step 3: Determination of incircles’ centers and radii 

All centers and radii representing the incircles are stored in a module library. The 

module library is define in a manner, such that the center location of the incircle closest to 

the femoral head center will be recorded first, and the furthest incircle defined last. By 

doing this in such a way creates virtual storage that is likely similar to the canal shape. The 

centers of incircles and their radii are shown in Figure 4-48. 

Step 4: Measurement of the distances from the femoral head center to each center of 

incircles 

As the coordinates of the femoral head center and centers of incirles are determined 

in the global coordinate, the relative distance from each incircle center to the anatomical 

femoral head center is obtained by subtracting the distances from the two coordinates. The 

relative position of the centers of incircles to the anatomical femoral head center are 

represented in Figure 4-48. 

4.2.5 Determination of The Proximal Femoral Shaft Axis 

Once the centers of all the incircles are determined, the proximal femoral shaft axis 

is determined by fitting a line to all the center locations. In the previous section, the 

RANSAC algorithm [77] was used to determine a fitting cylinder to the femoral neck. In  
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Figure 4-47: Incircles of all canal boundary contours are obtained. 

 

 

Figure 4-48: The center and radius of each incircle are recorded. 
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this section, the RANSAC algorithm is also used but for fitting a line. The superiority of 

the RANSAC algorithm over other regression models is that the RANSAC algorithm is 

very efficient to determine a fitting line with noisy input data. Similar to the representation 

of the femoral neck shaft axis, the femoral shaft axis is also represented using a unit vector 

and a point. The estimated femoral shaft axis is defined in Figure 4-49 using the RANSAC 

algorithm. 

4.2.6 Measurement of The Femoral Offset 

The femoral offset plays an important role for determining whether a standard or 

high offset femoral stem is needed for a specific patient requiring a total hip arthroplasty.  

The femoral offset is defined as the distance from the femoral head center to the proximal 

femoral shaft axis. As the femoral head center and femoral shaft axis are determined in the 

previous sections, the calculation of the femoral offset is straightforward. The femoral 

offset is shown in Figure 4-50. 

4.2.7 Measurement of Femoral Neck Shaft Angle 

As the femoral neck shaft axis and femoral shaft axis are calculated in the previous 

sections, the femoral neck shaft angle is determined as the angle between those axes. The 

femoral neck and shaft angle are shown in Figure 4-51. 
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Figure 4-49: The proximal femoral shaft axis is defined to be the fitting line that 

bisects all incircle centers. 

 

 

Figure 4-50: Femoral offset is measured as the distance from the femoral head 

center to the proximal femoral shaft axis. 
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Figure 4-51: Femoral neck shaft angle is measured as the angle between the femoral 

neck shaft axis and the proximal femoral shaft axis. 
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4.3 AUTOMATED TOTAL HIP ARTHROPLASTY SIZING 

PREDICTION 

4.3.1 Measurement of Femoral Component Morphology 

Measurement of the femoral component morphology needs to be differentiated 

from the femoral component specification. The femoral component configurations contain 

five parameters, which are stem length, neck offset, neck length, neck shaft angle, and 

component width. A standard Corail total hip arthroplasty stem will be used in this section 

(Figure 4-52). 

The objective pertaining to the morphology of a femoral component is to provide 

meaningful information that can be used to determine how the femoral stem fits the canal. 

Similar to the femoral canal morphology measurement, there are five steps to measure the 

morphologic parameters of a femoral component. Using a similar approach, only that 

contents that differ from the canal analysis are discussed in this section. 

Step 1: Preparation of the training implant database 

Similar to anatomical landmarking that automatically predicts landmarks on a new 

bone model given a known set of landmarks on a template model, the objective of this step 

pertains to obtaining two defined landmarks on each femoral component. These landmarks 

are the femoral head center and the distal aspect of the collar, commonly referred to as the 

collar landmark. For collarless femoral stem components, the landmark becomes the lowest 

point of the boundary that separates the component’s neck and shaft. Since it can be 

difficult to determine these features on a femoral component using an automated process,  
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Figure 4-52: Corail stem specification that contains stem length (A & B), offset (C), 

neck length (D), and neck shaft angle (E). Image from (www.depuysynthes.com) 
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it is recommended that two landmarks be manually selected and saved in a text file. The 

femoral head center and the most distal aspect of the femoral collar, in a standard collared 

femoral component are shown in Figure 4-53. Two landmarks are selected and stored in 

separate text files for all of the femoral components that are stored in the database. 

Step 2: Multi-plane intersection 

Similar to the femoral bone in the anatomical landmark module, starting at 1 mm 

below the collar landmark, multiple parallel planes are defined in the chosen plane and also 

with respect to the transverse plane.  These planes spaced at 1 mm thickness with respect 

to each other are used to intersect with the femoral component to obtain a set of the femoral 

component boundary contours. Similar to the canal morphology measurement section, the 

boundary contours are 3D curves, but in each plane, they are represented as 2D curves. The 

position of each plane is also obtained to locate its position with respect to the global 

coordinate. In Figure 4-54, the multi-plane intersection with the femoral component can be 

seen. 

In Figure 4-55 the multiple defined planes, separated by1 mm thickness intersection 

with the femoral component can be seen. The process is able to capture the boundary of 

the femoral component even with limited details. 

Step 3: Determination of circumcircles for all intersected femoral component 

contours 

Unlike the femoral canal analysis section where an incircle is determined for each 

canal contour, a mating circumcircle is determined for each femoral component contour. 

A circumcircle is defined to be the smallest circle that contains all the femoral component  
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Figure 4-53: The femoral stem head and collar landmark are manually defined. 

 

 

Figure 4-54: Multiple planes are used to slice the femoral component to obtain a set 

of the boundary contours. 
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Figure 4-55: Multiple planes with 1 mm thickness are used to intersect the femoral 

component to obtain detailed component boundary contours. 
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contour points. An example of the circumcircle for a defined slice of the femoral 

component contour at a certain plane is shown in Figure 4-56. 

A circumcircle is used instead of incircle for this process because if the femoral 

component rotates about its shaft axis within the femoral canal, whereas the defined 

boundary, represented by a slice, represents a circle. This circle is a known to be a 

circumcircle of the femoral component boundary at each specific slice in the plane. A 

circumcircle provides meaningful information with respect to the femoral component 

contour at each slice defined by the points representing its circumference.  Therefore, this 

information is used to determine how far each stem can fit within the femoral canal. A 

specific set of circumcircles is then identified for each femoral component by using the 

contours at each slice. Those circumcircles form the morphology of a given femoral 

component. The circumcircles obtained at each slice are shown in Figure 4-57. 

Step 4: Determination of the centers and radii of circumcircles 

Similar to the femoral canal analysis section, all centers and radii representing the 

set of circumcircles for each stem are recorded and stored in the module library. The 

circumcircle closest to the femoral neck head center (where the center of the femoral head 

will locate on the femoral neck) will be stored first and subsequently all other circumcircles 

with one representing the furthest distance from the femoral neck head center, stored last. 

The centers and radii of all circumcircles is shown in Figure 4-58. 
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Figure 4-56: Circumcircle of a contour at a certain plane is defined as the smallest 

circle that contains all contour points. 

 

 

Figure 4-57: Circumcircles are identified for all contours at all planes. 
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Figure 4-58: Centers and radii of all circumcircles are obtained. 
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Step 5: Measurement of distances from each circumcircle to the femoral component 

head center 

As the coordinates of the femoral component head center and centers of 

circumcircles are determined in the global coordinate, the relative distance from each 

circumcircle to the component head center is obtained by subtracting the distances from 

the two coordinates. Those parameters are defined and stored in the above stack to add to 

the morphologic parameters of the femoral component.  

Step 6: Determination of the stem shaft axis 

Unlike the femoral canal, where the shape of each canal slice is not homogenously 

smaller from the most proximal to the most distal slice, the radii of the circumcircles of the 

femoral component do gradually reduce proximally to distally. Therefore, a meaningful 

methodology can be determined to define the axis of the femoral stem body. As shown in 

Figure 4-58, the shape of the femoral component does change proximally to distally where 

the shape allows for bone ingrowth and fixation. Beyond this point, the shape is reduced in 

a more constant manner. Although we define numerous slices and centers, in order to 

determine the femoral component shaft axis, only a small portion of the distal component 

is required. A line is the defined bisecting the distal centers of the circles and this line 

represents the stem axis. Therefore, the femoral stem axis is determined to be the best 

fitting line that bisects those centers (Figure 4-59) 
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Figure 4-59: Femoral component shaft axis is defined as the fitting line that goes 

through all centers of circumcircles. 
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4.3.2 Femoral Component Sizing Algorithm Framework 

The algorithm that is used to determine which femoral component will fit a specific 

femoral canal best, using a 3D mesh model of the femur, is shown in Figure 4-60. 

The femoral component and canal morphology of a given femoral CAD model are 

compared to the training femoral component database. For each femoral component 

morphology, the algorithm determines how far distally the femoral component can fit 

within canal before collision is detected between the stem and the cortical bone. Once the 

defined position of where the femoral component can fit properly within the canal is 

confirmed, the relative distance from the anatomical femoral head center to the femoral 

component head center is calculated. This process is repeated for all femoral component 

morphology in the database. The best fitting femoral component is determined when the 

distance from its head center to the femoral head center is at a minimum. 
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Figure 4-60: The femoral component sizing algorithm framework. 
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4.3.3 Determination of the Fitting Location Between the Femoral Component and 

Canal 

The following important question must now be asked:  For each femoral component 

that is stored in the database, how well can they fit within the canal? Previously we defined 

the incircles of the canal and circumcircles of the femoral component and now they are 

used for the femoral component fit process (Figure 4-61). The incircles and circumcircles 

represent the femoral canal and femoral component’s morphology, respectively and are 

further used to determine which femoral stem fits best in the canal.  

There are two solutions that can be used to address the stem fit. The first solution, 

as well as the most common thought of majority of readers, is inserting the femoral 

component within the canal and allow for the gravitational force to take effect, fitting the 

femoral component. The chosen stem would then be the one where the position of the 

femoral component can fit most stable within the canal. From a mathematical perspective, 

this solution can be written as comparing each circumcircle of the femoral component to 

the biggest incircle of the canal. The matching of circumcircle and incircle will reveal the 

position where the femoral component can fit best within the canal. On the other hand, the 

second solution that has been developed in this section compares the largest incircle to the 

circumcircles of the femoral component (Figure 4-62). These two solutions do share a 

common methodology, but the second solution can detemine which stem fits best using 

only a few comparisons. A demonstration of this the idea of solution two where the biggest 

incircle is compared to the circumcircles of the femoral component. 
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Figure 4-61: Incircles of the canal and circumcircles of the femoral component. 

 

 

Figure 4-62: The biggest incircle of the canal is compared to the circumcircles to 

locate the fitting location of the femoral component and the canal. 
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4.3.4 Determination of the Smallest Distance 

Once the position for each femoral component with the database fits with the canal 

is determined, the distance from its implanted head center to the anatomical femoral head 

center is then measured. Therefore, for all femoral components in the database, the set of  

distances from each femoral component head center to the anatomical femoral head center 

is determined and stored in the database. This process is conducted to find the best fitting 

femoral component within the canal by determining which femoral component has the 

smallest distance from its head center to the anatomical femoral head center. Since the 

distances for each implant size are recorded, the computer algorithm can then choose the 

best fitting stem. This is done by using minimization function that can be used to locate 

which femoral component fits best in the canal within having stem-bone collision and stem-

bone gaps. Figure 4-63 shows the comparison of femoral components with different sizes 

sitting on the canal. The femoral component is outlined by a rectangular is the one with the 

smallest distance between its head center to the anatomical femoral head center. 

4.3.5 The Choice of a Standard or High Offset Stem 

Even though the best fitting femoral component was determined in the previous 

section, it is still necessary to consider whether that femoral component should be a 

standard or high offset stem. Orthopaedic manufacturers routine design two femoral 

component options with the same body characteristics, which are defined to be the standard 

offset and high offset stem. The only difference between two component designs is that 

with the same size of stem body, the high offset stem has a longer neck than the standard 

stem. The high offset stems account for the majority of patients, having a femoral offset  
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Figure 4-63: The best fitting femoral component is defined as the one that has the 

smallest distance from its head center to the femoral head center. 
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over 43 mm [78-80], while the standard stems are used for the majority of patients with the 

femoral offset less than 43 mm [78-80]. Fortunately, in the previous section, the femoral 

offset is measured. Therefore, in order to restore the femoral anatomy, a high offset may 

be a good choice if the patient has the femoral offset over 43 mm. Otherwise, a standard 

stem would be the best solution. In Figure 4-64 a standard and high offset stem can be seen. 

4.3.6 The Choice of Femoral Component Neck Shaft Angle 

Surgeons or Users of the stem fitting algorithm can determine whether a particular 

patient needs a different stem neck shaft angle other than a standard stem based on the 

patient’s anatomy. Similar to femoral offset, hip prosthetic manufactures provide surgeons 

multiple options to choose the correct femoral component for a specific patient. Typical 

options include standard, high offset, collared, collarless, cemented, cementless, Coxa 

Vara, and Reef stems, etc.  In Figure 4-65 multiple stem options for the Corail (DePuy-

Synthes, A Johnson & Johnson Company, Warsaw, Indiana) stems can be seen.  

Among those options, a Coxa Vara stem typically has a smaller neck shaft angle 

compared to a standard stem. In the previous section, the measurement of femoral neck 

shaft angle has been determined so the User can utilize the information stored in the 

database to determine whether a patient needs a Coxa Vara stem. 

4.3.7 The Sizing Estimation of the Shell, Liner, and Femoral Head 

A rule of thumb in clinical practice about determining the size of the shell stated as [81]:  

Size of the Shell = Femoral Head Diameter + 8 ± 2 (mm) 
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Figure 4-64: Standard and high offset Corail stem. Image from 

(www.depuysynthes.com). 

 

 

Figure 4-65: Diversity of the Corail stem system. Image from 

(www.depuysynthes.com). 
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This formula is applied to estimate the size of the shell. As the femoral head diameter is 

already measured in the previous section, it should be straightforward to estimate the size 

of the shell. The size of the liner is a dependence of the size of the shell, and the size of the 

femoral head component is a dependence of the size of the liner. Once the size of the shell 

is estimated, the sizes of the liner and femoral head are estimated as well. In clinical 

practice, the outer size of the liner is equal to the size of the shell, while the size of the 

femoral head component is equal to the size of inner aspect of the liner. 

4.3.8 Femoral Component Fit Analysis 

Once the femoral component is determined, it is necessary to see how well the 

femoral component fits the canal using our fitting analyses. In order to provide fruitful 

results, three intensive analyses have been developed. They are defined as (1) cross-

sectional analysis, (2) slice analysis, and (3) contact map analysis. 

Cross-sectional analysis functions similar to CT scans where the User can see the 

anatomy at each scan, but it is more powerful than CT scans in several ways. Cross-

sectional analysis is a user graphic interaction program where users can freely view the 

anatomy at any orientation. To elaborate that point, while CT viewer program only allow 

users to view anatomy at three orthogonal views such as coronal, transverse, and sagittal 

view, the cross-sectional analysis allows Users of our process to handle, interact, and 

screen the anatomy at any arbitrary view. Cross-sectional anatomy of the femur and 

femoral component at different views using the cross-sectional analysis can be seen in 

Figure 4-66. 
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When using the cross-sectional analysis, it is quite simple to understand how the 

chosen femoral component fits the femoral canal. The User can screen the fitting by 

dragging the intersectional plane to the desired region to view the stem fit within the canal. 

If the plane is placed parallel to the coronal plane, the view turns into a traditional X-ray 

image (Figure 4-66). The cross-sectional analysis program not only functions similar to CT 

scans, but also it works in a similar manner to an X-ray image. 

While the cross-sectional analysis provides a dynamic view of the anatomy, 

sometimes it is hard to remember which area is fit, and subsequently which is not. To 

overcome that shortcoming, a slice analysis enhances the visualization ability of the User 

by providing a static view of the fit between the chosen femoral component and the femoral 

canal. The slice analysis slices the femur bone and the chosen femoral component into 

small sections. They are then assembled to visualize the intersection at each slice. This 

approach allows a 3D view of the intersection of slices which can be seen in Figure 4-67. 

Users now do not need to remember where the stem fits to the canal, instead users 

can see the fit in the 3D viewer. The advantage of this analysis is that Users can define a 

custom view, then the analysis will slice the femur and femoral component at that view. 

The last point to be discussed pertaining to the slice analysis tool is that Users can 

define the thickness of the planes as it matches their needs. Therefore, the slice resolution 

will be enhanced, and Users will be able to visualize anatomy better. The power of VTK 

allows Users to zoom in and out and to have a better view without any restriction even 

when using a computer without the support of a graphics card. 
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Figure 4-66: The cross-sectional analysis is used to screen the anatomy at arbitrary 

views. 

 

 

Figure 4-67: Slice analysis enhances visualization by proving a static view of the 

system. 
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The cross-sectional analysis and slice analysis modules are powerful qualitative 

tools that can be used to examine how the chosen femoral component fits the canal. They, 

however, do not provide information about the distance of the femoral component with 

respect to the bone. Hence, we developed the contact map analysis which overcomes the 

shortcomings of these other processes. The contact map analysis allows for measurements 

to be made to determine the distance from the outer aspect of the femoral component to the 

femoral canal. This distance is then determined at each slide and correlated to a 

visualization distance map where the closest distance to the canal is red and furthest 

distance as blue. The color map on the stem and color bar in Figure 4-68 show the distance 

from the stem to the canal or how much the stem would penetrate into the bone if that stem 

was chosen.  The findings from this analysis allows the Users make a decision as to whether 

they would like to downsize or upsize the stem.  

 

 

Figure 4-68: Contact map analysis allows users to see how close the femoral 

component to the canal. 
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4.4 VIRTUAL SURGERY 

4.4.1 Choice of Surgical Approaches 

The surgeon’s choice of a surgical approach plays an important role in the 

implantation of a THA.  Each surgeon has been trained or feels more comfortable using a 

specific surgical approach. Once a surgeon has been trained to use a specific surgical 

approach either in medical school or their fellowship, they often continue using that 

approach due to comfort level. This is also similar to the surgeon’s choice of hip implant 

type and their commitment with hip implant manufactures.  

This program provides three of the most popular surgical approaches (Figure 4-69). 

Some might say that most advanced surgical approach is direct anterior approach (Figure 

4-70) because it is a minimally invasive surgical technique in which the surgical procedure 

is approached from the anterior of the hip. With this approach being the most recently 

introduced to the orthopaedic community, the surgeon exposes the hip joint by moving 

muscles aside along their natural tissue planes, without detaching any tendons. The direct 

anterior approach has been documented in the literature to be superior to other surgical 

approaches [82-85]. The publications document that this approach leads to much quicker 

recovery for the patient, with less pain, and more normal function after hip replacement 

[82-85]. Theoretically, the virtual surgery program allows for patient positioning during 

direct anterior approach and moving muscles aside to expose the hip joint (Figure 4-71). 
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Figure 4-69: Three most popular surgical approaches of total hip replacement. 

Image from (hipandkneebook.com). 

 

 

Figure 4-70: Theoretical direct anterior surgical approach. 
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Figure 4-71: Patient positioning during direct anterior approach. 
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Traditionally, the posterior approach is the most common approach used to perform 

hip replacement (Figure 4-72). It is also has been a minimally invasive surgery where no 

muscles are cut to access the hip joint, but traditionally the surgeon’s incision is greater 

than for the direct anterior approach because the surgeon has to cut through more tissue. 

Instead, muscles and ligaments are detached to expose the hip joint [86-89]. This virtual 

surgery program allows for patient positioning, detaching muscles and ligaments to expose 

the hip joint (Figure 4-73) 

The program also has the capability to simulate the antero-lateral approach. This 

technique provides good exposure to the hip without trochanter osteotomy [83, 90-92]. The 

theoretical surgery for the antero-lateral approach is shown in Figure 4-74. 

Similarly, for the direct anterior and posterior surgical approach, the virtual surgery 

provides options to position the theoretical patient on the surgical table properly (Figure 

4-75). The flexibility of patient positioning enhances the effectiveness and accuracy of 

surgery. Along with the three most popular surgical approaches, additional approaches can 

be added to the virtual surgery module. 

4.4.2 Modification of Muscles and Ligaments Property 

Regardless of a chosen surgical approach, a certain amount of muscles and ligament 

are weakened after surgery. The virtual surgery program allows the user to retain, resect, 

weaken, and modify muscle and ligament properties according to the chosen surgical 

approach. In this simplified computer model of the hip joint, muscles and ligaments are 

represented as groups of individual fibers with different characteristics depending on the 

role of each muscle and ligament. In order to retain or resect a certain muscle or ligament  
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Figure 4-72: Theoretical posterior surgical approach. 

 

 

Figure 4-73: Patient positioning during posterior surgical approach. 
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Figure 4-74: Theoretical antero-lateral surgical approach. 

 

 

Figure 4-75: Patient positioning during antero-lateral surgical approach. 
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fiber, a graphic user interface (GUI) allows users to handle muscle and ligament properties. 

The GUI that allows users to retain and resect muscles and ligaments is shown in Figure 

4-76. 

4.4.3 Femoral Head Removal 

Once the surgical approach has been chosen, the next step is to remove the femoral 

head. There are two options users can choose in their practice. The first option allows the 

user to manually place the neck cut. In the virtual surgery environment, a 3D CAD model 

of a saw is used to remove the femoral head. The user can also customize the neck cut 

based on their preference. Similar to a real surgery, the saw has to be moved to a proper 

position in order to completely remove the femoral head. As a result, a surgeon often makes 

multiple cuts into the femoral neck so that the head can be removed completely. The 

femoral head removal process after multiple properly positioned cuts is shown in Figure 

4-77. 

The second option available to the User is to remove the femoral head 

automatically. From the previous section, anatomical landmarks on the femur and pelvis 

have been defined. Based on the chosen femoral component and its intended placement, 

the femoral head can be removed without the Users with the theoretical saw. 

4.4.4 Reaming Acetabulum 

In order to ream the acetabulum, the femur is dislocated to expose the acetabulum. 

Once the User has chosen the set of bones, information is derived for the acetabulum and 

the proper reamer is selected, starting from the smallest size to a size through to the final 

size, representing the chosen acetabular shell. The program allows users to select different  
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Figure 4-76: A computer graphic user interface is used to control muscle and 

ligament properties. 

 

 

Figure 4-77: The femoral head removal process. 
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reamer sizes to reach the intended reaming depth. Four example sizes of reamers are shown 

in Figure 4-78. 

The program allows Users to interactively handle the reamer to place it at a desired 

position. The User can translate and rotate the reamer. A relative position of the reamer 

with respect to the pelvis is displayed to guide the user to the reaming location. Once the 

reamer is placed at a desired position, all bones that are in contact with the reamer will be 

removed and replaced by the outer surface of the reamer (Figure 4-79). Similar to the 

femoral neck removal process, the User can choose either the manual process or automated 

process. The automated process is based on landmarks on the hip predicted in the previous 

section. The intended amount of reaming depends on the conditions of the hip joint and 

implants the surgeon intended to use. After the automated or manual process is selected, 

and the User can choose the “confirm” button and then the bone that is contact the with 

reamer will be removed, allowing for the acetabular cup placement. 

4.4.5 Placing the Cup 

The User can choose to place the cup either directly using the virtual surgery 

interface (Figure 4-80) or by using the advanced implant placement window (Figure 4-81). 

Similar to the advanced implant placement interface, the virtual surgery interface allows 

the User to interact with the acetabular cup. The User can translate and rotate the cup in 

order to place it at a desired position. A relative position of the acetabular cup with respect 

to the pelvis is calculated and displayed to guide the User throughout the cup positioning 

process.  
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Figure 4-78: Reamer sizing options. 

 

 

Figure 4-79: Reaming acetabulum process. 
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Figure 4-80: Cup positioning in the virtual surgery program. 

 

 

Figure 4-81: Advanced cup positioning interface. 
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4.4.6 Broaching Femoral Canal 

Broaching the femoral canal to prepare for femoral component placement is carried 

out after the acetabular cup is placed. This theoretical approach is done using a Boolean 

operation of mesh models implemented in the VTK library [93]. The similarity of 

broaching and a difference operation in Boolean can be further explained. In the broaching 

process, a part of cancellous bone (or sometimes cortical bone) is removed. The shape of 

the cavity depends on the shape of the broach used for broaching. Mathematically, this 

process can be understood as a subtraction of the broach from the femoral canal. This 

approach shares a similar methodology to the difference operation in Boolean. Given two 

sets of data, A and B, the difference between A and B is defined as the elements that belong 

to A, but not B. The same concept is applied to subtract the broach from the femoral canal 

to create the femoral cavity. The union, intersection, and difference operation performed 

by the Boolean operation of two meshes are represented in Figure 4-82. The difference 

operation is applied to the broach and femur to create a hole for femoral component 

placement as shown in Figure 4-83. 

4.4.7 Placing Femoral Component 

Once the femoral canal cavity is prepared, the virtual surgery program guides the 

User to place the femoral component at a proper position. There are constraints that restrict 

the femoral component from being placed at an arbitrary position. As one might expect, 

the femoral component cannot be placed deeper than the depth of the hold created by the 

broach. Another restriction is if a bigger femoral component is used, the User has to choose 

an appropriate broach. If not, the femoral component cannot fit in the canal cavity properly,  



93 

 

 

Figure 4-82: Boolean operations between two mesh models. Image from [93]. 

 

 

Figure 4-83: Theoretical broaching is performed though the difference operation of 

VTK Boolean. 
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resulting in hanging of the femoral component in the canal, which leads to increased leg 

length or instability of the femoral component fixation. The femoral component is placed 

at the position created by the broach is shown in Figure 4-84. 

The user can either choose to place the femoral component using the virtual surgery 

program itself or use the advanced implant positioning tool (Figure 4-84). That tool is 

identical to the one used for the acetabular cup, but now it is used for the femoral 

component. 

 

 

Figure 4-84: Femoral component placement using the virtual surgery program (left) 

and the advanced implant component positioning (right). 
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4.5 MATHEMATICAL MODELING ANALYSIS 

In a clinical practice, it is common practice to follow up with their patients to 

evaluate how the implant is functioning after the surgery. The follow up should last years, 

throughout the lifetime of the implant. Therefore, this long-term follow up process provides 

a meaningful evaluation of the hip implant over a specified period of time, but minimal 

intra-operatively information is document and does not allow the surgeon to receive instant 

feedback. Fortunately, forward solution mathematical modeling of the hip joint has been 

developed at the Center for Musculoskeletal Research, University of Tennessee. The model 

functions as a theoretical joint simulator, providing instant feedback to surgeons and 

designers alike. This model, which has been validated, has successfully predicted 

separation, instability, edge loading, and other complications of total hip arthroplasty. The 

details about this modeling were demonstrated and explained in-depth initially by Dr. 

Michael LaCour in his dissertation [61]. In this section, the mathematical model will be 

briefly re-introduced as a follow-up to Dr. LaCour’s work, rather than going through a 

detailed step by step to construct the entire model. In addition, a sustainable effort has been 

made to improve the model’s performance, enhance and expand its capabilities, and 

provide a powerful tool for orthopedic research. Detailed modifications, improvements, 

and the general introduction of the original model are described in this section.  It is 

important to note that after virtual surgery process is completed, where the hip implant 

components are theoretically implanted in the optimal positions, these positions can then 

be used in the mathematical model. 
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4.5.1 Description of The Original Model 

The original mathematical model contains two separate simulations that represent 

stance and swing phase of gait. Each model features six bodies as shown in Figure 4-85: 

the foot (b), tibia (e), patella (c), femur (f), pelvis (a), and upper body represented by the 

torso (d). For both stance and swing phase models, the femoral implant component and 

acetabular cup are included but represented as massless bodies, commonly referred to as 

frames. The ankle and patellofemoral joint are modeled as spherical joints that allow for 

three degrees of freedom. There is one point of contact for each of these joints. At the knee, 

the femur and tibia are assumed to always contact at two points in the medial and lateral 

articulating surfaces. The hip is modeled as a ball and socket joint with multiple contact 

points.  

In the stance phase model, known ground reaction forces are assumed to apply at 

the foot center and thus are imputed to the model at this point. With respect to the swing 

phase model, the force of the contralateral leg is specified. In both models, the ligaments 

are modeled as linear and/or non-linear springs [61, 94]. As the stance and swing phase 

simulations are fully regarded as forward solution models in nature, all muscles acting at 

the hip are controlled by proportional-integral-derivative controllers (PID controllers). 

There are three PID controllers that can be used to drive the model for the forward and 

inverse solution simulations. One PID controls the hip flexion/extension muscle group, one 

PID controls the hip abduction/adduction muscle group, and one PID controls the hip 

internal/external rotation muscle group. In order to allow for the translation of the femoral 

head within the acetabular cup, the translation of the hip joint is controlled by a contact 

detection algorithm. This contact detection algorithm takes surfaces of the femoral stem  
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Figure 4-85: Six bones are used in the original hip model: (a) pelvis, (b) foot, (c) 

patella, (d) torso, (e) tibia, (f) femur. 
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head and inner surface of the acetabular as input data and calculates the interaction forces 

between the two bodies. This algorithm allows the femoral head to slide within the 

acetabular cup, resulting in a relative motion between two surfaces. When the distance 

between the two surfaces is greater than 1 mm, it is assumed that the hip separation occurs. 

For complete details and assumptions to model the hip, please see Dr. Lacour’s dissertation 

[61]. 

4.5.2 Correction of The Hip Torques 

Autolev (Motion GenesisTM) is a symbolic programming language for solving 

multi-body dynamic problems [95-97]. The coding use for Autolev, albeit a high-level 

language, still exhibits multiple shortcomings that restrict users from coding and debugging 

efficiently. One such example is that muscles and ligaments in the human body are non-

linear systems that need complex equations to represent their functionalities. Muscles and 

ligaments can be represented in Autolev, but only in a simplified manner. In order to have 

a better representation of muscles and ligaments, the dynamic system is exported into C, 

Matlab, or Fortran [60].  The muscle and ligament equations are modeled separately are 

then added to the executable file. For that reason, the complexity of the system is increased, 

and the system becomes challenging to handle. Another issue is that Autolev does not 

support contact force modeling between two rigid bodies, such as the femoral stem and the 

acetabular. In order to calculate the interaction force between these bodies, a contact 

detection algorithm is implemented in C or Matlab, and then added to the executable file. 

A limitation of C programming language is that it does not support object-oriented 

programming, therefore, the complexity of the program increases along with the number 
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of contact surfaces. As a result, Users need to have a very strong C programming 

foundation in order to manage and handle the program to work as expected. Unfortunately, 

in the existing model, the hip torque equations have not been well formulated, resulting in 

an error. Below are the equations that calculate the torques acting on the femoral stem and 

the acetabular in the existing program. 

TORQUE_FC > =  ∑ 𝑟𝑖
𝐴𝐶 × 𝐹𝑖

𝑛

𝐼=1

 

TORQUE_AC > =  ∑ 𝑟𝑖
𝐴𝐶 × (−𝐹𝑖)

𝑛

𝐼=1

 

In these equations, TORQUE_FC> is the torque acting on the femoral stem, and 

TORQUE_AC> is the torque acting on the acetabular cup. The section 𝑟𝑖
𝐴𝐶 is the moment 

arm of the force 𝐹𝑖 that are calulated in the acetabular reference frame. The first equation 

calculates the torque acting on the femoral stem by using the moment arm in the acetabular 

reference frame. This error results in an incorrect torque acting on the femoral stem, leading 

to an incorrect calculation of other torques and interaction forces at other joints. In order 

to fix this problem, the following correct equations are written and properly implemented 

in the code: 

TORQUE_FC > =  ∑ 𝑟𝑖
𝐹𝐶 × 𝐹𝑖

𝑛

𝐼=1

 

TORQUE_AC > =  ∑ 𝑟𝑖
𝐴𝐶 × (−𝐹𝑖)

𝑛

𝐼=1
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An experiment has been performed to illustrate the differences between the incorrect and 

corrected equations influence the results. In this experiment, the femoral stem and the 

acetabular cup are placed at their ideal position. The torques acting on the knee are shown 

in Figure 4-86. The red and dashed-green curves in Figure 4-86 represent the results of the 

existing and improved program, respectively. As the moment arm is changed, the torques 

acting on the knee is shown to change accordingly. As shown in Figure 4-87, the quadricep 

muscle and knee interaction forces are affected by the changes of moment arms as well. 

4.5.3 Investigation of Artifact Spikes at The Beginning of Simulation 

The existing program utilized three proportional-integral-derivative (PID) 

controllers to drive motions of the hip. These controllers drive muscle forces so that hip 

motions will approach the realistic hip motions. At the initialization of each simulation, 

many parameters need to be initiated and they take time to be stabilized. For that reason, a 

large number of artifact spikes occur during this period, which makes the model less 

accurate. Red rectangles in Figure 4-88 and Figure 4-89 represent these spikes in the 

existing simulation program. As shown in Figure 4-88 and Figure 4-89, these spikes take 

approximately 0.05 second to be stabilized. 

In order to solve this problem, an adjustment to the simulation has been developed 

and implemented. Instead of simulating the model from 0 to 0.6 second as listed in the 

original model, the simulation was set to run from -0.1 to 0.6 second. The period from -0.1 

to 0 is where artifact spikes occur, and the period from 0 to 0.6 is where the program works 

with stability. By eliminating the period from -0.1 to 0, a smooth simulation of the hip  
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Figure 4-86: Comparison of the torques acting at the knee between the original (red) 

and fixed model (dash - green). 

 

 

Figure 4-87: Comparison of the quadricep muscle forces and knee interaction forces 

between the original (red) and fixed model (dash - green). 
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Figure 4-88: Occurrence of artifact spikes in the initialization of hip muscle forces. 

 

 

Figure 4-89: Occurrence of artifact spikes in the initialization of joint reaction 

forces. 
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model can be obtained. In Figure 4-90 and Figure 4-91 a side-by-side comparison of those 

spikes before and after they have been stabilized can be seen.  

The improved program is usable if the hip motions of the existing program and the 

improved program are approximately the same. An experiment was conducted in which 

hip motions of the two programs were analyzed and compared. Figure 4-92, Figure 4-93, 

and Figure 4-94 demonstrate that the hip motions in the existing program are equivalent to 

the improved program, and therefore the improved program can be used to replace the 

existing program for future simulations. 

One drawback with respect to this approach is that the PID controllers need to be 

redefined if the position of the implant component is changed. This restricts the capability 

of simulating different surgical planning settings where the user may desire to simulate 

different positions of the implant. This is also an issue in the existing program. The only 

thing that is different between the improved and existing program is that in the existing 

program, the spikes are influencing whether or not the PID controllers are tuned. Without 

a close examination of the simulation results, one may think that with the same PID 

controllers’ parameters, the program can simulate any surgical planning settings. However, 

it is apparent that the PID controllers need to be tuned each time the program is used in 

order to simulate different surgical settings. Tuning PID parameters is a challenging task, 

even for skilled researchers. For this reason, there is still a need to have an automated 

tuning program that can be used to change the PID controllers’ parameters, leading to a 

simulation that meets expectations. This automated tuning program is introduced in the 

following section. 
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Figure 4-90: Artificial spikes (left) and stabilized spikes (right) in hip muscle forces. 

 

 
 

Figure 4-91: Artificial spikes (left) and stabilized spikes (right) in joint reaction 

forces. 
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Figure 4-92: AP motions of the hip before (left) and after stabilized spikes (right). 

 

 

Figure 4-93: SI motions of the hip before (left) and after stabilized spikes (right). 
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Figure 4-94: ML motions of the hip (left) and after stabilized spikes (right). 
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4.5.4 Automated Tuning PID Controllers 

As previously discussed, the tuning process is a time-consuming and can present 

challenging concerns. Therefore, an automated PID tuning algorithm has been developed 

(Figure 4-95). The algorithm uses an optimization procedure, which uses the pattern search 

algorithm to automatically tune the gains for PID controllers. The cost function is the mean 

difference between the computed motions and the desired motions. The idea is to make the 

computed motions to best fit the desired motions. Therefore, the optimization program 

optimizes PID gains such that the differences between the computed motions and desired 

motions are as small as possible. The algorithm is implemented in Matlab and has 

successfully tuned gains to meet the requirements. A side-by-side comparison of motions 

as the input parameters and optimized parameters are shown in Figure 4-96.  

The automated PID tuning algorithm provides many additional benefits to the 

mathematical model which still implements Kane dynamics within Autolev. One such 

benefit is the ability to save time and reduce effort to run the simulation. This is especially 

important for patient-specific simulations, where each simulation has different initial input 

parameters that require PID gains to be tuned. The algorithm offers ease of use, more 

efficient simulation preparation, and a simplified learning curve for new users.   

4.5.5 Stability Analysis of the Mathematical Model 

In an attempt to investigate the causes of the instability at the beginning of each 

simulation, there are several hypotheses that have been implemented. The first hypothesis 

is that muscle excitation, muscle forces, and initial parameters of the model are not properly 

initialized. Human movement is a continuous and remains a very complicated process. The  
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Figure 4-95: The automated turning algorithm framework. 

 

 

Figure 4-96: Initial input motions (left) and output motions from the automated 

tuning algorithm (right). 
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transition from stance to swing phase and vice versa is always accompanied by changes in 

muscle excitation. This hypothesis makes sense in the existing program because there are 

a lot of parameters that are not initialized at the beginning of a simulation. The second 

hypothesis is based on the PID controllers. The PID controller has been widely used in the 

control system and has been proven to be ease of use as well as reliable. However, there 

are limited studies that investigate how sensitive it would be in a biomechanical 

application. The last hypothesis concerns the performance of the contact detection 

algorithm, where the contact forces between two rigid bodies are measured. The contact 

detection algorithm used in the existing program is based on the elastic foundation with a 

lot of assumptions pertaining to the spring and damper coefficients. The choice of these 

coefficients, similar to the choice of the PID controllers’ gains, is challenging and 

potentially produces instability in the mathematical model. In order to investigate the 

causes of instability, each hypothesis is isolated and analyzed.  

4.5.6 Sensitivity Analysis of PID Controllers 

In this section, the PID controllers are investigated. Three experiments have been 

performed to determine how each PID controller affects the stability of the mathematical 

model. In the first experiment, there is only one PID controller in the system that is used to 

control the flexion and extension motion of the pelvis. In Figure 4-97 a demonstration of 

the performance pertaining to the flexion/extension PID controller is shown. The computed 

hip muscle forces and the interaction forces at the knee and hip are shown in Figure 4-98. 
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Figure 4-97: The performance of the PID controller that controls the 

flexion/extension motion of the pelvis. 

 

 

Figure 4-98: The hip muscle forces (left) and interaction forces at the knee and hip 

using one PID controller in the pelvis’s flexion and extension. 
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As shown in Figure 4-98 there is no instability in the system, it can be concluded 

that the PID controller pertaining to the pelvis flexion/extension does not influence 

instability. 

In the second experiment, one more PID controller is added to the system. Along 

with the previous PID controller, the new PID controller controls the pelvis’s 

abduction/adduction. The performance of the two PID controllers is shown in Figure 4-99. 

In Figure 4-100, a demonstration of the hip muscle forces and interaction forces at the knee 

and hip are shown. Similar to the single PID controller experiment, adding the 

abduction/adduction PID controller does not yield instability. 

In the third experiment, an internal/external rotation PID controller is added to the 

previous model, resulting in the use of three PID controllers in the system. The 

performance of three PID controllers are shown in Figure 4-101. In Figure 4-102, a 

demonstration the hip muscle forces and interaction forces at the knee and hip are shown.  

The three PID controllers seem to not affect the instability of the system as shown 

in Figure 4-101 and Figure 4-102. Therefore, a conclusion can be drawn from these 

evaluations that the PID controllers reveal a satisfactory performance and do not contribute 

to instability of the mathematical model. 

4.5.7 Sensitivity Analysis of the Contact Detection Algorithm and Initial Parameters 

As it has already been proven that the PID controllers do not cause any instability 

in the mathematical model, they are kept in the system while analyzing the effect of the 

contact detection algorithm. When adding the contact detection algorithm to the system, 

there are a set of parameters that need to be initialized. Therefore, it is necessary to analyze  
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Figure 4-99: The performance of two PID controllers. 

 

 

Figure 4-100: The computed hip muscle forces and interaction forces at the knee 

and hip while using two PID controllers. 
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Figure 4-101: The performance of three PID controllers. 

 

 

Figure 4-102: The computed muscle forces and interaction forces at the knee and 

hip. 
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how the contact detection algorithm and initial parameters affect the stability of the system. 

If the initial parameters have not been initialized properly, the interaction force at the hip 

joint will have profiles as shown in Figure 4-103. 

The parameters that need to be initialized include initial muscle and ligament 

forces, initial hip interaction forces, spring and damper coefficients, and initial parameters 

for PID controllers. In this investigation, all the above parameters have been chosen 

carefully and tried one by one to the system to obtain the best set of initial values. The 

interaction forces at the hip joint and other joints, respectively, are shown in Figure 4-104 

and Figure 4-105. 

From results shown in Figure 4-104 and Figure 4-105, a conclusion can be drawn 

that for each simulation, it is necessary to obtain a good set of initial parameters in order 

to avoid instability at the beginning of the simulation. Finding the best set of initial 

parameters is the most challenging task of mathematical modeling as it takes a great deal 

of effort and consistency in the approaching methodology. Further studies need to be 

conducted to automate this process and avoid the human variability factor. 

4.6 THEORETICAL AND COMPUTATIONAL ADVANCEMENT 

The forward solution mathematical hip model developed in this dissertation 

provides an excellent theoretical approach for analysis of different surgical conditions, 

implant performance, and even simulate a virtual surgery of THA. Unfortunately, a 

thorough master of these resources is challenging without proper training and 

understanding of how the model works. Therefore, a user-friendly graphic user interface  
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Figure 4-103: The instability occurring at the hip interaction forces caused by 

improper initialized parameters. 

 

 

Figure 4-104: The hip forces by direction resulting of a good set of initial 

parameters. 
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Figure 4-105: The interaction forces at each joint resulting of a good set of initial 

parameters. 
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(GUI) is needed. The infrastructure of the forward solution mathematical model is depicted 

in Figure 4-106.  

Along with the reformed infrastructure from the existing mathematical model [61], 

substantial developments have been conducted in this dissertation to improve the overall 

performance of the mathematical hip model. New modules and more analysis tools have 

been implemented and added to the existing program. While the existing program only 

relied on Matlab and used it as a computational engine and a visualization resource, the 

advancements implemented within this dissertation were successfully integrated with the 

powerful VTK engine [75] for both computation and visualization. Details on the use of 

VTK will be discussed later in this section. 

The mathematical model application program interface (API) is depicted in Figure 

4-106. The application and analysis modules were developed in Matlab. The .NET VTK 

API, which is a wrapper of VTK (VTK is originally written in C++), allows for embedding 

the visualization engine of VTK in the .NET applications. Fortunately, the Matlab API 

allows the Users to communicate with .NET-based engines, and therefore the visualization 

engine of VTK can be employed in Matlab. VTK itself is a set of methods developed in 

C++ and primarily used for computer graphics, image processing, and visualization, not 

for a GUI development. Therefore, a shortcoming of using VTK in Matlab is that the VTK 

visualization window cannot be embedded in a GUI developed in Matlab, resulting in the 

use of a separate GUI and a visualization window. Regardless of this shortcoming, the 

communication between VTK and Matlab was well handled through an API developed in  
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Figure 4-106: The infrastructure of the mathematical hip model. 
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Matlab that ensures that any changes in the VTK visualization window are immediately 

updated in Matlab and vice versa.  

As mentioned above, not only is VTK a visualization engine, it also consists of a 

variety of methods, often referred to as filters, that can work as a computational engine. 

Fortunately, VTK filters can be employed in Matlab to do many of the required tasks that 

empower and accelerate the computations being carried in Matlab. Matlab, a high-level 

programming language for engineers, is a matrix-based integrated development 

environment (IDE), consisting of thousands of functions and toolboxes that provide 

powerful computation and simulation resources for quick development of prototypes. 

However, it is a computationally expensive engine, and sometimes does not meet the User 

needs. On the other hand, VTK is originally written in C++, a lower level programing 

language than Matlab. Therefore, computational time in VTK is much faster than in 

Matlab, for the same task. 

Kane dynamics is a central component of the mathematical model developed within 

this dissertation. Implemented within Autolev, it is a symbolic programming language for 

solving multi-bodies dynamic problems. The mathematical model developed within this 

dissertation was originally written in Autolev [61]. Autolev was then used to compile and 

export the mathematical model into C. The C code of the mathematical model was later 

compiled in the Visual Studio that outputted an executable file of the mathematical model. 

This executable file takes input parameters (surgical conditions), kinematic outputs and 

dynamic results (surgical outcomes). Depending on the complexity of each required 
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analysis, the mathematical hip model developed in this dissertation takes approximately 

two minutes to complete a simulation. 

4.6.1 Main GUI and Analyses 

The main GUI and plug-in analyses are built on top of Kane dynamics that was developed 

within Autolev, providing a user-friendly interface and allowing multiple analyses in only 

one platform. Rather than replacing the existing GUI and analyses in the original program, 

new modules have been developed in parellel and added to the main GUI. A brief 

introduction of each module will be represented as the following. 

4.6.1.1 Anatomical Landmarking GUI 

The anatomical landmarking GUI allows the User to predict anatomical landmarks 

on a new bone model given a set of landmarks on a template model. The algorithm driving 

this tool has been extensively discussed in a previous section. In this section, only a general 

introduction about the GUI will be discussed. As shown in Figure 4-107 the anatomical 

landmarking GUI contains minimal buttons, allowing ease of use. 

Once the User chooses the “Load Data” button, the GUI allows the User to select a 

subject that he or she desires to predict the desired landmarks. The GUI guides the User 

step by step to complete the anatomical landmarking process. Therefore, as shown in 

Figure 4-107 the Initial Mapping and Run buttons are deactivated. They will be activated 

once the previous step is completed. As the User follows the guidance of the GUI and once 

the anatomical landmarking is completed on the new bone model, the visualization window 

will pop-up revealing the landmark prediction results as shown in Figure 4-108. 
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Figure 4-107: The anatomical landmarking prediction GUI. 

 

 

Figure 4-108: The VTK visualization window allows to visualize the results of 

anatomical landmarks on the new bone model. 

 



122 

 

4.6.1.2 Implant Positioning GUI 

There are two separate GUIs for cup positioning and femoral stem positioning in 

the existing program. In each GUI, the User can customize the position of either the cup or 

the femoral stem by either translating or rotating the implant CAD model. The finalized 

position is then saved and used for the analysis. At one time, Users can only manipulate 

either the cup positioning or the femoral stem positioning GUI. In an attempt to improve 

such inconvenience, a single GUI has been developed with a powerful visualization 

capability using VTK. This GUI not only preserved all functionalities of the existing 

program but also added more useful functions to empower it. This innovative tool allows 

the User to interact with the implant CAD model through both keyboard and mouse control. 

The User can either use the keyboard to precisely position the implant or a mouse to handle 

the position interactively. The interactive window in which users can interact with the 

implant CAD model is shown in Figure 4-109. This interactive visualization window is 

communicated with Matlab through a GUI (Figure 4-110). Through this GUI, information 

can be sent or received from the visualization window to the Matlab platform for further 

analyses.  

An important feature of this visualization tool is that the User can manipulate the 

positions of both the acetabular cup and the femoral stem at a single window. The GUI 

allows the User to switch between the cup positioning and the femoral stem positioning 

mode quickly. At each mode, the implant will be highlighted accordingly to enhance the 

visual recognition ability. For example, in the cup positioning mode, the cup color will be 

highlighted while the femoral stem color remains silver; at the femoral stem mode, the 

femoral stem color will be highlighted while the cup color remains silver (Figure 4-109). 
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Figure 4-109: The interactive visualization window implemented in VTK that allows 

for positioning the implant components. 

 

 

Figure 4-110: The implant positioning GUI is implemented in Matlab that works as 

a communicator between Matlab and VTK. 
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Along with the ability to highlight the color of the implant in each mode, 

information represented in the GUI and the visualization window is instantly synchronized. 

When switching between the two modes, data in the earlier mode will be saved 

automatically. It means that if the User makes some changes in the cup positioning mode, 

these changes are still available in the femoral stem positioning mode. Therefore, if the 

User only wants to analyze a surgical condition where the cup position is changed, they 

only need to make sure that the femoral stem is placed at the initial, anatomical position. 

The algorithm does support the User as he/she attempts to place the implants (cup and 

femoral stem) at the initial, anatomical positions by using the button “Anatomical Joint 

Center” which can be triggered by the User to restore the implant ideal position, even if 

they have been changed. 

As shown in Figure 4-109 and Figure 4-111, there are three small views on the left 

stand representing the three different surgical approaches. When the User changes the 

position of the cup or the femoral stem from the main view, the change will be synced to 

these views. As shown in Figure 4-111 the cup was translated and rotated in the main view 

and the small views simultaneously. 

4.6.1.3 Virtual Surgery GUI 

Virtual surgery is a complicated program that contains three GUIs to control each 

surgical procedure and function as APIs to sync information between the virtual surgery 

environment and the Matlab platform. 

The main GUI is represented in Figure 4-112, contains the necessary functions to 

manipulate the entire surgical process: the instrument selection, the surgical approaches,  
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Figure 4-111: The position of the implant component is synced between the main 

view and three small views. 

 

 

Figure 4-112: The main GUI allows the User to handle and manipulate the virtual 

surgery. 
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the soft tissue property management, etc., In the main GUI (Figure 4-112) the Surgery 

menu includes methods to choose a surgical approach, trigger the Instrument and Implant 

GUI. The Anatomy menu contains functions to manage muscle and ligament attachment 

sites and bony geometries. The Simulation menu consists of analysis functions and results.  

The Instrument GUI contains functions and methods to manage surgical 

instruments including a saw, reamers, and broaches (Figure 4-113). For each surgical 

instrument, two placement options can be used. The auto-placement is triggered by clicking 

the “Auto Placement” button. In this mode, the program will utilize the implant information 

and anatomical landmark determination, defined in the previous section, to automatically 

support the User during the virtual surgery. The manual placement can be triggered by 

clicking the “Manual Placement” button. In this model, the program will allow the User to 

proceed with the surgery step by step.  

The Implant GUI includes functions and methods to manage the implant position 

(Figure 4-114). The Cup and Femoral Stem menu allow the User to change the acetabular 

cup and femoral stem size, respectively. Throughout the Implants GUI, the User can access 

the Cup Positioning and the Stem Positioning environment. Similar to the Implant 

Positioning as shown in Figure 4-109, the position of the acetabular cup and the femoral 

stem can be managed using a single window. Auto and manual placement of the acetabular 

cup and the femoral stem are implemented to enhance the efficiency of the implant 

component placement procedure. 

The virtual surgery program incorporated the three most popular surgical 

approaches: the direct anterior approach, the anterolateral approach, and the posterolateral  



127 

 

 

Figure 4-113: The instrument GUI allows the User to select the instruments to 

proceed to remove the femoral head, reaming the acetabulum or broaching the 

femoral canal. 

 

 

Figure 4-114: The implant GUI allows the User to handle the implant component 

position. 
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approach. For each surgical approach, Users can either view the whole scene that includes 

the surgical table and the patient or zoom in the hip joint where the virtual surgery is being 

carried out [Insert Figure]. The virtual surgery environment where the anterolateral surgical 

approach was chosen is shown in Figure 4-115. 

4.6.2 Visualization Toolkit (VTK) 

VTK [75] has been intensively used throughout this dissertation not only for 

visualization but also for computation. VTK, which is developed by Kitware Inc., is open-

source software for 3D computer graphics, image processing, and scientific visualization. 

It consists of more than 2500 classes with more than 50000 public and protected class 

members. The core functions of VTK is written in C++ to maximize its capabilities.  

 

 

Figure 4-115: Patient and table set up for the anterolateral surgical approach. 
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Fortunately, VTK supports automated wrapping of the C++ core into Python, Java, 

Tcl, and .NET so that VTK can be reached by a variety of programmers in multiple 

programming languages. VTK is also cross-platform that can runs on Windows, Mac, 

Linux, and Unix platforms. 

In this section, VTK will be briefly introduced. As VTK has been used in many 

aspects of this dissertation, there is no way to describe everything about how and where 

VTK is used. Therefore, VTK will be introduced and discussed through a fundamental 

example. This example was implemented in Matlab using a .NET wrapper of VTK and 

played as a basis for other applications of VTK used within this dissertation. For complete 

details of VTK, please visit the VTK official website at vtk.org.  

For example, if there is a CAD model of the femoral bone with the .stl extension 

that needs to be visualized,  the User only needs to follow the VTK visualization pipeline. 

The general visualization pipeline in VTK is depicted in Figure 4-116. 

 

 

Figure 4-116: The VTK visualization pipeline. 
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 VTK provides various source classes that can be used to construct simple geometric 

objects, such as points, spheres, lines, cubes, cylinders, and etc. VTK also allows the user 

to import mesh models in various formats like vtk, stl, obj, vtp, etc., and supports 

corresponding methods to read these files. For example, the User can use the 

vtkPolyDataReader class to load a .vtk file or the vtkSTLReader class to load a .stl file. 

The following codes read a .stl file that represents a femoral bone into VTK. 

% Load the stl file 

vSTLReader = vtkSTLReader.New(); 

vSTLReader.SetFileName('femurDemo.stl'); 

 

 One or more filters can be used to take data as input and return the modified data. 

As shown in Figure 4-117 the input mesh model is applied a smooth filter. The following 

codes applied a Laplacian smoothing filter to the input bone model. 

% Apply visualization filter to the input data 

vFilter = vtkSmoothPolyDataFilter.New(); 

vFilter.SetNumberOfIterations(50); 

vFilter.SetRelaxationFactor(0.5) 

vFilter.SetInputConnection(vSTLReader.GetOutputPort()); 
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Figure 4-117: A smoothing filter is applied to the original bone model (left image), 

resulting in a smoothed bone model (right image). 
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The mappers can utilize a mapping technique to define the data that was output from the 

filtering process to graphics primitives like points, line, or triangles that can be understood 

and displayed by the renderer. Some fundamental primitives used in VTK are shown in 

Figure 4-118. The following codes created a vtkPolyDataMapper to transform the data into 

graphic primitives. 

 

% Create a graphical mapper 

vMapper = vtkPolyDataMapper.New(); 

vMapper.SetInputConnection(vFilter.GetOutputPort()); 

 

 vtkActor represents the model in a renderer scene. In this example, the femoral 

bone is set at the color to be red. 

% Create an actor 

vActor = vtkActor.New(); 

vActor.SetMapper(vMapper); 

vActor.GetProperty().SetColor(1,0,0); 

 

In the rendering process, VTK converts 3D graphic primitives with a specification 

for lights, materials, and a camera view into a 2D image that can be displayed on the screen 

(Figure 4-119). In this example, the background of the scene is set to white. VTK uses a 

default camera and light setting if no light sources and cameras are declared. 

% Create a scene renderer like camera, lights, ... 

vRenderer = vtkRenderer.New(); 

vRenderer.AddActor(vActor); 

vRenderer.SetBackground(1, 1, 1); 
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Figure 4-118: Examples of graphics primitives used in VTK. 

 

 

 

 

Figure 4-119: 3D graphic primitives are converted into a 2D image that can be 

displayed on the screen. Image from (ealtimerendering.com). 
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The vtkRenderWindow class creates a window for renderers to draw into. In this 

example, a rendering window is created and set at a resolution of 500x500 pixel. 

% Create a window on the screen to visualize the data 

vRenWin = vtkRenderWindow.New(); 

vRenWin.AddRenderer(vRenderer); 

vRenWin.SetSize(500, 500); 

 

 The vtkRenderWindowInteractor class provides the ability to interact 

(rotate/zoom/pan) the camera, select and manipulate actors. 

% Create support for mouse interaction 

vInteractor = vtkRenderWindowInteractor(); 

vInteractor.SetRenderWindow(vRenWin); 

 

 The following codes demo the complete process to visualize a .stl file that 

represents a femoral bone. This program was implemented in Matlab 2016a using 

Windows Operating System. In this demo, the femoral bone is applied the Laplacian filter 

to smooth its surface. A comparison of the original and the smoothed bone model is shown 

in Figure 4-120. 

NET.addAssembly('C:\Program Files\ActiViz.NET 5.8.0 OpenSource Edition\ 

Kitware.VTK.dll'); 

import Kitware.VTK.*; 

  

% Load the stl file 

vSTLReader = vtkSTLReader.New(); 

vSTLReader.SetFileName('femurDemo.stl'); 

  

% Apply visualization filter to the input data 

vFilter = vtkSmoothPolyDataFilter.New(); 

vFilter.SetNumberOfIterations(50); 

vFilter.SetRelaxationFactor(0.5) 

vFilter.SetInputConnection(vSTLReader.GetOutputPort()); 

  

% Create a graphical mapper 

vMapper = vtkPolyDataMapper.New(); 

vMapper.SetInputConnection(vFilter.GetOutputPort()); 
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% Create an actor 

vActor = vtkActor.New(); 

vActor.SetMapper(vMapper); 

vActor.GetProperty().SetColor(1,0,0); 

  

% Create a scene renderer like camera, lights,... 

vRenderer = vtkRenderer.New(); 

vRenderer.AddActor(vActor); 

vRenderer.SetBackground(1, 1, 1); 

  

% Create a window on the screen to visualize the data 

vRenWin = vtkRenderWindow.New(); 

vRenWin.AddRenderer(vRenderer); 

vRenWin.SetSize(500, 500); 

  

% Create support for mouse interaction 

vInteractor = vtkRenderWindowInteractor(); 

vInteractor.SetRenderWindow(vRenWin); 

  

% Start visualization and interaction. 

vInteractor.Initialize(); 

vRenWin.Render(); 

vInteractor.Start(); 

vRenWin.FinalizeWrapper(); 
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Figure 4-120: A comparison of the original femoral model (left image) and its 

smoothed model (right image). 

 

 In summary, a simplified introduction of VTK was discussed in this section. In fact, 

more complicated and advanced VTK visualization techniques are utilized in this 

dissertation to simulate customized simulations like virtual surgery, anatomical 

landmarking, measurement of femoral morphology, and etc. The readers, who desire to 

learn more VTK, are encouraged to visit the VTK website and online tutorials. 

 

 

  



137 

 

CHAPTER 5:  RESULTS AND DISCUSSION 

5.1 TOTAL HIP ARTHROPLASTY SIZING PREDICTION 

Eight subjects were recruited for this study. Four of these subjects had healthy hips 

and the other four subjects were diagnosed with hip osteoarthritis and were candidates for 

total hip replacement. All eight subjects gave their consent for a CT scan with institutional 

review board approval (UTK IRB-15-02631-FB). 3D bone models of the pelvis and 

femoral bones were created using both Avizo (Thermo Fisher Scientific, Altham, MA, 

USA) and 3D Slicer [98] segmentation software and during the process the cancellous 

bone, including the femoral canal were defined. Four subjects with degenerative hips then 

received the Corail stem and Pinnacle acetabular Total Hip System (Depuy Synthes, IN, 

USA) using the direct anterior approach by a single surgeon. Before total hip arthroplasty 

surgery, all subjects were asked to perform gait under fluoroscopy surveillance. After total 

hip arthroplasty surgery, two of the four subjects with hip implants came back to the study 

and were again asked to perform gait under fluoroscopic surveillance. The fluoroscopic 

videos of each subject were then digitalized and stored in a secured server at the Center for 

Musculoskeletal Research located at the University of Tennessee Knoxville. Kinematics 

of each subject were then analyzed using a 3D to 2D registration technique [99]. From the 

3D to 2D registration technique, placement of the hip implant components of the two 

returned subjects was also obtained. 
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5.1.1 Morphology of The Proximal Femur 

The automated measurement of femur morphology algorithm has successfully 

measured the proximal femoral morphology for all subjects. A summary of the morphology 

of the proximal femur for all subjects is shown in Table 5-1. 

For each subject, the proximal canal morphology was also analyzed and stored in 

the computer. The center and radius of each incircle along with the relative distance of each 

incircle to the anatomical femoral center were obtained and stored in a text file for further 

analysis. This information formed the morphology of the proximal canal, a new concept 

that has limited investigation. A portion of the text file that represent the canal morphology 

of subject one is shown in Table 5-2. 

 

Table 5-1: Summary of proximal femoral morphology of eight subjects. 

  
Femoral Head 

Diameter 
Femoral Offset 

Femoral Neck Shaft 

Angle 

Patient 1 40.379728 34.567338 134.81025 

Patient 2 46.670374 44.013536 131.160583 

Patient 3 43.678182 24.63496 151.413198 

Patient 4 46.910389 42.948052 129.096052 

Patient 5 48.925942 48.874994 115.200146 

Patient 6 46.705199 43.817417 119.688905 

Patient 7 40.118208 39.088136 124.283452 

Patient 8 46.229955 40.860771 115.741198 
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Table 5-2: A portion morphology of the proximal canal of subject 1. 

Radius X-Center Y-Center Z-Center 
Relative distance to the 

femoral head center  

7.546765 -13.2307 134.969 -18.7258 74.828403 

7.456658 -12.9346 133.969 -18.6297 75.828403 

7.368849 -12.6296 132.969 -18.4748 76.828403 

7.288155 -12.3906 131.969 -18.4081 77.828403 

7.210743 -12.1479 130.969 -18.335 78.828403 

7.087511 -11.9801 129.969 -18.3409 79.828403 

6.958147 -11.7329 128.969 -18.3198 80.828403 

6.828774 -11.4332 127.969 -18.2705 81.828403 

6.710648 -10.9123 126.969 -18.1817 82.828403 

6.616593 -10.5106 125.969 -18.1437 83.828403 

 

As shown in Table 5-2, each row represents information of an incircle: the radius, 

the coordinate of the center in the global coordinate, and the relative distance of the 

incircle’s center and the anatomical femoral centers. The femoral morphologies of subject 

one and two are shown in Figure 5-1 and Figure 5-7, respectively. 

The proximal femoral morphology is directly influenced by the performance of the 

anatomical landmarking results. It is important to understand how the proposed automated 

prediction process for anatomical landmarks is performed. Each step in the proposed 

anatomical landmarking framework plays a key role and exhibits potential limitations and 

marginal errors.  

The initial alignment is needed to reduce translational and orientational differences 

between the template and new bone models and to accelerate the convergent rate as well  
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Figure 5-1: Proximal femoral morphology of subject 1. 

 

 

Figure 5-2: Proximal femoral morphology of subject 2. 
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as the accuracy of the proposed algorithm. The initial alignment proposed in this 

dissertation was done through an interaction with the CAD model in the visualization 

environment powered by the VTK library [75]. This approach seems to be straight forward 

to engineers, but quite challenging to orthopaedic surgeons as they prefer using the defined 

landmarks and have limited experience interacting with the CAD model. However, the 

approach was implemented in such a way that it is user-friendly. Users with minimal 

human anatomy background or limited CAD experience can also use the software to 

accelerate initial alignment process.  

The ICPs algorithm [74] is robust and efficient enough to register any geometry. 

However, it still exhibits some limitations. ICPs algorithm always converges to the nearest 

local minimum of mean square error, and therefore, always exists a transformation matrix 

that best aligns the template to the new bone model. If the initial alignment is not close 

enough, the ICPs algorithm still converges but not to the best alignment position. 

Malalignment of two bone models can result in inaccurate predicted landmarks on the new 

bone model. 

Given a good initial alignment, the initial global registration works well if the new 

bone model does not have a high deformity. Even though the ICPs algorithm added the 

scaling factor that deforms the template bone model to match the new bone model, high 

deformity of the new bone model would contribute to an unexpected alignment, resulting 

in poor corresponding regions between the two bone models. High deformity or abnormal 

femoral bone geometry can occur in many ways. One such way is in patients with increased 

femoral anteversion and femoral neck retroversion, in which the femoral head is shaped 
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with an inward/outward twisting, leading to the knee and feet to turn inward/outward 

(Figure 5-3). 

Another common type of high deformity of the femur is hip dysplasia (Figure 5-4). 

Hip dysplasia often occurs in new born babies in which the hip socket does not fully cover 

the femoral head, causing the hip joint to become partially or completely dislocated.  A 

normal socket can be defined by the shape of a bowl, whereas a dysplastic hip more 

resembles a saucer in shape. This disorder, if not diagnosed and treated early, may develop 

and lead to one leg being longer than the other. It may lead to an increase or decrease in 

the femoral neck shaft angle as well.  

Femoral abnormalities including coxa valga and coxa vara (Figure 5-5) make it 

challenging to predict the anatomical landmarks using the proposed algorithm. While the 

template femoral bone model was selected to be a normal femoral bone with the femoral 

neck shaft angle at about 135-degree, coxa valga and coxa vara femurs are challenging to 

align with the normal femur. Fortunately, the proposed algorithm is robust enough to 

overcome this challenge. Three of the eight subjects participating in this study had the coxa 

vara femurs (the femoral neck shaft angle is smaller than 125 degrees) and one subject had 

the coxa valga femur (the femoral neck shaft angle is greater than 139 degrees). The 

proposed algorithm still successfully measured the morphology of these subjects.   

Osteoarthritis and the development of osteophytes also contribute to deformity of 

the femoral head, leading to inaccurate landmark prediction. Osteophytes form along with 

osteoarthritis, which limits joint movement and typically causes pain (Figure 5-6). To  
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Figure 5-3: Increased femoral neck anteversion and femoral neck retroversion. 

Image from (www.orthobullets.com). 

 

 

Figure 5-4: X-ray image of a patient with hip dysplasia causing on leg to be 

longer/shorter than the other. Image from (http://clohisyhipsurgeon.com). 
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Figure 5-5: Coxa valga and coxa vara hip with abnormal femoral neck shaft angle. 

Image from (www.pinterest.es). 

 

 

Figure 5-6: Hip osteoarthritis and osteophytes causing deformity of the femoral 

head. Image from (www.thesteadmanclinic.com). 
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address this problem, four subjects, who were diagnosed to be in the late stages of hip 

osteoarthritis and candidates for total hip arthroplasty, were recruited for this study. The 

proposed algorithm utilized a statistical approach to determine a mean sphere that fits the 

femoral head point cloud. The spherical fitting function was run multiple times to fit the 

femoral head point cloud. Each time it generated a fitting sphere. The final sphere, 

representing the femoral head, is determined to be an average sphere with respect to all 

fitting spheres. 

5.1.2 Prediction of Total Hip Arthroplasty Sizing 

Similar to the morphology of the proximal femur, morphology of each femoral stem 

in the database was obtained. A portion of morphology of the standard size 8 Corail stem 

is shown in Table 5-3. 

 

Table 5-3: A portion morphology of the standard size 8 Corail stem. 

Radius X-Center Y-Center Z-Center 
Relative distance to the 

stem head center 

10.19949 -13.5994 156.784 -15.8475 46.013 

10.13173 -13.5721 155.784 -15.9436 47.013 

10.00146 -13.3065 154.784 -16.114 48.013 

9.614732 -13.2073 153.784 -16.5332 49.013 

9.568398 -13.0862 152.784 -16.6144 50.013 

9.503381 -13.0739 151.784 -16.7034 51.013 

9.376675 -12.9752 150.784 -16.8626 52.013 

9.072728 -12.68 149.784 -17.2008 53.013 

9.006381 -12.5916 148.784 -17.2495 54.013 
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The automated total hip arthroplasty sizing prediction algorithm has successfully 

predicted the implant size for each subject. Due to lack of implant components in the 

database, a small number of Corail stem and Pinnacle acetabular models were used for 

analysis. Therefore, the result shown in this section is based on the available implant 

models in the database. The predicted implant sizing information for all patients was 

summarized in Table 5-4. 

In order to illustrate the meaning of each number and information as shown in Table 

5-4, the sizing information of patient 1 was chosen to be discussed. The information in the 

stem column represents the stem size. The predicted stem is a standard Corail stem with 

size 10. In the head column, +5 is the femoral head length, 28 mm represents the femoral 

head diameter, and 12/14 is two diameters at the ends of the femoral neck taper. For each 

femoral head size, there are a variety of neck lengths, allowing for adjustments to soft tissue 

tension and leg length equality. In the shell column, 50 mm OD represents the outer 

diameter size of the shell. In the liner column, neutral is liner type, 20 mm ID is the inner 

diameter of the liner, and 50 mm OD is the outer diameter of the liner.  

Two random patients were selected for analysis to see how the predicted femoral 

stem fits the canal. The cross-sectional, slice, and contact map analysis for the fit of the 

predicted femoral stem within the canal of patient 1 were shown in Figure 5-7, Figure 5-8, 

and Figure 5-9, respectively. 
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Table 5-4: Summary of the prediction implant sizing information for all patients. 

  Stem Head Shell Liner 

Patient 1 10 Standard 
+5, 28 mm, 

12/14 taper 
50 mm OD 

Neutral 28 mm ID, 

50 mm OD 

Patient 2 12 High Offset 
+1, 36 mm, 

12/14 taper 
58 mm OD 

Neutral 36 mm ID, 

58 mm OD 

Patient 3 11 Standard 
+5, 32 mm, 

12/14 taper 
54 mm OD 

Neutral 32 mm ID, 

54 mm OD 

Patient 4 12 Standard 
+5, 36 mm, 

12/14 taper 
58 mm OD 

Neutral 36 mm ID, 

58 mm OD 

Patient 5 12 High Offset 
+5, 36 mm, 

12/14 taper 
60 mm OD 

Neutral 36 mm ID, 

60 mm OD 

Patient 6 10 High Offset 
+5, 36 mm, 

12/14 taper 
58 mm OD 

Neutral 36 mm ID, 

58 mm OD 

Patient 7 8 Standard 
+5, 28 mm, 

12/14 taper 
50 mm OD 

Neutral 28 mm ID, 

50 mm OD 

Patient 8 12 Standard 
+5, 36 mm, 

12/14 taper 
56 mm OD 

Neutral 36 mm ID, 

56 mm OD 
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Figure 5-7: Cross-sectional analysis for the fit of the predicted femoral stem within 

the canal of patient 1. 

 

 

Figure 5-8: Slice analysis for the fit of the predicted femoral stem within the canal of 

patient 1. 

 



149 

 

 

Figure 5-9: Contact analysis for the fit of the predicted femoral stem within the 

canal of patient 1. 
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The cross-sectional, slice, and contact map analysis for the fit of the predicted 

femoral stem within the canal of patient 8 are shown in Figure 5-10, Figure 5-11, and Figure 

5-12, respectively. 

5.2 FORWARD SOLUTION MODEL ANALYSIS 

The forward solution mathematical model developed in this dissertation has played 

as a basis for the evaluation and prediction of post-operative surgical outcomes. This model 

is fully capable of simulating different surgical conditions including the implant sizing 

choices, component placement, reaming and cutting locations, surgical approaches. The 

model takes surgical conditions as input parameters (pre-operative surgical planning) and 

calculate and predict kinematics, dynamics of the hip joint post-operatively (possible 

surgical outcomes). 

5.2.1 Functionally Translational Safe Zone 

Previous research has defined the existence of a “safe zone” pertaining to the 

acetabular cup implantation during THA. It is believed that if the cup is implanted at 

4010 inclination and 1510 anteversion, the risk of dislocation is reduced [1]. 

However, recent studies have documented that even when the acetabular cup is placed 

within the safe zone, high than expected incidence of dislocation and instability does still 

exist due to the combination of patient-specific configuration, cup diameter, head size, and 

surgical approach [100-102]. The “safe zone” only looks into the angular orientation of the 

cup and completely ignores its translational location. The translational location of the cup 

can lead to a mismatch between the anatomical hip center and the implant cup center, a 

concept that has not been widely explored. Therefore, the objective of this section is to  
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Figure 5-10: Cross-sectional analysis for the fit of the predicted femoral stem within 

the canal of patient 8. 

 

 

Figure 5-11: Slice analysis for the fit of the predicted femoral stem within the canal 

of patient 8. 
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Figure 5-12: Contact analysis for the fit of the predicted femoral stem within the 

canal of patient 8. 
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define a zone within which the implanted joint center can be altered with respect to the 

anatomical joint center, but not influence the likelihood of post-operative hip separation or 

dislocation. Due to its shape, we define this region as the “optimal conic” safe zone.  

There are two steps to identify the optimal conic. The first step is to define a 

baseline simulation. The baseline was defined where the acetabular cup center was matched 

to the anatomical hip center, and the orientation of the acetabular cup was 40/15 

(inclination/anteversion). This position is called the ideal position. As shown in Figure 5-13 

the placement of the acetabular cup is at the ideal position. 

The contact mechanics and muscle/ligament forces in stance phase are shown as in 

Figure 5-14, Figure 5-15, and Figure 5-16, respectively. The contact mechanics and 

muscle/ligament forces in swing phase are shown as in Figure 5-17, Figure 5-18, and 

Figure 5-19, respectively. 

In the second step, the acetabular cup orientation remained the same, the location 

of the cup was shifted in 1 mm increments in all directions to identify the region within 

which a mismatch between the anatomical hip center and the implant cup center did not 

lead to separation or instability in the joint. It was observed that during both swing and 

stance phase when the acetabular cup was placed within the optimal conic with the slant 

height of 51 mm, there appeared no hip instability or dislocation risk associated with the 

virtual patient. The placement of the acetabular cup within the optimal conic is shown in 

Figure 5-20. 

The contact mechanics and muscle/ligament forces in stance phase are shown in 

Figure 5-21, Figure 5-22, and Figure 5-23, respectively. The contact mechanics and  
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muscle/ligament forces in swing phase are shown in Figure 5-24, Figure 5-25, and Figure 

5-26, respectively. 

Furthermore, as the acetabular cup was gradually re-positioned towards the 

boundary of the optimal conic, hip instability became apparent and tended to increase. 

When the acetabular cup was placed at the boundary of the optimal conic, slight edge 

loading occurred at the cup during stance phase, and the hip separation magnitude 

increased up to 2 mm during swing phase, resulting in a decrease in the contact area and 

increase contact stress. The placement of the acetabular cup at/near the rim of the optimal 

conic is shown in Figure 5-27. 

 

 

Figure 5-13: The placement of the acetabular cup at the ideal position. The 

acetabular cup center (yellow dot) is placed at the anatomical hip center. The conic 

is represented in green, and its center is fixed at the anatomical hip center. The dark 

blue dot represents the femoral component head center. 
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Figure 5-14: Hip separation and hip forces during stance phase when the acetabular 

cup is placed at the ideal position. 

 

 

Figure 5-15: Contact area and contact stress at the hip joint during stance phase 

when the acetabular cup is placed at the ideal position. 
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Figure 5-16: Hip muscle and ligament forces during stance phase when the 

acetabular cup is placed at the ideal position. 

 

 

Figure 5-17: Hip separation and hip forces during swing phase when the acetabular 

cup is placed at the ideal position. 
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Figure 5-18: Contact area and contact stress at the hip joint during swing phase 

when the acetabular cup is placed at the ideal position. 

 

 

Figure 5-19: Hip muscle and ligament forces during swing phase when the 

acetabular cup is placed at the ideal position. 
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Figure 5-20: The placement of the acetabular cup within the conic. The acetabular 

cup center (yellow dot) is placed inside the conic. The conic is represented in green, 

and its center is fixed at the anatomical hip center. The dark blue dot represents the 

femoral component head center. 

 

 

Figure 5-21: Hip separation and hip forces during stance phase when the acetabular 

cup is placed within the conic. 
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Figure 5-22: Contact area and contact stress at the hip joint during stance phase 

when the acetabular cup is placed within the conic. 

 

 

Figure 5-23: Hip muscle and ligament forces during stance phase when the 

acetabular cup is placed within the conic. 
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Figure 5-24: Hip separation and hip forces during swing phase when the acetabular 

cup is placed within the conic. 

 

 

Figure 5-25: Contact area and contact stress at the hip joint during swing phase 

when the acetabular cup is placed within the conic. 
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Figure 5-26: Hip muscle and ligament forces during swing phase when the 

acetabular cup is placed within the conic. 

 

 

Figure 5-27: The placement of the acetabular cup at the rim of the conic. The 

acetabular cup center (red dot) is placed at the rim of the conic. The conic is 

represented in green, and its center is fixed at the anatomical hip center. The dark 

blue dot represents the femoral component head center. 
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The contact mechanics and muscle/ligament forces in stance phase are shown in Figure 

5-28, Figure 5-29, and Figure 5-30, respectively. The contact mechanics and 

muscle/ligament forces in swing phase are shown Figure 5-31, Figure 5-32, and Figure 

5-33, respectively. 

As the acetabular was re-positioned outside of the optimal conic, there appeared to 

be severe edge loading during stance phase with the magnitude of hip separation up to 2.5 

mm and severe hip separation during swing phase with the magnitude of hip separation up 

to 3.5 mm. Also, in both swing and stance phase, the cup stress increased significantly, 

resulting in an increased risk of wear leading to early complications. This find especially 

occurred during swing phase, where the femoral head moved back from the maximum of 

separation into contact with the acetabular cup, generating a squeaking sound. The 

placement of the acetabular cup outside the optimal conic is shown in Figure 5-34. 

The contact mechanics and muscle/ligament forces in stance phase are shown in 

Figure 5-35, Figure 5-36, and Figure 5-37, respectively. The contact mechanics and 

muscle/ligament forces in swing phase are shown in Figure 5-38, Figure 5-39, and Figure 

5-40, respectively. 
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Figure 5-28: Hip separation and hip forces during stance phase when the acetabular 

cup is placed at the rim of the conic. 

 

 

Figure 5-29: Contact area and contact stress at the hip joint during stance phase 

when the acetabular cup is placed at the rim of the conic. 
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Figure 5-30: Hip muscle and ligament forces during stance phase when the 

acetabular cup is placed at the rim of the conic. 

 

 

Figure 5-31: Hip separation and hip forces during swing phase when the acetabular 

cup is placed at the rim of the conic. 
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Figure 5-32: Contact area and contact stress at the hip joint during swing phase 

when the acetabular cup is placed at the rim of the conic. 

 

 

Figure 5-33: Hip muscle and ligaments forces during swing phase when the 

acetabular cup is placed at the rim of the conic. 
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Figure 5-34: The placement of the acetabular cup outside the conic. The acetabular 

cup center (red dot) is placed outside the conic. The conic is represented in green, 

and its center is fixed at the anatomical hip center. The pink dot represents the 

femoral component head center. 

 

 

Figure 5-35: Hip separation and hip forces during stance phase when the acetabular 

cup is placed outside the conic. 
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Figure 5-36: Contact area and contact stress at the hip joint during stance phase 

when the acetabular cup is placed outside the conic. 

 

 

Figure 5-37 Hip muscle and ligament forces during stance phase when the 

acetabular cup is placed outside the conic. 
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Figure 5-38: Hip separation and hip forces during swing phase when the acetabular 

cup is placed outside the conic. 

 

 

Figure 5-39: Contact area and contact stress at the hip joint during swing phase 

when the acetabular cup is placed outside the conic. 
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Figure 5-40: Hip muscle and ligament forces during swing phase when the 

acetabular cup is placed outside the conic. 
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5.2.2 Leg Length Discrepancy Analysis 

Leg length discrepancy (LLD) has been proven to be one of the most concerning 

issues associated with THA. Long-term follow-up studies have documented that the 

presence of LLD had a direct correlation with patient dissatisfaction, dislocation, back pain, 

and early complications. Several researchers have sought to minimize limb length 

discrepancy based on pre-operative radiological templating or intra-operative 

measurements. While it is often a common occurrence in clinical practice to compensate 

for LLD intra-operatively, the center of rotation of the hip joint has been unintentionally 

changed due to excessive reaming. Although some surgeons do intentionally ream up to 10 

mm in the medial direction so that they can get better cup fixation. Therefore, the clinical 

importance of LLD is still difficult to solve and remains a concern for clinicians. In this 

dissertation, an extensive analysis has been conducted to exam the effects of leg length 

discrepancy using the mathematical model in both stance and swing phase of gait. 

During swing phase, it was determined that shortening the leg lead to the loosening 

of the hip capsular ligaments, with momentum of the lower leg increasing to a level where 

the ligaments could not properly constrain to the hip, and thus, leading to the femoral head 

sliding from within the acetabular cup (Figure 5-41). This pistoning motion led to decrease 

contact area and increase contact stress within the cup. Hip separation and contact 

mechanics when the leg length was shortened are shown in Figure 5-41 and Figure 5-42, 

respectively. Hip capsular ligament and quadricep muscle forces when the leg length was 

shortened are shown in Figure 5-43. Muscle forces at the hip when decreasing leg length 

are shown in Figure 5-44, Figure 5-45, and Figure 5-46. 
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Figure 5-41: Comparison of hip separations and hip forces during swing phase 

when the leg length is shortened. 

 

 

Figure 5-42: Comparison of hip contact stresses and contact areas during swing 

phase when the leg length is shortened. 
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Figure 5-43: Comparison of hip capsular ligament and quadricep muscle forces 

during swing phase when the leg length is shortened. 

 

 

Figure 5-44: Comparison of piriformis and iliopsoas muscle forces during swing 

phase when the leg length is shortened. 
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Figure 5-45: Comparison of gluteus maximus and gluteus medius muscle forces 

during swing phase when the leg length is shortened. 

 

 

Figure 5-46: Comparison of gluteus minimus and adduction muscle group forces 

during swing phase when the leg length is shortened. 
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Lengthening the leg did not yield femoral head sliding, but it did increase joint 

tension and contact stress. A tight hip may be an influential factor leading to back pain and 

poor patient satisfaction. Hip separation and contact mechanics when the leg length was 

lengthened are shown in Figure 5-47 and Figure 5-48, respectively. Hip capsular ligament 

and quadricep muscle forces when the leg length was lengthened are shown in Figure 5-49. 

Muscle forces at the hip when decreasing leg length are shown in Figure 5-50, Figure 5-51, 

and Figure 5-52. 

During stance phase, it was determined that shortening the leg lead to femoral head 

sliding and thus leading to decreased contact area and an increase in contact stress. Hip 

separation and contact mechanics when the leg length was shortened are shown in Figure 

5-53 and Figure 5-54, respectively. Hip capsular ligament and quadricep muscle forces 

when the leg length was shortened is shown in Figure 5-55. Muscle forces at the hip when 

the leg length was shortened are shown in Figure 5-56, Figure 5-57, and Figure 5-58. 

Lengthening the leg caused an increase in capsular ligaments tension leading to 

higher stress in the hip joint. Hip separation and contact mechanics when the leg length 

was lengthened are shown in Figure 5-59 and Figure 5-60, respectively. Hip capsular 

ligament and quadricep muscle forces when the leg length as lengthened is shown in Figure 

5-61. Muscle forces at the hip when the leg length was lengthened are shown in Figure 

5-62, Figure 5-63, and Figure 5-64. 
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Figure 5-47: Comparison of hip separations and hip forces during swing phase 

when the leg length is lengthened. 

 

 

Figure 5-48: Comparison of hip contact stresses and contact areas during swing 

phase when the leg length is lengthened. 
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Figure 5-49: Comparison of hip capsular ligament and quadricep muscle forces 

during swing phase when the leg length is lengthened. 

 

 

Figure 5-50: Comparison of piriformis and iliopsoas muscle forces during swing 

phase when the leg length is lengthened. 
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Figure 5-51: Comparison of gluteus maximus and gluteus medius muscle forces 

during swing phase when the leg length is lengthened. 

 

 

Figure 5-52: Comparison of gluteus minimus and adduction muscle group forces 

during swing phase when the leg length is lengthened. 
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Figure 5-53: Comparison of hip separations and hip forces during stance phase 

when the leg length is shortened. 

 

 

Figure 5-54: Comparison of hip contact stresses and contact areas during stance 

phase when the leg length is shortened. 
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Figure 5-55: Comparison of hip capsular ligament and quadricep muscle forces 

during stance phase when the leg length is shortened. 

 

 

Figure 5-56: Comparison of piriformis and iliopsoas muscle forces during stance 

phase when the leg length is shortened. 
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Figure 5-57: Comparison of gluteus maximus and gluteus medius muscle forces 

during stance phase when the leg length is shortened. 

 

 

Figure 5-58: Comparison of gluteus minimus and adduction muscle group forces 

during stance phase when the leg length is shortened. 

 



181 

 

 

Figure 5-59: Comparison of hip separations and hip forces during stance phase 

when the leg length is lengthened. 

 

 

Figure 5-60: Comparison of hip contact stresses and contact areas during stance 

phase when the leg length is lengthened. 
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Figure 5-61: Comparison of hip capsular ligament and quadricep muscle forces 

during stance phase when the leg length is lengthened. 

 

 

Figure 5-62: Comparison of piriformis and iliopsoas muscle forces during stance 

phase when the leg length is lengthened. 
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Figure 5-63: Comparison of gluteus maximus and gluteus medius muscle forces 

during stance phase when the leg length is lengthened. 

 

 

Figure 5-64: Comparison of gluteus minimus and adduction muscle group forces 

during stance phase when the leg length is lengthened. 
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CHAPTER 6:  VALIDATION 

6.1 FEMORAL STEM AND ACETABULAR CUP SIZING 

The automated total hip arthroplasty sizing prediction algorithm is validated using 

the component choice made by the surgeon for each patient. As described in the previous 

section, four of the eight subjects participating in this study, who were diagnosed severe 

osteoarthritis, were assessed following a total hip arthroplasty surgery performed by a 

single surgeon using the Corail stem and Pinnacle acetabular hip system. Please keep in 

mind that the implant sizing, predicted by the proposed algorithm, is based on available 

implant CAD models in our database. If there are more implant CAD models, the proposed 

algorithm may generate more accurate results. In four hip arthroplasty components 

(femoral stem, head, liner, shell), the femoral stem is the only component that the proposed 

algorithm predicted its size. Sizes of the other three components were estimated based on 

a rule of thumb in the orthopaedic surgeon community [81]. The comparison of the femoral 

stem predicted by the computer algorithm and the surgeon is shown in Table 6-1. 

As represented in Table 6-1, the predicted femoral stem sizes are highly consistent 

with the surgeon’s choice. The only difference is that two in four subjects the surgeon chose 

the coxa vara stems (KLA stems). As we do not have coxa vara stems in our database, the 

proposed algorithm was looking for the closest available femoral stem. It may be the reason 

leading to the difference. However, the femoral morphologies shown in Table 5-1 

confirmed that the surgeon’s choices of coxa vara stems were reasonable and concise to 

the measured results. Specifically, the neck shaft angle of patient two and eight calculated 

by the proposed algorithm were 131 and 115 degrees, respectively.  
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Table 6-1: Comparison of the femoral stem size predicted by the proposed 

algorithm and the surgeon’s selection. 

  Stem (Prediction) Stem (Surgeon Selection) 

Patient 2 12 High Offset KLA 12 High Offset  

Patient 3 11 Standard 11 Standard 

Patient 5 12 High Offset KLA Size 12 High Offset 

Patient 8 12 Standard 12 Standard 
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As depicted in Figure 6-1 the side by side comparison of the femoral stem predicted 

by the proposed algorithm and the surgeon’s selection for patient 5. The predicted femoral 

stem head, acetabular shell, and acetabular liner were compared to the surgeon’s choice 

and are shown in Table 6-2, Table 6-3, and Table 6-4, respectively. 

As shown in above tables, the predicted sizes of the acetabular shell, liner, and 

femoral stem head are larger than the surgeon’s selections. Please keep in mind that the 

sizes of the femoral stem head and the acetabular liner are dependent of the acetabular shell 

size, while the size of the acetabular shell was approximated by the following formula [81]: 

Size of the Shell = Femoral Head Diameter + 8 ± 2 (mm) 

The size of the acetabular shell in Table 6-3 was estimated using the upper bound of the 

above equation and therefore looked larger than the surgeon’s choice. If the lower bound 

is used, Table 6-3 is revised as follow. As shown in Table 6-5, the predicted sizes of the 

acetabular shell are plus/minus one size the surgeon’s choice. This shows the consistency 

and reliability of the predicted algorithm. 

6.2 FEMORAL STEM AND ACETABULAR CUP PLACEMENT 

As stated in Chapter 5, section 1, only two subjects returned to participate in the 

post-operative fluoroscopy study. Fluoroscopic videos of these two subjects were recorded 

and analyzed using a 3D to 2D registration technique [99]. As shown in Figure 6-2 the 

positions of hip implant components and bone models are obtained from the above-

mentioned 3D to 2D registration technique. Through this analysis, the positions of the hip  
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Figure 6-1: Comparison of the femoral stem predicted by the proposed algorithm 

(left image) and the surgeon’s selection (right image) for patient 5. 

 

Table 6-2: Comparison of the predicted femoral stem head and the surgeon’s choice. 

  Head (Prediction) Head (Surgeon Selection) 

Patient 2 +1, 36 mm, 12/14 taper +1, 32mm, 12/14 taper 

Patient 3 +5, 32 mm, 12/14 taper +9, 32mm, 12/14 taper 

Patient 5 +5, 36 mm, 12/14 taper +1, 32mm, 12/14 taper 

Patient 8 +5, 36 mm, 12/14 taper +5.0, 32mm, 12/14 taper 
 

Table 6-3: Comparison of the predicted acetabular shell and the surgeon’s choice. 

  Shell (Prediction) Shell (Surgeon Selection) 

Patient 2 58 mm OD 52 mm OD 

Patient 3 54 mm OD 52 mm OD 

Patient 5 60 mm OD 54 mm OD 

Patient 8 56 mm OD 52 mm OD 
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Table 6-4: Comparison of the predicted acetabular liner and the surgeon’s choice. 

  Liner (Prediction) Liner (Surgeon Selection) 

Patient 2 Neutral 36 mm ID, 58 mm OD Neutral 32mm ID 52mm OD 

Patient 3 Neutral 32 mm ID, 54 mm OD Neutral 32mm ID 52mm OD 

Patient 5 Neutral 36 mm ID, 60 mm OD Neutral 32mm ID 54mm OD 

Patient 8 Neutral 36 mm ID, 56 mm OD Neutral 32mm ID 52mm OD 

 

Table 6-5: Revised sizes of the acetabular shell using the lower bound. 

  Shell (Prediction) Shell (Surgeon Selection) 

Patient 2 54 mm OD 52 mm OD 

Patient 3 50 mm OD 52 mm OD 

Patient 5 56 mm OD 54 mm OD 

Patient 8 52 mm OD 52 mm OD 
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Figure 6-2: A 3D to 2D registration technique is used to obtain the position of hip 

implants and bone models. 
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implant components for each subject were obtained and compared to the predicted 

positions of the same subject by the proposed program. 

The comparisons of the acetabular cup version, inclination, and femoral stem 

version obtained from the proposed program and fluoroscopy analysis are represented in 

Table 6-6, Table 6-7, and Table 6-8 , respectively. 

As represented in above tables, the predicted acetabular version differs 13 degrees 

for patient 2 and 7 degrees for patient 5, while the predicted acetabular inclinations are 

close to the measured inclination from fluoroscopy. The predicted femora stem version 

differs 8 degrees for patient 2 and 4 degrees for patient 5. Such differences can be explained 

because of the difference in the criteria of implant placement between the surgeon and the 

proposed algorithm. While the proposed algorithm attempted to restore anatomical 

positions of the acetabular cup and the femoral stem, the surgeon’s criteria vary compared 

to the criteria set in our algorithm.  This algorithm can be personalized for each such, using 

similar criteria used by the surgeon. Therefore, the future work for the proposed algorithm 

should have the capability to adapt to the objective criteria pertaining to the surgeon’s 

experience and preference. As shown in Figure 6-3 the positions of the hip implant 

components obtained from the proposed algorithm and the X-ray image using a 3D to 2D 

registration technique are compared.  

6.3 HIP SEPARATION 

During the preoperative examination, surgeons can determine whether a patient, 

with a degenerative hip, is a candidate for THA. Although research studies have been 

conducted to investigate in vivo kinematics of degenerative hips using fluoroscopy,  
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Table 6-6: Comparison of the acetabular version obtained from the predicted 

program and fluoroscopy. 

  
Cup Version 

(Prediction) 

Cup Version 

(Fluoroscopy) 

Patient 2 19.83 33.03 

Patient 5 17.61 24.57 

 

 

Table 6-7: Comparison of the acetabular inclination obtained from the predicted 

program and fluoroscopy. 

  
Cup Inclination 

(Prediction) 

Cup Inclination 

(Fluoroscopy) 

Patient 2 49.7 45.19 

Patient 5 53.17 41.77 

 

 

Table 6-8: Comparison of the femoral stem version obtained from the predicted 

program and fluoroscopy. 

  
Stem Version 

(Prediction) 

Stem Version 

(Fluoroscopy) 

Patient 2 10.24 17.95 

Patient 5 4.85 8.81 
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Figure 6-3: A side by side comparison of the implant positions obtained from the 

proposed algorithm (left image) and an X-ray image (right image). 
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surgeons do not have assessment tools they can use in their practice to further understand 

patient assessment.  Ideally, if a surgeon could have a theoretical tool that efficiently allows 

for predictive post-operative assessment after virtual surgery and implantation, they would 

have a better understanding of joint conditions before surgery. The objectives of this 

section were (1) to use the forward solution hip model to theoretically predict the in vivo 

kinematics of a degenerative hip joint, gaining a better understanding joint conditions 

leading to THA and (2) compare the predicted kinematic patterns with those derived using 

fluoroscopy. 

One subject was chosen for this validation who previously participated in a 

fluoroscopy study in Center for Musculoskeletal Research at the University of Tennessee 

Knoxville. This patient was diagnosed to be in the late state of osteoarthritis and was a 

candidate for total hip replacement. The patient was asked to perform gait under 

fluoroscopic surveillance. Kinematic analysis using a 3D to 2D registration method [99] 

revealed that the patient experienced hip separation where the femoral head slid within the 

acetabulum with the separation magnitude great than 1 mm [61].  

During stance phase, kinematic patterns of degenerative hips were similar to the 

kinematic patterns of THA subjects with a malpositioned acetabular cup. Further 

evaluation revealed that if the cup was placed at a position other than its native, anatomical 

center, abnormal forces and torques acting within the joint lead to the femoral component 

sliding within the acetabular cup. It was hypothesized that in degenerative hips, similar to 

THA, the altered center of rotation is a leading influence of femoral head sliding. The 
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comparison of hip separation during stance phase resulted from the fluoroscopy and the 

forward solution mathematical model is presented in Figure 6-4. 

During swing phase, it was determined that this femoral head sliding is caused by 

hip capsular laxity, resulting in reduced joint tension. At the point of maximum velocity of 

the foot, the momentum of the lower leg becomes too great for capsule to properly constrain 

the hip, leading to the femoral component pistoning in the outward direction. The 

comparison of hip separation during swing phase resulted from the fluoroscopy and the 

forward solution mathematical model is presented in Figure 6-5. 
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Figure 6-4: Hip separation obtained from fluoroscopic analysis and mathematical 

model during stance phase. 

 

 

Figure 6-5: Hip separation obtained from fluoroscopic analysis and mathematical 

model during swing phase. 
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CHAPTER 7:  CONTRIBUTIONS AND FUTURE WORK 

7.1 CONTRIBUTIONS 

In summary, this dissertation is focused on the development and implementation of 

a methodology to estimate the size of total hip arthroplasty for a given subject, a virtual 

surgery platform for both surgeons and engineers, and a methodology to predict post-

operative surgical outcomes of a total hip arthroplasty surgery. In this endeavor, this 

dissertation involves considerable unique features, novelties, and contributions to the field 

of orthopaedic research. They include: 

1. An automated procedure, within a forward solution mathematical model, that 

successfully predicts anatomical landmarks on a new bone model, given a known 

set of anatomical landmarks on a template bone model. 

2. A new approach to measure the proximal femoral morphology, within a forward 

solution mathematical model, that has been proven to work efficiently for both 

normal and abnormal femoral bone geometries. 

3. A novel concept of the proximal femoral canal morphology, within a forward 

solution mathematical model, that is used to estimate the size of total hip 

arthroplasty for a given subject, and provide meaningful information pertaining to 

the geometry of the proximal femoral canal. 

4. A novel concept of the femoral stem morphology, within a forward solution 

mathematical model, that provides essential information for a better understanding 

of the geometry of a given femoral stem. This information also plays a crucial role 

in the process of estimating the femoral stem size. 
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5. A computer algorithm module, within a forward solution mathematical model, that 

is used to successfully predict the size of total hip arthroplasty of a particular 

subject. 

6. A theoretical methodology for removing the femoral head, reaming the acetabulum, 

and broaching the femur in a virtual surgery procedure of total hip replacement that 

is part of a forward solution mathematical model. 

7. Development and implementation of a virtual surgery platform that allows the User 

to better understand total hip arthroplasty surgery. This program can also work as 

a surgical training platform outside the Operation Room (OR) that allows surgeons 

to gain hands-on experience and enhance skills in the OR by giving them instant 

feedback on each surgical procedure. 

8. A substantial improvement in the accuracy and an expansion of the capability of 

the existing mathematical model of the hip joint. This can provide surgeons and 

engineers alike an instant feedback of post-operative surgical outcomes of a total 

hip replacement surgery. 

7.2 LIMITATIONS AND FUTURE WORK 

Although the dissertation work has been validated, there still exists limitations that 

we aim to improve in the future work. 

First and foremost, the automated prediction of anatomical landmarks needs a good 

initial alignment of the new bone model and the template bone model. In this dissertation, 

a good initial alignment of two bone models, while defined, still is a qualitative definition. 

In the future work, we target to automate this process to reduce human variation error. We 
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would like to incorporate more pre-defined knowledge, pertaining to the geometry and 

orientation, to have a better understanding of the new bone model. 

Secondly, the measurement of the proximal femoral morphology and femoral stem 

morphology is greatly influenced by the orientation of the femoral canal and femoral stem. 

Even though multiple planes that are used to intersect the femoral canal and femoral stem 

are defined to be parallel to the transverse plane, the initial orientations of the proximal 

femoral canal and femoral stem still affect the geometries of the contours obtained from 

the intersection. Therefore, the future work should focus on how to obtain and define a 

good initial orientation of the femur and femoral stem. 

Thirdly, in the virtual surgery platform, the saw used in the femoral head removal 

is simplified and the reamer and broach handles are not incorporated. This simplified saw 

does not affect the accuracy of a virtual surgery but does affect its appearance. In the future 

work we would like to work closely with the total hip implant manufactures to obtain 

realistic CAD models of these instruments. 

Fourthly, as mentioned in the mathematical modeling section, obtaining a good set 

of initial parameters for the mathematical model is a time-consuming and challenging task. 

However, this step is extremely important to increase the accuracy of the entire 

mathematical model. Therefore, an important task in the future work should focus on 

developing an automated process to obtain these parameters. As suggested in this 

dissertation, an optimization procedure can be used to realize this expectation. 

Fifthly, this mathematical model has successfully predicted post-operative 

outcomes, but is still limited in its capability to simulate different activities of daily living. 
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Even though multiple activities have been introduced and developed in this dissertation, 

they are primarily used for visualization purposes. In the future, we would like to realize 

this goal so that the mathematical model will have the powerful capability to simulate all 

common activities of daily life including gait, deep knee bend, rising from a chair, stair 

accent, stair decent, and crossing the leg. 

Lastly, personalized implant design has not been introduced in a detailed manner 

in this dissertation. This dissertation, however, provides a foundation for the personalized 

implant design community. Since the proximal femoral morphology and femoral canal 

morphology have been automatically measured using the proposed morphology 

measurement algorithm, the implant design community can benefit from results of this 

work. In the future, we would like to cooperate with implant manufactures who are 

interested in personalized implant development to promote this idea in order to provide 

better health care treatment for patients who need a total hip arthroplasty. 
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