
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2019

Methods of Disambiguating and De-anonymizing Authorship in Methods of Disambiguating and De-anonymizing Authorship in

Large Scale Operational Data Large Scale Operational Data

Sadika Amreen
University of Tennessee, samreen@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Amreen, Sadika, "Methods of Disambiguating and De-anonymizing Authorship in Large Scale Operational
Data. " PhD diss., University of Tennessee, 2019.
https://trace.tennessee.edu/utk_graddiss/5453

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/288290939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F5453&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Sadika Amreen entitled "Methods of

Disambiguating and De-anonymizing Authorship in Large Scale Operational Data." I have

examined the final electronic copy of this dissertation for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Computer Science.

Audris Mockus, Major Professor

We have read this dissertation and recommend its acceptance:

Russell Zaretzki, Bruce MacLennan, Jian Huang

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Methods of Disambiguating and

De-anonymizing Authorship in Large

Scale Operational Data

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Sadika Amreen

May 2019

© by Sadika Amreen, 2019

All Rights Reserved.

ii

To Abbu and Ammu

iii

Acknowledgments

First and foremost, I would like to thank Dr. Audris Mockus, my advisor, for encouraging

me to ask important open research questions that make strong contributions to the open

source software community, but that also benefit to downstream end users. I also thank

my committee for their time, support and guidance as I stepped into the unknown: Dr.

Russell Zaretzski, Dr. Bruce MacLennan and Dr. Jian Huang.

Further, I would also like to thank Dr. Ostrouchov and his team for their continuous

support with all of the pbdR related question that emerged throughout this project.

I would also like to thank the Oak Ridge Leadership Computing Facility (OLCF) for

granting us access to Titan which has provided us with a vast amounts of computational

resources without which this research would not have been possible.

I am grateful to have performed this research in a department that goes above and

beyond to create a positive environment for graduate students. Thanks to my friends and

peers in the department: Yuxing, Tapajit, Sara and many others who have contributed to

my work and development in so many ways. In addition, I would like to thank Denise

for her mentorship and guidance when I was starting my career as a graduate student.

Finally, I would like to thank my parents — I am where I am today because of their love

and support — and my husband, Reazul, for being supportive and patient throughout

this journey.

Note: This work was supported by the National Science Foundation ([Grant No.

1633437]). All opinions, findings, conclusions, or recommendations expressed in this

document are those of the author(s) and do not necessarily reflect the views of the

sponsoring agency.

iv

Abstract

Operational data from software development, social networks and other domains are

often contaminated with incorrect or missing values. Examples include misspelled or

changed names, multiple emails belonging to the same person and user profiles that vary

in different systems. Such digital traces are extensively used in research and practice to

study collaborating communities of various kinds. To achieve a realistic representation

of the networks that represent these communities, accurate identities are essential. In

this work, we aim to identify, model, and correct identity errors in data from open-

source software repositories, which include more than 23M developer IDs and nearly

1B Git commits (developer activity records). Our investigation into the nature and

prevalence of identity errors in software activity data reveals that they are different

and occur at much higher rates than other domains. Existing techniques relying on

string comparisons can only disambiguate Synonyms, but not Homonyms, which are

common in software activity traces. Therefore, we introduce measures of behavioral

fingerprinting to improve the accuracy of Synonym resolution, and to disambiguate

Homonyms. Fingerprints are constructed from the traces of developers’ activities, such

as, the style of writing in commit messages, the patterns in files modified and projects

participated in by developers, and the patterns related to the timing of the developers’

activity. Furthermore, to address the lack of training data necessary for the supervised

learning approaches that are used in disambiguation, we design a specific active learning

procedure that minimizes the manual effort necessary to create training data in the

domain of developer identity matching. We extensively evaluate the proposed approach,

using over 16,000 OpenStack developers in 1200 projects, against commercial and most

recent research approaches, and further on recent research on a much larger sample of

v

over 2,000,000 IDs. Results demonstrate that our method is significantly better than

both the recent research and commercial methods. We also conduct experiments to

demonstrate that such erroneous data have significant impact on developer networks.

We hope that the proposed approach will expedite research progress in the domain of

software engineering, especially in applications for which graphs of social networks are

critical.

vi

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.1.1 A Brief Historical Perspective . 3

1.2 Problem Statement . 5

1.3 Motivation . 9

1.3.1 Correcting Operational Data . 10

1.3.2 Mitigating Risks in the Software Supply Chain 10

1.4 Goals and Contribution: Bridging the Gap . 12

1.5 Thesis Organization . 14

2 Background Literature and Significance 15

2.1 Overview . 15

2.2 History of Record Linkage . 15

2.3 Identity Merge in Software Repositories . 18

2.3.1 Identity Merge using String Similarity and Other Surface Attributes 19

2.3.2 LSA for Identity Merging . 22

2.3.3 Machine Learning for Identity Merge 23

2.3.4 Scalability in Record Linkage . 24

2.4 Resources . 25

2.4.1 Vector Representation of Documents 25

2.4.2 Active Learning . 28

2.4.3 Record Linkage Package . 28

2.5 Research Gap . 29

vii

3 Data Collection and Classification 32

3.1 Data Collection and Storage . 32

3.1.1 Git Overview . 33

3.1.2 Data Collection . 34

3.2 Classification of Errors . 37

3.2.1 Errors Classified in Existing Literature 37

3.2.2 Errors in Developer Identities . 38

3.3 Data Overview . 41

4 Methods for Data Correction 43

4.1 Overview . 43

4.2 Disambiguation: Correcting Synonyms . 43

4.2.1 Disambiguating OpenStack Developers 44

4.2.2 Phase 1: Define Predictors . 46

4.2.3 Phase 2: Active Learning . 54

4.2.4 Phase 3: Classification . 56

4.3 Deanonymization - Correcting Homonyms 60

4.3.1 Prototype Design . 60

4.3.2 Phase 1: Discovery and Extraction . 61

4.3.3 Phase 2: Behavioral Fingerprint Predictors 65

4.3.4 Phase 3: Supervised Classification . 67

5 Results and Evaluation 69

5.1 Overview . 69

5.2 Results . 69

5.3 Evaluation . 71

5.3.1 Accuracy of the Training Data . 71

5.3.2 Comparison with a Commercial Effort 74

5.3.3 Comparison with a Research Study 75

5.3.4 Evaluation on a Large Set of Identities 79

5.3.5 Impact of Using Behavioral Fingerprints 81

viii

5.4 Impact on Developer Collaboration Network 81

5.5 Limitations . 83

6 Overview, Discussion, and Conclusions 85

6.1 Overview . 85

6.2 Discussion: Primary Findings . 86

6.3 Summary of Contributions . 88

6.3.1 Theoretical Contributions . 88

6.3.2 Practical Contributions . 91

6.4 Future Work . 92

Bibliography 94

Appendices 104

A Testing Feasibility of Using Doc2Vec on Commit Message Text 105

B List of Publications 115

Vita 116

ix

List of Tables

3.1 Data Overview: The 10 most frequent components of developer IDs. A

large number of the most frequent components are a result of Homonym errors. 41

4.1 Disagreement between learners – Instances that generate the confusion

region in the preliminary classifier . 56

4.2 Manual labeling errors in training data identified by the preliminary

classifier in the active learning phase . 56

4.3 Confusion matrix of 10-fold cross validation of the Random Forest Model

to classify developer ID pairs as matches (1) or as non-matches (0) 57

4.4 An example of cluster cleanup through manual disaggregation - Cluster

number 22 that was identified after transitive closure and was split into 3

clusters after a manual check . 59

4.5 14 Developer IDs in the largest cluster corresponding to an individual with

highest aliases after manual disaggregation 59

4.6 The 15 most frequent Homonym keywords discovered from over 16 Million

Developer IDs . 63

4.7 Full list of keywords compiled and used for the homonym discovery process 64

4.8 Developer IDs statistics for components found as Homonym Keywords 64

4.9 Sampled developer commits and text similarity results 66

4.10 Results from 10-Fold cross validation of Random Forest using the three

fingerprints as predictors . 68

5.1 Comparison of ALFAA against commercial and research methods 80

x

5.2 Precision, Recall, Splitting and Lumping derived from models with and

without behavioral fingerprints . 81

A.1 The 3 models implemented in Gensim’s Doc2Vec 107

A.2 Gensim’s Doc2Vec API used . 107

A.3 Summary of results: Classifying 630 documents 107

A.4 Results from Experiment 2: IDs with high text similarity score had high

overlap in projects, increasing confidence in the effectiveness of using

Doc2Vec for commit messages . 111

A.5 Distribution of the transitive closure clusters – with directionality 112

A.6 Distribution of the transitive closure clusters – directionality removed . . . 113

xi

List of Figures

1.1 Goals of this Research - Correct Synonym and Homonym errors on data

collected from Version Control Systems (VCS) 7

2.1 The CBOW and Skip-gram architecture used in creating word embeddings 27

3.1 Structures within Git: The Blob, Tree and Commit 34

3.2 Data flow: Data discovery and organization 36

3.3 Extracted data from a commit . 37

3.4 Types of errors in developer identities discovered through open card sort . 41

4.1 Flowchart of the three phases of the disambiguation process of ALFAA:

defining predictors, active learning and classification. 45

4.2 Example of data used to build Doc2Vec models - a developer (ID) as

shown by the first two semi-colon separated fields, and some of the commit

messages composed by the developer . 53

4.3 Flowchart showing the results from each phase of the disambiguation

process from 16,007 OpenStack developers 60

4.4 Concept of the Homonym Correction Process 61

5.1 Extracted components of commits that are used for string similarity and

behavioral fingerprint . 75

5.2 Understanding the impact of errors on a developer collaboration network . 82

A.1 Experimental setup to test Doc2Vec for our dataset 108

xii

Chapter 1

Introduction

1.1 Overview

While data errors related to identities of individuals, have been studied for over a 70

years, the existing systematic approaches do not work well on the so-called operational

data collected in modern online systems such as Twitter, Facebook, or GitHub. Studies

that try to understand why the existing approaches do not work well in this context do

not exist, yet the need to address this problem is rapidly growing due to the extensive

research and applications that rely on such data, such as, analysis of social and technical

networks. We, therefore, develop a framework ALFAA (Active Learning Fingerprint

based Anti-Aliasing) – that builds on existing state-of-the-art research from multiple

domains, adds important innovations, such as behavioural fingerprints, systematizes

all stages of identity correction process, increases the credibility of the results through

multiple stages of validation and the extensibility of the modeling and training data, and

offers theoretically unlimited increases in accuracy as additional training data is added.

Furthermore, ALFAA minimizes the manual effort needed to produce training data by

focusing on areas where existing models do not have reliable predictions.

ALFAA, unlike prior methods that either rely on theoretical assumptions or heuristics,

is more credible because the heuristics are not pre-set, but are discovered via training

a machine-learning model and theoretical assumptions are not used, but actual rela-

tionships in the specific data that is being corrected are exploited. ALFAA includes

1

approaches such as text component similarities, supervised learning, and active learning

with innovations represented by behavioural fingerprints that summarize complex and

unstructured data in ways that help to correct identity errors. We expect that our

systematic approach will spur active research and application development for domains

where low accuracy of identity data either makes research extremely labor intensive or,

especially on the large scales, impossible. In the process of implementing the framework,

we make a number of other significant contributions, such as, recognizing different types

of errors that need different approaches to correct them, the ground-truth data obtained

through manual validation, set of models and code to support reproducibility of the

results and to foster future enhancements.

Our vision for the framework, ALFAA, involves two primary aspects: one is the

systematization of identity error correction approaches in all domains, and the second

aspect relates to increasing accuracy and scale of identity correction in an important

domain of software development. To achieve that vision, our work will provide directions

to researchers in all domains on how to create suitable set of scalar and behavioural

features, how to create training data sets with minimal effort especially in domains where

ground truth is extremely difficult or nearly impossible to obtain, and how to increase

the accuracy of the resulting models. For the software development domain, we hope

to help researchers to improve upon the scalability of the approach – to go beyond the

current ability of disambiguating 2 million identities, and reach the scale of all developers

in open source which may require 400 times or more computational power (assuming

40M or more developers). Our tools, are immediately applicable to not only developers

seeking to build an online profile of their work (much similar to scientific scholar profiles

on Google) that unifies work done under various IDs across platforms into a complete

collection of contributions, but to researchers as well who can leverage these profiles to

build correct collaboration networks to perform analysis of any open-source projects. We

are deeply motivated by the fact that the removal of the barriers to accurate determination

of identities would potentially lead to reanalysis and correction of existing studies that are

not based on accurate reconstruction of identities, and therefore, more vigorous research

in this area.

2

There are a number of factors that were kept in mind while making the design

decisions critical to ALFAA. First and foremost, ALFAA is designed to be extensible –

as data sets may differ between domains and practices may change over time, therefore,

preset heuristics and theoretical assumptions will not suffice. Second, ALFAA outlines

ways to minimize manual effort for training – as it is impossible to have resources to do

manual validation on hundreds of millions of pairs. Third, ALFAA is designed to address

a problem that existing solutions do not – the Homonym errors since existing methods are

simply not applicable (as explained later in this dissertation). Therefore, the concept

of behavioural fingerprints used in ALFAA, not only increases the accuracy of Synonym

resolution, but opens a completely new opportunity to address the Homonym problem as

well.

1.1.1 A Brief Historical Perspective

The idea of disambiguation of entities (often referred to as Record Linkage), has been

current for over 70 years. In 1946, Halburt L. Dunn, the Chief of the National Office

of Vital Statistics in the U.S. Public Health Service, eloquently described the term [16].

“Each person in the world creates a Book of Life. This Book starts with birth and ends

with death. Its pages are made up of the records of the principal events in life. Record

linkage is the name given to the process of assembling the pages of this Book, into a

volume. The person retains the same identity throughout the Book. Except for advancing

age, he is the same person. Thinking backward he can remember the important pages

of his Book even though he may have forgotten some of the words. To other persons,

however, his identity must be proven. ”Is the John Doe who enlists today in fact the same

John Doe who was born eighteen years ago? ”

In this work, Dunn has further emphasized the importance of linking records to the

individual, to the registrars of vital records, and to the health, welfare and other agencies

and organizations. Needless to say, machines were not available and simple heuristics

had to be defined for manual matching. As the volumes of records grew with time, and

3

the importance of linking those records remained undisputed, a more formal approach

was developed by Newcombe et. al [48] in 1959 and a formal mathematical model was

introduced by Fellegi and Sunter [17] a decade later in 1969.

However, all of this work applied mostly to the public health domain and was done

manually since mechanized searches were unavailable at the time. Later on, record

linkage was used in many other fields such as disambiguating census data [68], merging

citation data [54], and others. However with the advent of the Internet, record linkage

(which also became known as “identity merge”) became a useful concept in the studies

of communities on social platforms, i.e., in social network analysis, software repository

analysis, etc. For example, studies of social diversity [66] are important in assessing the

effectiveness of teams as social diversity is a source of creativity and adaptability, and to

do such studies, it is important to have the correct identities of team members. In other

cases, such as software engineering research, which aims to gain a better understanding

of software products and processes, identity merge or disambiguation is also require to

combine multiple data sources in a coherent way before any results can be obtained.

In the case of social network data, identity merge is particularly challenging because

the persons involved may have different accounts, login credentials such as user names

and email addresses which need to be mapped to the person to whom they belong.

Furthermore, the existing identities are staggeringly numerous (for example, about 16

million identities were discovered in GitHub alone during the time of this research) and

therefore doing disambiguation manually is error-prone if not impossible. Much work

has been done to automate this process but a number of problems, discussed later in this

thesis, remain to be addressed. In this thesis, we introduce a method that builds upon the

traditional record matching techniques, particularly on operational data, and leveraging

supervised machine learning techniques with the emphasis on expending the minimum

manual effort needed to produce the method training sets. We find that our method

approach provides results that present a major improvement upon recent state-of-the-art

research and commercial efforts in this domain.

4

1.2 Problem Statement

Operational data (OD), defined as “data left as traces from multiple operational support

tools and then integrated with more traditional data” [44], is generated in software

development, social networks and other domains, such as patent databases, research

publication databases [68], etc. OD can come in a variety of formats and can be

derived from interactions between people and machines, such as web applications, or

from profiles stored on social networks, or from identities recorded in issue trackers.

Although operational data is an integral part of software across many domains, it either

lacks a clear structure (such as in bug descriptions or commit messages) or has a very

complicated and non-homogeneous structure, as in the source code written in numerous

programming languages. OD may also contain a variety of interrelated entities that are

often incompletely specified or erroneous. Common examples of such errors include

the misspellings or changes of names, duplicative email addresses, and inconsistent user

name profiles in different systems. As these digital traces from operational support tools

are important in practice, such problems have to be addressed in order to improve the

quality of these data. This process is sometimes referred to as “data cleaning” [41], “data

cleansing”, “data scrubbing”, “object identification” [63] etc. The basic objective of these

techniques is to detect and amend or remove information that is inaccurate, incomplete

or duplicative in order to increase the accuracy of measures and models derived from the

data.

Data cleansing or data cleaning is the process of detecting and correcting (or

removing) corrupt or inaccurate reports from a record set, table or database and refers

to identifying incomplete, incorrect, inaccurate or irrelevant parts of the data and then

replacing, modifying, or deleting the dirty or coarse data. [79]

Our particular concern lies with applications when the problematic data represents

a network. The properties of the network measures, such as connectivity or between-

ness centrality, may be affected even more profoundly if the constituents of the network,

i.e., nodes and edges, are inaccurate. As understanding developer networks plays a

5

crucial part in the development of software products and processes [4] and improves the

understanding of how open source communities evolve over time [40], it becomes critical

to correct such problematic data. In particular, the errors generated from developers

having different accounts, and multiple login credentials involving user names and email

addresses are a specific problem with data from various operational support tools in the

realm of software engineering. We refer to these credentials as an user’s “signature”, as

they are intended to be distinctive forms of identification used in authorizing a person’s

activity in a platform or a tool. It becomes a concern, when a single individual uses

multiple such signatures, as well as when multiple individuals use the same signature

for their activities. This is especially true when it becomes hard to track the work of

individuals such as inventors in patent databases, projects and developers in version

control systems, and researchers or publications in the collections of scholarly work, and

therefore profoundly affecting most social network or productivity measures.

In version control tools the identity signature may come from a user profile that is

stored locally on a device as is the case of credentials in Git. A single individual is,

therefore, often represented as multiple identities not only across platforms as studied

by [2], but also within a single platform. As discussed, this might impact the productivity

measure of a developer by showing lower than actual productivity because his activities

have been logged using two or more signatures, or, alternatively, higher productivity

because multiple individuals are active using the same signature. As incorrect identities

are likely to result in incorrect networks [70], thus making the subsequent analysis

and conclusions questionable, such misrepresentation needs to be “cleansed”. This can

be done by mapping each signature to the actual individual or by finding constituent

individuals using a single signature. However, resolving these signatures, which we

refer to as identity resolution, disambiguation, and/or de-anonymization, to identify

actual developers based on data from software repositories is a major challenge. This is

mainly due to the following factors:

1. Lack of ground truth – absence of validated maps from the recorded signatures to

actual identities and

6

2. Very large volumes of data – Millions of signatures of individuals found in a single

platform

These issues have been recognized in the field of software engineering [21, 5] and

beyond [14]. To cope, with such issues, studies in software engineering have tended to

focus on individual projects or groups of projects in which the number of IDs that need

to be disambiguated is small enough for manual validation and for which a variety of

heuristics have been devised to solve this formidable problem. The social networks of

scientific paper authors or patents [68] must handle a much larger set of identities, and

the population census [14] has an even larger set of identities. The latter literature refers

to the accurate identity problem as “record matching”, or how to match records in one

table (e.g., a list of actual developers) with records in another table (e.g., code commits)

where some of the fields used for matching may differ for the same entity. The way these

techniques are applied in practice for author resolution, however, is primarily to resolve

Synonyms (instances where the same person may have multiple IDs), but not Homonyms

(instances where the same ID is used by multiple individuals). Figure 1.1 illustrates that

the goal of this research is two-fold; that is, it is both disambiguation (finding multiple IDs

that represent the same individual) and de-anonymization (finding individuals behind

missing and generic identity signatures).

Figure 1.1: Goals of this Research - Correct Synonym and Homonym errors on data collected
from Version Control Systems (VCS)

7

Examples of Synonym Errors:

ID 1 - Pradeep:pradeep@arrayfire.com

ID 2 - pradeep:pradeep@arrayfire.com

ID 3 - pradeep:pradeep.garigipati@gmail.com

Examples of Homonyms:

ID 1 - A Student:secretmessage@protonmail.com

ID 2 - Jenkins:jenkins@jenkins.hpcloud.net

ID 3 - (no author):(no author)

In software engineering and, in particular, in code commits to a version control

system, author information in a commit is often ambiguous and generic (drawn from

roles or names of projects). This leads to the same credentials being reused for multiple in-

dividuals, such as, logins (“root”, “Administrator”), group or tool IDs (“Jenkins Build”),

or identifiers seeking to preserve anonymity (“John Doe”, “name@domain.com”). Fur-

thermore, software data does not have a database structure similar to population census

data, where the birth-date field helps to resolve homonyms, and, more generally, appears

to contain a substantially larger fraction of records with errors. In this work, we pose a

number of research questions whose answers will help to address these issues. These are

the following:

1. What are the most common reasons for identity errors in version control data?

2. Can we encode developer behavior from version control data to help correct identity

errors?

3. Does our approach improve upon existing matching techniques in software engi-

neering that are used in research and commerce?

4. What is the impact of identity errors on actual collaboration networks among

developers?

8

Even with significant work that has been done to advance methods in disambiguating

identities in authorship for research papers and patents [14, 68, 77, 60], correcting the

identity errors in a software engineering context appears to be challenging, as the nature

of the errors appears to be quite different. Therefore, we seek a better understanding

of their nature and extent in order to tailor the correction techniques for the software

engineering domain and propose a solution in the form of a framework (ALFAA), that is

extensible and can be adopted in other domains as well.

1.3 Motivation

With the explosion of online activities enabled by the internet, online social networks

have become an integral part of our daily lives. A simple Google search on ‘Social

Network Analysis’ yields over 177 million results showing the vast extent and importance

of this topic. Social network analysis is based on relationships among social entities

(that interact) and on the patterns and implications of those relationships [72]. To

drive such analysis, it is imperative that the social entities are represented correctly

in the network. For example, studies on code attribution [3] i.e. code that is taken

from StackOverflow and committed to repositories such as GitHub, require the correct

representation of people on the network to answer questions such as “How often is code

from StackOverflow reused in GitHub projects?”, and to accurately measure developer

productivity [67]. Accurate representation of any online social network is also required to

examine social connected-ness in developer communities as people involved in software

development are connected mostly through and around code [64, 2]. The importance

of accurate representation was discussed by Wang et. al. in [70] where it was shown

that identity errors have a large impact on reconstructed social networks. In addition,

however, to the importance of having correct identities on any social network, we focus on

why it is important to have correct developer identities in operational data. This section

discusses the two driving factors that motivate the research undertaken in this PhD study,

keeping in mind that the data we consider for our research is derived from version control

systems.

9

1.3.1 Correcting Operational Data

As pointed out in [24], operational data collected in the course of system operation is a

common source of measurement in data science. However, due to the size, complexity,

and non-experimental nature of OD, observations and measures derived from it suffer

from the lack of context, missing observations, and incorrect values. Examples of lack

of context include absence of explicit markers in the data that would indicate different

purposes an individual was engaged in when using the system. For example, an email

sent to a mailing list may be a question, a code submission, or a patch to an existing

bug, or a general announcement. Some activities under study may occur off-line, thus

not leaving traces in the system. That may have a strong impact on the social network

structure if no instances of the social interaction were recorded on the system. This

dissertation is mostly concerned with solving the third challenge of the operational data

i.e., correcting mis-specified values associated with various identities.

Specifically, we investigate the feasibility of correcting social network data for each

record, i.e., commits, by assigning the most likely identity associated with it using an

amalgamation of traditional string similarity techniques and behavioural fingerprinting

– that is, disambiguating. When the identity record is empty, we attempt to insert a label

for that record; thus, this task can also be considered as missing data estimation task. For

missing and multi-person IDs, the task can be thought of as de-anonymization. A similar

problem in the database field is referred to as the record matching problem ([74, 77]).

1.3.2 Mitigating Risks in the Software Supply Chain

One of the greatest motivations for identity de-duplication is in the realm of Software

Supply Chain. To better understand the concept of Software Supply Chain (SSC), it is

important to clarify what a physical supply chain is and what aspects of it may be applied

to a software context. A supply chain is a system of organizations, people, activities,

information and resources involved in moving a product or service from a supplier

to a customer1. Supply chains function as a result of diverse markets, widespread

1https://en.wikipedia.org/wiki/Supply chain

10

collaboration, and, most importantly, successful risk management. Flexibility is crucial in

supply chains; with emerging markets and increased number of corporate players, supply

chains need to be able to respond to changes within the market and the political climate

through its fulfillment of demand2. Finally, a thriving supply chain network requires

end-to-end visibility between the supplier and the customer. This can eliminate potential

risks by allowing entities within the network to see the flow of goods through the supply

chain, therefore minimizing the effect of disruptions.

Like the physical supply chain, a software supply chain consists of a complex network

of organizations, developers and projects that are connected through various software

dependencies. An end-to-end visibility would require understanding of the nature of the

individual developers’ participation in a collaborative environment and it is of utmost

importance that these developers be represented correctly. For example, Project PB,

developed by developer DB, maybe dependent on Project PA, developed by Developer

DA, through the libraries/packages of PA. In essence, PA is a supplier for PB and the

same concept can be relayed to the developer and therefore, DA is a supplier for DB.

Therefore, from the SSC perspective, a customer (PA or DA) has a direct or indirect

upstream dependency on its supplier (PB or DB).

As with physical supply chains, software supply chains are vulnerable to risks that

may cause disruptions across the network. For example, if an update is released in

Project PA without allowing backward compatibility, it may cause a breakage in Project

PB. To mitigate such risks it may be necessary for PB to have a secondary supplier just

as physical supply chains do. To minimize risk, therefore, PB has a “backup dependency

plan” on Project PC developed by developer DC. However if in actuality, DC and DA

are the same developer using two aliases, Project PB’s risk mitigation scheme becomes

ineffective. Therefore, it is critical that user credentials (such as DA and DC) are linked so

as to allow greater visibility across the network.

2http://cerasis.com/2015/07/30/best-in-class-supply-chain/

11

1.4 Goals and Contribution: Bridging the Gap

In this study, we propose, outline and develop a framework (ALFAA), focusing on

customizing solutions for the types of errors found in operational data. ALFAA uses

new a approach that significantly outperforms existing techniques, in terms of reduced

manual effort in the correction process as well as increased accuracy. Through this work

we discuss how the problem we address is similar to the record matching problem

as introduced in [17], and what additional challenges we face as a result of domain

specificity. A detailed discussion is provided on traditional record matching techniques

and state-of-the-art techniques that have been used in solving this problem. The following

points summarize the contributions of this study:

1. A framework and a corrected data set: In this work, we design a framework,

ALFAA (Active Learning Fingerprint Based Anti-Aliasing), that allows tuning so

that this method can be used for other domains. Furthermore, the models that

have been trained for this research can be further improved simply by adding

larger training data instead of requiring effort intensive design and application of

customizable heuristics. As an outcome of this work, we have produced a corrected

set of developer identities on several open-source projects on GitHub that maybe

used for practical purposes or research related to software engineering/ repository

mining, etc. We believe that correct representation of networks plays a critical role

in spurring research.

2. Understanding and classifying errors: Identity errors in the software engineering

context appear to be quite different from those in other domains that have been

researched in the past. We therefore seek a better understanding of their nature -

the mechanisms that lead to variations i.e. errors and missing values in identity

representation and broadly classify errors into categories. This enables us to tailor

the correction techniques for the software engineering domain.

3. Use activity patterns of developers for disambiguation and show that they

positively impact results: Most traditional record matching techniques use string

12

similarity of identifiers (typically login credentials) i.e. name, username and email

similarity. A broad spectrum of approaches ranging from direct string comparisons

of name and email [56] to supervised learning based on string similarity [68] has

been used to try to solve the identity problem. However, such methods do not help

with homonyms, which are common in software engineering data. We, therefore,

need additional pieces of information (an analogue to date of birth for census

records). For this purpose, we propose to enhance the string similarity-based

techniques with what we call behavioral fingerprints or activity patterns that tend

to be more similar if different IDs are used by the same individual and less similar

for IDs of distinct individuals.

We evaluate the accuracy of our approach on a large sample of over 16K OpenStack

contributors and compare it to the approaches of a commercial method and a

recent research method. We also apply our method on a large sample of 2 Million

contributors in 18 large ecosystems hosted on GitHub. We compare our results

to the recent research method and through a manual process and show that our

method produces fewer errors than the existing state-of-the-art method. Finally,

we conduct an experiment to show that identity errors have significant impact

on developer collaboration networks and that correcting them is crucial before

conducting any analysis.

4. Reduction in manual effort required to build validated data sets: Much of the

existing literature [68] relies on the availability of adequate manually corrected data

to use in the correction process. This is often unavailable and expensive to acquire

for any particular domain. In this work, we reduce the amount of manual effort

needed for correction by using a method called active learning. Through this method,

we are able to identify a small training data that can be manually labeled and will

be used to train an effective model.

13

1.5 Thesis Organization

This thesis is divided into six chapters. The remaining of this thesis is organized as

follows:

Chapter 2 provides a foundation for the research contributions discussed in the

following chapters through a comprehensive survey of the work done in record linkage.

The history of record linkage is discussed along with and the relevant work done by

researchers in the past in diverse domains. In the subsequent sections of this chapter, we

also define some commonly used terminology in our research in the following chapters.

Chapter 3 dives into the details of the data collection process for this research. We

describe our data collection process from Git repositories used for version control in

software development. Specifically, we focus on GitHub, which offers plans for both

private repositories and free accounts, which are usually used to host open-source

software projects. We discuss how data is stored in Git, and how we extract data from

this system, i.e., our process of discovering projects, retrieving information, storing and

cleaning the data. Furthermore, we describe the data retrieved focusing on errors and

we discuss methods used to classify the errors. We include a list of keywords that we

discovered that may be used to identify homonym errors in large scale data.

Chapter 4 discusses the framework we designed to correct identities of developers

obtained from GitHub. This includes measures of string similarity as used by traditional

record matching techniques augmented with measures of developer behaviour which we

refer to as “behavioral fingerprints”. We also discuss how to create an effective training

set for supervised classification with minimum manual effort.

Chapter 5 reports the results generated by the prototype built on a small subset of the

data as well as techniques used to validate the training data. This chapter also provides

a detailed evaluation of the how the proposed technique compares against a commercial

effort and recent research. Finally, this chapter discusses limitations of our work.

Chapter 6 concludes by reiterating over the research questions and the answers we

found, as well as the summary of contributions made in this thesis. Lastly, it proposes

some ideas that can be implemented to advance this research in the future.

14

Chapter 2

Background Literature and Significance

2.1 Overview

In this chapter we review some existing research literature in order to gain familiarity

with work that has been done thus far on record matching and the approaches applied

to accomplish similar goals as our work. In this chapter, we provide a foundation for

the research contributions discussed in the following chapters through a comprehensive

survey of the work done in this field. Here, we talk about some definitions, assumptions

for our work and the relevant work that was done by researchers in the past. In the

following sections of this chapter, we also define some commonly used terminologies in

our research in the chapters to follow.

Note: Throughout the rest of this document we use the terms record linkage,

identity linking, identity deduplication, identity merge, record matching and identity

disambiguation interchangeably.

2.2 History of Record Linkage

The field concerning linkage of records has been around for more than half a century.

The term “record linkage” has been used to refer to the process of merging two or more

separately recorded pieces of information related to a particular individual or family [16],

in as early as 1946. There were various defined heuristics for manual matching as

15

“mechanized searching” was unavailable and there was “no clear demonstration that

machines could carry out record linkages rapidly enough, cheaply enough and with

sufficient accuracy to make this practicable” [48]. The usage of such methods were

mainly in the field of public health i.e. for keeping track of people exposed to low

levels of radiation in order to determine causes of their eventual deaths, for assessing

fertility differentials, genetic defects in human populations etc. Some heuristics used

in manual matching of these records were birth and death registration information,

marriage registration, etc as defined in a study conducted by H.B Newcombe et. al in

1959 [48].

A decade later, the first mathematical model “to provide a theoretical framework for a

computer-oriented solution” for record linkage was introduced by Ivan Fellegi and Alan

Sunter [17]. The interest in this field was driven by

1. The creation of large files (particularly by various administrative programs) that

required maintenance over long periods of time that contained information whose

value could be increased by linking individual records in other files,

2. Increasing awareness on the potential impact of linking records in medical and

genetic research and finally

3. Improvements in mechanization, making record comparison between medium

sized files economically and technically feasible.

The theory behind the mathematical model for record linkage as described by Fellegi

and Sunter in [17] is as follows:

There are two populations A and B whose elements are denoted by a and b

respectively. We assume some elements of these populations are common to both

the populations.

Therefore, the set of ordered pairs:

A× B = {(a, b); a ∈ A, b ∈ B}

16

is the union of two disjoint sets

M = {(a, b); a = b, a ∈ A, b ∈ B}

and

U = {(a, b); a 6= b, a ∈ A, b ∈ B}

where M and U are the matched and unmatched set respectively.

Each unit in A and B has a number f characteristics associated with it (e.g. name,

age, sex, marital status, address at different points in time, place and data of birth etc.)

This model serves as the basis of many record linkage methods practiced today. Since

then, the problem has been investigated in many fields - at times via elementary and

ad-hoc rules and at times via formal mathematical models using “computer matching

techniques” that were tested using statistical methods. One such example of the more

structured approach is the US census [78, 77] where administrative data from multiple

sources is brought together to aid in making policy decisions - as an alternative to

designing special surveys to collect data - as existing data from administrative sources

might contain more information which is also more accurate due to improvements over

many years. Other examples include linking records of inventors in the United States

Patent and Trademark Office (USPTO) database [68] to link records of the companies, or-

ganizations and individuals or government agencies to which a patent is assigned. These

studies adapt the methodological advancements in statistics [18] moving away from the

previously used ad-hoc weights, thresholds and decision rules in their disambiguation

process. More examples include linking records in synthetic census data [14] and in the

construction of web services that integrate crowd-sourced data such as CiteSeer [33].

With the advent of the internet, there has been a rapid increase in large-scale

software development involving a large number of project workers. This requires a

significant amount of communication and coordination and many platforms or tools

have been built to aid and expedite these development processes. With this increase in

17

collaboration, the volumes of data also multiplied rapidly. Existing hand-coded rules and

thresholds is tedious and requires domain knowledge and approaches requiring such

rules become inefficient. One way to reduce the tedium of hand-coding is to use machine

learning algorithms to find the deduplication function [78, 76, 27]. By the early 2000s,

identity disambiguation became an important topic in the field of empirical software

engineering research [21] and in mining social networks [5] to correctly identify people

in a software ecosystem for various purposes. These include building social diversity

data set from thousands of GitHub projects [66], assessing the contributors total activity

within projects [22] in Open Source Software and across platforms [80] and in mailing

lists [75]. Many of these methods are reliant on simple string matching heuristics. The

issue of developer identities has been a serious problem in software repository mining,

particularly when trying to combine information from different types of data sources in a

coherent way where the available data concerning persons involved in a project may be

dispersed across different repositories [23, 53].

In summary, identity disambiguation is an well researched area that has evolved over

decades, starting with its inception to solve problems with data in the public health sector

with ad-hoc methods, moving on to a formal mathematical model introduced in 1969 that

serve as the basis for most research conducted in this area till date. Since its inception,

record linkage has been used in a wide variety of fields for various purposes and the

heuristics and methods used for linkage have become increasingly complex. For the

rest of this chapter, we focus mostly on the identity disambiguation done in the domain

of software engineering. The following sections discuss the application of algorithms

specific to record linkage methods used in email social networks, version control systems

or software repositories, bug tracking systems, online communication platforms etc. as

well as the research gaps that were identified, thereby motivating our work in this field.

2.3 Identity Merge in Software Repositories

To gain a better understanding of software products and processes, software repository

mining research uses empirical studies, experiments and statistical analysis. One of

18

the challenges in software repository mining is how information coming from various

data sources can be combined in a coherent way. For many projects, data concerning

developers involved is dispersed across several repositories and may be accessed using

different tools. For example,

1. Version Control Systems (VCS) - are used to store and track changes in source code

(e.g. CVS, Subversion, Git)

2. Communication platforms - mailing lists, discussion boards, development forums

(e.g. StackOverflow, StackExchange) are used for communication between develop-

ers and/or users

3. Bug Tracking Systems - are used to track bug reports and change requests (e.g.

Bugzilla, Jira)

Reconciliation of data from various sources (from within a platform or across plat-

forms) is crucial in order to carry out empirical studies on software repositories - which

involves the challenge of merging identities involved in the software process. The

tools used to access various data sources often have different mechanisms to access and

modify the data and contributors to each data source may have different accounts, login

credentials such as user names and email addresses and may need to be correctly mapped

to the actual developer to which the credential belongs.

In the following subsections, we discuss a number of well known literature regarding

identity merge - the problems addressed and the solutions proposed by them.

2.3.1 Identity Merge using String Similarity and Other Surface At-

tributes

Traditionally identity merging algorithms were commonly based on matching surface

attributes such as strings (names and emails of persons). A popular algorithm that still

serves as the basis of many identity merge algorithm has been designed by Bird et al. [5]

specifically to deal with identities belonging to committers in a code repository or mailers

19

participating in a mailing list. In this work Bird et al. conducts pre-processing which

includes cleaning and normalization of the data. This is followed by splitting a name into

its components using whitespaces and commas as delimiters. Bird checks the following

conditions to determine whether an identity should be merged. An identity is merged if

at least one of the following holds true.

• If the normalized Levenshtein similarity [46] between two names (l1 and l2) of users

is greater than a defined threshold.

similar(l1, l2, t) =


True, if 1− levenshteinDistance(l1, l2)

max(size(l1), size(l2))
≥ t

False, otherwise

• If the similarity between components of names of users is greater than a defined

threshold.

• If the similarity between user names (also referred to as email prefix) of users is

greater than a defined threshold.

• If the name components of one user matches the user name (components) of another

user i.e ‘John Doe’ and ‘john.doe’.

• If the name component of one user matches a user name of another user that is a

partly abbreviated version i.e. ‘jdoe’ for ‘John Doe’.

Initially, Bird’s algorithm makes an incorrect assumption that a person’s name always

contains two parts - the first and last name. This was later modified in an article [23] - on

the comparison of various merge algorithms software repositories - to include splitting a

name into an arbitrary number of parts using a larger number of delimiters/separators

i.e. space(), comma(,), plus(+), period(.), hyphen(-) and underscore(). This article

iterates over a number of existing and new identity merge algorithms and measures

their effectiveness, using metrics such as precision and recall by applying them on large

ongoing Open Source Software (OSS) projects.

20

Another study [56] to link accounts across social networks such as StackOverflow,

Github and Twitter, discusses some techniques such as using different attributes of

user profiles, to build user interaction networks. The authors discovered 4,132,407 and

4,288,132 accounts in StackOverflow and GitHub respectively. These sets of accounts

were matched to each other and the resulting set was matched to Twitter accounts using

the three techniques discussed below:

1. Explicit matching - This is the process of identifying users through the links

provided by users in one platform to their accounts in other platforms. In this

study, 4,536 users of StackOverflow who use Github and 10,068 who use Twitter

were identified as well as 433 Github users who use Stackoverflow and 7,012 users

who use Twitter were identified using this strategy.

2. Attribute-based matching - This technique uses unique attributes of users, such

as email (MD5 email hash) and profile image (GravatarID1) to connect profiles

across multiple platforms. Using this method 604,083 user overlaps between

StackOverflow and Github was discovered.

3. Fuzzy matching - This method applies less accurate user attributes such as login

names and profile images to match profiles across platforms.

This study by [37] analyzes names across social networks and identifies the redundant

information in different display names for the same real-world entity. The authors report

through their analysis that 45% of users tend to use the same display names across online

social networks. The awareness of redundant information between the display names

can benefit many applications such as user identification across social networks. This

study covers a number of analysis for display names such as length similarity, character

similarity, letter distribution similarity etc., each derived from a number of metrics. This

study is a relevant compilation of work that will be necessary once we reach the validation

stage in our research.

There are also studies[74] on about entity-name clustering which is a task of taking

a single list of entity names and assigning them to clusters such that all names in a
1https://en.gravatar.com/ Gravatar, a globally recognized avatar

21

cluster are co-referent (i.e. refer to same real-world entity). This study presents various

techniques that are scalable and adaptive.

2.3.2 LSA for Identity Merging

While string matching and approaches using thresholds are reported to perform fairly,

work using more sophisticated heuristics such as Latent Semantic Analysis (LSA) on

names of GNOME Git authors was also used for disambiguation [29]. In this work,

authors classify existing identity merge algorithms into two groups: endogenous and

exogenous algorithms. Endogenous algorithms, such as the one used in [5, 11], try to

match full names or email addresses shared by different identity signatures (IDs) used

by individuals. These algorithms only use the information available in the repositories

the identity signatures come from. Contrary to this, exogenous algorithms [53, 51] also

use external information in addition to heuristics to aid in the matching process e.g.

GPG (GNU Privacy Guard) key servers to determine if email addresses are linked. Such

approaches may not always prove to be useful in OSS and many open-source projects do

not use GPG keys.

LSA uses a sparse term document matrix which describes the occurrence of terms

in documents. Each document used in this research is the email address and the

terms in a document is the name parts i.e. components of the email address (that has

been normalized). The authors in [29] argue that LSA is robust against more types

of differences in aliases as reducing the dimensionality of the term document matrix

eliminates much of the “noise” in the data. The aliases corresponding to pairs of

documents for which the cosine similarity meets a defined threshold are merged.

Differences in names corresponding to the same email address have been categorized

in [29] as follows: ordering (Rajesh Sola, Sola Rajesh), mis-spelling/spacing (Rene

Engelhard, Fene Engelhard), diacritics (Demurget, Demurget), transliteration (γιωρoγζ,

Georgios), nicknames (Jacob “Ulysses” Berkman, Jacob Berkman), punctuation (J.A.M.

Carneiro, J A M Carneiro), middle initials (Daniel M. Mueth, Daniel Mueth), mid-

dle names/patronyms (Alexander Alexandrov Shopov, Alexander Shopov), additional

22

surnames (Carlos Garnacho Parro, Carlos Garnacho), incomplete names (A S Alam,

Amanpreet Singh Alam), diminuitives/variants (Mike Gratton, Michael Gratton), ir-

relevant information incorporated in the name (e.g. the name of the project: Arturo

Tena/libole2, Arturo Tena), user name instead of names (mrhappypants, Aaron Brown),

artifacts of the tooling used by developers when committing/storing/migrating data (e.g.

timestamps “(16:06) Alex Roberts”, or commit messages in addition to names, “Fixed a

wrong translation ib ja.po. T.Aihana”). The differences can be one of these or can be

combinations of the above.

2.3.3 Machine Learning for Identity Merge

With increasing adoption of Machine Learning (ML) in various domains, the modern

methods for record linkage include unsupervised approaches, semi-supervised learning

approaches, and supervised learning approaches. In a research by [68], the authors

evaluate some work using unsupervised, rule and threshold based approaches [18, 57],

some semi-supervised learning algorithm trained on statistically generated artificial

labels [36] and provide the first supervised learning approach for the United States Patent

and Trademark Office (USPTO) database (United States Patent and Trademark Office – an

online database of all patents issued in the United States). Rule and threshold based

approaches require leveraging expert knowledge which may only belong to domain

experts.

Disambiguation methods are needed to track inventors and assignees across their

patents or link their information to other data sources as inventors and assignees in the

USPTO database are not given unique identification numbers. The supervised method

discussed in this work uses two extensive sets of labeled inventor records as the training

data and the random forest algorithm to disambiguate inventors. This approach is shown

to be effective on data sets such as USPTO which has an ample amount of hand labeled

inventor records (over 150,000) to act as a training data set for supervised learning.

However, it is difficult to gather validated ground truth data in the case of operational

data and this inadequacy in availability of ground truth for our data set of developers

23

from projects hosted on GitHub causes a hindrance to employing any supervised learning

approach directly. Past research on de-duplication of authors in citations [54] has

leveraged a technique called active learning, which starts with limited labels and a

large unlabeled pool of instances, thereby, significantly reducing the effort in providing

training data manually. The active learning method uses an initial classifier to predict on

a very small number of labeled instances. This is a challenging task in a large collection of

data, since random sampling of data for manual labeling may not bring out the best cases

that have subtleties from which a classifier can learn. Therefore the active learner which

is a set of initial classifier brings out these cases through generating a confusion region

– where there are confusions between outcomes of the classifiers. This confusion region

can be extracted and manually labeled for it to serve as the training data for the actual

classifier. A study [62] on de-anonymizing social network profiles show that browsing

history can be linked to social media profiles such as Twitter, Facebook or Reddit accounts

by analyzing distinctive patterns in the browsing data. A user’s likelihood of visiting a

URL is governed by the URL’s overall popularity and whether the URL appeared in the

user’s Twitter feed. Next, for each user, their likelihood of generating a given anonymous

browsing history is computed. Finally, the user most likely to have generated that history

was identified. According to this study, the user’s web browsing behavior is controlled

by two parameters: The recommendation set (a set of links appearing on the user’s feed

by the user’s friends etc. on the network) and the recommendation factor (the user’s

responsiveness to the recommendation set). The browsing history can by equated to the

files touched by a developer in our case and we may be able to use the likelihood estimates

as described in this paper to group IDs.

2.3.4 Scalability in Record Linkage

One of the greatest obstacles as discussed by [61] is the scalability of approaches to solve

the record linkage or entity resolution issue. Brute force requires all-to-all comparisons

which can become prohibitive for moderate sized data sets. To overcome this, a method

called ”blocking” is used, ”which involves partitioning data files into ’blocks’ of records

24

and treating records in different blocks as non-co-referent a-priori. The blocking methods

used range from very basic ones that pick certain fields (e.g. geography, or gender

and year of birth) and places record in the same block if and only if they agree on all

such fields, to highly application-specific ones based on placing similar records into the

same block, using techniques of ”locality-sensitive-hashing” (LSH). As blocking divides

records into mutually exclusive blocks, records only within the same blocks can be linked.

This requires expertise and domain knowledge to pick out reliable and error-free fields

for blocking. Such fields can also be unreliable for many applications, therefore blocking

may miss large proportions of matches.

This research clearly shows that much work is left in areas of scalable record matching,

that is also generic and doesn’t require domain expertise to perform record linkage.

2.4 Resources

In this section, we discuss the research related to various techniques, packages and

tools that we use in our work. In the following subsections, we go over a vector

embedding technique used in finding textual similarity between two people during the

disambiguation and de-anonymization process, the active learning technique that can

help us minimize the number of hand labeled instances required for supervised learning,

and the record linkage package which is extensively used in this research to compare

strings representing author identities.

2.4.1 Vector Representation of Documents

Previous work to identify anonymous authors via “linguistic stylometry” on social

network data show that humans have their own style of writing [45]. Therefore, in

this research, we propose a method to correctly identify individuals using text as one

of the markers of their identity. As the vector representation of paragraphs (Doc2Vec) is

inspired by the work in learning vector representations of words (Word2Vec), we start off

25

by discussing in brief how the latter uses neural networks in unsupervised learning to

create a vector space for words.

Word2Vec

Word2vec is a group of related models that are used to produce word embeddings.

These models are shallow, two-layer neural networks that are trained to reconstruct the

semantics of words. Word2Vec takes as its input a large corpus of text and produces

a vector space, typically of several hundred dimensions, with each unique word in the

corpus being assigned a corresponding vector in the space. Word vectors are positioned

in the vector space such that words that share common contexts in the corpus are located

in close proximity to one another in the space.

After training, the vector for a word produced by the Word2Vec model, represent that

word’s relation to other words. Word2Vec can utilize either of two model architectures

to produce a distributed representation of words: continuous bag-of-words (CBOW) or

continuous skip-gram. In the continuous bag-of-words architecture, the model predicts the

current word from a window of surrounding context words. The bag-of-words assumption

indicates that the order of context words does not influence prediction. In the continuous

skip-gram architecture, the model uses the current word to predict the surrounding

window of context words. The skip-gram architecture weighs nearby context words more

heavily than more distant context words. Figure 2.1 illustrates the architecture of these

models.

Doc2Vec

Doc2vec (or paragraph2vec) modifies the Word2Vec algorithm to unsupervised learning

of continuous representations for larger blocks of text, such as sentences, paragraphs

or entire documents. In the Doc2Vec architecture, the corresponding algorithms are

Distributed memory which considers the word order and Distributed bag of words (DBOW)

which ignores the context words in the input, but forces the model to predict words

randomly sampled from the paragraph in the output. These concepts have been

26

Figure 2.1: The CBOW and Skip-gram architecture used in creating word embeddings

Taken from “Efficient Estimation of Word Representations in Vector Space” (Thomas
Mikolov, Quoc Le). The CBOW architecture predicts the current word based on the context,
and the skip-gram predicts the surrounding words given the current word.

implemented in a open-source library “Gensim” which has been used to generate

document vectors in this research.

Gensim’s implementation of Doc2Vec

Gensim started off as a collection of various Python scripts for the Czech Digital

Mathematics Library in 2008, where it served to generate a short list of the most similar

articles to a given article [52]. Through time, Gensim improved its efficiency and

scalability to become a robust software to perform unsupervised semantic modelling from

plain text. Gensim is licensed under the OSI-approved GNU LGPLv2.1 license and is

free for both personal and commercial use. Because of Gensim’s robustness, efficiency

and most importantly scalability, we chose this implementation of generating paragraph

vectors for our research.

27

2.4.2 Active Learning

Many existing methods for record matching rely on hand-coded rules, if-else conditions

and thresholds to determine whether two records are a match. Machine learning

algorithms reduce the tedium of hand-coding by relegating the task of finding the

de-duplication function to a learner from a intelligently crafted data set. However,

the success of such algorithms are dependent on providing a training set that covers

‘duplicates and non-duplicates that will bring out the subtlety of the functions’. These

examples are hard to find as the best examples to teach a learner may be spread far

apart in the data set and will therefore require extensive search. For example, finding a

set of non-duplicates that may be mistaken as a duplicate can be a crucial observation

in a training set that might significantly affect the performance of a classifier. These

problems are addressed in [54, 13] where the construction of the deduplication function

is automated using training sets that include the challenging training data. This is called

the active learner. An active learner builds several redundant de-duplication functions

and exploits the disagreement among them to discover inconsistencies among duplicates

in the dataset. This automates the challenging task of identifying potentially confusing

record pairs from a large data set, thereby significantly reducing manual effort as the user

now has to hand-label the selected pairs only. This not only reduces manual effort but

also increases accuracy of the learning method by providing it with a diverse set of data.

2.4.3 Record Linkage Package

The RecordLinkage package (available on CRAN and R-Forge) deals with detecting

homonyms and synonyms in the data. When dealing with data from different sources,

homonym and synonym error is likely to occur. In this paper [55], talk about dividing

the various vast number of methods, to de-duplicate data files, into two broad classes.

One class consists of stochastic methods and the other non-stochastic methods from

the machine learning context. In this paper, the authors outline the capabilities of the

RecordLinkage package such as using blocking (reducing data pairs by joining two

records that coincide on a specified field i.e. the first name or the last name etc.) or using

28

phonetic functions and string comparisons (through implementing the Jaro-Winkler or

Levenshtein distance for string similarity etc).

This research also discusses machine learning methods with the premise that record

linkage can be understood as a classification problem. Therefore, machine learning

procedures such as clustering methods, decision trees or support vector machines

are usable for linking personal data. The records linkage package implements both

unsupervised (k-means and bagged clustering) and supervised classification for record

matching. Even though the unsupervised method is attractive as they do not require

training data, the authors note that the quality of the resulting classification can vary

significantly for different data sets and might yield unsatisfactory results.

As this tool was developed mainly for empirical evaluation of record linkage methods,

it gave us some background on existing procedures that have been implemented to solve

the identity-linking problem. However, similar to the other studies, these techniques

heavily rely on the visible user attributes from their profiles, which may be insufficient

for our data.

2.5 Research Gap

Even with a plethora of research that has been done in this field, there are a number of

gaps that need to be bridged. In these section, we iterate over what these shortcomings

are and propose approaches that address these and that could be combined with other,

more specialized approaches, especially for resolving homonyms more precisely. For

example, the productivity outlier detection and reallocation approach [82] detects when

the number of commits or changes is highly unusual and distributes the authorship

to other committers. Such an approach would help to both identify homonyms and

redistribute authorship to each developer.

Most of the approach used in previous research can only link users who provide an

explicit bridge to other accounts or with common attributes such as user name or email.

This is inadequate when we want to match users who may not have common attributes

across accounts. The ID of an user is based on the local .git configuration file of the device

29

(computer, laptop, server etc.) from which the user commits2. Commits may also be not

linked to any user in case of the following reasons:

1. Unrecognized author (with email address) - When the user’s address has not been

added to the account settings. The user’s email address can be added to GitHub’s

email settings, however the user may choose different email addresses from work

or home.

2. Unrecognized author (no email address) - If the user used a generic email address

that can’t be added to the user’s email settings. The commit email address can be

set in Git, to link your future commits, however, old commits will not be linked.

3. Invalid email - This means that the email address in the user’s local Git configura-

tion settings is either blank or not formatted as an email address. Again, the email

can be updated in Git Configuration but old commits will not be linked.

When the common source of developer identity data i.e. the string representing a

developer in code commits of version control systems is missing, linking users even

within one platform, such as Git, becomes a tedious and non-trivial problem which

cannot be solved using “surface” attributes. While significant amount of work has been

done addressing what we call the Synonym error, when multiple strings represent the same

developer, we found no studies trying to address the Homonym errors, where multiple

developers are identified by the same author string in a commit. In this work, we aim

to outline better solutions to correcting Synonym errors that yield better accuracy as well

as solutions to Homonym errors.

Past record-matching or disambiguation techniques done on patent or citation records

involved supervised learning, and have proven to be more accurate than manually

derived rule and threshold based approaches. However, supervised approaches require a

large number of ‘good’ training observations that can be used by the learner to derive the

best disambiguation function. As discussed in Section in 2.3.3, disambiguation done on

the USPTO record successfully used supervised learning owing to over 150,000 manually

2https://help.github.com/articles/why-are-my-commits-linked-to-the-wrong-user/

30

labeled records as used as the training data. This approach is hard to be replicated on

operational data provided that it is expensive to generate such carefully-crafted large

data sets for training.

To overcome this, we adapt Active Learning discussed in 2.4.2 . We select a minuscule

subset of the entire data, create all pairs between them and manually label them

as matches or non-matches. These are used to build preliminary classifiers. The

disagreements in the prediction of these classifiers are selected to be carefully hand-

labeled again to be used as the training data for the actual classifier. This ensures that

data that is most likely to be confused by the learner are captured in the training data

making the learning process more effective despite reducing manual effort.

The need for correct identification of individuals in any network remains undisputed

as it plays a critical role in the analysis of these networks that can yield dependable

results. Therefore, a complete systematic approach to solving this problem is important

in spurring research and help in commerce. In this work, we also aim to fill in a void for

a much needed framework that can be customized and extended to solve this problem.

31

Chapter 3

Data Collection and Classification

3.1 Data Collection and Storage

Mining Git repositories is a complex task and this is made even more difficult when

it is done on a large scale [24]. As millions of projects are developed on open-source

collaborative platforms like GitHub, Bitbucket, GitLab, SourceForge etc, data retrieval,

organization and storage requires massive undertaking. This chapter dives into the

details of the data retrieval and storage process for this research. We collected data for this

work from various platforms between 2005 and 2018, over a span of 13 years. In this work,

we particularly focus on projects hosted on GitHub, which is a web-based Git repository

hosting service. It offers both plans for private repositories and free accounts, which are

usually used to host open-source software projects. As of December 2018, GitHub has

more than 28 million users and 62 million repositories which includes 28 million public

repositories, making it the largest host of source code in the world. This also gives us

access to a the largest collection of developer IDs in Open Source Projects. The following

sections describe how data is stored in Git, the process of discovering projects, retrieving

information, storing and cleaning the data. More information and detailed explanation

of data retrieval and storage can be found in [39].

32

3.1.1 Git Overview

Git is a free and open source distributed version control system, designed by Linus Tor-

valds in 2005, to track source code changes during the process of software development.

It can handle projects of any size with speed and efficiency1.

How Git Stores Data

Git is a content-addressable file-system. This means that Git has a key-value data store

that allows the user to insert any content into a Git repository and provides the user with

a unique key to later retrieve that data. This unique key is a 40 character checksum hash

- the SHA-1 hash2 (Secure Hash Algorithm 1), calculated based on the content of that

object. Git contains three types of objects: blobs, commits and trees.

• Blob object: A Git blob (Binary Large Object) is the simplest object, which is often a

file, but it can sometimes be a symlink as well. It is the object type used to store the

contents of each file in a repository (does not store the filename). The file’s SHA-1

hash is computed and stored in the blob object. These endpoints allows the user to

read and write blob objects to the user’s Git database on GitHub.

• Tree object: Directories are represented by a tree object. They refer to blobs that have

the contents of files (filename, access mode, etc) and to other trees representing sub-

directories. A single tree object contains one or more entries, each of which is a

SHA-1 hash of a blob or subtree with its associated mode, type and filename.

• Commit object: A commit object specifies the top-level tree for the snapshot of the

project at that point; the author/committer information(which uses the name and

email configuration settings and a timestamp), a blank line and then the commit

message. If there are more than one commit, it means that the commit is a merge. If

there are no commits it means that it is an initial commit [69].

Figure 3.1 shows the various Git objects and how they are related.

1https://git-scm.com/
2http://eagain.net/articles/git-for-computer-scientists/

33

Figure 3.1: Structures within Git: The Blob, Tree and Commit

Taken from ”Git for Computer Scientists” and shows the structures within Git.

3.1.2 Data Collection

The Data Collection Process can be decomposed into 3 broad steps [39]:

1. Data Discovery: We start off the data collection process by discovering forges host-

ing version control systems and open source projects. For example, SourceForge,

Savannah supports CVS, SVN and Git and have a large collection of open source

projects. Next, we discover a list of large and well- known projects like Linux

kernel, Gnome, KDE and Mozilla. These projects also have mini-forges involving

projects related to the main project. Open-source forges like Bitbucket and GitHub

usually provide rest API to discover the list of projects. Project discovery can be

done through:

• Using Search API: APIs are specific to each forge and come with various

caveats. Most APIs tend to limit discovery for user or IP address.

34

• Using Search Engine: Search engines, such as Google or Bing, can supplement

the discovery of open source project repositories on collaborative forges, when

the forge does not provide an API or it is non-functional. It should be noted

that this process is not thorough in discovery.

• Keyword search: Some forges provide keyword based search of public repos-

itories, which is a complimentary approach when a forge does not provide

APIs for the enumeration of repositories and the results returned from search

engines are lacking.

The discovery phase outputs a list of git, mercurial, svn URLs. The list is subdivided

so that each sub-list contains URLs that would result in approximately 2TB of data

when downloaded. We only select the URLs that have been updated or have not

been previously selected.

2. Data Retrieval: Data retrieval can be done in parallel on a large number of servers

with substantial network bandwidth and storage. All the latest version control

systems (Git, Mercurial, Bazaar) have clone functionality to create a replica of the

repository. With over 62 million repositories, data retrieval is a massive undertaking

- a single thread shell process on a typical server CPU with no limitations on

network bandwidth can clone 20,000 to 50,000 repositories in 24 hours (this drastic

variation is dependent upon the size of the repository or forge). Cloning is done on

a Newton cluster for 2TB chunks at a time. These chunks are then archived using

modified pax files (as tar and cpio have maximum file size restrictions). The pax

files are currently stored offline on 4/8/10TB disks.

3. Data Extraction: Code changes are organized into commits that can change one or

more source code files within a project. Once a repository is cloned, the Git objects

(discussed in Section 3.1.1) are extracted from each repository and store these in a

single database. The collected data is tabularized and with each row including an

ID, the commit hash, the committer name and email, the timestamp of commit, file

and source. This process of extraction is performed on a cluster (36 nodes, 16 cores,

35

256 GB memory) and takes approximately two hours for a single node to process

50,000 repositories.

4. Data Storage: The whole collection of Git repositories may replicate the same Git

object hundreds of times and therefore can occupy vast amount of storage space.

This redundancy is not only problematic space-wise, but also makes performing

analytics on this data an even more difficult and unnecessarily computationally

expensive task. To avoid such redundancies, all Git objects are stored in a single

database. The details of data storage are explained in [39] with more details.

Figure 3.2 shows the various stages of data - from discovery to extraction and

organization. Maps of relations were created and stored for fast access of relevant data.

Figure 3.3 shows the fields that were explicitly recorded for this research - the name

comprising of the first and last name, an email address, the time in which the commit

was made, a commit hash which is unique to each commit, a set of files that was changed

in the commit, a set of projects that was changed in the commit and finally the commit

message which is a text explaining the changes made in the commit.

Figure 3.2: Data flow: Data discovery and organization
Taken from “World of Code: An Infrastructure for Mining the Universe of Open Source VCS

Data” (2019). Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, Audris Mockus. [39]

36

Figure 3.3: Extracted data from a commit

3.2 Classification of Errors

In order to improve existing identity resolution approaches or create new ones, we need

a clear understanding of the nature of the errors associated with the records related

to identities. Here, we look at some of the types of errors that have been previously

defined for record matching and outline how errors in developer identities derived from

operational data varies from the predefined errors.

3.2.1 Errors Classified in Existing Literature

Studies done on census data show that common errors may be typographical, a variation

in the phonetic spelling of a name, or the reversal of the first and last names, among

others. In certain cases, correctly spelled identical names may belong to different persons,

for example, ‘John Smith’. Different domains have to their disposal a range of information

that can act as quasi-identifiers such as date of birth or addresses in the case of census

data. However, date of births may also be inadequate to uniquely identify a person since

there can be multiple “John Smith’s” with the same birth date.

A study on the personal name comparison [12], discusses the characteristics of names

and their variations. Even names within the English speaking world can have different

forms for various reasons. People change their names over time (the most common

37

case is when getting married). In many cases nicknames are often used or are given

to people - these can be the short forms of their names such as ‘Liz’ for ‘Elizabeth’, ‘Bob’

for ‘Robert’ etc. Other studies [29] have identified errors as a result of transliteration,

punctuation, irrelevant information incorporated in names, etc. Errors on general (not

just for names) have been classified in [30] as (1) Typographical errors where a person

makes a typing error but is aware of the actual word (example ‘Sydnye’ instead of

‘Sydney’), (2) Cognitive errors that arise from misconceptions or lack of knowledge

(example, ‘Sydny’ instead of ‘Sydney’) and finally (3) Phonetic errors that comes from

spelling the actual word based on how it sounds (example, ‘Sidny’ instead of ’Sydney’).

An error can arise because of one of the above issues or a combination of them and

can alter names significantly. This makes name matching based on string similarity a

daunting task. Therefore, various matching techniques are employed to resolve these

issues - phonetic encoding i.e. soundex algorithms [26, 31] or pattern matching of strings

i.e. Levenshtein or Edit distance [46], Jaro-Winkler distance [81] or a combination of both

phonetic and pattern matching.

3.2.2 Errors in Developer Identities

Similar to identity errors in census and other data, developer identities have spelling

errors, transliteration, variation in order of the names etc. Here, we define a developer

identity string as a combination of the developer’s name and email address Name

<email>, for example John Smith <john.smith@domain.com>. This is the same as

how the developer information is stored in a Git commit. The name and email of the

developer is stored in a Git configuration file of the specific device a developer is using

at the moment. Once Git commit is recorded, it is immutable like other Git objects, and

cannot be changed. Once a developer pushes their commits from the local to remote

repository, that author information remains. A developer may have multiple laptops,

workstations, and work on various servers, and it is possible and, in fact, likely, that on

at least one of these computers the Git configuration file has a different spelling of their

name or email or at times both. Furthermore, complications are, at times, introduced by

38

the use of tools where tools allow for default placeholders to remain at the time of commit,

some Git clients may provide a default value for a developer as well, for example, the

host name. As a result, the same developer can end up being represented as multiple

identities associated with commits. Sometimes developers do not want their identities or

their email address to be seen, resulting in intentionally anonymous name, such as, “John

Doe” or email such as “anonymous@localhost”. Similar to other scenarios, developers

may change their name over time, for example, after marriage, creating ambiguity.

In order to design solutions to correct these errors, we need an procedural examination

of the errors. First we inspect randomly selected developer IDs to understand the nature

of these errors and why they occur. We then inspect the most common names or user

names, keeping note of anything unusual found in names and emails. We also came

across many additional types of errors when we manually labeled our data in the active

learning phase as we discuss in Chapter 4. The resulting anomalies from developer

identities were grouped using the open-card-sort method 3 and resulted in two primary

categories: Synonym and Homonym errors.

Synonyms

Synonym errors are introduced through when an individual uses IDs that vary through

spelling mistakes, capitalization (or absence) of names, introduction of a middle name,

last name change due to marriage, abbreviation of a name, adding extra space(s), adding

period, reversal of first and last names, transliteration of non-ascii characters, irrelevant

information incorporated into names. These errors can arise from one or a combination of

the above cases and are introduced when a person uses different strings for names, user-

names or email addresses. For example, “utsav dusad<utsavdusad@gmail.com>’ and

“ut-savdusad<utsavdusad@gmail.com>” are identified as synonyms. Spelling mistakes

such as “Paul Luse<paul.e.luse@intel.com>” and “paul luse<paul.e.luse@itnel.com>”

are also classified as Synonyms, as “itnel” is likely to be a misspelling of “intel”. Synonym

3Card sorting is creating a set of ‘cards’ and asking reviewers to sort them in categories that makes sense
to them. Open card sort allows participants to create and label their own categories.

39

IDs typically contain components that carry some information about the identity of the

individual.

Homonyms

Homonym errors are introduced when an individual provides or uses IDs that cannot be

tied to a single individual. For example, these may be identifications related to generic

roles (“Admin”, “root”, “dev’), names of projects (“Jenkins”, “Travis CI”, “Ubuntu’,

“Openstack”, “Vagrant”), names of organizations (“cisco’, “cmart”, “walmart”). The IDs

may contain components that seeks to preserve anonymity or are simply placeholders

injected by tools (“nobody”, “your name”, “test”, “anonymous”, “me”, “JohnDoe”).

Other examples include miscellaneous terms such as “Bot”, “EC2Users”, “Server” etc.

It may also occur when multiple individuals use a single generic ID, for example, the

ID “saper<saper@saper.info>” could be used by multiple individuals in the organi-

zation. For instance “MarcinCieslak<saper@saper.info>’ is an individual who may

have committed under the above organizational alias. Missing data is also categorized

under Homonym errors – such as when an individual leaves the name or email field

empty, for example, “chrisw<unknown>”. Contrary to Synonym IDs, Homonym IDs do

not reflect the identity of a single individual and, therefore, is harder to associate to an

individual. Figure 3.4 illustrates a summary of the two broad categories of errors and

their subcategories along with some examples.

The ten most frequent components (full name, first name, last name, user name and

email) of developer identity is shown in Table 3.1. A large number of components such as

‘unknown’, ‘nobody, ‘root, ‘Administrator are a result of Homonym errors. It is important

to understand the difference in nature of these two kinds of errors because they require

distinctly different approach in resolution.

40

Figure 3.4: Types of errors in developer identities discovered through open card sort

Table 3.1: Data Overview: The 10 most frequent components of developer IDs. A large
number of the most frequent components are a result of Homonym errors.

Name Count First Name Count Last Name Count Email Count User Name Count

unknown 140859 unknown 140875 unknown 140865 <blank> 16752 root 72655
root 66905 root 66995 root 67004 none@none 9576 nobody 35574
nobody 35141 David 45091 nobody 35141 devnull@localhost 8108 github 19778
Ubuntu 18431 Michael 40199 Ubuntu 18560 student@epicodus.com 5914 ubuntu 18683
(no author) 6934 nobody 35142 Lee 10826 unknown 3518 info 18634
nodemcu-custom-build 6073 Daniel 34889 Wang 10641 you@example.com 2596 <blank> 17826
Alex 5602 Chris 29167 Chen 9792 anybody@emacswiki.org 2518 me 14312
System Administrator 4216 Alex 28410 Smith 9722 = 1371 admin 12612
Administrator 4198 Andrew 26016 Administrator 8668 Unknown 1245 mail 11253
<blank> 4185 John 25882 User 8622 noreply 913 none 11004

3.3 Data Overview

The rest of the work deals with the commit messages extracted from Git over the span

of roughly 13 years (2005 to 2018). We were left with approximately 865 Million commits

after the data collection process. The number of unique projects discovered and extracted

was roughly 25 Million (25,343,808) from github.com and bitbucket.org. The unique

number of developer IDs (combination of names and emails) found was about 23 Million.

41

To provide a better understanding of the data set, we generate a number of statistics.

We found that 44.92% IDs have less than 3 commits and 7.3% IDs have more than 100

commits. 62.8% of the names of developers are single words and 36.7% of the developer

names are 2-4 words. The average length of commit messages is 12 words with 75%

of the messages being less than or equal to 9 words. The average number of unique

words per commit message is also 9 words. However, not all of these messages are

useful in our context as there may be duplicate template messages. This data set also

includes developers that have committed an insufficient number of times for the Doc2Vec

algorithm to work effectively. Therefore, we filter this data to exclude commits and

developer IDs that may adversely affect the performance of the learning algorithm and

with the purpose of getting a cleaner and usable set.

The next chapter outlines the methods for correcting the errors as well as evaluating

the performance of the proposed method by comparing it to a commercial effort for

disambiguating author identities as well as a recent research method.

42

Chapter 4

Methods for Data Correction

4.1 Overview

In this chapter, we talk about methods to correct Synonym (disambiguate) and Homonym

(de-anonymize) errors in operational data. We use some of the traditional record

matching techniques for Synonym resolution as we have the IDs1 of individuals that can be

potentially linked. However, the case for Homonym errors is quite different as, it includes

missing data and multiple individuals using a single ID and almost always carries no

information about the identity of the person. Therefore, the exogenous methods defined

in [29] are inadequate for de-anonymization. We use similar approaches - behavioural

fingerprint - to address each of these problems and design some experiments using

supervised learning to prototype our method. The methods outlined in this chapter are

used to design the proposed framework ALFAA.

4.2 Disambiguation: Correcting Synonyms

As defined in Chapter 3, Synonyms are created from the variations in developer IDs

due to misspellings, case differences, middle or last name variations, transliteration,

abbreviations and differences in characters such as space, period etc. or a combination

1We refer to IDs as a representation (a string of characters) of an individual, such as a developer, on a
database

43

of these. This results in a single developer being represented by multiple aliases

IDs. To resolve Synonym errors, we assume that each developer we consider for the

disambiguation process will have at least one ID that is uniquely representative of that

individual. These IDs may contain one or multiple components including first name, last

name (one or both) and email address (user name and some domain). We describe the

workflow of ALFAA using our disambiguation algorithm in the following subsections

through outlining the process we implemented on developers of the OpenStack projects

hosted publicly on GitHub.

4.2.1 Disambiguating OpenStack Developers

As the full set of authors extracted is too large to experiment with and validate, we set out

to find a subset of this data that includes a sizable set of projects. We select the developer

IDs from the OpenStack ecosystem2 to serve as the data set to build our prototype,

conduct experiments, and perform evaluation. This set of open-source projects fits our

requirement in prototyping based on ALFAA for the following reasons.

1. The data set has an adequate number of developers and projects to design and test

our proposed methods.

2. The number of developers in this data set can be processed in a reasonable amount

of time using a reasonable amount of computational resource.

3. Disambiguation has been implemented by a commercial firm, Bitergia3, for the

OpenStack foundation, and therefore, this data set is a suitable candidate to evaluate

our research method by comparing it against existing state-of-the-art industry

standards.

We discovered 1,294 projects that are currently hosted on GitHub and have 16,007 dis-

tinct developer IDs associated with the commits in the OpenStack ecosystem. ALFAA’s
2The OpenStack project is a global collaboration of developers and cloud computing technologists

producing the open standard cloud computing platform for both public and private clouds. It lets users
deploy virtual machines and can handle different tasks for managing a cloud environment on the fly -
https://www.openstack.org, https://opensource.com/resources/what-is-openstack

3 Bitergia mapped multiple developer IDs to an unique identifier representing a single developer as well
as mapping contributors to their affiliated companies

44

disambiguation process, which is reliant upon supervised classification, is done in three

phases as shown in Figure 4.1.

1. Define predictors - Define the features that will be used by a supervised classifier

for classification. In this case, we compute string similarity, frequency similarity and

behavioral similarity.

2. Active learning - Find a small but effective set to be used as training data for the

classifier. This is done in order to reduce manual effort in labeling, yet find instances

for the training set that encapsulate the subtleties of the data critical to the training

of the classifier. In this case, we use a preliminary classifier to extract a small set from

the large collection of data and manually generate labels for final classification.

3. Classification and Clustering - Use the defined features and manually labeled

outcome as training data to perform supervised learning and classification on pairs

of IDs. Compute transitive closure on pairs and create clusters representing each

real developer and, finally, manually dis-aggregate incorrectly clustered IDs.

Figure 4.1: Flowchart of the three phases of the disambiguation process of ALFAA:
defining predictors, active learning and classification.

45

To begin, we follow traditional record linkage methodology and identity linking in

software [5] as discussed in details in Chapter 2. We first split the information in the

developer ID string into its components and define similarity metrics for all developer

pairs. We use the string similarity between components as features in our disambiguation

process. We also incorporate the term frequency measure for each of the attributes in a

pair, to emphasize more on the less common components of IDs. We introduce behavioral

fingerprints to be used as additional features for disambiguation besides string similarity.

Finally, these features are used as input to a supervised learning method to predict

whether each developer ID pair represents the same individual. The details of this process

are outlined in the following subsections.

4.2.2 Phase 1: Define Predictors

As shown in Figure 4.1, Phase 1 consists of defining predictors for comparison between

pairs of components of developer IDs. We first compute string similarity and then define

and compute the behavioral fingerprint predictors.

String Similarity Measures

As discussed in Chapter 3, each developer ID consists of the developer’s name and

email and is stored in the following format - “name <email>”, e.g. “Example User

<username@example.com>”. In certain cases, one or more of these fields may be

empty, as defined in Homonym errors. We break down each ID and define the following

components for each user.

1. Developer ID: String as extracted from source as shown in the example above

2. Name: String up to the space before the first “<”

3. Email: String within the angle (“< >”) brackets

4. First name: String up to the first delimiting character i.e. space, “+”, “-”, “ ”, “,”, “.”

and camel case encountered in the name field

46

5. Last name: String after the last delimiting character i.e. space, “+”, “-”, “ ”, “,”, “.”

and camel case encountered in the name field

6. User name: String up to the “@” character in the email field

In the case where there is a string without any delimiting character in the name

field, the first name and last name are replicated. For example, “bharaththiruveedula

<bharath ves@hotmail.com>” would have “bharaththiruveedula” replicated in the name

component, the first name component and the last name component. Additionally, a field

called “inverse first name” was introduced whereby the first name component of one

ID in the pair was compared to the last name component of the other ID in the pair. We

introduce this field to make sure that ALFAA is able to capture the cases where developers

reverse the order of their first and last names.

The next step is to calculate the similarity (or difference) between each pair of

components extracted from the developer IDs. Studies in the past have used various

measures to compare strings. The following are some methods to compute similarity or

distance between sequences.

• Levenshtein distance or Edit distance is a metric proposed by Vladimir Lev-

enshtein in 1965 [35]. It is defined as the smallest number of single-character

operations (insertions, deletions and substitutions) required to change a string to

another string.

• Damerau-Levenshtein Distance is an extension of the Levenshtein distance by

including transpositions among its operations in addition to the three single-

character edit operations (insertions, deletions and substitutions). According to

Damerau [15], these four operations include 80% of human spelling errors.

• Jaro Similarity defined by Matthew A. Jaro in 1989 [28] is calculated using the

number of common characters (that are within half the length of the longer strings)

47

and the number of transpositions. It is defined as

simj =


0, if m = 0
1
3

(
m
|s1|

+
m
|s2|

+
m− t

m

)
otherwise

where |si| is the length of string si, m is the number of matching characters and t is

half the number of transpositions.

• Jaro-Winkler Similarity is a variant of the Jaro algorithm proposed in 1990 by

William E. Winkler . It improves the Jaro algorithm by applying ideas based on

studies [50] that found fewer errors typically occur at the beginning of names.

The Jaro-Winkler similarity modified the Jaro similarity so that differences at the

beginning of the string has more significance than differences at the end. It is

defined as

simw = simj + lp(1− simj)

where l is the length of a common prefix at the start of the string up to a maximum of

four characters and p (<= 0.25) is a scaling factor for how much the score is adjusted

upwards for having common prefixes.

In the exploratory phase of implementation, both Levenshtein and Jaro-Winkler

similarity was calculated for each author pair as seen in previous studies [5, 29],

which are standard measures for string similarity. To do this, we used an existing

implementation of the measures in the RecordLinkage [55] package in R, namely the

levenshteinSim() and jarowinkler() functions were used. In this phase, we found that

the Jaro-Winkler similarity produces better scores which are more reflective of similarity

between developer strings than the Levenshtein score (we manually scanned though a

list of IDs and scores computed). We, therefore, decide to use this measure in the to create

similarity scores between components of author IDs for our study.

48

Adjustment Factors for String Frequency

Greater confidence in matching can be achieved if two IDs share components that are

uncommon compared to sharing components that are common such as “John”. In

addition, components that do not carry any information about authorship of commits and

are used by numerous individuals such as “nobody” or “root’ (as a result of homonym

errors) should also be disregarded from consideration in the similarity detection process.

This extra information, if properly encoded, could be exploited by a machine learning

algorithm making disambiguation decisions. We, therefore, incorporate frequency

adjustment for ID components in ALFAA. To do this, we count the number of occurrences

of the attributes for each author as defined in Section 4.2.2 i.e. name, first name, last name,

user name and email for our data set. The similarity between developer pairs, developers

a1 and a2, was calculated for each of these attributes as follows:

fsim =


log10

1
fa1 × fa2

if a1 and a2 are non-fictitious

−10 otherwise

where fa1 and fa2 are the frequency of names of authors a1 and a2 respectively. To remove

the components that carry no information about the authorship, we do the following: A

list for each component of a developer ID - names, first names, last names and user names

and emails that had 200 most frequent strings in each category was generated from the

full data set of authors. The first 10 most frequent strings for each component found here

is shown in Table 3.1). The components that were common names but are non-Homonym

errors (in other words non-fictitious), i.e. names that could truly belong to a person such

as “Lee”, “Chen”, “Chris”, “Daniel” etc., were manually removed from each component

list. The string frequency similarity of a pair of name or first name or last name or user

name was set to -10 if at least one element of the pair belongs to a string identified as

fictitious. This was done in order to let the learning algorithm recognize the difference

between the highly frequent strings and strings that are not useful as author identifiers.

We chose -10 as threshold as we found that the value for other highly frequent terms were

significantly greater.

49

Behavioral Fingerprints

In addition to the spelling of the name and emails, authors of commits might leave their

signatures in the way they compose commit messages (in the style they compose text),

the files they commonly modify, or the time zones they work in. Fingerprints can be

defined as something that uniquely identifies an individual such as a trait, or a trace or

characteristic and therefore, these signatures are similar to the concept of fingerprints

when combined. To encode these fingerprints or behavioral attributes of developers into

ALFAA, we designed three similarity measures as follows:

• Similarity based on files modified — If two developer IDs modify similar sets of

files, they are more likely to represent the same person.

• Similarity based on time zone — If two developer IDs commit from the same time

zone, it is an indication of geographic proximity, and therefore, there is a higher

likelihood that the IDs belong to the same developer.

• Similarity based on commit message text — Two developer IDs sharing writing style

and vocabulary increase chances that they represent the same entity.

We operationalize the above behavioral fingerprints as outlined below.

1. Files modified: The files that are modified during a commit is extracted from each

commit. From this, a map of file to developers can be created, whereby we have

a list of developers for each file that was modified. Each modified file is inversely

weighted using the number of distinct developers who have modified it (similar

to down-weighting common names as evidence of identity). For example, if a file

was modified by 5 unique developer IDs, then its weight would be 0.2. This is

done with the same reasoning in mind as the concept of Term Frequency - Inverse

Document Frequency (TF-IDF) [38, 59] where the weight of the files modified by

many developers is diminished and increases the weight of files that are modified

by a few as files modified by many developers do not contribute to help in the

identification of modifiers. The weights of files is used to compute the pairwise

50

similarity between developer IDs. The similarity score is computed by adding the

weights of the files, Wf, modified by both developers in a pair. In other words, it

is the intersection between the set of files modified by developer ID a1 and set of

files modified by developer ID a2. A similar metric was found to work well for

finding instances of succession (when one developer takes over the work of another

developer) [43]. The weight of a file is defined as follows where A f is a set of

developers who have modified file f and fa1 and fa2 are the sets of files modified

by each developer.

W f =
1

A f
, where A f = |a f

1 , ..., a f
n|

Sima1a2 =
na1a2

∑
i=1

W fi , where na1a2 = | fa1 ∩ fa2 |

2. Time zone: We discovered 300 distinct time zone strings (due to misspellings) from

the commits and created a “developer by time zone” matrix that had the count of

commits by an author at a given time-zone i.e. each row of this matrix is an array of

the number of commits made by a given developer, each column of the matrix is the

number of commits made by all developers in that time-zone. All time-zones that

had less than 2 entries (developers) were eliminated from further study. Each author

was therefore assigned a normalized time-zone vector (with 139 distinct time zones)

that represents the pattern of his/her commits. Similar to the previous metric, we

weighted each time zone by the inverse number of authors who committed at least

once in that time-zone. We multiply each author’s time zone vector by the weight of

the time zone. We define weight of each time-zone WT and developer ai’s time-zone

vector (TZV) as:

WT =
1

AT
where AT = |at

1, ..., at
n|

(TZVt
ai

) =

(
Ct

ai

AT

)

51

Here, (Ct
ai

) is the vector representing the commits of an author ai in the different

time-zones t and (At) is the vector representing the number of developers in

different time-zones. The pairwise similarity metric between developer a1 and

developer a2 is calculated using the cosine similarity between two developer

vectors:

tzda1a2 = cos sim(TZVa1 , TZVa2)

where TZVa1 and TZVa2 are the authors’ respective vectors.

3. Text similarity: Previous work has been done by [45] to identify anonymous

authors via linguistic stylometry on social network data, whereby the “the writing

style of an anonymous author is compared against a corpus of texts of known

authorship”. This study, which yielded reasonable accuracy on large-scale data sets,

indicates that individuals have their own “style” of writing i.e. in the vocabulary

they use and in the way they compose text. Therefore, we consider an individual’s

written text as one of the markers of his (or her) identity.

As the third fingerprint to be used as a predictor in ALFAA, we consider the short

messages that developers have to write while committing their code to a version

control system. Figure 4.2 is an example of a snippet of commit messages and the

identity of the developer who wrote it. These messages are typically short (mean

commit length for our data set: 12 words with 9 unique words on the average).

To compare the styles of written text between developers, we need to be able to

embed text written by each developer. As these messages are different in nature

and size in comparison to messages on social networks, we conduct a preliminary

study to test the viability of using commit messages as a fingerprint. The details

of this study is described in Appendix A. As we received a positive outcome from

this study, we continue to use the Gensim’s implementation4 of the Doc2Vec [34]

algorithm to generate vectors embedding messages written by each developer ID.

4https://radimrehurek.com/gensim/index.html

52

All commit messages for each developer ID that contributed at least once to one

of the OpenStack projects were gathered from the collection described above and

a Doc2Vec model was built. This generated 200 dimensional vectors for each of

the 16,007 developer in the OpenStack data. To compare the vectors for similarity,

cosine similarity5 between these vectors was calculated between each pair of vectors

representing IDs of developer a1 and developer a2.

4. Gender Similarity: Gender is sometimes used as a metric in record linkage

literature [71]. We obtain the gender of the users from the commit blob, as one

of the following - Male, Female or Undetermined. The similarity between author

pairs are determined as follows:

gsa1a2 =


0.5, if Ga1 or Ga2 = Undetermined

1, if Ga1 = Ga2

0, if Ga1 6= Ga2

where Gi represents the gender of author i. However, we dropped this from our

implementation as our data had too many “undetermined” instances for it to be

useful to the learner.

Figure 4.2: Example of data used to build Doc2Vec models - a developer (ID) as shown
by the first two semi-colon separated fields, and some of the commit messages composed
by the developer

5Cosine similarity is ideal for our data set (over euclidean or similar distances) as each vector in our data
set is formed from varying lengths of text and therefore occurrences of a word in text t1 maybe more than
in text t2 simply because t1 is longer and this will therefore reflect in the vector. Cosine similarity corrects
for this.

53

However, there are several potential drawbacks of these distance metrics. For

example, high similarity scores for files modified between two IDs may mean that two

different individuals are working on the same project thereby editing the same files at

alternating times. High text similarity may mean that the developers are working on

the same project and therefore may be using similar vocabulary in the commit messages.

Fortunately, our approach leaves the decision to include a specific feature to a machine

learning algorithm. As we show later in the results, the behavioral similarity measures,

in particular, text similarity, are important predictors for disambiguation.

4.2.3 Phase 2: Active Learning

Supervised classification requires ground truth data and which may require manual

classification. Manual classification is time consuming, error-prone and may be based

upon a human’s subjective decision. The nature of our data makes it extremely hard

to obtain absolute ground truth and, therefore, manual classification based on gathered

information is required to create a training set for supervised classification. To do this, we

used two raters (as discussed in details later in this chapter). We found some differences

between two raters (provided with same instructions) and further errors discovered in

the Active Learning phase where the learner indicated manual classification error that was

again verified by both raters. Since manual classification of all possible pairs is impossible

(assuming 6 pairs can be labeled in one minute, it would require roughly 100 people

each working approximately 7000 hours to hand label the existing OpenStack collection

of over 256 million pairs), it is necessary to identify a small subset of instances so that

the classifier would produce accurate results on the remainder of the data. Randomly

sampling pairs of IDs to compare for manual labeling is not likely to work either: in

our case, the chance that 2000 randomly selected pairs from 256M author pairs would

belong to the same person is close to zero (assuming, on average, two developer IDs

per person, 2000 pairs would represent 10−5 fraction of the entire sample). Therefore,

we need a solution that minimizes manual classification effort, which can be achieved

through Active Learning [54]. In a nutshell,it is a process where variations in predictions

54

of a preliminary classifier fitted on different subsets of the classified data are manually

resolved. It helps ensure that the pairs that are most likely to be confused by the

learner are added to the training data. The expensive manually classified training data,

therefore, is only collected where the initial classifier is not consistent. As found in

other work [54], we also discovered that this approach achieves very high accuracy with

relatively few manually classified pairs. The following subsection outlines the design and

implementation details of the active learner used in ALFAA.

Active Learning Design Details

In order to seed the training set for the active learning procedure, we have to resolve the

problem of how to select a set of initial pairs for manual labeling. If we randomly select

authors, the fraction of matches obtained will be very low as described above. To increase

the proportion of matches in this seed data, we identify non-homonym developer IDs

where there were at least two distinct emails for the same name (first and last) or where

there were at least two distinct names for the same email. We then sample 2,825 pairs

from this set, so that for each pair either name or email is the same. These 2,825 pairs

were manually labeled as a match (1) or a non-match (0). We found 2,016 matches and

809 non-matches in this set. We also calculated the string similarity and behavioural

similarity for each pair in this set. We then randomly partitioned this data into ten parts

and fit three classifiers on nine parts of the data (each of these 9 parts had overlapping and

different observations). A typical active learning approach would then use these classifiers

to predict matches on the data outside these pairs. However, since manual labels may be

prone to errors, we add an additional step of using these three models to predict matches

on the data that has already been manually labeled. Each classifier was used to predict

outcomes for the all 2,825 pairs. As expected, the three classifiers trained on different

training subsets yielded slightly different predictions. There were 2,345 pairs where all

three learners did not agree (i.e at least one learner had a prediction different from the

other two). This is the confusion region of the learner, as shown in Table 4.1. Table 4.2

shows an example of the correct predictions made by the learners where the manual labels

55

Table 4.1: Disagreement between learners – Instances that generate the confusion region
in the preliminary classifier

Learner1 Learner2 Learner3

Link Link No-Link
Link No-Link Link
No-Link Link Link
No-Link No-Link Link
No-Link Link No-Link
Link No-Link No-Link

Table 4.2: Manual labeling errors in training data identified by the preliminary classifier
in the active learning phase

Developer ID1 Developer ID2 is match P1

scottda <scott.dangelo@hpe.com> scott-dangelo <scott.dangelo@hp.com> 0 L
scott-dangelo <scott.dangelo@hp.com> scottda <scott.dangelo@hpe.com> 0 L

were incorrectly assigned. The column “is match” shows the manual labels and ‘P1’ is

the outcome of the classifier. We made appropriate correction in the manually classified

data and the resulting set was used as the training data for the next iteration of the active

learner.

We used all 16 attributes (name, email, first name, last name, user name, inverse

first name, name frequency, email frequency, last name frequency, first name frequency,

user name frequency, files modified, time-zone, and text similarity) in the initial Random

Forest model. We obtained the importance of each predictor in this initial model and

dropped the attributes with low importance from all subsequent models.

4.2.4 Phase 3: Classification

In the third phase of ALFAA which is the final classification phase, we train a classifier

using the training data gathered from the active learner and do a 10-fold cross-validation.

The developer IDs found in the 2,345 pairs that were manually classified in the active

learning phase, were used to generate all ID pairs. This led to the creation of 5,499,025

pairs out of which 5,515 pairs were marked as matches (1) and the rest are non-matches

56

(0). Following existing record matching literature [], we build a Random Forest model

using observations that meet the following criteria: string similarity of at least one

component derived from the developer IDs is greater than 0.8, the file similarity between

the pair is greater than 0, time-zone similarity between the pair is greater than 0.9, and

text similarity between the pair is greater than 0. This simple heuristic was introduced

to reduce computation time by dropping instances that are unlikely to contribute to

learning. Using this model, we perform a 10-fold cross validation, the confusion matrix

generated from this is shown in Table 4.3. It is evident that false positive and false

negative errors generated by this model are extremely low.

The final predictor of identity matches involves a transitive closure on the pairwise

links obtained from the classifier6. The result of the transitive closure is a set of

connected components with each cluster representing a single author. Once the clusters

are obtained, we consider all clusters containing 10 or more elements since a significant

portion of such clusters had multiple developers grouped into a single component. The

resulting 20 clusters - 44 elements in the largest and 10 elements in the smallest cluster

among these, were then manually inspected and grouped. This manual effort included

the assessment of name, user name and email similarity, projects they worked on, as

well as looking up individual’s profiles online where names/emails were not sufficient to

assign them to a cluster with adequate confidence.

Table 4.3: Confusion matrix of 10-fold cross validation of the Random Forest Model to
classify developer ID pairs as matches (1) or as non-matches (0)

0 1 0 1 0 1 0 1 0 1

0 549,609 3 548,181 3 549,470 4 551,139 2 550,112 5

1 0 993 2 1,108 0 1,079 0 1,039 1 1,012

0 1 0 1 0 1 0 1 0 1

0 549,211 1 549,404 1 547,961 3 548,730 2 549,569 2

1 3 1,067 0 1,032 0 1,019 0 1,086 0 1,010

6We found that more accurate predictors can be obtained by training the learner only on the matched
pairs, since the transitive closure typically results in some pairs that are extremely dissimilar, leading the
learner to learn from them and predict many more false positives

57

An example of cluster reassignment is given in Table 4.4 where we dis-aggregated a

single large cluster of 11 IDs to 3 smaller clusters. The first column is the author ID, the

second is the cluster number the ID was assigned to by the algorithm, the third column is

the manually assigned cluster number after disaggregation. We noticed that, the largest

cluster of size of 44 included all IDs that were associated with ’root’ and therefore were

not representative of any actual developer.

Therefore, we dis-aggregated the entire cluster to form 44 single element clusters. The

output of this phase is a cleaned dataset in which we have corrected synonym errors

via machine learning and fixed some of the homonym errors by inspecting the largest

clusters. Since an experiment selecting a sample of pairs from this resulting set and

validating them had very low level error rates, we use it as a reference or “golden” data

set representing developer identities for the further analysis.

We use one of the models from the 10-fold cross validation to predict links or non-

links for our entire data set of over 256M pairs of records from the 16,007 OpenStack

developer IDs. The classifier found 31,044 links and we generated an additional 3,293

links through transitive closure. Therefore, we have 34,337 pairs linked after running the

disambiguation algorithm. Using this, we constructed a network that had 10,835 clusters

that were later manually inspected and disaggregated using the procedure described in

subsection 4.2.4. Finally, we were left with 10,950 clusters, each representing an author,

with 14 elements in the largest cluster, corresponding to the highest number of aliases by

a single individual as shown in Table 4.5. The results extracted in each phase is illustrated

in Figure 4.3.

The results and evaluation of this method applied on the 16,007 IDs in the OpenStack

project is reported in Chapter 5, using standard measures of precision and recall as well as

more specific measures - splitting and lumping as done in record matching literature. The

next chapter also details an extensive evaluation to reflect on how this approach compares

to other techniques that are existing in this domain.

58

Table 4.4: An example of cluster cleanup through manual disaggregation - Cluster
number 22 that was identified after transitive closure and was split into 3 clusters after a
manual check

Author Identity Cluster# New Cluster#

AD <adidenko@mirantis.com> 22 1
Aleksandr Didenko <adidenko@mirantis.com> 22 1
Alexander Didenko <adidenko@mirantis.com> 22 1
Sergey Vasilenko <stalker@makeworld.ru> 22 2
Sergey Vasilenko <sv854h@att.com> 22 2
Sergey Vasilenko <sv@makeworld.ru> 22 2
Sergey Vasilenko <svasilenko@mirantis.com> 22 2
Sergey Vasilenko <xenolog@users.noreply.github.com> 22 2
Vasyl Saienko <vsaienko@mirantis.com> 22 3
vsaienko <vsaienko@cz5578.bud.mirantis.net> 22 3
vsaienko <vsaienko@mirantis.com> 22 3

Table 4.5: 14 Developer IDs in the largest cluster corresponding to an individual with
highest aliases after manual disaggregation

AuthorID

Greg Holt <gholt@rackspace.com>
tlohg <z-github@brim.net>
Greg Holt <greg@brim.net>
tlohg <gholt@rackspace.com>
Greg Holt <gregory.holt@gmail.com>
gholt <z-launchpad@brim.net>
Greg Holt <gregory holt@icloud.com>
gholt <z-github@brim.net>
Greg Holt <z-github@brim.net>
gholt <gregory.holt+launchpad.net@gmail.com>
Gregory Holt <gholt@racklabs.com>
gholt <gholt@rackspace.com>
gholt <devnull@brim.net>
gholt <gholt@brim.net>

59

Figure 4.3: Flowchart showing the results from each phase of the disambiguation process
from 16,007 OpenStack developers

4.3 Deanonymization - Correcting Homonyms

Homonym errors leave no information in a developer ID that can be used in the process of

de-anonymization. For example, an ID as “A Student <secretmessage@protonmail.com>”

divulges no information about the identity of the individual associated with it. Therefore,

the process of resolving Homonyms differ from that of resolving Synonyms. One of the larger

challenges in the Homonym correction process is its identification. As the data sets we are

dealing with are enormous, manual identification is not possible. Therefore, we need a

codifiable method that enables the identification and extraction of Homonyms. Figure 4.4

outlines the workflow of the Homonym correction process.

4.3.1 Prototype Design

To demonstrate the feasibility of our proposed method we design an experiment using

a small sample of developer IDs. As it is hard to obtain ground truth for our data (it is

dependent on developer response to surveys) we design this experiment by simulating

Homonyms. We follow the 4 steps described in the Homonym correction process and report

our findings through the experimentation process.

60

Figure 4.4: Concept of the Homonym Correction Process

4.3.2 Phase 1: Discovery and Extraction

The identification of Homonyms is a non-trivial task because it is hard to define and codify

characteristics of developer IDs that make it a Homonym. Deep learning methods such as

Named Entity Recognition (NER) models are trained to identify entities from contextual

data which is absent in our data set. NLTK packages also assume proper name formats

that are required to be present in order to be able to identify proper nouns. As our

data is not normalized [5], (many IDs belonging to a single developer contain a single

word without spaces and/or without capitalization) the IDs representing individuals

are not identifiable through simple heuristics such as checking for spaces, camel-case,

hyphens etc. Therefore, it is also not simple to isolate Homonyms using any identifiable

unique characteristics from IDs that may belong to an actual developer. One way to

discover/identify Homonyms would be to use the brute force method of examining all

developer IDs that have more than a single commit. Needless to say, that would be an

impractical approach given the size of our data set.

In this work, we devise an approach to discover Homonyms from a large collection of

developer IDs and commits. Before we discuss the discovery process, it is important

61

to understand the structure of a developer ID and its components. A developer ID

appears as a combination of a name and email address e.g. “A Student <secretmes-

sage@protonmail.com>”. Each developer ID is composed of the following components:

1. Name: String up to the space before the first “<”

2. Email: String within the “< >” brackets

3. First name: String up to the first space encountered in the name field

4. Last name: String after the last space encountered in the name field

5. User name: String up to the “@” character in the email field

The most frequently occurring components of IDs are likely to contain keywords that

are common in Homonyms i.e. root, unknown etc. However, this might not be true for

all the cases as names such as “Alex”, “Lee”, “Smith” etc. are likely to be commonly

used names of people as shown in Table 3.1. Therefore, we start the discovery process

through an amalgamation of automated and manual efforts in our data set of 16 million

developer IDs. We begin by looking at the 50 most frequent first names, last names, user

names to create a list of words, the presence of which would characterize a developer ID

as a Homonym. We refer to this set of words as Homonym keywords. To add to this list, we

subset IDs where a single component i.e. first name or last name contains any of these

keywords and look for any additional keywords to append to the existing pool. To ensure

we also include the less frequent Homonym keywords we exclude the IDs that have the

first name component match to a keyword and look at the components of the remaining

IDs. Any additional Homonym keywords that was discovered in this process i.e. (“apple”,

“jenkins”) was added to the existing pool. However, we were able to compose the bulk

of the Homonym keyword list by looking at the most frequent components of developer

IDs. The latter process helped us refine that list further by adding the less frequent

Homonym keyword. We also added corresponding keywords with proper capitalization

when absent and vice-versa i.e. “Admin”, “admin”.

Table 4.6 shows the count of the 15 most frequently appearing Homonym keywords

found in each of the components i.e. name, first name, last name etc. We discovered 94

62

Table 4.6: The 15 most frequent Homonym keywords discovered from over 16 Million
Developer IDs

name count first name count last name count user name count

a 390466 a 390686 a 390608 root 111646
unknown 182559 unknown 182580 unknown 182565 nobody 48046
root 107360 Unknown 145966 User 147095 ubuntu 31717
nobody 47521 root 107493 root 107498 info 28187
Ubuntu 32894 nobody 47524 nobody 47526 github 27656
Unknown 15708 Ubuntu 33442 Ubuntu 33100 me 21289
Administrator 9277 Administrator 9305 Administrator 16725 admin 20534
nodemcu-custom-build 6073 (no 7212 Unknown 15744 mail 16712
= 5430 Your 6506 user 7574 Administrator 15566
user 4722 nodemcu-custom-build 6073 author) 7200 git 13118
admin 4466 = 5480 Name 6507 contact 12491
User 2590 user 4825 nodemcu-custom-build 6073 none 12110
Admin 2407 admin 4527 = 5448 student 11327
git 2272 User 3522 admin 4680 devnull 9835
student 2267 Admin 2664 Admin 4056 dev 8666

unique Homonym keywords which are categorized in Table 4.7. Table 4.8 shows the count

of IDs where each component of the corresponding ID matched a Homonym keyword in our

data set. We found 213,372 Ids where all components belonged to the Homonym keyword

list, which is about 1.3% of the total number of IDs.

NOTE: We also found names such as “John Doe” which are typically used to preserve

anonymity. The individual components of such names are intentionally left out of the

Homonym keyword list as only the occurrence of both components together makes an ID a

Homonym. We found 881 occurrences of names with last name “Doe”, majority of which

had first names that are not “John” indicating that these are non-Homonym IDs belonging

to real developers.

As we do not have ground truth for actual Homonyms found in our data set, we

simulate Homonym IDs by sampling a number of developer IDs and anonymizing a part

of the commit messages associated with those IDs (we set aside the actual developer

IDs associated with these commits to measure accuracy of our proposed method). This

effectively simulates Homonym errors in our data as now we have no information related

to the identity of the developer making the commit. We sample 24 (an arbitrarily chosen

number) developers, from the set of 14,877,729 IDs where none of the components are

Homonym keywords, and ensure that among these 24 developer IDs there are groups of

IDs that belong to the same project. We extract the commits (identified by the commit

63

Table 4.7: Full list of keywords compiled and used for the homonym discovery process

Organization Projects Roles Anonymous Misc.

Mozilla Openstack Administrator Anonymous Bot
mozilla openstack administrator anonymous bot
Google Jenkins Admin You Daemon
google jenkins admin you daemon
Linux Ubuntu Support Your Server
linux ubuntu support Name server
Cisco Mac none Me Auto
cisco mac None me auto
Walmart GitHub Dev God BuildTools
walmart Github dev god mail
Apple github Student hello www-data
apple Git student None nodemcu-custom-build
cmart git Guest none devnull

guest (no noreply
Root author) build
root Unknown info
iguest unknown ad
User Nobody contact
user nobody example
Default Public =
default public a
Author Test EC2 Default User
author test

Table 4.8: Developer IDs statistics for components found as Homonym Keywords

Component Matched Count

Name 844,306
First Name 992,063
Last Name 1,028,777
User Name 451,256
All Comp. 213,372

None Comp. 14,877,729

64

hash) that belong to each of these IDs and remove all duplicate commit messages (in

terms of text, each commit message has a unique hash) from the commit message pool

of each developer. We also filter out any commit message shorter than five words and

longer than 50 words. We split each of the 24 processed commit message sets into ten

equal parts and create ten training and ten testing sets for the ten-fold cross validation.

Each training set has nine parts of commit messages with known developer IDs and each

test set has the remaining one part of commit messages, where associated developer IDs

have been removed, of each of the 24 developers. In Table 4.9, we report the number of

commits we extracted from these 24 developers, the number of unique commit messages,

the average length (in terms of word count) of each commit message derived from the

unique commit messages, the total number of words in the unique commit messages and

the number of unique vocabulary used by each developer.

4.3.3 Phase 2: Behavioral Fingerprint Predictors

In this step, we extract the three behavioral fingerprints - text similarity, files touched

similarity and project similarity.

1. Text Similarity: We determine text similarity between non-Homonym IDs and commit

messages by Homonym IDs by using Gensim’s implementation of Doc2Vec. We

build a Doc2vec model (using dm-mean and a window size of 2) to extract 200

dimensional numeric vectors representing each non-Homonym developer ID. To train

this model, we use the training data set containing nine parts of commits made by

each developer and we build ten such models for cross validation. Since we want

to compute similarity between a non-Homonym developer ID and a commit message

we need to extract the numeric vector representation of each commit. To do this,

we use model.infer vector() for each commit message made by a Homonym ID

in the test set. To evaluate the effectiveness of using this embedding technique,

we generate the 3 most similar, 2 most similar and the most similar non- Homonym

IDs to a given commit and obtain the number of times the actual developer ID

associated with the commit was correctly identified by the Doc2Vec model. Table 4.9

65

Table 4.9: Sampled developer commits and text similarity results

ID Total Commits Unique Commits Avg length Total words Unique words top1 top2 top3

Matthew Martin 51,064 25,138 9.34 234,768 1,716 96.42 98.25 98.56
Chao Yu 33,085 1,024 32.2 32,972 2,085 85.11 90.83 92.77
Andreas Jaeger 6,974 3,724 24.7 91,944 13,513 77.09 88.82 92.52
Fabien Potencier 69,001 12,362 18.4 226,855 33,458 65.64 76.98 83.04
Eudaldo Alonso 44,270 5,035 9.45 47,558 5,187 65.59 76.08 81.31
Emilien Macchi 10,535 4,848 22.8 110,734 15,490 65.24 74.89 80.73
Dan Carpenter 43,259 6,123 28.3 173,013 18,986 59.42 69.57 75.02
Rene Rivera 29,514 5,779 13.7 79,159 11,988 58.96 72.84 80.10
Daniel James 55,371 11,710 13.1 153,083 21,236 55.72 73.93 81.88
Chris Wilson 46,265 12,130 23.6 286,417 36,774 54.51 65.26 71.67
Laurent Montel 68,589 26,691 10.8 289,358 36,198 53.87 67.57 75.16
Allen Winter 28,069 8,231 17.8 146,617 27,223 49.78 64.74 73.91
Eric Dumazet 53,070 1,972 24.5 48,221 6,960 49.27 56.51 60.49
Glenn Morris 78,997 11,968 14.6 174,196 28,758 47.04 60.41 69.02
Monty Taylor 21,673 7,353 20.0 146,998 23,678 44.67 61.32 71.36
Stephen Kelly 22,136 9,595 13.9 133,628 22,263 40.76 56.46 66.59
Kent Fredric 46,046 25,425 9.92 252,113 33,111 37.85 49.01 56.91
Michael Bestas 41,752 8,109 12.6 102,038 17,771 31.47 40.50 46.64
David Cramer 24,260 10,050 9.72 97,715 16,519 30.64 42.55 50.58
Greg Kroah-Hartman 57,521 4,456 21.3 94,759 11,477 29.27 40.56 47.23
Christian Faulhammer 42,053 7,518 9.02 67,836 10,841 29.26 47.84 57.25
Junyuan Xue 1,672 527 8.84 4,657 1,412 18.67 30.19 36.48
Julio Camarero 29,091 5,471 10.6 57,759 10,314 15.61 34.18 42.50
Simon Legg 1,342 478 9.38 4,482 1,411 3.47 5.56 8.10

shows the average results from the ten fold cross validation. The last 3 columns

in Table 4.9 shows the average percentage of correctly identified (and whether the

correct developer was in the two/three most similar) developer ID corresponding

to each commit. The results show that the models were able to predict the correct

developer ID significantly greater than random guess (1/24), we conclude that the

Doc2Vec models are effective in capturing the characteristic of commits made by

developers. We therefore generate a list of similarity scores between each of the 24

developer IDs and each commit message (by Homonym IDs) to be used as a predictor

for our supervised learning method discussed later in this section.

2. Files touched Similarity We extract the files that have been modified by a developer

and the files that were modified by each commit. As discussed earlier, we weight

each file with the inverse number of authors who modified that file. For each author-

commit pair we extract the common files modified by both author and the commit

and generate the similarity score for this pair by summing over the weights of these

files.

66

3. Project Similarity We extract the projects that have been modified by a developer

and the projects that were modified by each commit. As discussed in section 4.2.2,

we weight each project with the inverse of number of authors who modified that

project. For each author-commit pair we extract the common projects modified

by both author and the commit and generate the similarity score for this pair by

summing over the weights of these projects.

4.3.4 Phase 3: Supervised Classification

We use each behavioral fingerprint as predictors to build a Random Forest model. We

create training and testing set for the model and perform a ten-fold cross validation. We

have about 4.6 Million rows in our training data and about 500,000 rows in our testing

data set. Roughly 5% of the observations in our training data set is a match. As the ratio

between match and non-matched observation is too low, we drop all observations where

text similarity score is below 0.25 and file similarity score is 0 or where text similarity score

is below 0.25 and project similarity score is 0. This conditioning creates a better balance

in the number of positive and negative outcomes in the training set as well as helps us to

train a Random Forest model faster by requiring less memory.

We test these models by generating probabilistic outcomes for the binary classes and

report the results in Table 4.10. We assign a match between a developer and commit if

the probability for a certain outcome (0 or 1) is greater than 0.6. Table 4.10 reports the

number of observations for each outcome in the training and testing data set and the

corresponding precision and recall for each fold. We obtained the highest precision to be

99.7% and the highest recall to be 99.8% and the lowest precision and recall to be 80.39%

and 75.16% respectively.

67

Table 4.10: Results from 10-Fold cross validation of Random Forest using the three
fingerprints as predictors

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Test 0 1 0 1 0 1 0 1 0 1
58,754 20,015 54,740 18,377 47,054 16,217 34,028 12,757 13,343 6,957

Train 0 1 0 1 0 1 0 1 0 1
130,833 75,733 192,138 78,440 206,484 80,788 219,066 84,252 242,096 90,070

Precision 80.39 86.34 90.53 89.8 93.69
Recall 75.16 65.36 73.34 67.25 81.97

Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

Test 0 1 0 1 0 1 0 1 0 1
6,833 6,068 4,748 4,594 4,748 4,594 3,047 3,560 2,315 2,362

Train 0 1 0 1 0 1 0 1 0 1
249,296 90,968 249,526 92,150 250,651 92,422 252,080 93,454 250,885 94,657

Precision 95.96 95.66 95.7 98.98 99.7
Recall 90.98 86.79 89.31 96.15 99.8

68

Chapter 5

Results and Evaluation

5.1 Overview

In this chapter, we report how ALFAA performs through standard measures - precision

and recall, using the prototype designed described in Chapter 4. We also report splitting

and lumping errors which is used in record matching literature. To evaluate our approach

we compare ALFAA to existing state-of-the-art methods that are used commercially

and in research. We also report the impact of incorporating behavioral fingerprints by

comparing the measures of two models - a model built with behavioral fingerprint and a

model that is built without. Such erroneous data has an impact on developer networks.

We therefore, conduct an experiment to assess the impact of the split and lump errors on

networks by comparing the erroneous network to its corrected version.

5.2 Results

The standard measure of accuracy in binary classification is precision and recall. Precision

is the number of true positives (the number of IDs that are correctly classified as a match)

divided by the total number of elements that are identified as belonging to the positive

class by the classifier (true positives and false positives which is the number of IDs that

are incorrectly identified as a match). A perfect precision of 1.0 indicates that a classifier

never incorrectly classifies a pair as a match. Recall is defined as the number of true

69

positives divided by the total number of elements that actually belong to the positive

class (true positives and false negatives which is the number of items that are incorrectly

classified as a non-match). A perfect recall score of 1.0 indicates that a classifier never

incorrectly classifies a non-match. Ideally, we would like our classifier to minimize both

false positive and false negative errors.

Precision =
tp

tp + f p

Recall =
tp

tp + f n

The random forest classifier produced an average precision of 99.9% and an average

recall of 99.7%. This was calculated by averaging the precision and recall values produced

by each model in the ten-fold cross validation shown in Table 4.3.

Ten-fold Cross Validation

Average Precision: 99.9%

Average Recall: 99.7%

Since record matching is a slightly different problem from traditional classification, the

literature introduces two additional error metrics: splitting and lumping [58]. Lumping

occurs when multiple author IDs are identified to belong to a single developer. The

number of lumped records is defined as the number of records that the disambiguation

algorithm incorrectly mapped to the largest pool of IDs belonging to a given author.

Splitting occurs when an ID belonging to a single developer is incorrectly split into

IDs representing several physical entities. The number of split records is defined as the

number of author IDs that the disambiguation algorithm fails to map to the largest pool

of IDs belonging to a given author.

Since, these two metrics only focus on the largest pool of IDs belonging to a single

developer and ignores the other clusters of IDs corresponding to the same unique

developer, the work in [68] modifies these measures to evaluate all pairwise comparison

of author records made by the disambiguation algorithm. In this work, two measures

70

are discussed – splitting and lumping errors. Splitting errors occur when a single

unique developer is mapped to multiple identity signatures. Lumping errors occur

when multiple IDs are incorrectly mapped to a developer’s largest cluster of IDs by the

disambiguation algorithm. According to the latter approach, we create a confusion matrix

of the pairwise links from the golden data set and the links created by the classifier and

calculate splitting and lumping in the following manner:

Splitting =
f n

tp + f n

Lumping =
f p

tp + f n

5.3 Evaluation

In this section, we address the questions related to the accuracy of the manually labeled

training data and to compare the proposed approach to work from the commercial

domain as well as recent research. It is important to note that we are evaluating our

algorithm trained on a small amount of training data and, as with other machine learning

techniques, we expect the accuracy of the models to increase with more training data

added in the future.

5.3.1 Accuracy of the Training Data

It is extremely hard to gather absolute ground truth for the data set that is considered in

this study. In the case of Synonyms, it would require reaching out to the contact address

found in each developer ID to confirm or reject if a certain commit was made by that

developer or whether a list of other IDs belong to the developer being reached out to. In

either case, it is hard to get accurate response from users as it is hard for them to identify

their commits and all variants of their credentials especially those that were unintentional

spelling mistakes. The other reason that makes attaining ground truth hard is the fact that

response rates from surveys are extremely low. Regardless, we made efforts to reach out

to developers and report the findings below. To compensate for the the absence of ground

71

truth, investigations are made to ensure the accuracy of the training data. To do this, we

measure the inter-rater reliability between two raters who manually labeled the training

dataset to see how much homogeneity or consensus there is between the raters. A high

agreement between raters indicate that the training data can be deemed reliable.

To measure inter rater reliability, two independent human raters were assigned who

are both raters are PhD students in Computer Science with a good understanding of the

problem. They were presented with a spreadsheet containing 1,060 pairs of OpenStack

developer IDs and were asked to mark it using the following protocol. Each rater was

instructed to inspect each pair of developer IDs (full name and email) listed in the

spreadsheet and supplemented by developer’s affiliations (see Section 5.3.2, the dates

of their first and last commits in the OpenStack projects, and their behavioral similarity

scores. Based on these factors (listed next to the pair in the spreadsheet), each rater was

instructed to make a decision and

1. Mark a developer ID pair as a match (1) if the two IDs are almost certainly from the

same person.

2. Mark a developer ID pair as a non-match (0) if the two IDs are almost certainly not

from the same person.

3. Mark a developer ID pair a number between 0 and 1 reflecting the raters subjective

probability that they are representing the same person.

The raters were further encouraged to search for developers on GitHub or Google

if they did not feel confident about their decision. For cases where both raters marked a

developer ID pair as a match (1) or a non-match (0), we found agreement between the two

raters in 1,011 cases and disagreement in 17 cases. By thresholding the 32 cases that had

probability value greater than zero and less than one to the nearest whole, we obtained

1,042 instances of agreement (98.3%) and 18 cases of disagreement (1.69%).

Inter Rater Reliability

1,042 instances of agreement and 18 cases of disagreement out of 1,060 cases.

72

98.3% agreement and 1.69% disagreement.

We also compare the ten-fold cross-validation predictions described above with the

second rater (whose input was not used for training). The numbers of disagreements

between the second rater and the predictions over ten folds ranged from 11 (1.03%) to 18

(1.69%) (a mean of 15.18). The second rater had, therefore, similar or better agreement

with the prediction than with the first rater.

We, thus, have established the degree to which the two raters agree on the decision,

but not necessarily that either of the raters was correct. To validate the rater’s opinions

we, therefore, administered a survey to a randomly selected set of developers. The survey

provided respondents with a set of commits with distinct developer strings. All commits,

however, were predicted to have been done by the respondent and each respondent was

asked to indicate which of the commits were the ones made by them. From a randomly

selected 400 developers 69 emails bounced due to the delivery problems. After 20 days

we obtained 45 valid responses, resulting in a response rate of 13%. No respondents

indicated that commits predicted to be theirs were not submitted by them, for an error

rate of 0 out of 45.

Survey response

0 errors reported out of 45 responses corresponding to 13% response rate.

This allows us to obtain the bound on the magnitude of error. For example, if the

algorithm has the error rate of 5%, then we would have less than one in ten chances to

observe 0 out of 45 observation to have errors1. After establishing high accuracy of the

training data we proceed to compare ALFAA to an approach that was implemented by

professional commercial effort.

1Assuming independence of observations and using binomial distribution.

73

5.3.2 Comparison with a Commercial Effort

OpenStack is developed by a group of companies, resulting in an individual and

collective interest in auditing the development contribution of each firm working on

OpenStack. This task was outsourced to Bitergia2, which is a company dedicated

to performing software analytics. The disambiguation data on OpenStack developers

produced by Bitergia was collected for this study. This data was in a form of a relational

database (mysql) that had a tuple with each commit SHA1 and developer ID and another

table that mapped developer ID (internal to that database) to developer name (as found

in a commit). The Bitergia data had only 10,344 unique developer IDs that were mapped

to 8,840 developers (internal database IDs). We first restricted the set of commits in our

data set to the set of commits that were in the Bitergia database and selected the relevant

subset of developers (10,344 unique developer IDs) from our data for comparison to

ensure that we are doing the comparison on exactly the same set of developers. Bitergia

algorithm missed 17,587 matches predicted by our algorithm and introduced six matches

that ALFAA does not predict. In fact, it only detected 1,504 matches of over 22K matches

(under 7%) predicted by ALFAA. Bitergia’s matching predicted 8,840 distinct developers,

or 41% more than ALFAA which estimated 6,271 distinct developers from the 10,344

distinct developer IDs.

Bitergia VS ALFAA

10,344 distinct developer IDs mapped to 8,840 developers by Bitergia.

The same developer IDs mapped to 6,271 developers by ALFAA.

As shown in Table 5.1, it has almost 50 times higher splitting error than manual

classification, though it almost never lumps two distinct authors. We, therefore, conclude

that the prediction done by the commercial effort has substantially lower accuracy.

2https://bitergia.com/

74

5.3.3 Comparison with a Research Study

We also compare our method to a recent research method3 that was applied on data

from 23,493 projects [66] from GHTorrent to study social diversity in software teams.

From this point forward, we refer to that method as “Recent”. Method Recent starts

by creating a record containing elements of the name and email address as shown on the

left of Figure 5.1. It then forms candidate pools of identities linked by matching name

parts, then uses a heuristic to accept or reject each pool based on counts of different

similarity “clues”. The authors then iteratively adapted this automatic identity matching

by manually examining the pools of matched emails and adjusting the heuristic. The

authors of Recent limit the false positives by being as conservative as possible when

merging/linking two IDs. For example, if multiple aliases share the same well-formed

and non-fictitious email address, the aliases are merged based on the assumption that

email addresses are individual. To ensure that the heuristics in Recent were applied in a

way consistent with their prior use, the first author of the original paper [66] was asked to

run it on the data set used in this study and adjust it analogously to how he had adjusted

for his own studies4.

Figure 5.1: Extracted components of commits that are used for string similarity and
behavioral fingerprint

3https://github.com/bvasiles/ght unmasking aliases
4The author got much better results than we could obtain using their published code without

modifications.

75

We first compare the results of Recent to the results generated by ALFAA on the entire

set of over 16,000 OpenStack developers and then on a larger data set described in the next

subsection. We design an experiment described next, to compare the accuracy of Recent

and ALFAA.

Manual validation of results from Recent and ALFAA

ALFAA produced 1,876,595 matches that were not identified by Recent. Recent produced

363,818 matches that were not matched by ALFAA. In order to understand and validate

the differences, an experiment was designed to compare the results of Recent to ALFAA

generated from a set of 16,007 OpenStack developers. As the size of the full data set is

too large for manual validation (over 256M pairs), a small section of the data for manual

inspection was sampled. The protocol for sampling is defined as follows:

• Remove all self-matched observations from consideration i.e. where developer ID1

and developer ID2 are identical

• Remove all observations that have positive outcomes from both approaches i.e. the

intersection of matches, for both ALFAA and Recent

• Create Set1: Randomly sample 500 observations where ALFAA yields a positive

outcome and Recent does not

• Create Set2: Randomly sample 500 observations where Recent yields a positive

outcome and ALFAA does not

• Combine Set1 and Set2 and randomly extract 500 observations from the combined

set without replacement. Let’s call this Sample1. The remaining observations will be

in Sample2. This step ensures that no bias is introduced when using human raters

while generating ground truth

To sample, random samples of 1000 pairs of IDs were generated until it had more than

50% cases where the email of ID1 was not identical to the email of ID2. This was done

because Recent automatically matched IDs that had the same email, and therefore, we

76

wanted to keep a substantial number of observations in our experiment where the email

addresses are different. We sampled 500 observations from each of these two sets and

found that 418 observations out of 500 in Sample1 and 312 out of 500 in Sample2 did not

have identical emails. We used two raters (both PhD students in Computer Science,) to

label each observation as a match (1), a non match(0), and uncertain (0.5) keeping the

following criteria in mind besides the individual rater’s judgment.

• Label as a match (1) if first names and last names match and neither are Homonyms

• Label as a match (1) if names are somewhat similar (case difference, partial match,

abbreviated etc.) and emails indicate personal and work (deduced from email

domains)

Example: jonathanramirez <jonathanramirezmeza@gmail.com>, Jonathan Ramirez

<jonathan@Jonathan-BMP.iptvṁicrosoftċom>

• Label as 1 if name in ID1 matches username in ID2

Example: Elliot Fehr <elliot@weebly.com>, Elliot <elliotfehr@gmail.com>

• Label as unsure (0.5) If a name has high empirical frequency (appears frequently in

the data set)

• Label as unsure (0.5) if a name has high cultural frequency (known to be common

in a nationality or culture)

• If one or both of the ID(s) is/are Homonym(s) label as 0.5

Example: coffeemug <coffeemug@dell-desktop.example.com>, Slava Akhmechet

<coffeemug @Elyas-MacBook-Pro.local>

• If there are multiple names present in the IDs, then label 0.5

Example: Jonathan Berkhahn and Raina Masand <rmasand@pivotal.io>, Ruth

Byers and Raina Masand <rmasand@pivotal.io>

We selected all instances that were labeled as a match (1) or a non-match (0) by both

raters. In other words, we dropped all instances that were labeled a 0.5 by any one rater.

We extracted 534 such observations out of the 1,000 labeled instances. There were 47

77

cases of disagreement in the 534 cases (8.8% disagreement and 91.2% agreement) between

the two raters. We also calculate Cohen’s Kappa (κ) which is a robust measure for for

inter-rater agreement for categorical items and get κ = 0.722. We conclude that this is

satisfactory as 0.6 ≤ κ ≤ 0.8 is considered to be substantial agreement according to [25].

We found 184 pairs from results produced by ALFAA (34.5%) and 350 pairs from results

produced by Recent (65.5%) in this set.

Rater 1 validation results for ALFAA: Out of the 178 pairs that were matched by

ALFAA, Rater 1 found 7 instances where ALFAA wrongly matched a pair of IDs and

177 instances where ALFAA correctly matched a pair of IDs. This means that ALFAA

achieved 3.8% False Positive rate and 96.2% True Positive rate from Rater 1.

Rater 1 validation results for Recent: Out of the 350 pairs that were matched by

Recent, Rater 1 found 80 instances where Recent wrongly matched a pair of IDs and 270

instances where Recent correctly matched a pair of IDs. This means that Recent achieved

22.8% False Positive rate and 77.14% True Positive rate from Rater 1.

Rater 1 validation:

ALFAA: FP = 3.8%, TP = 96.2%

Recent: FP = 22.8%, TP = 77.14%

Rater 2 validation results for ALFAA: Out of the 178 pairs that were matched by

ALFAA, Rater 2 found 28 instances where ALFAA wrongly matched a pair of IDs and

156 instances where ALFAA correctly matched a pair of IDs. This means that ALFAA

achieved 15.2% False Positive rate and 84.8% True Positive rate from Rater 2.

Rater 2 validation results for Recent: Out of the 350 pairs that were matched by

Recent, rater 2 found 94 instances where Recent wrongly matched a pair of IDs and 256

instances where Recent correctly matched a pair of IDs. This means that Recent achieved

26.8% False Positive rate and 73.14% True Positive rate from Rater 2.

Rater 2 validation:

ALFAA: FP = 15.2%, TP = 84.8%

78

Recent: FP = 26.8%, TP = 73.14%

In conclusion, ALFAA and Recent achieved an average false positive rate of 9.5% and

24.85% respectively. This shows that Recent is 2.61 times more prone to lumping error

than ALFAA. To be able to report the splitting error, we would need to conduct a similar

experiment by sampling from the set containing pairs that were labeled as a non-match

(0) by ALFAA and the set containing pairs that were labeled as a non-match (0) by Recent,

which is both time and labor intensive, and therefore, we keep it beyond the scope of this

work.

Summary:

ALFAA: Average FP = 9.5%

Recent: Average FP = 24.85%

Recent is 2.61 times more prone to lumping error than ALFAA

Table 5.1 provides summary of the comparisons where the labels generated using

method in the left column to be the ground truth. In particular, there is a good agreement

between the raters: splitting error of 0.0139 and lumping error of 0.0139. The average ten-

fold cross-validation error of ALFAA on the Rater 1 labeled data is 4.63 (0.0139/0.003)

times and 13.9 (0.0139/0.001) times lower, though. The agreement between ALFAA and

Rater 2 is similar to that between Rater 1 and Rater 2, suggesting that ALFAA has captured

the heuristics implicit in the training set. Commercial effort has a much higher split error

but it almost never lumps distinct individuals together. The last comparison of ALFAA

vs Recent shows that ALFAA is 7.97 times more accurate than Recent with respect to

splitting (0.1109/0.0139), and 3.5 times with respect to lumping (0.0487/0.0139).

5.3.4 Evaluation on a Large Set of Identities

To evaluate the feasibility of ALFAA on large scale we created a list of 1.8 million identities

from commits to repositories in Github, Gitlab and Bioconductor for packages in 18

79

Table 5.1: Comparison of ALFAA against commercial and research methods

Set Assumed Ground Truth Comparison Precision Recall Split Lump

Training R1 R2 0.9861 0.9861 0.0139 0.0139
Set ALFAA ALFAA 0.9990 0.9970 0.0030 0.001

ALFAA R2 0.9936 0.9823 0.0177 0.0063
Full ALFAA Bitergia 0.9991 0.4688 0.5312 0.0004
OpenStack ALFAA Recent 0.9480 0.8891 0.1109 0.0487

software ecosystems. The repositories were obtained from libraries.io data [47] for the

Atom, Cargo, CocoaPods, CPAN, CRAN, Go, Hackage, Hex, Maven, NPM, NuGet,

Packagist, Pypi, and Rubygems ecosystems; extracted from repository websites for

Bioconductor5, LuaRocks6 and Stackage7, and from Github searches for Eclipse plugins.

The application of the Recent algorithm mapped the 1,809,495 developer IDs to

1,411,531 entities as the algorithm was originally configured (1.28 aliases per entry), or

1,052,183 distinct entities after the heuristic was adjusted by its author, identifying an

average of 1.72 aliases per entry. Upon applying ALFAA to this data set, we mapped the

set to 988,905 – identifying an average of 1.83 aliases per entity. It is important to note

that we did not incorporate any additional training beyond the original set of manually

marked pairs and we expect the accuracy to increase further with an expanded training

data set.

Recent: 1,809,495 developer IDs mapped to 1,052,183 developers

ALFAA: 1,809,495 developer IDs mapped to 988,905 developers

Notably, to apply ALFAA for 1.8M IDs, we need 3.2 × 1012 string comparisons

for each field (first name, last name, etc) and the same number of comparisons for

each behavioral fingerprint. To compare strings we used an allocation of 1.5 million

core hours for the Titan supercomputer at Oak Ridge Leadership Computing Facility

(OLCF) 8. The entire calculation was done in just over two hours after optimizing the
5https://www.bioconductor.org
6https://luarocks.org
7https://www.stackage.org/lts-10.5
8https://www.olcf.ornl.gov/

80

Table 5.2: Precision, Recall, Splitting and Lumping derived from models with and
without behavioral fingerprints

Metric Without Behavioural Fingerprint (%) With Behavioural Fingerprint (%)
Precision 99.3 99.9
Recall 99.5 99.7
Splitting 0.4 0.3
Lumping 0.6 0.1

implementation in pbdR [49] on 4096 16-core nodes. The approach can, therefore, scale to

the entire set of over 23M author IDs in over 1B public commits. To compare behavioral

fingerprints we exploited network properties (developers modify only a small number of

all files) to reduce the number of comparisons by several orders of magnitude. Finally,

it took us approximately two weeks to train a Doc2Vec model (for text embedding) on

approximately 9M developer identities and 0.5B commits using a Dell server with 800G

RAM and 32 cores.

5.3.5 Impact of Using Behavioral Fingerprints

To understand whether behavioral fingerprints have an impact on the accuracy of the

algorithm we tried building a basic model without incorporating fingerprints. The results

in Table 5.2 report the prediction performance where the prediction model was fit with

and without the behavioural metrics. The table allows us to answer whether behavioural

metrics increase accuracy. We obtained seven times higher precision error that increases

from 0.1% to 0.7% and recall error increases 0.7 times from 0.3% to 0.5% when behavioural

metrics are dropped from the models.

5.4 Impact on Developer Collaboration Network

In this section, we discuss the impact of identity errors in a real world scenario of

constructing a developer collaboration network. More specifically, we measure the

impact of disaggregation (or split) errors by comparing the raw network to its corrected

version. To create the collaboration network (a common network used in software

81

engineering collaboration tools [9]), we start from a bipartite network of OpenStack

with two types of nodes: nodes representing each developer ID and nodes representing

each file, we refer to as G. The edges connecting a developer node and a file node

represent the files modified by the author. This bipartite network is then collapsed to

a regular author collaboration network by creating links between authors that modified

at least one file in common. We then replace multiple links between the authors with

a single link and remove authors’ self links as well. The new network, which has

16, 007 author nodes, depicts developer collaboration, we refer to as G′. We apply our

disambiguation algorithm on G′ and aggregate author nodes that belong to the same

developer and produce a corrected network which we refer to as G′′. The network and its

transformations are illustrated in Figure 5.2.

To evaluate the impact of correction from G′ to G′′, we follow prior work investigating

the impact of measurement error on social network measures [70]. We look at four node-

level measurements of network error, i.e. degree centrality [19], clustering coefficient [73],

network constraint [8] and eigenvector centrality [7]. For each node-level measure we

compute a vector M. For example, in Figure 2, vector M has the degree centrality of G,

Gand G′′. Similar to the approach discussed in [70] we compute two vectors M2 and M2′

for graph G′′ using each node level measure and compute Spearman’s rho between these

two vectors.

Figure 5.2: Understanding the impact of errors on a developer collaboration network

82

We obtain Spearman’s rho for degree centrality to be 0.8619, clustering coefficient

to be 0.8685, network constraint to be 0.8406 and eigenvalue centrality to be 0.8690.

The correlations below 0.95 for any of these measures are considered to indicate major

disruptions to the social network [70]. In our case all of these measures are well below

0.95. We can also look at the quantiles of these measures: for example one quarter of

developers in the corrected network have 210 or fewer peers, but in the uncorrected

network that figure is 113 peers. The eigen-centrality has an even larger discrepancy:

for one quarter of developers it is below 0.024 for the corrected and 0.007 (or more than

four times lower) for the uncorrected network.

5.5 Limitations

Our findings have a number of limitations. First, in the Homonym discovery phase, it

is not clear if the proposed discovery process can identify all Homonyms. In fact, it is

not clear what proportion of Homonyms may be left undiscovered, especially Homonyms

associated with relatively few commits. Despite that, we feel it is important to have some

systematic approach for Homonym discovery. Future research may be needed to determine

how complete such process is.

Second, the proposed behavioural fingerprints may not be optimal for authorship

assignment and other types of fingerprints may lead to a more accurate disambiguation.

The results we got, however, show fairly high accuracy, suggesting that the specific

choices are reasonable.

Third, the evaluation based on a sample of commits where developer ID was known

but removed, may be different from commits where the developer ID was absent or was

a Homonym representing multiple individuals. These more realistic scenarios, however, do

not have the authorship data to validate our predictions. We, therefore, chose to validate

the method on data where authorship is not in doubt. The validation of authorship on

real Homonyms presents several challenges that we do not see how to overcome. First, a

Homonym, unlike a regular ID, does not have valid contact information, second, it may be

not easy for an actual author to remember/recognize the commit as their own. Finally, in

83

cases where authors seek anonymity, they may not desire to be contacted or may even be

distressed at the ability of the algorithm to de-anonymize authorship.

To begin our research, the text we consider as an alias for identity are the commit

messages of individuals from a very large collection of open source projects, in order to

identify developers in open source software communities. While using text to identify

individuals is a general method that can enable us to match users across different

sources or platforms, it also has challenges and drawbacks such as the fact that many

people may write similarly. This problem is even greater for the data set of commit

messages we use in this study, as commit messages are typically concise and are heavily

influenced by technical jargon pertaining in software projects. To solve this problem,

we use a paragraph embedding technique by – Doc2Vec [34] which is an extension

of Word2Vec by [42]. Doc2Vec produces vectors that embed semantics of the text in

paragraphs or documents and therefore will be indicative of the behavioral pattern

unique to an individual. Through comparing and matching these vectors we hope to

identify individuals using different aliases.

84

Chapter 6

Overview, Discussion, and Conclusions

6.1 Overview

The objective of this work “Methods of Disambiguating and De-anonymizing Author-

ship in Large Scale Operational Data” was to correct operational data using identity

disambiguation and de-anonymization by means of string comparison of developer IDs

in conjunction with individual-specific activity-based fingerprints. Developer activities

during the process of software development are recorded in a version control system.

Data extracted from these tools (known as operational data) and has deficiencies, e.g.,

(1) missing data such as missing names and/or email address (2) incorrect data such as

misspelled or inconsistent developer names and emails, all of which profoundly affect

social network analysis.

In this thesis, we have proposed a framework named ALFAA (Active Learning

Fingerprint Based Anti-Aliasing), and the implementation details of a prototype are

outlined, which was built based on the framework. We also looked at errors that

occur in operational data and found two broad categories using a qualitative approach

known as open card sort. We refer to these errors as Synonyms and Homonyms errors in

developer identity (IDs) that exist in operational data for a multitude of reasons. These

two radically distinct types of errors need to be be treated separately – in particular, the

second type of error, the Homonyms, cannot be resolved with traditional record matching

techniques. Therefore, ALFAA offers solutions that augments “behavioral fingerprints”

85

to traditional string comparisons used in existing literature. These fingerprints include

commit message text as they encode natural language used by the specific individual,

times of a commit as they indicate the individual’s work schedule, and files and projects

modified during the commit as they indicate the scope of the individual’s work. We

use the string similarity between developer IDs and “fingerprint” the similarities of

commits made by those developers as features that a supervised classifier can use to

predict whether a pair of syntactically dissimilar IDs is a match. We find through detailed

evaluation that our approach performs significantly better than existing state-of-the-art

methods. In the following sections we review the research questions we started with, the

answers we found through our work, and a summary of the contributions we made as a

result. Finally, we discuss some potential future work in this domain.

6.2 Discussion: Primary Findings

In this section we discuss the primary findings of this thesis by answering each research

question.

1. What are the most common reasons for identity errors in version control data?

We found that identity errors occur for a number of reasons, and we broadly

classified them into Synonym and Homonym errors. The reasons for identity errors

include misspellings, case differences, name changes, changes in the order of names,

abbreviations of names, transliteration and additions or deletions of characters such

as spaces, periods etc., in the case of Synonyms. Homonym errors are introduced

when IDs include generic roles of developers, names of projects, organizations,

or, in certain cases, individuals trying to preserve anonymity. Our categorization

of errors was done manually and was significant in helping us to design the

corrective solutions introduced in ALFAA, as each type requires distinct approaches

for correction.

2. Can we encode developer behavior from version control data to help correct identity

errors?

86

Yes, our research shows that we can encode developer behaviour from version

control data, that can help correct identity errors. Commit blobs extracted from

version control data encapsulates a great deal of information about the individual

making the commit. Among these information are names and email addresses

associated with the commit (the combination of these two is referred to as the

developer ID), the time during which the commit was made, and the files and

projects that were modified in the commit. Traditional record matching techniques

in software use comparisons of developer IDs (strings) to merge identities. Here

we demonstrated that in fact other information found in a message can be used

to encode developer behaviour that distinguishes the developers. We refer to

this as “behavioural fingerprints” and our experiments showed that using these

information was crucial especially in cases where developer IDs were inadequate.

Furthermore, we find higher precision and recall errors when fingerprints metrics

were added as features to the learner. This information plays a critical role in

constructing ALFAA.

3. Does our approach improve upon existing matching techniques applied in the

software engineering domain that is used in research and in commerce?

We compared the results produced by the prototype implementation of ALFAA

against current state-of-the-art research and commercial efforts. We found that

ALFAA had 9.5% false positive rate compared to the 24.85% rate yielded by the

recent research method. This was manually validated by checking a random sample

of one thousand IDs. Thus, the recent research method to which we compared

ALFAA was 2.61 times more prone to lumping error. We also evaluated our results

against a commercial effort which mapped 10,344 distinct developer IDs to 8,840

developers. We mapped the same number of IDs to 6,271 developers using ALFAA.

4. What is the impact of identity errors on actual collaboration networks among

developers?

We found that identity errors have a significant impact on identity networks on

collaboration networks. This conclusion was reached by means of the experiment

87

outlined in [70]. We looked at four node-level measurements of network error,

i.e., degree centrality, clustering coefficient, network constraint and eigenvector

centrality. We calculate correlations between vectors each of the raw and corrected

networks for each of these measures. We found Spearman’s Rho for degree

centrality to be 0.8619, clustering coefficient to be 0.8685, network constraint to be

0.8406, and eigenvalue centrality to be 0.8690. According to [70], correlations below

0.95 for any of these measures are considered to indicate major disruptions to the

network and in our case all measures were well below the threshold.

6.3 Summary of Contributions

A summary of the contributions separated into theoretical and practical contributions is

provided below.

6.3.1 Theoretical Contributions

1. We propose ALFAA – a framework that uses behavioral fingerprints alongside

traditional string similarity for identity correction

Traditional methods of identity merge mostly use string comparisons of compo-

nents found in an individuals ID and other on-the-surface attributes to merge

identities. This requires preset heuristics and theoretical assumptions which is

inadequate because data sets may differ between domains and practices may

change over time. Through ALFAA, we propose a new approach that uses

“behavioral fingerprints” for identity merge by using the information found in a

commit blobs such as time stamps, files, and projects modified in a commit as

well as the commit messages, along with string comparisons, to infer whether IDs

associated with the commits belong to the same developer. Standalone behavioral

fingerprints can also be used in the case of IDs that may have been used by multiple

developers as in the case of Homonym errors for de-anonymization, since string

comparisons in these cases are not meaningful. This concept can be extended to

88

identity merge in other domains by defining “fingerprint” metrics that apply to that

domain. We believe and demonstrate in a detailed evaluation that incorporating

“fingerprint” metrics had a significant positive impact on results.

2. Classification of errors in developer identity – i.e., Synonym and Homonym errors

To be able to correct any error, it is important to understand the nature of the

errors. In this work, we manually went through a list of developer identities and

classified them into two large categories - Synonym and Homonym errors using a

qualitative approach called the open-card sort method (Figure 3.4). Synonym errors

occur when multiple aliases are used by the same individual and usually contain

information about the identity of the individual in each of the aliases. For example,

there might be similarities in names or user names among IDs. Homonym errors

occur when multiple individuals/bots etc., use the same ID. These IDs almost

never contain information about the identity of the individuals such as the name

or user name so a user name cannot be assumed to represent an individual. For

example, multiple individuals working for an organization may be using the same

ID. Identifying these errors and understanding them helps in designing corrective

algorithms focusing on the nature of the errors. Previous works on record linkage

have not dealt with errors using any systematic classification and therefore, do not

address some of the issues dealt with in this work; specifically, solutions have not

been designed for Homonyms.

3. A systematic approach to discovering Homonyms in a large data set

While Synonyms are relatively simple to detect using string similarity, it is much

harder to detect and extract homonyms from a large collection of IDs. In this work,

we have proposed a frequency based approach to detecting Homonyms and include a

list of “Homonym keywords (Table 4.7)” as the most frequent Components of IDs were

found to be the result of homonym errors. This keyword list can be used to extract

Homonyms from other data sets by incorporating desired heuristics. For example, one

can use a simple heuristic such as extract all IDs that have all components belonging

89

to the keyword list. Frequency analysis can also be used on other data sets to append

to the existing list of keywords.

4. Using supervised learning in linking identities in software development context.

Traditional identity resolution methods used in software engineering uses string

similarity to compare names of individuals. Comparisons between components of

names (first and last), email addresses and other manually designed heuristics are

used in merging IDs. This can be problematic because names (or combination of

first names, last names and usernames) almost never work as unique identifiers in

large datasets. Furthermore, data from software tools often do not have meaningful

strings to begin with as discussed in Chapter 3. Therefore, this work also includes

exploration into other domains that have researched identity merge. For example,

a research done on United States Patent and Trademark Office (USPTO) used

supervised learning to disambiguate inventor records on patents [68] and attained

error rates below 3% across all of the samples available to them. However, it is

important to note that such techniques require a plethora of hand labeled records

for training which is extremely hard, if not impossible, to obtain for our dataset.

Another research used Active Learning [54] in disambiguating citation records -

an efficient way of extracting observations for training set that is effective for the

learner and requires minimum manual effort. In this study, we combined these

approaches from a variety of research works previously done in other domains and

applied them to our context.

5. Experiments to show that developer identities have impact on networks

We conducted an experiment to prove that developer identities have impact on

networks. We did this by comparing a network with errors to a corrected one

as described in Section 5.4 following an approach outlined in [70]. We calculated

correlations between vectors of the raw and corrected network for four node level

network measure. We found that all of the measures have rho much lower than 0.95

– a threshold which indicates that the errors have significant impact on the network.

90

6.3.2 Practical Contributions

1. A very large hand-labeled training dataset -

The prototype built using over 16,000 OpenStack developers employed a hand

labeled training data set that has a high rate of agreement (about 98%) between

two raters (both PhD student in CS). This required many hours of careful and

labor intensive work including information gathering from various sources to make

decisions on whether a pair of IDs should be labeled as a match or a non-match.

This training data set was used to create models to predict matches/non-matches

for every pair of developers in the data set as described in Chapter 4. The training

data is available in a open source repository and can be used as is or added to in

order to train new models.

2. Trained models

We trained various models for the active learning phase. The pre-trained models

available in the repository1 can be used for extracting more effective training data

(observations that are likely to be confused by a classifier) for the final classification

phase.

3. Scripts for creating models using other data

All codes used to build the prototype based on the proposed framework in this the-

sis is available in a public repository that can be found at https://github.com/ssc-

oscar/fingerprinting. These scripts can be used on any set of IDs to build custom

models provided with other training data.

4. A set of corrected developer identities

Finally, we have provided a set of corrected developer IDs from the OpenStack

project and a set of 18 other ecosystems as discussed in Chapter 5. These can serve

as a much larger training set to build more robust models for any future work.

5. Disambiguation code for distributed computing implementation

1https://github.com/ssc-oscar/fingerprinting

91

We ran the proposed algorithm on a large set constituting over 2 Million IDs. This

required us to learn and implement code using pbdR which is a set of R packages for

the distributed environment. We ran this code on the Titan supercomputer (hosted

at Oak Ridge Leadership Computing Facility) which is a hybrid architecture using

about 1.5 million core hours of computation time. These scripts are also available in

the public repository mentioned above.

6. Trained Doc2Vec models on over a billion of commit messages

For this work, we have trained a number of models to extract document vectors

using different hyper-parameter combinations as outlined in Appendix A. These

were trained on over 1 billion commit messages and required many days worth of

computation time. We believe that these pre-trained models will save time and aid

research related to software repositories.

6.4 Future Work

As acknowledged in Section 5.5, we are not confident that the proposed homonym

discovery process can identify all homonyms. Manual checks have shown that there are

homonyms that occur more infrequently and may include no keyword, but only special

characters such as “!!!! <!!!!>”. We believe that the homonym correction process can be

further refined and that various combinations of the “fingerprint” can be experimented

with to create models. In this work we propose using text similarity, files and projects

modified to correct homonym errors. Models built from other combinations can be

compared to the current results to empirically derive the best set of “fingerprints” for

version control data. There may also be room for improvement in building the Doc2Vec

models used for embedding commit messages, by tuning hyper-parameters as these

models have significant roles in the homonym resolution process.

This framework can be used to build a tool for disambiguation. For example,an user

can provide a list of IDs and have the tool to extract all commits associated with the

provided list of IDs, compute string similarity and behavioral fingerprint similarity and

92

feed the information to a classifier for training. The classifier can then predict an outcome

(match or non-match) for each pair of IDs in the list. Finally, transitive closure can be

calculated to get the final clusters of IDs representing each individual. While all of these

have been done in various scripts to create the prototype, work remains in making this

process seamless and into a functional software.

93

Bibliography

94

[1] Amreen, S. and Mockus, A. (2017). Position paper: Experiences on clustering

high-dimensional data using pbdr. In Proceedings, International Workshop on Software

Engineering for High Performance Computing in Computational and Data-enabled Science

and Engineering, Denver,Colorado, uSA. 114

[2] Badashian, A. S., Esteki, A., Gholipour, A., and Abram Hindle, E. S. (2014).

Involvement, contribution and influence in github and stack overflow. In CASCON

’14 Proceedings of 24th Annual International Conference on Computer Science and Software

Engineering, pages 19–33, Markham, Ontario, Canada. 6, 9

[3] Baltes, S., Kiefer, R., and Diehl, S. (2018). Usage and attribution of stack overflow code

snippets in github projects. In Empirical Software Engineering. Springer. 9

[4] Basili, V., Rombach, D., Schneider, K., Kitchenham, B., Pfahl, D., and Selby, R.

(2007). Empirical Software Engineering Issues. Critical Assessment and Future Directions:

International Workshop, Dagstuhl Castle, Germany, June 26-30, 2006, Revised Papers,

volume 4336. Springer. 6

[5] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and Swaminathan, A. (2006). Mining

email social networks. In Proceedings of the 2006 International Workshop on Mining

Software Repositories, MSR ’06, pages 137–143, New York, NY, USA. ACM. 7, 18, 19,

22, 46, 48, 61

[6] Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra,

J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.

(1997). ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,

Philadelphia, PA. 114

[7] Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of

Sociology, 92(5):1170–1182. 82

[8] Burt, R. S. (1992). Structural Holes. Harvard University Press. 82

[9] Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M. (2006). Identification

of coordination requirements: implications for the design of collaboration and

95

awareness tools. In Proceedings of the 2006 20th anniversary conference on Computer

supported cooperative work, pages 353–362. ACM. 82

[10] Chen, H.-M., Kazman, R., and Haziyev, S. (2016). Strategic prototyping for

developing big data systems. In IEEE Software, volume 33, pages 36–43. IEEE. 109

[11] Christen, P. (2006a). A comparison of personal name matching: Techniques and

practical issues. Sixth IEEE International Conference on Data Mining - Workshops

(ICDMW’06), pages 290–294. 22

[12] Christen, P. (2006b). A comparison of personal name matching: Techniques and

practical issues. In Sixth IEEE International Conference on Data Mining - Workshops

(ICDMW’06), pages 290–294. 37

[13] Cohen, W. and Richman, J. (2001). Learning to match and cluster entity names. In In

ACM SIGIR-2001 Workshop on Mathematical/Formal Methods in Information Retrieval. 28

[14] Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003). A comparison of string

metrics for matching names and records. In KDD WORKSHOP ON DATA CLEANING

AND OBJECT CONSOLIDATION. 7, 9, 17

[15] Damerau, F. J. (1964). A technique for computer detection and correction of spelling

errors. Communications of the ACM, 7(3):171–176. 47

[16] Dunn, H. L. (1946). Record linkage. American Journal of Public Health and the Nations

Health, 36(12):1412–1416. PMID: 18016455. 3, 15

[17] Fellegi, I. P. and Sunter, A. B. (1969). A theory for record linkage. Journal of the

American Statistical Association, 64(328):1183–1210. 4, 12, 16

[18] Fleming, L., King, C., and Juda, A. I. (2007). Small worlds and regional innovation.

Organization Science, 18(6):938–954. 17, 23

[19] Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social

Networks, 1(3):215 – 239. 82

96

[20] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay,

V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L.,

and Woodall, T. S. (2004). Open MPI: Goals, concept, and design of a next generation

MPI implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,

pages 97–104, Budapest, Hungary. 114

[21] German, D. and Mockus, A. (2003). Automating the measurement of open source

projects. In Proceedings of the 3rd workshop on open source software engineering, pages

63–67. University College Cork Cork Ireland. 7, 18

[22] Gharehyazie, M., Posnett, D., Vasilescu, B., and Filkov, V. (2015). Developer initiation

and social interactions in oss: A case study of the apache software foundation. Empirical

Software Engineering, 20(5):1318–1353. 18

[23] Goeminne, M. and Mens, T. (2013). A comparison of identity merge algorithms for

software repositories. Science of Computer Programming, 78(8):971 – 986. 18, 20

[24] Gorton, I., Bener, A. B., and Mockus, A. (2016). Software engineering for big data

systems. IEEE Software, 33(2):32–35. 10, 32

[25] Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: an

overview and tutorial. Tutorials in quantitative methods for psychology, 8(1):23. 78

[26] Holmes, D. and McCabe, M. C. (2002). Improving precision and recall for soundex

retrieval. In Proceedings. International Conference on Information Technology: Coding and

Computing, pages 22–26. IEEE. 38

[27] Iyengar, V. S., Apte, C., and Zhang, T. (2000). Active learning using adaptive

resampling. In Proceedings of the Sixth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’00, pages 91–98, New York, NY, USA.

ACM. 18

[28] Jaro, M. A. (1989). Advances in record-linkage methodology as applied to matching

the 1985 census of tampa, florida. Journal of the American Statistical Association,

84(406):414–420. 47

97

[29] Kouters, E., Vasilescu, B., Serebrenik, A., and van den Brand, M. G. J. (2012).

Whos who in gnome: using lsa to merge software repository identities. In 28th IEEE

International Conference on Software Maintenance (ICSM). IEEE. 22, 38, 43, 48

[30] Kukich, K. (1992). Techniques for automatically correcting words in text. Acm

Computing Surveys (CSUR), 24(4):377–439. 38

[31] Lait, A. and Randell, B. (1996). An assessment of name matching algorithms.

Technical Report Series-University of Newcastle Upon Tyne Computing Science. 38

[32] Lau, J. H. and Baldwin, T. (2016). An empirical evaluation of doc2vec with practical

insights into document embedding generation. arXiv preprint arXiv:1607.05368. 108

[33] Lawrence, S., Giles, C. L., and Bollacker, K. (1999). Digital libraries and autonomous

citation indexing. Computer, 32(6):67–71. 17

[34] Le, Q. and Mikolov, T. (2014). Distributed representation of sentences and

documents. In Proceedings of the 31 st International Conference on Machine Learning,

volume 32, Beijing,China. JMLR. 52, 84, 105

[35] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions,

and reversals. In Soviet physics doklady, volume 10, pages 707–710. 47

[36] Li, G.-C., Lai, R., DAmour, A., Doolin, D. M., Sun, Y., Torvik, V. I., Yu, A. Z., and

Fleming, L. (2014). Disambiguation and co-authorship networks of the u.s. patent

inventor database (19752010). Research Policy, 43(6):941 – 955. 23

[37] Li, Y., Peng, Y., Zhang, Z., Xu, Q., and Yin, H. (2017). Understanding the user display

names across social networks. In International World Wide Web, Perth, Australia. 21

[38] Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of

literary information. IBM Journal of research and development, 1(4):309–317. 50

[39] Ma, Y., Bogart, C., Amreen, S., Zaretzki, R., and Mockus, A. (2019). World of code:

An infrastructure for mining the universe of open source vcs data. In Proceedings of the

2019 International Conference on Mining Software Repositories, MSR ’19. 32, 34, 36

98

[40] Martinez-Romo, J., Robles, G., Gonzalez-Barahona, J. M., and Ortuño-Perez, M.

(2008). Using social network analysis techniques to study collaboration between a

floss community and a company. In Russo, B., Damiani, E., Hissam, S., Lundell, B.,

and Succi, G., editors, Open Source Development, Communities and Quality, pages 171–

186, Boston, MA. Springer US. 6

[41] McCallum, A. and Wellner, B. (2003). Object consolidation by graph partitioning

with a conditionally-trained distance metric. In KDD Workshop on Data Cleaning, Record

Linkage and Object Consolidation. Citeseer. 5

[42] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781. 84, 105

[43] Mockus, A. (2009). Succession: Measuring transfer of code and developer

productivity. In 2009 International Conference on Software Engineering, Vancouver, CA.

ACM Press. 51

[44] Mockus, A. (2014). Engineering big data solutions. In ICSE’14 FOSE, pages 85–99. 5

[45] Narayanan, A., Paskov, H., Gong, N. Z., Bethencourt, J., Stefanov, E., Shin, E. C. R.,

and Song, D. (2012). On the feasibility of internet-scale author identification. In Security

and Privacy (SP), 2012 IEEE Symposium, San Francisco, California, USA. 25, 52

[46] Navarro, G. (2001). A guided tour to approximate string matching. ACM Comput.

Surv., 33(1):31–88. 20, 38

[47] Nesbitt, A. and Nickolls, B. (2017). Libraries.io Open Source Repository and

Dependency Metadata. 80

[48] Newcombe, H. B., Kennedy, J. M., Axford, S. J., and James, A. P. (1959). Automatic

linkage of vital records. Science, 130(3381):954–959. 4, 16

[49] Ostrouchov, G., Chen, W.-C., Schmidt, D., and Patel, P. (2012). Programming with

big data in r. 81

99

[50] Pollock, J. J. and Zamora, A. (1984). Automatic spelling correction in scientific and

scholarly text. Communications of the ACM, 27(4):358–368. 48

[51] Poncin, W., Serebrenik, A., and v. d. Brand, M. (2011). Process mining software

repositories. In 2011 15th European Conference on Software Maintenance and Reengineering,

pages 5–14. 22

[52] Řehůřek, R. and Sojka, P. (2010). Software Framework for Topic Modelling with

Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks, pages 45–50, Valletta, Malta. ELRA. 27, 109

[53] Robles, G. and Gonzalez-Barahona, J. M. (2005). Developer identification methods

for integrated data from various sources. In Proceedings of the 2005 International

Workshop on Mining Software Repositories, MSR ’05, pages 1–5, New York, NY, USA.

ACM. 18, 22

[54] Sarawagi, S. and Bhamidipaty, A. (2002). Interactive deduplication using active

learning. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’02, pages 269–278, New York, NY, USA. ACM. 4, 24,

28, 54, 55, 90

[55] Sariyar, M. and Borg, A. (2010). The recordlinkage package: Detecting errors in data.

The R Journal, 2(1):61–67. 28, 48

[56] Silvestri, G., Yang, J., Bozzon, A., and Tagarelli, A. (2015). Linking accounts across

social networks: the case of stackoverflow, github and twitter. In International Workshop

on Knowledge Discovery on the WEB, pages 41–52. 13, 21

[57] Singh, J. (2005). Collaborative networks as determinants of knowledge diffusion

patterns. Management Science, 51(5):756–770. 23

[58] Smalheiser, N. R. and Torvik, V. I. (2009). Author name disambiguation. Annual

review of information science and technology, 43(1):1–43. 70

100

[59] Sparck Jones, K. (1972). A statistical interpretation of term specificity and its

application in retrieval. Journal of documentation, 28(1):11–21. 50

[60] Steorts, R. C., Ventura, S. L., Sadinle, M., and Fienberg, S. E. (2014a). A comparison of

blocking methods for record linkage. In Domingo-Ferrer, J., editor, Privacy in Statistical

Databases, pages 253–268, Cham. Springer International Publishing. 9

[61] Steorts, R. C., Ventura, S. L., Sadinle, M., and Fienberg, S. E. (2014b). A Comparison of

Blocking Methods for Record Linkage, pages 253–268. Springer International Publishing,

Cham. 24

[62] Su, J., Shukla, A., Goel, S., and Narayanan, A. (2017). De-anonymizing web

browsing data with social networks. In Proceedings of the 26th International Conference on

World Wide Web, pages 1261–1269. International World Wide Web Conferences Steering

Committee. 24

[63] Tejada, S., Knoblock, C. A., and Minton, S. (2002). Learning domain-independent

string transformation weights for high accuracy object identification. In Proceedings

of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’02, pages 350–359, New York, NY, USA. ACM. 5

[64] Thung, F., Bissyand, T. F., Lo, D., and Jiang, L. (2013). Network structure of

social coding in github. In 2013 17th European Conference on Software Maintenance and

Reengineering, pages 323–326. 9

[65] van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-sne. Journal of

Machine Learning Research. 109

[66] Vasilescu, B., Serebrenik, A., and Filkov, V. (2015). A data set for social diversity

studies of github teams. In Proceedings of the 12th Working Conference on Mining Software

Repositories, pages 514–517. ACM. 4, 18, 75

[67] Venkataramani, R., Gupta, A., Asadullah, A., Muddu, B., and Bhat, V. (2013).

Discovery of technical expertise from open source code repositories. In Proceedings

101

of the 22Nd International Conference on World Wide Web, WWW ’13 Companion, pages

97–98, New York, NY, USA. ACM. 9

[68] Ventura, S. L., Nugent, R., and Fuchs, E. R. (2015). Seeing the non-stars: (some)

sources of bias in past disambiguation approaches and a new public tool leveraging

labeled records. Elsevier. 4, 5, 7, 9, 13, 17, 23, 70, 90

[69] Virtanen, T. (2016). Git for computer scientists. 33

[70] Wang, D. J., Shi, X., McFarland, D. A., and Leskovec, J. (2012). Measurement error in

network data: A re-classification. Social Networks, 34(4):396–409. 6, 9, 82, 83, 88, 90

[71] Wang, M., Tan, Q., Wang, X., and Shi, J. (2018). De-anonymizing social networks

user via profile similarity. In 2018 IEEE Third International Conference on Data Science in

Cyberspace (DSC), pages 889–895. IEEE. 53

[72] Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and applications,

volume 8. Cambridge university press. 9

[73] Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’

networks. Nature, 393:440–442. 82

[74] W.Cohen, W. and Richman, J. (2002). Learning to match and cluster large

high-dimensional data sets for data integration. In SIGKDD, volume 32, Edmon-

ton,Alberta,Canada. ACM. 10, 21

[75] Wiese, I. S., d. Silva, J. T., Steinmacher, I., Treude, C., and Gerosa, M. A. (2016). Who

is who in the mailing list? comparing six disambiguation heuristics to identify multiple

addresses of a participant. In 2016 IEEE International Conference on Software Maintenance

and Evolution (ICSME), pages 345–355. 18

[76] Winkler, W. E. (1999). The state of record linkage and current research problems. In

Statistical Research Division, US Census Bureau. Citeseer. 18

[77] Winkler, W. E. (2006). Overview of record linkage and current research directions.

Technical report, BUREAU OF THE CENSUS. 9, 10, 17

102

[78] Winkler, W. E. (2014). Matching and record linkage. WIREs Comput Stat, 6:313–325.

17, 18

[79] Wu, S. (2013). A review on coarse warranty data and analysis. Reliability Engineering

& System Safety, 114:1 – 11. 5

[80] Xiong, Y., Meng, Z., Shen, B., and Yin, W. (2017). Mining developer behavior across

github and stackoverflow. In The 29th International Conference on Software Engineering

and Knowledge Engineering, pages 578–583. 18

[81] Yancey, W. E. (2005). Evaluating string comparator performance for record linkage.

Statistics, 5. 38

[82] Zheng, Q. and Mockus, A. (2015). A method to identify and correct problematic

software activity data: Exploiting capacity constraints and data redundancies.

In Proceedings of the 2006 International Workshop on Mining Software Repositories,

ESEC/FSE’15, pages 637–648, New York, NY, USA. ACM. 29

103

Appendices

104

Appendix A

Testing Feasibility of Using Doc2Vec on

Commit Message Text

Experiment 1: Training and Testing Doc2Vec Models

Before we conclude that we can use the Doc2Vec algorithm for our research, we conducted

an experiment to test its viability for our data set. We use Gensim’s implementation of

Doc2Vec to carry out this experiment. Doc2Vec, a paragraph embedding technique [34],

uses an unsupervised approach to learn fixed-length feature representations from vari-

able length pieces of texts, such as sentences, paragraphs or even documents, thus,

producing what is referred to as Paragraph Vectors. This is an extension of an earlier work

done by Mikolov et. al. on a word embedding technique called Word2Vec [42].

Training

In the training phase, we create a number of subsets of commit messages made by each

user and replace the IDs associated with them with synthetic dummy IDs. The Doc2Vec

algorithm generates vectors for each of the IDs and our goal is to see whether vectors

generated from different synthetic IDs that map to the same real ID are highly similar

– and can group IDs with highly similar vectors which would represent an individual.

This would mean that the document embedding algorithm is able to learn from the style

of commit message text of each individual and is able to differentiate it from others.

105

To conduct this experiment, we randomly selected 21 users and approximately 70,000

commit messages generated by them. We grouped 20 commit messages from the same

developer into a single document and provided a synthetic label for it. A map of the

synthetic label to the actual label is kept in a separate file. Therefore, we have 3500

documents (and the same number of synthetic labels) for training the Doc2Vec model. The

label for each document is the developer’s ID – a name <email> combination. Gensim’s

implementation of Doc2Vec has 3 models as shown in Table A.1, where two of the models

are a variant of Distributed Memory (PV-DM) and the other is Distributed bag-of-words (PV-

DBOW). We conduct our experiment on all 3 models to understand which model yields

the best result so that we can generate document vectors on our whole data set using one

particular model.

We use the functions shown in Table A.2 from Gensims Doc2Vec API to conduct the

experiment.

Testing

To test the model, 30 documents are randomly selected from each user (each user has a

varying number of documents therefore, selection range is adjusted accordingly). Thus,

we have 630 documents for testing. Once we have the trained Doc2vec model, we input a

test document and it produces the ID of the most similar document (based on the cosine

similarity of the document vectors) to the input. We train each model with 5000 epochs

and repeat this process for the three Doc2Vec models described above. We output the

number and percentage of documents each of the Doc2Vec models can identify correctly.

Figure A.1 illustrates the experimental setup and how the results are evaluated.

Results

We evaluate each of the models in the following process:

1. Performance in finding the most similar document - As the most similar document

returned by the most similar() function returns the label of the same document

(similarity = 1.0), we exclude that and consider the next most similar document

106

Table A.1: The 3 models implemented in Gensim’s Doc2Vec

Model No. Model Name Description and Parameters

1 Distributed Memory Doc2Vec(dm=1, dm concat=1, size=200, window=10,
negative=20, hs=0, min count=5, workers=cores)

2 Distributed bag-of-words Doc2Vec(dm=0, size=200, negative=20,
hs=0, min count=5, workers=cores)

3 Distributed Memory Doc2Vec(dm=1, dm mean=1, size=200, window=10,
negative=20, hs=0, min count=5, workers=cores)

1 Dm concat – If 1, use concatenation of context vectors rather than sum/average; default is 0
(off)

2 Size - Dimensionality of the feature vector
3 Window - Maximum distance between the predicted word and context words, optimal is 10

words
4 Negative – If > 0, negative sampling will be used,

the int for negative specifies how many “noise words” should be drawn (usually between
5-20)

5 hs - Hierarchical softmax will be used for model training
6 Min count - Ignore words with total frequency lower than this

Table A.2: Gensim’s Doc2Vec API used

Function Description

Model.build vocab() Build vocabulary from sequence of sentence
Model.reset from() Reuse sharable structure from other models
Model.train() Update the models neural weight from a sequence of sentence
Model.docvecs.most similar() returns most similar documents to the one passed

Table A.3: Summary of results: Classifying 630 documents

Measure Correctly %Accuracy

Top 1 497 78.8
Top 1, 2 and 3 410 65.1
Any 3 469 74.4
All 5 219 34.8

107

Figure A.1: Experimental setup to test Doc2Vec for our dataset

for this measure. Each model returned a synthetic label and it matched the correct

ID for model 1 56%, model 2, 62% and model 3, 79% of the times respectively.

2. Performance in finding the most similar and second most similar documents - We

also checked the performance of the three models on finding the second most similar

document (again, excluding itself). Quite similar to the previous test, model 1

performed the worst (30%) and model 3 performed the best (65%).

3. Performance in finding 3 most similar documents- In this case, we only count an

output as correct if all three labels returned were correct. Model 1 had an accuracy

of 18%, model 2 had an accuracy of 39% and model 3 had an accuracy of 52%.

After performing this experiment, we learned that the PV-DM model, where the

feature vectors are summed/averaged, yield better results than the model with feature

vectors concatenated or the PV-DBOW model as shown in Table A.3. This finding

contradicted with the findings of the an empirical study [32] where the authors found that

108

DBOW is a superior model to PV-DM. We also had a horizontal prototyping exercise [10]

whereby we determined the viability of using the Doc2Vec algorithm on our data set of

commit messages. For the rest of our work, we therefore use the PV-DM model to train

and extract feature vectors.

Building Doc2Vec Models on the Large Dataset

Following the prototyping exercise described above, we built the Doc2Vec models on the

entire data set (the filtered data set has 2.3 Million tags and 250 Million commit messages).

Each commit message represents a single document and the label is the associated ID.

An user writes multiple commit messages, as shown in Figure 4.2 (Chapter 3), therefore

multiple documents will have the same label. We choose not to group the commit

messages into a large document in order to retain the semantics of the texts as much

as possible. Once Doc2Vec is trained using the parameters discussed below, it produces a

single vector corresponding to each tag.

We build two distributed memory models and generate document vectors for each

of the 2.3 Million tags. Model 1 uses the mean of the context vectors produced from

each document to generate a vector for a tag, has a window size of 10 and ignores all

words that has a frequency lower than 5. Model 2 (default) uses the sum of the context

vectors and a window size 3 and ignores words that appear less than 15 times. Both

the models yield vector size 200 (Vector size is short enough but long enough to hold

the information, for example, [52] used vector size 300 for testing on a WIKI and AP-

NEWS dataset) The results of Doc2Vec training can be sensitive to parameterization, and

therefore, it is extremely important for us to understand how the quality of the vectors

depend upon each parameter. For example, in Model 2 we have a higher threshold for

sub-sampling as high frequency words often provide little information and filtering them

out while training will result in higher training speed [65].

These vectors are stored in a compressed file in a ID;vector format. We refer to the size

of these vectors as dimensions – we, thus, have 200 dimensional vectors.

109

Model 1:

mod = Doc2Vec (dm = 1, dm mean = 1, size = 200, window = 10, negative = 20, hs =

0, min count = 5, workers = cores)

Model 2:

mod = Doc2Vec (dm = 1, dm mean = 0, size = 200, window = 3, negative = 20, hs = 1,

min count = 15, workers = cores-2)

Experiment 2: Validation using other attributes

We conducted an experiment considering the similarity between names (string similarity)

and projects the user worked on. To carry out this test, we randomly sampled users

from 20% of the users who have the highest message count. We then obtained the

top 25 matches for each of the users generated by the Doc2Vec model based on

their similarity score. From each of these sets, we manually selected user pairs that

have similar IDs (string similarity) i.e., “pradeep:pradeep@arrayfire.com” and “Pradeep:

pradeep@arrayfire.com” and found the number of project overlaps between them.

Table A.4 shows some of the selected tags from our data set. P(Tn) represents

the number of projects user Tn worked on. The SimScore column represents the

cosine similarity between the document vectors of the users. We see that 23 out

of 26 projects (88%) of user “Hanul:hanul@hanul.me” overlaps with projects of user

“Hanul:mr@hanul.co” who had 81 projects. This gives us some confidence that both these

tags belong to the same user. This exercise helped us build more confidence on identifying

same users through using commit message similarity as an underlying identifier. It also

gave us a plausible way of identifying the primary user name and email i.e. the tag of an

entity.

110

Table A.4: Results from Experiment 2: IDs with high text similarity score had high
overlap in projects, increasing confidence in the effectiveness of using Doc2Vec for
commit messages

Tag(T1) P(T1) Tag(T2) P(T2) SimScore Overlap

Hanul:
hanul@hanul.me 26 Hanul:

mr@hanul.co 81 0.807 23

Cesar Ferreira:
cesar.manuel.ferreira@gmail.com 41 cesar:

cesar.manuel.ferreira@gmail.com 5 0.610 3

Cesar Ferreira:
cesar.manuel.ferreira@gmail.com 41 Csar:

otymonn@gmail.com 3 0.581 0

pradeep:
pradeep@arrayfire.com 57 Pradeep:

pradeep@arrayfire.com 55 0.780 53

pradeep:
pradeep@arrayfire.com 57 pradeep:

pradeep.garigipati@gmail.com 12 0.551 11

Eva Shon:
eshon@opengeo.org 112 eshon@opengeo.org:

eshon@opengeo.org 42 0.724 41

Eva Shon:
eshon@opengeo.org 112 Eva Shon:

eshon@boundlessgeo.com 262 0.653 18

Transitive Closure Clustering

The first test we designed to analyze the document vectors is to group the most similar

vectors together by using their similarity scores produced by the most similar() API in

Gensim’s implementation. Through transitive closure clustering we hope to construct a

structure that can answer connectivity related questions. For example, suppose Node

A is connected to Node B and Node B is connected to Node C. After a network has

been constructed through transitive closure, Node C will be connected to Node A. In

the context of our work, if two nodes, each representing the alias of an individual, are

connected it should signify that both the aliases belong to the same individual. Our goal

for this experiment was to test whether similarity scores (given certain thresholds) yield

reasonable (cluster sizes are not too large and have more than one element) groups or

clusters of identities.

To perform this experiment we implemented two methods of clustering: directed and

undirected transitive closure clustering. For both methods, we consider a high similarity

threshold, i.e. greater than or equal to 0.9, between vectors.

1. Directed Transitive Closure Clustering

111

For each of the document vectors representing a tag, we get the tags that are most

similar to it (similarity score >=0.9) and add to the cluster and remove the ID from

the available pool of IDs. We then get the ID that is most similar to the previous ID

and add it to the cluster and repeat this until no similar tags can be found. In other

words, there are no tags in the remaining pool that has a similarity score greater

than or equal to 0.9 to the current ID. Table A.5 shows the results of this experiment,

where the total number of clusters formed were 390,310, 77% of which were single

element clusters. This approach yielded too many stray tags i.e., large number of

clusters with a single element. As this result was unsatisfactory, we repeated the

experiment without directionality.

2. Undirected Transitive Closure Clustering

This approach is very similar to the directed clustering technique with the except

– tags are not removed from the pool of tags once they are drawn into a cluster.

Therefore, a tag can belong to multiple clusters. The number of clusters formed

with this approach is 89,396. In this case, we were able to find 57,527 small clusters

of 2 elements (64%). However, this approach also formed a large single cluster that

had 311,679 elements. Table A.6 shows the results of this experiment. Through a

manual checking process (from randomly drawn 10 samples) we determined that 6

clusters had syntactically similar tag-pairs from the 2 element clusters. 5 clusters

had syntactically similar tags (two or more) from the 3 element clusters and 3

clusters had syntactically similar tags (two or more) from the 4 element clusters.

Our conclusion from this test was that transitive closure leads to either a large

Table A.5: Distribution of the transitive closure clusters – with directionality

Cluster Size Number of Clusters

1 (smallest cluster) 300763
199 (third largest cluster) 1
504 (second largest cluster) 1
60664 (largest cluster) 1

112

Table A.6: Distribution of the transitive closure clusters – directionality removed

Cluster Size Number of Clusters

2 (smallest cluster) 57527
3 (second smallest cluster) 15022
4 (third smallest cluster) 6533
352 (fourth largest cluster) 1
429 (third largest cluster) 1
861 (second cluster) 1
311679 (largest cluster) 1

number of extremely small clusters of a single element or a long chain (one very

large cluster) of hundreds of thousands of elements. Therefore, transitive closure

will not be effective with the current technique.

Clustering in Distributed Systems

Another approach we attempted was to cluster users based on the document vectors of

each user. Our goal for this experiment was to test how traditional clustering methods

such as K-Means perform on our highly dimensional data set. Such clustering algorithms

are computationally intensive and require a large amount of memory for intermediate

data structures i.e. the distance matrix. To be more specific, the data we attempted to

cluster will result in a 2.3M X 2.3M (approximately 32 TB) distance matrix with a potential

need for at least twice that amount of memory during computations.

These highly computational and space intensive tasks requires capacity that exceed

that of commercially available clusters. Therefore, to enable ourselves to experiment

efficiently, we obtained access to Titan1. This gave us access to 18,688 compute nodes and

710 TB of total system memory with 32 GB of memory per node on a supercomputing

system with a hybrid architecture. To allow us to focus more on the experimentation

and increase productivity, we chose pbdR - an effective middleware for using R in a

distributed environment.
1https://www.olcf.ornl.gov/titan/

113

Using the pbdR packages

The programming with big data in R (pbdR) project is a set of highly scalable packages

for distributed computing and profiling in data science. It allows a scientist to use the

R programming language without, at least nominally, having to master many layers of

HPC infrastructure, such as OpenMPI [20] and ScalaPACK [6]. The packages within

this project interface with softwares for distributed systems such as MPI, scaLAPACK,

PAPI and is designed to work best on large distributed platforms. In this chapter, we

focus on the pmclust package which implements model-based and k-means clustering

for high dimensional and ultra large data on a distributed environment. We also report

our experience using pbdR through conducting a number of experiments discussed in

[1].

114

Appendix B

List of Publications

Publications related to this research:

1. Amreen, S. and Mockus, A., Zheng, Y., Bogart, C., Zaretzki, R. (2019) ALFAA: Active

Learning Fingerprint Based Anti-Aliasing for Correcting Developer Identity Errors

in Version Control Data, arXiv preprint arXiv:1901.03363

2. Ma, Y., Bogart, C., Amreen, S., Zaretzki, R. and Mockus, A. (2019) World of Code:

An Infrastructure for Mining the Universe of Open Source VCS Data. International

Conference in Mining Software Repositories, Montreal, QC, Canada.

3. Amreen, S. and Mockus, A. (2017).Position paper: Experiences on clustering high-

dimensional data using pbdr. Proceedings of the 2017 International Workshop

on Software Engineering for High Performance Computing in Computational and

Data-enabled Science and Engineering, Denver,Colorado, USA.

4. Agrawal, K., Amreen, S. and Mockus, A. (2015). Commit quality in five high

performance computing projects. Proceedings of the 2015 International Workshop

on Software Engineering for High Performance Computing in Science.

115

Vita

Sadika Amreen was born in Dhaka, Bangladesh. She obtained her Bachelor’s degree

in Computer Science and Engineering from BRAC University, Bangladesh in 2012. She

enrolled into a Bachelor’s to PhD program in 2013 and obtained her Masters in Computer

Science along the way at the University of Tennessee. During the summers of graduate

school, Sadika has worked at various organizations including Oak Ridge National Lab

as a research intern, Pilot Flying J as a business intelligence intern, and at eBay as an

applied research intern. She is also co-founded a student organization at the Department

of Electrical Engineering and Computer Science whose mission is to recruit, mentor

and retain women entering undergraduate and graduate programs at the department.

She received her Doctorate in Philosophy in Computer Science from the Department of

Electrical Engineering and Computer Science at the University of Tennessee in April 2019.

116

	Methods of Disambiguating and De-anonymizing Authorship in Large Scale Operational Data
	Recommended Citation

	tmp.1581698523.pdf.8s9ZP

