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Abstract 

Although inorganic and metallic nanoparticles are potentially effective oil lubricant 

additives for friction and wear reduction, their high tendency to undergo aggregation and 

precipitation in base oils has been an obstacle for real-world applications. This dissertation 

research aims to develop oil-soluble, polymer brush-grafted nanoparticles (hairy NPs) for 

use as additives for base oils such as polyalphaolefin (PAO). Well-defined hairy NPs were 

synthesized by surface-initiated reversible addition-fragmentation chain transfer 

polymerization from chain transfer agent-functionalized, 23 nm silica NPs, and their 

lubrication properties were investigated in PAO by high-contact-stress ball-on-flat 

reciprocating sliding tribological tests.  

The effects of alkyl pendant groups of poly(alkyl methacrylate) brushes on oil 

dispersibility, stability, and tribological properties of hairy NPs were studied. It was found 

that hairy NPs with sufficiently long alkyl pendants ( > 8 carbon atoms, such as 12, 13, and 

16) were readily dispersed in PAO and formed homogeneous, clear dispersions with long-

term stability over a wide temperature range. Significant friction and wear reductions were 

achieved by using 1 wt% homogenous dispersions of hairy NPs in PAO. In an effort to 

increase the function of polymer brushes through the introduction of triboactive 

phosphorus into the grafted polymers, three phosphonate-containing monomers were 

synthesized and copolymerized with a long alkyl methacrylate. A significant amount of 

phosphonate can be incorporated into the brushes without comprising the dispersibility of 

hairy NPs in PAO. A synergistic effect of combining hairy NPs with a phosphonium-

phosphate ionic liquid as PAO additives was discovered. The lubricating performance was 



 

v 

 

improved significantly when the two additives were mixed at certain ratios. Analysis 

showed that both silica NPs and the ionic liquid participated in the tribo-chemical reaction. 

These research efforts have shown that hairy NPs have promise for use as lubricant 

additives. Lastly, as a side project, a series of isotactic and atactic polyethers with 

monosulfone-containing pendants were synthesized by the reaction of corresponding 

poly(epichlorohydrin) with various n-alkanethiols and subsequent oxidation of thioether 

groups with a goal of seeking ferroelectric liquid crystalline polymers for use in solid state 

cooling. The isotactic poly((R)-epichlorohydrin) was synthesized by ring-opening 

polymerization of (R)-(-)-epichlorohydrin using a commercial methylaluminoxane as the 

catalyst.  
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1.1 Introduction 

This dissertation describes the design and synthesis of polymer brush-grafted 

nanoparticles (hairy NPs) for use as additives in lubricating base oil polyalphaolefin (PAO) 

for friction and wear reduction. These hairy NPs are composed of a core particle and a 

layer of polymer chains that are end-grafted on the surface of the core. Section 1.1.1. 

presents a general introduction to polymer brush-grafted nanoparticles and the synthesis of 

both single component and multicomponent polymer brush-grafted NPs. Nanoparticles 

have been explored for application as lubricant additives, dubbed as “nanolubricants”, and 

have shown great promise. Various nanolubricants, including nanoparticle dispersions 

prepared by the use of dispersant or surface modification and oil-soluble polymer brush-

grafted NPs, will be discussed in Section 1.1.2. An overview of this dissertation work is 

given in Section 1.2 at the end of this chapter. 

 

1.1.1 Introduction to Polymer Brush-Grafted Nanoparticles 

1.1.1.1 General Introduction 

Polymer brush-grafted nanoparticles, or hairy NPs, are an interesting class of hybrid 

materials consisting of a core and an outer layer of polymer chains end-tethered to the core 

by a covalent bond. Many different types of materials can be used for the core NPs, 

including metals, metal oxides, latex particles, etc. At a sufficiently high grafting density, 

the grafted polymer chains are highly stretched, extending outwards from the surface of 

the core. Typically, the substrates for hairy NPs are spherical and solid, but NPs of other 

shapes and features, such as mesoporous or hollow structures are also utilized. The grafted 
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polymers could have different architectures, including linear or cyclic homopolymers, or 

multicomponent systems, such as binary mixed homopolymer brushes and block 

copolymer brushes, to name a few. Due to the many possible core compositions and 

polymer architectures, hairy NPs have been investigated for many different applications, 

such as drug delivery, sensing, oil lubrication, and catalysis.  Nanoparticles are known to 

have a high tendency to undergo irreversible aggregation due to their small size and 

relatively high surface energy. With a canopy of end-grafted polymer chains, the stability 

of NPs in good solvents has been demonstrated to increase significantly. This is because 

the favorable enthalpic interactions of the grafted polymer chains with the good solvent 

can overcome the unfavorable contact between NPs and solvent and the van der Waals 

attractive forces among core NPs.   

1.1.1.2 Synthesis of Single Component Polymer Brush-Grafted NPs by Surface-

Initiated “Living”/Controlled Polymerization 

There are two general methods commonly used for the synthesis of hairy NPs, “grafting 

to” and “grafting from” as illustrated in Scheme 1.1. “Grafting to” refers to the bonding of 

end-functionalized polymers to a substrate with complementary groups, where 

modification of the polymer and/or substrate is often required. This method is 

straightforward, but the polymer grafting density of hairy particles is often lower due to 

the steric hindrance of the already tethered polymer chains presented to incoming 

macromolecules. Commonly, polymer chains are end-functionalized with a thiol group for 

grafting to gold NPs.1,2 The “grafting from” method is also referred to as surface-initiated 

polymerization, where the nanoparticles are surface-modified with an appropriate initiator  
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Scheme 1.1. Two General Methods for the Synthesis of Hairy NPs: (A) “Grafting To” and 

(B) “Grafting From”.  
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for the polymerization technique used. Pruker and Rühe were one of the first to report on 

the use of surface-initiated polymerization to grow polymer brushes. They immobilized 

monochlorosilyl-functionalized azo-initiators onto various solid surfaces and grew linear 

polymer chains using conventional free radical polymerization.3 Various 

“living”/controlled polymerization techniques have been used for surface-initiated 

polymerization from many different substrates, including atom transfer radical 

polymerization (ATRP), nitroxide mediated radical polymerization (NMRP), and 

reversible addition-fragmentation chain transfer (RAFT) polymerization, which will be 

discussed individually below. Surface-initiated “living”/controlled polymerizations allow 

for the synthesis of polymer brushes with well-controlled molecular weights, narrow 

dispersities, and high grafting densities. The drawback of “grafting from” is the difficulty 

in characterizing the grafted polymers. To directly characterize brush chains, one has to 

degraft the polymer chains from the surface for characterization by NMR spectroscopy and 

size exclusion chromatography (SEC) analysis. Often, a sacrificial initiator is added to the 

polymerization mixture to produce an analogous free polymer during the synthesis of hairy 

NPs, which are used for the estimation of the molecular weight of grafted polymer chains.4 

One of the first to report on the use of surface-initiated ATRP (SI-ATRP) was 

Matyjaszewski et al., who synthesized hybrid NPs composed of polystyrene or 

polymethacrylates grafted on silica NPs.5 The initiator-modified NPs were prepared by 

anchoring a 2-bromoisobutyrate initiator (Scheme 1.2A) onto the surface of NPs through 

silane chemistry, and well-defined homopolymer and block copolymer brushes were 

grown  from  the NP  surface  by  SI-ATRP.  Fukuda et al.  synthesized a triethoxysilane-  
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Scheme 1.2. Various Atom Transfer Radical Polymerization (ATRP) Initiators Used for 

Surface Modification of Nanoparticles for Surface-Initiated ATRP.5-7 
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functionalized ATRP initiator (Scheme 1.2B) and used it to modify the surface of silica 

particles in a mixture of ethanol, water, and ammonia.6 SI-ATRP of methyl methacrylate 

from the initiator-functionalized particles produced well-defined grafted polymer brushes 

with molecular weights up to 480 kDa and grafting densities as high as 0.65 chains/nm2. 

Thermosensitive polymer brushes have been successfully synthesized by SI-ATRP by Li 

et al.7 For this work, an ATRP initiator with a longer spacer group (Scheme 1.2C)  was 

used to functionalize silica particles and to grow poly(methoxydi(ethylene glycol) 

methacrylate) (PDEGMMA) and poly(methoxytri(ethylene glycol) methacrylate) 

(PTEGMMA) brushes. Note that the cloud points of PDEGMMA and PTEGMMA in water 

are 25 °C and 48 °C, respectively. 

NMRP, another “living”/controlled radical polymerization technique, has been 

employed for the synthesis of hairy NPs. Hawker et al. demonstrated the preparation of 

polystyrene brushes from silica gel particles that were surface-functionalized with an 

alkoxyamine initiator (Figure 1.1A) by SI-NMRP.8 A free initiator, 1-phenyl-1-

(2’,2’,6’,6’-tetramethyl-1’-piperidinyloxy) ethane, was added into the polymerization 

mixture to form free polystyrene during the polymerization. They cleaved the grafted 

polystyrene chains from the silica particles and compared it with the free polystyrene 

formed from the free initiator during the polymerization; they found little difference in 

regards to molecular weight and dispersity (Ð) of the grafted and free polymers (Figure 

1.1B).  

The third “living”/controlled radical polymerization technique that is widely used in 

the  surface-initiated  polymerization  for  the  synthesis  of  polymer brush-grafted  NPs is  
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Figure 1.1. (A) Nitroxide mediated radical polymerization (NMRP) initiator used for the 

surface functionalization of silica nanoparticles and (B) GPC traces of cleaved (a) and free 

(b) polystyrene.8 (Adapted from Ref. 8 with permission from the American Chemical 

Society) 
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RAFT polymerization. One early report of surface-initiated RAFT polymerization came 

from Fukuda et al.9 They first immobilized an ATRP initiator (BCS, Scheme 1.3A) onto 

the surface of silica particles. After the surface-initiated ATRP polymerization to grow 

polystyrene chains, they converted the Br atom at the chain end to a dithiobenzoate moiety 

by reacting the hairy NPs with PBD (Scheme 1.3A) under the ATRP conditions in the 

absence of monomer. Chain extension of the grafted polymer with styrene was then 

conducted via RAFT polymerization. Benicewitz et al. reported on the immobilization of 

a RAFT-silane agent (Scheme 1.3B) onto silica nanoparticles for the SI-RAFT 

polymerization to grow polystyrene and poly(n-butyl acrylate) polymer chains.10 More 

recently, Perrier et al. reported the use of a triethoxysilane-functionalized RAFT CTA 

(Scheme 1.3C)  to modify monodisperse silica nanoparticles for SI-RAFT polymerization 

of styrene.11 

1.1.1.3 Synthesis of Well-Defined Multicomponent Polymer Brush-Grafted 

Nanoparticles by Surface-Initiated “Living”/Controlled Polymerization 

Multicomponent polymer brushes contain two or more different polymers in the brush 

layer. Examples include block copolymer brushes and mixed polymer brushes. These 

brushes can undergo self-reorganization in response to environmental changes and exhibit 

different microstructures under different conditions.12-15 One early example of the 

synthesis of diblock copolymer brush-grafted NPs was reported by Matyjaszewski et al. 

using SI-ATRP through a two-step process.5 A series of silica NPs grafted with well-

defined diblock copolymer brushes, such as polystyrene-b-poly(n-butyl acrylate) and 

poly(methyl  methacrylate) - b - poly (n-butyl  acrylate),  were  successfully  synthesized.5 
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Scheme 1.3. Various Functionalized Chain Transfer Agents (CTA) For Surface-Initiated 

RAFT Polymerization.9-11 
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Our group has studied both mixed polymer brush and block copolymer brush-grafted 

nanoparticle systems. A difunctional initiator-terminated monochlorosilane containing an 

initiating moiety for ATRP and an initiating group for NMRP was synthesized and used to 

functionalize silica NPs. Well-defined binary mixed homopolymer brushes were prepared 

by sequential SI-ATRP of t-butyl acrylate, conducted at a lower temperature (75 °C) and 

SI-NMRP of styrene, at a higher temperature (120 °C). Subsequent removal of t- butyl 

groups of poly(t-butyl acrylate) produced amphiphilic mixed poly(acrylic 

acid)/polystyrene brush-grafted silica NPs (Scheme 1.4).4 The successful synthesis of well-

defined mixed homopolymer brushes on silica particles allowed for the study of their 

responsive behavior. More recently, silica NPs grafted with diblock copolymer brushes 

composed of a thermoresponsive block and a charged block were made by SI-ATRP and 

subsequent post-polymerization modification.16 Above a critical concentration, aqueous 

dispersions of these diblock copolymer brush-grafted NPs have been shown to undergo 

thermally induced sol-gel transitions.  

1.1.2 Nanoparticles as Oil Lubricant Additives for Friction and Wear Reduction 

1.1.2.1 Nanolubricants Made by Use of Dispersant (Surfactant) or Surface 

Modification with Small Molecule Alkoxysilanes 

Increasing the energy efficiency and lifetime of machinery has long been a challenge. 

Nanolubricants, which are a class of lubricants that capitalizes on the use of NPs for friction 

and wear reduction applications, have shown great promise.17-22 Many different types of 

NPs, such as metals, metal oxides, metal sulfides, etc., have been shown to increase the 

lubrication  properties   when  added  into  a  base oil.  Although   large  friction  and  wear  
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Scheme 1.4. Synthesis of Amphiphilic Mixed Poly(Acrylic Acid)/polystyrene Brushes on 

Silica Nanoparticles.4 (Reproduced from Ref. 4 with permission from the American 

Chemical Society) 
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reduction has been reported, the dispersibility and stability of these NPs in hydrophobic 

oils have remained a challenge.19,20 Commonly, the mixture of NPs and oil is sonicated or 

shaken to form a dispersion before adding onto a metal surface for testing of their 

lubrication properties.21,22 NPs have a strong tendency to undergo aggregation in the 

lubricating base oil due to their relatively small size and high surface energy. In order to 

realize the full potential of nanolubricants, stable dispersions must be achieved. 

To solubilize NPs in lubricating base oils, researchers have used two methods: 

formulation of NPs with dispersants and surface modification of NPs to increase the oil 

solubility. Many dispersants were tested, including aliquot 336, oleic acid, and sorbitol 

monostearate, to name a few, but in some cases they were found to reduce the performance 

of NPs and none of the NP dispersions displayed long term stability (> 2 weeks).23-26 The 

mechanism of dispersant-stabilization of NPs was the absorption of amphiphilic dispersant 

molecules onto the surface of NPs. Another common approach to dispersing and stabilizing 

NPs in oils is a surface modification of NPs with various alkoxysilanes. Silanization is 

applicable to substrates bearing surface hydroxyl groups. This method requires the use of 

organic compounds containing a functional group capable of reacting with the NP surface 

and a long alkyl group for stabilization.27 Often, this is accomplished through a two-step 

process, in which an alkoxysilane, for example, (3-aminopropyl)triethoxysilane is first 

tethered to the surface and a long alkyl acid, such as lauric or stearic acid, is then reacted 

with the amine group, yielding a long alkyl stabilizer on the surface.28,29 Although many 

attempts have been made, it remains a great challenge to achieve dispersions of NPs in 

lubricating base oils over a large temperature range (e.g, -20 °C to 100 °C). 
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1.1.2.2 Polymer Brush-Grafted NPs as Lubricant Additives 

A promising approach to preparing oil-soluble NPs is the use of polymer brushes 

synthesized by surface-initiated “living”/controlled radical polymerization. Our group 

pioneered the synthesis of oil-soluble polymer brush-grafted NPs by SI-ATRP of lauryl 

methacrylate from initiator-functionalized silica and titania NPs.30 The effect of the 

molecular weight of polymer brushes on the tribological performance of hairy NPs in PAO 

was studied, and it was found that as molecular weight decreased the friction reduction 

performance of hairy NPs increased at a concentration of 1 wt% (Figure 1.2). This is likely 

due to the relative amount of core NPs present in a 1 wt% dispersion increased as the 

polymer molecular weight decreased. Stability tests were performed for 55 days at -20 °C, 

22 °C, and 100 °C for poly(lauryl methacrylate) (PLMA) brush grafted silica NPs with a 

molecular weight of 4.1 kDa (HNP-SiO2-4.1k) and PLMA-grafted titania NPs with a 

Mn,SEC of 16.2 kDa (HNP-TiO2-16.2k).30 These hairy NPs showed excellent dispersibility 

and stability, and only slight discoloration at 100 °C was observed for hairy TiO2 NPs 

(Figure 1.3). The superior dispersibility and stability of hairy NPs in oil results from the 

favorable enthalpic interactions between PLMA brushes and PAO and the entropic steric 

repulsion between hairy NPs. 

 

 

 

 

 



 

15 

 

 

 

 

 

 

 

 

   
 

Figure 1.2. Friction curves of PAO (A), free PLMA-38.0k (B), HNP‐SiO2‐38.0k (C), 

HNP‐SiO2‐21.7k (D), HNP‐SiO2‐11.8k (E), HNP‐SiO2‐4.1k (F), HNP‐TiO2‐21.5k (G), 

HNP‐TiO2‐16.2k (H), and HNP‐TiO2‐8.1k (I).30 All dispersions are 1 wt% in PAO. 

(Adapted from Ref. 30 with permission from Angewandte Chemie) 
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Figure 1.3. Optical images of 1 wt % dispersions of HNP‐SiO2‐4.1k in PAO before (A) 

and after being kept at −20, 22, 100 °C for 55 days (B), and 1 wt % dispersions of HNP‐

TiO2‐16.2k in PAO before (C) and after being kept at −20, 22, and 100 °C for 56 days 

(D).30 (Reproduced from Ref. 30 with permission from Angewandte Chemie) 
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1.2 Dissertation Overview 

This dissertation work is focused on the synthesis of polymer brush-grafted silica NPs 

and their application as oil additives for friction and wear reduction. The second chapter 

explores how the alkyl pendant group length of the monomer affects the dispersibility and 

performance of hairy NPs. The third chapter presents the synthesis of functional hairy NPs 

with the incorporation of phosphonate groups into the brushes. The fourth chapter describes 

the mixing of oil-soluble hairy NPs and an oil-miscible ionic liquid and the enhanced 

friction reduction performance when combined. The fifth chapter reports on the synthesis 

of polyethers with monosulfone-containing pendant groups of varying lengths for potential 

use as electrocaloric materials. The final chapter provides a summary of my research and 

potential ideas for future work. 

 Nanolubricants that display high colloidal stability are of particular interest for 

practical applications. For this reason, polymer brush-grafted nanoparticles have potential 

in the field of nanolubricants. Chapter 2 focuses on the synthesis of a set of hairy silica NPs 

composed of poly(alkyl methacrylate) brushes with varying pendant group lengths. SI-

RAFT polymerization was employed for the synthesis of hairy NPs from trithiocarbonate 

CTA-functionalized, 23 nm silica NPs. A corresponding CTA was added into the 

polymerization mixtures to facilitate the characterization by SEC. Hairy NPs prepared from 

alkyl methacrylates with shorter alkyl pendant groups (6 and 8 carbon atoms) were found 

to be cloudy in PAO at room temperature, while those prepared from monomers with 

longer alkyl pendant groups (12, 13, and 16 carbons atoms) were found to form 

homogenous dispersions. Significant friction reductions were achieved with the use of 
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homogenous dispersions of hairy NPs compared with the PAO base oil. We found that the 

primary function of the grafted polymer chains is to stabilize the silica particles in oil. 

The work described in Chapter 3 aims to increase the function of polymer brushes in 

hairy NPs with the incorporation of triboactive element phosphorus into the brushes. The 

hairy NPs were prepared by SI-RAFT copolymerization of a long alkyl methacrylate (13 

or 16 carbon atoms in the pendant) and a phosphonate-functionalized monomer at feed 

molar ratios of 95 : 5, 90 : 10, 85 : 15, and 80 : 20. Three phosphonate-functionalized 

monomers were designed and synthesized: diethyl (4-vinylbenzyl)phosphonate, 11-

(diethoxyphosphoryl)undecyl methacrylate, and 2-(diethoxyphosphoryl) ethyl 

methacrylate. SI-RAFT copolymerization of hexadecyl methacrylate and MAC2P from 

CTA-functionalized silica NPs afforded hairy NPs with the best dispersibility, likely due 

to the better shielding of phosphonate groups by the hexadecyl pendant groups. 

Chapter 4 presents a study on the combination of oil-soluble hairy NPs and an oil-

miscible ionic liquid (IL) as additives for PAO for friction and wear reduction. We found 

that the lubricating performance was improved significantly when the two promising 

additives are mixed at certain ratios. A PLMA brush-grafted silica NP sample was 

synthesized by SI-RAFT polymerization and mixed with a phosphonium-phosphate IL at 

various mass ratios. At a total concentration of 2 wt% and sufficiently high individual 

concentrations, tribological tests showed that significant decreases in friction were 

achieved compared with the 2 wt% hairy NPs alone and 2 wt% IL alone. Scanning electron 

microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) indicated the presence of 
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both Si and P in the tribofilm, suggesting that both hairy silica NPs and the IL participated 

in the tribo-chemical reaction. 

Chapter 5 describes the synthesis of isotactic and atactic polyethers with monosulfone-

containing pendant groups by the reaction of isotactic and atactic polyepichlorohydrins 

with various n-alkanethiols and the subsequent oxidation of the thioether groups. 13C NMR 

spectroscopy analysis confirmed the formation of isotactic poly((R)-epichlorohydrin) by 

ring-opening polymerization of (R)-(-)-epichlorohydrin using a commercial 

methylaluminoxane (MAO) catalyst. 1H NMR spectroscopy showed that the substitution 

reaction of atactic and isotactic polyepichlorohydrin with n-alkane thiols were complete. 

The structures of these polymers are being characterized by our collaborators. 
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18. Chiñas-Castillo, F.; Spikes, H. A. Mechanism of Action of Colloidal Solid 

Dispersions. J. Tribol. 2003, 125 (3), 552-557. 

19. Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of nanoparticles in oil lubrication. 

Tribol. Int. 2016, 102, 88-98. 

20. Gulzar, M.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Zulkifli, N. W. M.; Mufti, 

R. A.; Zahid, R. Tribological performance of nanoparticles as lubricating oil 

additives. J. Nanopart. Res. 2016, 18 (8), 223. 

21. Kalin, M.; Kogovšek, J.; Remškar, M. Mechanisms and improvements in the friction 

and wear behavior using MoS2 nanotubes as potential oil additives. Wear 2012, 280-

281, 36-45. 



 

23 

 

22. Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; 

Le Mogne, T. Boundary lubrication: Influence of the size and structure of inorganic 

fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 2014, 320, 

161-178. 

23. Bogunovic, L.; Zuenkeler, S.; Toensing, K.; Anselmetti, D. An Oil-Based 

Lubrication System Based on Nanoparticular TiO2 with Superior Friction and Wear 

Properties. Tribol. Lett. 2015, 59 (2), 29. 

24. Hu, Z. S.; Dong, J. X.; Chen, G. X. Study on antiwear and reducing friction additive 

of nanometer ferric oxide. Tribol. Int. 1998, 31 (7), 355-360. 

25. Qiu, S.; Zhou, Z.; Dong, J.; Chen, G. Preparation of Ni Nanoparticles and Evaluation 

of Their Tribological Performance as Potential Additives in Oils. J. Tribol. 1999, 123 

(3), 441-443. 

26. Rabaso, P.; Dassenoy, F.; Ville, F.; Diaby, M.; Vacher, B.; Le Mogne, T.; Belin, M.; 

Cavoret, J. An Investigation on the Reduced Ability of IF-MoS2 Nanoparticles to 

Reduce Friction and Wear in the Presence of Dispersants. Tribol. Lett. 2014, 55 (3), 

503-516. 

27. Sui, T.; Song, B.; Wen, Y.-h.; Zhang, F. Bifunctional hairy silica nanoparticles as 

high-performance additives for lubricant. Sci. Rep. 2016, 6, 22696. 

28. López, T. D.-F.; González, A. F.; Del Reguero, Á.; Matos, M.; Díaz-García, M. E.; 

Badía-Laíño, R. Engineered silica nanoparticles as additives in lubricant oils. Sci. 

Technol. Adv. Mater. 2015, 16 (5), 055005. 



 

24 

 

29. Yu, B.; Qian, L.; Yu, J.; Zhou, Z. Effects of Tail Group and Chain Length on the 

Tribological Behaviors of Self-Assembled Dual-Layer Films in Atmosphere and in 

Vacuum. Tribol. Lett. 2008, 34 (1), 1. 

30. Wright, R. A. E.; Wang, K.; Qu, J.; Zhao, B. Oil-Soluble Polymer Brush Grafted 

Nanoparticles as Effective Lubricant Additives for Friction and Wear Reduction. 

Angew. Chem., Int. Ed. 2016, 55 (30), 8656-8660. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25 

 

 

 

 

 

 

 

Chapter 2. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles 

as Oil Lubricant Additives: Effects of Alkyl Pendant Group on Oil 

Dispersibility, Stability, and Lubrication Property 
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Abstract 

This chapter describes the synthesis of a series of poly(alkyl methacrylate) brush-

grafted, 23 nm silica nanoparticles (hairy NPs) and the study of the effect of alkyl pendant 

length on their use as oil lubricant additives for friction and wear reduction. The hairy NPs 

were prepared by surface-initiated reversible addition-fragmentation chain transfer 

polymerization from trithiocarbonate chain transfer agent (CTA)-functionalized silica NPs 

in the presence of a free CTA. We found that hairy NPs with sufficiently long alkyl pendant 

groups (containing > 8 carbon atoms, such as 12, 13, and 16 in this study) could be readily 

dispersed in poly(alphaolefin) (PAO), forming clear, homogeneous dispersions, and 

exhibited excellent stability at low and high temperatures as revealed by visual inspection 

and dynamic light scattering studies. While poly(n-hexyl methacrylate) hairy NPs cannot 

be dispersed in PAO at ambient conditions or at 80 C, interestingly, poly(2-ethylhexyl 

methacrylate) hairy NPs can be dispersed in PAO at 80 C, but not at room temperature, 

with a reversible clear-to-cloudy transition observed upon cooling. High contact stress ball-

on-flat reciprocating sliding tribological tests at 100 °C showed significant reductions in 

both coefficient of friction (up to 38%) and wear volume (up to 90% for iron flat) for 

transparent, homogeneous dispersions of hairy NPs in PAO at a concentration of 1.0 wt% 

compared with neat PAO. The formation of a load-bearing tribofilm at the rubbing 

interface was confirmed using scanning electron microscopy coupled with energy 

dispersive X-ray spectroscopy. 
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2.1. Introduction 

Lubrication is vitally important for numerous mechanical systems,1-4 with examples 

including pumps, gears, vehicles, trains, and aircrafts. Not only can lubricants extend the 

lifetime of individual components and entire systems, thus improving durability and 

reliability, but also boost energy conversion efficiency, an issue that has received 

widespread attention in recent years. As such, lubricants with increased performance are 

being continuously sought, and significant progress has been made in the past decades. For 

automotive engines, fully formulated lubricants contain a variety of additives such as 

antioxidants, detergents, anti-wear agents, friction reducers, and viscosity index 

improvers,1 which have distinct functions during engine operation. Zinc 

dialkyldithiophosphates (ZDDPs) have been widely used as anti-wear additives1-6 due to 

their low cost and relatively rapid formation of protective tribofilms at the rubbing 

interfaces.5-8 However, the presence of significant levels of both sulfur and phosphorus are 

troublesome for exhaust treatment, and it has been reported that ZDDPs can poison 

catalysts in catalytic converters.9 Consequently, a limit has been imposed by regulations 

on the amount of ZDDP that can be added into engine lubricants. Therefore, the pursuit of 

additives capable of partially or wholly replacing ZDDP has generated much interest,10-12 

and among many possible candidates, nanoparticles (NPs) have been suggested as a 

promising class.12 

The use of NPs as additives is particularly intriguing because of their potential to 

exhibit desired interactions with surface asperities, as afforded by their small size, large 

surface area, tunability of surface chemistry, etc.12-26 NP-additized lubricants, sometimes 
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dubbed “nanolubricants”,12 have been demonstrated to impart relatively strong boundary 

films (i.e., tribofilms) formed from complex mechano-chemical reactions at rubbing 

interfaces involving NPs under harsh conditions of high local pressure and temperature.12,13 

Desired tribological properties have been observed for NPs based on metals as well as so-

called inorganic fullerenes such as MoS2.
14-19 Both types of NPs can effectively form 

protective layers at the material surfaces, typically through thermo-mechanically induced 

melting and delamination, respectively. Metal oxide NPs, including titanium, silicon, 

copper, and zinc oxides, have also been shown to exhibit anti-wear and anti-friction 

properties.20-24 The application of NPs as lubricant additives, however, is almost always 

impeded in some way by their tendency towards aggregation in hydrocarbon solvents 

because of the high surface area associated with their small size, relatively high surface 

energy, and van der Waals attractive interactions. When aggregation occurs, the effective 

particle size increases, resulting in a rapid decrease in diffusion into contact areas and thus 

an increase in interfacial friction and material wear. Therefore, the colloidal stability of 

individually dispersed NPs is paramount for the effective utilization of essentially all 

nanolubricants. As such, nanolubricants are typically formulated with surfactants or are 

surface modified with appropriate organic compounds to stabilize the NP-oil interface.12-

26 Despite the progress that has been made, it remains a great challenge to achieve stable, 

homogeneous dispersions of NPs in base oils (e.g., polyalphaolefin (PAO)) that exhibit 

long-term colloidal stability in a temperature range from the extreme cold in winter (e.g., -

20 C) to typical engine operating conditions (~100 C) and to realize the full potential of 

NPs as lubricant additives for friction and wear reduction. 
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Polymer brush-grafted NPs (i.e., hairy NPs) consists of a layer of polymer chains 

densely tethered at one end to the surface of core NPs.27-30 These nanostructured hybrid 

NPs exhibit remarkable dispersibility and superior stability in good solvents because of the 

solvation forces from the favorable enthalpic interactions between the brushes and solvents 

and the entropic, steric repulsions between hairy NPs, which effectively prevent NPs from 

undergoing irreversible aggregation.27-34 Our lab recently reported the synthesis of oil-

soluble poly(lauryl methacrylate) (PLMA or PC12) brush-grafted 23.8 nm silica and 15 

nm (nominal) titania NPs by surface-initiated atom transfer radical polymerization (SI-

ATRP) and the use of these hairy NPs as lubricant additives for friction and wear 

reduction.35 These hairy NPs can be readily dispersed in PAO base oil, forming transparent 

homogeneous dispersions that exhibited long-term stability at -20, ambient temperature, 

and 100 C. Tribological analysis at 100 C showed that addition of 1.0 wt% of PC12 hairy 

NPs with either silica or titania core led to significant reductions in friction (up to ~ 40%) 

and wear volume. At a 1.0 wt% concentration of hairy NPs, it was observed that friction 

reduction increased with decreasing brush molecular weight, which was attributed to the 

increased number of NPs in PAO.35 In addition, our lab found that the coefficient of friction 

decreased with increasing hairy NP concentration from 0.25 to 1, 2 and 4 wt%, although 

the improvement was small when the concentration was above 2 wt%. 

In this work, we focused on the effects of alkyl pendant group of poly(alkyl 

methacrylate) brushes on dispersibility, stability, and lubrication property of hairy NPs. A 

series of poly(alkyl methacrylate) brush-grafted, 23 nm silica NPs with various alkyl 

pendant  lengths  (Scheme 2.1)  were  synthesized  by surface-initiated  reversible addition-  
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Scheme 2.1. Synthesis of Various Poly(alkyl methacrylate) Brush-Grafted, 23 nm Silica 

Nanoparticles by Surface-Initiated Reversible Addition-Fragmentation Chain Transfer 

(RAFT) Polymerization and Chemical Structures of Monomers and RAFT Chain Transfer 

Agents (CTAs). 
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fragmentation chain transfer (SI-RAFT)36-42 polymerization from silica NPs surface 

functionalized with a chain transfer agent (CTA) in the presence of a free CTA. RAFT 

polymerization allows for the synthesis of well-defined polymers with desired molecular 

weights and relatively low dispersities.43,44 We found that the alkyl pendant length must be 

longer than 8 carbon atoms for the hairy NPs to be easily dispersed in PAO at room 

temperature to form stable homogeneous systems. All readily dispersible hairy NPs 

showed significant friction and wear reductions when added into PAO at a concentration 

of 1.0 wt%. While the results reported here demonstrate the effectiveness of poly(alkyl 

methacrylate) brush-grafted silica NPs with sufficiently long alkyl pendants in particular 

as lubricant additives, we believe that this exploration of the effect of polymer’s chemical 

composition on hairy NP’s stability and lubrication performance will provide a guideline 

for design of polymer brush-grafted inorganic or metallic NPs as effective nanolubricants 

in general. 

 

2.2. Experimental Section 

2.2.1. Materials 

Silica nanoparticles (NPs) with a size of 10–15 nm, according to the manufacturer, 

were obtained from Nissan Chemical as a dispersion in methyl isobutyl ketone (MIBK) at 

a concentration of 30-31 wt% SiO2 (MIBK-ST). n-Hexyl methacrylate (MA-C6, 97%, 

TCI), 2-ethylhexyl methacrylate (MA-C8, >99.0 %, TCI), lauryl methacrylate (MA-C12, 

97%, Acros), tridecyl methacrylate (MA-C13, mixture of branched-chain isomers, TCI), 

and hexadecyl methacrylate (MA-C16, Wake Chemicals USA) were passed through a 
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column of silica gel (bottom)/activated basic aluminum oxide (top) (2/1, v/v) to remove 

the inhibitor. Monomers were stored in a refrigerator prior to use. Toluene and THF were 

dried with sodium/benzophenone, distilled under a nitrogen atmosphere, and used 

immediately. 1-Butanethiol (98%, Acros), carbon disulfide (>99%, Fisher), 4,4'-azobis(4-

cyanopentanoic acid) (98%, Alfa Aesar), iodine (pure, Acros), N,N-

dicyclohexylcarbodiimide (DCC, 99%, Acros), N-hydroxysuccinimide (NHS, >98%, 

Acros), and (3-aminopropyl)triethoxysilane (APTES, 99%, Acros) were used without 

further purification. Azobisisobutyronitrile (AIBN, 98%, Aldrich) was recrystallized from 

ethanol and dried under vacuum before use. The polyalphaolefin (PAO) used in this work 

was SpectraSynTM 4 PAO fluid obtained from ExxonMobil, with kinematic viscosities of 

19.0 cSt and 4.1 cSt at 40 and 100 C respectively. Its pour point was – 87 C. All other 

chemical reagents were purchased from either Aldrich or Fisher and used without further 

purification. 

2.2.2. Characterization 

 Size exclusion chromatography (SEC) of the free polymers formed in the synthesis 

poly(alkyl methacrylate) brush-grafted silica NPs was performed using a PL-GPC 20 (an 

integrated SEC system from Polymer Laboratories, Inc.) equipped with a refractive index 

detector, one PLgel 5 μm guard column (50 × 7.5 mm), and two PLgel 5 μm mixed-C 

columns (each 300 × 7.5 mm, linear range of molecular weight from 200 to 2 000 000 Da). 

THF was the mobile phase, and the flow rate for analysis was set at 1.0 mL/min. The SEC 

system was calibrated with polystyrene standards, and the data were processed using Cirrus 

GPC/SEC software (Polymer Laboratories, Inc.). 1H and 13C NMR spectra were recorded 
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on a Varian VNMRS 500 MHz spectrometer or Mercury 300 MHz, and the residual solvent 

proton signal was used as the internal reference. Thermogravimetric analysis (TGA) was 

carried out in N2 at a heating rate of 20 C/min from room temperature to 800 C using TA 

Discovery TGA-MS or TA Q-series Q50. Scanning transmission electron microscopy 

(STEM) was performed using a Zeiss Auriga equipped with a scanning transmission 

electron detector at an accelerating voltage of 30 keV. The STEM samples of poly(alkyl 

methacrylate) brush-grafted silica NPs were prepared by drop-casting their THF 

dispersions with a concentration of 2 mg/mL onto carbon-coated, copper TEM grids. 

Scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM-EDS) 

analysis of the wear track was performed using a Zeiss EVO MA15, equipped with an 

XFlash 6|30 silicon drift detector. An accelerating voltage of 20 kV was used, and 

topographic images were obtained using a secondary electron detector. The high-resolution 

mass spectroscopy (HRMS) experiment was performed using a JEOL Model JMS-T100LC 

(AccuTOF) orthogonal time-of-flight (TOF) mass spectrometer (Peabody, MA) with an 

IonSense (Danvers, MA) DART source. The HRMS sample of CTA-Silane was prepared 

in methanol with a concentration of 4.3 mg/g.  

2.2.3. Synthesis of 4-(((Butylthio)carbonothioyl)thio)-4-cyanopentanoic Acid (CTA-

COOH)  

CTA-COOH was synthesized according to a literature procedure with slight 

modifications (1-butanethiol was used instead of 1-dodecanethiol).44 Sodium hydride 

(5.858 g of 60% dispersion in mineral oil, corresponding to 3.515 g of NaH, 146.5 mmol) 

was added into a 250 mL 3-necked flask that contained diethyl ether (100 mL) under a 
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nitrogen atmosphere, followed by gradual addition of n-butanethiol (12.665 g, 140.44 

mmol) through an addition funnel. Carbon disulfide (11.162 g, 146.60 mmol) was then 

added dropwise, and a yellow precipitate appeared. After the reaction proceeded at room 

temperature for 1 h, the solid precipitate was collected by vacuum filtration and re-

suspended in diethyl ether (100 mL) in a 250 mL 3-necked flask. Solid iodine (15.653 g, 

61.675 mmol) was then added piecewise into the flask, and the mixture was stirred at room 

temperature overnight. The solid was removed by filtration, and the dark brown filtrate was 

washed three times with a saturated, aqueous sodium thiosulfate solution, with no color 

observed in the aqueous layer upon the final wash. The organic layer was further washed 

once with water, collected, and dried over anhydrous sodium sulfate. The volatiles were 

removed using a rotary evaporator, yielding a dark, red-orange oil, which was further dried 

under high vacuum. 

The obtained bis(n-butylsulfanylthiocarbonyl) disulfide (5.146 g, 15.56 mmol), 4,4-

azobis(4-cyanovaleric acid) (5.440 g, 19.41 mmol), and ethyl acetate (100 mL) were added 

into a 250 mL 3-necked flask. The mixture was stirred under a nitrogen atmosphere to form 

a homogeneous solution. The flask was then placed in an oil bath and refluxed at 75 C 

overnight, and then the solvent was removed by a rotary evaporator. The crude product 

was purified by silica gel column chromatography using a mixture of hexanes and ethyl 

acetate (3 : 2, v/v). An orange oil was obtained after drying under high vacuum (4.051 g, 

89.3%). 1H NMR δ (ppm, CDCl3): 3.34 (t, CH3CH2CH2CH2S-, 2H), 2.69-2.67 (m, -

CCH2CH2CO-, 2H), 2.57-2.36 (m, -CCH2CH2CO- ,2H) 1.88 (s, -CH3, 3H), 1.71-1.65 (m, 
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CH3CH2CH2CH2S-, 2H), 1.47-1.39 (m, CH3CH2CH2CH2S-, 2H), 0.92 (t, 

CH3CH2CH2CH2S-, 3H).  

2.2.4. Synthesis of n-Butyl (2-Cyano-5-oxo-5-((3-(triethoxysilyl)propyl)amino) 

pentan-2-yl) carbonotrithioate (CTA-Silane) 

4-(((Butylthio)carbonothioyl)thio)-4-cyanopentanoic acid (CTA-COOH, 4.051 g, 

13.90 mmol) was dissolved in dichloromethane (40 mL) in a 250 mL three-necked flask, 

followed by the addition of N-hydroxysuccinimide (NHS, 2.472 g, 21.49 mmol). The 

reaction vessel was placed in an ice/water bath, and the mixture was stirred with a magnetic 

stir bar under an N2 atmosphere. N,N'-Dicyclohexylcarbodiimide (DCC, 3.953 g, 19.16 

mmol) was dissolved in dichloromethane (40 mL), and the solution was added dropwise 

into the flask via an addition funnel. After the reaction mixture was stirred at room 

temperature overnight, the solid was removed by gravity filtration. The filtrate was 

concentrated using a rotary evaporator and then dissolved in dichloromethane (100 mL). 

(3-Aminopropyl)triethoxysilane (APTES, 3.002 g, 13.56 mmol), dissolved in 

dichloromethane (10 mL), was added dropwise to the solution; the reaction mixture was 

stirred at room temperature overnight, with little to no discoloration being observed. The 

white precipitate present in the reaction mixture was removed by filtration, and the solution 

was then concentrated by using a rotary evaporator. The product was purified by silica gel 

column chromatography, initially using pure hexane as eluent and slowly transitioning to 

a mixture of hexane and ethyl acetate (1 : 1, v/v), yielding an orange viscous liquid (2.537 

g, 36.9 %). 1H NMR δ (ppm, CDCl3): 5.93 (br s, -NH, 1H), 3.84-3.80 (m, -O(CH2CH3)3, 

6H), 3.33 (t, CH3CH2CH2CH2S-, 2H), 3.26-3.24 (m, -NHCH2CH2CH2Si-, 2H), 2.54-2.32 
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(m, -CCH2CH2CO-, 4H), 1.88 (s, -C(CN)CH3, 3H), 1.69-1.63 (m, CH3CH2CH2CH2S- and 

-NHCH2CH2CH2Si-, 4H), 1.46-1.39 (m, CH3CH2CH2CH2S-, 2H), 1.23 (t, -O(CH2CH3)3, 

9H), 0.93 (t, CH3CH2CH2CH2S-, 3H), 0.63 (t, -NHCH2CH2CH2Si-, 2H). 13C NMR δ (ppm, 

CDCl3): 217.23 (-S(C=S)S-), 170.05 (-CH2(CO)NH-), 119.21 (-CN), 58.50 (-

O(CH2CH3)3), 46.72 (-NHCH2CH2CH2Si-), 41.98 (-SC(CH3)(CN)CH2-), 36.70 

(CH3CH2CH2CH2S-), 34.54 (-CH2CH2CO-), 31.87 (CH3CH2CH2CH2S-), 29.71 (-

CH2CH2CONH-), 25.00 (-CH2CH2CH2Si-), 22.74 (CH3CH2CH2CH2S-), 22.06 (-

SC(CH3)(CN)CH2-), 18.29 (-Si(OCH2CH3)3), 13.55 (CH3CH2CH2CH2S-), 7.80 (-

CH2CH2CH2Si-). HRMS (DART-TOF): m/z calc C20H38N2O4S3Si [M+H]+: 495.18412; 

found: 495.18252; mass error: 3.23 ppm.   

2.2.5. Synthesis of CTA-Functionalized Silica NPs (CTA-NPs) 

Three batches of CTA-NPs used in the present work denoted as CTA-NPs-B1, -B2, 

and -B3, were prepared by similar procedures. The following is the description for the 

preparation of CTA-NPs-B3. MIBK-ST (3.348 g of dispersion with a concentration of 30 

wt%, corresponding to 1.004 g of bare SiO2 NPs) was weighed into a 100 mL three-necked 

flask and diluted with anhydrous THF (50 mL), followed by slow addition of CTA-Silane 

(0.995 g, 2.009 mmol) through an addition funnel. The reaction mixture was stirred with a 

magnetic stir bar and refluxed in a 75 °C thermostated oil bath. The reaction was carried 

out for two days, after which the mixture changed from yellow to dark orange but remained 

transparent. The CTA NPs were isolated by ultracentrifugation (Beckman Optima L-90K 

Ultracentrifuge with type 60 Ti rotor, 35000 rpm, 60 min, 4°C), re-dispersed in THF, and 

separated by ultracentrifugation again. This dispersion-ultracentrifugation washing cycle 
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was repeated for a total of four times. The purified CTA-NPs-B3 (0.805 g), a dark orange 

solid, was dispersed in THF and stored as a dispersion with a concentration of 64.1 mg/g 

in the fridge. 

2.2.6. Synthesis of Poly(Alkyl Methacrylate) Brush-Grafted Silica NPs 

Poly(alkyl methacrylate) brush-grafted silica NPs (hairy NPs) were synthesized by 

surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) 

polymerization from CTA-NPs. Described below is the synthesis of poly(tridecyl 

methacrylate) (PC13) brush-grafted silica NPs, denoted as PC13-NP3-7.2k, where PC13 is 

the grafted polymer, NP3 refers to hairy NPs made from CTA-NPs-B3, and 7.2k is the 

Mn,SEC of the corresponding free polymer. Other hairy NPs were prepared following a 

similar procedure and named using the same method. Tridecyl methacrylate (MA-C13, 

mixture of branched-chain isomers, 0.901 g, 3.356 mmol), CTA-COOH (30.2 mg, 0.104 

mmol), AIBN (2.578 mg, 0.0157 mmol, from 0.188 g of a stock solution in THF with a 

concentration of 13.7 mg/g), and a dispersion of CTA-NPs-B3 in THF with a concentration 

of 64.1 mg/g (3.126 g, corresponding to 200.4 mg of CTA-NPs) were added into a 25 mL 

two-necked flask, followed by the addition of N,N-dimethylformamide (DMF, 0.0632 g) 

used as internal standard. After the reaction mixture was degassed by three freeze–pump–

thaw cycles, the flask was placed in an oil bath with a preset temperature of 70 °C. After 

18 h, the polymerization was stopped by removing the flask from the oil bath, exposing the 

reaction mixture to air, and diluting with THF (5 mL). The final monomer conversion was 

found to be 97.6%, as determined by 1H NMR spectroscopy analysis by comparing the 

average of the vinyl peaks at 6.08 and 5.52 ppm against the peak at 2.87 ppm from internal 



 

38 

 

standard DMF for initial 0 min and final sample. The DP was 25, calculated using the 

monomer conversion and the molar ratio of monomer MA-C13 to the sum of free and 

grafted CTA as detailed in a publication from our lab45 and also in the appendix (A.1. 

Calculation of Degree of Polymerization and Grafting Density of PC13 Brushes in PC13-

NP3-7.2k). The PC13 brush-grafted silica NPs (i.e., PC13-NP3-7.2k) were separated by 

ultracentrifugation (35000 RPM, 60 min, 4°C), re-dispersed in THF, and centrifuged again. 

This purification cycle was repeated for a total of five times. The hairy NPs were dispersed 

in THF and stored as a dispersion with a concentration of 19.0 mg/g. The supernatant liquid 

from the first centrifuge cycle was precipitated in methanol to isolate the free polymer 

PC13, which was further purified by dissolving in THF and precipitating in methanol again. 

SEC analysis of the purified free homopolymer PC13 showed that the Mn,SEC value was 7.2 

kDa with a Ð of 1.16 relative to polystyrene standards. 

2.2.7. Preparation and Stability Study of 1.0 wt% Dispersions of Poly(Alkyl 

Methacrylate) Brush-Grafted Silica NPs in PAO  

The following is the preparation of a 1.0 wt% dispersion of PC13-NP1-9.7k in PAO. 

Other samples were prepared using a similar procedure. PAO (7.451 g) was weighed in a 

20 mL scintillation vial followed by the addition of a dispersion of PC13-NP1-9.7k in THF 

with a concentration of 19.0 mg/g (3.896 g, corresponding to 74.0 mg of hairy NPs). The 

resultant mixture was ultrasonicated using Fisher Scientific FS6 for 5 min until a 

homogeneous dispersion was achieved. THF was initially removed by a gentle stream of 

nitrogen, and the dispersion was further dried under high vacuum to ensure that THF was 

completely removed.  
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To test the stability of the dispersions of hairy NPs in PAO, aliquots of each sample 

were quiescently stored in a freezer (–15 C), at ambient condition (18 C), and in a 100 

C oil bath, with digital photographs being taken periodically to record the state of the hairy 

NP dispersions. While PC12-NP1-9.5k, PC13-NP1-9.7k, PC13-NP3-7.2k, and PC16-NP2-

8.3k formed clear and stable dispersions in PAO (Figure A1), the 1.0 wt% suspensions of 

PC6-NP1-7.0k and PC8-NP1-7.8k in PAO were found to be cloudy and unstable at room 

temperature. Interestingly, the PAO dispersion of PC8-NP1-7.8k became clear and 

homogeneous at elevated temperatures, while the dispersion of PC6-NP1-7.0k showed no 

visible change upon heating but stayed cloudy. The clear PAO dispersion of PC8 brush-

grafted silica NPs with a concentration of 1.0 wt% was cooled from an elevated 

temperature at an interval of 1 C in an Isotemp (Fisher Scientific) and equilibrated at each 

temperature for 5 min. The temperature at which a dispersion turned cloudy was recorded 

as cloud point. 

Dynamic light scattering (DLS) measurements were performed to further study the 

stability of PC13-NP1-9.7k in PAO using a Malvern Zetasizer Nano ZS instrument 

equipped with a He-Ne 633 nm laser and a temperature controller at a scattering angle of 

173. Three 1.0 wt% dispersions of PC13-NP1-9.7k in PAO were prepared and kept at – 

15 C, ambient temperature (18 C), and 100 C, respectively, for 60 days. Aliquots were 

removed and diluted with pure PAO to a concentration of 0.1 mg/g, and the hydrodynamic 

sizes of hairy NPs were measured at 23 C by DLS. The viscosity of PAO at 23 C, 27.6 

cP, was calculated from the kinematic viscosity (34.5 cSt) from the literature and its density 

at 23 C (0.80 g/mL).10  
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2.2.8. Tribological Testing  

To investigate the effect of polymer brush composition on the tribological properties 

of hairy silica NPs in PAO, high contact stress, ball-on-flat tests were performed using a 

Phoenix Tribology Plint TE 77 tribo-tester. In each test, an AISI 52100 steel ball was 

reciprocally slid against a stationary CL35 cast iron flat, both of which were submerged in 

the lubricant. A sliding stroke of 10 mm and an oscillation frequency of 10 Hz were used. 

The tribological tests were conducted at 100 C for a total sliding distance of 1000 m under 

a point contact load of 100 N. The friction force was measured in situ by a piezoelectric 

load cell and the friction coefficient was calculated through normalization by the load. For 

each hairy NP lubricant sample, at least two runs were conducted and the average was used. 

After testing, the iron flat and steel ball, as well as their respective wear scars, were cleaned 

thoroughly with acetone and isopropanol for wear measurements and SEM/EDS 

characterization. Material wear volumes of the resultant testing scars on both the iron flat 

and steel ball were measured using optical surface profilometry (Wyko NT9100). 

When characterizing the tribological properties of PC6-NP1-7.0kDa and PC8-NP1-

7.8kDa in PAO, 1.0 wt% dispersions of these two NP samples were heated to 80 °C and 

stirred for 30 min prior to loading onto the iron flat that had been preheated to 100 °C. In 

the case of PC8-NP1-7.8k-additized PAO, the applied dispersion was transparent and 

homogeneous, whereas the PC6-NP1-7.0k-additized PAO remained cloudy at the elevated 

temperature. The lubricant was then allowed to thermally equilibrate for 10 min before 

tribological testing was carried out. To investigate the effect of the inherent instability of 

these hairy particles, PC6-NP1-7.0k- and PC8-NP1-7.8k-additized PAO lubricants were 
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subjected to a quiescent period of seven days at room temperature, during which the NPs 

appeared to have finished settling out of the PAO. In both cases, oil was removed from the 

top, NP-poor portion of the dispersion and applied directly to the iron flat at ambient 

temperature prior to tribological testing. 

2.2.9. Removal of RAFT CTA Chain End Group of PC13-NP3-7.2k by Treatment 

with AIBN  

PC13-NP3-7.2k (73.3 mg) was dispersed in toluene (1.020 g) in a 25 mL two-necked 

flask via ultrasonication (Fisher Scientific FS6) to form a clear, homogeneous dispersion. 

After AIBN (21.0 mg, 0.128 mmol) was added into the flask, the mixture was degassed by 

three freeze-pump-thaw cycles. The reaction mixture was then heated to 80 °C in an oil 

bath and stirred overnight to ensure complete chain-end saturation. The mixture was then 

diluted with THF. The hairy NPs were isolated by ultracentrifugation (Beckman Optima 

L-90K Ultracentrifuge with type 60 Ti rotor, 35000 RPM, 60 min, 4 °C), redispersed in 

THF, and centrifuged again. This purification cycle was repeated for a total of three times. 

The AIBN-treated hairy NPs were isolated, dried under vacuum to yield a sticky, white 

solid (PC13-NP3-7.2k-AIBN, 59.6 mg), and characterized by TGA and 1H NMR 

spectroscopy analysis for comparison with PC13-NP3-7.2k. 

To confirm the removal of RAFT CTA trithiocarbonate end groups of hairy NPs by 

treatment with AIBN at 80 C, a similar reaction using the free PC13 homopolymer with a 

Mn,SEC of 7.2 kDa and a DP of 25 (135 mg, 0.0219 mmol) was carried out with AIBN (55 

mg, 0.33 mmol) and toluene (3.013 g) at 80 °C for 4 h. The polymer was then purified by 

precipitation in methanol three times, dried under high vacuum, and analyzed by 1H NMR 
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spectroscopy. The trithiocarbonate end groups were completely removed for both hairy 

NPs PC13-NP3-7.2k and free polymer PC13 as evidenced by the disappearance of the peak 

at 3.23 ppm (-S(C=S)SCH2CH2CH2CH3) (see Figure A2). A color change of the polymer 

and hairy NPs from yellow to white after AIBN treatment was also observed.  

2.2.10. Synthesis of Free Polymer Poly(tridecyl methacrylate) with a Mn,SEC of 20.8 k 

(PC13-20.8k) by ATRP  

Copper(I) bromide (13.0 mg, 0.0906 mmol) and copper(II) bromide (4.1 mg, 0.018 

mmol) were added to a 25 mL two-necked flask alongside ethyl 2-bromoisobutyrate (EBiB, 

5.1 mg, 0.026 mmol) and tridecyl methacrylate (MA-C13, 0.946 g, 3.52 mmol). 

N,N,N,N,N-Pentamethyldiethylenetriamine (PMDETA, 20.0 mg, 0.115 mmol) was 

added to the mixture immediately before freezing and degassing by three freeze–pump–

thaw cycles. The polymerization was carried out at 55 °C for 135 min, achieving a 

monomer conversion of 53.5 % before being halted by exposure to air and dilution in THF. 

The degree of polymerization (DP) was calculated to be 72, and  Mn,SEC of 20.8 kDa and a 

Ð of 1.15 (Figure A3) as determined by SEC analysis. 

 

2.3. Results and Discussion 

2.3.1. Synthesis of RAFT CTA-Functionalized 23 nm Silica NPs  

To study the effect of alkyl pendant length on oil dispersibility, stability, and lubrication 

property of poly(alkyl methacrylate) brush-grafted NPs as engine lubricant additives, SI-

RAFT polymerization was chosen to grow poly(alkyl methacrylate) brushes from silica 

NPs because RAFT allows for readily achieving high monomer conversions and obtaining 
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desired degrees of polymerization (DPs) while maintaining  relatively low dispersities. To 

this end, a triethoxysilane-functionalized chain transfer agent (CTA), CTA-Silane, was 

designed and synthesized (Scheme 2.2); we used n-butyl instead of the more popular n-

dodecyl as the Z group in order to avoid possible steric hindrance during the RAFT chain 

transfer process on the surface of silica NPs. 4-(((Butylthio)carbonothioyl)thio)-4-

cyanopentanoic acid (CTA-COOH) was prepared using a procedure adapted from the 

literature.44 Briefly, sodium n-butyl trithiocarbonate was synthesized from sodium 1-

butanethiolate and carbon disulfide, followed by oxidization with iodine to yield bis(n-

butylsulfanylthiocarbonyl) disulfide. CTA-COOH was obtained by reaction of the disulfide 

with 4,4-azobis(4-cyanovaleric acid) in ethyl acetate at 80 C and purified by silica gel 

column chromatography. To mitigate possible aminolysis of the trithiocarbonate moiety of 

CTA-COOH in the reaction with (3-aminopropyl)triethoxysilane (APTES), N-

hydroxysuccinimide (NHS) was used to activate the carboxylic acid of CTA-COOH in the 

presence of N,N-dicyclohexylcarbodiimide in dichloromethane. The triethoxysilane group 

was then introduced onto the CTA by slow addition of APTES to the solution of NHS ester; 

the characteristic yellow color of the CTA remained strong throughout the reaction. The 

final product, CTA-Silane, was purified by column chromatography and obtained as an 

orange viscous liquid. The molecular structure of CTA-Silane was confirmed by 1H and 

13C NMR spectroscopy as well as high-resolution mass spectrometry. Figure 2.1A shows 

its 1H NMR spectrum in CDCl3 with peak assignments. The integrals of the peaks were in 

agreement with the molecular structure.  
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Scheme 2.2. Synthesis of Triethoxysilane-Functionalized Trithiocarbonate CTA (CTA-

Silane). 
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Figure 2.1. (A) 1H NMR spectrum of CTA-Silane in CDCl3. (B) SEC trace of free polymer 

with a Mn,SEC of 7.2k (PC13-7.2k) formed from free CTA, CTA-COOH, in the synthesis 

of PC13-NP3-7.2k. (C) 1H NMR spectra of free polymer PC13-7.2k and PC13-NP3-7.2k 

hairy NPs in CDCl3. (D) Thermogravimetric analysis (TGA) of (i) CTA-NPs-B3, (ii) 

PC13-NP3-7.2k after treatment with AIBN, and (iii) PC13-NP3-7.2k. The TGA was 

carried out in N2 at a heating rate of 20 °C/min. 
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CTA-Silane was then immobilized onto the surface of bare silica NPs. The dispersion 

of silica NPs in methyl isobutyl ketone (MIBK) with a concentration of 30% (MIBK-ST 

from Nissan Chemical) was first diluted with anhydrous THF, followed by the addition of 

CTA-Silane at a mass ratio of 1 : 1 with respect to bare silica NPs. The surface 

functionalization reaction was carried out at 75 °C in a nitrogen atmosphere under stirring 

conditions for two days. The trithiocarbonate CTA-functionalized silica NPs (CTA-NPs) 

were isolated and purified by multiple rounds of ultracentrifugation/re-dispersion in THF. 

The obtained CTA-NPs, distinctly orange in color, were stored as a dispersion in THF. 

Three batches of CTA-NPs were made from the same bottle of MIBK-ST using similar 

procedures and denoted as CTA-NPs-B1, -B2, and -B3. These CTA-NPs were used to 

make various poly(alkyl methacrylate) brush-grafted silica NPs, and scanning transmission 

electron microscopy (STEM) analysis of hairy NPs yielded an average size of 23 nm for 

core silica NPs. 

2.3.2. Synthesis of Poly(alkyl methacrylate) Brushes with Various Alkyl Pendant 

Groups on Silica NPs by SI-RAFT 

Five methacrylate monomers with various alkyl pendant groups (MA-C6, -C8, -C12, -

C13, and -C16 in Scheme 2.1) were selected for a systematic study of the effects of alkyl 

pendant length on the dispersibility and stability of poly(alkyl methacrylate) brush-grafted 

NPs in PAO and the tribological property of hairy NPs as lubricant additives for friction 

and wear reduction. The surface-initiated RAFT polymerizations of alkyl methacrylates 

from CTA-NPs were carried out at 70 C using azobisisobutyronitrile (AIBN) as an 

initiator. A suitable amount of CTA-COOH was added to the polymerization mixture as 
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free CTA to achieve better control of surface-initiated RAFT polymerization and to 

facilitate the characterization of the grafted polymer chains through the generation of a 

corresponding analogous free polymer. It has been well established that the molecular 

weights and molecular weight distributions of polymer brushes grafted on NPs synthesized 

by surface-initiated “living”/controlled radical polymerization are essentially identical to 

those of the corresponding free polymer formed from the free initiator/CTA.32-34,42,45,46 

After the polymerization proceeded overnight ( 18 h), a high monomer conversion, in the 

range of 92.1 to 98.5 %, was achieved. The reaction was then halted by exposure to air and 

diluted with THF, and the hairy NPs were separated from the free polymer and purified by 

multiple cycles of ultracentrifugation/redispersion in THF. The obtained hairy NPs 

appeared yellow, indicating the retention of the trithiocarbonate end group. The DP of the 

polymer was calculated from the final monomer conversion and the molar ratio of the 

monomer to the sum of free and surface CTA, as detailed in Appendix A for one sample.  

A total of 6 hairy silica NP samples with comparable DPs (~ 30, varying from 25 to 

38) were synthesized, one sample each of MA-C6, -C8, -C12, -C16 and two samples from 

MA-C13. The hairy NP samples were named by the following method using poly(tridecyl 

methacrylate) or poly(MA-C13) (PC13) brush-grafted silica NPs with a Mn,SEC of 7.2k 

synthesized from CTA-NPs-B3 as an example. This sample was denoted as PC13-NP3-

7.2k, where PC13 is the grafted polymer, NP3 refers to CTA-NPs-B3 used to make hairy 

NPs, and 7.2k is the Mn,SEC of the corresponding free polymer. Size exclusion 

chromatography (SEC) analysis confirmed that all of the polymerizations were controlled 

as indicated by the unimodal SEC peaks with narrow dispersities ( 1.25) relative to PS 
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standards. Figure 2.1B shows the SEC trace of the free polymer PC13 formed from CTA-

COOH in the synthesis of PC13-NP3-7.2k; other SEC curves can be found in Appendix A 

(Figures A4-A8). The grafted polymer chains on silica NPs can be “seen” from the 1H 

NMR spectra of hairy NPs in CDCl3, a good solvent for the free polymers, as shown in 

Figure 2.1C for PC13-NP3-7.2k and the corresponding free polymer PC13. The peak 

located at 3.92 ppm, which was from the –COOCH2- of PC13, appears in the 1H NMR 

spectra of both hairy NPs and free polymer PC13; interestingly, the peak from the RAFT 

CTA end group CH3(CH2)2CH2S(C=S)S- can also be clearly seen at 3.23 ppm. All these 

suggest that the grafted polymer on the NPs possess a high degree of freedom or mobility 

in a good solvent, which is crucial for the dispersibility and stability in PAO. 

Thermogravimetric analysis (TGA) was employed to characterize the polymer content 

in each hairy NP sample. For all six hairy NP samples, there was a large drop in weight 

retention at 800 C compared with CTA-NPs (Figure 2.1D shows the TGA of PC13-NP3-

7.2k); a closer inspection showed that, for hairy NPs with DPs of 25 to 38, the weight 

retention at 800 C was around 50%, ranging from 44.2 to 51.6% (see Appendix A Figures 

A4-A8), except the sample made from MA-C16 (PC16-NP2-8.3k) that had a slightly 

higher weight retention of 62.3%. A noticeable feature seen in the TGA thermograms of 

these hairy NPs is the pronounced two-step decomposition, with the first one occurring at 

~ 180 °C. Since this was not observed in PC12 brush-grafted silica NPs synthesized by SI-

ATRP35, we suspected that the first fast weight loss was caused by the thermolysis of the 

trithiocarbonate end group, which generated free radicals triggering the decomposition of 

polymer chains. The trithiocarbonate end group can be observed both visually, as the 
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samples display a characteristic yellow color, and by 1H NMR spectroscopy, as shown in 

Figure 2.1C for both free PC13-7.2k and PC13-NP3-7.2k. To test this hypothesis, we 

treated PC13-NP3-7.2k with a large excess of AIBN at 80 C overnight to remove the 

trithiocarbonate end group,47,48 and 1H NMR spectroscopy analysis showed that the peak 

at 3.23 ppm in Figure 2.1C from CH3(CH2)2CH2S(C=S)S- disappeared (see Appendix A 

Figure A2). The characteristic yellow color of hairy NPs disappeared and the NPs appeared 

white. A control experiment using free polymer PC13 revealed that 4 h is sufficient to 

completely remove the trithiocarbonate end group. As shown in Figure 2.1D, the AIBN-

treated, white PC13-NP3-7.2k exhibited a normal, one-step decomposition curve. We note 

here that a similar but less pronounced phenomenon was also reported for the polymers 

containing a trithiocarbonate end group in the TGA analysis.49 

To visualize poly(alkyl methacrylate) brush-grafted silica NPs, hairy NPs were cast 

onto carbon-coated TEM grids from their dispersions in THF, a good solvent for all 

poly(alkyl methacrylate) polymers studied here, with a concentration of 2 mg/mL and 

characterized by STEM. As shown in Figure 2.2, hairy silica NPs self-assembled to some 

degree into a close-packed pattern in accordance with the presence of grafted polymer 

chains. By using DP, TGA data, and the size of silica NPs (23 nm) determined from STEM 

micrographs in Figure 2.2, we calculated the grafting density of polymer brushes for each 

sample. The results are summarized in Table 2.1 along with other characterization data. 

For hairy NP samples synthesized from the same batch of CTA-NPs, there appears a 

general trend that the grafting density is lower for the polymer brushes with a larger alkyl 

pendant group, which is likely due to the increased steric hindrance. 
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Figure 2.2. Bright field scanning transmission electron microscopy (STEM) micrographs 

of (A) PC6-NP1-7.0k, (B) PC8-NP1-7.8k, (C) PC12-NP1-9.5k, (D) PC13-NP1-9.7k, (E) 

PC13-NP3-7.2k, and (F) PC16-NP2-8.3k cast onto carbon-coated, copper TEM grids from 

2 mg/mL dispersions of hairy silica NPs in THF.  
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Table 2.1. Characterization Data for Hairy Silica NPs and Corresponding Free Polymers 

 

Hairy NPs CTA-NPs a Monomer a Mn,SEC
b  

(kDa) 

Ð b DP c  d 

(chains/nm2) 

PC6-NP1-7.0k CTA-NPs-B1 MA-C6 7.0 1.25 32 0.72 

PC8-NP1-7.8k CTA-NPs-B1 MA-C8 7.8 1.23 38 0.57 

PC12-NP1-9.5k CTA-NPs-B1 MA-C12 9.5 1.24 29 0.52 

PC13-NP1-9.7k CTA-NPs-B1 MA-C13 9.7 1.20 32 0.62 

PC13-NP3-7.2k CTA-NPs-B3 MA-C13 7.2 1.16 25 0.69 

PC16-NP2-8.3k CTA-NPs-B2 MA-C16 8.3 1.14 27 0.28 
a The batch of CTA-NPs used for the preparation of respective hairy NP sample. b Number 

average molecular weight (Mn,SEC) and dispersity (Ð)  of the corresponding free polymer 

were determined by size exclusion chromatography (SEC) relative to polystyrene standards 

using THF as solvent. c Degree of polymerization (DP) was calculated from the monomer 

conversion and the molar ratio of monomer to the sum of free CTA and surface-grafted 

CTA. d Grafting density () was calculated using the size of silica NPs (23 nm), DP, and 

TGA data.  
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2.3.3. Effect of Alkyl Pendant Group of Poly(alkyl methacrylate) on Dispersibility and 

Stability of Hairy Silica NPs in PAO 

To study the dispersibility and stability of the obtained hairy silica NPs in PAO base 

oil, 1.0 wt% dispersions in PAO were prepared by the following procedure. A dispersion 

of a hairy NP sample in THF was diluted with PAO and ultrasonicated to ensure complete 

mixing, after which THF was removed using a gentle stream of nitrogen followed by high 

vacuum. All hairy NPs, except PC6- and PC8-grafted silica NPs, were found to be fully 

dispersed in PAO at room temperature, forming homogeneous, transparent dispersions 

(Figure 2.3A and Figure A1 in Appendix A). It should be noted here that the use of THF 

to prepare 1.0 wt% dispersions of hairy NPs in PAO is convenient but not necessarily 

required as the readily dispersible hairy NPs could be dispersed directly in PAO by 

ultrasonication or vortex mixing. We also note here that the unmodified silica NPs from 

MIBK-ST are not stable in the base oil and precipitation occurs at ambient conditions. 

To examine the colloidal stability of hairy NPs in PAO, 1.0 wt% dispersions of PC13-

NP1-9.7k in PAO were concurrently stored at -15 C, ambient conditions (18 C), and 100 

C. All three samples remained clear and homogeneous after 60 days, as shown in Figure 

2.3A, and no visible changes were observed. Dynamic light scattering (DLS) was carried 

out at 23 C to measure the size distribution of hairy NPs in these three dispersions and 

compare them to a freshly prepared dispersion of PC13-NP1-9.7k in PAO. The DLS 

samples were prepared by diluting the original dispersions with neat PAO to a 

concentration of 0.1 mg/mL. The intensity-weighted hydrodynamic size was 56.2 nm for 

the freshly prepared sample. This value was essentially unchanged for the samples stored  
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Figure 2.3. Optical photos of (A) a freshly prepared 1.0 wt% dispersion and three 1.0 wt% 

dispersions of PC13-NP1-9.7k in PAO after storage for 60 days at -15 C, room 

temperature (r.t.), and 100 C; (B) a 1.0 wt% dispersion of PC6-NP1-7.0k in PAO at 80 °C 

and sitting at r.t. for 2 h, 24 h, and 7 days after removal from a 80 °C oil bath; (C) a 1.0 

wt% dispersion of PC8-NP1-7.8k in PAO at 80 °C and sitting at r.t. for 5 min, 1 day, and 

7 days after removal from a 80 °C oil bath.  
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at -15, 18, and 100 C for 60 days, with an average size of 54.4 nm, 57.5 nm, and 58.9 nm, 

respectively (Figure 2.4). This confirmed the robustness of polymer brush-grafted silica 

NPs and the high stability of these hairy NPs in PAO.  

As mentioned earlier, PC6- and PC8-grafted silica NPs cannot be dispersed in PAO to 

form a homogenous and clear dispersion at a concentration of 1.0 wt% at room 

temperature. This observation is expected for PC6-NP1-7.0k because PC6 free polymer 

itself is insoluble in PAO, as also reported in the literature.50 Physical mixing and 

ultrasonication of PC6-NP1-7.0k in PAO at ambient temperature yielded an unstable 

suspension, which underwent nearly complete separation in less than two hours. Heating 

the mixture to 80 C resulted in no visual change, and the NPs settled out quickly upon 

sitting quiescently at room temperature (Figure 2.3B). Interestingly, the 1.0 wt% 

heterogeneous suspension of PC8-NP1-7.8k in PAO became clear and homogeneous upon 

heating at 80 C (Figure 2.3C). This cloudy-to-clear transition was reversible; upon cooling 

at room temperature, the clear dispersion turned cloudy. By cooling the clear, 1.0 wt% 

dispersion of PC8-NP1-7.8k in PAO from an elevated temperature in 1 C steps, the cloud 

point was found to be 54 °C by visual inspection.  

This clouding transition is particularly interesting as PC8 free polymer is soluble in 

PAO even at 0 C. Apparently, the transition is caused by the presence of core silica NPs, 

very likely due to the unfavorable enthalpic interactions between PAO and silica NPs and 

the van der Waals attractive forces between hairy NPs; the combination of the two appears 

to be comparable to the favorable brush solvation forces for PC8-NP1-7.8k. If we increase  
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Figure 2.4. Hydrodynamic size distributions of PC13-NP1-9.7k in a freshly prepared 

dispersion in PAO (i) and in PAO dispersions after being stored for 60 days at -15 C (ii), 

room temperature (18 C) (iii), and 100 C (iv). The DLS measurements were conducted 

at 23 C with a hairy NP concentration of 0.1 mg/g. 
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the brush chain length and thus the favorable PAO-brush interactions, the cloud point 

should decrease. 

2.3.4. Effect of Alkyl Pendant Group of Poly(alkyl methacrylate) Brushes on 

Lubrication Property of Hairy NP-Additized PAO 

The effectiveness of poly(alkyl methacrylate) brush-grafted silica NPs with various 

alkyl pendant groups as additives for lubricating base oil, PAO, to reduce friction and wear 

was investigated at a concentration of 1.0 wt% using a Plint TE-77 tribo-tester at 100 C. 

A ball-on-flat reciprocating configuration was employed using a CL35 cast iron flat and an 

AISI 52100 steel ball with a diameter of 9.525 mm, with the rubbing interface completely 

submerged in the lubricating oil. A normal force of 100 N and an oscillation frequency of 

10 Hz with 10 mm stroke were used, and the total sliding distance was 1000 m. At least 

two tests were performed for each hairy NP sample, and the results were averaged. For 

comparison, we also prepared a lubricant by dissolving a free polymer of MA-C13 with a 

DP of 72, a Mn,SEC of 20.8 kDa, and a Ð of 1.15 (PC13-20.8k) in PAO to form a 1.0 wt% 

solution. The synthesis of this polymer is included in the experimental section. As shown 

in Figure 2.5A, for 1.0 wt% of PC13-20.8k in PAO, while the coefficient of friction (COF) 

was reduced to some degree in the second half of the sliding compared with the PAO, the 

sharp increase of COF, a signature of scuffing failure, observed at the beginning of the test 

was neither prevented nor reduced, indicating a minimal effect of poly(alkyl methacrylate) 

itself in wear or scuffing protection. This corroborated our previous observation for the 

effect of free polymer poly(lauryl methacrylate).35  
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Figure 2.5. (A) Friction curves for PAO SpectraSynTM 4 (i), PAO additized with 1.0 wt% 

PC16-NP2-8.3k (ii), PC13-NP1-9.7k (iii), PC12-NP1-9.5k (iv), ZDDP (v), and PC13-

20.8k free polymer (vi). (B) Friction curves for PAO additized with 1.0 wt% PC13-NP3-

7.2k (vii) as well as neat PAO (i) and PAO additized with 1.0 wt% PC13-NP1-9.7k (iii) 

for comparison. The tribological tests were performed using a Plint TE-77 tribo-tester at 

100 C under a point contact load of 100 N for a sliding distance of 1000 m. The curves 

for (i) PAO and (v) PAO additized with 1.0 wt% ZDDP were from the literature for 

comparison.35 
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In contrast, for all hairy NPs that readily formed homogeneous transparent dispersions 

in PAO at room temperature, namely PC12-, PC13-, and PC16- grafted NPs, the COF 

exhibited a smooth start without scuffing and a much lower steady-state value relative to 

PAO throughout the sliding process (Figure 2.5). The friction coefficient values were 

between 0.08 and 0.1 at 1000 m, with PC16-NP2-8.3k exhibiting the largest friction 

reduction (38%) relative to the base oil. As a matter of fact, the COF traces of PC12-NP1-

9.5k, PC13-NP1-9.7k, and PC16-NP2-8.3k were all below that of PAO containing 1.0 wt% 

ZDDP (Figure 2.5A), which implied better frictional behavior for these hairy NPs than the 

ZDDP at the same concentration. Note that compared with ZDDP, the sulfur content of 

hairy NPs from the CTA end group is significantly lower or negligible. Figure 2.5B shows 

that two PC13-grafted NP samples performed very similarly; their friction curves 

essentially overlapped until ~ 600 m, after which PC13-NP3-7.2k exhibited slightly lower 

COF values. Considering the limited contribution to the friction reduction from the 

polymer alone, the somewhat similar tribological performances of four hairy NP samples 

with different alkyl pendant groups highlighted the importance of the core silica NPs in the 

effectiveness of hairy NPs as additives. Although there was no single trend discernable in 

the entire sliding process for the three different poly(alkyl methacrylate) brushes, a closer 

look at the four friction curves showed that PC16-NP2-8.3k performed slightly better than 

other three samples over the entire sliding process while the traces of PC12- and PC13-

NPs were very similar. While these hairy NPs had different chemical compositions, DPs, 

and grafting densities (Table 2.1), a brief look at TGA data revealed that PC16-NP2-8.3k 

had noticeably higher weight retention at 800 C (62.3% PC16-NP2-8.3k, 44.2% for PC13-
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NP1-9.7k, 48.2% for PC13-NP3-7.2k, and 51.6% for PC12-NP1-9.5k). Higher weight 

retention at 800 C means that there are more silica NPs present in PAO at a concentration 

of 1.0 wt%, which would result in a larger friction reduction. Our group previously 

observed that a higher concentration of PC12 hairy NPs typically produced lower COFs.35 

Thus, the slightly better performance of PC16-NP2-8.3k can be attributed to more NPs at 

the same concentration. The slightly lower COF values of PC13-NP3-7.2k compared with 

PC13-NP1-9.7k in the second half of the sliding process might also result from more NPs 

present in the system because the weight retention at 800 C was 44.2% for PC13-NP1-

9.7k and 48.2% for PC13-NP3-7.2k. It appears that the foremost function of the grafted 

polymer brushes is to provide the colloidal stability for silica core NPs in base oil PAO. 

Once a homogeneous dispersion is achieved, the number density of NPs in the lubricant is 

likely to be a primary factor in tribological performance. 

Material wear volumes were measured by optical surface profilometry of the wear scars 

formed on the iron flats and, to a lesser extent, on the steel balls during each tribological 

test and are shown in Table 2.2. The wear volumes of the iron flats for PC13-NP1-9.7k, 

PC13-NP3-7.2k, PC12-NP1-9.5k, and PC16-NP2-8.3k were found to have similar 

magnitudes and ranged from 11.7 to 23 × 107 m3, which were significantly smaller (by 5 

to 10 times, or reduced by 80 – 90%) than that for neat PAO (113.0 × 107 m3). However, 

these values were slightly higher than that for the ZDDP-additized oil (7.9 × 107 m3). The 

wear volumes of the steel balls for these hairy NPs, ranging from 0.019 to 0.048 × 107 m3,  
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Table 2.2. Wear Volumes for Balls and Flats from Tribological Tests 

 

Lubricant Sample 
Flat Wear Volume  

(× 107 m3) 

Ball Wear Volume 

(× 107 m3) 

PAO 113.0 ± 35.9 0.786 ± 0.193 

PAO + 1.0% PC6-NP1-7.0k 1.5 ± 0.3a 0.024 ± 0.018 

PAO + 1.0% PC8-NP1-7.8k 17.5 ± 2.5 0.028 ± 0.00005 

PAO + 1.0% PC12-NP1-9.5k 11.7 ± 1.4 0.025 ± 0.0003 

PAO + 1.0% PC13-NP1-9.7k 16.0 ± 0.8 0.019 ± 0.015 

PAO + 1.0% PC13-NP3-7.2k 23.0 ± 1.7 0.048 ± 0.017 

PAO + 1.0% PC16-NP2-8.3k 18.0 ± 1.3 0.019 ± 0.006 

PAO + 1.0% ZDDP 7.9 ± 3.1 0.047 ± 0.020 

PAO + 1.0% PC6-NP1-7.0k-Settled 50.9 ± 10.3 -0.097 ± 0.054b 

PAO + 1.0% PC8-NP1-7.8 k-Settled 19.4 ± 0.3 0.129 ± 0.074 
a Measurement likely skewed due to the non-circulatory nature of oil during testing; PC6-

NP1-7.0k settled directly onto flat after loading, effectively coating the substrate. b Value 

is negative as additional material adhered to the ball, likely a result of scuffing. 
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were reduced by >95% compared with that for the base oil (0.786 × 107 m3), and were 

similar to the value for the ZDDP. 

As described earlier, PC6- and PC8-grafted silica NPs were unable to form clear, 

homogeneous dispersions in PAO at a concentration of 1.0 wt% under ambient conditions. 

Upon heating, while the 1.0 wt% suspension of PC6-NP1-7.0k in PAO stayed cloudy, PC8-

NP1-7.8k was found to be fully dispersed in PAO forming a transparent and stable system. 

To characterize the tribological property of the fully dispersed PC8-NP1-7.8k, PAO 

additized with 1.0 wt% PC8-NP1-7.8k was heated to 80 °C and stirred for 30 min to 

achieve a clear NP dispersion. A 1.0 wt% PC6-NP1-7.0k-additized PAO lubricant was also 

prepared using the same conditions to form a visually uniform suspension. These two NP-

containing lubricants were then added onto the iron flats preheated to 100 C and subjected 

to the same tribological testing described earlier; the results are presented in Figure 2.6. 

Interestingly, PC8-NP1-7.8k performed similarly to those more easily dispersed hairy NPs 

(Figure 2.6A); the COF curve essentially overlapped with that of PC13-NP3-7.2k. Note 

that the weight retentions of these two hairy NPs at 800 C were very similar, 49.1% for 

PC8-NP1-7.8k and 48.2% for PC13-NP3-7.2k, which once again indicated the importance 

of the mass of the core NPs or number of NPs at a hairy NP concentration of 1.0 wt% in 

tribological performance. The addition of 1.0 wt% PC6-NP1-7.0k into PAO, even if not 

dispersed, also exhibited a significant reduction in friction compared with the base oil PAO, 

but performed noticeably worse than those more easily dispersed hairy NPs, e.g., PC13-

NP3-7.2k as shown in Figure 2.6B. The end value of the COF at 1000 m for PC6-NP1-

7.0k was higher by 0.02 than that of PC13-NP3-7.2k. Following the testing of PC6-NP1- 
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Figure 2.6. (A) Friction curves for PAO additized with 1.0 wt% PC8-NP1-7.8k (i) 

preheated and stirred at 80 C to achieve a uniform state and (ii) after sitting quiescently at 

room temperature for 7 days. (B) Friction curves for PAO containing 1.0 wt% PC6-NP1-

7.0k (i) preheated and stirred at 80 C to achieve a uniform state and (ii) after sitting 

quiescently at room temperature for 7 days. The curve for PAO containing 1.0 wt% PC13-

NP3-7.2k (iii) was included for comparison in both (A) and (B). The tribological tests were 

performed using a Plint TE-77 tribo-tester at 100 C under a load of 100 N. 
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7.0k, a noticeable amount of NPs settled onto the flat, likely explaining the anomalously 

low wear observed for this sample (Table 2.1). It should be noted that any substrate the 

protection provided in this manner would almost certainly be voided upon oil circulation 

due to effective lowering of hairy NP concentration. 

To test the effect of the inherent instability of PC6-NP1-7.0k and PC8-NP1-7.8k in 

PAO at room temperature on lubrication performance, both samples were subjected to a 

quiescent period of 7 days, after which the particles appeared to have completely settled 

(Figure 2.3B and 2.3C). Tribological testing was then performed on the top, clear portion 

of the oil. PC6-NP1-7.0k underwent early-onset scuffing in a manner similar to the base 

oil, but the friction exceeded the testing threshold and halted further testing (Figure 2.6B). 

The average material wear volume on the iron flat reached 50.9  107 µm3 in its brief testing 

time, suggesting no benefit beyond the base PAO. PC8-NP1-7.8k, in contrast, showed 

some degree of friction reduction relative to pure PAO, but lubrication performance was 

significantly decreased compared with that of the homogeneous dispersion formed at 

elevated temperature (Figure 2.6A). The wear volume on the iron flat averaged at 19.4  

107 µm3, was slightly higher than that for the transparent homogeneous dispersion and still 

in line with other hairy NP-additized lubricants. As shown in Figure 2.3, the rate of hairy 

NP settling appeared to be slower for PC8-NP1-7.8k than for PC6-NP1-7.0k, and, due to 

its higher affinity for PAO, it is likely that a small amount of PC8-NP1-7.8k persisted in 

the oil and provided protection at the rubbing interface.  
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2.3.5. SEM-EDS Analysis of Wear Scar Formed During Tribological Testing 

The increased tribological performance of oil-soluble polymer brush-grafted NP-

additized PAO originated from the function of hairy NPs in the interfacial zone between 

two sliding surfaces and the formation of a protective tribofilm assisted by NPs. As a result 

of the intricate mechanical and chemical processes at the rubbing interfaces under rather 

harsh conditions, substrate-shielding tribolayers have been observed for various lubricating 

additives, including ZDDP and ionic liquids,5-11 and are typically elementally enriched 

according to the additive composition. Using the focused ion beam (FIB) technique and 

transmission electron microscopy, our group previously observed a 200–400 nm tribofilm 

on the wear track formed during the tribological testing of hairy silica NP-additized PAO, 

and the film was enriched in silicon.35 Here we used energy dispersive X-ray spectroscopy 

(EDS) analysis coupled with scanning electron microscopy (SEM) to confirm the presence 

of a tribofilm at the wear scar’s surface. A scanning electron micrograph of a wear scar 

formed during the testing of PC13-NP3-7.2k is shown in Figure 2.7A along with two EDS 

spectra taken from inside and outside the wear track, respectively (Figure 2.7B). A marked 

increase in both silicon and oxygen content inside the scar relative to the unblemished iron 

flat was observed. Elemental mapping of iron, oxygen, and silicon at the end of wear track 

(Figure 2.7C-E, respectively) shows a clear increase in oxygen and silicon in the scar, 

whereas the scar is nearly indistinguishable from the pristine iron flat in the elemental 

mapping of iron. These observations indicate the formation of a tribofilm on the surface of 

the wear track, which involved and likely was assisted by polymer brush-grafted silica NPs,  
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Figure 2.7. (A) SEM micrograph of a wear scar formed on the iron flat during the 

tribological testing of PAO additized with 1.0 wt% PC13-NP3-7.2k, (B) EDS spectra 

recorded inside and outside the wear scar (at locations marked in (A)), and SEM 

micrograph (C) and elemental mapping of Fe (D), O (E), and Si (F) at the end of the wear 

track.  
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providing protection for the substrate underneath and thus preventing scuffing and reducing 

friction and wear. 

 

2.4. Conclusions 

A series of poly(alkyl methacrylate) brush-grafted silica NPs of varying alkyl pendant 

length were synthesized by SI-RAFT polymerization from CTA-functionalized, 23 nm 

silica NPs, and their dispersibility and stability in PAO and lubrication property were 

investigated.51 PC12-, PC13-, and PC16- grafted silica NPs were readily and fully 

dispersed in PAO upon ultrasonication, producing transparent, homogeneous dispersions 

that possessed exceptional colloidal stability at high and low temperatures as observed both 

visually and by DLS. Neither PC6-NP1-7.0k nor PC8-NP1-7.8k formed a homogeneous, 

stable dispersion in PAO at ambient temperature at a concentration of 1.0 wt%, although 

PC8-grafted NPs were found to be fully dispersed in PAO at elevated temperatures and 

exhibited a reversible clear-to-cloudy transition upon cooling. Tribological testing using a 

ball-on-flat reciprocating configuration showed a significant reduction in both coefficient 

of friction (up to ~ 38%) and wear volume (up to ~ 90% for the iron flat) when 1.0 wt% 

homogeneous transparent dispersions of hairy NPs in PAO were used as lubricants 

compared with neat PAO. The poor colloidal stability and NP settling in PAO dispersions 

of PC6- and PC8-grafted silica NPs greatly hindered lubrication performance, highlighting 

the need for homogeneous and stable dispersions of NP additives in PAO. The tribofilm 

formed at the rubbing interface during tribological testing was confirmed by SEM-EDS 

and found to be enriched with silicon and oxygen relative to the unmarred iron flat. Note 
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that in this work, 23 nm silica NPs were employed to synthesize hairy NPs; the core NP 

size is believed to affect the lubrication performance of hairy NPs. The excellent colloidal 

stability along with significant friction and wear reduction for PAO additized with 

poly(alkyl methacrylate) brush-grafted 23 nm silica NPs containing sufficiently long alkyl 

pendants, observed in this study, is encouraging in the pursuit of more effective and more 

environmentally-friendly additives for the formulation of advanced engine lubricants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

68 

 

References 

1. Engine Oils and Automotive Lubrication; Bartz, W. J., Ed.; Marcel Dekker: New 

York, 1993. 

2. Synthetic Lubricants and High-Performance Functional Fluids, 2nd ed; Rudnick, L. 

R., Shubkin, R. L., Eds.; Marcel Dekker: New York, 1999. 

3. Lubricant Additives: Chemistry and Applications, 2nd ed; Rudnick, L. R., Ed.; CRC 

Press: Boca Raton, FL, 2009. 

4. Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, 2nd 

ed; Rudnick, L. R., Ed.; CRC Press: Boca Raton, FL, 2013. 

5. Spikes, H. The History and Mechanisms of ZDDP. Tribol. Lett. 2004, 17, 469 –489. 

6. Barnes, A. M.; Bartle, K. D.; Thibo, V. R. A. A Review of Zinc 

Dialkyldithiophosphates (ZDDPS): Characterisation and Role in the Lubricating Oil. 

Tribol. Int. 2001, 34, 389-395. 

7. Spikes, H. Low- and Zero-Sulphated Ash, Phosphorus and Sulphur Anti-Wear 

Additives for Engine Oils. Lubr. Sci. 2008, 20, 103-136. 

8. Zhang, J.; Spikes, H. On the Mechanism of ZDDP Antiwear Film Formation. Tribol. 

Lett. 2016, 63, 24. 

9. Demydov, D.; Adhvaryu, A.; McCluskey, P.; Malshe, A. P. In Nanoscale Materials 

in Chemistry: Environmental Applications, ACS Symposium Series, Vol. 1045; 

Erickson, L. E.; Koodali, R. T.; Richards, R. M., Eds.; American Chemical Society: 

Washington, DC, 2010; Chapter 8, pp 137–163. 



 

69 

 

10. Qu, J.; Bansal, D. G.; Yu, B.; Howe, J. Y.; Luo, H.; Dai, S.; Li, H. Q.; Blau, P. J.; 

Bunting, B. G.; Mordukhovich, G.; Smolenski, D. J. Antiwear Performance and 

Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive. ACS Appl. 

Mater. Interfaces 2012, 4, 997–1002. 

11. Qu, J.; Barnhill, W. C.; Luo, H.; Meyer III, H. M.; Leonard, D. N.; Landauer, A. K.; 

Kheireddin, B.; Gao, H.; Papke, B. L.; Dai, S. Synergistic Effects Between 

Phosphonium-Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate 

(ZDDP) as Lubricant Additives. Adv. Mater. 2015, 27, 4767-4774. 

12. Martin, J. M.; Ohmae, N. Nanolubricants. John Wiley & Sons: Chichester, England, 

2008. 

13. Gulzar, M.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Zulkifli, N. W. M.; Mufti, 

R. A.; Zahid, R. Tribological Performance of Nanoparticles as Lubricating Oil 

Additives. J. Nanopart. Res., 2016, 18, 223. 

14. Qiu, S.; Zhou, Z.; Dong, J.; Chen, G. Preparation of Ni Nanoparticles and Evaluation 

of Their Tribological Performance as Potential Additives in Oils. J. Tribol. 1999, 

123, 441–443. 

15. Tarasov, S.; Kolubaev, A.; Belyaev, S.; Lerner, M.; Tepper, F. Study of Friction 

Reduction by Nanocopper Additives to Motor Oil. Wear 2002, 252, 63–69. 

16. Padgurskas, J.; Rukuiza, R.; Prosyčevas, I.; Kreivaitis, R. Tribological Properties of 

Lubricant Additives of Fe, Cu and Co Nanoparticles. Tribol. Int. 2013, 60, 224 –232.  



 

70 

 

17. Joly-Pottuz, L.; Dassenoy, F.; Belin, M.; Vacher, B.; Martin, J. M.; Fleischer, N. 

Ultralow-Friction and Wear Properties of IF-WS2 under Boundary Lubrication. 

Tribol. Lett. 2005, 18, 477-485. 

18. Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; 

Le-Mogne, T. Boundary lubrication: Influence of the Size and Structure of Inorganic 

Fullerene-like MoS2 Nanoparticles on Friction and Wear Reduction. Wear 2014, 320, 

161-178. 

19. Rapoport, L.; Lvovsky, M.; Lapsker, I.; Leshchinsky, V.; Volovik, Y.; Feldman, Y.; 

Margolin, A.; Rosentsveig, R.; Tenne, R. Slow Release of Fullerene-like WS2 

Nanoparticles from Fe−Ni Graphite Matrix:  A Self-Lubricating Nanocomposite. 

Nano Lett. 2001, 1, 137–140. 

20. Xue, Q.; Liu, W.; Zhang, Z. Friction and Wear Properties of a Surface-Modified TiO2 

Nanoparticle as an Additive in Liquid Paraffin. Wear 1997, 213, 29–32. 

21. Battez, A. H.; Rico, J. E. F.; Arias, A. N.; Rodriguez, J. L. V.; Rodriguez, R. C.; 

Fernandez, J. M. D. The Tribological Behaviour of ZnO Nanoparticles as an Additive 

to PAO6. Wear 2006, 261, 256 –263. 

22. Kim, D.; Archer, L. A. Nanoscale Organic-Inorganic Hybrid Lubricants. Langmuir 

2011, 27, 3083–3094. 

23. Li, D. D.; Xie, Y. C.; Yong, H. S.; Sun, D. Z. Surfactant-Assisted Preparation of 

Y2O3-Stabilized ZrO2 Nanoparticles and Their Tribological Performance in Mineral 

and Commercial Lubricating Oils. RSC Adv. 2017, 7, 3727 –3735. 



 

71 

 

24.  Li, B.; Wang, X.; Liu, W.; Xue, Q. Tribochemistry and Antiwear Mechanism of 

Organic-Inorganic Nanoparticles as Lubricant Additives. Tribol. Lett. 2006, 22, 79–

84. 

25. Wu, Y. Y.; Tsui, W. C.; Liu, T. C. Experimental Analysis of Tribological Properties 

of Lubricating Oils with Nanoparticle Additives. Wear 2007, 262, 819–825. 

26. Spikes, H. Friction Modifier Additives. Tribol. Lett. 2015, 60, 5. 

27. Pyun, J.; Matyjaszewski, K. Synthesis of Nanocomposite Organic/Inorganic Hybrid 

Materials Using Controlled/“Living” Radical Polymerization. Chem. Mater. 2001, 

13, 3436–3448. 

28. Zhao, B.; Zhu, L. Mixed Polymer Brush-Grafted Particles: A New Class of 

Environmentally Responsive Nanostructured Materials. Macromolecules 2009, 42, 

9369-9383. 

29. Barbey, R.; Lavanant, L.; Paripovic, D.; Schuwer, N.; Sugnaux, C.; Tugulu, S.; Klok, 

H. A. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: 

Synthesis, Characterization, Properties, and Applications. Chem. Rev. 2009, 109, 

5437–5527. 

30. Bao, C. H.; Horton, J. M.; Bai, Z. F.; Li, D. J.; Lodge, T. P.; Zhao, B. Stimuli-

Triggered Phase Transfer of Polymer-Inorganic Hybrid Hairy Particles between Two 

Immiscible Liquid Phases. J. Polym. Sci. Part B: Polym. Phys. 2014, 52, 1600-1619. 

31. von Werne, T.; Patten, T. E. Preparation of Structurally Well-Defined 

Polymer−Nanoparticle Hybrids with Controlled/Living Radical Polymerizations. J. 

Am. Chem. Soc. 1999, 121, 7409–7410. 



 

72 

 

32. Li, D. J.; Sheng, X.; Zhao, B. Environmentally Responsive "Hairy" Nanoparticles: 

Mixed Homopolymer Brushes on Silica Nanoparticles Synthesized by Living Radical 

Polymerization Techniques. J. Am. Chem. Soc. 2005, 127, 6248-6256. 

33. Ohno, K.; Koh, K.; Tsujii, Y.; Fukuda, T. Fabrication of Ordered Arrays of Gold 

Nanoparticles Coated with High-Density Polymer Brushes. Angew. Chem. Int. Ed. 

2003, 42, 2751–2754. 

34. Husseman, M.; Malmstrom, E. E.; McNamara, M.; Mate, M.; Mecerreyes, D.; 

Benoit, D. G.; Hedrick, J. L.; Mansky, P.; Huang, E.; Russell, T. P.; Hawker, C. J. 

Controlled Synthesis of Polymer Brushes by "Living" Free Radical Polymerization 

Techniques. Macromolecules 1999, 32, 1424-1431. 

35. Wright, R. A. E.; Wang, K. W.; Qu, J.; Zhao, B. Oil-Soluble Polymer Brush-Grafted 

Nanoparticles as Effective Lubricant Additives for Friction and Wear Reduction. 

Angew. Chem. Int. Ed. 2016, 55, 8656-8660. 

36. Skaff, H.; Emrick, T. Reversible Addition-Fragmentation Chain Transfer (RAFT) 

Polymerization from Unprotected Cadmium Selenide Nanoparticles. Angew. Chem., 

Int. Ed. 2004, 43, 5383-5386. 

37. Li, C.; Benicewicz, B. C. Synthesis of Well-Defined Polymer Brushes Grafted onto 

Silica Nanoparticles via Surface Reversible Addition-Fragmentation Chain Transfer 

Polymerization. Macromolecules 2005, 38, 5929-5936. 

38. Li, C.; Han, J.; Ryu, C. Y.; Benicewicz, B. C. A Versatile Method To Prepare RAFT 

Agent Anchored Substrates and the Preparation of PMMA Grafted Nanoparticles. 

Macromolecules 2006, 39, 3175-3183. 



 

73 

 

39. Peng, Q.; Lai, D. M. Y.; Kang, E. T.; Neoh, K. G. Preparation of Polymer-

Silicon(100) Hybrids via Interface-Initiated Reversible Addition-Fragmentation 

Chain Transfer (RAFT) Polymerization. Macromolecules 2006, 39, 5577-5582 

40. Zhao, Y.; Perrier, S. Reversible Addition-Fragmentation Chain Transfer Graft 

Polymerization Mediated by Fumed Silica Supported Chain Transfer Agents. 

Macromolecules 2007, 40, 9116-9124. 

41. Li, Y.; Benicewicz, B. C. Functionalization of Silica Nanoparticles via the 

Combination of Surface-Initiated RAFT Polymerization and Click Reactions. 

Macromolecules 2008, 41, 7986–7992. 

42. Ohno, K.; Ma, Y.; Huang, Y.; Mori, C.; Yahata, Y.; Tsujii, Y.; Maschmeyer, T.; 

Moraes, J.; Perrier, S. Surface-Initiated Reversible Addition-Fragmentation Chain 

Transfer (RAFT) Polymerization from Fine Particles Functionalized with 

Trithiocarbonates. Macromolecules 2011, 44, 8944–8953. 

43. Chiefari, J.; Chong, Y. K.; Ercole, F.; Kristina, J.; Jeffery, J.; Le, T. P. T.; 

Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. 

H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain 

Transfer: The RAFT Process. Macromolecules 1998, 31, 5559-5562. 

44. Moad, G.; Chong, Y. K.; Postma, A.; Rizzardo, E.; Thang, S. H. Advances in RAFT 

Polymerization: the Synthesis of Polymers with Defined End-Groups. Polymer 2005, 

46, 8458-8468. 

45. Wright, R. A. E.; Hu, B.; Henn, D. M.; Zhao, B. Reversible Sol-Gel Transitions of 

Aqueous Dispersions of Silica Nanoparticles Grafted with Diblock Copolymer 



 

74 

 

Brushes Composed of a Thermosensitive Inner Block and a Charged Outer Block. 

Soft Matter 2015, 11, 6808-6820. 

46. Wright, R. A. E.; Henn, D. M.; Zhao, B. Thermally Reversible Physically 

Crosslinked Hybrid Network Hydrogels Formed by Thermosensitive Hairy NPs. J. 

Phys. Chem. B 2016, 120, 8036-8045. 

47. Willcock, H.; O'Reilly, R. K., End Group Removal and Modification of RAFT 

polymers. Polym. Chem. 2010, 1, 149-157. 

48. Perrier, S.; Takolpuckdee, P.; Mars, C. A., Reversible Addition-Fragmentation Chain 

Transfer Polymerization:  End Group Modification for Functionalized Polymers and 

Chain Transfer Agent Recovery. Macromolecules 2005, 38, 2033-2036.  

49. Postma, A.; Davis, T. P.; Moad, G.; O'Shea, M. S., Thermolysis of RAFT-

Synthesized Polymers. A Convenient Method for Trithiocarbonate Group 

Elimination. Macromolecules 2005, 38, 5371-5374. 

50. Bielecki, R. M.; Benetti, E. M.; Kumar, D.; Spencer, N. D. Lubrication with Oil-

Compatible Polymer Brushes. Tribol. Lett. 2012, 45, 477–487. 

51.    The work presented in this chapter has been published as an article. Seymour, B. T.; 

Wright, R. A. E.; Parrot, A. C.; Gao, H.; Martini, A.; Qu, J.; Dai, S.; Zhao, B. 

Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant 

Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and 

Lubrication Property. ACS Appl. Mater. Interfaces, 2017, 9 (29), 25038–25048. 

 

 



 

75 

 

 

 

 

 

 

Appendix A 

for 

Chapter 2. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles 

as Oil Lubricant Additives: Effects of Alkyl Pendant Group on Oil 

Dispersibility, Stability, and Lubrication Property 
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A.1. Calculation of Degree of Polymerization and Grafting Density of Polymer 

Brushes in PC13-NP3-7.2k   

The degree of polymerization (DP) of the grafted polymer in PC13-HNP3-7.2k was 

calculated from the monomer conversion and the molar ratio of monomer to the sum of 

free and surface CTA. The amount of surface CTA grafted on silica NPs that successfully 

initiated RAFT polymerization was determined from the monomer conversion and the 

TGA of PC13 brush-grafted silica NPs, PC13-NP3-7.2k, and CTA-NPs-B3. To account 

for the difference in weight retentions of CTA-NPs-B3 and PC13-NP3-7.2k at 100 C, 

which is assumed to be from moisture/absorbed small molecules, the TGA curve of CTA-

NP3-B3 was shifted upward by 0.38% so that the weight retentions of two curves at 100 

C are identical. Thus, the weight retention of CTA-NP3 at 800 C was changed from 91.22 

% to 91.60%. The mass ratio of volatile to nonvolatile components, i.e., silica, at 800 C is 

9.17 : 100 for CTA-NP3-B3 and 107.3 : 100 for PC13-NP3-7.2k. As the mass of the CTA-

NPs used in the polymerization was 0.2004 g, the total mass of the grafted polymer is 

[(107.3-9.17)/(100 + 9.17)]  0.2004 g = 0.180 g. The total monomer in the reaction 

mixture (0.901 g) was multiplied by monomer conversion (97.6 %) to give a total polymer 

mass of 0.879 g. Using the ratio of total polymer to free polymer (0.879 g/ (0.879 g – 0.180 

g)) as the ratio of total CTA to free CTA (30.2 mg, 0.104 mmol), the total amount of CTA 

in the polymerization system was calculated to be 0.131 mmol, yielding a surface-bound 

CTA content of 0.135 mmol/ g CTA-NPs, a monomer-to-CTA ratio of 25.6:1, and a DP of 

25.  
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 For the calculation of grafting density of PC13 brushes in PC13-NP3-7.2k, assuming 

that the silica NPs are spherical and has a density of 2.07 g/cm3, the mass of a single NP 

with a diameter of 23 nm is 1.32 × 10-17 g. Using the polymer to silica ratio described above 

[(107.3-9.17)/100 = 98.1/100), the amount of the grafted PC13 homopolymer on one silica 

NP in PC13-NP3-7.2k is 1.29 × 10-17 g. The molecular weight of PC13 polymer in PC13-

NP3-7.2k calculated from the DP is 6700 g/mol. Thus, the number of the grafted PC13 

chains on one silica NP in PC13-NP3-7.2k is (1.28 × 10-17 g/6700 g/mol) × (6.022 × 1023 

mol-1) = 1150 chains. The surface area of one bare silica NP (π  232) = 1662 nm2. Thus, 

the grafting density of PC13 brushes on silica NPs in PC13-NP3-7.2k is 0.69 chains/nm2.  
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Figure A1. Optical photos of PC12-NP1-9.5k, PC13-NP1-9.7k, and PC16-NP2-8.3k in 

PAO with a concentration of 1.0 wt% at room temperature. 
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Figure A2. 1H NMR spectra of PC13-NP3-7.2k and free polymer PC13-7.2k before and 

after AIBN treatment at 80 C in CDCl3.  
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Figure A3. SEC trace of poly(tridecyl methacrylate) with a Mn,SEC of 20.8 kDa (PC13-

20.8k) synthesized by ATRP. 
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Figure A4. (A) SEC trace of free polymer poly(n-hexyl methacrylate) (PC6) formed from 

free CTA-COOH in the synthesis of PC6 brush-grafted silica NPs (PC6-NP1-7.0k) by 

surface-initiated RAFT polymerization of MA-C6 from CTA-functionalized silica NPs 

(CTA-NPs-B1). (B) Thermogravimetric analysis of CTA-NPs-B1 and PC6-NP1-7.0k. The 

TGA was carried out in N2 at a heating rate of 20 C/min. 
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Figure A5. (A) SEC trace of free polymer poly(2-ethylhexyl methacrylate) (PC8) formed 

from free CTA-COOH in the synthesis of PC8-NP1-7.8k hairy NPs by surface-initiated 

RAFT polymerization of MA-C8 from CTA-NPs-B1. (B) Thermogravimetric analysis of 

CTA-NPs-B1 and PC8-NP1-7.8k. The TGA was carried out in N2 at a heating rate of 20 

C/min.  
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Figure A6. (A) SEC trace of free polymer poly(lauryl methacrylate) (PC12) formed from 

free CTA-COOH in the synthesis of PC12-NP1-9.5k hairy NPs by surface-initiated RAFT 

polymerization of MA-C12 from CTA- NPs-B1. (B) Thermogravimetric analysis of CTA-

NPs-B1 and PC12-NP1-9.5 kDa. The TGA was carried out in N2 at a heating rate of 20 

C/min.  
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Figure A7. (A) SEC trace of free polymer poly(tridecyl methacrylate) (PC13) formed from 

free CTA-COOH in the synthesis of PC13-NP1-9.7k hairy NPs by surface-initiated RAFT 

polymerization of MA-C13 from CTA-NPs-B1. (B) Thermogravimetric analysis of CTA-

NPs-B1 and PC13-NP1-9.7k. The TGA was carried out in N2 at a heating rate of 20 C/min.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

85 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 13 14 15 16 17 18

(A)

M
n,SEC

 = 8.3 kDa

Ð = 1.14

Time (min)

0 200 400 600 800

60

70

80

90

100

(B)

 

 

W
e

ig
h

t 
R

e
te

n
ti

o
n

 (
%

)

Temperature (°C)

62.33 %

89.55 %

CTA-NPs-B2

PC16-NP2-8.3k

 
 

Figure A8. (A) SEC trace of free polymer poly(hexadecyl methacrylate) (PC16) formed 

from free CTA-COOH in the synthesis of PC16-NP2-8.3k hairy NPs by surface-initiated 

RAFT polymerization of MA-C16 from CTA-NPs-B2. (B) Thermogravimetric analysis of 

CTA-NPs-B2 and PC16-NP2-8.3 kDa. The TGA was carried out in N2 at a heating rate of 

20 C/min. 
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Chapter 3. Synthesis of Phosphonate-Functionalized Polymer Brush- 

Grafted Silica Nanoparticles as Oil Lubricant Additive for Friction 

 and Wear Reduction 
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Abstract 

This chapter presents the synthesis of phosphonate-functionalized polymer brush-

grafted, 23 nm silica nanoparticles (hairy NPs) for potential use as an oil lubricant additive 

and the study of their dispersibility and stability in PAO. The work in Chapter 2 showed 

that the primary role of poly(alkyl methacrylate) brushes of oil-soluble hairy NPs is the 

suspension of silica NPs in hydrophobic lubricating oil polyalphaolefin (PAO). To increase 

the function of hairy NPs, we introduced a triboactive element, phosphorus, into the 

brushes by surface-initiated RAFT copolymerization of a methacrylate monomer with a 

long alkyl pendant group and a phosphonate-containing monomer in this work. Three 

phosphonate-functionalized monomers were prepared, and they are diethyl (4-

vinylbenzyl)phosphonate (StP), 11-(diethoxyphosphoryl)undecyl methacrylate 

(MAC11P), and 2-(diethoxyphosphoryl)ethyl methacrylate (MAC2P). Tridecyl 

methacrylate (MA-C13) was used for the copolymerization with StP and MAC11P, while 

hexadecyl methacrylate (MA-C16) was employed for the copolymerization with MAC2P. 

For each set of hairy NPs, various molar ratios of the comonomer and the phosphonate-

functionalized monomer were used, including 95 : 5, 90 : 10, 85 : 15, and 80 : 20. To test 

the dispersibility of hairy NPs, 1 wt% dispersions in PAO were prepared. It was found that 

the molar content of StP units in the brushes can be up to 15% without comprising the 

dispersibility of hairy NPs in PAO. Surprisingly, all of MAC11P-containing hairy NPs 

were unstable in PAO at room temperature. On the other hand, all of MAC2P hairy NPs 

can be dispersed and are stable in PAO.  
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3.1. Introduction 

Nanoparticles (NPs) or “nanolubricants” offer great promise for friction and wear 

reduction applications,1-9 but the most challenging aspect of developing new 

nanolubricants remains to be particle suspension.1 Friction coefficient reductions of ~ 70% 

have been reported for nanolubricants, however the strong tendency of NPs to undergo 

aggregation in oils has been a major issue.2,3 Often, ultrasonication is used to disperse NPs 

in oil before tribological testing.4,5 There are two common methods for achieving stable 

nanolubricant dispersions: formulation with dispersants and surface modification of 

NPs.3,6-10 The most common surface modification is achieved by using alkoxysilanes. 

Despite many attempts, forming homogenous NP dispersions in a base oil, such as 

polyalphaolefin (PAO), that are stable over a large temperature range from -15 °C to 100 

°C remains challenging.  

Polymer brush-grafted NPs (hairy NPs),11-13 which consist of a layer of polymer chains 

end-tethered to the NP core, exhibit superior dispersibility and stability in good solvents 

due to the favorable enthalpic interactions between the polymer and solvent and the 

entropic steric repulsions between the hairy NPs.14 Our group recently reported the 

synthesis of oil-soluble poly(lauryl methacrylate) brush-grafted silica and titania NPs by 

surface-initiated atom transfer radical polymerization (SI-ATRP) and studied their 

lubricating properties in PAO.15 These hairy NPs were very stable in PAO in the 

temperature range from -20 °C to 100 °C. The addition of 1 wt% hairy NPs decreased the 

friction by up to 40% and the wear by up to 90%. In Chapter 2, we investigated the effect 

of the alkyl pendant group of methacrylate monomer on the dispersibility of hairy NPs in 
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oil and found that hairy NPs with longer pendant groups (> 8 carbon atoms) in the brushes 

were readily dispersed in PAO.16 Tribological testing of 1 wt% homogeneous dispersions 

of various hairy NPs in PAO revealed little difference in lubrication performance. This 

observation suggested that the main function of the grafted polymer chains was the 

stabilization of silica NPs in oil.  

In an attempt to further improve the performance of hairy NPs, we aimed to increase 

the function of hairy NPs by incorporating a triboactive element, phosphorus, into the 

polymer brushes without compromising solubility in the base oil. Three phosphonate-

functionalized monomers were design and synthesized (Scheme 3.1): diethyl (4-

vinylbenzyl)phosphonate (StP), 11-(diethoxyphosphoryl)undecyl methacrylate 

(MAC11P), and 2-(diethoxyphosphoryl)ethyl methacrylate (MAC2P). Three sets of 

phosphonate-functionalized hairy NPs were synthesized by surface-initiated reversible 

addition-fragmentation chain transfer (SI-RAFT) copolymerizations of MA-C13 with 

either StP or MAC11P and MA-C16 with MAC2P from 23 nm CTA-functionalized silica 

NPs (Scheme 3.1). The molar ratios of two monomers were varied from 95 : 5, 90 :10, 85: 

15, and 80 : 20, with the lower molar content being the phosphonate-functionalized 

monomer. CTA-COOH was used as free CTA in the polymerizations to assist with 

characterization by forming analogous free copolymers. The dispersibility of the obtained 

hairy NPs in PAO was investigated. We found that the hairy NPs synthesized by 

copolymerization of MA-C16 and MAC2P exhibited better dispersibility at higher molar 

contents in PAO than the two sets of hairy NPs. The oil-soluble phosphonate-

functionalized hairy NPs are promising, and we plan to conduct tribological studies on all  
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Scheme 3.1. Synthesis of Phosphonate-Functionalized Polymer Brush-Grafted Silica 

Nanoparticles by Surface-Initiated Reversible Addition-Fragmentation Chain Transfer (SI-

RAFT) Copolymerization of Tridecyl Methacrylate (MA-C13) with StP or MAC11P, or of 

Hexadecyl Methacrylate (MA-C16) with MAC2P. 
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homogenous dispersions of functionalized NPs. 

 

3.2. Experimental Section 

3.2.1. Materials 

Silica nanoparticles in methyl isobutyl ketone (MIBK) with a nominal size of 10-15 

nm were obtained from Nissan Chemical as a dispersion with a concentration of 30-31 wt% 

SiO2 (MIBK-ST). Tridecyl methacrylate (MA-C13, mixture of branched-chain isomers, 

TCI) and hexadecyl methacrylate (MA-C16, Wake Chemicals USA) were passed through 

a basic alumina column to remove inhibitor (hydroquinone monomethyl ether). Triethyl 

phosphite (98%, Alfa Aesar), 4-vinylbenzyl chloride (90%, ACROS Organics), 11-

bromoundecan-1-ol (97%, Ark Pharm), 3,4-dihydro-2H-pyran (99%, Alfa Aesar), 

methacryloyl chloride (stabilized, 97%, Alfa Aesar), triethylamine (99%, Alfa Aesar), and 

benzyl 2-bromoethyl ether (97%, TCI) were used as received without purification. 

AmberlystTM 15 (Alfa Aesar) and palladium catalyst (10% on carbon, Type 487, Alfa 

Aesar) were used as received. The polyalphaolefin (PAO) base oil used in this work was 

SpectrasynTM 4 PAO oil obtained from ExxonMobil, with kinematic viscosities of 19.0 cSt 

at 40 °C and 4.1 cSt at 100 °C. 4-(((Butylthio)carbonothioyl)thio)-4-cyanopentanoic acid 

(CTA-COOH) was prepared using a procedure adapted from the literature and used as free 

chain transfer agent (CTA) in the synthesis of hairy NPs.17  n-Butyl (2-cyano-5-oxo-5-((3-

(triethoxysilyl)propyl)amino)pentan-2-yl)carbonotrithioate (CTA-silane) was synthesized 

according to a previously described procedure.16 Azobisisobutyronitrile (AIBN) (98%, 

Aldrich) was recrystallized from ethanol and dried under high vacuum before use. All other 
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chemical reagents were purchased from Sigma Aldrich or Fisher and used without further 

purification. 

3.2.2. Characterization 

Size exclusion chromatography (SEC) of the free polymers formed from the free CTA 

in the synthesis of phosphonate-functionalized polymer brush-grafted silica NPs was 

performed using a PL-GPC 20 (an integrated SEC system from Polymer Laboratories, Inc.) 

equipped with a refractive index detector, a PLgel 5 µm guard column (50  7.5 mm), and 

two PLgel 5 µm mixed-C columns (each 300  7.5 mm, linear range of molecular weight 

from 200 to 2,000,000 Da). THF was used as the mobile phase with a set flow rate of 1.0 

mL/min. The system was calibrated with narrow dispersity polystyrene standards, and the 

data was processed using Cirrus GPC/SEC software (Polymer Laboratories, Inc.). 1H, 13C, 

and 31P NMR spectra were recorded on a Varian Mercury Vx 300 MHz or Varian VNMRS 

500 MHz, and the residual solvent peak was used as the internal reference. 

Thermogravimetric analysis (TGA) was performed in N2 at a heating rate of 20 °C/min 

from room temperature to 800 °C using TA Q-series Q50. 

3.2.3. Synthesis of Diethyl (4-Vinylbenzyl)phosphonate (StP) 

4-Vinylbenzyl chloride (3.019 g, 19.78 mmol), triethyl phosphite (6.676 g, 40.18 

mmol), and hydroquinone (0.129 g) were added to a 50 mL 2-necked round bottom flask 

with a stir bar. The sealed reaction flask was degassed by three cycles of freeze-pump-thaw 

before being placed in a 100 °C oil bath for 30 h. The unreacted triethyl phosphite was 

distilled out of the reaction flask under high vacuum at 100 °C. The crude mixture left in 

the distillation flask was diluted with methylene chloride at room temperature, transferred 
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to a separatory funnel, and washed three times with 1 M NaOH solution to remove 

hydroquinone inhibitor. The organic layer was dried over anhydrous NaSO4 and then 

separated by gravity filtration. The filtered organic solution was concentrated by rotary 

evaporation, and the crude product was further purified by silica gel column 

chromatography using a mixture of hexanes and ethyl acetate (1 : 1, v/v) as eluent. A 

slightly yellow viscous liquid was obtained after drying under high vacuum (1.777 g, 

35.3%). 1H NMR δ (ppm, CDCl3): 7.37-7.23 (m, aromatic, 4H), 6.72-6.65 (m, CH2CH-, 

1H), 5.72 (d, CHH’CH-, 1H), 5.22 (d, CHH’CH-, 1H), 4.07-3.95 (m, -P(OCH2CH3)2, 4H), 

3.14 (d, -CH2P-, 2H), 1.24 (t, -P(OCH2CH3)2, 6H). 13C NMR δ (ppm, CDCl3): 136.41 

(CH2CH-), 136.21 (CH2CHC-), 131.18 (-CCH2P-), 129.91 (aromatic), 126.35 (aromatic), 

113.66 (CH2CH-), 62.14 (-P(OCH2CH3)2), 32.99 (-CCH2P-), 16.38 (-P(OCH2CH3)2).  

3.2.4. Synthesis of 11-(Diethoxyphosphoryl)undecyl Methacrylate (MAC11P) 

The multi-step synthesis of MAC11P began with the synthesis of a THP-protected alkyl 

bromide (THPC11Br). 3,4-Dihydro-2H-pyran (5.156 g, 61.30 mmol) and 11-bromo-1-

undecanol (13.601 g, 54.14 mmol) were added to a 100 mL 3-necked round bottom flask 

and diluted with freshly distilled THF (40 mL). The reaction flask was placed in an N2 

environment. Hydrochloric acid with a concentration of 36.5 wt% (0.421 g, 11.55 mmol) 

was added to a scintillation vial and diluted with dry THF (10 mL). The HCl solution was 

then transferred to an addition funnel equipped at the top of the reaction flask and added 

dropwise. The reaction was allowed to proceed at room temperature for 25 h. The mixture 

was concentrated using rotary evaporation, diluted with methylene chloride, and 

transferred to a separatory funnel. The mixture was then washed three times with a 
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saturated NaCl solution. The organic layer was collected and dried over anhydrous sodium 

sulfate. The sodium sulfate was then removed by gravity filtration, and the solution was 

concentrated. The crude product was purified by column chromatography using ethyl 

acetate as eluent. A clear liquid was obtained after drying under high vacuum (17.896 g, 

93.6% yield). 1H NMR δ (ppm, CDCl3):  4.58-4.52 (m, -OCHO-, 1H), 3.90-3.80 (m,-

OCHOCHH’- (ring), 1H), 3.75-3.65 (m, -CHH’OCHO- (linear), 1H), 3.53-3.42 (m, -

OCHOCHH’- (ring), 1H), 3.42-3.30 (m, BrCH2CH2-, -CHH’OCHO- (linear), 3H), 1.90-

1.20 (m, BrCH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2OCHOCH2CH2CH2CH2, 24H). 

13C NMR δ (ppm, CDCl3): 98.75 (-OCHO-), 67.58 (-OCHOCH2), 62.23 (-CH2OCHO-), 

33.90 (BrCH2-), 32.76 (BrCH2CH2-), 30.72 (-OCHCH2CH2-), 29.68 (-CH2CH2OCHO-), 

29.45 (BrCH2CH2CH2CH2CH2-), 29.39 (BrCH2CH2CH2CH2CH2CH2-), 29.37 (-

CH2CH2CH2CH2CH2O-), 29.34 (-CH2CH2CH2CH2O-), 28.68 (-CH2CH2CH2O-), 28.10 

(BrCH2CH2CH2CH2-), 26.16 (BrCH2CH2CH2-), 25.45 (-OCHOCH2CH2CH2CH2-), 19.63 

(-OCHOCH2CH2CH2CH2-). 

The second step of the synthesis was the Arbuzov reaction to substitute the Br with a 

phosphonate functional group. THPC11Br (3.566 g, 10.09 mmol) and triethyl phosphite 

(2.715 g, 16.34 mmol) were added to a 25 mL 2-necked round bottom flask equipped with 

a stir bar. The reaction flask was placed in an N2 environment, and the mixture was stirred 

at 150 °C for 20 h. Excess triethyl phosphite was removed by distillation under high 

vacuum at 100 °C. The crude mixture was then purified by silica gel column 

chromatography using a mixture of hexanes and ethyl acetate (2 : 1, v/v) as eluent initially 

and then a mixture of ethyl acetate and methanol (1 : 1, v/v) to increase the polarity. A 
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slightly yellow viscous liquid was obtained after drying under high vacuum (3.081 g, 

67.4%). This product was designated THPC11P. 1H NMR δ (ppm, CDCl3): 4.57 (t, -

OCHO-, 1H), 4.20-3.99 (m, -P(OCH2CH3)2, 4H), 3.91-3.82 (m, -OCHOCHH’- (ring), 1H), 

3.77-3.67 (m, -CHH’OCHO- (linear), 1H), 3.54-3.44 (m, -OCHOCHH’- (ring) , 1H), 3.43-

3.33 (m, -CHH’OCHO- (linear), 1H), 1.91-1.22 (m, 

(OCH2CH3)2PCH2CH2CH2CH2CH2CH2CH2CH2 CH2CH2CH2OCHOCH2CH2CH2CH2, 

32H) 13C NMR δ (ppm, CDCl3): 98.72 (-OCHO-), 67.55 (-OCHOCH2 (ring)-), 62.21 (-

CH2OCHO (linear)-), 61.59 (-P(OCH2CH3)2), 32.78 (-PCH2-), 30.72 (-PCH2CH2CH2-), 

29.68 (-OCHCH2-), 29.46 (-CH2CH2O-), 29.41 (-PCH2CH2CH2CH2CH2-), 29.35 (-

PCH2CH2CH2CH2CH2CH2-), 29.30 (-CH2CH2CH2CH2CH2O-), 29.24 (-

CH2CH2CH2CH2O-), 29.17 (-PCH2CH2CH2CH2-), 29.01 (-CH2CH2CH2O-), 26.17 (-

PCH2CH2-), 25.44 (-OCHOCH2CH2CH2CH2), 19.61 (-OCHOCH2CH2CH2CH2), 16.34 (-

P(OCH2CH3)2).   

The third step of the synthetic route was the deprotection of THP using an acidic ion-

exchange resin. THPC11P (3.081 g), methanol (3.130 g), and Amberlyst® 15 (2.000 g) 

were added to a 25 mL 2-necked round bottom flask equipped with a stir bar. The flask 

was placed in an N2 environment and set in a 45 °C oil bath while stirring for 5 days. The 

deprotection was monitored throughout the reaction using 1H NMR spectroscopy by 

observing the disappearance of the THP’s CH peak at 4.50 ppm. Once the peak was 

completely removed, gravity filtration was used to separate the Amberlyst resin. The 

filtrate was then concentrated and purified by column chromatography using a mixture of 

methylene chloride and methanol (95 : 5 v/v) as eluent. A viscous yellow liquid was 
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obtained after drying under high vacuum (1.723 g, 71.2% yield). This product was 

designated HOC11P. 1H NMR δ (ppm, CDCl3): 4.14-4.01 (m, -P(OCH2CH3)2, 4H), 3.62 

(t, -CH2CH2OH, 2H), 1.75-1.23 (m, 

(OCH2CH3)2PCH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2O, 26H). 13C NMR δ (ppm, 

CDCl3): 70.58 (HOCH2-), 61.59 (-P(OCH2CH3)2), 33.78 (HOCH2CH2-), 32.63 (-PCH2-), 

32.24 (-PCH2CH2CH2-), 29.23 (-PCH2CH2CH2CH2-), 28.56 (-PCH2CH2CH2CH2CH2-) 

27.96 (-PCH2CH2CH2CH2CH2CH2-), 25.98 (HOCH2CH2CH2CH2CH2-), 25.58 

(HOCH2CH2CH2CH2-), 19.39 (-PCH2CH2-), 18.24 (HOCH2CH2CH2-), 16.16 (-P(OCH-

2CH3)2). 

The final step of the monomer synthesis was accomplished through a reaction with 

methacryloyl chloride to yield monomer MAC11P. HOC11P (1.723 g, 5.590 mmol) and 

triethylamine (0.772 g, 7.483 mmol) were added to a 25mL 2-necked round bottom flask 

equipped with a stir bar along with methylene chloride (5 mL). Methacryloyl chloride 

(0.772 g, 7.483 mmol) was added to a vial and diluted with methylene chloride (5 mL) 

before being transferred to an addition funnel attached to the reaction flask. The flask was 

placed in an N2 environment and placed in an ice/water bath for 15 min before the dropwise 

addition of the methacryloyl chloride solution. The reaction mixture was stirred at room 

temperature for 27 h. A white precipitate was observed during the reaction, which was 

removed by partitioning with an aqueous phase. The crude mixture was then diluted with 

methylene chloride (50 mL), transferred to a separatory funnel, and washed twice with 1 

M NaOH solution. The organic layer was dried over anhydrous sodium sulfate and then 

separated by gravity filtration. The organic layer was concentrated using a rotary 
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evaporator, and the product was purified by silica gel column chromatography using 

methylene chloride as eluent initially and then changing to a mixture of methylene chloride 

and methanol (1 : 1 v/v). A yellow liquid was obtained after drying under high vacuum 

(1.523 g, 72.4% yield). 1H NMR δ (ppm, CDCl3): 6.09 (s, -C=CHH’, 1H), 5.54 (s, -

C=CHH’, 1H), 4.18-3.99 (m, -P(OCH2CH3)2, -CH2CH2O-, 6H), 1.94 (s, -CCH3, 3H), 1.79-

1.50 (m, -PCH2CH2CH2CH2 CH2CH2CH2CH2CH2CH2CH2O-, 6H), 1.42-1.23 (m, -

PCH2CH2CH2CH2CH2CH2CH2CH2 CH2CH2CH2O-, -P(OCH2CH3)2, 20H). 13C NMR δ 

(ppm, CDCl3): 167.50 (-C=O), 136.52 (-C=CH2), 125.07 (-C=CH2), 64.77 (-CH2CH2O-), 

61.27 (-P(OCH2CH3)2), 30.68 (-PCH2-), 30.46 (-PCH2CH2CH2-), 29.42 (-

PCH2CH2CH2CH2CH2-), 29.30 (-PCH2CH2CH2CH2CH2CH2-), 29.04 (-

CH2CH2CH2CH2CH2O-), 28.57 (-PCH2CH2CH2CH2-), 26.60 (-CH2CH2CH2CH2O-), 

25.93 (-CH2CH2O-), 24.74 (-PCH2CH2-), 22.33 (-CH2CH2CH2O-), 18.29 (-CCH3), 16.49 

(-P(OCH2CH3)2).  

3.2.5. Synthesis of 2-(Diethoxyphosphoryl)ethyl Methacrylate (MAC2P) 

The multi-step synthesis of MAC2P began with the preparation of a benzyl-protected 

phosphonate (BnC2P). Triethyl phosphite (6.014 g, 36.19 mmol) and benzyl 2-bromoethyl 

ether (4.489 g, 20.87 mmol) were added to a 25 mL 2-necked round bottom flask equipped 

with a stir bar. The mixture was refluxed at 200 °C for 4 h. The reflux condenser was 

removed every 30 min to allow the escape of ethyl bromide. The crude mixture was then 

purified by silica gel column chromatography using a mixture of methylene chloride and 

acetone (9 : 1 v/v) as eluent. A clear liquid was obtained after drying under high vacuum 

(3.955 g, 69.8%). 1H NMR δ (ppm, CDCl3): 7.36-7.23 (m, aromatic, 5H), 4.51 (s, -OCH2C-
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, 2H), 4.17-3.98 (m, -P(OCH2CH3)2, 4H), 3.79-3.65 (m, -OCH2CH2P-, 2H), 2.20-2.05 (m, 

-OCH2CH2P-, 2H), 1.28 (t, -P(OCH2CH3)2, 6H). 13C NMR δ (ppm, CDCl3): 137.76 

(aromatic), 128.28 (aromatic), 127.60 (aromatic), 72.89 (-OCH2C-), 64.11 (-P(OCH2CH-

3)2), 61.46 (-OCH2CH2P-), 27.90 (-OCH2CH2P-), 16.33 (-P(OCH2CH3)2). 

The next step in the reaction was the removal of the benzyl protecting group. BnC2P 

(3.901 g, 11.69 mmol) and 10% palladium on carbon (0.309 g) were added to a 100 mL 3-

necked round bottom flask and diluted with ethanol (40 mL). The flask was placed under 

an N2 environment for 30 min before an H2 balloon was attached through a syringe 

penetrating one of the reaction flask rubber septa. The N2 was turned off and the mixture 

was bubbled with H2 for 1 h via a needle. The air bleed was then removed and the system 

was left under H2 environment for 3 d. The reaction mixture was passed through Celite® 

filtering agent to the remove palladium carbon catalyst and rinsed with methanol. The 

methanol was removed from the filtered solution, which was then diluted with DI H2O and 

extracted 3 times with hexanes. The water layer was concentrated, and the product was 

purified by silica gel column chromatography by first using a mixture of hexane and 

methylene chloride (1 : 1 v/v) as eluent and later switching to a mixture of methylene 

chloride and methanol (1 : 1 v/v). After drying under high vacuum a yellow liquid was 

obtained (0.923 g, 35.3%). This product is designated HOC2P. 1H NMR δ (ppm, CDCl3): 

4.20-4.06 (m, -P(OCH2CH3)2, 4H), 3.95-3.85 (m, HOCH2CH2-, 2H), 2.61 (b, HO-, 1H), 

2.11-2.00 (m, HOCH2CH2-, 2H), 1.34 (t, -P(OCH2CH3)2, 6H). 13C NMR δ (ppm, CDCl3): 

61.83 (-P(OCH2CH3)2), 56.83 (HOCH2CH2P-), 29.59 (HOCH2CH2P-), 16.39 (-

P(OCH2CH3)2).  
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The last step in the synthesis of MAC2P was a reaction involving the alcohol group of 

HOC2P and methacryloyl chloride. HOC2P (0.854 g, 4.69 mmol) and triethylamine (0.689 

g, 6.81 mmol) were added to a 50 mL 2-necked round bottom flask and diluted with 

methylene chloride (5 mL). The reaction flask was placed in an ice/water bath under an N2 

environment. Methacryloyl chloride (0.690 g, 6.69 mmol) was added to a vial and diluted 

with methylene chloride (5 mL). This solution was then transferred to an addition funnel 

equipped to the reaction flask and added dropwise to the stirring mixture. The reaction was 

allowed to proceed at room temperature for 20 h and monitored by 1H NMR spectroscopy. 

The mixture was then further diluted with methylene chloride (15 mL), transferred to a 

separatory funnel, and washed with a saturated sodium bicarbonate solution three times. 

The organic layer was collected and dried over anhydrous sodium sulfate. Sodium sulfate 

was removed by gravity filtration, and the filtrate was concentrated by rotary evaporation. 

The crude mixture was purified by silica gel column chromatography using a mixture of 

ethyl acetate and hexanes (1 : 1 v/v) as eluent initially and later changing to pure ethyl 

acetate. Pure product was obtained as a yellow liquid after drying under high vacuum 

(0.696 g, 59.3 %). 1H NMR δ (ppm, CDCl3): 6.12 (s, CH3C=CHH’-, 1H), 5.58 (s, 

CH3C=CHH’-, 1H), 4.41-4.34 (m, -OCH2CH2P-, 2H) 4.17-4.06 (m, -P(OCH2CH3)2, 4H), 

2.24-2.15 (m, -OCH2CH2P-, 2H), 1.93 (s, CH3CC=O-, 3H), 1.32 (t, -P(OCH2CH3)2, 6H). 

13C NMR δ (ppm, CDCl3): 167.02 (CH3CC=O-), 136.00 (CH3C=CH2-), 125.90 

(CH3C=CH2-), 61.83 (-P(OCH2CH3)2), 58.90 (-OCH2CH2P-), 26.59 (-OCH2CH2P-), 18.21 

(CH3C=CH2-), 16.37 (-P(OCH2CH3)2). 
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3.2.6. Synthesis of CTA-Functionalized Silica Nanoparticles (CTA-NPs)  

Two batches of CTA-NPs were prepared using similar procedures and are denoted 

CTA-NP-I and CTA-NP-II. The following procedure describes the synthesis of CTA-NP-

I. MIBK-ST (3.469 g of a dispersion in MIBK with a concentration of 30 wt %, 

corresponding to 1.041 g of bare SiO2 NPs) and CTA-silane (1.014 g, 2.048 mmol) was 

added to a 100 mL three-necked round bottom flask, followed by the addition of freshly 

distilled THF (40 mL). The flask was placed in a 70 °C thermostated oil bath and stirred 

for 90 h. A slight color change from yellow to dark orange was observed, but the solution 

remained transparent. The CTA-NPs were purified by four rounds of ultracentrifugation 

(Beckman Optima L-90K Ultracentrifuge with type 60 Ti rotor, 35k rpm, 1 h, 4 °C) and 

redispersion in THF. The obtained CTA-NPs (CTA-NP-I, 0.852 g) were dispersed in 

freshly distilled THF with a concentration of 90.1 mg/g and stored in the refrigerator prior 

to use.  

3.2.7. Synthesis of Phosphonate-Functionalized Polymer Brush-Grafted Silica NPs 

Two series of polymer brush-grafted, 23 nm silica NPs were synthesized by surface-

initiated RAFT copolymerizations of MA-C13 with a phosphonate monomer, either StP or 

MAC11P, with molar feed ratios of 95:5, 90:10, 85:15, and 80:20. The hairy NPs were 

designated as PC13S or PC13C11P, where the S and C11P identify the phosphonate 

monomer used and the number following is the feed molar fraction. Similarly, a set of hairy 

silica NPs were prepared by SI-RAFT copolymerization of MA-C16 and MAC2P with 

molar ratios of 95:5, 90:10, 85:15, and 80:20 and were named in a similar fashion. The 

following describes the procedure used for the synthesis of PC13S-0.05 HNPs. All other 
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hairy NP samples were synthesized according to a similar procedure. MA-C13 (0.854 g, 

3.18 mmol), StP (0.042 g, 0.165 mmol), CTA-COOH (0.031 g, 0.106 mmol), 

dimethylformamide (0.065 g), AIBN (0.272 g of a 10.4 mg/g AIBN stock solution in THF, 

corresponding to 2.83 mg, 0.017 mmol AIBN), and CTA-NP-I (1.107 g of a 90.1 mg/g 

CTA-NP-I stock solution in THF, corresponding to 99.7 mg of CTA-NP-I) were added to 

a 25 mL 2-necked round bottom flask and capped with a glass septum. The polymerization 

mixture was degassed by three rounds of freeze-pump-thaw and then stirred in a 70 °C oil 

bath for 20 h under an N2 atmosphere. The polymerization was monitored by 1H NMR 

spectroscopy. Note that most polymerizations went to ~100% conversion in 24 h. The flask 

was removed from the oil bath, and the mixture was diluted with THF (5 mL). The hairy 

NPs were isolated and purified by five rounds of ultracentrifugation (35k rpm, 1 h, 4 °C) 

and redispersion in THF. The decanted solution from the first round of ultracentrifugation 

contained the majority of the analogous free polymer. This free polymer solution was 

concentrated using a rotary evaporator and purified by three rounds of precipitation in 

methanol and redissolving in methylene chloride. The purified free polymer was analyzed 

by SEC to determine Mn,SEC and Ð, and 1H NMR spectroscopy was used to determine the 

actual content of phosphonate groups. For this sample, Mn,SEC = 9.3 kDa and Ð = 1.67 

(relative to PS standards), and the actual molar content of StP in the copolymer = 5.0 %. 

The purified HNPs were analyzed by TGA to determine the DP and the grafting density. 

This sample was found to have a grafting density = 0.46 chains/nm2. The dispersions of 

this HNP sample in PAO with a concentration of 1 wt% HNP was prepared and found to 

be clear and stable at room temperature. 
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3.2.8. Preparation of 1.0 wt% Dispersions of Phosphonate-Functionalized Polymer 

Brush-Grafted Silica NPs in PAO 

To test the dispersibility and stability of phosphonate-functionalized polymer brush-

grafted silica NPs with varying compositions, 1 wt% HNP dispersions were prepared in 

PAO. The following procedure was used for the preparation of PC13S-0.05 NPs, all other 

HNP dispersions were prepared using similar procedures. PAO (1.043 g) was weighed in 

a vial, followed by the addition of a PC13S-0.05 NPs dispersion in THF (1.059 g, with a 

concentration of 9.8 mg/g, corresponding to 10.4 mg of HNPs). The PAO dispersion was 

thoroughly mixed before removing THF under an air stream initially and later under high 

vacuum to ensure complete removal of THF. The stability of HNPs in PAO at different 

temperatures was inspected visually, and optical photographs were taken of the dispersions 

at different temperatures. 

 

3.3. Results and Discussion 

3.3.1. Synthesis of Phosphonate-Functionalized Hairy NPs by SI-RAFT 

Copolymerization of MA-C13 with StP and Their Dispersibility in PAO 

3.3.1.1 Synthesis of Phosphonate-Functionalized Monomer StP  

To increase the function of oil-soluble polymer brush-grafted NPs, we aimed to 

introduce triboactive element phosphorus into the brushes of hairy NPs. For this purpose, 

we synthesized three different monomers that contain a phosphonate group and 

incorporated them into the polymer brushes by surface-initiated RAFT copolymerization 

with a methacrylate monomer containing a long alkyl pendant group, either MA-C13 or 
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MA-C16. The three phosphonate-functionalized monomers are diethyl (4-

vinylbenzyl)phosphonate (StP), 11-(diethoxyphosphoryl)undecyl methacrylate 

(MAC11P), and 2-(diethoxyphosphoryl)ethyl methacrylate (MAC2P); their molecular 

structures are shown in Scheme 3.1. Monomer StP was synthesized through an Arbuzov 

reaction between 4-vinylbenzyl chloride and triethyl phosphite (Scheme 3.2). The 

monomer was purified by silica gel column chromatography using a mixture of hexanes 

and ethyl acetate (1 : 1, v/v) as eluent. The molecular structure was confirmed by 1H and 

13C NMR spectroscopy, and the spectra are shown in Figure 3.1. 

3.3.1.2. Synthesis of Phosphonate-Functionalized Hairy NPs by SI-RAFT 

Copolymerization of MA-C13 and StP 

To study the effect of phosphonate content on the dispersibility in PAO and the 

tribological property of phosphonate-functionalized hairy NPs, SI-RAFT polymerization 

was employed to grow copolymer brushes of MA-C13 and StP from 23 nm silica 

nanoparticles at various molar ratios of the two monomers in the feed. The phosphonate 

group is highly polar, and the incorporation of StP into the brushes is expected to decrease 

the dispersibility of hairy NPs in PAO. For this reason, we chose to copolymerize StP with 

MA-C13. Note that poly(MA-C13) brush-grafted, 23 nm silica NPs (PC13 HNPs) have 

previously been shown to exhibit excellent dispersibility and long-term stability in PAO.18 

The molar feed ratio of MA-C13 and StP was varied from 95 : 5, 90 : 10, 85 : 15, and 80 : 

20, and the corresponding hairy NPs are named as PC13S-0.05, -0.10, -0.15, and -0.20, 

where 0.05, 0.10, 0.15, 0.20 represent the StP molar contents in the feeds. A PC13 HNP 

sample  was   also   synthesized  from   the  same  batch   of  CTA-NPs   (CTA-NP-I)  for  
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Scheme 3.2. Synthesis of Diethyl (4-Vinylbenzyl)phosphonate (StP). 
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Figure 3.1. 1H (A) and 13C (B) NMR spectra of StP in CDCl3. 
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comparison. We anticipated that a higher content of phosphonate would result in a better 

tribological property, but lead to decreased dispersibility and stability in the PAO base oil. 

Two batches of CTA-NPs were used in the synthesis of hairy NPs in the work presented in 

this chapter, but all StP-containing hairy NPs were synthesized from the same batch of 

CTA-NPs (CTA-NP-I). CTA-COOH was added into the polymerization mixtures as a free 

CTA to facilitate the characterization of polymer molecular weights and dispersities by 

creating analogous free polymers during the synthesis of hairy NPs. The polymerizations 

were monitored by 1H NMR spectroscopy through the analysis of the vinyl peaks at 6.10 

and 5.54 ppm for MA-C13 and 5.76, 5.70, 5.25, and 5.20 ppm for StP with the DMF (-

N(CH3)2) peaks at 2.96 and 2.88 ppm as internal standard; all of the polymerizations went 

to about 100% conversion for both monomers in 20 h. The free polymer formed in the 

synthesis of PC13 HNPs was characterized by 1H NMR spectroscopy (Figure 3.2A). The 

free copolymers of MA-C13 and StP formed during the synthesis of phosphonate-

functionalized HNPs were separated by ultracentrifugation and purified by three rounds of 

precipitation in methanol. The purified free copolymers were characterized by 1H NMR 

spectroscopy, and an increase in the intensity of the benzyl CH2 peak at 3.06 ppm from StP 

monomer units was observed as the phosphonate content in the feed increased (Figures 

3.3A, 3.4A, 3.5A, and 3.6A). The actual contents of StP monomer units in the copolymers 

were calculated from the 1H NMR spectra of the purified free copolymers by using the 

peak at 3.18-2.99 ppm (-CCH2P-) and the peaks at 4.24-3.52 ppm (-COOCH2 of MA-C13 

and -P(OCH2CH3)2 from StP). The free polymers were all analyzed by size exclusion 

chromatography (SEC) using THF as eluent (Figures 3.2B, 3.3B, 3.4B, 3.5B, and 3.6B). 
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Figure 3.2. 1H NMR spectrum of PC13 free polymer (A), SEC trace of PC13 free polymer 

(B), and TGA analysis of PC13 HNPs and CTA-NP-I (C). 
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Figure 3.3. 1H NMR spectrum of PC13S-0.05 free polymer (A), SEC trace of PC13S-0.05 

free copolymer (B), and TGA analysis of PC13S-0.05 HNPs and CTA-NP-I (C). 
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Figure 3.4. 1H NMR spectrum of PC13S-0.10 free polymer (A), SEC trace of PC13S-0.10 

free polymer (B), and TGA analysis of PC13S-0.10 HNPs and CTA-NP-I (C). 
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Figure 3.5. 1H NMR spectrum of PC13S-0.15 free polymer (A), SEC trace of PC13S-0.15 

free polymer (B), and TGA analysis of PC13S-0.15 HNPs and CTA-NP-I (C). 
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Figure 3.6. 1H NMR spectrum of PC13S-0.20 free polymer (A), SEC trace of PC13S-0.20 

free polymer (B), and TGA analysis of PC13S-0.20 HNPs and CTA-NP-I (C). 
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The molecular weights were found to be in the range of 5.7–9.3 kDa, with dispersities in 

the range of 1.44-1.67. High dispersities obtained in these copolymerizations were likely 

due to the electron withdrawing nature of phosphonate groups, which destabilizes the 

resulting StP radical. Lastly, the hairy NPs were characterized by thermogravimetric 

analysis (TGA) to determine the polymer brush contents (Figures 3.2C, 3.3C, 3.4C, 3.5C, 

and 3.6C). To calculate the DP and the grafting density of polymer brushes in each hairy 

NP sample, we assumed that the RAFT polymerization was controlled. The number of 

repeat units of each monomer in the copolymer was estimated by using the corresponding 

monomer conversion and the molar ratio of the monomer to the sum of free CTA and 

effective surface CTA as described in Chapter 2. By using the TGA data, the size of silica 

NPs (23 nm), and the actual molecular weight of the copolymer, the grafting density was 

calculated. The results are summarized in Table 3.1 along with other characterization data 

for all hairy NP samples and free copolymers. 

3.3.1.3. Dispersibility and Stability of PC13S HNPs in PAO 

To study the dispersibility and stability of PC13S HNPs in PAO, 1 wt% dispersions 

were prepared by adding calculated amounts of PAO and a dispersion of an HNP sample 

in THF into a 20 mL scintillation vial, mixing them thoroughly, and removing THF initially 

by air stream and then under high vacuum. All of the hairy NP samples except PC13S-0.20 

were found to be dispersible at room temperature in PAO, forming clear and homogenous 

dispersions (Figure 3.7A). The mixture of PC13S-0.20 in PAO was cloudy at room 

temperature but became completely homogenous and clear upon heating to 80 °C. 

However, after being allowed to cool to room temperature, the dispersion turned cloudy  
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Table 3.1. Summary of Characterization Data for PC13S Hairy Silica NPs and Free 

Copolymers 

 

 

 

 

 

 

 

 

 

 

 

Sample

Molar Content

 of StP in Feed 

(%)

StP Content 

in Copolymer by 

NMR (%) 

StP 

Conversion

(%)

MA-C13

 Conversion

 (%)
StP MA-C13 DPtotal

Grafting 

Density

 (chains/nm
2
)

Mn,SEC

 (kDa)
Đ

PC13 N/A N/A N/A 99.8 N/A 30.2 30 0.44 6.8 1.10

PC13S-0.05 4.9 4.1 ~100 ~100 1.45 27.9 29 0.44 9.3 1.67

PC13S-0.10 10.0 9.6 ~100 ~100 3.07 27.6 31 0.28 6.8 1.62

PC13S-0.15 15.6 15.3 ~100 ~100 4.68 25.5 30 0.38 6.3 1.47

PC13S-0.20 20.8 21.3 ~100 ~100 6.57 25.1 32 0.26 5.7 1.44
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Figure 3.7. Optical images of dispersions of phosphonate-functionalized hairy NPs, 

PC13S-0.05, -0.10, -0.15, and -0.20, in PAO at room temperature (A), and the mixture of 

1 wt% PC13S-0.20 in PAO at 80 °C, room temperature (RT), and after standing at room 

temperature for 1 day (B).  
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again, and the NPs precipitated out to the bottom of the vial after one day (Figure 3.7B). 

We plan to do tribological testing of the homogenous dispersions of PC13S HNPs in PAO 

to investigate the potential of these hybrid NPs as oil additives for friction and wear 

reduction. 

3.3.2. Synthesis of Phosphonate-Functionalized Hairy NPs by SI-RAFT 

Copolymerization of MA-C13 with MAC11P and Their Dispersibility in PAO 

3.3.2.1 Synthesis of Phosphonate-Functionalized Monomer MAC11P  

The second monomer, MAC11P (Scheme 3.1), contained a long alkyl spacer between 

the C=C bond and the phosphonate group, which was designed to increase the 

hydrophobicity and thus possibly the dispersibility of hairy NPs in PAO. MAC11P is a 

methacrylate-type monomer, which is more suitable for copolymerization with MA-C13, 

a methacrylate, than StP, a styrenic monomer. The synthesis of MAC11P consists of four 

steps (Scheme 3.3), which started with the THP protection of 11-bromoundecan-1-ol, 

yielding THPC11Br. The THP protection of the alcohol group was necessary to minimize 

the side reaction of the alcohol group with triethyl phosphite in the Arbuzov reaction. The 

product from the Arbuzov reaction was purified and designated as THPC11P. The THP-

protecting group was then removed using an acidic ion exchange resin, Amberlyst 15, in 

methanol, yielding HOC11P. The last step in the synthesis of this monomer is the reaction 

of HOC11P with methacryloyl chloride. The final product was purified by silica gel 

column chromatography using a mixture of methylene chloride and methanol (1 : 1 v/v) as 

eluent. 1H and 13C NMR spectra for MAC11P are shown in Figure 3.8, and the NMR 

spectra of intermediate products can be found in Appendix B (Figures B.1-B.3). 
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Scheme 3.3. Synthesis of 11-(Diethoxyphophoryl)undecyl Methacrylate (MAC11P). 
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Figure 3.8. 1H (A) and 13C (B) NMR spectra of MAC11P in CDCl3. 
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3.3.2.2. Synthesis of Phosphonate-Functionalized HNPs by SI-RAFT 

Copolymerization of MA-C13 and MAC11P 

A series of hairy silica NPs were synthesized by using SI-RAFT copolymerization of 

MA-C13 and MAC11P with feed molar ratios of 95 : 5, 90 : 10, 85 : 15, and 80 : 20, which 

are designated as PC13C11P-0.05, -0.10, -0.15, and -0.20, respectively, similar to the 

naming of PC13S hairy NPs. All of these hairy NPs were prepared from the second batch 

CTA-NPs (CTA-NP-II). The polymerizations were monitored by 1H NMR spectroscopy 

using the average integrals of vinyl peaks at 6.10 and 5.59 ppm relative to the average 

integral of the DMF peaks at 2.96 and 2.88 ppm (internal standard). Due to the vinyl peaks 

of the two monomers used in the copolymerizations being in the same position, the 

individual conversion for each monomer cannot be calculated separately; therefore the 

same conversion is assumed for both monomers. All polymerizations went to high 

conversions in 20 h. After the separation of hairy NPs and free polymer by 

ultracentrifugation, the free polymers were purified by precipitation in methanol and 

redissolving in methylene chloride three times. The purified free copolymers were 

analyzed by 1H NMR spectroscopy (Figures 3.9A, 3.10A, 3.11A, and 3.12A), and an 

increase in the intensity of the ethoxy peaks from MAC11P monomer units can be seen 

with the increasing content of phosphonate in the feed. The actual contents of MAC11P 

monomer units in the copolymers were calculated from the 1H NMR spectra of the purified 

free copolymers by using the peak at 4.15-4.04 ppm (-P(OCH2CH3)2) and the peaks at 4.03-

3.53 ppm (-COOCH2 of MA-C13 and MAC11P). The purified free copolymers also were 

characterized by SEC (Figures 3.9B, 3.10B, 3.11B, and 3.12B), revealing similar molecular 
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Figure 3.9. (A) 1H NMR spectrum of PC13C11P-0.05 free polymer, (B) GPC trace of 

PC13C11P-0.05 free polymer using THF as eluent, and (C) TGA of PC13C11P-0.05 HNPs 
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Figure 3.10. (A) 1H NMR spectrum of PC13C11P-0.10 free polymer, (B) GPC trace of 

PC13C11P-0.10 free polymer using THF as eluent, and (C) TGA of PC13C11P-0.10 

HNPs. 
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Figure 3.11. (A) 1H NMR spectrum of PC13C11P-0.15 free polymer, (B) GPC trace of 

PC13C11P-0.15 free polymer, and (C) TGA of PC13C11P-0.15 HNPs. 
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Figure 3.12. (A) 1H NMR spectrum of PC13C11P-0.20 free polymer, (B) GPC trace of 

PC13C11P-0.20 free polymer, and (C) TGA of PC13C11P-0.20 HNPs. 
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weights in the range of 6.7-7.3 kDa and narrows dispersities of 1.11-1.13. The purified 

PC13C11P HNPs were analyzed by TGA (Figures 3.9C, 3.10C, 3.11C, and 3.12C), and 

the grafting densities were found to be similar in the range of 0.25 - 0.33 chains/nm2, and 

DPs were 30 or 31 for all samples. All characterization data for PC13C11P HNPs and free 

copolymers are summarized in Table 3.2. 

3.3.2.3. Dispersibility and Stability Studies of PC13C11P HNPs 

Dispersions of PC13C11P HNPs in PAO with a concentration of 1 wt% were prepared 

using the same procedure as described for PC13S HNPs. Surprisingly, all of the PC13C11P 

dispersions were found to be cloudy at room temperature to varying degrees (Figure 

3.13A). After storage at room temperature for one day, all of the hairy NPs precipitated out 

(Figure 3.13B). Even with heating to 80 °C, none of these hairy NPs samples formed a 

homogenous dispersion. These observations are totally different from our original design 

of incorporating a longer alkyl spacer to increase the dispersibility of hairy NPs in PAO. 

Likely this is because a longer spacer made the phosphonate group more exposed, leading 

to stronger interactions between phosphonate groups. As such, we further designed and 

synthesized MAC2P, which has a much shorter alkyl spacer. The phosphonate groups are 

expected to be better shielded from each other by the longer alkyl pendant group of the 

comonomer in the brushes of hairy NPs. 
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Table 3.2. Summary of Characterization Data for PC13C11P Hairy Silica NPs and Free 

Copolymers 

 

 

 

 

 

 

 

 

 

 

 

Sample

Molar Content

 of MAC11P 

in Feed (%)

MAC11P Content 

in Copolymer by 

NMR (%) 

MAC11P 

Conversion

(%)

MA-C13

 Conversion

 (%)
MAC11P MA-C13 DPtotal

Grafting 

Density

 (chains/nm
2
)

Mn,SEC

 (kDa)
Đ

PC13C11P-0.05 5.4 5.0 98.6 98.6 1.67 29.5 31 0.25 6.9 1.11

PC13C11P-0.10 10.3 10.0 95.6 95.6 3.07 26.8 30 0.33 6.7 1.12

PC13C11P-0.15 14.5 14.9 ~100 ~100 4.54 26.8 31 0.25 7.3 1.13

PC13C11P-0.20 21.0 20.2 98.7 98.7 6.55 24.7 31 0.32 7.2 1.13
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Figure 3.13. Optical images of PC13M11P hairy NPs in PAO with a concentration of 1 

wt% at room temperature (A) and after standing at room temperature for one day (B).  
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3.3.3. Synthesis of Phosphonate-Functionalized HNPs by SI-RAFT Copolymerization 

of C16MA with MAC11P and Their Dispersibility in PAO 

3.3.3.1 Synthesis of Phosphonate-Functionalized Monomer MAC2P 

The third monomer, MAC2P, is also a methacrylate-type monomer but with a shorter 

alkyl spacer (2 methylene groups) between the vinyl group and the phosphonate group. As 

discussed in the preceding section, the much shorter spacer likely would increase the 

dispersibility of hairy NPs in PAO due to the increased shielding of phosphonate groups. 

The synthesis of MAC2P was also a multiple-step process (Scheme 3.4), which began with 

an Arbuzov reaction between benzyl 2-bromoethyl ether and triethyl phosphite, yielding 

BnC2P. The next step is the removal of the benzyl group of BnC2P using H2 (g) with a 

palladium catalyst to yield HOC2P. The final step of the synthesis of MAC2P is the 

reaction of HOC2P with methacryloyl chloride. The product, MAC2P, was purified by 

column chromatography using a mixture of ethyl acetate and hexanes (1 : 1 v/v) as eluent 

and the molecular structure was confirmed by 1H and 13C NMR spectroscopy (Figure 3.14). 

The NMR spectroscopy data of the intermediate compounds can be found in Appendix B 

(Figures B.4 and B.5). 

3.3.3.2. Synthesis of Phosphonate-Functionalized Hairy NPs by SI-RAFT 

Copolymerization of MA-C16 with MAC2P 

The third set of phosphonate-functionalized hairy NPs were synthesized by SI-RAFT 

copolymerization of MA-C16 and MAC2P with molar ratios of 95 : 5, 90 : 10, 85 : 15, 80 

: 20 in the feeds. The HNP samples were denoted as PC16C2P-0.05, -0.10, -0.15, and -

0.20, where 0.05, 0.10, 0.15, and 0.20 are the molar ratios of MAC2P used in the  
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Scheme 3.4. Synthesis of 2-(Diethoxyphosphoryl)ethyl Methacrylate (MAC2P). 
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Figure 3.14. 1H (A) and 13C (B) NMR spectra of MAC2P in CDCl3. 
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polymerization. A poly(MA-C16) homopolymer (PC16) brush-grafted NP sample was also 

synthesized for comparison. For this set of hairy NPs, we used MA-C16, which has a longer 

alkyl pendant than MA-C13, in an attempt to further shield phosphonate groups for each 

other. Similar to the synthesis of other phosphonate-functionalized HNPs described above, 

CTA-COOH was added into the polymerization mixtures as a free CTA to form an 

analogous free polymer. The monomer conversions were monitored by 1H NMR 

spectroscopy using the average integral of the vinyl peaks located at 6.13 and 5.59 ppm for 

MAC2P and 6.10 and 5.54 ppm for MA-C16 relative to the DMF peaks at 2.96 and 2.8 

ppm (added as internal standard). All polymerizations went to high conversions for both 

monomers (90.3 - ~100%) in 20 h. The resulting free polymers and HNPs were separated 

by ultracentrifugation. An attempt to purify the free copolymers by precipitation in 

methanol was unsuccessful, so the actual phosphonate content was calculated from the 

molar feed ratio used in the copolymerization. The free copolymers were characterized by 

SEC (Figures 3.15A, 3.16A, 3.17A, 3.18A, 3.19A) and similar molecular weights in the 

range of 8.3-9.5 kDa and narrow dispersities of 1.11-1.15 were observed. The purified 

hairy NPs were analyzed by TGA (Figures 3.15B, 3.16B, 3.17B, 3.18B, and 3.19B). The 

number of repeat units of each monomer in the copolymer and the grafting density were 

calculated as described earlier. The grafting densities of PC16C2P-0.05, PC16C2P-0.10, 

and PC16C2P-0.15 were found to be in the range of 0.31-0.36 chains/nm2, while PC16C2P-

0.20 had a lower grafting density (0.17 chains/nm2). The total DPs for all free polymers 

were similar and in the range of 28-31. The characterization data for PC16 and PC16C2P 

hairy NPs and free copolymers are summarized in Table 3.3. 
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Figure 3.15. (A) GPC trace of PC16 free polymer and (B) TGA of PC16 HNPs. 
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Figure 3.16. (A) GPC trace of PC16C2P-0.05 free polymer and (B) TGA of PC16C2P-

0.05 HNPs. 
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Figure 3.17. (A) GPC trace of PC16C2P-0.10 free polymer and (B) TGA of PC16C2P-

0.10 HNPs. 
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Figure 3.18. (A) GPC trace of PC16C2P-0.15 free polymer and (B) TGA of PC16C2P-

0.15 HNPs. 
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Figure 3.19. (A) GPC trace of PC16C2P-0.20 free polymer and (B) TGA of PC16C2P-

0.20 HNPs. 
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Table 3.3. Summary of Characterization Data for PC16C2P Hairy Silica NPs and Free 

Copolymers 

 

 

 

 

 

 

 

 

 

 

Sample

Molar Content

 of MAC2P in 

Feed (%)

MAC2P 

Conversion

(%)

MA-C16

 Conversion

 (%)
MAC2P MA-C16 DPtotal

Grafting 

Density

 (chains/nm
2
)

Mn,SEC

 (kDa)
Đ

PC16 N/A N/A 97.7 N/A 29.4 29 0.28 8.5 1.12

PC16C2P-0.05 5.5 ~100 98.2 1.61 27.0 29 0.36 9.4 1.12

PC16C2P-0.10 10.1 94.8 94.5 2.91 25.7 29 0.31 8.5 1.15

PC16C2P-0.15 15.5 92.4 90.3 4.40 23.4 28 0.32 8.4 1.11

PC16C2P-0.20 20.9 98.0 96.4 6.49 24.3 31 0.17 8.3 1.12
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3.3.3.3. Dispersibility and Stability Studies of PC16C2P HNPs in PAO 

To test the dispersibility of PC16C2P HNPs in PAO, 1 wt% dispersions of PC16C2P-

0.05, -0.10, -0.15, and -0.20 were prepared using a procedure similar to those for other 

phosphonate-functionalized HNPs described earlier. Unlike the other two sets of 

phosphonate-functionalized hairy NPs, all of the four PC16C2P HNP samples were fully 

dispersed and stable at room temperature (Figure 3.20). From these observations, it appears 

that more MAC2P can be copolymerized into the brushes while keeping HNPs dispersible 

and stable in PAO. We will study the lubricating properties of these functionalized hairy 

silica NPs.  

 

3.4. Conclusions 

Three sets of phosphonate-containing hairy silica NPs were synthesized from CTA-

functionalized, 23 nm silica NPs by SI-RAFT copolymerization of a methacrylate with a 

long alkyl pendant with either StP, MAC11P, or MAC2P. For StP and MAC11P 

copolymerization, MA-C13 was used as the comonomer, while MA-C16 was used for the 

copolymerization with MAC2P. For each set of hairy NPs, the molar ratio of the 

comonomer and the phosphonate-functionalized monomer was varied from 100 : 0, 95 : 5, 

90 : 10, 85 :15, and 80 : 20. For PC13S HNPs, when the StP molar content was 15% or 

below, the hairy NPs can be dispersed in PAO at room temperature and formed 

homogenous, clear dispersions. When the StP molar content was 20%, the hairy NPs 

formed a cloudy mixture with PAO at room temperature. Surprisingly, all of the PC13C11P  
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Figure 3.20. Optical images of dispersions of PC16C2P-0.05, -0.10, 0-.15, and -0.20 in 

PAO at a concentration of 1 wt% at room temperature. 
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hairy NPs formed cloudy mixtures with PAO at a concentration of 1 wt%, likely because 

a longer alkyl spacer made the phosphonate groups more exposed and thus enhanced their 

interactions. For this reason, we further synthesized a methacrylate monomer, MAC2P, 

with a shorter alkyl spacer and copolymerized it with MA-C16. All of PC16C2P hairy NPs 

were dispersible in PAO at 1 wt% at room temperature. These results are promising. We 

will study the lubricating properties of these phosphonate-functionalized hairy NPs in the 

future. 
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Chapter 3. Synthesis of Phosphonate-Functionalized Polymer Brush- 

Grafted Silica Nanoparticles as Oil Lubricant Additive for Friction 

 and Wear Reduction 
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Figure B1. 1H (A) and 13C (B) NMR spectra of THPC11Br in CDCl3. 
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Figure B2. 1H (A) and 13C (B) NMR spectra of THPC11P in CDCl3. 
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Figure B3. 1H (A) and 13C (B) NMR spectra of HOC11P in CDCl3. 
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Figure B4. 1H (A) and 13C (B) NMR spectra of BnC2P in CDCl3. 
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Figure B5. 1H (A) and 13C (B) NMR spectra of HOC2P in CDCl3. 
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Chapter 4. Improved Lubricating Performance by Combining Oil-

Soluble Hairy Silica Nanoparticles and an Ionic Liquid as an Additive 

for a Synthetic Base Oil 
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Abstract 

This chapter presents a finding of improved lubricating performance by combining oil-

soluble poly(lauryl methacrylate) brush-grafted silica nanoparticles (hairy NPs or HNP) 

and an oil-miscible phosphonium-phosphate ionic liquid (IL) as a friction reducing additive 

for a polyalphaolefin (PAO) oil. The HNP was synthesized by surface-initiated reversible 

addition-fragmentation chain transfer polymerization. At a total concentration of 2 wt% 

and sufficiently high individual concentrations for HNP and IL in PAO, high contact stress, 

ball-on-flat reciprocating tribological tests showed that the friction decreased by up to 23% 

compared with 2% HNP alone in PAO and by up to 35% compared to the PAO mixed with 

2% IL. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) 

and X-ray photoelectron spectroscopy (XPS) analysis revealed that the tribofilm formed 

from the PAO containing 1% HNP + 1% IL was enriched with both Si and P, indicating 

that both hairy NPs and IL were involved in the tribo-chemical reactions. In addition, the 

O 1s and Si 2p peaks in the core-level XPS spectra exhibited significant shifts for the 

mixture of 1% HNP + 1% IL compared to those for 2% HNP, suggesting the possible 

formation of new covalent bonds. These results indicated that hairy silica NPs and IL 

reacted with each other and also with the metal substrate during the rubbing process, which 

likely strengthened the tribofilm and its bonding with the substrate and thus further 

improved the lubrication.  
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4.1. Introduction 

Lubrication plays an indispensable role in machinery, for it not only improves 

mechanical systems’ durability by reducing friction and wear but also increases energy 

efficiency.1-6 An example is the lubrication of wind turbines. Generally, there are three 

lubrication regimes for mechanical systems: boundary regime where the asperities of two 

rubbing surfaces come into contact and collide with each other, 

hydrodynamic/elastohydrodynamic regime where sliding surfaces are fully separated by a 

continuous lubricating oil film, and mixed regime, an intermediate regime between 

boundary and hydrodynamic where only the tallest asperities from opposing surfaces 

occasionally make contact.1-4 A lubricant usually is composed of base oil and multiple 

additives with different functionalities, including anti-oxidant, viscosity modifier, anti-

wear, friction modifier, detergent, dispersant, anti-foam, etc.5-9 

Ionic liquids (ILs),10-15 particularly oil-miscible ionic liquids,7,13-15 and nanoparticles 

(NPs)16-29 are two promising classes of additives for friction reduction and wear protection 

that have been intensively studied in recent years. ILs are molten salts with relatively low 

melting points, often below room temperatures, due to the large ions involved.11,15,30 They 

possess many intriguing characteristics, such as no or extremely low volatility, high 

thermal and chemical stability, wide electrochemical window, etc.30 Since Ye et al. first 

explored the use of ILs as lubricants,10 extensive studies have been conducted on the 

tribological properties of various ILs.10-15 In particular, oil-miscible phosphonium-

phosphate ILs,13-15 have shown effective anti-scuffing and anti-wear characteristics in 

addition to significant friction reduction, which was attributed to the physical adsorption 
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of anions and the tribofilm formation on metallic surfaces. For example, addition of 1.04% 

tetraoctylphosphonium bis(2-ethylhexyl) phosphate ([P8888][DEHP]) into a low viscosity 

gas-to-liquid 4 cSt (GTL 4) base oil prevented scuffing and resulted in a decrease in total 

wear volume by 91.5% and a reduction of the average steady-state friction coefficient by 

~ 10% compared to GTL 4 when tested in a ball-on-flat reciprocating configuration at 100 

C under a normal load of 100 N.13 

NPs are another class of promising oil additives for friction and wear reduction because 

of their potential to exhibit desired interactions with substrates and their readily tunable 

size, composition, and surface functionality.16-29 A variety of NPs, including metals,18-20 

metal oxides,21-26 and metal sulfides,27,28 have been shown to possess excellent abilities to 

form protective tribofilms on the surface of rubbing materials when employed as lubricant 

additives. However, one major issue with the use of NPs is their high tendency to undergo 

aggregation in nonpolar oils, for example, synthetic lubricating base oil polyalphaolefin 

(PAO), due to the large difference in chemical composition between the oil and NPs and 

the high van der Waals attractive forces between NPs.17 If NPs become aggregated and 

unstable in oil, their tribological benefits will be lost. Our group recently reported a class 

of oil-soluble polymer brush-grafted silica and titania NPs (hairy silica and titania NPs) 

that exhibited excellent dispersibility and remarkable stability in PAO at both low (– 20 

C) and high temperature (100 C).31,32 It is worth noting that hairy NPs, consisting of a 

layer of polymer chains densely grafted on the surface of core NPs, have received 

considerable interest in recent years due to a variety of potential applications.31-38 The 

superior dispersibility and stability of hairy NPs in PAO was attributed to the favorable 
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enthalpic interactions between polymer brushes and PAO molecules and sterically 

repulsive interactions between hairy NPs. With the use of oil-soluble hairy NPs, significant 

friction (up to ~ 40%) and wear reductions (up to ~ 90%) were achieved at a concentration 

of 1 wt% compared with PAO base oil.31,32  

As discussed, oil-soluble ILs and hairy NPs are two distinct types of potential lubricant 

additives, with vastly different sizes and chemical compositions.11,15,31,32 The tribofilms, 

which are enriched with triboactive elements from additives and are responsible for wear 

protection and friction reduction, are formed from drastically different mechanochemical 

reactions under harsh conditions of local high pressures and high temperatures. The typical 

tribofilm thickness was previously observed to be 10 – 400 nm for oil-miscible ILs13,39 and 

200 – 400 nm for hairy silica NPs.31 Note that iron (poly)phosphates have been identified 

in the tribofilms from phosphonium-phosphate ILs.13 While phosphate anions of ILs adsorb 

onto the substrate surfaces, the electrically neutral hairy silica NPs unlikely have any 

interactions with metallic surfaces before the rubbing begins. On the other hand, phosphate 

anions can react with silica/silicate to form covalent linkages, which have been utilized to 

improve bonding strength.40-42 On the basis of these considerations, we hypothesized that 

the combination of hairy NPs and phosphonium-phosphate ILs as a lubricant additive could 

lead to a further improvement in the lubricating performance. The complex reactions 

between phosphate anions, silica, and metal surface during the rubbing process likely will 

enhance the tribofilm formation, strengthen the protective tribofilms, and improve the 

bonding of the tribofilm to the metallic substrate. To explore this hypothesis, we 

synthesized poly(lauryl methacrylate) brush-grafted, 23 nm silica NPs (Scheme 4.1) by  
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Scheme 4.1. Schematic Illustration of Poly(lauryl methacrylate) (PLMA) Brush-Grafted, 

23 nm Silica Nanoparticles (Hairy NPs) and Molecular Structures of PLMA Brushes and 

[P8888][DEHP]. 
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using surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) 

polymerization. The IL used in this work was [P8888][DEHP] (Scheme 4.1).13 A series of 

PAO-based lubricants containing both hairy silica NPs and [P8888][DEHP] with a total 

concentration of 2 wt% but various ratios were prepared and tested in boundary lubrication. 

We found that at certain individual concentrations the lubrication performance was 

improved significantly compared to the PAO mixed with either hairy NPs or 

[P8888][DEHP] alone. 

 

4.2. Experimental Section 

4.2.1. Materials 

The silica NPs used in the present work was obtained from Nissan Chemical as a 

dispersion in methyl isobutyl ketone (MIBK-ST) with an NP concentration of 30-31wt%. 

The average NP size was 10–15 nm according to the manufacturer. Lauryl methacrylate 

(LMA) (97%, Acros) was passed through a column of activated basic aluminum oxide (top) 

and silica gel (bottom) (2/1, v/v) to remove the inhibitor and stored in a refrigerator prior 

to use. Tetrahydrofuran (THF) was dried with sodium/benzophenone, distilled under 

nitrogen atmosphere, and used immediately. 4-(((Butylthio)carbonothioyl)thio)-4-

cyanopentanoic acid (CTA-COOH), used as the free chain transfer agent (CTA) in the 

synthesis of hairy NPs, and n-butyl (2-cyano-5-oxo-5-((3-

(triethoxysilyl)propyl)amino)pentan-2-yl) carbonotrithioate (CTA-Silane), were 

synthesized according to the procedures described previously.32 Azobisisobutyronitrile 

(AIBN) (98%, Aldrich) was recrystallized from ethanol and dried under high vacuum 
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before use. The PAO fluid used in the present work was SpectraSynTM 4 PAO oil 

(ExxonMobil). The kinematic viscosities of this PAO are 19.0 cSt and 4.1 cSt at 40 and 

100 C respectively, and its pour point is – 87 C. [P8888][DEHP] was synthesized by 

following the procedure in the literature,7,13 and the purity was confirmed by 1H NMR 

spectroscopy. All other chemical reagents were purchased from either Aldrich or Fisher 

and used as received. 

4.2.2.Characterization 

Size exclusion chromatography (SEC) of poly(lauryl methacrylate) (PLMA), the free 

polymer formed from the free CTA in the synthesis of PLMA hairy silica NPs (HNP), was 

performed using a PL-GPC 20 (an integrated SEC system from Polymer Laboratories, Inc.) 

equipped with a refractive index detector, one PLgel 5 μm guard column (50 × 7.5 mm), 

and two PLgel 5 μm mixed-C columns (each 300 × 7.5 mm, linear molecular weight range 

of 200 to 2 000 000 Da). THF was used as the mobile phase, and the flow rate was set at 

1.0 mL/min for the analysis. The SEC system was calibrated with narrow disperse 

polystyrene standards, and the data were processed using Cirrus GPC/SEC software 

(Polymer Laboratories, Inc.). 1H NMR spectra were recorded on a Varian VNMRS 500 

MHz spectrometer, and the residual solvent proton signal was used as the internal 

reference. Thermogravimetric analysis (TGA) of CTA-functionalized silica NPs and 

PLMA hairy NPs was carried out in N2 at a heating rate of 20 C/min from room 

temperature to 800 C using TA Discovery TGA-MS. Scanning transmission electron 

microscopy (STEM) was performed using a Zeiss Auriga equipped with a scanning 

transmission electron detector at an accelerating voltage of 30 keV. The STEM sample of 
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PLMA hairy NPs was prepared by drop casting of a 2 mg/mL dispersion in THF onto 

copper TEM grids coated with a carbon film. Scanning electron microscopy (SEM) and 

energy dispersive X-ray spectroscopy (EDS) analysis of the wear scars formed on cast iron 

flats from the tribological tests was performed using a Zeiss EVO MA15 equipped with an 

XFlash 6|30 silicon drift detector at an accelerating voltage of 20 kV. The topographic 

SEM images were obtained using a secondary electron detector.  

A Thermo Scientific K-Alpha XPS was used for the X-ray photoelectron spectroscopy 

(XPS) analysis of the tribofilms formed on wear tracks from the tribological tests of 2% 

IL, 2% HNP, and a mixture of 1% HNP + 1% IL. The tested flats were ultrasonicated 

sequentially in ethanol, acetone, and hexanes, each for five minutes, wiped with Kimwipes 

and then blown clean with a nitrogen gun to remove possible particulate or other 

contaminants. All of the flats were rinsed thoroughly with isopropanol again before being 

placed in the sample chamber of the XPS instrument. The X-ray used in XPS analysis was 

monochromatic Al-K photons and the photons emitted from the samples were analyzed 

with a hemispherical energy analyzer. The spot size in the XPS analysis was 400 µm. 

Survey (0-1350 eV range, 1 eV steps, pass energy 200 eV) and core-level (20 eV range, 

pass energy 150 eV, snapshot mode) spectra of each scar were obtained after 30 s of ion 

sputtering with an argon-ion sputter gun at 1 keV to remove any possible surface 

contaminants. For each sample, the core-level spectra of C 1s, O 1s, Si 2p, and P 2pwere 

collected. Composition depth profiling of the tribo-films was obtained using an argon-ion 

sputter gun (2 keV, mid current, 1.4 mm raster, sputter rate = 1.51 nm/sec relative to Ta2O5) 

to etch the surface. The atomic compositions were calculated by measuring the peak areas 
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of all elements present and then normalizing them using tabulated sensitivity values. The 

software used in the XPS data analysis was Thermo Avantage software (v5.98, Thermo 

Fisher Scientific). 

4.2.3. Synthesis of CTA-Functionalized Silica NPs (CTA-NPs) 

MIBK-ST (5.010 g of dispersion in MIBK with a concentration of 30 wt%, 

corresponding to 1.503 g of bare SiO2 NPs) and CTA-Silane (2.042 g, 4.132 mmol) were 

weighed into a 50 mL two-necked flask, followed by the addition of dried, freshly distilled 

THF (11 mL). The flask was placed in a 70 °C thermostated oil bath. The reaction mixture 

was stirred with a magnetic stir bar and refluxed for 68 h; a slight color change from yellow 

to dark orange was observed, but the solution remained transparent. The NPs were then 

purified by four rounds of ultracentrifugation (Beckman Optima L-90K Ultracentrifuge 

with type 60 Ti rotor, 35000 rpm, 60 min, 4 °C) and redispersion in THF. The CTA-NPs 

(1.156 g) were dispersed in freshly distilled THF, producing an orange dispersion with a 

concentration of 168 mg/g, which was stored in a refrigerator prior to use. 

4.2.4. Synthesis of PLMA Hairy Silica NPs 

LMA (2.499 g, 9.823 mmol), CTA-COOH as free CTA (89.0 mg, 0.305 mmol), AIBN 

(7.61 mg, 0.0463 mmol), and CTA-NPs (3.168 g dispersion in THF with a concentration 

of 168 mg/g, corresponding to 532 mg of CTA-NPs) were added into a 25 mL two-necked 

flask, followed by the addition of N,N-dimethylformamide (DMF, 68.4 mg) used as 

internal standard. The flask was then degassed by three cycles of freeze–pump–thaw and 

placed in a 70 °C oil bath. The reaction was monitored by 1H NMR spectroscopy. After 18 

h, the polymerization was stopped by removing the flask from the oil bath, exposing the 
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reaction mixture to air, and diluting with THF (5 mL). The final monomer conversion was 

90.6 %, which was determined by comparing the average of the integrals of the vinyl peaks 

at 6.08 and 5.52 ppm against the peaks of internal standard DMF at 2.97-2.85 ppm for the 

initial 0 min and final samples. The DP of the PLMA was 25, calculated by using the 

monomer conversion and the molar ratio of monomer to the sum of free CTA and surface 

CTA grafted on silica NPs. The hairy NPs were purified by five rounds of 

ultracentrifugation (35000 rpm, 60 min, 4 °C) and re-dispersion in THF. The purified hairy 

NPs were stored as a dispersion in THF with a concentration of 61.3 mg/g. The free 

polymer in the supernatant liquid from the first cycle of ultracentrifuge was characterized 

by SEC analysis, and the Mn,SEC was found to be 6.5 kDa with a dispersity (Đ) of 1.14 

relative to polystyrene standards. 

4.2.5. Preparation of PAO-Based Lubricants Containing Various Amounts of HNP 

and IL with a Total Concentration of 2% and Stability Study 

To study the effect of combining hairy silica NPs (HNP) and [P8888][DEHP] (IL) on 

lubrication performance, a series of PAO-based lubricants containing various amounts of 

HNP and IL with an overall concentration of 2% were prepared. The samples included: (a) 

2% IL, (b) 2% HNP, (c) 0.34% HNP + 1.66% IL, (d) 0.66% HNP + 1.34% IL, (e) 1% HNP 

and 1% IL, (f) 1.34% HNP + 0.66% IL, (g) 1.66% HNP + 0.34% IL, and (h) 1.83% HNP 

+ 0.17% IL. The following is the preparation of a PAO solution of 1% HNP + 1% IL. All 

other samples were prepared using a similar procedure. PAO (3.016 g) was weighed into a 

20 mL scintillation vial followed by the addition of [P8888][DEHP] (31.9 mg) and a 

dispersion of PLMA hairy silica NPs in THF with a concentration of 61.3 mg/g (0.498 g, 
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corresponding to 30.5 mg of hairy NPs). The resultant mixture was ultrasonicated using 

Fisher Scientific FS6 for 5 min until a homogeneous dispersion was achieved. THF was 

then removed under reduced pressure, which was confirmed by 1H NMR analysis. 

Dynamic light scattering (DLS) measurements were performed to study the stability of 

PLMA hairy silica NPs in PAO in the presence of [P8888][DEHP] using a Malvern 

Zetasizer Nano ZS instrument equipped with a He-Ne S-9 633 nm laser and a temperature 

controller at a scattering angle of 173. A dispersion of 1% HNP in PAO and a solution of 

the mixture of 1% HNP + 1% IL in PAO were prepared. Aliquots were taken from the 

samples and diluted with pure PAO to a concentration of 0.1 mg/g for DLS measurements 

at 23 C. The viscosity of PAO at 23 C, 27.6 cP, was calculated from the kinematic 

viscosity (34.5 cSt) and its density at 23 C (0.80 g/mL) from the literature.7 The samples 

were heated at 100 °C for 10 days along with a PAO solution of 1% IL. Aliquots were 

withdrawn from the solution of 1% HNP + 1% IL in PAO and used for the DLS 

measurements of the hydrodynamic size of hairy NPs at 23 C.  

4.2.6. Tribological Testing 

High contact stress, ball-on-flat boundary lubrication tests were performed using a 

Phoenix Tribology Plint TE 77 to study the effect of mixing hairy NPs and [P8888][DEHP] 

in PAO on tribological performance. In each test, an AISI 52100 steel ball with a diameter 

of 9.25 mm slid reciprocally under a point contact load of 100 N against a stationary CL35 

cast iron flat in the presence of a lubricant typically for a total sliding distance of 1000 m. 

A sliding stroke of 10 mm and an oscillation frequency of 10 Hz were used, and all 

tribological tests were conducted at 100 C. The friction force was recorded in situ by a 
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piezoelectric load cell, and the coefficient of friction (COF) was obtained by dividing the 

friction force by the load. For each sample, at least two runs were conducted under the 

same conditions, and the average of the COF curves was calculated and used. After the 

tribological testing, the iron flat and steel ball along with their respective wear scars were 

cleaned thoroughly with acetone and isopropanol for wear measurements using optical 

surface profilometry (Wyko NT9100). The iron flats with wear scars were further cleaned 

and characterized by SEM-EDS analysis and XPS as mentioned earlier. 

 

4.3. Results and Discussion 

4.3.1. Synthesis and Characterization of PLMA Hairy Silica NPs and IL 

[P8888][DEHP] 

PLMA brush-grafted, 23 nm silica NPs (HNP) were made by SI-RAFT polymerization 

from chain transfer agent (CTA)-functionalized silica NPs. The CTA-NPs were prepared 

by immobilizing n-butyl (2-cyano-5-oxo-5-((3-(triethoxysilyl)propyl)amino)pentan-2-yl) 

carbonotrithioate (CTA-Silane),32 a triethoxysilane-terminated CTA, onto the surface of 

silica NPs from MIBK-ST in dry THF at 75 °C for 68 h in a nitrogen atmosphere. The 

CTA-NPs were purified by repetitive ultracentrifugation and then stored as a dispersion in 

THF.  

The SI-RAFT polymerization was then conducted to grow PLMA brushes from CTA-

NPs at 70 C using AIBN as initiator in the presence of a free CTA, CTA-COOH. The free 

CTA was added to facilitate the control of surface polymerization and the characterization 

of the grafted polymer. For surface-initiated “living”/controlled radical polymerization 
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from (nano)particles, it has been reported that the molecular weights and dispersity of the 

free polymers formed from the free initiators or CTAs are essentially identical to those of 

the polymer brushes on the particles.43-45 The reaction was run for 18 h, and the monomer 

conversion was found to be 90.6 % by 1H NMR spectroscopy analysis. The hairy NPs were 

purified by five cycles of ultracentrifugation and re-dispersion in THF. SEC analysis of the 

free polymer isolated from the first round of ultracentrifugation showed that the values of 

Mn,SEC and Đ were 6.5 kDa and 1.14, respectively,46 which suggests a controlled radical 

polymerization. The HNP was analyzed by thermogravimetric analysis (TGA) and found 

to have weight retention of 54.6% at 800 C (Figure 4.1A). This is significantly lower than 

that of CTA-NPs (86.5%), indicating the successful growth of PLMA brushes on NPs. The 

degree of polymerization (DP) of PLMA was calculated to be 25 from the ratio of monomer 

to the sum of free and surface CTA and the monomer conversion.46 The HNP was imaged 

by scanning transmission electron microscopy (STEM), and a representative STEM 

micrograph is presented in Figure 4.1B. Although the original size of silica NPs was 10-15 

nm according to Nissan Chemical, our group found that the average size of core silica NPs 

was 23 nm,32 which is likely because smaller NPs were lost in the multiple cycles of 

ultracentrifugation. Using the NP size, DP of PLMA brushes, and TGA data, we calculated 

the grafting density of PLMA brushes, and it was 0.51 chains/nm2.46 The molecular 

structure of the IL used in this work, [P8888][DEHP],6 was confirmed by 1H NMR 

spectroscopy analysis.46 
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Figure 4.1. (A) Thermogravimetric analysis (TGA) of CTA-functionalized silica NPs 

(CTA-NPs) and PLMA brush-grafted silica NPs (HNP) made from CTA-NPs and (B) 

bright field scanning transmission electron microscopy (STEM) micrograph of HNP. 
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4.3.2. Colloidal Stability of PLMA Hairy Silica NPs in PAO in the Presence of 

[P8888][DEHP] 

Our group previously demonstrated that PLMA brush-grafted, 23 nm silica NPs 

exhibited superior stability in PAO at both low (-20 C) and high temperatures (100 C).31 

To examine if the addition of [P8888][DEHP] affects the colloidal stability of HNP in 

PAO, we prepared a solution of 1% HNP + 1% IL in PAO and kept it still in a 100 C oil 

bath for an extended period of time. For comparison, we also prepared a 1% dispersion of 

HNP alone in PAO and a 1% solution of the IL in PAO and heated them at 100 C. Figure 

4.2A-C shows the photos of the samples after being kept at 100 C for 10 days along with 

freshly prepared solutions of the mixture, HNP alone, and IL alone in PAO. No any 

aggregation/precipitation was observed except very light yellow coloration for all samples 

compared with freshly made ones, suggesting that the hairy NPs were stable in PAO in the 

presence of 1% [P8888][DEHP]. 

To further study the stability of HNP in the presence of IL in PAO, aliquots were taken 

from the solution of the mixture after 3 and 10 days and diluted to a concentration of 0.1 

mg/g HNP with pure PAO for DLS analysis at 23 C. Figure 4.2D shows the intensity-

weighted hydrodynamic size distributions for HNP from the freshly prepared solution of 

1% HNP + 1% IL and the two samples of the mixture after being heated at 100 C for 3 

and 10 days, along with a freshly made HNP dispersion in PAO for comparison. The curves 

basically overlapped with each other, and the average size was 63.6 nm for HNP alone, 

57.7 nm for the freshly prepared mixture of HNP and IL, 59.2 nm and 57.3 nm for the 

mixture after 3 and 10 days at 100 C, respectively. Because of the hydrodynamic sizes of  
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Figure 4.2. Optical photos of PAO solutions containing (A) 1% hairy NPs (HNP) + 1% 

[P8888][DEHP] (IL), (B) 1% HNP alone, and (C) 1% IL alone, freshly prepared and after 

thermal treatment at 100 C for 10 days; (D) intensity-weighted hydrodynamic size 

distribution, obtained by DLS study, of hairy NPs at a concentration of 0.1 mg/g from the 

freshly prepared 1% dispersion of HNP alone, a freshly made solution of 1% HNP + 1% 

IL in PAO, and the PAO solution containing 1% HNP + 1% IL after being heated at 100 

°C for 3 and 10 days.  
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HNP are similar, it indicates that these PLMA brush-grafted silica NPs are stable in PAO 

in the presence of the IL even at elevated temperatures for an extended period of time. 

From both visual inspection and DLS measurements, we can conclude that PLMA hairy 

silica NPs and [P8888][DEHP] are compatible with each other when used as additives for 

PAO lubricating base oil. 

4.3.3. Lubrication Performance of PAO Mixed with HNP, IL, or HNP + IL 

To study the possible further friction reduction effect of combining hairy NPs and 

[P8888][DEHP] as additives, a series of PAO lubricants containing both HNP and IL with 

a total concentration of 2 wt% but various individual concentrations were prepared. They 

are: (a) 2% IL, (b) 2% HNP, (c) 0.34% HNP + 1.66% IL, (d) 0.66% HNP + 1.34% IL, (e) 

1% HNP and 1% IL, (f) 1.34% HNP + 0.66% IL, (g) 1.66% HNP + 0.34% IL, and (h) 

1.83% HNP + 0.17% IL. The tribological properties of these samples were investigated 

using a Plint TE-77 tribo-tester at 100 C in a ball-on-flat reciprocating configuration. In 

all tests, an AISI 52100 steel ball slid back and forth on a CL35 cast iron flat in a lubricant 

sample at an oscillation frequency of 10 Hz with a 10 mm stroke. The point contact load 

was 100 N, and the total sliding distance was typically 1000 m. At least two identical tests 

were performed for each lubricant sample, and the results were averaged. 

Figure 4.3 shows the friction curves for all of the aforementioned samples along with 

pure PAO for comparison. Consistent with the previously reported results,7,31,32 the PAO 

mixed with either HNP or IL showed a significant reduction in the coefficient of friction 

(COF) relative to pure PAO. For both 2% IL and 2% HNP lubricants, the COF started at 

around 0.07 and increased gradually over the course of sliding and ended at 0.11 for IL and  
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Figure 4.3. Friction curves for the PAO SpectraSynTM 4 mixed with (a) 2% IL, (b) 2% 

HNP, (c) 0.34% HNP + 1.66% IL, (d) 0.66% HNP + 1.34% IL, (e) 1% HNP and 1% IL, 

(f) 1.34% HNP + 0.66% IL, (g) 1.66% HNP + 0.34% IL, (h) 1.83% HNP + 0.17% IL, (i) 

0.34% IL, and (j) 1.66% HNP. The tribological tests were performed using a Plint TE-77 

tribo-tester at 100 C under a point contact load of 100 N for a sliding distance of 1000 m. 
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0.095 for HNP (see curves (a) and (b) in Figure 4.3). Compared with pure PAO, the friction 

at the 1000 m sliding distance decreased by 16% for IL and 29% for HNP. A distinctive 

feature of all additive-containing samples is the absence of the sharp peak of scuffing at 

the beginning of the sliding process observed for pure PAO. Clearly, adding either HNP or 

IL or both prevented the scuffing from happening. Further reductions in friction were 

observed for the samples containing both HNP and IL as additives. While the friction 

curves of (c) 0.34% HNP + 1.66% IL and (h) 1.83% HNP + 0.17% IL were only slightly 

lower than the 2% HNP curve (b), noticeable decreases in COF values were found for all 

other samples containing both HNP and IL: (d) 0.66% HNP + 1.34% IL, (e) 1.0% HNP + 

1.0% IL, (f) 1.34% HNP + 0.66% IL, and (g) 1.66% HNP + 0.34% IL. Calculations showed 

that the friction decreased by 20 – 23 % in comparison to the 2% HNP sample and by 32 – 

35% relative to the 2% IL at the end of the sliding process. In addition, all four friction 

curves (curves (d), (e), (f), and (g) in Figure 4.3) were significantly smoother and flatter, 

testifying that the combination of two compatible additives led to improved lubricating 

performance. By examining the data in Figure 4.3, one can find that it is necessary to have 

sufficiently high individual concentrations for both additives; too little HNP (e.g., (c) 

0.34% HNP + 1.66% IL) or too little IL (e.g., (h) 1.83% HNP + 0.17% IL) resulted in only 

a slight improvement in friction reduction. 

To confirm the positive effect of combining HNP and IL as additives for PAO, we 

conducted the tribological tests for the PAO mixed with 0.34% IL alone (curve (i) in Figure 

4.3) and 1.66% HNP alone (curve (j) in Figure 4.3). Clearly, both lubricants exhibited 

higher friction coefficients compared with the mixture of (g) 1.66% HNP + 0.34% in PAO 
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throughout the sliding process, strongly suggesting a positive effect on the lubrication 

performance by mixing hairy silica NPs and IL as additives for PAO. 

The wear volumes for each lubricant sample were measured by optical surface 

profilometry of the wear scars formed on the iron flat and the steel ball during the 

tribological tests. The results are shown in Table 4.1. Compared with pure PAO, the total 

wear was reduced by ~ 90% for all additive-containing PAO lubricants, with a range from 

85.9% (for (i) 0.34 wt% IL alone) to 93.9% (for (c) 0.34% HNP + 1.66% IL). Most of the 

mixtures with a total concentration of 2% showed lower wear volumes compared with 

either 2% HNP or 2% IL. For example, the flat wear for (e) 1% HNP + 1% IL was reduced 

by 33% and 17% compared with 2% HNP and 2% IL, respectively. However, the flat wear 

volume for (g) 1.66% HNP + 0.34% (13.32  107 µm3) was only slightly smaller than those 

for 1.66% HNP alone (14.01  107 µm3) and 0.34% IL alone (15.47  107 µm3). Despite 

this observation, there seems to be a trend that the wear decreased with decreasing the 

concentration of HNP from 1.83% to 0.34% and simultaneously increasing the IL 

concentration from 0.17% to 1.66% in the mixture. In summary, the wear protection was 

improved by combining HNP and IL as additives at certain ratios, but the level of 

improvement was not as substantial compared with the PAO containing only one additive 

(either HNP or IL) at the same concentration. 
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Table 4.1. Wear Volumes for Balls and Flats from Tribological Tests Using Various 

Lubricants 

 

Lubricant Sample flat wear volume (107 

µm3) 

ball wear volume (107 

µm3) 

PAO 113.0 ± 35.9 0.786 ± 0.193 

(a) PAO + 2% IL 9.90 ± 0.99 0.405 ± 0.120 

(b) PAO + 2% HNP 12.26 ± 0.86 0.039 ± 0.026 

(c) PAO + 0.34% HNP + 1.66% IL 6.91 ± 0.73 0.067 ± 0.007 

(d) PAO + 0.66% HNP + 1.34% IL 7.46 ± 0.33 0.018 ± 0.006 

(e) PAO + 1% HNP + 1% IL 8.21 ± 0.17 0.018 ± 0.006 

(f) PAO + 1.34% HNP + 0.66% IL 9.77 ± 1.57 0.016 ± 0.010 

(g) PAO + 1.66% HNP + 0.34% IL 13.32 ± 1.53 0.012 ± 0.013 

(h) PAO + 1.83% HNP + 0.17% IL 12.90 ± 0.63 0.029 ± 0.020 

(i) PAO + 0.34% IL 15.47 ± 1.21 0.571 ± 0.293 

(j) PAO + 1.66% HNP 14.01 ± 0.44 0.057 ± 0.002 
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4.3.4. SEM-EDS Analysis of Wear Scars Formed on Iron Flats During Tribological 

Tests 

The improved friction reductions from additive-containing PAO lubricants originate 

from the formation of tribofilms on rubbing interfaces, which has been reported for various 

anti-wear additives and friction reducers including ZDDP,8,9 ionic liquids,10-15 and hairy 

NPs.31,32 The formation of protective tribofilms involves complicated mechano-chemical 

reactions under high pressures and high temperatures, and the films are usually enriched 

with respective triboactive elements from additives. For example, our group previously 

observed by transmission electron microscopy (TEM) a 200-400 nm tribofilm enriched 

with Si in the wear scar formed from a tribological test with PAO + PLMA brush-grafted 

silica NPs as lubricant.31 For phosphonium-phosphate ILs, the tribofilms were typically in 

the range of 10 – 400 nm and contained P.13,39 

To study the observed effect of combining HNP and IL as additives for PAO for 

improved friction reduction, we used scanning electron microscopy coupled with X-ray 

spectroscopy analysis (SEM-EDS) to confirm the presence of the tribofilms atop of the 

wear scars formed on iron flats and to characterize the chemical composition of the 

tribofilms. Three SEM micrographs of the wear scars formed from 2% IL, 2% HNP, and 

the mixture of 1 % HNP + 1 % IL are shown in Figure 4.4 along with the corresponding 

elemental maps of Fe, P, O, and Si. While for all three lubricants there was no difference 

for iron inside and outside the wear scars, a marked increase in oxygen content in the wear 

scars was observed, suggesting that oxidation was involved in the tribofilm formation 

during  the  tribological   process. P was  found  in  the  wear scar for 2% IL but not for 2%  
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Figure 4.4. SEM micrographs and EDS elemental mapping of Fe, P, O, and Si of the wear 

scar at the end of wear track formed on the iron flat during the tribological test of the PAO 

mixed with 2% HNP (top row), 2% IL (middle row), and 1% HNP + 1% IL (bottom row).  
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HNP, whereas Si was enriched in the wear track for 2% HNP, but not for 2% IL. For the 

mixture of 1% HNP + 1% IL, both P and Si showed good contrast between the wear scar 

and the pristine flat. All three EDS spectra are shown in Figure 4.5 (Figure 4.5A for 2% 

HNP, Figure 4.5B for 2% IL, and Figure 4.5C for the mixture of 1% HNP + 1% IL). The 

Si K peak intensity increased noticeably in the wear scar compared with the pristine flat 

for both 2% HNP and 1% HNP + 1% IL but not for 2% IL. The P K peak appeared in the 

EDS spectra for 2% IL and 1% HNP + 1% IL but not for 2% HNP. These SEM-EDS data 

testified that both HNP and IL or their fragments were involved in the mechano-chemical 

reaction to form the tribofilm for the mixture of 1% HNP + 1% IL. Similar results were 

obtained for 0.34% IL alone, 1.66% HNP alone, and the mixture of 1.66% HNP + 0.34% 

IL, as shown in the Appendix.46 

The atomic compositions of the wear scars for all lubricant samples were obtained from 

quantitative EDS analysis and are shown in Table 4.2. For both 2% HNP and 1.66% HNP, 

the P elemental abundance was negligible (0.01%), and the molar ratio of P to Si was 

extremely small (only 0.002). In contrast, the wear scars formed from the tribological tests 

of 2% and 0.34% IL contained 0.81% and 0.71% P and 1.34% and 1.03% Si, respectively. 

The Si is believed to come from the underneath iron substrate as the pristine flat contains 

1.87% Si (Table 4.2 and also see EDS spectra in Figure 4.5). Note that the probing depth 

of EDS is a few micrometers,47 while the tribofilms are on the order of a few hundreds of 

nanometers; this means that the chemical composition information underneath the tribofilm 

was also collected and contributed to the data in Table 4.2. Thus, the molar contents of 

element P in the tribofilms formed from IL-containing lubricants were underestimated. For 
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Figure 4.5. Energy dispersive X-ray spectroscopy (EDS) analysis of the pristine flat 

(outside the wear scar) and the wear scar formed on the flat lubricated by the PAO mixed 

with (A) 2% HNP, (B) 2% IL, and (C) 1% HNP + 1% IL. 
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Table 4.2. Atomic Composition of Wear Scars from EDS Analysis and Molar Ratio of P 

to Si 

 

PAO mixed with C (%) O (%) Fe (%) Si (%) P (%) Mn (%) P/Si 

(a) 2% IL 21.46 14.29 60.65 1.39 0.81 1.39 0.583 

(b) 2% HNP 25.45 21.95 46.77 5.36 0.01 0.45 0.002 

(c) 0.34% HNP + 1.66% IL 29.63 21.87 44.85 2.12 1.03 0.51 0.486 

(d) 0.66% HNP + 1.34% IL 16.68 26.56 52.40 2.99 0.80 0.57 0.268 

(e) 1% HNP + 1% IL 21.72 24.26 49.77 2.92 0.76 0.58 0.260 

(f) 1.34% HNP + 0.66% IL 22.35 26.56 46.95 3.05 0.66 0.44 0.216 

(g) 1.66% HNP + 0.34% IL 24.59 23.81 47.06 3.55 0.55 0.43 0.155 

(h) 1.83% HNP + 0.17% IL 21.82 23.18 48.83 5.22 0.42 0.53 0.080 

(i) 0.34% IL 27.11 18.67 51.95 1.03 0.71 0.52 0.689 

(j) 1.66% HNP 28.01 21.62 44.59 5.25 0.01 0.52 0.002 

Pristine Flat  28.84 0.20 68.38 1.87 0.00 0.66 0.00 
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all lubricant samples containing both HNP and IL, a significant higher P content was 

observed compared with those containing only HNP, again indicating that IL participated 

in the tribo-reaction. The P/Si ratio increased with increasing concentration of IL, from 

0.080 for (h) 1.83% HNP + 0.17% IL to 0.486 for (c) 0.34% HNP + 1.66% IL. For those 

mixtures exhibiting a significant improvement in the friction reduction, the P/Si ratios were 

in the range of 0.16 to 0.27. 

4.3.5. Tribofilm Compositions at Different Sliding Distances Using the PAO Mixed 

with 1% HNP + 1% IL as Lubricant 

As mentioned earlier, [P8888][DEHP] can adsorb onto the iron substrate surface via 

the organophosphate anion, while PLMA hairy silica NPs presumably exhibit no 

interaction with the metal surface before the rubbing due to the neutral and hydrophobic 

nature of PLMA brushes. Thus, it would be interesting to see if the IL played a dominant 

role in the early stage tribochemical reaction and hairy silica NPs entered the reaction later 

in the tribofilm formation. To investigate this possibility, we conducted three additional 

tribological tests with the PAO containing 1% HNP + 1% IL and stopped the sliding 

process at 100 m, 400 m, and 700 m. Figure 4.6 shows the friction curves for these three 

tests along with the curve for the full sliding process for the same mixture from Figure 4.3. 

All three shorter friction curves overlapped nicely with the full sliding curve. The wear 

scars from these three tests were then analyzed with SEM-EDS, and their atomic 

compositions are summarized in Table 4.3. 

While the Si content decreased slightly from 3.53% for the sliding distance of 100 m 

to 2.92 for 1000 m, the P content stayed about the same, in the range of 0.69 to 0.86. The  
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Figure 4.6. Friction curves for the PAO mixed with 1% HNP + 1% IL from tribological 

tests that were stopped at sliding distances of 100, 400, 700, and 1000 m. The tribological 

tests were performed using a Plint TE-77 tribo-tester at 100 C under a point contact load 

of 100 N. 
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Table 4.3. Atomic Compositions of Wear Scars Formed on Iron Flats at Different Sliding 

Distances from EDS analysis Using the PAO Mixed with 1% HNP + 1% IL as Lubricant 

 

Sliding Distance C (%) O (%) Fe (%) Si (%) P (%) Mn (%) P/Si 

100 m 14.32 25.52 55.35 3.53 0.69 0.59 0.195 

400 m 16.29 28.57 50.26 3.49 0.86 0.54 0.246 

700 m 16.98 25.56 52.83 3.33 0.75 0.56 0.225 

1000 m 21.72 24.26 49.77 2.92 0.76 0.58 0.260 
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P/Si atomic ratio seems to increase slightly, from 0.20 for 100 m to 0.26 for 1000 m, but 

all of the four values fell into the range of 0.16 to 0.27 previously observed for those 

mixtures exhibiting significant friction reduction. Despite that the IL molecules adsorb 

onto the metallic surface first, this experiment suggested that both HNP and IL or their 

fragments participated in the tribo-reaction in the studied sliding distance range. 

4.3.6 XPS Analysis of Tribofilms on Wear Scars 

The probing depth of EDS is on the order of a few micrometers,47 much larger than the 

typical thicknesses of tribofilms. Therefore, we further characterized the wear scars by X-

ray photoelectron spectroscopy (XPS), which has a much smaller probing depth, typically 

0.1 to 10 nm.48 Figure 4.7A shows the survey spectra of the wear scars formed on the iron 

flats lubricated with 2% HNP, 2% IL, and the mixture of 1% HNP + 1% IL after the 

surfaces were cleaned by ion sputtering with an Argon-ion gun at 1 keV for 30 s to 

eliminate possible surface contaminants. 

The XPS survey spectrum of the tribofilm formed from 2% HNP clearly showed the 

presence of Si 2s and 2p peaks at ~ 153 and ~ 102 eV, respectively, and the absence of P 

2s and 2p, whereas the wear scar formed by the lubrication with 2% IL contained element 

P (P 2s at ~ 190 eV and P 2p at ~ 133 eV) and negligible Si. As expected, the 2s and 2p 

peaks of both Si and P appeared in the XPS spectrum for the mixture of 1% HNP + 1% IL, 

which confirmed that both HNP and IL were involved in the mechano-chemical reaction 

for the formation of the outermost layer of the protective tribofilm. All of these are 

consistent with the observations from SEM-EDS analysis. The atomic compositions from 

quantitative XPS analysis are summarized in Table 4.4. The molar contents of Si for 2%  
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Figure 4.7. (A) XPS survey spectra of the tribofilms formed on iron flats lubricated with 

the PAO mixed with 2% HNP, 2% IL, and the mixture of 1% HNP + 1% IL and high 

resolution core level spectra of (B) C 1s, (C) P 2p, (D) O 1s, and (E) Si 2p. 
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Table 4.4. Atomic Composition of Tribofilms from Quantitative XPS Analysis 

 

PAO containing C (%) O (%) P (%) Si (%) Fe (%) P/Si 

2% HNP 13.03 60.41 0.00 18.22 8.34 0.000 

2% IL 15.53 63.36 8.43 1.12 11.57 7.527 

1% HNP + 1% IL 10.20 65.84 3.71 9.44 10.82 0.393 
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HNP and the mixture of 1% HNP + 1% IL were 18.22% and 9.44%, respectively, 

significantly higher than those from EDS (5.36% and 2.92%, respectively). The P content 

was 8.43% for 2% IL and 3.71% for the mixture, which is also much higher than those 

from EDS analysis (0.81% and 0.76%, respectively). The molar ratio of P to Si for the 

mixture was 0.393, again larger than that from the EDS analysis (0.260). As mentioned 

earlier, these large differences are caused by the different probing depths of EDS and XPS 

(a few micrometers versus 0.1-10 nm). 

The core level spectra of C 1s, P 2p, O 1s, and Si 2p for the three wear scars are shown 

in Figure 4.7B-D. The phosphorous 2p spectra for 2% IL and the mixture of 1% HNP + 

1% IL showed a peak at binding energies of 133.0 and 133.4 eV, respectively, which are 

attributed to the P-O bond of phosphates13 (likely iron phosphates for IL and iron and 

silicate phosphates for the mixture of 1% HNP + 1% IL). No P 2p peak was observed in 

the tribofilm from 2% HNP. For 2% HNP, the O 1s peak appeared at 531.9 eV, which is 

attributed to Si-O-Si,49 while the O 1s signal of Fe-O-Si (530.3 eV)49 is likely buried inside 

the main peak. For 2% IL, the O 1s spectrum shows a main peak at the binding energy of 

531.2 eV, which is assigned to O-P bond (excluding P-O-Fe),13 and a shoulder peak at ~ 

530.2 eV, which is assigned to Fe-O/Fe-O-P bonds.13 In contrast, the O 1s spectrum of the 

wear scar formed from the mixture of 1% HNP + 1% IL exhibits only one peak at 531.0 

eV with no visible shoulder peak, which almost enclosed the O 1s peak for 2% IL and 

overlapped significantly with the O 1s signal for 2% HNP. This might suggest the presence 

of P-O, Fe-O as well as Si-O bonds. Considering that the O 1s peaks for 2% IL and the 

mixture of 1% HNP + 1% IL were closer to each other than to the O 1s peak from 2% HNP, 
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there is a possibility that a portion of Si-O-Si bonds was replaced by new covalent bonds 

because of the reaction between silica and phosphate anions. The Si 2p signal for the 

mixture of 1% HNP + 1% IL is found at 101.9 eV, while the Si 2p peak is located at 102.7 

eV for 2% HNP. Tanizawa and Suzuki reported that the binding energy of Si 2p was 102.1 

eV for silicate-containing apatite, which is almost the same as our observation for the 

mixture (101.9 eV), and 103.4 eV for silica.50 Thus, we think that the shift of Si 2P from 

102.7 eV for 2% HNP to 101.9 eV for the mixture is likely caused by the formation of new 

covalent linkages involving Si, O, and P from the reaction between silica core NPs and 

phosphate anions, despite the fact that the peak shift could be also caused by the changes 

in local work function or electron density. Note that this shift is also in line with the 

observation by Hasha et al.51 

Using argon-ion sputtering to etch the surface, we examined the composition depth 

profiling of the tribofilm formed from the mixture of 1% HNP + 1% IL. The deconvoluted 

composition-depth profile is shown in Figure 4.8. The increase of the Fe content with the 

increase of sputtering time was due to the gradual exposure of the iron substrate. Although 

obscured by the rising iron signal, the P/Si molar ratio appeared to be similar from the top 

surface to the interior of the tribofilm, suggesting that both HNP and IL or their fragments 

were involved throughout the tribochemical reaction. Thus, both EDS and XPS analysis 

suggested that the organophosphate anion of the IL reacted with silica NPs as well as the 

cast iron substrate surface in the complex mechano-chemical process, likely enhancing the 

tribofilm formation and strengthening the protective layer as well as its bonding with the 

metallic substrate. Consequently, the lubrication performance was improved as observed  
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Figure 4.8. XPS composition-depth profile for the tribofilm at top of the wear scar formed 

on the iron flat surface with the PAO mixed with the mixture of 1% HNP + 1% IL. 
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for the PAO lubricants containing sufficient amounts of both hairy NPs and IL. 

4.4. Conclusions 

Oil-soluble polymer brush-grafted silica NPs and phosphonium-phosphate ILs are two 

different classes of promising lubricant additives for friction and wear reduction. Using 

high contact stress, ball-on-flat reciprocating tribological testing at 100 C, we observed 

significantly improved friction reduction when PLMA hairy NPs and [P8888][DEHP] were 

used simultaneously as additives.52 At a total concentration of 2% and sufficiently high 

individual concentrations, the friction decreased by 20 – 23% in comparison to the 2% 

HNP sample and by 32 – 35% relative to the 2% IL at the end of the sliding process. SEM-

EDS analysis revealed that the wear scars formed on cast iron flats contained both Si and 

P for PAO + HNP + IL, indicating that both additives were involved in the tribo-chemical 

reactions. For the mixtures demonstrating significant friction reduction, the P/Si ratio from 

EDS was found to be in the range of 0.16 to 0.27. XPS characterization showed that the Si 

2p peak in the core-level spectra shifted from 102.7 eV for HNP to 101.9 eV for the mixture 

of 1% HNP + 1% IL, indicating the formation of new covalent bonds from the reactions 

between HNP and IL. From XPS composition-depth profiling, the molar ratio of P to Si 

appeared to be similar from the top surface to the interior of the tribofilm. These data 

suggested that hairy silica NPs and [P8888][DEHP] or their fragments reacted with each 

other and also with the substrate during the tribological testing, which, we believe, 

strengthened the tribofilms and their bonding with the iron substrate and consequently 

improved the friction reduction. The results reported here suggest a new method to further 
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improve the lubrication performance by combining hairy NPs and ILs as additives for 

PAO, which may have potential for applications in real-world lubrication. 
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C.1. Calculation of Degree of Polymerization and Grafting Density of Polymer 

Brushes. The degree of polymerization (DP) of the grafted polymer in hairy NPs was 

calculated from the monomer conversion (90.6%), determined by 1H NMR spectroscopy 

analysis, and the molar ratio of monomer to the sum of free and surface CTA. The amount 

of surface CTA grafted on silica NPs that successfully initiated RAFT polymerization was 

determined from the monomer conversion, the TGA data of CTA-NPs and hairy NPs, and 

the amount of CTA-NPs used in the polymerization. The weight retentions of CTA-NPs 

and hairy NPs at 100 C were 99.18% and 99.34%, respectively. Considering the difference 

in weight retention at 100 C, which is believed to be from moisture/absorbed small 

molecules, the TGA curve of CTA-NPs was shifted upward by 0.16%. The weight 

retention of CTA-NPs at 800 C was changed from 86.53 % to 86.69%, and hairy NPs at 

800 °C was 54.64%. The mass ratio of volatile to nonvolatile (silica) components at 800 

C is 15.4 : 100 for CTA-NPs and 83.0 : 100 for hairy silica NPs. The amount of the CTA-

NPs used in the polymerization was 0.5323 g; the total mass of the grafted polymer is 

[(83.0-15.4)/(100 + 15.4)]  0.5323 g = 0.312 g. The total monomer in the reaction mixture 

(2.499 g) was multiplied by monomer conversion (90.6 %) to give a total polymer mass of 

2.264 g. Using the ratio of total polymer to free polymer (2.264 g/(2.264 g – 0.312 g)) as 

the molar ratio of total effective CTA to free CTA (89.0 mg, 0.305 mmol), the total amount 

of CTA in the polymerization system was calculated to be 0.354 mmol, yielding a surface-

grafted CTA amount of 0.049 mmol/ g CTA-NPs, a monomer-to-total CTA ratio of 27.7:1, 

and a DP of 25.  
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For the calculation of grafting density of polymer brushes, assuming that the silica NPs 

are spherical and has a density of 2.07 g/cm3, the mass of a single NP with a diameter of 

23 nm is 1.32 × 10-17 g. Using the polymer to silica ratio described above [(83.0-15.4)/100 

= 67.6/100], the amount of the grafted polymer on one silica NP is 8.92 × 10-18 g. The 

molecular weight calculated from the DP is 6400 g/mol, so the number of the grafted 

polymer chains on one silica NP in PLMA hairy NPs is (8.92 × 10-18 g / 6400 g/mol) × 

(6.022 × 1023 mol-1 ) = 840 chains. The surface area of one bare silica NP (π  232) = 1662 

nm2. Thus, the grafting density of polymer brushes on silica NPs in PLMA hairy silica NPs 

is 0.51 chains/nm2. 
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Figure C1. SEC curve of the free polymer poly(lauryl methacrylate) formed in the 

synthesis of PLMA hairy silica NPs.  
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Figure C2. 1H NMR spectrum of oil miscible ionic liquid [P8888][DEHP] in CDCl3. 

 

 

 

 

 

 

 



 

198 

 

 

 

 

 

 

 

 
 

Figure C3. SEM micrograph and EDS elemental mapping of Fe, P, O, and Si of the wear 

scar at the end of wear track formed on the iron flat during the tribological test of PAO 

mixed with 1.66% HNP (top row), 0.34% IL (middle row), and 1.66% HNP and 0.34% IL 

(bottom row).  
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Figure C4. Energy dispersive X-ray spectroscopy analysis of the pristine flat (outside the 

wear scar) and the wear scar formed on the flat lubricated by the PAO mixed with (A) 

1.66% HNP, (B) 0.34% IL, and (C) 1.66% HNP + 0.34% IL. 
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Abstract 

As technology advances, new challenges are presented to researchers. One of these 

challenges is the need for solid-state cooling, which uses more compact and energy 

efficient materials for on-chip cooling for microelectronic devices. Electrocaloric 

materials, which have the ability to change temperature in response to application and 

removal of electrical fields, are promising candidates for efficient on-chip cooling. 

Ferroelectric crystalline polymers have been reported to exhibit electrocaloric behavior but 

suffer from various drawbacks such as the need for high driving electric fields and small 

temperature changes. This chapter presents the synthesis of chiral mesogen-free liquid 

crystalline polymers, which are expected to exhibit ferroelectric properties and require 

lower driving electrical fields. The synthesized polymers are polyethers that contain a 

monosulfone group and have an alkyl tail of varying lengths in the pendant group of every 

repeat unit. The chiral, isotactic polyethers were synthesized by ring-opening 

polymerization of R-(-)-epichlorohydrin and subsequent post-polymerization 

modifications. For comparison, atactic poly(epichlorohydrin), purchased from Sigma-

Aldrich, was used for the synthesis of atactic polyethers by similar post-polymerization 

modifications. The thermal stability of the resulting polyethers with monosulfone-

containing pendant groups was investigated by thermogravimetric analysis. Our 

collaborators are currently studying these polymers by differential scanning calorimetry 

and small and wide angle x-ray scattering. 
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5.1. Introduction 

Electrocaloric materials have the ability to undergo adiabatic thermal changes upon the 

application and removal of an electrical field. This thermal change is induced by the 

alignment of polar groups along the applied electrical field and the subsequent 

randomization of dipoles upon removal of the electrical field.1 This process is comparable 

to a vapor compression cooling system, which cools through adiabatic compression and 

expansion of gases, driven by a mechanical compressor.2 Although conventional cooling 

methods, such as vapor compression systems, have the ability to produce a cooling effect, 

they are often bulky, inefficient, and suffer from short lifetimes due to the breakdown of 

moving parts. The need for solid-state cooling has prompted researchers to explore the 

potential of electrocaloric materials.3,4 When comparing the efficiency of current cooling 

methods and electrocaloric materials, a term known as the coefficient of performance 

(COP) is commonly used, which is a measure of heat removed per electrical energy 

consumed.5,6 Preliminary studies of electrocaloric materials have shown potential, with a 

COP of ~3 for ferroelectric ceramics and ~7 for ferroelectric polymers.5 Current cooling 

methods such as Peltier coolers, which operates on the basis of the thermoelectric effect, 

and vapor compression cooling, have reported COPs of 2 - 4.7  

Electrocaloric ceramics have shown promise due to their low production cost and 

resistance to breakdown from applied electrical fields, and many recent reports can be 

found.8-11 For example, Li et. al studied a Ba(HfxTi1-x)O3 ferroelectric ceramic, which 

exhibited an electrocaloric effect of 1.64 K and 1.21 K at 117 °C and 76 °C, respectively.10 

However, electrocaloric polymers hold additional advantages over ceramic materials, 
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which include processability, relatively lighter weight, and flexibility.12 Zhang et al. 

studied crystalline poly(vinylidene fluoride) based copolymers, such as poly(vinylidene 

fluoride-co-trifluoroethylene) (P(VDF-TrFE)) and poly(vinylidene fluoride-co-

trifluoroethylene-co-chlorofluoroethylene) (P(VDF-TrFE-CFE)), which exhibited high 

COPs and large temperature changes (ΔT = 15K) due to high saturation polarization (50-

100 mC/m2).1 However, these polymers suffered from high driving electric fields e.g. 307 

MV/m near room temperature for the terpolymer P(VDF-TrFE-CFE) for temperature 

changes of 12 °C. Lin et al. studied similar polymer systems, which also required high 

driving electrical fields of up to 350 MV/m at room temperature.13 Despite the large 

temperature change observed in these copolymers, very high electrical driving fields are 

needed to align all dipoles properly along the applied electric field due to the densely 

packed structures of crystalline polymers. High electrical fields ultimately result in a 

shorter lifetime of materials due to the electrical breakdown. 

Liquid crystalline polymers (LCPs) can be used to avoid high driving electrical fields, 

which have less densely packed structures and require lower electrical driving fields (5-20 

MVm-1) to reach saturation polarization.14 Ferroelectric properties are expected in LCPs in 

the chiral smectic C (SmC*) phase, which will allow for an entropic cooling effect. Hult et 

al. synthesized dendritic liquid crystalline polymers with aromatic side chains, which were 

observed to display ferroelectric SmC* phases.15 Mesogen-containing ferroelectric LCPs 

have a relatively low overall dipole density due to bulky rigid aromatic mesogen groups, 

which limits the polarization.16 Lee et. al has reported on the synthesis of mesogen-free, 

achiral, sulfone-containing liquid crystalline polyethers with monosulfone or disulfone-
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containing pendant groups (Scheme 5.1.).17,18 The ordered structure of these polyethers 

were accredited to the strong dipole-dipole interactions of the polar sulfone groups. In this 

work, we will synthesize LCPs that have chirality along the polymer backbone in every 

repeat unit. These LCPs will be chiral polyethers with monosulfone-containing pendant 

groups, in which we expect to observe the SmC* phase that may require lower electrical 

driving fields and display large temperature changes in ambient conditions. 

In the present work, we introduce chirality into the backbone in every repeat unit of 

isotactic polyepichlorohydrin (I-PECH) through the ring-opening polymerization of chiral 

epichlorohydrin. To achieve the desired mesogen-free liquid crystalline polymers, 

polyethers with side chains containing a monosulfone group and an alkyl tail of varying 

lengths. Polyethers are chosen as the polymer backbone due to the known flexibility of this 

type of polymer. A systematic study on how the alkyl tail length affects the polymer’s 

thermal stability will be conducted by comparing thermogravimetric analysis (TGA) 

results of the polymers with side chains containing a linear alkyl tail of 5 – 12 carbon atoms.  

The synthesis of polyethers from epoxides is commonly achieved via an anionic ring-

opening polymerization (ROP) route. This is sufficient for the synthesis of low molecular 

weight, amorphous materials, but anionic ROP of substituted epoxides generally suffers 

from chain transfer to the monomer. Previous efforts on catalyst development for the 

synthesis of isotactic, high molecular weight polyethers have proved to be helpful in the 

understanding of the synthesis of these materials.19 Ampleman et al. used partially 

hydrolyzed triethylaluminium (Al(Et)3), one equivalent of Al(Et)3 hydrolyzed with 0.6 

equivalents of water in diethyl ether, as catalyst for ROP of  R-(-)-epichlorhydrin.20 
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Scheme 5.1. Polyethers with (a) Monosulfone or (b) Disulfone-Containing Pendant 

Groups.17,18 
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Although this catalyst was slightly different from the Vandenberg catalyst, they were able 

to synthesize isotactic, high molecular weight chiral polyepichlorohydrin from the chiral 

monomer. The Vandenberg catalyst is only identified by its preparation: 1 equivalent of 

trialkyl aluminum, 0.5 equivalent of H2O, and 0.5 equivalent of acetylacetone.21 Inspired 

by the work of Ampleman and Vandenburg, we decided to use commercially available 

methylaluminoxane (MAO) as the coordination catalyst for the synthesis of I-PECH. 

The synthesized I-PECH then underwent post-polymerization modifications to yield 

isotactic polyethers with monosulfone-containing side chains. The pendant group of I-

PECH was first converted to a thioether-containing pendant through a substitution reaction 

between Cl and n-alkanethiols of varying chain lengths in THF using a phase transfer 

catalyst, tetrabutylammonium bromide (TBAB), and sodium hydride (Scheme 5.2). The 

obtained thioether-containing polyethers were analyzed by 1H NMR spectroscopy, size 

exclusion chromatography, and polarimetry after purification. The sulfur in the thioether 

pendant group was then oxidized into a sulfone group by reacting with 3-

chloroperoxybenzoic acid (m-CPBA) in chloroform. The resulting polyethers with sulfone-

containing pendant groups were analyzed by 1H NMR spectroscopy and TGA after 

purification. For comparison, atactic polyepichlorohydrin (A-PECH) purchased from 

Sigma-Aldrich underwent similar modifications. The full synthetic routes starting from A-

PECH or I-PECH are outlined in Scheme 5.2. 
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Scheme 5.2. Synthesis of Atactic and Isotactic Polyethers with Monosulfone-Containing 

Pendant Groups. 
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5.2. Experimental Section 

5.2.1. Materials  

The atactic polyepichlorohydrin (A-PECH, with an average Mw of ~700,000 Da by 

GPC reported by the vendor) used for the synthesis of atactic polyethers that contain 

monosulfone pendant groups was obtained from Sigma Aldrich. 1-Pentanethiol (HSC5, 

98%, TCI), 1-hexanethiol (HSC6, 97%, Alfa Aesar), 1-heptanethiol (HSC7, 98%, Sigma 

Aldrich), 1-octanethiol (HSC8, 97%, Acros Organics), 1-nonanethiol (HSC9, 98%, Alfa 

Aesar), 1-decanethiol (HSC10, 96%, Alfa Aesar), 1-undecanethiol (HSC11, 95%, TCI), 

and 1-dodecanethiol (HSC12, 98%, Acros Organics) were all used as received with no 

further purification. 3-Chloroperoxybenzoic acid (m-CPBA, 70-75% balance 3-

chlorobenzoic acid and water, Acros Organics), n-tetrabutylammonium bromide (TBAB, 

99%, Sigma Aldrich), and sodium hydride (NaH, 60 wt% dispersion in mineral oil, Acros 

Organics) were used as received. Tetrahydrofuran (THF) was dried with 

sodium/benzophenone, distilled under a nitrogen atmosphere, and used immediately. R-(-

)- Epichlorohydrin (R-ECH, 98%, Combi-blocks Inc.) and diethyl ether were dried over 

calcium hydride and distilled before use. Methylaluminoxane (MMAO-12, 7 wt% 

aluminum in toluene) was purchased from Sigma Aldrich and stored in a nitrogen glove 

box. All other chemicals and solvents were obtained from either Fisher or Sigma Aldrich 

and used as received. 

5.2.2. Characterization 

Size exclusion chromatography (SEC) of polyethers with thioether-containing pendant 

groups was performed using a PL-GPC 20 (an integrated SEC system from Polymer 
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Laboratories, Inc.) equipped with a refractive index detector, one PLgel 5 μm guard column 

(50 × 7.5 mm), and two PLgel 5 μm mixed-C columns (each 300 × 7.5 mm, linear 

molecular weight range of 200 to 2 000 000 Da). THF was used as the eluent, and the flow 

rate was set at 1.0 mL/min for the analysis. The SEC system was calibrated with narrow 

disperse polystyrene standards, and the data were processed using Cirrus GPC/SEC 

software (Polymer Laboratories, Inc.).  1H NMR spectra were recorded on a Varian 

Mercury Vx 300 MHz spectrometer and 13C NMR spectra were recorded on a Varian 

VNMRS 600 MHz spectrometer, and the residual solvent proton signal was used as the 

internal reference. Thermogravimetric analysis (TGA) of polyethers with monosulfone-

containing pendant groups were carried out in N2 atmosphere at a heating rate of 20 °C/min 

from room temperature to 700 °C using TA Discovery TGA–MS or TA Instruments Q-50 

TGA.  

5.2.3. Synthesis of Isotactic Poly((R)-(-)-epichlorohydrin) by Ring Opening 

Polymerization 

(R)-(-)-Epichlorohydrin (R-ECH, 5.0 mL), methylaluminoxane  (4.0 mL, 7 wt% 

aluminum in toluene, corresponding to ~250 mg aluminum), and anhydrous diethyl ether 

(20 mL) were added to a 50-mL two-necked round bottom flask in a nitrogen glove box. 

The mixture was stirred with a magnetic stir bar at room temperature, and a white 

precipitate was gradually formed. After the polymerization proceeded at ambient 

temperature for  23 h in the glove box, the flask was removed from the glove box and 

placed under N2 atmosphere; acetylacetone (10 mL) and methanol (5 mL) were added into 

the flask and the mixture was stirred for an additional 2 h. The polymerization mixture was 
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then poured into methanol (75 mL) in an Erlenmeyer flask. After the precipitate settled, 

the supernatant liquid was decanted. Methanol (75 mL) was then added into the Erlenmeyer 

flask, and the mixture was stirred for 15 min. The precipitate was left to fully settle, and 

the supernatant liquid was decanted. The obtained white solid was dried under high vacuum 

(1.111 g, 18.8% yield). This polymer was used for the synthesis of all isotactic polyethers 

with monosulfone pendant groups. 1H NMR (CDCl3, 300 MHz), δ (ppm) = 3.80 − 3.52 (m, 

-CH2CH(CH2Cl)O-, 5H). 

5.2.4. Synthesis of Atactic Polyethers with Thioether-Containing Pendant Groups 

The following shows the procedure for the synthesis of A-PECH-SC5 (Scheme 5.2). 

Similar procedures were used for the synthesis of all other atactic polyethers with thioether-

containing pendant groups. A-PECH (0.110 g, 1.19 mmol), tetrabutylammonium bromide 

(TBAB, 0.073 g, 0.23 mmol), and freshly distilled THF (10 mL) were added to a 50 mL 

two-necked round bottom flask. The flask was sealed and placed in a 70 °C oil bath, and 

the mixture was stirred to dissolve the A-PECH. A clear homogeneous solution was 

observed after about 15 min. The reaction flask was transferred to a fume hood, and HSC5 

(0.374 g, 3.59 mmol) was then added into the flask. NaH (60 wt% dispersion in mineral 

oil, 0.139 g, corresponding to 83.4 mg NaH, 3.48 mmol) was then added to the stirring 

mixture. After the bubbling ceased, the reaction flask was placed in a 70 °C oil bath, and a 

reflux condenser was equipped to the reaction flask. After the mixture was stirred and 

refluxed for 20 h, the polymer was precipitated in deionized H2O, and centrifugation 

(Eppendorf Centrifuge 5804, 10k rpm, 10 mins) was used to separate the polymer. The 

supernatant liquid was decanted, and the polymer was dissolved in methylene chloride. 
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The polymer was further purified by two rounds of redissolving in methylene chloride and 

precipitating in methanol. The polymer A-PECH-SC5 was dried under high vacuum and 

obtained as a clear solid (0.117 g, 61.3% yield). SEC analysis showed that the number 

average molecular weight (Mn,SEC) = 182.1 kDa relative to PS standards and dispersity (Ð) 

= 2.79. 

5.2.5. Synthesis of Atactic Polyethers with Monosulfone-Containing Pendant Groups 

The obtained A-PECH-SC5 (0.113 g, 0.705 mmol) was dissolved in chloroform (10 

mL) and transferred to a 25 mL two-necked round bottom flask equipped with a magnetic 

stir bar. The reaction flask was placed under N2 atmosphere, and m-CPBA (0.340 g, 1.97 

mmol) was added into the mixture while stirring. After the reaction proceeded at room 

temperature for 2 h, the mixture was diluted with chloroform (10 mL), transferred to a 

separatory funnel, and then washed twice with 1 M NaOH solution (10 mL). The organic 

layer was separated and concentrated by an air stream before precipitation in methanol. 

The supernatant liquid was decanted, and the precipitated polymer was dried under high 

vacuum, yielding a white solid (0.072 g, 58.3% yield). All other atactic polyethers with 

monosulfone-containing pendant groups were synthesized by similar procedures. 

5.2.6. Synthesis of Isotactic Polyethers with Thioether-Containing Pendant Groups  

The following shows the procedure for the synthesis of I-PECH-SC5. Similar 

procedures were used for all other isotactic polyethers with thioether-containing pendant 

groups. I-PECH (0.079 g, 0.85 mmol), TBAB (0.055 g, 0.17 mmol), and freshly distilled 

THF (10 mL) were added into a 50 mL two-necked round bottom flask. The flask was 

sealed and placed in a 70 °C oil bath, and the reaction mixture was stirred. A clear 
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homogeneous solution/suspension was observed after about 15 min. The reaction flask was 

moved to a fume hood, and HSC5 (0.270 g, 2.59 mmol) was added into the flask. NaH (60 

wt% dispersion in mineral oil, 0.117 g corresponding to 70.2 mg NaH, 2.93 mmol) was 

then added in the reaction mixture while stirring. After the bubbling stopped the reaction 

flask was placed in a 70 °C oil bath, and a reflux condenser was equipped on the reaction 

flask. After the mixture was refluxed under stirring conditions for 20 h, the mixture was 

poured into deionized H2O. The precipitate was separated by centrifugation (10k rpm, 10 

mins) and the supernatant liquid was decanted. The polymer was redissolved in methylene 

chloride and precipitated in methanol twice. The polymer was then dried under high 

vacuum and obtained as a clear solid (0.059 g, 43.4% yield). SEC analysis showed that the 

Mn,SEC = 159.8 kDa relative to PS calibration and Ð = 2.58. Polarimetry revealed that the 

optical activity was -17.8°. 

5.2.7. Synthesis of Isotactic Polyethers Containing Monosulfone Pendant Groups 

The obtained  I-PECH-SC5 (0.057 g, 0.36 mmol) was dissolved in chloroform (10 mL) 

and added to a 25 mL two-necked round bottom flask equipped with a magnetic stir bar. 

m-CPBA (0.173 g, 1.00 mmol) was then added into the flask under N2 atmosphere while 

stirring. After the reaction proceeded at room temperature for 2 h, chloroform (10 mL) was 

added. The mixture was transferred into a separatory funnel and washed twice with 1 M 

NaOH solution (10 mL). The organic layer was separated, concentrated by an air stream, 

and precipitated into methanol. After decanting the supernatant liquid, the precipitated 

polymer was dried under high vacuum and obtained as a white solid (0.060 g, 87.6% yield). 
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All other isotactic polyethers with monosulfone-containing pendant groups were 

synthesized by similar procedures. 

5.2.8. Optical Activity Measurements of Isotactic Polyethers 

The optical activities of polyethers with thioether-containing pendant groups were 

measured on a PerkinElmer 241 polarimeter using a sodium lamp with a wavelength of 

589 nm and an integration time of 1 sec at ambient temperature (~20 °C). The polymers 

were dissolved in CHCl3 at a concentration of about 10 mg/mL. Three measurements were 

recorded for each sample, and the average was used as the optical rotation value. The 

specific rotation was calculated using the equation [𝛼]λ
T =

𝛼

𝑐∗𝑙
; with [α] = specific rotation 

at a certain temperature (T) and wavelength (λ), α = optical rotation in degrees, c = 

concentration in g/mL, and l = pathlength in dm. The units of specific rotation are 
deg  ∗ 𝑚𝐿

𝑔∗𝑑𝑚
, 

which is commonly abbreviated to degrees (°). 

 

5.3. Results and Discussion 

5.3.1. Synthesis of Isotactic Poly((R)-(-)-epichlorohydrin) by Ring Opening 

Polymerization 

Poly((R)-(-)-epichlorohydrin) (I-PECH) was synthesized by ring opening 

polymerization (ROP) of (R)-(-)-epichlorohydrin in diethyl ether using methylaluminoxane 

(MAO) as the catalyst. The monomer and the solvent were both dried over calcium hydride 

and distilled to remove any water present before the polymerization. The ROP was 

conducted at room temperature in an N2 glove box, and a white precipitate formed 

gradually after the addition of the catalyst. After the polymerization proceeded for 20 h, 
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the reaction flask was removed from the glove box and placed under a nitrogen atmosphere. 

The catalyst residue was extracted from the polymer by adding acetylacetone, which is 

known to form complexes with the aluminoxane, and stirring for an additional 2 h.20,22 The 

mixture was then poured into methanol in an Erlenmeyer flask and stirred for 15 min before 

allowing the polymer to settle. Once the polymer was fully settled, the supernatant liquid 

was decanted; fresh methanol was added back into the flask, and the mixture was stirred 

for an additional 15 min. The polymer was then collected and dried under high vacuum. 

Figure 5.1 shows the 1H and 13C NMR spectra in CDCl3. Note that the solubility of I-PECH 

in common organic solvents (such as CHCl3, CH2Cl2, THF, DMF, etc.) is rather poor, 

making characterization by 13C NMR spectroscopy, SEC, and polarimetry challenging. 

Nevertheless, the 13C NMR spectrum was obtained by collecting the data over an extended 

period of time (5 h). For comparison, the 1H and 13C spectra of atactic PECH (A-PECH), 

which was purchased from Sigma-Aldrich and had a nominal molecular weight of 700 

kDa, were acquired and are shown in Figure 5.2. From the 1H NMR spectra, there is no 

noticeable difference in the polymer peak region of 3.76 - 3.56 ppm between I-PECH and 

A-PECH. Upon further analysis using 13C NMR spectroscopy, we were able to confirm 

that the obtained I-PECH is highly isotactic as evidenced by a single peak at 69.86 ppm, 

corresponding to the backbone methylene carbon (Figure 5.1 B). In contrast, the 13C NMR 

spectrum of A-PECH revealed the backbone methylene carbon peak to be two peaks at 

69.67 and 69.39 ppm (Figure 5.2 B), which were consistent with the findings of Ampleman 

et al. who observed isotactic sequences at 69.30 ppm and racemic sequences at 69.15 and 

69.10 ppm, though the peak positions are not identical.20 This difference could be attributed  
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Figure 5.1. (A) 1H and (B) 13C NMR spectrum of I-PECH, synthesized by ring-opening 

polymerization of (R)-(-)-epichlorohydrin with methylaluminoxane as the catalyst, in 

CDCl3. 
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Figure 5.2. (A) 1H and (B) 13C NMR spectrum of A-PECH, purchased from Sigma Aldrich 

with a molecular weight of 700 kDa, in CDCl3.  
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to the slight difference in the tacticity of polymer obtained by Ampleman using a catalyst 

prepared by the in situ hydrolysis of AlEt3 with 0.6 equivalents of water for the ROPs of 

chiral (R)-(-)- epichlorohydrin.20  

5.3.2. Synthesis of Isotactic and Atactic Polyethers with Thioether-Containing 

Pendant Groups 

To synthesize polyethers with thioether-containing pendant groups, the obtained I-

PECH was reacted with linear alkanethiols of varying alkyl lengths, with the number of 

carbon atoms ranging from 5 to 12, in freshly distilled THF in the presence of sodium 

hydride. Due to the poor solubility of I-PECH in common organic solvents, I-PECH, THF, 

and tetrabutylammonium bromide (used as phase transfer catalyst) were first added into a 

flask and stirred at 70 °C until a homogenous system was formed. After the mixture was 

cooled to room temperature, an alkanethiol compound was added (in a fume hood), 

followed by the addition of sodium hydride under stirring conditions. Gas bubbles were 

observed when sodium hydride was added, and the reaction mixture was kept under N2 

atmosphere at room temperature until the gas bubbling had stopped. The reaction flask was 

then placed back into an oil bath preheated to 70 °C. The reaction was allowed to proceed 

under refluxing conditions for 20 h to ensure a maximum degree of substitution to be 

achieved. The mixture was then precipitated in DI H2O, and a centrifuge (10k rpm, 10 min) 

was used to facilitate the separation of the precipitate. After decanting the supernatant 

liquid, the polymer was redissolved in methylene chloride and precipitated in methanol. 

This dissolution and precipitation process was repeated an additional two times with 

methylene chloride and methanol. The polymer was then collected and dried under high 
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vacuum. The solubility of isotactic samples in common organic solvents was found to 

increase drastically after the thiol substitution reaction, allowing for characterization by 

SEC and polarimetry. These polymers are designated as I-PECH-SCX, where X represents 

the number of carbon atoms in the thiol compound used to make the polymer. Atactic 

polyethers with thioether-containing pendant groups were synthesized from the reaction of 

A-PECH and alkanethiols using a similar procedure as for I-PECH, and are named using 

the same method as for isotactic polyethers with thioether containing pendant groups. A 

total of 16 samples (8 isotactic and 8 atactic) were prepared.  

Figures 5.3 and 5.4 show the NMR analysis of I-PECH-SC5 and A-PECH-SC5. From 

the 1H NMR spectrum of I-PECH-SC5 (Figure 5.3A), we observed that the two protons 

from -C*HCH2 in the pendant group shifted from 3.75 – 3.57 ppm to 2.80 – 2.48 ppm after 

the substitution reaction. Quantitative analysis of the integrals of the shifted peaks indicates 

that the substitution of Cl by the alkanethiol is essentially complete. The 13C NMR 

spectrum of I-PECH-SC5 (Figure 5.3B) revealed a single peak at 71.43 ppm. The 

disappearance of the peak at 69.86 ppm observed in Figure 5.1 B for I-PECH also indicates 

that the substitution reaction is complete, consistent with the result from the 1H NMR 

spectroscopy analysis. Figure 5.4 shows the 1H and 13C NMR spectra of A-PECH-SC5; 

while similar observations were made for the 1H NMR spectrum, the 13C NMR spectrum 

showed multiple peaks at 71.39 and 70.65 ppm, which are similar to our findings for A-

PECH. However, the peaks are in different positions due to the new chemical environment. 

Other isotactic and atactic polyethers with thioether-containing pendant groups were also 

characterized by 1H and 13C NMR spectroscopy, and the spectra are shown in Figures 5.5  
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Figure 5.3. (A) 1H and (B) 13C NMR spectrum of I-PECH-SC5 in CDCl3. 
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Figure 5.4. (A) 1H and (B) 13C NMR spectrum of A-PECH-SC5 in CDCl3. 
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- 5.11. All of the polymers exhibited essentially complete substitution of Cl by linear 

alkanethiols. 

As mentioned earlier, the improved solubility of isotactic polymers after the reaction 

with thiol compounds allowed for the characterization by size exclusion chromatography 

(SEC) using THF as eluent. The SEC traces of all polyethers containing thioether pendant 

groups are shown in Figures 5.12 - 5.15, and the molecular weights and the dispersities 

(Ð), relative to polystyrene standards, are summarized in Table 5.1. The Ð of all isotactic 

polyethers with thioether pendant groups are rather large, ranging from 2.5 to 5.5. There 

appears to be a general trend that the relative number-average molecular weight increased 

with the increasing length of the thioether pendant group, but some exceptions to this 

general trend existed. The two peaks observed for I-PECH-SC10 is likely due to the total 

exclusion of the high molecular weight species in the polymer, and thus the Mn,SEC value 

for this polymer is not reliable. These suggested that degradation of the backbone occurred 

because all of the isotactic samples are made from the same batch of I-PECH.  

5.3.3. Optical Activities of Polyethers with Various Thioether-Containing Pendant 

Groups 

Polarimetry is commonly used to measure the optical activity of chiral compounds. 

These measurements are conducted by passing monochromatic light through a polarizer 

then the solution containing the compound being analyzed, and an analyzer. The compound 

is considered optically active if the light is rotated to a measurable degree when the light 
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Figure 5.5. 1H NMR spectra of (A) I-PECH-SC6 and (B) A-PECH-SC6 in CDCl3. 
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Figure 5.6. 1H NMR spectra of (A) I-PECH-SC7 and (B) A-PECH-SC7 in CDCl3. 
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Figure 5.7. 1H NMR spectra of (A) I-PECH-SC8 and (B) A-PECH-SC8 in CDCl3. 
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Figure 5.8. 1H NMR spectra of (A) I-PECH-SC9 and (B) A-PECH-SC9 in CDCl3. 
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Figure 5.9. 1H NMR spectra of (A) I-PECH-SC10 and (B) A-PECH-SC10 in CDCl3. 
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Figure 5.10. 1H NMR spectra of (A) I-PECH-SC11 and (B) A-PECH-SC11 in CDCl3. 
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Figure 5.11. 1H NMR spectra of (A) I-PECH-SC12 and (B) A-PECH-SC12 in CDCl3. 
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Figure 5.12. SEC traces of (A) A-PECH, A-PECH-SC5, and I-PECH-SC5 and (B) A-

PECH-SC6 and I-PECH-SC6 using THF as eluent. 
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Figure 5.13. SEC traces of (A) A-PECH-SC7 and I-PECH-SC7 and (B) A-PECH-SC8 and 

I-PECH-SC8 using THF as eluent. 
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Figure 5.14. SEC traces of (A) A-PECH-SC9 and I-PECH-SC9 and (B) A-PECH-SC10 and 

I-PECH-SC10 using THF as eluent. 
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Figure 5.15. SEC traces of (A) A-PECH-SC11 and I-PECH-SC11 and (B) A-PECH-SC12 

and I-PECH-SC12 using THF as eluent. 
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Table 5.1. Summary of SEC Characterization data for A-PECH and Polyethers with 

Thioether Pendant Groups 

 

 

 

 

 

 

Mn,SEC (kDa) Mw,SEC (kDa) Đ

A-PECH 181.8 587.1 3.23

I-PECH n/a n/a n/a

A-PECH-SC5 182.1 507.4 2.79

I-PECH-SC5 159.8 412.9 2.58

A-PECH-SC6 174.5 561.4 3.22

I-PECH-SC6 136.9 481.3 3.52

A-PECH-SC7 258.2 1,015.0 3.93

I-PECH-SC7 289.8 977.7 3.37

A-PECH-SC8 411.5 1319.5 3.21

I-PECH-SC8 239.1 903.7 3.78

A-PECH-SC9 218.0 592.9 2.72

I-PECH-SC9 298.1 751.3 2.52

A-PECH-SC10 304.6 1,305.8 4.29

I-PECH-SC10 353.4 1,943.4 5.50

A-PECH-SC11 257.1 757.9 2.95

I-PECH-SC11 146.0 643.3 4.41

A-PECH-SC12 494.4 1,362.0 2.75

I-PECH-SC12 398.6 1,669.5 4.19
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passes through the solution. Polarimetry of all isotactic polyethers with thioether-

containing pendant groups, A-PECH, and A-PECH-SC6 in CHCl3 was conducted at a 

typical concentration of 10 mg polymer/ 1 mL solution. As expected, the isotactic samples 

exhibited an optical activity, while the atactic samples had no optical activity. The specific 

rotation of R-(-)-ECH monomer is -35.4° in methanol which is essentially the same as the 

value reported by the manufacturer ([ɑ]𝐷
20 = -34° at c =1). In contrast, the optical activities 

of isotactic polyethers with thioether pendant groups were in the range of -12.5° to -17.8°, 

which are much lower than that of the monomer. This might result from different 

heteroatoms (Cl vs S) before and after the substitution reaction and different molar masses 

of the repeat unit. Assuming that the contributions of Cl and S-R to the optical activity are 

identical, we normalized the optical activities of isotactic samples on the basis of the molar 

mass of the repeat unit. All of the polarimetry results are summarized in Table 5.2, 

including the normalized optical activities which were found to be ranging from -27.3 to -

38.6°, comparable to that of R-(-)-ECH. Thus, from the polarimetry and 13C NMR 

spectroscopy data, we confirmed that isotactic polyethers with thioether pendant groups 

was successfully obtained through the synthetic procedure described above. 

5.3.4. Synthesis of Isotactic and Atactic Polyethers with Monosulfone-Containing 

Pendant Groups 

The synthesis of polyethers with monosulfone-containing pendant groups was 

accomplished by the oxidation of the thioether in the side chain to a sulfone group using 

oxidizing   agent   meta-chloroperoxybenzoic   acid  (m-CPBA)  in  chloroform   at  room  
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Table 5.2. Summary of Polarimetry Data Acquired Including the Measured Activity and 

Normalized Activity 

 

 
a Molar mass of the polymer repeat unit. b Molar mass ratio of repeat unit to monomer  

R-(-)-ECH. 

 

 

 

 

 

 

 (°) Molar Mass
a

Molar Mass Ratio
b

Normalized           (°)

R -(-)-ECH -35.4 92.52

I-PECH-SC5 -17.8 160.28 1.73 -30.8

A-PECH-SC6 0.0

I-PECH-SC6 -17.8 174.30 1.88 -33.5

I-PECH-SC7 -14.7 188.33 2.04 -29.9

I-PECH-SC8 -12.5 202.36 2.19 -27.3

I-PECH-SC9 -12.8 216.38 2.34 -29.9

I-PECH-SC10 -13.6 230.41 2.49 -33.9

I-PECH-SC11 -12.7 244.44 2.64 -33.6

I-PECH-SC12 -13.8 258.46 2.79 -38.6

[ɑ]   
20 [ɑ]   

20
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temperature for 2 h. The reaction mixture was then diluted with additional chloroform and 

transferred to a separatory funnel. The polymer was washed with 1 M NaOH solution 

twice. The organic layer was collected and concentrated under an air stream. The solubility 

of the oxidized samples in common organic solvents (CHCl3, CH2Cl2, THF, etc.) was found 

to be poor after the polymers were fully dried. Nevertheless, 1H NMR spectroscopy was 

performed and shown in Figures 5.16 – 5.23. From the 1H NMR spectra, we observed that 

the CH2 groups adjacent to the sulfone shifted from 2.80 – 2.48 ppm to 3.40 – 2.92 ppm 

after the oxidation reaction. The complete shift indicated that the polyethers were fully 

oxidized. After precipitation in methanol from chloroform once, the polymers were 

collected and fully dried under high vacuum for thermal analysis. These samples were 

named in a similar fashion as mentioned earlier, with the addition of O2 after S signifying 

the presence of a sulfone group in the pendant group.  

5.3.5. Thermogravimetric Analysis of Polyethers with Monosulfone-Containing 

Pendant Groups  

The oxidized products, polyethers with sulfone-containing pendant groups, were 

characterized by TGA for thermal stability. The TGA profiles for all polymers are 

presented in Figures 5.24 – 5.27. The temperatures at the 95% weight retention for all 

polymers are summarized in Table 5.3. We found that the isotactic polymers were observed 

to generally have higher thermal degradation temperatures than the atactic polyethers with 

the same pendant group, although there were some exceptions: PECH-SO2C7, PECH-

SO2C9, and PECH-SO2C10. The underlying reasons for these exceptions are unclear. The 

generally higher thermal stability of isotactic polyethers with sulfone-containing pendant  
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Figure 5.16. 1H NMR spectra of (A) I-PECH-SO2C5 and (B) A-PECH-SO2C5 in CDCl3. 
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Figure 5.17. 1H NMR spectra of (A) I-PECH-SO2C6 and (B) A-PECH-SO2C6 in CDCl3. 
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Figure 5.18. 1H NMR spectra of (A) I-PECH-SO2C7 and (B) A-PECH-SO2C7 in CDCl3. 
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Figure 5.19. 1H NMR spectra of (A) I-PECH-SO2C8 and (B) A-PECH-SO2C8 in CDCl3. 
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Figure 5.20. 1H NMR spectra of (A) I-PECH-SO2C9 and (B) A-PECH-SO2C9 in CDCl3. 
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Figure 5.21. 1H NMR spectra of (A) I-PECH-SO2C10 and (B) A-PECH-SO2C10 in CDCl3. 
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Figure 5.22. 1H NMR spectra of (A) I-PECH-SO2C11 and (B) A-PECH-SO2C11 in CDCl3. 
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Figure 5.23. 1H NMR spectra of (A) I-PECH-SO2C12 and (B) A-PECH-SO2C12 in CDCl3. 
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Table 5.3. Summary of TGA Data of Polyethers with Monosulfone-containing Pendant 

Groups 

 

 
a Temperature of each sample was determined at 95% Weight Retention from TGA. 

 

 

 

 

 

 

 

 

Temperature (°C)
a 

Temperature (°C)
a

A-PECH-SO2C5 254 I-PECH-SO2C5 275

A-PECH-SO2C6 257 I-PECH-SO2C6 311

A-PECH-SO2C7 255 I-PECH-SO2C7 238

A-PECH-SO2C8 250 I-PECH-SO2C8 310

A-PECH-SO2C9 287 I-PECH-SO2C9 285

A-PECH-SO2C10 288 I-PECH-SO2C10 280

A-PECH-SO2C11 290 I-PECH-SO2C11 319

A-PECH-SO2C12 263 I-PECH-SO2C12 281
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Figure 5.24. Thermogravimetric analysis (TGA) profiles of (A) A-PECH-SO2C5 and I-

PECH-SO2C5 and (B) A-PECH-SO2C6 and I-PECH-SO2C6. 
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Figure 5.25. Thermogravimetric analysis (TGA) profiles of (A) A-PECH-SO2C7 and I-

PECH-SO2C7 and (B) A-PECH-SO2C8 and I-PECH-SO2C8. 
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Figure 5.26. Thermogravimetric analysis (TGA) profiles of (A) A-PECH-SO2C9 and I-

PECH-SO2C9 and (B) A-PECH-SO2C10 and I-PECH-SO2C10. 
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Figure 5.27. Thermogravimetric analysis (TGA) profiles of (A) A-PECH-SO2C11 and I-

PECH-SO2C11 and (B) A-PECH-SO2C12 and I-PECH-SO2C12. 
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groups is likely a result of higher crystallinity relative to atactic polymers. Note that this a 

collaborative study between our group and Professor Lei Zhu’s group at Case Western 

Reserve University. Their group is currently conducting differential scanning calorimetry 

(DSC), small angle X-ray scattering (SAXS), and wide angle X-ray scattering (WAXS) 

studies on the described samples. 

5.4. Conclusions 

A series of chiral, isotactic polyethers with monosulfone-containing pendant groups 

with varying alkyl lengths were synthesized by ring-opening polymerization from R-(-)-

epichlorohydrin and subsequent post-polymerization modifications. For comparison, 

atactic polyepichlorohydrin of a similar molecular weight, purchased from Sigma-Aldrich, 

was used for the synthesis of atactic, analogous polyethers. The two-step post-

polymerization modifications were carried out to prepare the target polyethers, and various 

characterization techniques were performed throughout the synthesis. The first 

modification reaction was the substitution of the Cl from polyepichlorohydrin by an n-

alkanethiol. These polymers, denoted as PECH-SCX, where X represents the number of 

carbon atoms in the pendant group, were characterized by NMR spectroscopy, size 

exclusion chromatography, and polarimetry (for isotactic polyethers). 1H NMR 

spectroscopy analysis indicated that the substitution reactions were complete for both 

isotactic and atactic PECHs. The thioether pendant groups in these polymers were then 

oxidized to sulfone groups, resulting in the desired polyethers, denoted as PECH-SO2CX. 

The thermal stabilities of all PECH-SO2CX samples were characterized by 

thermogravimetric analysis and found to be stable up to ~300 °C. Our collaborators are 
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currently studying these polyethers by differential scanning calorimetry and wide and small 

angle x-ray scattering. 
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Chapter 6. Conclusions and Future Work 
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Nanoparticles (NPs), including metals, metal oxides, and metal sulfides, have been 

shown to function as friction reducers and anti-wear reagents when added into base oils 

such as polyalphaolefin (PAO) as additives. However, NPs have a high tendency to 

undergo aggregation and precipitation because of the small size and high surface energy. 

Once NPs phase separate from the base oil, their tribological benefits are lost. Built on our 

group’s previous work and expertise,1-8 this dissertation research is aimed to design, 

develop, and explore polymer brush-grafted NPs (hairy NPs) for potential use as lubricant 

additives for friction and wear reductions. A series of hairy NPs were successfully 

synthesized by surface-initiated reversible addition-fragmentation chain transfer 

polymerization (SI-RAFT) from RAFT chain transfer agent-functionalized, 23 nm silica 

NPs with the addition of a free CTA. The lubricating properties of these hairy silica NPs 

were investigated either alone in PAO or in combination with an oil-miscible 

phosphonium-phosphate ionic liquid (IL), another type of promising additives, by 

tribological testing and profilometry measurements, and the tribofilms were analyzed by 

scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). The 

insights gained from this research will provide guidelines for developing hairy NPs for 

practical use in the lubricant industry. 

In Chapter 2, a set of hairy NPs composed of poly(alkyl methacrylate) brushes with 

varying pendant group lengths were synthesized by SI-RAFT with a goal of elucidating 

the effects of alkyl pendant group on oil dispersibility, stability, and tribological property 

of hairy NPs.9 Six hairy NP samples were prepared: poly(n-hexyl methacrylate) (PC6)-, 

poly(ethylhexyl methacrylate) (PC8)-, poly(lauryl methacrylate) (PC12)-, two batches of 
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poly(tridecyl methacrylate) (PC13)-, and poly(hexadecyl methacrylate) (PC16)-grafted 

silica NPs. We found that hairy NPs with sufficiently long alkyl pendant groups (12, 13, 

and 16 carbon atoms in the side group) readily formed homogeneous dispersions at room 

temperature, and exhibited high stability at -15 °C, 18 °C, and 100 °C for 60 days as 

revealed by visual inspection and dynamic light scattering (DLS) studies. In contrast, PC6 

and PC8 hairy NPs formed cloudy mixtures in PAO at room temperature, but interestingly 

PC8 hairy NPs could be dispersed in PAO at 80 C. Significant friction and wear reductions 

were achieved for the homogenous dispersions relative to PAO base oil. We found that the 

primary function of the grafted polymer chains in hairy NPs is the stabilization of silica 

NPs in hydrophobic PAO.  

Chapter 3 aims to increase the function of polymer brushes in hairy NPs with the 

incorporation of a triboactive element, phosphorus, into the brushes grafted on 23 nm silica 

NPs. The functional polymer brush-grafted NPs were prepared by SI-RAFT 

copolymerizations of a long alkyl methacrylate monomer with a phosphonate-containing 

monomer from CTA-functionalized silica NPs at feed molar ratios of 95 : 5, 90 : 10, 85 : 

15, and 80 : 20. Three phosphonate-functionalized monomers were designed and 

synthesized: diethyl (4-vinylbenzyl)phosphonate (StP), 11-(diethoxyphosphoryl)undecyl 

methacrylate (MAC11P), and 2-(diethoxyphosphoryl)ethyl methacrylate (MAC2P). The 

dispersibilities of the functional hairy NPs in PAO were investigated, and it was found that 

the hairy NPs made from hexadecyl methacrylate and MAC2P are the most promising.  

Chapter 4 presents a study of the combination of oil-soluble hairy NPs and an oil-

miscible phosphonium-phosphate IL as additives for friction reduction.10 The hypothesis 
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was that both silica from hairy NPs and phosphate from the IL could react with each other 

and with the iron substrate to strength the tribofilm, which may result in a synergistic effect. 

We found that the lubricating performance was indeed improved significantly, relative to 

hairy NPs alone or ionic liquid alone, when the additives were mixed at certain ratios while 

the total concentration of additives was kept constant at 2 wt%. SEM-EDS revealed the 

tribofilm was enriched with both Si and P, suggesting that hairy NPs and IL participated in 

the tribo-chemical reaction.  

Chapter 5 presents a side research project. A series of isotactic and atactic polyethers 

with monosulfone-containing pendant groups of varying lengths were synthesized by 

reacting corresponding poly(epichlorohydrin) polymers with various n-alkanethiols and 

subsequent oxidation of thioether groups. The atactic poly(epichlorohydrin) was 

purchased, and the isotactic poly((R)-epichlorohydrin) was synthesized by ring-opening 

polymerization of R-(-)-epichlorohydrin with a commercially available MAO catalyst. The 

isotacticity of the synthesized polymer was confirmed by 13C NMR spectroscopy, and 1H 

NMR spectroscopy analysis showed that substitution reactions went to completion. Our 

collaborators are characterizing the structures of these polymers.  

Hairy NPs are a unique class of hybrid materials with great potential in friction and 

wear reduction applications. Possible future work in the exploration of hairy NPs as oil 

additives for friction reduction would include further studies on functional polymer 

brushes. The work presented Chapter 3 shows that homogenous phosphonate-

functionalized NP dispersions in PAO are possible. Tribological testing of these samples 

is needed to analyze the lubricating properties. The hairy NPs synthesized by the 
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copolymerization of hexadecyl methacrylate and MAC2P exhibited increased 

dispersibility in PAO at higher levels of phosphonate incorporation relative to other hairy 

NPs. The study indicated that it is possible to further increase the phosphonate content 

beyond 20 mol%, which may lead to an even better lubrication property. 
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