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ABSTRACT 

Traditionally, road safety metrics are measured at the location of the crash and its 

surrounding area. For example, if a crash occurs at an intersection, depending on the 

scope of the study, the researchers or practitioners may count crashes at intersection 

level, corridor level, or at a coarser geographic area such as Traffic Analysis Zone 

(TAZ), city level, or county level. Attributing crash to the location of the crash helps us 

learn about the relationship between road, environment, traffic, and weather and road 

safety. Based on this practice, several countermeasures have been developed to 

prevent crashes or reduce the severity of traffic crashes. As a result, a large body of 

road safety literature was allocated to road and geometry design and their effect on 

traffic crashes. In my dissertation, I set out to take a more epidemiological approach to 

road safety analysis, looking at factors such as social geography and travel behavior 

surrounding the home addresses of the road users involved in traffic crashes –i.e., a 

Home-Based Approach. Knowing more about the role of a human factor origin, and 

expressly sociodemographic, and travel behavior could help us to understand road 

safety from a different perspective that enables researchers and road safety 

practitioners to target individuals with proper countermeasure and intervention with the 

intention of reducing crash risk or eliminating aberrant behaviors of road users. My 

dissertation consists of five chapters. I explored different applications of the Home-

Based Approach (HBA) methods in economical cost of traffic crashes, seat belt use 

analysis, and negative externalities of the tourism industry.  

Keywords: Home-Based Approach; Road Safety; Traveler; Travel Behavior 
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INTRODUCTION 

Background and motivation 

One of the main negative externalities of the transportation system is traffic crashes, 

which is among the top ten causes of premature death globally and kills more than 1.25 

million annually (World Health Organization 2015). Traffic crashes cost 1-2% of Gross 

Domestic Product (GDP) of high-income countries and 3% of GDP in low and middle-

income countries (Jacobs et al. 2000, WHO 2015, Wijnen and Stipdonk 2016). In the 

United States, the economic cost and societal harm of traffic crashes were estimated to 

be over $242 billion and $871 billion in 2010, respectively (Blincoe et al. 2015); these 

numbers reflect 32,999 fatalities, 3.9 million non-fatal injuries, and 24 million damaged 

vehicles. 

Factors influencing road safety could be classified into three main categories: human, 

road and environment, and vehicles. The human factor is the main contributing factor in 

road safety and contributes to 90% of traffic crashes. More importantly, the human 

factor is the sole contributor to traffic crashes in more than 50% of the crashes 

(Pakgohar et al. 2011, World Health Organization 2017). 

Traditionally, road safety metrics are measured at the location of the crash and its 

surrounding area. For example, if a crash occurs at an intersection, depending on the 

scope of the study, the researchers or practitioners may count crashes at intersection 

level, corridor level, or at a coarser geographic area such as Traffic Analysis Zone 

(TAZ), city level, or county level. Attributing crash to the location of the crash helps us to 

understand the relationship between factors such as road geometry, environment, 

traffic, and weather and crash frequency and severity of a specific transportation 

network feature. Based on this practice, several countermeasures have been developed 

to prevent crashes or reduce the severity of traffic crashes. Highway Safety Manual and 

the Handbook of Road Safety Measures provides several examples of this practice 

(Elvik et al. 2009, HSM 2010). Therefore, I can conclude that most strategies target 

engineering solutions and design of the road infrastructure rather than focusing on road 

users’ role which has a substantial role in traffic crashes. 

Police crash reports as the main source of road safety analysis only record limited. 

Information about road users involved in traffic crashes such as age, gender, road user 

type, seating position, safety equipment use (e.g., helmet, seat belt), driving license 

status, and road users’ violations (e.g., distraction, speeding, DUI) (MMUCC 2012). 

Although this information provides a valuable contribution to safety science, this 

information about road users seems trivial compared to the substantial role of road 

users in traffic crashes.  

Unlike engineering approaches in road safety analysis, in epidemiology and public 

health studies, residential characteristics of the population play an important role, and 

usually, the issue of interest (i.e., the health problem) is typically attributed to the 
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residential address of population such as neighborhood, city, state or country. This is 

also the case for travel demand models. In travel demand models such as the four-step 

model or activity-based models, transportation planners measure and study the travel 

behavior of the road users based at the traffic analysis zone corresponding to the home 

address of the road user (Kanafani 1983). Travel demand models and other sources of 

data such as Census data are valuable sources of data and using them in road safety 

analysis would provide a complete picture of road safety (Cherry et al. 2018). It is also 

worthy of mentioning that travel demand models and other sources of data such as 

Census Bureau measure the travel behavior and demographics of the population at 

their residential address. Bearing in mind the aforementioned, one way to increase the 

role of road users in road safety analysis is to use the demographic factors and travel 

behavior of the road users as a proxy for human factor in the road safety analysis.  

Nonetheless, due to privacy concerns, using the home address of the road users 

existing in police crash reports has very limited applications in road safety analysis 

(MMUCC 2012). Besides, most studies that used the home address of the road users, 

they mostly applied an epidemiologic approach and identified groups that are more 

prone to higher crash rates or fatality rates. In addition, these studies usually used a 

coarse geographic level such as zip code of the road users (Mayrose and Jehle 2002, 

Braver 2003, Campos-Outcalt et al. 2003, McAndrews et al. 2013) and mostly focused 

on fatally injured road users (Schiff and Becker 1996, Baker et al. 1998, Harper et al. 

2000). Moreover, these studies mainly focused on the crash outcome and did not 

examine the role of travel behavior and demographics of road users. 

In my dissertation, I set out to take a more epidemiological approach to road safety 

analysis by looking at factors surrounding the home addresses of the road users 

involved in traffic crashes –i.e., a Home-Based Approach (HBA). This dissertation 

focuses on the various applications of the HBA expressly considering sociodemographic 

and travel behavior as well as attributing traffic crash and its characteristics to the 

residential address of the road users involved in traffic crashes. HBA enables us to 

understand road safety from a new perspective. HBA also enables researchers and 

road safety practitioners to target neighborhoods with proper countermeasures and 

interventions to reduce the burden of traffic crashes or eliminate aberrant behaviors. 

Key purposes 

This dissertation consists of five different studies. The primary purposes of this 

dissertation are as follows. First, many studies explore groups that are more prone to 

the burden of traffic crashes. In addition to sociodemographic factors, I am exploring the 

effect of the residential location of the road users on the burden of traffic crashes. The 

residential address reflects unobserved factors that are hard to capture in the aspatial 

analysis.  

Second, I explore the effect of sociodemographic factors and particularly travel behavior 

of the road users in one geographic area, and their relationship with the burden of traffic 
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crashes at the zonal level (e.g., Traffic analysis zone, neighborhood). Understanding 

this relationship would assist us to develop data-driven policies that help safety 

practitioners and transportation planners to improve road safety and reduce the burden 

of traffic crashes at the aggregate level for those who are more prone to traffic crashes. 

In Chapter I and Chapter II of this dissertation, I explored these two hypotheses in more 

details.  

Third, I explore whether road safety of one neighborhood is influenced by its neighbors. 

I assume that road safety in one neighborhood is not solely determined by their internal 

factors, it is also influenced by the safety of their neighbors. From this point of view, we 

can argue that a traffic crash is an unfortunate interaction between two road users. This 

issue could be explored by modeling the spatial dependency at the zonal level. In 

chapter I and Chapter II, I examined the spatial dependency of the burden of traffic 

crashes (e.g., HBA crash rate and cost of a traffic crash at the zonal level). In chapter 

IV, I explored this issue regarding seat belt use in Tennessee. The presence of spatial 

dependency, in this case, it could be attributed to the presence of social influence 

process that shows how one person’s decision (to wear a seat belt) affect others 

decision as well.  

Dissertation structure 

In this dissertation, due to the limitation of space, I only explored some examples of 

HBA method application; namely its application on crash rate, economic cost of traffic 

crashes, seat belt use analysis, and negative externalities of the tourism industry. Table 

1 presents the summary of the five studies, including the numbers of observations, 

methodology, study area, key application and main takeaways of each chapter.   

Chapter I and II: Burden of traffic crashes 

In chapter I, I applied the HBA method to measure the likelihood of involvement in traffic 

crashes at the zonal level in the Knoxville Regional Travel Demand model. Furthermore, 

due to the strong tie of the HBA and transportation planning; I measured the association 

between the travel behavior, network characteristics and the likelihood of involvement in 

traffic crashes. In chapter II, I estimated the association between travel behavior, 

network characteristics and economic cost of the traffic crashes at the zonal level. 

Analysis indicates that both travel behavior and network characteristics influence the 

burden of traffic crashes. Statistical methods suggest that road safety level in one TAZ 

is under the influence of the neighboring units. Moreover, the spatial distribution of the 

burden of traffic crashes is more tangible for neighborhoods who live near high-speed 

roads. 
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Table 1 Comparison of five studies 

 Chapter I Chapter II Chapter III Chapter IV Chapter V 

HBA 
application 

Geographic 
distribution 
Residential crash 
rate 

Geographic 
distribution 
Economic cost of 
traffic crash per 
capita (ECCPC) 

Geographic 
distribution of 
seat belt use 

Presence of 
social 
influence in 
seat belt use 

Measure 
Traveler negative 
externality 

Study area Knoxville 
Metropolitan 
area 

Knoxville 
Metropolitan area 

Tennessee Tennessee Tennessee 

Sample Size  148K+ 
individuals 

 1100+ TAZ 

 148K+ 

 1100+ TAZ 

 500K+ 

 4100+ 
Census tract 

 1.5M+ 

 4100+ 
Census tract 

 2M+ 

 97 Counties 

Data Source  Travel Demand 
model 

 Police Crash 
report 

 Travel Demand 
model 

 Police Crash 
report 

 US Census 

 Police Crash 
report 

 US Census 

 Police Crash 
report 

 US Travel 
Association 

 Police Crash 
report 

Methodology  Spatial lag 
model 

 Spatial lag model  Tobit Model  Spatial lag 
model 

 Spatial Error 
Model 

  

Key 
takeaways 

 Burden of traffic 
crashes map 

 Relationship 
between travel 
behavior and 
HBA crash rate 

 Burden of traffic 
crashes map 

 Relationship 
between travel 
behavior and 
ECCPC 

 Generating 
Geographic 
map of seat 
belt use 

 Evidence of 
presence of 
social 
influence in 
seat belt non-
use 

 Equality and 
distribution of 
the benefit and 
cost of tourism 
industry  

 

Chapter III and IV: Geographical distribution of seat belt use 

In Chapter III and IV focuses on seat belt use. In these chapters, I extracted the home-

address of the individuals and their seat belt use at the time of traffic crashes to study 

the geographical distribution of seat belt use at the fine geographic level. This chapter 

also explores the association between seat belt use and sociodemographic variables at 

the zonal level. Findings of this chapter indicate that police crash reports have the 

potential to be used as a source to examine seat belt use at the neighborhood level and 

presents valid findings. Using the home-address of the individuals extracted from police 

crash report could be used to identify areas with lower seat belt use rate, which could 

be useful in the design of safety campaigns. In chapter IV, I explored the presence of 

the social influence process in the seat belt use study in Tennessee based on the home 

address of the vehicle occupants. Presence of highly spatially correlated observations 

suggests that seat belt use is not produced solely by the internal structural factors 

represented in the non-spatial models. Seat belt use in Southern metropolitan areas in 

Tennessee (Memphis and Chattanooga) is also consistent with an influence process‒ 

e.g., modification of one person’s responses by the actions of another. The observation 

of spatial effects thus indicates that further inquiry is needed to learn about the 

underlying mechanism of social influence in future studies.   
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Chapter V: Negative externality of the Tourism industry 

In this chapter, I focused on tourism, and the role of tourist in traffic crashes in 

Tennessee. It is recognized that the tourism industry contributes to the economic growth 

of a country. Travelers generate both trips and contribute to generated vehicle miles 

traveled (VMT) in any geographic area which contribute to an increase in the number of 

traffic crashes. Less is known about the magnitude of traffic crashes involving travelers 

and the negative externality of travelers’ crashes (NETC) imposed on non-travelers. We 

find that 19.2% (127,031 out of 694,276 from 2014-2016) of traffic crashes in 

Tennessee involve a traveler. The injury cost of non-traveler crashes due to a crash 

with a traveler (i.e., monetized value of NETC) exceeds $7.6 billion, or 12.3% of tourist 

expenditures between 2014-2016. Analyzing the net impact of travel (tourist 

expenditures minus NETC) at county level reveals that the NETC exceeds tourist 

expenditures in 19 of 97 counties (or 20%) in Tennessee. The results of this analysis 

reveal that an overlooked negative externality of tourism is traffic crashes involving 

travelers, which warrants further study and potentially policy remediation.      
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Abstract 

In this study, we measured number of traffic crashes which residents of a traffic 

analysis zone (TAZ) had between 2014-16 by using home addresses of the individual 

who were involved in Knoxville metropolitan region (i.e., a Home-Based Approach –

HBA). By assigning individuals to the TAZ corresponding to their home-address, we 

obtained socioeconomics and travel behavior data elements surrounding home-address 

of the individuals. Next, by dividing the HBA crash frequency to the TAZ population, we 

measured the HBA crash rate at the zonal level (HBA-CR). Moran’s I indicates that the 

HBA-CR is not randomly distributed in space and it exhibits spatial autocorrelation. We 

also measured average zonal activity based on the travel demand model outputs to 

measure average distance traveled from one zone to others on a daily base –i.e., 

exposure. Statistical tests suggest that the spatial lag model (SLM) is more suitable to 

predict HBA-CR compared to spatial error model. Model’s estimate indicates that 

average zonal activity has a significant positive association with HBA-CR. This is also 

the case for interstate, and arterial vehicle miles traveled (VMT), population density, 

intersection density, the percentage of roads with sidewalks and number of workers per 

household. On the other hand, median household income, VMT on low-speed roads, 

and percentage of areas near bus stations have significant negative associations with 

HBA-CR. Findings are discussed in line with road safety countermeasures.  

Keywords: Macroscopic Crash Prediction Models; Home-Based Approach 
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Introduction 

Each year approximately 34 thousand people die, and more than two million people are 

injured in traffic crashes on the United States roadways. The economic and social cost 

of car and truck crashes in the United States in 2010 was 871 billion dollars (NHTSA 

2014). Road safety studies tend to specify the presence of disparities across road user 

type, income, race, and ethnicities; for instance, crash fatality rate is approximately 

double in low and middle-income countries compared to high-income countries (21.5, 

19.5, and 10.3 per 100,000 populations respectively) (WHO 2015). This trend also holds 

within-country; for example, several studies in the United States reported that 

vulnerable road users (i.e., pedestrians and bicyclists) and lower income neighborhoods 

have higher fatality rates compared to motorized road users and wealthier 

neighborhoods, respectively (Marshall and Ferenchak 2017). This also holds for the 

rural areas where the fatality rate is several times higher than the majority of urban 

areas (Marshall and Ferenchak 2017). Bearing in mind that the burden of road safety 

injuries and fatalities does not impact the population equally, we may expect the 

likelihood of involvement in traffic crashes also impacts different populations unequally.  

This variation in the burden of traffic crashes echoes the spatial distribution of the 

burden of traffic crashes and could be used to identify vulnerable neighborhoods where 

their residents are more prone to traffic crashes burden. Less is known about the factors 

influencing the likelihood of involvement in traffic crashes particularly the association 

between the quality of the road infrastructure and travel behavior at a fine geographical 

level. In this study, we use the home address of the road users extracted from police 

crash database to measure the likelihood of involvement in traffic crashes at the zonal 

level (here defined as Home-Based Approach ‒HBA).  

Although the use of the home address of the traffic victims to obtain information 

regarding their sociodemographic in road safety is not a new effort, one needs to 

consider that the majority of this studies used fatally injured road users, used course 

resolution such as zip code, or only focused on a specific group of road users. Blatt and 

Furman (1998) used information of the fatally injured drivers in the US from the FARS 

database. Blatt and Furman (1998) reported that residents of rural and small-town are 

more prone to fatal crashes. Males (2009) also used FARS database to examine the 

relationship between fatal crashes rate and demographic variables at two level (e.g., 

driver-level and State-level). Males (2009) concluded that income per capita, population 

density, motor vehicle trips per capita, college graduates per capita, unemployment 

rate, and teen population have a significant association with fatality rates. Furthermore, 

Stamatiadis and Puccini (2000) studied FARS data in the Southeast USA and extracted 

the driver and census data to obtain the socioeconomic and demographic variables. 

Their findings indicate that socioeconomic characteristics have an impact on single-

vehicle crashes but have no statistically significant impact on multi-vehicle crash rates. 

Romano et al. (2006) also used FARS database to explore the association between the 

role of race/ethnicity, language skills, income, and education level on alcohol-related 
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fatal motor vehicle crashes by using zip code level accuracy. Romano et al. (2006) 

observed a difference in alcohol-related fatality rates across Hispanic subgroups. 

Furthermore, they concluded high income and education levels have a protective 

influence on alcohol-related fatal motor vehicle crashes (Romano et al. 2006).  

Clark (2003) also used the National Automotive Sampling System (NASS), General 

Estimates System (GES) data to explore the relationship between population density 

and mortality rate. Findings indicated that mortality was higher in locations with 

populations less than 25,000 and was inversely proportional to the driver’s county 

population density (Clark 2003).  Lee et al. (2015) also examined the relationship 

between sociodemographic and crash-involved pedestrians per residence zipcode in 

Florida. They concluded that pedestrian crashes do not necessarily occur at their zip 

code residents (Lee et al. 2015). Furthermore, the proportion of children, population 

working at home, a household without a vehicle, and household income had a 

significant association with crash-involved pedestrians per residence zip code in Florida 

(Lee et al. 2015). Girasek and Taylor (2010) used zip code–level income and 

educational data to measure the safety relationship between socioeconomic status and 

motor Vehicle Safety Features in Maryland, VA. Girasek and Taylor (2010) concluded 

that safer motor vehicles appear to be distributed along socioeconomic lines, with lower 

income groups experiencing more risk. Hezaveh and Cherry (2019) used seat belt use 

extracted from police crash reports in Tennessee and census tract data and showed 

that seat belt use varied at a fine geographic level. In addition, Hezaveh and Cherry 

(2019) explored sociodemographic factors influencing this variation. 

Macroscopic Crash Prediction Models (MCPM) is one set of methods that explore the 

relationship between road safety at macroscopic level with sociodemographic and 

transportation infrastructure. By using information surrounding the locations of the traffic 

crashes at the zonal level, researchers identified several factors that associate with 

crash frequency at the zonal level such as sociodemographic factors, network 

characteristics, travel behavior, and traffic pattern (e.g., Hadayeghi et al. 2003, Quddus 

2008, Hadayeghi et al. 2010, Naderan and Shahi 2010, Pirdavani et al. 2012b, Lee et 

al. 2015, Gomes et al. 2017).  

Traditionally, in road safety analysis, traffic volume was used as the exposure variable, 

usually in the form of traffic count, VMT (Vehicle Miles Traveled), DVMT (Daily Vehicle 

Miles Traveled), or VMT by road classification (Aguero-Valverde and Jovanis 2006, 

Hadayeghi et al. 2010, Pirdavani et al. 2012b, a, Li et al. 2013, Pirdavani et al. 2013b, 

Rhee et al. 2016, Hosseinpour et al. 2018). In case of absence of traffic information, 

other proxies such as road lengths with different speed limit (Abdel-Aty et al. 2011, 

Siddiqui et al. 2012), road length with different functional classification (Quddus 2008, 

Hadayeghi et al. 2010), or population has been used (Gomes et al. 2017). In regards to 

measuring the likelihood of involvement in traffic crashes at the zonal level, using VMT 

may not reflect the exposure properly. One way to deal with this issue is to use 

population as a proxy for the exposure variable (Lee et al. 2015, Gomes et al. 2017). 
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However, the population does not reflect the number of trips generated by residents of a 

geographic area nor their trip length. Other studies also used trip generation models as 

a vector to measure exposure (Naderan and Shahi 2010, Abdel-Aty et al. 2011, Dong et 

al. 2014, Dong et al. 2015, Mohammadi et al. 2018). Although this vector provides 

information regarding exposure of the road users, it fails to capture trip length. A more 

inclusive exposure variable for estimating the likelihood of involvement in traffic crashes 

at zonal level needs to consider both trip length and trip frequency simultaneously.  

This study aims to explore the association between sociodemographic variable, travel 

behavior and HBA-CR at the zonal level. Consequently, we used home-address of the 

road users extracted from police crash database to measure road safety at the zonal 

level. Added information from the surrounding demographics and travel behavior enable 

us to explore the association between travel behavior and safety at the zonal level. We 

also consider the trip length and frequency simultaneously as an exposure variable 

based on travel demand model outputs.  

The next section discusses the methods used in this study. In the methodology section, 

we discuss the HBA definition, geocoding process, measuring exposure, and spatial 

models for analyzing the data. In the last section, we present and discuss the findings of 

the analysis.  

Methodology 

Home-Based Approach definition 

Home-address of the road users who were involved in a traffic crash is one of the data 

elements that police officer records at the crash scene (MMUCC 2012). Using home-

address to collect information of the road users to collect data element regarding 

sociodemographic and travel behavior is a common practice in urban travel demand 

analysis (Kanafani 1983). We use the collected home-address of individuals as a basis 

for further analysis. To tie traffic crashes to the home addresses of the individuals in this 

study, we define the HBA crash frequency as the expected number of crashes that road 

users who live in a certain geographic area experience during a specified period. This 

definition attributes traffic crashes to individuals and their residential addresses.  

Data and geocoding process  

This study focuses on the Knoxville metropolitan region, which includes 10 counties and 

a total population of over one million. Figure 1 presents the Knoxville Region study area 

that includes Knox, Anderson, Roane, Union, Grainger, Jefferson, Sevier, Blount, and 

Loudon counties. This region is anchored by the city of Knoxville, but also includes 

several urbanized areas outside the city. The crash data in this study was provided by 

Tennessee Integrated Traffic Analysis Network (TITAN).  
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Each crash record includes information about road user type (i.e., driver, motorcyclist, 

passenger, pedestrian, bicyclist), coordinates of the crashes and addresses of the 

individual who were involved in traffic crashes. Records of 60,104 crashes and 

information on 148,666 individuals who were involved in traffic crashes between 2015 

and 2016 in the Knoxville region were retrieved from TITAN. After obtaining the address 

of road users, we used the Bing application program interface services to geocode the 

addresses. The quality of the geocoding was checked by controlling for the locality of 

the addresses. Only those records that had an accuracy level of premises (e.g., 

property name, building name), address level accuracy, or intersection level accuracy 

was used for the analysis (Hezaveh and Cherry 2019).  

We were able to successfully match 141,514 (95%) of the individuals with a home-

location. By dividing HBA crash frequency to TAZ’s population (1,000 population), we 

measured HBA-Crash Rate (HBA-CR). Figure 2 presents the histogram of HBA-CR at 

the TAZ level. Figure 3 also presents the HBA-CR at the TAZ level. Distribution of the 

negative externalities of the traffic crashes exhibits that burden of traffic crashes are 

more tangible in the vicinities of the interstates and multilane highways where TAZs’ 

residents are more prone to high-speed traffic and higher road classification. 

 

 

Figure 1 Knoxville Regional Travel Demand  



13 

 

Figure 2 Histogram of HBA-CR at the TAZ level 

 

 

 

 

Figure 3 HBA-CR distribution in KRTM 
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Measuring exposure and travel activity 

In this study, one goal was to investigate the relationship between travel behavior and 

quality of transportation infrastructure with crash cost. To this end, we used the 2014 

Knoxville Regional Travel Demand Model. The Knoxville Regional Travel Model (KRTM) 

has a hybrid design using elements of activity-based model architecture. The model 

creates a disaggregate synthetic population of households in the region based on the 

demographic information associated with the traffic analysis zones (TAZs). For more 

information about Knoxville Regional Travel Demand Model, please see KRTM (2012). 

The study area includes 1,186 TAZs and includes sociodemographic, economic, and 

travel information of the residents. Table 2 presents the descriptive statistics of the 

sociodemographic variables obtained from TAZs. It is worthwhile to mention that 63 

zones had no population (e.g., Smoky Mountain National Park, Oak Ridge National Lab) 

and 135 zones had a population of fewer than 100 individuals. To exclude outliers, we 

excluded these TAZs from the analysis. Table 2 presents the descriptive statistics of the 

data elements obtained from the KRTM model.  

To evaluate the exposure at the zonal level, we will use zonal activity –i.e., person miles 

traveled at zonal level (PMT). 𝑃𝑀𝑇𝑖 combines trip rate and trip length and is an index for 

measuring the zonal activity of the trips originated from 𝑇𝐴𝑍𝑖. To measure 𝑃𝑀𝑇𝑖 we will 

use trip production, distribution, and assignment outputs of the travel demand model. 

𝑃𝑀𝑇𝑖 is calculated by equation 1: 

𝑃𝑀𝑇𝑖 = ∑
𝑃𝑖𝑗𝐿𝑖𝑗 

𝑃𝑜𝑝𝑖

𝑛

𝑗=1

 

 

Equation  1 

where 𝑛 is the index of TAZ, 𝑃𝑖𝑗 is the number of trip produced from TAZ 𝑖 to TAZ 𝑗 in 

one day, 𝐿𝑖𝑗 is the shortest network path between TAZ 𝑖 to TAZ 𝑗,  and 𝑃𝑜𝑝𝑖 presents 

the population of the zone 𝑖. KRTM was used as a source to extract the number of trips 

for each pair. Shortest path between each pair was also extracted form traffic 

assignment at the peak-hour. It is also worthy to mention that PMT reflects all trip 

purposes and modes in the study area. Figure 4 presents the zonal activity per capita 

distribution in Knoxville Regional Travel Demand Model at TAZ level. TAZs in the urban 

and suburban population centers tend to have lower PMT per capita (warmer colors) 

than outlying rural areas. Visual screening of Figure 4 indicates that the rural areas 

have higher PMT compared to the urban areas. HBA-CR tended to have more 

distributed impacts, with higher crash rate along major roads in the study area (e.g., 

interstate). 
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Table 2 TAZ descriptive statistics 

Variable Mean 
Standard 
Deviations Min Max 

Household Income ($) 46655 21075 2349 168227 
Workers Per Household 1.21 0.24 0.00 2.10 
Students Per Household 0.39 0.18 0.00 1.11 
Intersection Density (per square miles) 153 198 3 1657 
Percent Road with Sidewalk 0.21 0.32 0.00 1.00 
Percent Near Bus Station 0.18 0.36 0.00 1.00 
Population Density (Per Square Mile) 1377 2736 3 44072 
VMT on Interstate from TAZ (miles) 9625 32673 0 287762 
VMT on Arterial from TAZ (miles) 11398 17657 0 163821 
VMT on Others from TAZ (miles) 7146 8294 0 76596 

     

 

 

 

 

Figure 4 Daily activity per capita (person miles traveled)  
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Modeling approach 

One concern in MCPM modeling is the spatial autocorrelation. Spatial autocorrelation 

exists when a variable displays interdependence over space (Legendre 1993). 

Presence of spatial autocorrelation in MCPM was reported in several studies (Quddus 

2008, Lee et al. 2015, Rhee et al. 2016). If spatial autocorrelation exists, then the 

dependent variable is not produced solely by the internal structural factors represented 

in the non-spatial model. Therefore, disregarding spatial autocorrelation may lead to 

drawing incorrect inferences.  

Testing spatial dependency  

Visual inspection of Figure 3 indicates that neighborhoods with better safety records 

(i.e., blue colors) are surrounded by other TAZs with blue colors. This is also the case 

for the TAZs with red colors. This may be an indicator of the presence of significant 

spatial autocorrelation. To diagnose spatial autocorrelation, Global Moran’s I (Moran 

1950) was used to test whether the model residuals are spatially correlated. Moran’s I 

values range from -1 to +1. Moran’s I can be written as:  

𝐼 =  
∑ ∑ 𝑤𝑖𝑗(𝑗𝑖 𝑦𝑖 − 𝜇)(𝑦𝑗 − 𝜇)

∑ (𝑦𝑖 − 𝜇)2
𝑖

 
Equation  2  

where 𝑤𝑖𝑗 is an element of a row-standardized spatial weights matrix, 𝑦𝑖 is the HBA-CR, 

and 𝜇 is the average HBA-CR in the sample. The statistical significance of the Moran’s I 

is based on the z-score. For more details about the calculation of the Moran’s I’s Z-

score please see Andrew and Ord (1981). The extreme values are indicators of 

significant spatial autocorrelation where value close to 0 indicates a random pattern 

between residuals. A significant Moran's I indicates clustering in space of similar HBA-

CR.  

By assuming the presence of significant spatial autocorrelation, we will use model 

specifications that consider the spatial dependency in their structure. Spatial error 

model (SEM)1 and spatial lag model (SLM) are two common models that are used by 

researchers to consider spatial autocorrelation in the road safety analysis (Quddus 

2008, Lee et al. 2015, Rhee et al. 2016). The distinction between the two models in the 

method that they incorporate spatial dependency (Doreian 1980, 1982). The SLM model 

considers the direct effect of one element’s response on another’s. On the other hand, 

in the SEM model, the source of the interdependence of the error term is not known. 

  

                                            

1 Not to be mistaken by Structural Equation Modeling 
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Spatial error model 

In the SEM, the models’ constant variable is treated as a spatially structured random 

effect vector. The core assumption in the SEM is that the observational units in close 

proximity should exhibit effects levels that are similar to those from neighboring units 

(LeSage and Pace 2009). The SEM is similar to the linear regression models with an 

additional term for the spatial dependency of errors in neighboring units. The SEM 

model can be written as:  

𝑦 = 𝑋β + ε Equation  3 

𝜀 = 𝜆𝑊𝜀 + 𝑢 = (𝐼 − 𝜆𝑊)−1𝑢 Equation  4 

𝑦 = 𝜆𝑊𝑦 + 𝑋β + λWXβ + u Equation  5  

where 𝑦 is a vector of HBA-CR, 𝑋 is a vector of independent variables presented in 

Table 2, 𝛽 is the corresponding vector of estimated coefficients (𝑋). In this model, ε is 

the error term, which consists of two parts: 𝑊𝜀 and 𝑢. 𝑊𝜀 presents the spatially lagged 

error term corresponding to a weigh matrix 𝑊 and 𝑢 refers to the spatial uncorrelated 

error term that satisfies the normal regression assumption (𝑢 ∼ N(0, 𝜎2𝐼)). Last, 𝜆 

presents the spatial error term parameters, if the value of the spatial error parameters 

equals zero, the SEM is similar to the standard linear regression model.  

Spatial lag model 

The spatial lag model, in contrast, incorporates the spatial influence of unmeasured 

independent variables, but also stipulates an additional effect of neighbors' HBA-CR, via 

the lagged dependent variable. The SLM model can be represented as: 

𝑦 = 𝜌𝑊𝑦 +  𝑋β + ε Equation  6  

where 𝜌 presents the spatial autoregressive parameter, 𝑊𝑦 is a spatially lagged variable 

corresponding to 𝑊 matrix, 𝑋 is a vector of independent variables, 𝛽 is the vector of 

estimated coefficients. Last, 𝜀 is assumed to be a vector of independent and identically 

distributed (𝐼𝐼𝐷) error terms.  

Due to the endogeneity in the 𝑊𝜀 (spatial lag) term, ordinary least-squares (OLS) 

estimators are biased and inconsistent for the spatial-lag model, and instead, maximum-

likelihood estimation (Ord 1975) is used to obtain consistent estimators. (Kim et al. 

2003). In order to estimate the SEM and SLM models, we used GeoDa Software 

(Anselin 2003).  

Weight matrix  

Choosing a proper weight matrix is crucial for the analysis since it incorporates the prior 

structure of dependence between spatial units (Baller et al. 2001). Rook and Queen 

contiguity matrix was used in this analysis to establish the weight matrix. The queen 

weights matrix define neighbors as TAZs that share a boundary or corner, whereas, 

rook only considers those TAZ that shares a boundary (Anselin 2003). The selection of 

optimal weighting matrix could be based on the AICc (Hurvich and Tsai 1989); the 

weight matrix with the lowest AICc is preferred (Fotheringham and Brunsdon, Nakaya et 
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al. 2005, Hadayeghi et al. 2010, Nakaya 2014). For more information about the 

weighting matrix, please see Anselin (2003).  

Model comparison and assessment  

We use the Lagrange Multiplier (LM) principle to choose the proper model specification. 

These tests are based on the regression residuals obtained from the OLS model. Each 

of SLM and SEM models has their specific LM statistics, which offers the opportunity to 

exploit the values of these statistics to suggest the likely alternative. The LM statistic 

against SEM (𝐿𝑀𝑆𝐸𝑀) and SAR (𝐿𝑀𝑆𝐿𝑀) models take the following forms: 

𝐿𝑀𝑆𝐸𝑀 =
(

𝑒′𝑊𝑒

𝑠2 )
2

𝑇
 

Equation  7  

𝐿𝑀𝑆𝐿𝑀 =
(

𝑒′𝑊𝑒

𝑠2 )
2

(𝑊𝑋𝑏)′𝑀(𝑊𝑋𝑏)
𝑠2 + 𝑇

 

Equation  8  

  

where 𝑒 is a vector of OLS residuals, 𝑠2 its estimated standard error, 𝑇 =

𝑡𝑟[(𝑊 + 𝑊′)𝑊], 𝑡𝑟 as the matrix trace operator, and 𝑀 = 𝐼 − 𝑋(𝑋′𝑋)−1𝑋′. Both 𝐿𝑀𝑆𝐸𝑀 

and 𝐿𝑀𝑆𝐴𝑅 are asymptotically distributed as 𝜒2(1) under the null. Several researchers 

illustrate the relative power of these tests by using extensive simulation studies (Anselin 

and Rey 1991, Anselin and Florax 1995, Anselin et al. 1996).  

It is possible that in some cases both 𝐿𝑀𝑆𝐸𝑀 and 𝐿𝑀𝑆𝐿𝑀 statistics turn out to be highly 

significant, which makes it challenging to choose the proper alternative. To deal with 

this issue, Anselin et al. (1996) developed a robust form of the LM statistics in the sense 

that each test is robust to the presence of local deviations from the null hypothesis in 

the form of the other alternative. In other words, the robust Lagrange Multiplier is robust 

to the presence of spatial lag, and vice versa. The robust tests perform well in a wide 

range of simulations and form the basis of a practical specification search, as illustrated 

in (Anselin and Florax 1995, Anselin et al. 1996). In this study, we used GeoDa software 

to perform the LM tests (Anselin 2003). In addition to LM, to further evaluate the overall 

model fit and predictive performance, we also used the Akaike Information Criterion 

(𝐴𝐼𝐶𝑐) as a measure of the relative goodness. 

Results 

After assigning the individuals’ home-addresses to corresponding TAZs, we calculated 

the crash frequency at the TAZ level. The average of HBA crash frequency at the TAZ 

level for the two years period was 95 (SD = 107) for the years 2015-16. Average HBA-

CR for the study period is 76 per 1,000 populations (SD = 141). Results of the global 

Moran’s I indicate that there is a significant spatial autocorrelation exists (Moran’s I = 

0.10 p < 0.001). The significant positive value of the Moran’s I demonstrates the 

presence of the spatial pattern, which is an indicator of the clustering in the space of 

HBA-CR.  
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Next step we estimated spatial models with consideration of different weight matrices. 

Considering the non-zero values of 𝜌 and 𝜆, we conclude that both SLM and SAE 

models are significantly different from linear regression models. By controlling for AICc 

as well as lag coefficient values for the estimated SLM, and SEM models we learned 

that the queen contiguity matrix for both SLM and SEM has significantly better 

performance (significantly lower AICc) compared to the other alternatives.  

A Lagrange multiplier test was conducted to select the suitable spatial model. Lagrange 

multiplier tests (Table 3) revealed that both 𝐿𝑀𝑆𝐸𝑀 and 𝐿𝑀𝑆𝐿𝑀 are  significant. Therefore, 

in the next step, we used robust Lagrange multiplier statistics. Only Robust-𝐿𝑀𝑆𝐿𝑀 has 

significant values, which indicates that the SLM model is more suitable. Comparison of 

the AIC values of estimated models in the Table 3 also indicates that the SLM model 

has a better performance compared to the OLS and SEM. 

Estimated parameters 

Table 4 presents the results of the estimated models. In this study, we used the zonal 

activity as the exposure variable for each TAZ. Therefore, we expected a positive sign 

for the estimated coefficients. Average zonal activity in all models has a significant 

positive association with HBA-CR, meaning that as average miles traveled of trips 

originated from each TAZ increases, the HBA-CR increases. Average Zonal activity 

implies that those who travel longer distances on daily bases have a higher crash rate.  

Number of workers per household and students per household reflect the demographics 

of a TAZ. The significant positive association of the worker per household variable 

indicates that as a proportion of workers per household increases HBA-CR also 

increases. This finding agrees with Naderan and Shahi (2010) study where they 

reported that the number of work-trips produced at a zonal level has a positive impact 

with the number of injury crashes, property damage only crashes, and total crash in a 

TAZ. Similarly, students per household also could be interpreted as a proxy for the 

number of educational trips produced at each TAZ. The estimated variables in the 

estimated models are not significant. Nevertheless, the negative sign of students per 

household indicates that the number of students in each TAZ has a negative correlation 

with HBA-CR; the negative sign of this variable also agrees with Naderan and Shahi 

(2010).  

The median household income variable also has a negative correlation with HBA-CR, 

which is consistent with previous studies (Pirdavani et al. 2012b, Pirdavani et al. 2013b, 

Cai et al. 2017a, Cai et al. 2017b, Gomes et al. 2017, Cheng et al. 2018). Individuals 

with higher household incomes tend to have lower crash rates. This negative sign also 

is in agreement with road safety literature (WHO 2015, Marshall and Ferenchak 2017). 
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Table 3 Results of lagrane multiplier statistics 

TEST VALUE PROB 

Moran's I (error) 5.304 0.000 
Lagrange Multiplier (lag) 39.998 0.000 
Robust LM (lag) 15.321 0.000 
Lagrange Multiplier (error) 25.067 0.000 
Robust LM (error) 0.390 0.532 

   

 

 

Table 4 Estimated models  

 OLS    SLM    SEM    

Variable Coef. S. E.  T-test P-value Coef. S. E.  T-test P-value Coef. S. E.  T-test P-value 

Sociodemographics             
Income ($10,000) -4.794 1.968 -2.437 0.015 -3.232 1.914 -1.689 0.091 -3.623 2.192 -1.653 0.098 
Worker Per Household 55.423 17.698 3.132 0.002 47.926 17.170 2.791 0.005 43.076 18.158 2.372 0.018 
Student Per Household -7.747 21.608 -0.359 0.720 -1.856 20.979 -0.088 0.930 -7.179 22.286 -0.322 0.747 
Activity Per Capita (Miles Traveled) 1.390 0.069 20.224 0.000 1.347 0.067 20.062 0.000 1.362 0.068 19.916 0.000 

Network             
Population Density (per Square miles) -0.007 0.002 -4.587 0.000 -0.007 0.002 -4.617 0.000 -0.007 0.002 -3.990 0.000 
Intersection Density 0.075 0.027 2.801 0.005 0.059 0.026 2.259 0.024 0.067 0.028 2.412 0.016 
% Road with Sidewalk 86.125 16.927 5.088 0.000 79.027 16.464 4.800 0.000 86.042 17.427 4.937 0.000 
% Near Bus Stop 24.546 14.287 1.718 0.086 18.232 13.875 1.314 0.189 21.932 15.894 1.380 0.168 
VMT Interestate 9.767 1.687 5.791 0.000 9.025 1.639 5.505 0.000 9.499 1.714 5.541 0.000 
VMT Arterial 12.457 2.058 6.054 0.000 11.181 2.004 5.578 0.000 11.564 2.041 5.665 0.000 
VMT Other Roads -9.411 2.334 -4.032 0.000 -8.455 2.266 -3.731 0.000 -8.779 2.363 -3.716 0.000 

Constant -38.818 20.856 -1.861 0.063 -52.070 20.407 -2.552 0.011 -27.301 22.032 -1.239 0.215 

Lag coeff.   (Rho)      0.249 0.040 6.256 0.000 0.238 0.047 5.047 0.000 
R-squared 0.426    0.453    0.445    
Log likelihood (Full) -5838.1    -5820.7    -5826.9    
AIC 11700.1    11667.5    11677.8    
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As expected, road network characteristics have a significant association with safety 

level. It is worthy to mention that the network characteristics of a TAZ may reflect the 

traffic flows and infrastructures that transportation system imposes to residents of a 

TAZ. Population density also has a negative association with HBA-CR. The negative 

sign indicates that as density increases the crash frequency of the road users 

decreases.  

Consistent with previous studies VMT also have a significant association with safety 

outcomes. Comparison of the coefficients indicates that VMT on arterial roads (i.e., 

major and minor arterials) has a greater impact on HBA-CR compared to the interstate. 

This differences in the magnitudes could reflect the high access of the arterial roads 

with more conflicts compared to interstates, which could increase the likelihood of crash 

occurrence. On the other hand, other road classifications with the lower posted speed 

limit (e.g., collector, local) has a negative association with HBA-CR. Many studies 

explored the association between of functional classes and crash frequency at zonal 

level (e.g., Hadayeghi et al. 2003, Quddus 2008, Xu and Huang 2015), only a few 

considered the effect of exposure (i.e., VMT) in different road classes. There is also a 

need to consider that the definition of the functional classes may vary across areas. In a 

series of studies in Flanders, Belgium, Pirdavani et al. (2013a) and Pirdavani et al. 

(2012b) reported that VMT on a motorway had a smaller effect on total crash frequency 

compared to non-motorway VMT. In Florida, Xu and Huang (2015), reported that 

proportions of the road with speed limits 25 mph or lower had a negative association 

with crash frequency at a zonal level, whereas, percent of roads at 45 mph and above 

had positive association on zone crash frequencies. Hadayeghi et al. (2003) also 

reported that total local road length in a TAZ had a negative association with all crashes 

and severe crashes, whereas, arterials, expressways, collectors, and ramps had a 

positive and significant association with crash frequency at the zonal level in a study in 

Canada.  

Percent of roads with sidewalk and number of bus stations also have a significant 

association with HBA-CR. The positive sign of these two variables may be an indicator 

of the presence of vulnerable road users. It is likely that due to the less developed 

network of the pedestrian in the KRTM, vulnerable road users are more prone to traffic 

crashes and therefore their HBA-CR increases. Cai et al. (2017b) also reported that 

sidewalk length has a positive association with crash frequency, severe crash, and non-

motorized crash frequency. Intersection density in the TAZ also has a significant 

positive association with HBA-CR. This is in agreement with previous researches that 

reported the number of intersection could be correlated with higher numbers of conflict 

and accordingly the higher number of traffic crashes (Hadayeghi et al. 2003, Ladron de 

Guevara et al. 2004, Lovegrove and Sayed 2006, Abdel-Aty et al. 2011, Pirdavani et al. 

2012a, Gomes et al. 2017).  
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Summary and conclusion 

In this study, we measured the likelihood of involvement in traffic crashes based on the 

home address of individuals (i.e., home-based approach) who were directly involved in 

traffic crashes at the zonal level. Geographic distribution of the HBA-CR indicates 

residents’ activity and their safety culture.  

Analysis indicated that HBA-CR is not randomly distributed in space and it exhibits 

positive spatial autocorrelation. Highly spatially correlated HBA-CR at zonal level 

suggest that HBA-CR is not produced solely by the internal structural factors that are 

captured in the OLS specification. Results of Lagrange multiplier statistics also indicate 

that the spatial lag model is more suitable compared to the spatial error model. 

Considering the underlying assumptions of the SLM model, we may conclude that HBA-

CR in one TAZ is influenced by HBA-CR in neighboring TAZs. Therefore, we may 

conclude that a neighborhood with poor traffic safety may pose negative externality to 

its neighbors and vice versa.  

HBA-CR was higher in the vicinities of the high-speed traffic roads and roads with a 

higher classification. Also, both VMT and average zonal activity have a significant 

association with HBA-CR. To reduce the burden of traffic crashes, first, designing a 

transportation network with the aim of diverging high-speed traffic from residential areas 

or managing the accessibility of the residents near the high-speed, high volume roads 

could eliminate or discount exposure to high-speed traffics. The second strategy may 

target average zonal activity by eliminating a portion of trips by managing travel demand 

and providing strategies and policies that reduce travel demand (Gärling et al. 2002). In 

addition, the increase in density and mixed land-use design would also degenerate both 

trips rate, VMT (Cervero and Kockelman 1997), and trip length (Cervero and Kockelman 

1997) and eventually zonal activity. Reduction in zonal activity and VMT has a direct 

impact on the crash rate and eventually burden of traffic crashes. Regarding the 

significant association of both exposures, we can conclude that policymakers, planners, 

and safety practitioners may decrease the crash rate by controlling for exposure.  

The spatial distribution of the HBA-CR and its association with sociodemographic 

variables demonstrated potentials of the HBA as a means for identifying the hotspots in 

which residents have a higher likelihood of involvement in traffic crashes. Proper safety 

campaigns could be used to address the safety concerns in the TAZs with high HBA 

crash rate, particularly focusing on behavioral interventions that contribute to higher 

crash risk and injury burden (e.g., speeding, driving under the influence, seatbelts). 

Furthermore, road safety culture and driving behavior may also correlate with a crash 

rate; this issue could be investigated in the future studies. This issue could be explored 

in future studies. 

In addition to the spatial models, we estimated count data models such as negative 

binomial and Poisson models (both random and fixed coefficients). Comparison of the 

models suggests that the association between a dependent variable and independent 
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variables were stable. To maintain concision, we did not present the estimated models. 

Furthermore, the majority of road users in this study was motorized users. In this study, 

we ran separate models for predicting HBA-CR for all road users and motorized road 

users. Comparison of the models indicates that the models are similar and findings are 

broadly in agreement. Therefore, to maintain concision, we did not present the model 

for the predicting motorized road user crash rate.  

It is also worth mentioning that there are difficulties in accessing the crash data with 

identifiers and it is not possible to obtain this data in some cases. One possible direction 

for future research could be to partnering with data owners to assist in matching 

crashes with spatial datasets to preserve confidentiality.  
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Abstract 

Road safety literature provides abundant examples of studies that measure 

economic cost of traffic crashes at coarse geographic level. The current practice of road 

safety economic assessment attributes traffic crash costs to the location of traffic 

crashes. Therefore, it is challenging to estimate the economic cost of traffic crashes of 

individuals who live in a specific geographic area. To address this limitation, we used 

home-address of individuals who were involved in traffic crashes in East Tennessee 

between 2015-2016. After geocoding the home-addresses, we assigned 110,312 

individuals to the Traffic Analysis Zone (TAZ) corresponding to their home address and 

calculated the economic cost of traffic crashes per capita (ECCPC). The average 

ECCPC in the study area was $1,399. The Knoxville regional Travel demand model 

output was used for extracting travel behavior data elements for modeling ECCPC at 

zonal level. We also established an index to measure exposure individuals’ activity in 

the transportation system –i.e., average zonal activity– for residents of each TAZ. The 

burden of traffic crashes (ECCPC per income) was also more tangible in the TAZs with 

lower income and higher zonal activities. Gini index coefficient was also 0.59, which is 

an indicator of the unequal distribution of the burden of traffic crashes. The spatial 

autoregressive (SAR) model with a queen contiguity weights matrix was more suitable 

compared to the spatial error model and ordinary least squares regression. SAR model 

implies that ECCPC in one TAZ is affected by traffic safety of the adjacent TAZs. 

Findings indicate that average zonal activity has a significant positive association with 

ECCPC. In addition, posted speed limit, percentage of worker per household, 

percentage of road with sidewalk, percentage of area near bus stations, and VMT have 

a significant positive association with ECCPC. On the other hand, median household 

income has a negative association with ECCPC. Findings are discussed in line with the 

road safety policy.  

Keywords: Economic Cost of Traffic Crashes; Macroscopic Crash Prediction Model; 

Home-Based Approach; Home-Address  
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Introduction  

One of the main negative externalities of the transportation system is traffic crashes. 

They are among the top ten causes of death globally, killing more than 1.25 million 

annually (WHO 2015b). Traffic crashes cost 1-2% of Gross Domestic Product (GDP) of 

high-income countries and 3% of GDP in low and middle-income countries (Jacobs et 

al. 2000, WHO 2015a, Wijnen and Stipdonk 2016). The relative magnitude of this 

externality is larger in low and middle-income countries compared to the developed 

countries (WHO 2015b). Road safety literature has abundant examples of estimating 

cost of traffic crashes at coarse geographic level (i.e., country-level) (Mohan 2002, 

García-Altés and Pérez 2007, Wegman and Oppe 2010, Ahadi and Razi-Ardakani 

2015, Blincoe et al. 2015); however, to the best of our knowledge, there are no studies 

that explored this matter at fine geographic level (e.g., traffic analysis zone) and factors 

correlated with it. 

Traffic crashes cost can be measured in two ways; the economic cost of traffic crashes 

and societal harm. Economic costs of traffic crashes include lost productivity, medical 

costs, legal and court costs, emergency service costs (EMS), insurance administration 

costs, congestion costs, property damage, and workplace losses (Blincoe et al. 2015). 

In addition to the economic cost of traffic crashes, the societal harm includes lost 

quality-of-life. The economic cost of traffic crashes reflects the tangible part of the traffic 

crashes; whereas the societal harm of traffic crashes reflects both tangible and 

intangible cost of traffic crashes (Mohan 2002, García-Altés and Pérez 2007, Ahadi and 

Razi-Ardakani 2015, Blincoe et al. 2015, Harmon et al. 2018). In the United States, the 

economic cost and societal harm of traffic crashes were estimated to be over $242 

billion and $871 billion in 2010, respectively (Blincoe et al. 2015); these numbers reflect 

32,999 fatalities, 3.9 million non-fatal injuries, and 24 million damaged vehicles.  

Road safety studies tend to specify the presence of disparities across road user type, 

income, race, and ethnicities; for instance, the crash fatality rate is approximately 

double in low- and middle-income countries compared to high-income countries (21.5, 

19.5, and 10.3 per 100,000 populations respectively) (WHO 2015b). This trend also 

holds within-country; several studies in the United States reported that vulnerable road 

users (i.e., pedestrians and bicyclists) and lower income neighborhoods have higher 

fatality rates compared to motorized road users and wealthier neighborhoods, 

respectively (Clark 2003, Romano et al. 2006, Marshall and Ferenchak 2017). In rural 

areas, the fatality rate tends to be several times higher than in urban areas (Blatt and 

Furman 1998, Marshall and Ferenchak 2017). Additionally, some ethnicities such as 

Hispanic, African-American, and Native American have higher crash rates (Mayrose 

and Jehle 2002, Braver 2003, Campos-Outcalt et al. 2003, McAndrews et al. 2013) and 

fatality rates (Schiff and Becker 1996, Baker et al. 1998, Harper et al. 2000).  

The current practice of road safety measure safety at the location of the crash. As a 

result, it is challenging to measure the likelihood of involvement in a traffic crash at the 

zonal level and subsequently the economic burden of crashes in areas where 



 

31 

individuals reside. In order to examine road safety disparities, we measure the crash 

cost at the zonal level by using the home address of the road users involved in traffic 

crashes. Although the use of home-address of the traffic victims to obtain information 

regarding their sociodemographic in road safety is not a new effort, one need to 

consider that the majority of this studies used fatally injured road users (Blatt and 

Furman 1998, Stamatiadis and Puccini 2000, Romano et al. 2006, Males 2009), used 

course resolution such as zip code (Romano et al. 2006, Lee et al. 2015a), census-level 

(Stamatiadis and Puccini 2000), or focused on a specific group of road users (Lee et al. 

2015a). Likewise, these studies did not measure the monetize value of road traffic 

crashes based on injury level.  

Macroscopic Crash Prediction Models are a set of methods that provide information 

regarding the association between road safety at zonal level and data elements at 

aggregate level such as sociodemographic factors, network characteristics, travel 

behavior, and traffic pattern (e.g., Hadayeghi et al. 2003, Quddus 2008, Hadayeghi et 

al. 2010, Naderan and Shahi 2010, Pirdavani et al. 2012b, Lee et al. 2015a, Gomes et 

al. 2017). By using a wide range of safety outcomes, researchers explored the 

association between geographic unit characteristic and number of all traffic crashes 

(Miaou et al. 2003, Naderan and Shahi 2010, Pirdavani et al. 2012b, Pirdavani et al. 

2013b, Huang et al. 2016, Cai et al. 2017b, Hezaveh and Cherry 2018), number of 

property damage only crashes (Naderan and Shahi 2010, Aguero-Valverde 2013), 

frequency of injury/severe crashes (Aguero-Valverde 2013, Xu and Huang 2015, Cai et 

al. 2017b), or crash frequency of specific road users (e.g., non-motorized, bicyclists) 

(Lee et al. 2015b, Cai et al. 2017b, Cheng et al. 2018, Saha et al. 2018) at zonal level. 

Although many studies used different forms of the road safety, to the best of our 

knowledge no studies used monetary value of the traffic crashes based on the home 

address of the road users and factors associating with it.  

Traditionally, in road safety analysis, traffic volume was used as the exposure variable, 

usually in the form of traffic count, VMT (Vehicle Miles Traveled), DVMT (Daily Vehicle 

Miles Traveled), or VMT by road classification (Aguero-Valverde and Jovanis 2006, 

Hadayeghi et al. 2010, Pirdavani et al. 2012b, a, Li et al. 2013, Pirdavani et al. 2013b, 

Rhee et al. 2016, Hosseinpour et al. 2018). In case of absence of traffic information, 

other proxies such as road lengths with different speed limit (Abdel-Aty et al. 2011, 

Siddiqui et al. 2012), road length with different functional classification (Quddus 2008, 

Hadayeghi et al. 2010), or population has been used (Gomes et al. 2017). In case of 

measuring the likelihood of involvement in traffic crashes at the zonal level, using VMT 

may not reflect the exposure properly. One way to deal with this issue is to use 

population as a proxy for the exposure variable (Lee et al. 2015a, Gomes et al. 2017). 

However, the population does not reflect the number of trips generated by residents of a 

geographic area nor their trip length. Other studies also used trip generation models as 

a vector to measure exposure (Naderan and Shahi 2010, Abdel-Aty et al. 2011, Dong et 

al. 2014, Dong et al. 2015, Mohammadi et al. 2018). Although this vector provides 

information regarding exposure of the road users, it fails to capture trip length. A more 
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inclusive exposure variable for estimating the likelihood of involvement in traffic crashes 

at zonal level needs to consider both trip length and trip frequency simultaneously.  

This study has several aims. First, we will use the home address of the road users who 

were involved in traffic crashes to measure road safety (i.e., a Home-Based Approach –

HBA). We will apply HBA to measure the economic cost of traffic crashes at fine 

geographic areas and explore the relationship between travel behavior and economic 

burden of traffic crashes at the zonal level, focusing on whether there is an equitable 

distribution of crash burden within an urban area. Last, we measure the distribution of 

the burden of traffic crashes at the traffic analysis zone (TAZ) level to identifies the 

groups that are more prone to the burden of traffic crashes. Learning about the 

relationship between exogenous variables, exposure, and traffic crashes cost of 

residents of a specific geographic area may enable safety practitioners and researchers 

to allocate resources to the neighborhoods where the burden of traffic crashes is higher 

than average, or address inequities in the system where groups are bearing a higher 

proportional economic burden.  

In this study, we will use the data from the Knoxville Regional Travel Demand model in 

Tennessee. Tennessee has a worse crash record compared to US national level 

(fatality rate: TN = 1.66 vs. US = 1.34 per 100 MVMT).  In the next section, we discuss 

the methodology including the HBA definition, data, and modeling approach. The rest of 

the paper presents and discusses the findings of this study.  

Methodology 

Travel activity 

In this study, one goal was to investigate the relationship between travel behavior and 

quality of transportation infrastructure with crash cost. To this end, we used the 2014 

Knoxville Regional Travel Demand Model. This Knoxville region is anchored by the city 

of Knoxville, but also includes several urbanized areas outside the city. The Knoxville 

Regional Travel Model (KRTM) has a hybrid design using elements of activity-based 

models. For more information about Knoxville Regional Travel Demand Model, please 

see KRTM (2012). Figure 1 presents the Knoxville Region study area that includes 

Knox, Anderson, Roane, Union, Grainger, Jefferson, Sevier, Blount, and Loudon 

counties. The study area includes 1,186 TAZs and includes sociodemographic, 

economic, and travel information of the residents. Table 4 presents the descriptive 

statistics of the sociodemographic variables obtained from TAZs. It is worthwhile to 

mention that 63 zones had no population (e.g., Smoky Mountain National Park, Oak 

Ridge National Lab) and 135 zones had a population of fewer than 100 individuals. To 

exclude outliers, we excluded these TAZs from the analysis. Table 5 presents the 

descriptive statistics of the data elements obtained from the KRTM model.   
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Table 5 TAZ descriptive statistics 

Variable Mean 
Standard 
Deviations Min Max 

Household Income ($) 46655 21075 2349 168227 
Workers Per Household 1.21 0.24 0.00 2.10 
Students Per Household 0.39 0.18 0.00 1.11 
Intersection Density (per square miles) 153 198 3 1657 
Percent Road with Sidewalk 0.21 0.32 0.00 1.00 
Percent Near Bus Station 0.18 0.36 0.00 1.00 
Population Density (Per Square Mile) 1377 2736 3 44072 
Average Speed (MPH) 39.09 8.33 20.00 65.00 
VMT on Interstate from TAZ (miles) 9625 32673 0 287762 
VMT on Arterials from TAZ (miles) 11398 17657 0 163821 
VMT on Others from TAZ (miles) 7146 8294 0 76596 

 

 

 

 

Figure 5 Knoxville Regional Travel Demand Model Extent 
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Traditionally, in road safety analysis, VMT is used as a variable to measure exposure. 

However, the VMT alone might not reflect the activity of residents and the amount of 

travel in the transportation network. To evaluate the activity of road users at the TAZ 

level (i.e., individual’s exposure), we will use the zonal activity as Person Miles Traveled 

at the zonal level (PMT). 𝑃𝑀𝑇𝑖 combines modeled trip rate and trip length for all 

population in zone 𝑖 and is an index for measuring the zonal activity in each 𝑇𝐴𝑍 . 𝑃𝑀𝑇 

is calculated by equation 1: 

𝑃𝑀𝑇𝑖 = ∑
𝑃𝑖𝑗𝐿𝑖𝑗 

𝑃𝑜𝑝𝑖

𝑛

𝑗=1

 

 

Equation  9  

where 𝑛 is the index of the destination TAZ, 𝑃𝑖𝑗 is the number of trips produced from 

TAZ 𝑖 to TAZ 𝑗 in one day, 𝐿𝑖𝑗 is the shortest network path between TAZ 𝑖 to TAZ 𝑗,  and 

𝑃𝑜𝑝𝑖 presents the population of the zone 𝑖. KRTM was used as a source to extract the 

number of trips for each pair. Shortest path between each pair was also extracted from 

the traffic assignment model at the peak-hour. Figure 4 presents the distribution of daily 

activity (PMT) per capita in the KRTM Model at the TAZ level. Visual screening of 

Figure 4 indicates that the rural areas have higher PMT compared to the urban areas.  

 

 

 

Figure 6 Average zonal activity (person miles traveled)  
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Data and geocoding process  

The crash data in this study was provided by Tennessee Integrated Traffic Analysis 

Network (TITAN), the statewide crash data administered by the Tennessee Department 

of Safety and Homeland Security. The records of 60,104 crashes and information on 

148,666 individuals who were involved in traffic crashes between 2015 and 2016 in the 

Knoxville region were retrieved from TITAN. Each record includes information about 

road user type (i.e., driver, motorcyclist, passenger, pedestrian, bicyclist, persons in the 

building, vehicle owner, witness, and property owner), coordinates of the crashes and 

addresses of the individual who were involved in traffic crashes. Since some of the 

individuals such as property owner, persons in the buildings (in case of a colliding with a 

building), witnesses, and vehicle owners did not have a direct role in traffic crashes, we 

excluded them from our analysis2. After obtaining the address of road users, we used 

the Bing Application Program Interface (API) services to geocode the addresses. The 

quality of the geocoding was checked by controlling for the locality of the addresses. 

Only those records that had an accuracy level of premises (e.g., property name, 

building name), address level accuracy, or intersection level accuracy was used for the 

analysis. We were able to successfully match 141,514 (95%) of the individuals with a 

home-location.  

The economic cost of traffic crashes 

The injury severity in TITAN database follows the KABCO scale for Tennessee provided 

by FHWA (FHWA 2011). In KABCO scale K, A, B, C, and O respectively stand for a 

crash with fatal, incapacitating, non-incapacitating evident, possible injury, and no-injury 

(FHWA 2017). In order to convert the injury severities to crash cost, we used the 

average values presented in Table 6 recommended by FHWA (Harmon et al. 2018) for 

the year 2010 for the person-injury unit. We transformed the injury cost to 2017 dollar by 

the inflation rate (Harmon et al. 2018). Notably, crashes with injury level of no-injury has 

a non-zero value; the non-zero value reflects the misclassification of the injury by police 

officers (Harmon et al. 2018). By using numbers presented in Table 6 and counting 

crash frequencies by severity at each census tract, we measured the total economic 

cost of the traffic crashes at the TAZ level by using the following equation: 

𝐸𝐶𝐶𝑃𝐶𝑖 =
(𝑁𝑣,𝑖 ∗ 𝐶𝑜𝑠𝑡𝑃𝐷𝑂) + ∑ 𝑁𝛼,𝑖 ∗ 𝐶𝑜𝑠𝑡𝛼𝛼={𝐾,𝐴,𝐵,𝐶,𝑂}

𝑇 ∗ 𝑃𝑜𝑝𝑖

 
Equation  10  

where 𝑁𝛼,𝑖 represents the number of individual who live in zone 𝑖 with the level of injury 

𝛼, 𝐶𝑜𝑠𝑡𝛼 presents the traffic injury cost per injury presented in Table 6 and 𝑇 presents 

the period of the study (T = 2 years). 𝑁𝑣,𝑖 presents the number of vehicles with a 

registered address in zone 𝑖 that were involved in traffic crashes, and 𝐶𝑜𝑠𝑡𝑃𝐷𝑂 presents 

the vehicle unit damage cost. Figure 7 presents the distribution of the ECCPC at zonal 

                                            

2 None of them were injured as a result of traffic crash. 
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level in the study area. ECCPC tended to have distributed impacts, with high economic 

cost scattered throughout the region.  

Lorenz curve and Gini coefficient 

Lorenz curves have typically been used in the field of economics to explore the 

distribution of the inequalities across a population. This method has been used in 

transportation to explore the inequality in the transportation studies such as public 

transit and infrastructure investment (Delbosc and Currie 2011, Zofío et al. 2014, Xia et 

al. 2016). In an equitable manner, x% of the population pays x% of the economic cost of 

traffic crashes. for example, 10% of the population bears 10% of the public ECCPC 

(Straight-line presented in Figure 8). In reality, the distribution of the crash burden would 

be different from the straight line, and it is presented by the Lorenz curve. The Lorenz 

curve presents a graphical representation of inequity across a population. The Gini 

coefficient is a single value based on the area between the line of equality in perfectly 

equal distribution and the Lorenz curve representing the actual distribution (Atkinson 

1970). The closer the Lorenz curve is to the line of equality the more equal the 

distribution is and the smaller the area enclosed between the two lines. The Gini 

coefficients range between 0 and 1. The Gini coefficient represents the area that lies 

between the line of equality and the Lorenz curve over the total area under the line of 

equality. The value close to 0 corresponds to perfect ECCPC equity and value close to 

1 corresponds to perfect ECCPC inequality. 

 

 

Table 6 National KABCO person-injury unit costs (2017 dollar) 

Injury Type Economic person-Injury Unit Costs  

No Injury $6,426  
Possible Injury $24,448 
Non-Incapacitating Injury $36,089 
Incapacitating Injury $94,994.3 
Fatal Injury $1,572,521.48  
PDO Vehicle* $6,830.03  
Unknown Not Applicable  
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Figure 7 ECCPC distribution in KRTM  

 

 

 

Figure 8 Gini Coefficient and Lorenz curve 
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Modeling approach 

Testing spatial dependency  

Visual inspection of Figure 7 indicates that neighborhoods with better safety records 

(i.e., green colors) are surrounded by other TAZs with blue colors. This is also the case 

for the TAZs with red colors. This may be an indicator of the presence of significant 

spatial autocorrelation. Spatial autocorrelation occurs when events occurring at different 

but nearby locations are correlated. In order to statistically check the presence of spatial 

autocorrelation, in this study we used global Moran’s I statistics. Global Moran’s I 

(Moran 1950) was also used to test whether the model residuals are spatially 

correlated. Moran’s I values range from -1 to +1, where values close to 0 indicate no 

spatial correlation. Moran’s I can be written as:  

𝐼 =  
∑ ∑ 𝑤𝑖𝑗(𝑗𝑖 𝑦𝑖 − 𝜇)(𝑦𝑗 − 𝜇)

∑ (𝑦𝑖 − 𝜇)2
𝑖

 Equation  11  

where 𝑤𝑖𝑗 is an element of a row-standardized spatial weights matrix, 𝑦𝑖 is the ECCPC, 

and 𝜇 is the average ECCPC in the sample. The statistical significance of the Moran’s I 

is based on the z-score. For more details about the calculation of the Moran’s I’s Z-

score please see Andrew and Ord (1981). A positive and significant Moran's I score 

indicates clustering in space of similar ECCPC.  

By assuming the presence of significant spatial autocorrelation, we will use model 

specifications that consider the spatial dependency in their structure. Spatial error 

model (SEM)3 and spatial autoregressive model (SAR) are two common models that are 

used by researchers to consider spatial autocorrelation in the road safety analysis 

(Quddus 2008, Lee et al. 2015a, Rhee et al. 2016). The distinction between the two 

models is the method that they consider spatial dependency (Doreian 1980, 1982). The 

SAR model considers the direct effect of one element’s response on another’s. This 

interdependency is consistent with the presence of an influence process. In the SEM 

model, the source of the interdependence of the error term is not known and could be 

due to various unobserved processes that do not involve a direct effect of geographical 

units on one another (Marsden and Friedkin 1993, Baller et al. 2001).  

Spatial error model 

In the SEM, the models’ constant variable is treated as a spatially structured random 

effect vector. The core assumption in the SEM is that the observational units in close 

proximity should exhibit effects levels that are similar to those from neighboring units 

(LeSage and Pace 2009). The SEM is similar to the linear regression models with an 

additional term for the spatial dependency of errors in neighboring units. The SEM 

model can be written as:  

                                            

3 Not to be mistaken by Structural Equation Modeling 
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𝑦 = 𝑋β + ε Equation  12 

𝜀 = 𝜆𝑊𝜀 + 𝑢 = (𝐼 − 𝜆𝑊)−1𝑢 Equation  13 

𝑦 = 𝜆𝑊𝑦 + 𝑋β + λWXβ + u Equation  14  
 

where 𝑦 is a vector of ECCPC, 𝑋 is a vector of independent variables presented in 

Table 5, β is the corresponding vector of estimated coefficients on 𝑋. In this model, ε is 

the error term, which consists of two parts: 𝑊𝜀 and 𝑢. 𝑊𝜀 presents the spatially lagged 

error term corresponding to a weigh matrix 𝑊 and 𝑢 refers to the spatial uncorrelated 

error term that satisfies the normal regression assumption (𝑢 ∼ 𝑁(0, 𝜎2𝐼)). Last, 𝜆 

presents the spatial error term parameters, if the value of the spatial error parameters 

equals zero, the SEM is similar to the standard linear regression model.  

Spatial autoregressive model 

A similar approach that accounts for spatial correlation is the SAR model The SAR 

model can be represented as: 

𝑦 = 𝜌𝑊𝑦 +  𝑋β + ε Equation  15  

where 𝜌 presents the spatial autoregressive parameter, 𝑊𝑦 is a spatially lagged variable 

corresponding to 𝑊 matrix, 𝑋 is a vector of independent variables, 𝛽 is the vector of 

estimated coefficients. Last, 𝜀 is assumed to be a vector of independent and identically 

distributed (𝐼𝐼𝐷) error terms. Due to the endogeneity in the 𝑊𝜀 (spatial lag) term, 

ordinary least-squares (𝑂𝐿𝑆) estimators are biased and inconsistent for the spatial-lag 

model, and instead maximum-likelihood estimation (Ord 1975) is used to obtain 

consistent estimators. (Kim et al. 2003). In order to estimate the SEM and SAR models, 

we used Geoda Software (Anselin 2003).  

Weight matrix  

Choosing a proper weight matrix is crucial for the analysis since it incorporates the prior 

structure of dependence between spatial units (Baller et al. 2001). The Rook and Queen 

contiguity matrix was used in this analysis to establish the weight matrix. The queen 

weights matrix define neighbors as census tracts that share a boundary or corner, 

whereas, rook only considers those census tract that shares a boundary (Anselin 2003). 

The selection of the optimal weighting matrix could be based on the AICc (Hurvich and 

Tsai 1989); the weight matrix with the lowest AICc is preferred (Fotheringham and 

Brunsdon, Nakaya et al. 2005, Hadayeghi et al. 2010, Nakaya 2014). For more 

information about the weighting matrix, please see Anselin (2003).  

Model comparison and assessment  

A Lagrange Multiplier (LM) is used to test the specifications against SEM and SAR. 

These tests are based on the regression residuals obtained from estimated the model 

under the null hypothesis regression (i.e., OLS). Each of SAR and SEM models has 

their specific LM statistics, which offers the opportunity to exploit the values of these 

statistics to suggest the likely alternative. The LM statistic against SEM (LMSEM) and 

SAR (LMSAR) models take the following forms: 
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𝐿𝑀𝑆𝐸𝑀 =
(

𝑒′𝑊𝑒

𝑠2 )
2

𝑇
 

Equation  16  

𝐿𝑀𝑆𝐴𝑅 =
(

𝑒′𝑊𝑒

𝑠2 )
2

(𝑊𝑋𝑏)′𝑀(𝑊𝑋𝑏)
𝑠2 + 𝑇

 

Equation  17  

where 𝑒 is a vector of OLS residuals, 𝑠2 its estimated standard error, 𝑇 =

𝑡𝑟[(𝑊 + 𝑊′)𝑊], 𝑡𝑟 as the matrix trace operator, and 𝑀 = 𝐼 − 𝑋(𝑋′𝑋)−1𝑋′. Both LMSEM 

and LMSAR are asymptotically distributed as 𝜒2(1) under the null. Several researchers 

illustrate the relative power of these tests by using extensive simulation studies (Anselin 

and Rey 1991, Anselin and Florax 1995, Anselin et al. 1996).  

It is possible that in some cases both LMSEM and LMSAR statistics turn out to be 

highly significant, which makes it challenging to choose the proper alternative. To deal 

with this issue, (Anselin et al. 1996) developed a robust form of the LM statistics in the 

sense that each test is robust to the presence of local deviations from the null 

hypothesis in the form of the other alternative. In other words, the robust LME is robust 

to the presence of spatial lag, and vice versa. The robust tests perform well in a wide 

range of simulations and form the basis of a practical specification search, as illustrated 

in (Anselin and Florax 1995, Anselin et al. 1996). In this study, we used GeoDa software 

to perform the LM tests. The Queen contiguity matrix was used to generate a spatial 

weight matrix. In addition to LM, to further evaluate the overall model fit and predictive 

performance, we also used the Akaike Information Criterion (𝐴𝐼𝐶𝑐) as a measure of the 

relative goodness of fit. 

Results and discussion  

Among those involved in traffic crashes, 308 (residence: 252; non-residence: 56) 

individuals were fatally injured as a result of traffic crashes in the KRTM Model area. 

Moreover, another 17,312 (residence: 14,225; non-residence: 3,087) individuals were 

injured (level A, B, or C). The economic cost of traffic crashes in the region for the two 

years between 2015-2016 was $2.5 Billion (2017 dollars). Over three quarters (78%) of 

crash victims were from the KRTM area. The economic costs of residents of the KRTM 

was $2.08 billion and for non-residents was $503 million. Table 7 presents more details 

on crash cost based on the driver residential address (KRTM resident vs. non-KRTM 

resident). For example, KRTM residents bore $263 million out of their pocket due to 

traffic crashes with a non-KRTM (external) drivers. 

The mean and median value of ECCPC for the period between 2015-16 (for selected 

TAZs) was $1,399 and $702, respectively (max = $28,665), the 90th percentile spans 

$176 to $3,232. By using average family size at zonal level and normalizing the 

economic crash cost to median household income per capita; we find that the mean 

direct cost of traffic crashes consumed 5.6% (median: 3.85%) of annual families’ 

income at zonal level; the 90th percentile spans 0.9 to 20.5%. Figure 9 presents the 
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distribution of ECCPC, ECCPC per income and average zonal activity, as average 

zonal activity increases, both ECCPC, ECCPC per income increases. For example, 

TAZs with average zonal activity higher than 40, have a substantially higher ECCPC 

and ECCPC per income compared to those below 40. This trend also holds for 

distribution over income. Visual inspection of  

Figure 10 indicates that TAZs with median household below $25,000 have substantially 

higher ECCPC and ECCPC per income compared to wealthier families. For example, 

TAZs with median household income of less than $15,000, the average ECCPC is 

equal to $1,500 which is 3 times higher than TAZs with median household income of 

more than $100,000. Likewise, by normalizing the ECCPC with income, we learned that 

the value of ECCPC per income for families with income less than $15,000 is 36 times 

higher (17% v. 0.47) than TAZs with median household income of more than $100,000. 

Figure 11 also presents the Lorenz curve, and the equity line, the Gini index coefficient 

for the ECCPC per income is 0.58, which is an indicator of the unequal distribution of 

the burden of traffic crashes.   

Figure 12 presents the spatial distribution of the proportion of the economic cost of 

traffic crashes to families’ income. The gray color in the map exhibits TAZs, where the 

proportion of the economic cost of traffic crashes to families’ income, is less than 6%. 

The warmer color point out areas, in which direct cost of traffic crashes over families’ 

income level, is more substantial. A visual inspection of traffic crashes in the study area 

reveals that burden of traffic crashes are larger for TAZs near I-40 (east/west) and 

multilane highways that connect major cities in the KRTM area (e.g., Knoxville to 

Maryville, Knoxville to Sevierville). One explanation for more tangible crash burden 

along the road network is the exposure of the residents to high volume corridors with 

high traffic speeds. These two factors may increase both crash frequency and severity. 

Moreover, households who live very close to these corridors could have lower 

household incomes.  

 

 

Table 7 Economic cost of traffic crashes by driver and resident types (2017 million dollars) 

Person Involved  
Residency 

Driver Type  

Grand Total KRTM  Non-KRTM  

Non-KRTM  19.2 484.1 503.3 
KRTM  1,817.8 263.1 2,081.0 

Grand Total 1,837.0 747.2 2,584.3 
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Figure 9 Distribution of the ECCPC & ECCPC per income with regards to average zonal activity 

 

 

 

`  

Figure 10 Distribution of the ECCPC & ECCPC per income with regards to median household 

income 
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Figure 11 Gini Coefficient 

 

 

Model evaluation 

Results of the global Moran’s I, using a Queen contiguity matrix, indicate that there is 

significant spatial autocorrelation (Moran’s I = 0.14, p-value = 0.000). The positive value 

of the Moran’s I indicate the clustering in ECCPC.  

By controlling for AICc as well as lag coefficient values for the estimated SAR, and SEM 

models in different weighting matrices we learned that the queen contiguity matrix for 

both SAR and SEM has significantly better performance (lower AICc) compared to the 

other alternatives. Considering the non-zero values of 𝜌 and λ ,we conclude that both 

SAR and SEM models are significantly different from linear regression models. In 

addition, Moran’s I of residuals in both models (Moran’s I: SEM = -0.013; SAR = 0.000) 

indicate that the residuals are not spatially correlated.  

Comparison of the SEM, SAR, model by using LM indicate that both LMSEM and 

LMSAR are significant. However, using robust-LMSEM and robust-LMSAR tests for 

comparison indicate that only robust-LMSAR has a significant value. As a result, the 

SAR model is more suitable compared to the other models. Furthermore, comparison of 

the AICc and model performance, the SAR model has the lowest value of the AICc; 

therefore, the SAR model is more suitable compared to OLS and SEM. Table 8 

presents the result of the estimated models.  
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Figure 12 Proportion of The Economic Cost of Traffic Crashes to Median Families' Income 

 

 

Parameters estimation and discussion 

All the variables presented in Table 8 (except student per household and intersection 

per density) have a significant and intuitive association with ECCPC in three estimated 

models. In this study, we used the average zonal activity as the individuals’ exposure 

variable for each TAZ. Therefore, we expected a positive sign for the estimated 

coefficients. Average zonal activity implies that those who travel longer distances are 

more prone to traffic crashes and traffic crashes have a greater impact on them.  

Congruent with previous studies, VMT of roadways in the zone also have a significant 

association with safety outcomes. (Pirdavani et al. 2012b, a, 2013a, Pirdavani et al. 

2013b, Lee et al. 2015b, Cheng et al. 2018) Comparison of the coefficients indicates 

that vehicle miles traveled on arterial roads (i.e., major and minor arterials) has a 

greater impact on ECCPC compared to the interstate. This differences in the 

magnitudes could reflect the high access of the arterial roads with more conflicts 

compared to interstates, which could increase the likelihood of severe crashes; 

considering the relatively higher speeds on arterials could be another factor contributing 

to the higher severity of traffic crashes. On the other hand, other road classifications 

(e.g., collector, local) has a negative association with ECCPC. Although many studies 

explored the association between of functional classes and crash frequency at zonal 



 

45 

level (e.g., Hadayeghi et al. 2003, Quddus 2008, Xu and Huang 2015), only a few 

considered the effect of exposure (i.e., VMT) in different road classes. There is also a 

need to consider that the definition of the functional classes may vary across areas. In a 

series of studies in Flanders, Belgium, Pirdavani et al. (2013a) and Pirdavani et al. 

(2012b) reported that VMT on a motorway had a smaller effect on total crash frequency 

compared to non-motorway VMT. In Florida, Xu and Huang (2015), reported that 

proportions of the road with speed limits 25 mph or lower had a negative association 

with crash frequency at a zonal level, whereas, percent of roads at 45 mph and above 

had positive association on zone crash frequencies. Hadayeghi et al. (2003) also 

reported that total local road length in a TAZ had a negative association with all crashes 

and severe crashes; whereas, arterials, expressways, collectors, and ramps had a 

positive and significant association with crash frequency at the zonal level in a study in 

Canada.  

The significant positive association of the worker per household variable indicates that 

as proportion of workers per household increases (i.e., the proposed increase in work 

trip frequency) ECCPC also increases. This finding agrees with Naderan and Shahi 

(2010) study where they reported that the number of work-trips produced at zonal level 

has a positive impact with the number of injury crashes, property damage only crashes, 

and total crashes in a TAZ.  

Population density also has a negative association with the economic cost of traffic 

crashes; the model predicts that as density increases the ECCPC decreases. The crash 

frequency in urban areas is higher than rural areas on average; whereas the crash 

severity is relatively lower (Zwerling et al. 2005), as a result, the average economic cost 

of traffic crashes in the urban areas is lower than rural areas. Furthermore, population 

density could be used as a surrogate for non-motorized transportation; non-motorized 

trips are more likely in areas with higher density (Siddiqui et al. 2012, Cai et al. 2017b); 

non-motorized road users do not impose a crash risk to other road users.  

The household income variable also has a negative association with ECCPC, consistent 

with previous studies (Pirdavani et al. 2012b, Pirdavani et al. 2013b, Cai et al. 2017a, 

Cai et al. 2017b, Gomes et al. 2017, Cheng et al. 2018). People with higher household 

incomes tend to have lower crash rates and, in our model, lower ECCPC. This negative 

sign also is in agreement with road safety literature (WHO 2015b, Marshall and 

Ferenchak 2017). In addition, it is possible that individuals with higher income use safer 

vehicles. As a result, their crash severity and eventually the economic cost of their traffic 

crashes decreases.  

As expected, road network characteristics have a significant association with safety 

level. Percent of roads with sidewalk and number of bus stations also have a significant 

positive association with ECCPC. Cai et al. (2017b) also reported that sidewalk length 

has a positive association with crash frequency, severe crash, and non-motorized crash 

frequency. Considering that sidewalk is utilized by vulnerable road users, we may 

expect higher injury severity in case of crashes with this road user type and hence, 
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higher ECCPC; this trend also holds on for the number of bus stops, in which more non-

motorized road users have access to. Intersection density in the TAZ also has a positive 

(but non-significant) association with ECCPC. Other literature found that the number of 

intersection could be correlated with higher numbers of conflict and accordingly the 

higher number of traffic crashes (Hadayeghi et al. 2003, Ladron de Guevara et al. 2004, 

Lovegrove and Sayed 2006, Abdel-Aty et al. 2011, Pirdavani et al. 2012a, Gomes et al. 

2017). It is well-established that speed is a contributing factor to both crash frequency 

and crash severity (Elvik et al. 2009, HSM 2010). The average speed of roads in a TAZ 

has a positive association with ECCPC agreeing with previous research (Hadayeghi et 

al. 2003, Abdel-Aty et al. 2011, Pirdavani et al. 2012a), 

Conclusion 

The main aim of this study was to explore the association between travel behavior, and 

economic cost of traffic crashes at a fine geographic level, aiming to highlight equity 

challenges associated with disparities in crash cost burden. To explore this problem, we 

used the home-address of individuals who were involved in traffic crashes in the study 

area and assigned the economic cost of traffic crashes to their corresponding TAZ. We 

also determined activity (PMT) per capita for residents of each TAZ to measure their 

exposure in the transportation network.  

By controlling the traffic crash burden by the average zonal activity, we learned that the 

burden of traffic crashes is higher for those who travel more or have a lower income. 

The high-value of the Gini index also indicates that ECCPC per income impact residents 

of the KRTM in an unequable manner. Our analysis indicates that spatial dependency 

exists in the ECCPC and it is not randomly distributed in space. Our analysis also 

suggests that that ECCPCs are not generated solely by the internal structural factors 

represented in the OLS model. Comparison of different spatial models indicates that the 

SAR model with Queen contiguity matrix is more suitable for interpreting the relationship 

between ECCPC and travel behavior characteristics at the zonal level. Considering the 

underlying assumptions of the SAR model, we may conclude that ECCPC in one TAZ is 

influenced by ECCPC in neighboring TAZs. Therefore, a neighborhood with poor traffic 

safety outcomes poses negative externality to its neighbors and vice versa.  
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Table 8 Results of OLS, SAR and SEM models for prediction of ECCPC 

 SEM   SAR   OLS   

Variable 
Coefficien
t 

Std. 
Error 

P-
value 

Coefficien
t 

Std. 
Error 

P-
value 

Coefficien
t 

Std. 
Error 

P-
value 

Average zonal activity 21.008 1.088 0.000 20.783 1.075 0.000 21.100 1.089 0.000 
Average Speed 15.488 8.507 0.069 16.100 8.232 0.050 17.187 8.377 0.040 
Income ($10,000) -82.673 33.438 0.013 -74.930 30.746 0.015 -92.292 31.158 0.003 
Worker Per Household 789.818 287.103 0.006 842.896 276.897 0.002 927.897 281.764 0.001 
Student per Household -39.040 349.943 0.911 7.374 336.439 0.983 -45.856 342.180 0.893 
Intersection Density (per square 
miles) 0.663 0.439 0.131 0.631 0.422 0.135 0.765 0.429 0.075 
Percent road with Sidewalk 1176.700 273.907 0.000 1132.080 263.859 0.000 1205.690 268.151 0.000 
Percent Near Bus Station 485.042 242.838 0.046 433.221 223.289 0.052 503.682 226.838 0.027 
Population Density (per Square 
miles) -0.112 0.027 0.000 -0.115 0.025 0.000 -0.120 0.025 0.000 
VMT Interstate (10,000 miles) 156.811 28.148 0.000 150.221 27.410 0.000 176.145 34.699 0.000 
VMT Arterial (10,000 miles) 172.467 34.784 0.000 165.570 34.209 0.000 -155.453 37.024 0.000 
VMT Others (10,000 miles) -147.868 37.433 0.000 -145.169 36.410 0.000 21.100 1.089 0.000 
Constant -788.099 492.471 0.110 16.100 8.232 0.050 -983.910 482.956 0.042 

Lag Coef. (Lambda) 0.153 0.049 0.002       
Lag Coef. (Rho)     0.17 0.04 0.00    

Moran’s I -0.013   0.000   0.14  0.000 
Log likelihood (Full) -8473.89   -8470.68   -8437.61   
LMSEM    8.4847   0.004   
Robust LMSEM    0.6037   0.437   
LMSAR 15.0911  0.000       
Robust LMSAR 7.2101  0.007       
Akaike info criterion 16973.8   16969.4   16982.4   
Corrected Akaike info criterion 16894.2   16888.9   16901.8   
R-squared 0.42   0.42   0.41   
Number of Observations 956   956   956   
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Geographic distribution of the negative externalities of the traffic crashes shows that the 

burden of traffic crashes is more tangible in the vicinities of the interstates and multilane 

highways where TAZs’ residents are more prone to high-speed traffic and higher road 

classification. First, by designing a transportation network with the aim of diverging high-

speed traffic from residential areas or managing the accessibility of the residents near 

the high-speed, high volume roads. The second strategy may target average zonal 

activity by eliminating a portion of trips by promoting sustainable transport. Moreover, an 

increase in diversity, mixed land-use design, and non-motorized oriented design would 

also reduce both trips rate, trip length, modal shift (Cervero and Kockelman 1997) and 

eventually average zonal activity. Reduction in average zonal activity and VMT has a 

direct impact on the economic cost of traffic crashes. The economic cost of traffic 

crashes at the zonal level could also be used as an index for allocating proper 

countermeasures and interventions to areas where the burden of traffic crashes is more 

tangible, which can be done by investment in the safer infrastructure and educational 

interventions.  

In summary, in this study, we introduced a method to measure the tangible cost of traffic 

crashes at the zonal level, which could be straightforwardly integrated to travel demand 

analysis. The authors recommend using this measure as a criterion to evaluate future 

scenarios of development of the transportation system in metropolitan areas to identify 

how those scenarios impact safety costs and distributional impacts of safety 

externalities.  
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Abstract 

Despite the well-known safety benefits of seat belt use, some vehicle occupants 

still do not use their seat belt. This is a challenge in Tennessee, which has a lower seat 

belt use rate compared to the US national average. Roadside observations and 

interviews as the two main sources for estimating seat belt use rate are confronted with 

several limitations (e.g., small sample size, social desirability bias). To address these 

limitations, we attributed seat belt use of individuals who were involved in traffic crashes 

(N = 542,776) to their corresponding home-addresses. Home-addresses were retrieved 

from police crash database and were geocoded and assigned to their corresponding 

census tract revealing added information about the spatial distribution of seat belt use 

and socioeconomics of the areas surrounding the crash victim’s home. The average 

seat belt use rate in the metropolitan area was 88% and for the non-metropolitan area 

was 87%. A Tobit model was used to evaluate the relationship between the seat belt 

use rate for both drivers and passengers over 16 years old, with neighborhood 

sociodemographic variables. Population, age cohorts, race, household vehicles’ 

ownership, household size, and education were among the predictors of the seat belt 

use rate. Results of this analysis could be used in safety campaign design to reach 

geographic areas of groups with a lower seat belt use rate.  

Keywords: Seat Belt Use Rate; Tennessee; Census Data; Tobit Model; Home-

Address; Seat Belt Hotspots  
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Introduction 

Approximately 1000 individuals die on Tennessee’s roads every year, and most of them 

are vehicle occupants. One known solution that reduces the fatality rate of the vehicles’ 

occupant is a proper use of a seat belt. Several studies have reported the merits of 

wearing a seat belt in reducing crash fatalities and injury rates. Appropriate use of seat 

belts increases the chance of vehicle occupants surviving potential fatal crash by 44% - 

73% depending on seating position and the type of vehicles involved in a traffic crash 

(Blincoe et al. 2015).  

There are mandatory seat belt laws in the United States and its territories (except New 

Hampshire). In 34 States, the District of Columbia, and Puerto Rico seat belt laws are 

primary, which enable law enforcement officers to stop vehicles and write citations when 

they observe a seat belt non-use (IIHS 2018). In 15 States the laws specified secondary 

enforcement, meaning that law enforcement officers are permitted to issue a seat belt 

citation only after they stop a vehicle for another primary violation. Notably, only 28 

states and two territories enforce rear seat belt use (NHTSA 2017b). In Tennessee, seat 

belt use is a primary law, and it is mandatory for all the vehicles occupant be restrained 

by a seat belt (i.e., secured shoulder and lap belts) when riding in the front seat of a 

vehicle. Licensed passengers 16 years old or older are responsible for their own 

conduct. Nevertheless, a ten-year trend of traffic crashes shows that 30% of 

Tennessean who died in traffic crashes failed to wear their seat belt properly at the time 

of the crash, this rate was 54% and 70% for incapacitating injuries and non-

incapacitating injuries, respectively (TITAN 2017).  

Based on NHTSA roadside observations, front row passengers in Tennessee had an 

88.9% seat belt use rate in 2016, which was 1.2% lower than the National average 

(NHTSA 2017a). In 2017, roadside observations of 27,000 vehicles’ occupants at 190 

sites in Tennessee revealed that, on average, 88.5% in Tennessee used their seat belt 

(CTR 2018), which was still lower than the national average. Females seat belt use rate 

was 93.8%, and males had an 85.0% seat belt use rate. Furthermore, freeways showed 

the highest usage rate (91.2%) of all roadway types, while those observed on local 

roadways had the lowest usage rate (86.1%) (THSO 2016, CTR 2018). In addition, 

another phone interview in Tennessee in 2017 reported that 90% of respondents always 

wore their seat belt, females also had higher seat belt use rate than males (Hezaveh et 

al. 2018a).  

Seat belt non-use could be attributed to human factors such as forgetfulness, laziness, 

perceived low risk of injury, and discomfort (Begg and Langley 2001); attitudes, beliefs, 

and intentions (Fhaner and Hane 1975, Jonah and Dawson 1982, Chliaoutakis et al. 

2000, Şimşekoğlu and Lajunen 2008); habits (Knapper et al. 1976, Chliaoutakis et al. 

2000, Calisir and Lehto 2002); and lack of enforcement (Jonah et al. 1982, Farmer and 

Williams 2005). Each of these behaviors could be targeted by proper countermeasures 

through education and enforcement. 
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Sociodemographic of those who wear their seat belt less frequently is also helpful for 

identifying and reaching the groups with higher risk. Generally, males have lower seat 

belt use rates compared to females (Preusser et al. 1991, Reinfurt et al. 1997, Nelson et 

al. 1998, Calisir and Lehto 2002, Wells et al. 2002, Glassbrenner et al. 2004, Gkritza 

and Mannering 2008, Pickrell and Ye 2009). This is also true for younger drivers 

compared to the older adults (Reinfurt et al. 1997, Calisir and Lehto 2002, Glassbrenner 

et al. 2004). Individuals with higher education and/or income tend to have higher seat 

belt use rates (Preusser et al. 1991, Reinfurt et al. 1997, Wells et al. 2002, Houston and 

Richardson 2005). Studies in the United States have also shown that African-Americans 

are less likely to use a seat belt than Whites or Hispanics (Vivoda et al. 2004, Gkritza 

and Mannering 2008, Pickrell and Ye 2009). Several studies have reported that 

occupants of pickup trucks have the lowest seat belt use rate compared to occupants of 

other vehicle types (e.g., (Boyle and Vanderwolf 2004, Glassbrenner and Ye 2007, 

Gkritza and Mannering 2008)).  

Nearly all of the studies that investigated seat belt use relied on the direct roadside 

observation or responses of self-reported surveys. Although these methods are easy to 

conduct and can provide information at a relatively low cost; they have their limitations 

that may negatively affect the outcomes of a study. For instance, one issue that could 

negatively affect results of self-reported questionnaires is social desirability bias 

(Lajunen and Summala 2003, Nordfjærn et al. 2015, Hezaveh et al. 2017, Hezaveh et 

al. 2018b). Social desirability bias refers to the tendency of respondents to provide 

socially desirable answers rather than choosing an answer that that reflects their state 

of mind (Grimm 2010). Social desirability may bias the respondents answer with regard 

to questions related to traffic violations (Lajunen et al. 1997).  

Considering the roadside observations, the amount of data that researcher records are 

very limited; mainly due to the short amount of the time that the observers have to 

record the data and conspicuity challenges. In roadside observations, usually observed 

data elements are limited to the vehicle type, number of front row occupants, gender, 

age group, and roadside site characteristics (CTR 2018). Also, the number of 

observations sites are usually a small sample of the transportation network, and they 

usually take place within daylight or in the nighttime in the areas with sufficient lighting 

to observe inside of the vehicles.  

Police crash reports are the main source for evaluating road safety especially for 

analyzing crash severity and frequency. However, using police crash reports for 

studying seat belt use has its own limitations. The main limitation is possible incorrect 

assignment of seat belt use or crash severity to individuals by a responding officer 

(Cherry et al. 2017). For example, some vehicle occupants who survived a crash may 

falsely claim that they used a seat belt at the time of the crash in order to avoid a traffic 

ticket (Cummings 2002). Nevertheless, several studies of police reports show that 

reported seat belt use is consistent with roadside observations (Li et al. 1999) and 

National Accident Sampling System Crashworthiness Data System (CDS) (Schiff and 
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Cummings 2004). Using police crash reports have several advantages compared to the 

roadside observations and self-reported studies. First, it provides a nearly 

comprehensive dataset of all serious crashes with an objective observer of many 

reported variables. Second, it covers a vast geographic area with hundreds of 

thousands of observations.  

While the literature on road safety delivers seat belt use rate at coarse geographical 

level (e.g., county, state, country), it does not provide information about seat belt use 

rate at fine geographical level such as neighborhood level (e.g., census tract or traffic 

analysis zone). Knowing about the neighborhood seat belt use rate and seat belt non-

use hotspots would benefit safety practitioners by focusing resources on areas where 

their residents have lower seat belt use rate. This is one of the main challenges in 

designing an effective and geographically targeted safety campaign. To date, most 

safety campaigns provide blanket coverage of regions with lower seat belt use rates, 

rather than precise and targeted messaging. Targeted education could be more cost 

effective at increasing overall seat belt use rates.  

This study aims to propose a new method to measure seat belt use rate at the 

neighborhood level and evaluate the relationship between seat belt use rate and socio-

demographic variables based on the home address of the individual (i.e., home-based 

approach) who were involved in traffic crashes at zonal level. Although some studies 

used police crash reports to evaluate seat belt effectiveness and seat belt use rate, to 

the best of our knowledge no studies used this dataset for investigating the relationship 

between sociodemographic data elements and seat belt use rate based on home-

address of individuals involved in traffic crashes (i.e., drivers, passengers). Using the 

home-address of the individuals in a large database of the traffic crashes enables 

researchers to identify the geographic and surrounding socioeconomic factors that 

affect seat belt use and neighborhoods where their residents have lower seat belt use 

rate. Additionally, we will compare the seat belt use rate extracted from police crash 

reports with other sources of the seat belt use rate in Tennessee. Our findings are not 

only limited to the front row occupants but include all the vehicle occupants in different 

times of the day, context, weather, light conditions, and road types.  

In the next section, we discuss the proposed database, the geocoding process, and the 

analytical methods. The rest of the paper presents the results and discusses the 

findings of this study.  

Methodology  

Database  

The data in this study was provided by Tennessee Integrated Traffic Analysis Network 

(TITAN), a portal provided by Tennessee Highway Patrol (THP) as a repository for 

traffic crash and surveillance reports completed by Tennessee law enforcement 

agencies. The traffic crash records from January 1, 2016, through December 31, 2016, 
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were retrieved from TITAN. Each crash record includes information about road user 

type (e.g., pedestrian), geographic coordinates of the crashes, addresses of the 

individuals who were involved in a traffic crash, and other variables related to the crash 

(MMUCC 2012). The Police crash reports database contained 246,777 crashes and 

information about 580,767 individuals who were involved in traffic crashes in 2016. Data 

included different road users’ classifications; namely driver, motorcyclist, passenger, 

pedestrian, bicyclist, and other road user types. In order to analyze seat belt use rate, 

we only considered vehicle occupants. The database included information on 577,131 

vehicle occupants (i.e., driver or passenger); 73% of the occupant of the vehicle were 

drivers, and the rest were passengers. 

Geocoding process 

Bing API was used in this study for geocoding the residential address of the individuals. 

Only those addresses with an accuracy level of premise (e.g., property name, building 

name), address level accuracy, or intersection level accuracy were used for analysis. A 

sample of addresses was verified by manual inspection. After geocoding the home-

addresses, we were able to retrieve home-addresses’ coordinates of 542,776 

individuals (94% success rate), which met address quality filter criterion. Among 

geocoded addresses, 62,741 individuals lived out of state. After controlling for age, 

vehicles’ occupants sixteen years old and older were selected for the analysis. Census 

data from US survey in 2010 was also used for obtaining sociodemographic data 

elements. Table 9 provides a summary of the sample characteristics of the variables 

considered as input for model estimation for Tennessee.  

Tobit model  

In order to model seat belt use rate, first, there is a need to select a suitable model 

specification. Since the value of seat belt use rate for each zonal level is limited 

between 0 and 1, it is appropriate to use a regression model with a censored dependent 

variable. Considering the nature of seat belt use rate at zonal level, we can conclude 

the dependent variable is left-censored at 0 and right censored at 1. To address 

censoring in the dependent variables, Tobin (1958) proposed the Tobit model or 

censored regression model. This model was used by several researchers to model 

crash rate in various types of road sections (e.g., Anastasopoulos et al. 2008, 

Anastasopoulos et al. 2012, Zeng et al. 2017). 

 

  



 

61 

Table 9 Sample statistic for the state of Tennessee at the census tract 

Variable Mean Std. Deviation. [95% Conf. Interval] 

Total Population  1,530.02 788.68 1,505.98 1,554.06 
Age Cohort Proportion         

16 Years And Younger 0.23 0.08 0.22 0.23 
16-42 Years Old 0.32 0.11 0.32 0.33 
43-59 Years Old 0.25 0.08 0.24 0.25 
60 Years Old And More 0.20 0.10 0.20 0.20 

Age Median  38.96 8.63 38.75 39.27 
Race Proportion      

Race White  0.77 0.30 0.76 0.78 
Race Black  0.18 0.28 0.18 0.19 
Race Indian  0.00 0.01 0.00 0.00 
Race Asian  0.01 0.03 0.01 0.01 
Race Hawaiian  0.00 0.01 0.00 0.00 

Means Of Transportation To Work Proportion     
Personal Vehicle 0.92 0.11 0.92 0.93 
Carpool 0.10 0.08 0.10 0.11 
Bus 0.01 0.04 0.01 0.01 
Motorcycle 0.00 0.01 0.00 0.00 
Bicycle 0.00 0.01 0.00 0.00 
Walk 0.02 0.05 0.01 0.02 
Other Means 0.01 0.03 24.96 25.36 

Children (%) 0.20 0.08 0.19 0.20 
Household Size  2.72 5.30 2.57 2.89 
Education Degree Proportion     
Number Of Educated Over 25 Years 1021.62 514.10 1,005.96 1,037.29 
Education Degree Proportion     

High School And Lower 0.52 0.20 0.51 0.53 
Some College Degree 0.20 0.08 0.20 0.21 
Bachelors’ Degree 0.20 0.12 0.19 0.20 
Others’ Degrees 0.08 0.08 0.07 0.08 

Median Household Income ($1,000) 45.9 25.1 45.2 46.7 
Occupied Household Proportion 0.87 0.13 0.87 0.88 
Vacant Household Proportion 0.12 0.10 0.12 0.12 
Household Vehicles’ Ownership Proportion     

No-Vehicle 0.07 0.09 0.07 0.07 
One Or Two Vehicles 0.70 0.13 0.33 0.33 
Three Or More Vehicles 0.22 0.13 0.22 0.23 

Data Source: US Census     
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In the Tobit model, the regression is obtained by making the mean in the preceding 

correspond to a classical regression model. The general form of the model is usually 

given in terms of index function as follows:  

𝑦𝑖
∗ = 𝑥𝑖

′𝛽 + 𝜀𝑖, 

Where 𝑦𝑖
∗defined as: 

𝑦𝑖
∗ = {

𝑦𝑖 𝑖𝑓 𝑎 < 𝑦𝑖 < 𝑏
𝑎 𝑖𝑓 𝑦𝑖 ≤ 𝑎
𝑏 𝑖𝑓 𝑦𝑖 ≥ 𝑏

 

𝜀𝑖 assumes that the error term is normally distributed with mean 0 and variance equals 

to 𝜎2. In this study, the seat belt use rate is the dependent variables, and 𝛽 is the 

coefficient corresponding to each independent variable presented in Table 8. The 

dependent variable is a proportion confined between 0 and 1. In addition to the 

estimated coefficients, we also measured the elasticities of each coefficient for 

measuring the sensitivity of the dependent variables to a change in the independent 

variable. For more information regarding elasticity estimation please see Stata (2015).  

Variable selection 

A combination of intuition and stepwise regression modeling was used to select the best 

subset of the predictors with an exclusion criterion of p-values greater than 0.20. 

Moreover, Variance Inflation Factors (VIF) was used to control for the multicollinearity in 

each step. Curious readers could refer to O’brien (2007) for more details about the VIF.  

Model performance 

Veall and Zimmermann (1996) concluded that Maddala pseudo-r-squared is a valid 

measurement for evaluating the goodness of fit of censored regression. The general 

form of Maddala pseudo-r-squared displayed below (Maddala 1986):  

𝑅2 = 1 − [𝑒𝐿𝐿𝑁𝑢𝑙𝑙−𝐿𝐿𝐹𝑢𝑙𝑙]2/𝑁 

where, 𝐿𝐿𝑁𝑢𝑙𝑙 and 𝐿𝐿𝐹𝑢𝑙𝑙 are log likelihoods of the null and full model respectively, and N 

is the number of observations. The likelihood function of the Tobit model is:  

𝐿 = ∏ [1 − Φ (
𝛽𝑋

𝜎
)] ∏ 𝜎−1

1

ϕ[(𝑌𝑖 −

0

𝛽𝑋

𝜎
)] 

where, Φ is the standard normal distribution function, and ϕ is the standard normal 

density function (Anastasopoulos et al. 2008). 

We also used the Akaike Information Criterion (AIC) as a measure of the relative 

goodness of fit for identification of the models with a better fit in the sample. AIC is a 

function of the number of parameters in the model (k) and log-likelihood of the model 
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specification (ln (𝐿)); 𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿). As a rule of thumb, a three-point change in an 

AIC value indicates a significant improvement in the goodness of fit (Bozdogan 1987).  

Results 

Seat belt use rate 

Table 10 presents the average age and gender distribution of the vehicle occupants 

considering their seat belt use based on the police crash database. The average age of 

the males’ occupants (16 years old and older) was 39.4 (SD = 17.5) and for females 

was 39.2 (SD = 17.7). In addition, the average age of those who wore a seat belt 

properly (i.e., lap and shoulder) was 39.4 (SD = 17.6), and those who did not wear a 

seat belt was 38.8 (SD = 17.1). In general, the average age of those who wore a seat 

belt was higher than who did not (t = 8.278, P-value = 0.000). Moreover, females 

(89.1%) had a higher seat belt use rate in comparison to males (87.2%) (t = 23.889, P-

value = 0.000). Table 11 also presents the seat belt distributions of the occupants over 

16 years old. The highest seat belt use rate was for the front passenger (90.0%) 

followed by the driver (88.4%). The seat belt use rate dropped as passengers seating 

position row number increased (Table 11).  

Table 12 shows the seat belt use rates under different circumstances. Considering the 

weather condition, occupants seat belt use rate was higher during the harsh weather, 

and at its lowest rate during clear weather. Regarding daylight, occupants wore seat 

belts at higher rates during daylight and less during the night. Seat belt use rates at 

night were lower when there was no lighting on the road. Regarding the road 

classification, Interstate and US highways had higher seat belt rate than other route 

types. In addition, the seat belt use rate was lowest on frontage and urban roads.  

 

 

Table 10 Age and Gender distribution of the vehicles’ occupants over 16 years old 

Seat Belt Status 

Female Male Total* 

Mean SD Obs Mean SD Obs Mean SD Obs 

No seat belt 38.70 17.22 25285 38.76 16.97 32178 38.76 17.09 57708 
Wear Seat belt 39.24 17.74 205296 39.52 17.54 220700 39.39 17.64 425999 

Total 39.18 17.69 230581 39.42 17.47 252878 39.31 17.58 483707 
* Including the unknown observations;  
  Source: Authors’ analysis from TITAN data 
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Table 11 Seat belt use rate (number of observations) among vehicles’ occupants over 16 years old 

regarding seat position 

Row  Left Middle Right Other/Unknown 

Front 0.88 (395641) 0.55 (912) 0.89 (66464) 0.2 (55) 
Second 0.84 (6647) 0.65 (1101) 0.85 (8913) 0.38 (216) 
Third 0.74 (424) 0.67 (143) 0.71 (438) 0.12 (54) 
Fourth 0.45 (127) 0 (33) 0.50 (166) 0.04 (128) 
Other Seats    0.40 (2203) 

Source: Authors’ analysis from TITAN data 

 
 
 

Table 12 Seat belt use rate regarding weather, lighting, and route signage 

Variable Mean SD Number of observation 

Weather    
 Clear 0.868 0.338 395975 
 Cloudy 0.889 0.314 58743 
 Fog 0.868 0.339 1377 
 Smog/Smoke 0.934 0.249 196 
 Rain 0.884 0.321 54611 
 Sleet/Hail 0.895 0.307 1181 
 Snow 0.909 0.287 4749 
 Blowing Snow 0.912 0.284 272 
 Severe Cross-Winds 0.902 0.297 123 
 Blowing Sand/Soil/Dirt 0.922 0.269 51 
 Other 0.883 0.321 342 
 Unknown 0.025 0.157 24318 
Lighting Mean SD Count2 
 Daylight 0.879 0.326 389436 
 Dark-Not Lighted 0.843 0.364 39391 
 Dark-Lighted 0.860 0.347 69524 
 Dark-Unknown Lighting 0.787 0.409 1499 
 Dawn 0.875 0.330 6821 
 Dusk 0.864 0.343 10632 
 Other 0.865 0.342 429 
 Unknown 0.033 0.106 25044 
Route Signage Mean SD Count2 
 Interstate 0.885 0.319 45397 
 US Route 0.871 0.335 43581 
 State Route 0.868 0.338 68086 
 County Route 0.823 0.382 36707 
 Municipal Route 0.850 0.357 138721 
 Frontage Road 0.826 0.379 317 
 Other 0.789 0.408 14054 
 Unknown 0.796 0.402 195913 

Source: Authors’ analysis from TITAN data   
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Seat belt hot spot identification 

After assigning respondents home-address to their corresponding census tract, we 

learned that Tennessee residents had a higher compliance rate (88.2%) than those with 

out-of-state addresses (86.9%) (t=8.615, P-value = 0.000). By using crash data, 

480,035 (7.2% of state population) individual addresses in Tennessee were assigned to 

their corresponding census tracts. The average seat belt use rate at census tracts for 

the driver’s seat was 0.88 (SD = 0.06) and for the passengers’ seat was 0.86 (SD = 

0.12); the correlation between driver’s seat and passengers’ seat was 0.32 (P value < 

0.000), which indicated a weak positive linear relationship. Figure 13 and Figure 14 

present number of observations and seat belt use rate for driver and passengers over 

16 years old at the zonal level. Each point represents a seat belt use rate in a census 

tract (number of seat belted drivers or passengers divided by total number of 

participants in a crash), and the number of observations reflects the total number of 

observations in each census tract. In cases of driver crashes, the range of rates spans 

60-100% for tracts with reasonably large crash counts. For passenger seat belt use 

rate, there are fewer observations in the dataset, and more observations below 60% 

seat belt use rates.  

Figure 15 and Figure 16 present average seat belt use rate for the drivers and vehicle 

passengers at zonal levels in Tennessee; the red color in the figures indicates census 

tracts with low seat belt use rate and the green color indicates a high seat belt use rate. 

The white color also represents the state average. Visual Comparison of Figure 15 and 

Figure 16 indicate the passengers’ seat belt use rate has more variation in Tennessee 

compared to driver seat belt use rate.  

Table 13 presents the average seat belt use rate in metropolitan areas. The average 

seat belt use rate for vehicle occupants in the metropolitan area was 88% (SD = 0.06), 

which is slightly higher than the non-metropolitan area (87% SD = 0.06). Moreover, 

comparing the six metropolitan areas in Tennessee indicates that the driver’s seat belt 

use rate is the highest among residents of Knoxville, followed by Jackson and Tri-cities. 

This trend also holds for the passenger’s seat belt use rate. Chattanooga metropolitan 

area also has the lowest seat belt use rate for both passenger and driver seat. In 

addition, Chattanooga is the only metropolitan that passenger seat belt use rate is 

higher than the driver seat belt use rate.  
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Figure 13 Number of observations and corresponding seat belt use rate at the census tract level 

for drivers 

 

 

 

Figure 14 Number of observations and corresponding seat belt use rate at census tract level for 

passengers (over 16) 
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Table 13 Mean and Standard Deviation of The Seat Belt Use Rate in Metropolitan Areas 

 Driver Passenger Overall 

Metropolitan Area Mean SD Mean SD Mean SD 
Knoxville 0.92 0.04 0.90 0.10 0.91 0.04 
Nashville 0.89 0.05 0.87 0.11 0.88 0.05 
Jackson 0.90 0.04 0.87 0.11 0.90 0.04 
Tri-cities 0.89 0.05 0.88 0.13 0.89 0.05 
Chattanooga 0.77 0.07 0.81 0.14 0.77 0.06 
Memphis 0.87 0.06 0.83 0.12 0.86 0.06 
Non-metropolitan area 0.87 0.06 0.86 0.12 0.87 0.06 
Grand Total 0.88 0.06 0.86 0.12 0.87 0.06 

Source: Authors analysis of TITAN data      

 

 

 

Figure 15 Driver seat belt use rate distribution in Tennessee  
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Figure 16 Passengers’ seat belt use rate (over 16) distribution in Tennessee  
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Table 14 Estimated saturated Tobit model for prediction of the seat belt use rate for drivers  

Variable 

DSBUR PSBUR 

Coef. Standard Error Coef. Standard Error 

Population (1000) 0.006*** 0.001 0.005* 0.003 
Age Cohorts     

Population 16-42 0.001 0.015 -0.059* 0.030 
Population 43-59 -0.019 0.027 -0.024 0.053 
Population over 60 -0.037 0.029 0.021 0.056 

Age Median 2.93E-04 3.41E-04 -8.42E-04 6.71E-04 
Race (%)     

Race White 0.012 0.017 0.042 0.035 
Race Black -0.025 0.017 0.007 0.035 
Race Indian -0.031 0.093 0.115 0.182 
Race Asian -0.043 0.037 0.040 0.074 
Race Hawaiian 0.004 0.148 0.181 0.291 

Travel Mode to Work     
Morning Share Car -0.029* 0.015 0.031 0.031 
Morning Share Carpool -0.010 0.012 -0.026 0.024 
Morning Share Bus -0.028 0.032 0.007 0.063 
Morning Share Motor -0.060 0.132 0.201 0.259 
Morning Share Bicycle -0.196* 0.103 0.056 0.202 
Morning Share Walk -0.101*** 0.027 -0.023 0.057 

Education Degree     
% High school degree -0.057*** 0.015 0.027 0.031 
% College degree -0.068*** 0.018 0.039 0.036 
% Bachelor Degree -0.036*** 0.020 0.105** 0.042 

Median Household Income -1.13E-07 6.39E-07 1.61E-07 1.29E-07 
Vehicle Ownership (%)     

Household with no Vehicle -0.051*** 0.015 -0.017 0.029 
Household with One or Two 

Vehicles -0.014* 0.009 0.041** 0.018 
Density (1000 population per square 
km) -1.13E-07 1.18E-07 -1.28E-06*** 2.34E-07 
Constant 0.970*** 0.018 0.776*** 0.044 

Scale Parameter 0.004*** 0.000 0.014*** 0.000 

𝜒2 373.78  217.54  
𝐿𝐿0 5,563.87  2,841.95  
𝐿𝐿𝑀 5,750.76  2,950.72  

Maddala Pseudo-R2 0.09  0.09  
N 4,114  4,103  
AIC -11,453.53  -5,853.44  

* p<.10; ** p<.05; *** p<.01     

Source: Authors’ analysis of TITAN data and the US Census 
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Tobit model estimates 

Table 14 presents the estimated saturated Tobit model based on the variables in Table 

9. After performing stepwise regression and controlling for multicollinearity, insignificant 

variables were excluded from analysis. Table 15 presents the estimated coefficients for 

predicting driver seat belt use rate (DSBUR) and passengers seat belt use rate 

(PSBUR) at the census tract level and their corresponding elasticity values. The chi-

square results for all models indicate that both models are significantly different from the 

null model (DSBUR: 𝜒2 = 328; PSBUR: 𝜒2 = 233). The variables that are presented in 

Table 15 have a significant correlation with both dependent variables. The mean VIF 

value for DSBUR model and PSBUR are respectively 1.31 (max = 1.59) and 1.34 (max 

= 1.71).   

Findings of estimated models in Table 15 indicate that population size, the percentage 

of the white race and child percentage at zonal level have a positive association with 

seat belt use rate in both models. In the DSBUR model, elasticity values indicate that 

1% increase in population, child percentage, and portion of white race increase average 

seat belt use rate by 1.0%, 0.5%, and 0.3% respectively; the corresponding elasticity 

values for the PSBUR model are higher, 0.8%, 3.7%, and 1.9%, respectively.  

Vehicle ownership variables also have a significant association with seat belt use rate; 

however, the sign of the coefficients are dissimilar in both models. In the DSBUR model, 

the proportion of household with vehicle (i.e., 0, 1, 2) has a negative association with 

seat belt use rate. The elasticity values for the proportion of households with one or two 

vehicles (-2%) is greater than the proportion of households with no-vehicles (-0.6%). In 

the PSBUR model, the proportion of households with one or two vehicles has a positive 

correlation with passenger seat belt use, whereas the proportion of households with no-

vehicles has a negative association with passenger seat belt use. The elasticity values 

for the proportion of families with one or two vehicles is 3%, and the corresponding 

value for households with no-vehicle is -0.3%.  

Education-related variable signs are dissimilar in DSBUR model. Percentage of 

individuals with a college degree has a negative association with drivers’ seat belt use 

rate. On the other hand, the percentage of bachelor degree has a positive association 

with seat belt use rate in both models. Elasticity values indicate one percent increase in 

the proportion of the population with bachelor degree increases seat belt use rate by 

0.4% and 1.3%, respectively for DSBUR and PSBUR model.   

The metropolitan indicator variable in both models has a positive association with seat 

belt use rate, which indicates that seat belt use in the metropolitan area is higher than 

non-metropolitan area. The magnitude and elasticity value of the metropolitan 

coefficient in the DSBUR model is greater than PSBUR model. Alternatively, the 

population density variable has a negative correlation with PSBUR variable; the 

elasticity values indicate that one percent change in population density results in 1.1% 

reduction in seat belt use rate in the PSBUR model. Household size also has a 
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significant negative association with passenger seat belt use; the elasticity value for this 

variable is -0.4%.  

Discussion  

Analysis of seat belt use rate for vehicles’ occupants over 16 years old indicates that 

seat belt use rate for drivers and the front passenger in 2016 was approximately 88.2%, 

which is close to 88.9% observed in roadside observations in Tennessee (THSO 2016, 

CTR 2018). Comparison of the driver and front row passenger seat belt use rate 

indicates that front row passenger had higher compliance rate, which is also in line with 

the roadside observation in Tennessee (THSO 2016, CTR 2018). Generally, the seat 

belt use rate of passengers (including back row) was lower than the driver, which is 

influenced by substantially lower seat belt use rate of the passengers in back rows. This 

lower seat belt use rate for passengers in back rows could be attributed to the current 

seat belt law in Tennessee, which only covers front row passengers (IIHS 2018).  

 

 

Table 15 Estimated Tobit model for prediction of the seat belt use rate for drivers  

Variable 
DSBUR PSBUR 

Coef. Std. Err Elasticity Coef. Std. Err Elasticity 
Population (1,000) 0.006*** 0.001 0.010 0.005* 0.003 0.008 
% Children 0.023* 0.012 0.005 0.085*** 0.024 0.037 
% Race White 0.036*** 0.004 0.031 0.042*** 0.008 0.019 
Vehicle Ownership       

% Household with no  
Vehicle -0.078*** 0.013 -0.006 -0.041* 0.025 -0.003 

% Household with One or 
 Two Vehicles -0.025*** 0.008 -0.020 0.036** 0.016 0.029 
Education       

% College degree -0.032** 0.013 -0.007    
% Bachelor Degree 0.016* 0.009 0.004 0.058*** 0.018 0.013 

Metropolitan Indicator 0.007*** 0.002 0.005 0.015*** 0.005 0.012 
Household Size    -0.001*** 0.000 -0.004 
Density (1,000 population 
 per square km)    -1.46E-06*** 2.24E-07 -0.011 
Constant 0.863*** 0.008  0.773*** 0.016  

Scale parameter 0.004*** 7.97E-05  0.014*** 3.03E-04  

𝜒2 328.37   233.50   

𝐿𝐿0 5,563.87   2,841.95   

𝐿𝐿𝑀 5,728.06   2,958.70   
Maddala Pseudo-R2 0.077   0.056   
N  4,114   4,103   
AIC -11,436.1   -5,897.41   

* p<.10; ** p<.05; *** p<.01 
Source: Authors’ analysis of TITAN data and the US Census 
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In line with previous studies (Wells et al. 2002, Gkritza and Mannering 2008, Ojo 2018), 

police crash reports analysis indicates that males and younger individuals are more 

prone to seat belt non-use. Findings also indicate seat belt use rates are higher in 

daylight and harsh weather, which is consistent with roadside observations (NHTSA 

2016). Additionally, seat belt use on interstates is higher than other classes of roads. 

Variation in seat belt use rate in different circumstances could be attributed to the 

perception of safety. For instance, those who drive in harsh weather (e.g., rainy or high-

speed routes like interstates) may perceive more hazard, and as a result, have a higher 

seat belt use rate. These abovementioned findings yield the conclusion that police crash 

reports of seat belt use are broadly in agreement with roadside observations in 

Tennessee (CTR 2018) and road safety literature (Gkritza and Mannering 2008, Pickrell 

and Ye 2009, Ogunleye-Adetona et al. 2018, Ojo 2018).  

Comparison of the driver and passenger seat belt use rate in different metropolitan 

areas indicates that driver’s seat belt use was higher than other passengers, except for 

Chattanooga metropolitan area. Overall, the Chattanooga region has the lowest seat 

belt use rate among both metropolitan and non-metropolitan areas. The spatial variation 

in seat belt use in metropolitan areas reflects different traffic cultures and social and 

psychological factors within Tennessee. Identifying social and psychological factors 

(e.g., attitudes, beliefs, and intentions) that affect seat belt use and using them for 

educational purposes in safety campaigns could increase seat belt use. Moreover, seat 

belt use rate distribution maps in Tennessee indicate that passenger seat belt use rate 

has more spatial variation than driver seat belt use. Spatial variation in seat belt use 

could be attributed to both traffic laws in Tennessee and cultural differences, which 

should be investigated in the future studies.  

A Tobit model was used to investigate the association between seat belt use for the 

drivers and passengers 16 years or older who were involved in traffic crashes and 

sociodemographic variables of the occupant’s home location, at the aggregate level. 

This is the first time, to the authors’ knowledge, that this type of analysis has been 

conducted. Results indicate that the percentage of the white race in the neighborhood 

had a positive impact on seat belt use rate for both models; this finding parallels 

previous research (e.g., Gkritza and Mannering 2008, Pickrell and Ye 2009, Bhat et al. 

2015). Using a safety campaign in neighborhoods with a high percentage of non-white 

populations could be used as an effective method for improving seat belt compliance 

rates. Consistent with other road safety literature, sociodemographic variables have a 

significant impact on seat belt use rate (Preusser et al. 1991, Reinfurt et al. 1997, Wells 

et al. 2002, Houston and Richardson 2005). Different neighborhood education levels 

also have a different effect on seat belt use rate for both models. Percentage of 

bachelor’s degree have a positive impact on the seat belt use rate for both DSBUR and 

PSBUR models. On the other hand, in the drivers’ model, the percentage of a college 

degree has a negative association with the driver’s seat belt use rate. The motive for not 

wearing a seat belt for lower education driver could be different; perhaps lower seat belt 

use of drivers with lower-education could be attributed to their subjective norm and 
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attitude toward wearing a seat belt. On the other hand, for higher education and higher 

income portion of society lower seat belt use rate could be attributed to perceived 

behavioral control or over-confidence. This may also explain the negative sign of 

average neighborhood vehicle ownership for the driver seat belt use. Using social 

psychological tools to investigate how attitudes, beliefs, and values influence seat belt 

use for different road users would be beneficial for designing a better safety campaign 

and targeting human factors that predict seat belt use.  

Quite the opposite, passengers’ with higher education and higher vehicle ownership 

have higher seat belt use rate. This behavior may be attributed to the fact that 

passengers (particularly front row passengers) have little or no control over the driver’s 

behavior (i.e., perceived behavioral control), and as a result, passengers tend to wear 

their seat belt more frequently when they are not in the driving position. Psychological 

factor that affects lower seat belt use rates of the back rows passengers needs to be 

investigated in the future studies. The home-address environment also has a significant 

effect on seat belt use rate in both models. Results indicate metropolitan indicator has a 

positive impact on seat belt use rate for both models. Metropolitan indicator could be 

used as a surrogate for urban areas, which traditionally have a higher seat belt use rate 

(NHTSA 2017a).  

Conclusion and future implications  

In sum, results of analysis point out police crash reports have the potential to be used 

as a source to examine seat belt use at the neighborhood level. Using the home-

address of the individuals extracted from police crash report could be used to identify 

areas with lower seat belt use rate, which could be useful in the design of safety 

campaigns in programs such as “Click-It or Ticket” to efficiently reach individuals that 

are more prone to lower seat belt use. This method could be more effective than blanket 

campaigns that tend to show small population-level effects. There is also a need for 

developing a methodology that enables researchers and safety practitioners to identify 

seat belt non-use hot spots. Increase in the enforcement mainly by covering passengers 

in back rows under the primary seat belt use law in Tennessee could be a practical 

solution for increasing seat belt use rate of passengers. Besides, findings indicate that 

there are differences between drivers and passengers in terms of factors correlating 

with their seat belt use at the zonal level. As a result, the seating position needs to be 

considered in the design of a road safety campaign.  

It is also worth mentioning that there are difficulties in accessing crash data with 

identifiers and it is not possible to obtain this data in some cases. One possible direction 

for future researchers could be to develop a methodology to identify seat belt hotspots 

based on the conventional sources of data (i.e., temporal and spatial transformation of 

the models). The sample in this study represents an individual who had reported a 

traffic crash in Tennessee in 2016 and careful consideration needed in order to apply 

the findings to all residents of the state. 
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CHAPTER IV: FACTORS INFLUENCING SEAT BELT NON-

USE: INCORPORATING SPATIAL EFFECTS 
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Abstract 

It is well-established that seat belt use in many cases could prevent serious 

injuries and death of vehicle occupants. However, many car occupants still do not to 

wear a seat belt. Seatbelt use rates are often spatially correlated with nearby areas. 

However, very few studies have examined this spatial autocorrelation. In this study, we 

used exploratory spatial data analysis (ESDA) and spatial regression analysis to model 

autocorrelation in Tennessee, which has a lower seat belt use than the United States 

national average. We geocoded home-addresses of vehicle occupants involved in traffic 

crashes between 2014-16 (n = 1,251,901) and projected them to the census tract 

corresponding to their home address revealing information about the spatial distribution 

of seat belt use and socioeconomics of the areas surrounding the crash victim's home. 

Average seat belt use rate for the three-year period was 89.9%. ESDA analysis reveals 

a distinctive regional imprint for spatial autocorrelation, in which Southern-metropolitan 

areas’ (Southern-MPOs) census tracts have higher than average seat belt non-use 

compared to non- Southern-MPOs that form statistically significant clusters. Presence of 

highly spatially correlated observations suggests that seat belt non-use is not produced 

solely by the internal structural factors represented in the non-spatial models. Spatial 

error model and the spatial lag model were suitable for non-Southern-MPOs and 

Southern-MPOs, respectively. Spatial lag model in the Southern-MPOs is also 

consistent with an influence process‒ e.g., modification of one person’s responses by 

the actions of another. The observation of social influence indicates that further inquiry 

is needed to learn about the underlying mechanism of social influence in future studies. 

Identifying the underlying mechanism of social influence would be helpful in the design 

of an effective seat belt campaign, such as communication methods with recipients of 

the campaign. 

Keywords: Seat belt non-use; network influence; diffusion process; ESDA; 

Spatial Lag Model; Zonal Model  
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Introduction 

It is well-established that seat belt use could reduce serious injuries and fatalities from 

traffic crashes among car occupants (Blincoe et al. 2015). There are mandatory seat 

belt laws in the United States and not wearing a seat belt violates the state law which 

could lead to a fine in many jurisdictions. In 34 States, the District of Columbia, and 

Puerto Rico seat belt laws are primary, which enable law enforcement officers to stop 

vehicles and write citations when they observe seat belt non-use (IIHS 2018). In 15 

States, the laws have specified secondary enforcement, meaning that law enforcement 

officers are permitted to issue a seat belt citation only after they stop a vehicle for 

another primary violation. Nevertheless, some occupants do not use their seat belt. In 

Tennessee, seat belt use is also compulsory and is a primary law (i.e., secured 

shoulder and lap belts) when riding in the front seat of a vehicle (IIHS 2018). 

Meanwhile, roadside observations of 190 sites in 2017 revealed that, on average, 

88.5% of the vehicle occupants in Tennessee used their seat belt (CTR 2018), which is 

1.2% lower than the national average in the United States (US) (NHTSA 2017).  

There is compelling evidence suggesting spatial dependency of seat belt use. Spatial 

dependency may reflect variations in a wide range of factors, including demographic, 

economic, historical and geographical background, enforcement level, or traffic culture. 

Roadside observations imply the presence of spatial dependency on seat belt non-use. 

Figure 17 exhibits the seat belt use rate at the state level based in NHTSA (2017) 

roadside observations in the United States. Visual screening of this map indicates the 

presence of spatial clusters of seat belt use (e.g., a state with high seat belt use shares 

borders with other states with high seat belt use and vice versa). This spatial variation in 

one observation could be an indicator of the presence of spatial autocorrelation. Spatial 

autocorrelation exists when a variable displays interdependence over space (Saha et al. 

2018). Presence of spatial autocorrelation in seat belt use was also reported by 

Majumdar et al. (2004) at the state level.  

Wearing a seat belt also is a decision-making problem and as it is expected vehicle 

occupants’ social psychological factors affect seat belt use (Calisir and Lehto 2002, 

Şimşekoğlu and Lajunen 2008). Several studies used self-reported questionnaires 

based on the theory of health belief model or the theory of planned behavior to explore 

factors influencing seat belt use. These studies highlight the role of local effects, such 

as regulation enforcement, on seat belt use. Subjective norms (i.e., perceived social 

pressure to perform or not to perform the behavior (Ajzen 1991)), and normative belief 

(i.e., an individual's perception of social normative pressures, or relevant others' beliefs 

that he or she should or should not perform such behavior) may represent the effect of 

social interaction and pressure for seat belt use.  
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Figure 17 Seat belt use distribution at the state level ‒2017; adopted from NHTSA (2017) 

 

 

Furthermore, subjective norms (Şimşekoğlu and Lajunen 2008, Ali et al. 2011, Torquato 

et al. 2012), attitude (positive or negative evaluations of seat belt use) (Şimşekoğlu and 

Lajunen 2008, Ali et al. 2011, Torquato et al. 2012), or cues to action (e.g., seeing other 

drivers wearing seat belt) (Şimşekoğlu and Lajunen 2008, Ali et al. 2011) also have 

significant impact on seat belt use. On the other hand, negative attitudes and beliefs 

about the effectiveness of seat belt use may adversely affect the seat belt use (Fockler 

and Cooper 1990, Begg and Langley 2000). Many of these psychological factors may 

reflect the safety culture (Şimşekoğlu et al. 2013, Nordfjærn et al. 2014) and may drive 

spatial dependency in seat belt use.  

In the social science, the presence of the spatial autocorrelation may be attributed to the 

social influence phenomenon (Marsden and Friedkin 1993, Leenders 2002, Fujimoto et 

al. 2011, Wang et al. 2014, Tranmer et al. 2016, Vitale et al. 2016, Dittrich et al. 2017). 

This issue could be explored in a social network context by entailing a structural 

conceptualization of social proximity. A social network displays the relationship between 

the attitudes and behaviors of the actors who compose a network (Marsden and 

Friedkin 1993). The general hypothesis is that the proximity (e.g., distance) of two 

actors (e.g., residences of a geographic unit) in a social network is associated with the 
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occurrence of interpersonal influence between the actors (Marsden and Friedkin 1993). 

In this context, social influence is the modification of one person’s responses by the 

actions of another (Cartwright 1965, Marsden and Friedkin 1993). Comparison of the 

attitudes and behavior of the actors happen through processing information about the 

attitudes and behaviors of other actors and does not require face-to-face interaction 

between actors. There are several methods for modeling the social influence in the 

cross-sectional studies. Spatial lag model and spatial error model are two common 

techniques (Marsden and Friedkin 1993, Baller et al. 2001, Leenders 2002) that 

incorporate the effect of proximity and interaction between actors in the modeling 

process. This model are discussed in more details in the methodology section. To the 

best of our knowledge, no study has yet explored the presence of social influence and 

spatial autocorrelation on seat belt non-use at a fine geographic level within in a city or 

State. 

There are several factors that affect seat belt use. In a recent study, Hezaveh and 

Cherry (2019) used police crash reports and census tract data and showed that seat 

belt use varied at a fine geographic level (i.e., census tract) within a state. Moreover, the 

authors showed that there are several demographic factors besides ethnicity, gender, 

and age cohorts that influence seat belt use rates at the zonal level, for instance, 

population density, age, household vehicles’ ownership, and household size (Hezaveh 

and Cherry 2019). Nonetheless, Hezaveh and Cherry (2019) did not consider the effect 

of spatial structure in their analysis. Considering the demographics of vehicle 

occupants, males have lower seat belt use rates compared to females (Preusser et al. 

1991, Reinfurt et al. 1997, Nelson et al. 1998, Calisir and Lehto 2002, Wells et al. 2002, 

Glassbrenner et al. 2004, Gkritza and Mannering 2008, Pickrell and Ye 2009). This also 

holds for younger drivers compared to older adults (Reinfurt et al. 1997, Calisir and 

Lehto 2002, Glassbrenner et al. 2004). Individuals with higher education and/or income 

tend to have higher seat belt compliance (Preusser et al. 1991, Reinfurt et al. 1997, 

Wells et al. 2002, Houston and Richardson 2005). Studies in the United States have 

also shown that African-Americans are less likely to use a seat belt than Whites or 

Hispanics (Vivoda et al. 2004, Gkritza and Mannering 2008, Pickrell and Ye 2009).  

In this study, we are exploring the presence of the influence process at fine geographic 

level by incorporating spatial autocorrelation in the domain of seat belt use in a social 

network context. This study aims to, first, measure the seat belt non-use rate at the 

zonal level and evaluate the relationship between seat belt use rate and socio-

demographic variables based on the home addresses of the individuals who were 

involved in traffic crashes at the zonal level. Second, we explore the presence of an 

influence process regarding seat belt non-use in Tennessee by incorporating the spatial 

autocorrelation. Evidence of the presence of social influence may provide promising 

opportunities for understanding the local factors contributing to this phenomenon. 

Furthermore, it provides insights into designing countermeasures and interventions that 

increase seat belt use rates in the areas with lower seat belt use rate.  
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The next section discusses the methods used in this study. In the methodology section, 

we discuss the geocoding process and measuring seat belt non-use at zonal level by 

incorporating spatial effects. In the last section, we present and discuss the findings of 

the analysis.  

Methodology  

Database and geocoding process 

The data in this study were provided by Tennessee Integrated Traffic Analysis Network 

(TITAN), which is a statewide repository for traffic crashes and surveillance reports 

completed by Tennessee law enforcement agencies. For the years 2014, 2015, and 

2016, the TITAN records include 694,276 crashes and information about 1,607,995 

vehicle occupants who were involved in traffic crashes. The Bing API was used in this 

study for geocoding the residential address of the individuals. Only those addresses 

with an accuracy level of the premise (e.g., property name, building name), address 

level accuracy, or intersection level accuracy were used in the analysis. A sample of 

addresses was verified by manual inspection. After geocoding the home-addresses, we 

were able to retrieve home-addresses’ coordinates of 1,510,506 individuals (94% 

success rate), which met address quality filter criterion. Among geocoded addresses, 

162,447 individuals lived out of Tennessee. After controlling for seat belt use type (i.e., 

excluding child seat boosters), 1,252,139 observations with a Tennessee address were 

selected for assignment to the census tract data.  

Following the MMUCC (2012), TITAN provides information regarding restraint use by 

occupants at the time of the crash. For this study, we defined seat belt non-use as 

vehicle occupants who did not restrain both lap and shoulder seat belt at the time of a 

traffic crash. Accordingly, we estimated seat belt non-use rates at the zonal level as the 

percentage of seat belt non-use cases over a total number of observations at a specific 

geographic area. Census data from the US survey in 2010 were also used for obtaining 

sociodemographic data elements. Table 16 summarizes the sample characteristics of 

the variables considered as input for model estimation for Tennessee. To prevent 

outliers, we only considered the census tracts that had more than 20 observations.  

Figure 18 further presents the geographical distribution of seat belt non-use at the 

census tract level. Red colors indicate a higher level of seat belt non-use, while blue 

colors show a higher level of compliance. Visual inspection indicates that census tracts 

are clustered together, meaning that blue colors are usually surrounded by blue 

neighbors and vice versa. Moreover, seat belt non-use indicates that Chattanooga and 

Memphis metropolitan areas (here defined as Southern-MPOs) have higher seat belt 

non-use rate compared to the Knoxville and Nashville metropolitan areas (here defined 

as non-Southern-MPOs). Seat belt non-use in the rural also follows a similar trend.  
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Table 16 Sample statistic for the state of Tennessee at the census tract 

Variable Mean Std. Deviation. [95% Conf. Interval] 

Total Population  1,530 789 1,506 1,554 
Age Cohort %         

<16 Years  0.23 0.08 0.22 0.23 
16-42 Years  0.32 0.11 0.32 0.33 
43-59 Years  0.25 0.08 0.24 0.25 
> 59 Years  0.20 0.10 0.20 0.20 

Age Median  38.96 8.63 38.75 39.27 
Race %      

White  0.77 0.30 0.76 0.78 
Non-White  0.23 0.23 0.22 0.24 

Means Of Transportation To Work Proportion     
Personal Vehicle 0.92 0.11 0.92 0.93 
Carpool 0.10 0.08 0.10 0.11 
Bus 0.01 0.04 0.01 0.01 
Motorcycle 0.00 0.01 0.00 0.00 
Bicycle 0.00 0.01 0.00 0.00 
Walking 0.02 0.05 0.01 0.02 
Other Means 0.01 0.03 24.96 25.36 

Education Degree %     
High School And Lower 0.52 0.20 0.51 0.53 
Some College Degree 0.20 0.08 0.20 0.21 
Bachelors’ Degree 0.20 0.12 0.19 0.20 
Other Degrees 0.08 0.08 0.07 0.08 

Median Household Income ($10,000) 45.9 25.1 45.2 46.7 
Household Vehicles’ Ownership % 0.93 0.01 0.92 0.93 

Data Source: US Census     
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Figure 18 Seat belt non-use map 
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Spatial analysis 

In this study, we are taking an explicitly ecological approach by examining census tract-

level seat belt non-use in Tennessee. Our methodology consists of several parts. First, 

we will examine the spatial clustering of seat belt non-use at the census tract level in 

search for distinctive spatial regimes in the data. With the assumption of the presence of 

the spatial regime, we will estimate separate models for each regime to learn whether 

the models are significantly varying across each regime. Next, with the assumption of 

substantially different models, we estimate the effects on seat belt non-use of structural 

variables with adjustments for spatial dependency. Lastly, we will assess the extent to 

which any observed spatial dependence is best described with reference to the effects 

of unmeasured predictor variables (the spatial error model) or with reference to the 

influence of seat belt non-use in neighboring census tracts (the spatial lag model). 

Evidence consistent with the latter would be suggestive of possible influence processes.  

ESDA 

Visual inspection of Figure 18 indicates that census tracts with higher seat belt use (i.e., 

blue colors) are surrounded by other census tracts with blue colors. This is also the 

case for the census tracts with warmer colors (e.g., lower seat belt use rate). In this 

study, we apply Exploratory Spatial Data Analysis (ESDA) (Anselin 1999). ESDA 

discovers patterns of spatial association, or clusters, and suggest spatial regimes or 

other forms of spatial heterogeneity (Anselin 1990, 1999, Baller et al. 2001). We will use 

the insights gained from ESDA in the spatial structure of the model.  

The first stage in the ESDA is to identify spatial autocorrelation. We use Global Moran’s 

I statistics (Moran 1950) to investigate the presence of spatial autocorrelation. Global 

Moran’s I was also used to test whether the model residuals are spatially correlated. 

Moran’s I values range from -1 to +1. The extreme values are indicators of significant 

spatial autocorrelation where values close to 0 indicate a random pattern between 

residuals. A positive and significant Moran's I indicate clustering in the space of similar 

seat belt non-use. Moran’s I can be written as:  

𝐼 =  
∑ ∑ 𝑤𝑖𝑗(𝑗𝑖 𝑦𝑖 − 𝜇)(𝑦𝑗 − 𝜇)

∑ (𝑦𝑖 − 𝜇)2
𝑖

 
Equation 1 

  

where 𝑤𝑖𝑗 is an element of a row-standardized spatial weights matrix, 𝑦𝑖 is the seat belt 

non-use, and 𝜇 is the average seat belt non-use in the sample. The statistical 

significance of the Moran’s I is based on the Z-score. For more details about the 

calculation of the Moran’s I’s z-score please see Andrew and Ord (1981).  

Next, we will test Local Indicator of Spatial Association (LISA) statistics. The LISA 

statistic checks for local spatial autocorrelation by applying local Moran’s statistics, 

which indicates to what extent the pattern of the seat belt non-use rate in one 

geographic unit is compatible with spatial randomness. Rejection of the null hypothesis 

indicates that local clustering of high-high (high values surrounded by high values), low-
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low (low values surrounded by low values), high-low (high values surrounded by low 

values), and low-high (low values surrounded by high values) exist. The Local Moran’s I 

can be calculated by the following equation: 

𝐼𝑖 = (
𝑧𝑖

∑ 𝑧𝑖𝑖
2 ) ∑ 𝑤𝑖𝑗𝑧𝑗

𝑗

 
Equation 2 

where 𝑧 refers to the seat belt in mean-deviation form. For more details about the 

Moran’s I please see Anselin and Florax (1995). Local Moran’s I is helpful to identify 

regimes that could be targeted by separate models.  

Stability of the coefficients  

The exploratory phase in the analysis is started by an ordinary least squares (OLS) 

regression. We apply a spatial regime regression by using two separate OLS models, 

which allows the coefficients to be different in each regime (High-high vs. others). By 

conducting spatial Chow test on the stability of these coefficients across regimes (Chow 

1960, Anselin 1990, Myers et al. 2017), which produces a statistic similar to the F-

statistic, to detect whether there are differences in selected covariates between census 

tracts between two regimes. The Chow test is useful for two reasons. First, it allows us 

to explicitly test the spatial structural variance of regression coefficients, which can 

reveal different social mechanisms by region or different relative significance of the 

covariates in the model. Second, if regional stability is rejected, the modeling allows for 

varying spatial processes to be considered in each region (Baller et al. 2001).  

Regression models 

Assuming the presence of spatial autocorrelation, spatial lag model (SLM) and spatial 

error model (SEM) are common to address this concern. The methodological distinction 

between the two models is how they consider spatial dependency (Doreian 1980, 

1982). The SLM considers the spatial dependency as a spatial lag, which is a weighted 

average of values for the dependent variable in neighboring locations. In the SEM, 

spatial dependency is incorporated into the regression term. Spatial dependence in the 

SLM model suggests a possible influence process, whereas in the SEM model the 

source of the interdependence in the error term is not known. (Marsden and Friedkin 

1993, Baller et al. 2001).  

Spatial error 

A satisfactory spatial error model implies that it is unnecessary to posit the distinctive 

effects of the lagged dependent variable (Anselin 1990). In the SEM, the constant 

variable is treated as a spatially structured random effect vector. The SEM is similar to 

linear regression models with an additional term for the spatial dependency of errors in 

neighboring units. The general form of the SEM model is as follows:  

𝑦 = 𝑋β + ε Equation 3 

𝜀 = 𝜆𝑊𝜀 + 𝑢 = (𝐼 − 𝜆𝑊)−1𝑢 Equation 4 

𝑦 = 𝜆𝑊𝑦 + 𝑋β + λWXβ + u Equation 5 
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where 𝑦 is a vector of seat belt non-use, 𝑋 is a vector of independent variables 

presented in Table 16, 𝛽 is the corresponding vector of estimated coefficients (𝑋). In this 

model, ε is the error term, which contains of two parts: 𝑊𝜀 and 𝑢. 𝑊𝜀 presents the 

spatially lagged error term corresponding to a weigh matrix 𝑊 and 𝑢 refers to the spatial 

uncorrelated error term that satisfies the normal regression assumption (𝑢 ∼ N(0, 𝜎2𝐼)). 

Last, 𝜆 presents the spatial error term parameters, if the value of the spatial error 

parameters equals zero, the SEM is similar to the standard linear regression model.  

Spatial lag 

The spatial lag model, in contrast, incorporates the spatial influence of unmeasured 

independent variables, but also stipulates an additional effect of neighbors' seat belt 

non-use, via the lagged dependent variable. The Spatial lag model can be presented 

as:  

𝑦 = 𝜌𝑊𝑦 +  𝑋β + ε Equation 6 

  

where 𝑦 is a vector of seat belt non-use, where 𝜌 presents the spatial autoregressive 

parameter, 𝑊𝑦 is a spatially lagged variable corresponding to 𝑊 matrix, 𝑋 is a vector of 

independent variables, 𝛽 is the vector of estimated coefficients. Last, 𝜀 is assumed to be 

a vector of independent and identically distributed (𝐼𝐼𝐷) error terms. The model is 

appealing since it integrates the effect of both independent variables (𝑋) on the 

outcome  𝑦 with the network (interdependence) effect of 𝑊𝑦 (Marsden and Friedkin 

1993) ‒i.e., a strategic interaction. The corresponding "reduced form" of equation 1 is  

𝑦 = (𝐼 − 𝜌𝑊)−1𝑋β + (𝐼 − 𝜌𝑊)−1ε Equation 7 

  

This reduced form illustrates two important points. First, the spatial error model 

(Equation 7) is subsumed by the spatial lag model, although in non-nested form. 

Second, Equation 7 illustrates how the dependent variable at each location is not only 

determined by 𝑋, but also by the 𝑋 at all other locations through the “Leontief 

inverse”  (𝐼 − 𝜌𝑊)−1. This is the model most compatible with common notions of 

influence processes because it implies an influence of neighbors' seat belt non-use that 

is not simply a produce of measured or unmeasured independent variables.  

Weight matrix 

A crucial concept in these methods is that of a spatial weight matrix (W), which 

incorporates the prior structure of dependence between spatial units. It is important to 

keep in mind that all analyses are conditional on the choice of the spatial weights. 

Different types of weighting matrix were considered in this analysis to obtain the most 

suitable model; namely rook, queen order 1 and 2, and distance-based weight matrix 

were used for the analysis. The queen weights matrix define neighbors as census tracts 

that share a boundary or corner, whereas, rook only considers those census tract that 

shares a boundary (Anselin 2003). The selection of optimal weighting matrix could be 

based on the AICc (Hurvich and Tsai 1989); the weight matrix with the lowest AICc is 
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preferred (Fotheringham and Brunsdon, Nakaya et al. 2005, Hadayeghi et al. 2010, 

Nakaya 2014).  

Model comparison and assessment  

A Lagrange Multiplier principle was also used to test the specifications against SEM and 

SLM. These tests are based on the regression residuals obtained from model estimates 

under the null hypothesis regression (i.e., OLS). Each of SLM and SEM models has 

their specific LM statistics, which offers the opportunity to exploit the values of these 

statistics to suggest the likely alternative. The LM statistic against SEM (𝐿𝑀𝑆𝐸𝑀) and 

SLM (𝐿𝑀𝑆𝐿𝑀) models take the following forms: 

𝐿𝑀𝑆𝐸𝑀 =
(

𝑒′𝑊𝑒

𝑠2 )
2

𝑇
 

Equation  18  

𝐿𝑀𝑆𝐿𝑀 =
(

𝑒′𝑊𝑒

𝑠2 )
2

(𝑊𝑋𝑏)′𝑀(𝑊𝑋𝑏)
𝑠2 + 𝑇

 

Equation  19  

where 𝑒 is a vector of OLS residuals, 𝑠2 its estimated standard error, 𝑇 =

𝑡𝑟[(𝑊 + 𝑊′)𝑊], 𝑡𝑟 as the matrix trace operator, and 𝑀 = 𝐼 − 𝑋(𝑋′𝑋)−1𝑋′. Both 𝐿𝑀𝑆𝐸𝑀 

and 𝐿𝑀𝑆𝐿𝑀 are asymptotically distributed as 𝜒2(1) under the null. Several researchers 

illustrate the relative power of these tests by using extensive simulation studies (Anselin 

and Rey 1991, Anselin and Florax 1995, Anselin et al. 1996).  

It is possible that in some cases both 𝐿𝑀𝑆𝐸𝑀 and 𝐿𝑀𝑆𝐿𝑀 statistics turn out to be highly 

significant, which may make it challenging to choose the proper alternative. To deal with 

this issue, (Anselin et al. 1996) developed a robust form of the LM statistics in the sense 

that each test is robust to the presence of local deviations from the null hypothesis in 

the form of the other alternative. In other words, the robust 𝐿𝑀𝐸 is robust to the 

presence of spatial lag, and vice versa. The robust tests perform well in a wide range of 

simulations and form the basis of a practical specification search, as illustrated in 

(Anselin and Florax 1995, Anselin et al. 1996). In this study, we used GeoDa software 

to perform the LM tests (Anselin 2003). Queen contiguity matrix was used to generate a 

spatial weight matrix for this test. Furthermore, we used the White statistics to check the 

presence of heteroscedasticity (White 1980). Variance Inflation Factors (VIF) was also 

used to control for potential multicollinearity in each step (O’brien 2007). 

Results 

After controlling for the census tracts with less than 20 crash observations and census 

tract with no populations; we used 1,251,901 observations for measuring seat belt non-

use at each census tract, which yielded to an average sample size of 20.4% (SD = 8.3) 

over a three-year period. Average seat belt non-use in each census tract is 10.1% (SD 

= 4.1), which indicates that the seat belt use rate for a three-year period in Tennessee is 

close to 89.9%. The seat belt use rate is close to the roadside observations in 
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Tennessee (88%) (NHTSA 2017). Figure 19 presents the seat belt non-use histograms 

at the zonal level.   

Spatial diagnosis 

Global Moran’s I value (I = 0.56) based on the queen contiguity matrix indicates the 

presence of substantial spatial dependency. Moran’s I statistic indicates that there is 

spatial autocorrelation in the OLS model, the positive sign of the Moran’s I shows that 

the neighborhoods with higher seat belt non-use are clustered together and vice versa. 

Figure 20 presents the visual map of local Moran’s I. The clusters with high rates (i.e., 

high-high) are located in Chattanooga and Memphis metropolitans’ areas as well as 

some scattered clusters in the rural areas. Alternatively, the clusters with low rates (i.e., 

low-low) are located in other metropolitan areas in Tennessee, namely the suburban 

areas surrounding the Nashville metropolitan area (except the urban core of Nashville), 

Knoxville, Clarksville, and Kingsport. Based on Figure 20, we conclude that there are 

two regimes in Tennessee; the regime of southern metropolitans and rural areas (i.e., 

Memphis and Chattanooga) –Southern MPOs – and other metropolitan areas –i.e., non-

Southern MPOs. The average seat belt non-use in the Southern metropolitan areas is 

16% (90th percentile range between 12-21%). On the other hand, seat belt non-use in 

the non-Southern metropolitan areas is substantially lower with average seat belt non-

use of 9% (90th percentile range between 5-13%).  

Regression estimation  

Table 17 presents the separate OLS models for seat belt non-use in Tennessee by 

considering a dummy variable for the regional effect to capture the effect of Southern 

MPOs. Significant Positive value of the Moran’s I (0.169, p < 0.001) and White test 

(409.03, p < 0.001), reveal a strong presence of both spatial dependency and 

heteroscedasticity in the model.  

 

 

 

Figure 19 Distribution of seat belt non-use at the zonal level 
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Figure 20 Moran’s scatterplot map 

 

 

Table 17 Ordinary Least Square regression of seat belt non-use and Chow test statistics  

     Chow statistics 

Variable Coef. S. E. t P-value Value P-value 

Household with Vehicle -3.038 0.592 -5.130 0.000 1.427 0.232 
Age Median -0.001 0.008 -0.190 0.849 0.003 0.953 
Child Percentage -0.989 0.723 -1.367 0.172 1.845 0.174 
Population Density (per Square miles) 0.000 0.000 1.822 0.069 0.798 0.372 
% with College Education -4.784 0.549 -8.719 0.000 6.172 0.013 
% with Bachelor Education -2.255 0.638 -3.537 0.000 0.550 0.459 
Income ($10,000) -0.121 0.029 -4.191 0.000 1.617 0.204 
% White  -1.121 0.231 -4.857 0.000 4.621 0.032 
Constant 15.041 0.632 23.805 0.000 13.910 0.000 
Region (1: Southern MPOs; 0 = otherwise) 5.721 0.153 37.449 0.000   

Global Chow     1134.235 0.000 
Sigma-square 9.249      
AIC 20750.47      
Log-likelihood (Full) -10365.2      
R-squared 0.4412      
Moran's I 0.1688*      
White Test (DF. 44) 409.03*      
* P-value < 0.001       
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Interpretation of the model without the spatial effect (Table 17) indicates that the sign of 

proportion of the white population at each census tract indicates that as the proportion 

of this group increases, seat belt non-use at census tract decreases. As expected, 

education variables also have a significant association with seat belt use; the negative 

signs of the estimated coefficients in the models indicate that the proportion of the 

population with a bachelor degree and college degree negatively impacts seat belt non-

use. Income is negatively associated with seat belt non-use. Income, race, and 

education-related variables are consistent with previous research (Preusser et al. 1991, 

Reinfurt et al. 1997, Wells et al. 2002, Houston and Richardson 2005) (Vivoda et al. 

2004, Gkritza and Mannering 2008, Pickrell and Ye 2009).  

Vehicle ownership also has a significant association with seat belt non-use. Average 

vehicle ownership increases reduce seat belt non-use. Population density is correlated 

with lower seat belt use. This negative impact could be attributed to the shorter 

distances in the urban areas and a relatively lower speed of travel in general. As a 

result, vehicle occupants may decide not to use their seat belt in  urban areas. Findings 

regarding the effect of vehicle ownership and population density are in agreement with 

Hezaveh and Cherry (2019). In this study, the median age did not have a significant 

association with seat belt non-use, whereas many studies reported that younger 

populations are more prone to not wearing their seat belt (Reinfurt et al. 1997, Calisir 

and Lehto 2002, Glassbrenner et al. 2004).  

Table 17 also presents the results of an examination of coefficient stability for the 

Southern MPO versus non-Southern MPO regimes. The spatial Chow test clearly 

rejects the null hypothesis of coefficient stability. A closer examination of the individual 

tests on coefficient stability across regimes supports the conclusion that the proportions 

of white population and population with a bachelor’s degree exert significantly different 

effects across regions.  

Table 18 and Table 19 present the results of Moran’s I, White test, and LM test for 

separate regression models for each region. As presented in Table 18, the significant 

values of the Moran’s I indicates that spatial dependency exists in both regimes. 

Interestingly, White test statistics indicate that heteroscedasticity exists in the Southern 

MPOs whereas in the Non-Southern MPOs heterogeneity exists.  

Given the strong evidence of distinct spatial regimes in Tennessee (i.e., Chow Test 

statistics), we estimate separate models for each regime and will scrutinize on the 

presence of spatial dependence. Applying the 𝐿𝑀 test (Table 19) suggests that for the 

Southern MPOs area a spatial lag model is more suitable, whereas in the rest of the 

study area a spatial error model is more suitable. Table 20 presents the estimated 𝑆𝐿𝑀 

and 𝑆𝐸𝑀 model for each region.  

Table 20 indicates that the effects of the Southern MPO areas lags of seat belt non-use 

is positive and statistically significant. This finding implies that seat belt non-use in 

Southern MPOs in Tennessee are influenced by seat belt non-use in nearby census 
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tracts, which is consistent with an influence process. On the other hand, for the non-

south metropolitan areas, the 𝑆𝐸𝑀 model implies that the residual spatial 

autocorrelation can be adequately accounted for in terms of unmeasured predictor 

variables. Therefore, we may conclude that an influence process seems unlikely in non-

Southern MPOs.  

Comparison of the significant association among covariates and seat belt non-use in 

both models indicate that in the non-Southern MPOs only age median and child 

percentage do not have a significant association with seat belt non-use. Whereas for 

the Southern MPOs, only income and percentage of household with the vehicle have a 

significant association with seat belt non-use. Interestingly, the percentage of the white 

population at census tract, density, and education do not have a significant association 

with seat belt non-use in the Southern MPOs regime.  

 

Table 18 Moran’s I and White test statistics for each regime 

Test 
Non-Southern MPOs  Southern MPOs  

Value P-value Value P-value 

Moran’s’ I 0.2756 0.000 0.139 0.000 
White Test 895.69 0.000 21.939 0.997 

     

 

 

Table 19 LM test statistics for each regime 

Test 
Non-Southern MPOs  Southern MPOs  

Value P-value Value P-value 

Lagrange Multiplier (lag) 470.315 0.000 34.246 0.000 
Lagrange Multiplier (error) 599.036 0.000 23.309 0.000 
Robust LM (lag) 0.863 0.353 12.039 0.001 
Robust LM (error) 129.584 0.000 1.102 0.294 
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Table 20 Results of the spatial models  

 SEM (for Non-Southern MPOs) SLM (for Southern MPOs) 

Variable Coef. S. E.  Z P-value Coef. S. E.  Z P-value 

% White  -1.083 0.331 -3.271 0.001 -0.064 0.479 -0.133 0.894 
% with Bachelor Education -1.079 0.656 -1.645 0.100 -2.617 1.646 -1.590 0.112 
% with College Education -4.131 0.579 -7.138 0.000 -1.007 1.586 -0.635 0.526 
Income ($10,000) -0.114 0.030 -3.756 0.000 -0.220 0.098 -2.240 0.025 
Child Percentage -1.045 0.726 -1.440 0.150 1.385 1.880 0.736 0.462 
Population Density  
(per Square miles) 0.000 0.000 3.268 0.001 0.000 0.000 0.147 0.883 
Age Median -0.006 0.008 -0.855 0.393 0.002 0.021 0.075 0.940 
% Household with Vehicle -2.549 0.642 -3.969 0.000 -3.545 1.250 -2.835 0.005 
Constant 14.299 0.690 20.729 0.000 15.304 1.786 8.570 0.000 

Lag Coef. (Lambda) 0.493 0.021 23.173 0.000     
Lag Coeff.   (Rho)      0.303 0.055 5.479 0.000 
AIC 16761.000    3391.440    
Log-likelihood (Full) -8371.492    -1685.720    
R-squared 0.282    0.159    

Sample Size         

 

 

Conclusion 

In this study, we used seat belt use reported by police officers at crash sites to explore 

the spatial dependency of seat belt non-use at the zonal level. We found that seat belt 

non-use rate is not randomly distributed in space. Southern-MPOs census tracts have 

higher-than-average seat belt non-use rates that form statistically significant clusters. In 

addition, ESDA, Chow statistics, and Lagrange multiplier analysis reveal distinctive 

regional imprint for spatial autocorrelation. Results of LM statistics also indicate that in 

the Southern-MPOs, the spatial lag model is more suitable, whereas, in the non-

Southern MPOs, the spatial error model is more suitable. The LM statistic implies that 

residents of Southern-MPOs seat belt non-use are under the influence of the other 

residents in this regions. The positive spatial autocorrelation in Southern-MPO also 

implies that a census tract seat belt non-use is not produced solely by the internal 

structural factors and it is influenced by their neighboring units. The presence of the 

social influence also warrants research for investigating the underlying mechanism of 

social influence in future studies. Identifying the underlying mechanism would be helpful 

in the design of an effective road safety campaign, such as communication methods 

with recipients of the campaign.  

The current practice for selecting the seat belt campaigns rely on blanket coverage for 

areas with lower seat belt use rate. Using the methodology presented in this study 

provides a spatial analysis of seat belt non-use, which could be used to identify clusters 

and outliers of seat belt non-use. Moreover, this data visualization could help 

practitioners to decide on seat belt campaign geographic scopes.  

The present study population consists of vehicles occupants with a home address in 

Tennessee who had a traffic crash in Tennessee during 2014-16. It is likely that the 
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population of this study is skewed towards those who are more prone to unsafe 

behavior (i.e., they were involved in crashes). Nevertheless, the sample used in this 

study consists of 1.25M observations or about 19% of the state population. These 

findings present a sample of Tennessean vehicle occupants, and careful consideration 

is needed to transfer these findings to other settings. Nevertheless, the method and 

results that this study present could be generalizable to other contexts as well.  
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CHAPTER V: TRAVELER-INVOLVED TRAFFIC CRASHES AS 

A NEGATIVE EXTERNALITY OF TOURISM INDUSTRY 
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Abstract 

Although it is well established that travelers have a higher risk of injury in traffic 

crashes compared to non-travelers, less is known about the magnitude of traffic crashes 

involving travelers and the negative externality of travelers’ crashes (NETC) imposed on 

non-travelers. In this note, we rely on the U.S. Travel Association’s definition of a 

traveler to conduct an empirical analysis focusing on the state of Tennessee; we define 

travelers as those who travel more than 50 miles from home or have a home-address 

outside of Tennessee state. We find that 19.2% (127,031 out of 694,276 from 2014-

2016) of traffic crashes in Tennessee involve a traveler. The injury cost of non-traveler 

crashes due to a crash with a traveler (i.e., monetized value of NETC) exceeds $7.6 

billion, or 12.3% of tourist expenditures between 2014-2016. Analyzing the net impact of 

travel (tourist expenditures minus NETC) at county level reveals that the NETC exceeds 

tourist expenditures in 19 of 97 counties (or 20%) in Tennessee. The results of this 

analysis reveal that an overlooked negative externality of tourism is traffic crashes 

involving travelers, which warrants further study and potentially policy remediation.     
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Introduction 

In the United States, the direct contribution of travel and tourism to the Gross Domestic 

Product (GDP) in 2017 was $509.4 billion (2.6% of GDP) (World Travel & Tourims 

Council 2018). In Tennessee, tourism is a major industry along with agriculture and 

manufacturing, and the state is a Top 10 travel destination in the United States. Based 

on U.S. Travel Association (2017) estimates, travelers spent $56.7 billion in Tennessee 

between 2014 and 2016 (adjusted for 2017 inflation). Furthermore, in the last three 

years, more than 100 million people visited Tennessee annually, which resulted in $11.8 

billion in direct payroll impacts and employed 176 thousand people in 2016.  

Travelers increase roadway traffic en-route and at their final destination, which can lead 

to increased traffic crashes at these locations. This study aims to explore the 

association between road safety and travelers. Several studies showed that travelers - 

particularly foreign travelers and out of state drivers - have a higher injury risk compared 

to domestic drivers (Petridou et al. 1997, Leviäkangs 1998, Summala 1998, Petridou et 

al. 1999, Wilks et al. 1999, Claret et al. 2002, Yannis et al. 2007) or in-state drivers 

(Harootunian et al. 2014a, Harootunian et al. 2014b). Studies in the United States 

indicate that the odds of out-of-state drivers being at-fault for a crash are higher than in-

state drivers Harootunian et al. (2014a), and a driver's general unfamiliarity with one's 

surroundings may cause more trouble compared to other factors such as language 

barriers, culture, or infrastructure quality Harootunian et al. (2014b).   

It is apparent that travelers spend money en-route and at their final destination, resulting 

in a direct local economic benefit. However, in case of a crash that involves a traveler 

and a non-traveler (i.e., a local road user), we argue that a negative externality has 

been imposed on the non-traveler. To the best of our knowledge, no study has explored 

the magnitude of this negative externality. Therefore, this study aims to provide 

empirical evidence that sheds light on this important topic. First, we identify traffic 

crashes in which at least one of the drivers was a traveler. Second, we measure the 

monetary value of negative externality of travelers’ crash (NETC) imposed on non-

travelers both at the state level and county level in Tennessee. Last, we measure the 

net impact of travelers’ crashes (NITC) at the county level  to shed light on potential 

geographic inequalities.  

Methodology  

Definition of a traveler and traveler-involved traffic crash 

In order to identify travelers, we classify road users based on their distance between the 

location of traffic crashes and their home addresses. The U.S. Travel Association 

(2017) defines travel as activities associated with all overnight trips away from home in 

paid accommodations and day or overnight trips to places 50 miles or more (one way) 

from traveler’s origin. In line with this definition, we defined a traveler as any person 

whose distance between the location of the traffic crash and his/her home address is 
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beyond 50 miles or whose home address is outside of Tennessee State. Those who do 

not fit this definition are referred to as non-travelers (i.e., local residents) and are road 

users whose distance between their home address and the location of traffic crashes is 

less than 50 miles. It is also worthy to mention that we do not have access to overnight 

stay data, which could underestimate travel, and that we did include out-of-state trips 

with home addresses in close proximity to the Tennessee state border, potentially 

overestimating travel in border counties.  

Next, we define a Traveler-involved Traffic Crash (TTC) as a crash in which at least 

one of the drivers, pedestrians, or bicyclists who were involved in the traffic crashes was 

a traveler. Otherwise, we labeled the crash as a non-Traveler-involved Traffic Crash 

(non-TTC). In this case, all the pedestrian, bicyclists, and drivers are local residents.  

Data and geocoding 

The crash data in this study was provided by Tennessee Integrated Traffic Analysis 

Network (TITAN), the statewide crash data administered by the Tennessee Department 

of Safety and Homeland Security. We retrieved records of 694,276 crashes involving 

1,501,044 individuals between 2014-2016. Each record includes information about road 

user type, coordinates of the crashes, and reported road users’ home addresses. We 

used the Bing application program interface services to geocode the addresses. Only 

those records that had an accuracy level of premises, address level accuracy, or 

intersection level accuracy was used for the analysis (Hezaveh and Cherry 2019).   

Part 1: Identifying traveler-involved traffic crashes and estimating their 

economic costs  

The injury severity in the TITAN database followed the KABCO scale for Tennessee 

provided by FHWA (FHWA 2011). In KABCO scale, K, A, B, C, and O respectively 

stand for a crash with a fatality, Incapacitating, Non-Incapacitating Evident, Possible 

Injury, and No Injury (FHWA 2017). In order to convert the injury severities to crash 

cost, we used the monetary figures presented in Table 21 recommended by FHWA 

(Harmon et al. 2018) for the year 2010 for the person-injury unit. To account for 

inflation, we converted 2010 USD to 2017 USD. By using the numbers presented in 

Table 21, we estimated the monetary value imposed on local residents in a crash 

involving travelers using Equation 1, which we refer to as the negative externality of 

travelers’ crashes (NETC):  

𝑁𝐸𝑇𝐶𝑖 = (𝑁𝑣,𝑖 ∗ 𝐶𝑜𝑠𝑡𝑃𝐷𝑂) +  ∑ 𝑁𝛼,𝑖 ∗ 𝐶𝑜𝑠𝑡𝛼

𝛼={𝐾,𝐴,𝐵,𝐶,𝑂}

 Equation 1 

where 𝑁𝑣,𝑖 and 𝑁𝛼,𝑖 respectively present the number of vehicles registered in county 𝑖 

and individuals with level of injury 𝛼 who were involved in traffic crashes with a traveler-

driver. 𝐶𝑜𝑠𝑡𝑃𝐷𝑂 and 𝐶𝑜𝑠𝑡𝛼 represent the injury unit costs presented in Table 21.   
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Table 21 National KABCO person-injury unit costs 

Injury Type Crash Cost Per Injury  

Economic  
person-
Injury Unit 
Costs* 

QALY Person 
-Injury Unit 
Costs* 

Comprehensive  
Crash Cost (2010 
Dollars) * 

Comprehensive Crash 
 Cost (2017 Dollars) ** 

No Injury* $5,717  $2,563  $8,280  $9,308  
Possible Injury $21,749  $49,926  $71,675  $80,570  
Non-Incapacitating Injury $32,105  $97,974  $130,079  $146,222  
Incapacitating Injury $84,507  $363,324  $447,832  $503,408  
Fatal Injury $1,398,916  $7,747,082  $9,145,998  $10,281,016  
Unknown $0 $0 $0 $0  
Vehicle unit cost $6,076  $0  $6,076  $6,830  

* The cost reflects the cases where injury severity was falsely assigned. Source: Harmon et al. (2018) 
** Adjusted person-injury unit cost. Source: Authors 

  

 

 

Part 2: Estimating the net impact of traveler-involved traffic crashes  

The Travel Economic Impact Model (TEIM) was developed by the U.S. Travel 

Association to provide annual estimates of the impact of the travel activity of U.S. 

residents on national, state and county economies in the United States. TEIM is a 

disaggregated model that has the capability to estimate the various types of travel such 

as business and vacation trips, by various transportation modes, and type of 

accommodations used. For more details about the TEIM model, please see U.S. Travel 

Association (2017). The TEIM model measures the travelers’ expenditures (TE) at the 

county level. TE includes spending by travelers on goods and services during their trips. 

For this analysis, we assume that TE represents the economic benefit of travelers to a 

region. We then used equation 2 to calculate the difference between this benefit and the 

negative externality of traffic crashes involving travelers, which we refer to as the net 

impact of travelers’ crashes (NITC), as follows: 

𝑁𝐼𝑇𝐶𝑖 = 𝑇𝐸𝑖 −  𝑁𝐸𝑇𝐶𝑖 (Equation 2) 
 

where 𝑁𝐸𝑇𝐶𝑖 represents the negative externality of travelers’ crashes (NETC) for county 

𝑖 and 𝑇𝐸𝑖 represents the tourist expenditure (TE) reported by the U.S. Travel 

Association (2017) for county 𝑖. A negative value would indicate that travelers’ crash 

negative externalities exceeds the tourist expenditures in that county.  

Results 

Part 1: Traveler crash frequency and economic costs  

Between 2014 and 2016 in Tennessee, we were able to extract the home addresses of 

1,501,044 (92.9%) of traffic crash victims. Table 22 presents the road user type involved 

in traffic crashes and their corresponding traveler status. 1,196,353 drivers were 

involved in traffic crashes. Out of those, we were able to retrieve the state of 112,0251 
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drivers, pedestrians, and bicyclists as well as the exact home address of 992,306 

individuals that met the minimum address quality. Further, we were able to identify the 

home address of the drivers, pedestrians, and bicyclists in 660,919 traffic crashes 

(95.2%) of reported crashes in TITAN. We also flagged 146,285 (13.1%) of the drivers, 

pedestrians, and bicyclists as travelers. The percentage of travelers was greater than 

what Harootunian et al. (2014b) reported in the Florida, Maine, Minnesota, and Nevada. 

From this, we also labeled 127,031 (19.2%) of traffic crashes that occurred in 

Tennessee between 2014 and 2016 as TTC.  

We also estimated the number of travel-involved traffic crashes at the county level. On 

average, 15.7% of the crashes at the county level involved a traveler. Tourism hubs 

Shelby (24,248), Davidson (18,970), Hamilton (16,311), and Knox (7,151) counties had 

the highest frequency of TTC crashes; these counties are the main hubs of travelers in 

Tennessee and respectively include Memphis, Nashville, Chattanooga, and Knoxville. 

However, Marion (46%; 1,064), Sevier (38%; 5,063), and Polk (36%; 873) counties had 

the highest percentage of TTC crashes. Figure 21 presents the spatial distribution of the 

TTC percentage (top) and TTC frequency (bottom).  

 

 

Table 22 Road user type and traveler frequency 

Road User Type 
Frequency Percentage 

Local Resident Traveler Total Local Resident Traveler 

Driver  973,966   146,285  1,120,251  86.9% 13.1% 
Passenger  321,600   51,826   373,426  86.1% 13.9% 
Pedestrian  4,627   421   5,048  91.7% 8.3% 
Bicyclist  1,229   82   1,311  93.8% 6.3% 
Other or Unknown  748   260   1,008  74.2% 25.8% 

Total 1,302,170 198,874 1,501,044 86.8% 13.2% 
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Figure 21 TTC percentage (top) and frequency (bottom) at the county level 
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Part 2: Net impact of traveler-involved traffic crashes  

The comprehensive cost of traffic crashes in Tennessee between 2014 and 2016 was 

$79.9 billion. We estimate that traveler-involved traffic crashes imposed approximately 

$7 billion of externalities on local residents. The monetized value of the NETC is 

equivalent to 12.3% of all traveler expenditures (adjusted for inflation).  

The negative externalities of travelers’ crashes at the county level was equal to 16% 

(Median = 14%; 90% interval 7%~28%) of traveler expenditures in Tennessee. Figure 

22 presents the spatial distribution of the NITC. Visual examination of Figure 22 shows 

the disparities between counties. Overall, the sum of travelers’ expenditure in tourist 

hubs Davidson, Shelby, Sevier, Knox, Hamilton counties were $49 billion, and the 

NETC was $3.4 billion (49% of all NETC).  The average TTC percentage in these 

counties was 24% (ranges 16 to 38%). Although the average TTC crash frequency and 

relative TTC crash frequency in these counties are higher than the state average, due to 

the substantial travel expenditures (61% of statewide expenditures), these counties 

generally benefit from travelers visits.  Overall, 19 counties have lower traveler benefits 

than crash costs; the sum of travelers’ expenditure in these counties was $586 million, 

and NETC equals $908 million. The average TTC crash percentage in these counties 

was 14% (ranges 6 to 27%). These counties are located adjacent tourist hubs or in 

some cases are clustered in rural areas.  

 

 

 

Figure 22 Spatial distribution of the NITC 
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Discussion  

Equitable transportation policy aims to generate fair distribution of economic resources 

and costs to individuals. In transportation finance, this often manifests as distributing 

transportation revenue from one group (donors) to another (donees) often to reflect 

higher marginal cost burdens or externalities in the transportation system. One of the 

negative externalities of the tourism industry is the traffic crashes due to travelers. 

Travelers negatively impact local residents, yet bring economic opportunity that tends to 

outweigh their negative safety local impact. However, the spillover effects tend to 

burden other counties that do not reap local benefits.  

This study contributes to the road safety and tourism industry literature by quantifying 

the negative externality of travelers’ crashes at the county level and identifying the 

“winning” (done) and “losing” (donor) counties in the state of Tennessee. In total, 19 

counties were identified as having negative externalities from traffic crashes that 

outweigh the economic benefits received from these travelers. Based on this finding, we 

hope to stimulate discussion and future research on approaches to redistribute and/or 

remedy the negative crash costs imposed by travelers in these “losing” counties. For 

example, these pass-through counties could benefit from improved infrastructure or 

education programs, paid for by traveler-targeted tax revenue streams (e.g., occupancy 

tax, car rental fees) that aim to reduce the burden of crashes on rural counties. 

Moreover, we hope that researchers in other regions will utilize the proposed method to 

examine the geographic distribution of traveler-involved traffic crashes and assess if 

other localities experience similar externalities from tourism and travel. 
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CONCLUSION 

The Home-Based Approach (HBA) offers a new perspective and enables us to develop 

new data-driven policy recommendation that focuses on the role of road users involved 

in traffic crashes. HBA offers many advantages and new research ideas. In this 

dissertation, I provided several examples of the application of HBA in the road safety 

analysis in five chapters. Key contributions of each chapter of this dissertation are listed 

as follow: 

Chapter I and Chapter II:  

- Developing a methodology for identifying the areas that burden of road safety is more 

tangible. 

- Developing a methodology for integrating HBA and travel demand model to analyze 

factor influencing the burden of traffic crashes based on the residential address of road 

users.  

- Developing a methodology for measuring the economic cost of traffic crashes at a very 

fine geographic level. 

Chapter III, Chapter IV:  

- Developing a methodology for measuring seat belt use rate at a very fine geographic 

level.  

- Exploring the spatial dependencies in seat belt use rates at the zonal level. 

- Developing a methodology for exploring the spatial patterns in seat belt use and 

identifying spatial regimes in Tennessee.  

Chapter V: 

- Developing a methodology for identifying traveler involved in traffic crashes 

- Developing a methodology for measuring the travelers’ negative externality of the traffic 

crashes imposed on non-traveler. 

Key takeaways 

In Chapter I and Chapter II, HBA incorporated sociodemographic and travel behavior of 

the road users. Incorporating of the travel behavior of the road users based on their 

home addresses indicates sociodemographic factors, population density, trip rate, and 

trip length has key roles in analyzing the burden of traffic crashes (i.e., HBA crash rate, 

the economic cost of traffic crash per capita). Moreover, considering the spatial effect in 

the model indicate that road safety in one neighborhood is not solely produced by 

internal factors, yet it is affected by road safety level in neighboring TAZs. Analyzing the 

spatial distribution of the burden of traffic crashes also indicates that road users who live 

in certain geographic areas (e.g., close to high-speed roads) are more prone to the 

burden of traffic crashes.  

Findings based on chapter III, IV indicates that police reports of seat belt use of the 

vehicle occupants are consistent with roadside observations and phone interviews in 



 

112 

Tennessee. Accordingly, by applying the HBA method and assigning the seat belt use 

of the vehicle occupants to their residential neighborhood, we measured seat belt use 

rates at a fine geographical area. Moreover, the analysis indicates that seat belt use is 

not produced solely by the internal structural factors and their neighboring units 

influence it. Furthermore, HBA provides valuable information regarding seat belt use 

distribution at fine geographic level with hundreds of thousands of observations that 

have the potential to replace the traditional sources of seat belt use data and help 

practitioners in the design of an effective road safety campaign.  

Findings of Chapter V point out that approximately 14% of drivers involved in traffic 

crashes in Tennessee are travelers and almost in one on five crashes in Tennessee a 

traveler is involved. These crashes imposed a $7.7 billion cost to local residents in 

Tennessee. Moreover, analyzing the net impact of travel (tourist expenditures minus 

negative externality of travelers’ crashes –NETC) at county level reveals that the NETC 

exceeds tourist expenditures in 19 of 97 counties (or 20%) in Tennessee. The results of 

this analysis reveal that an overlooked negative externality of tourism is traffic crashes 

involving travelers, which warrants further study and potentially policy remediation.   

Future directions 

HBA offers a new perspective to road safety analysis and has the potential to be applied 

to several aspects of road safety. Regarding the case studies presented in this 

dissertation, HBA has the potential to integrate to travel demand models and provide an 

evaluation of transportation planning alternatives and their effect on the distribution of 

the burden of traffic crashes. Moreover, the travel demand model that I used in this 

study is not sensitive to mode choice. One possible direction for future studies is to 

develop models that are sensitive to modal split particularly transit ridership and 

evaluate the effect of building massive transit structure and reduction in road users 

exposure to traffic.  

Another direction for future studies could be to measure the aberrant behavior of the 

road users at the zonal level by applying the HBA method. HBA method could be used 

to identify areas that their residents are more prone to a particular type of violations 

such as driving under the influence, speeding, and distracted driving. Similar to chapter 

III and Chapter IV, application of the HBA would enable researchers and practitioners 

for designing educational campaigns that targets groups and geographic areas that their 

residents are more prone to specific aberrant behaviors.   

Moreover, HBA could be used to identify the crash characteristics of the traveler in 

Tennessee. One direction for future research could be identified as travelers’ crash 

hotspots and exploring their crash characteristics. Traveler crashes could have their 

own characteristics and that distinguish them from non-travelers. This distinction could 

be attributed to the non-familiarity of drivers with the transportation infrastructure. 

Knowledge of contributing factors such as built environment and engineering design 
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would help researchers and safety practitioners to provide a safe structure that adapts 

to the complexities of travelers’ behavior such as their unfamiliarity. 
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