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ABSTRACT 

 
 
Ferritic/martensitic 9-12Cr steel alloys, have had widespread use as 

structural materials in power plants. Among this family of alloys, Grade 91 (Gr91) 

steel was a landmark in the development of 9-12Cr alloys. However, the unique 

microstructure complexity of the alloy has raised doubt regarding the techniques 

of data extrapolation in estimating its service-life for operation in next-generation 

power plants at higher temperatures and presssures. Conservatism becomes 

essential when the alloy is to be used in components lasting the life-cycle of power 

plants without replacement. 

 

This dissertation develops a physically-based microstructural model for 

creep rupture at 600 degrees Celsius for Gr91 steel as well as fundamental modeling 

tools that apply more broadly to microstructural modeling in metals. Key features 

of the Gr91 modeling framework capture the mechanical behavior of its prior 

austenite grains (PAG) and grain boundaries. Ultimately, a constitutive expression 

was adopted that captured the response from experiments conducted in the creep 

strain rate regime. 

 

An initial model intended to simulate low-cycle fatigue was first developed 

using the idea of geometrically necessary dislocations (GNDs) in crystal plasticity 

(CP) framework. That necessitated evaluating strain gradients and a patch-

recovery method was implemented to recover a linear elastic deformation gradient 

field across the domain in linear elements. A Lie-group to Lie-algebra mapping was 

used to preserve orthogonality when projecting the rotation tensor from the 

elements’ Gauss points to the nodes.  
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A statistically-stored dislocation density model was investigated to span the 

regimes of moderate strain rates (tension tests) to low strain rates (creep tests). 

Calibration of this model was possible against tension tests, but its application to 

creept tests suggested that other dislocation mechanisms were present during the 

primary creep regime of Gr91. Therefore, the CP model in the PAGs was changed 

to represent dislocation climb-glide motion and recovery along with linear viscous 

diffusional creep for point defect diffusion. This revised model more closely 

captured the measurements of creep response. 

 

Lastly, a robust Discontinuous Galerkin method is proposed to model the 

grain boundary interface elements to address traction oscillations observed for 

cohesive models. Stability and convergence are assessed along with non-

conforming meshes.   
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INTRODUCTION AND GENERAL INFORMATION 

 
 

1.1 Motivation 

 

The class of high-temperature structural materials broadly termed 9-12Cr 

ferritic/martensitic steels has been under development and investigation, and in service 

for multiple decades, and on the basis of this broad array of results and experience, there 

remains considerable interest in further elevated service temperature applications for these 

and related materials in advanced power plant designs [1]. Important among the many 

performance criteria for such applications are the mechanical requirements of providing 

sufficient margins of structural reliability with respect to limits on accumulated creep 

deformation and creep rupture life, including interactions with thermal-transient-induced 

low cycle fatigue, over the course of projected service lives which extend to 500,000 hours, 

for some advanced high temperature reactor concepts. 

Engineering decisions concerning material composition and processing, and both design 

and service conditions must necessarily be made on the basis of incomplete knowledge and 

understanding of long-term mechanical response. The long-term creep deformation and 

creep fracture are of particular importance, and experience to date with these alloys has 

demonstrated and documented a number of trends which motivate further study. 

The 9-12Cr ferritic/martensitic steels have a complex microstructure comprising prior 

austenite grains, of representative diameter 30 µm, which transform to lath martensite 

during normalizing. The martensite formed within a prior austenite grain is hierarchically 
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organized into progressively smaller units including packets, blocks, and laths having 

respective representative scales of order 10 µm, 1 µm, and 0.2 µm. A subsequent tempering 

leaves “initial” (or “as-received”) microstructure consisting of packet and block boundaries 

within prior austenite grains, and populations of M23C6 and MX precipitates, where the 

M denotes one of the metal alloying species present, often Nb or V, and X denotes C or 

N. The Cr-rich M23C6 carbides, of representative initial diameter 120 nm, have typical 

volume fraction of order 2%, and are preferentially located along high-angle internal 

interfaces including prior austenite grain boundaries (PABG) as well as packet and block 

boundaries. The interface-bound M23C6 carbides are much larger than the finer MX 

particles, of order 30 nm, which tend to be more homogeneously distributed throughout 

the matrix at a total volume fraction of order 0.2%. A high initial dislocation density, of 

order 1014/m2, is partitioned among lath boundaries and lower-angle, partially-recovered 

(polygonized, but elongated) subgrain boundaries, of initial width scale of order 0.2 µm, 

along with dislocation density dispersed within the lath and subgrain structures. Higher 

tempering temperatures lead to lower dislocation density than is obtained from lower 

tempering temperatures. These are the major metallurgical features that evolve, as a 

complex and coupled dynamical system, in response to histories of exposure to elevated 

temperature and stress; macroscopically, the collective response of the system both defines 

the resulting deformation and sets the stage for ultimate fracture/failure. 

The key metallurgical details outlined above are quite different from corresponding 

features in other classes of high-temperature materials, including austenitic alloys, and 

several aspects of the resulting macroscopic creep responses differ as well. For example, 

over a 550-650°C target range of service temperatures, the 9-12 Cr ferritic/martensitic 

steels exhibit pronounced primary creep, with a creep-rate only modestly sensitive to 

stress that diminishes logarithmically over decades of time before reaching a stress-and-

temperature-dependent minimum creep rate. Lower values of applied stress level lead to 
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lower minimum creep rates, which are reached after increasing primary creep times. Once 

the minimum creep rate is established, progressively-accelerating tertiary creep leads to 

fracture within an additional time interval that often scales with the time to minimum 

creep rate. There is no prolonged period of “steady state,” or secondary, creep. Under 

dead-load tensile creep, the final creep fracture tends to exhibit high levels of creep 

ductility, manifested in large values, of order several tens of percent, for the fractional 

reduction of area at failure, %RA, especially for tests involving “higher” stress levels and 

“shorter” resulting creep lives (say, 20,000 hours or less). 

However, experience has also shown that at “lower” applied stress levels leading to 

“longer” creep lives, these alloys have exhibited dramatic reductions in %RA to values as 

small as only a few per cent, a cause of concern for many applications. In addition, 

intermittent low-cycle fatigue loadings have led to strong creep-fatigue coupling, with 

major accompanying reductions in performance windows. The microstructural 

mechanisms responsible for such ductility transitions are complex, but extensive 

metallurgical investigation has identified major features of a suite of inter-related processes 

of deformation and microstructural evolution which take place in these alloys, and many 

aspects have been quantified through mechanism-based modeling at the scale of 

dislocations and precipitates. 

Briefly, the M23C6 particles on PAGBs and packet boundaries coarsen during extended 

elevated temperature exposure, and intermetallic Laves phase nucleation and rapid growth 

likewise occurs, often in close proximity to interface M23C6 particles. (The fine MX 

particles distributed more homogeneously through the matrix are much more resistant to 

coarsening in this temperature regime, although in Grade 91 steel (Gr91) at long exposure 

times at 600°C and 70 MPa, a loss in MX number density and size with increasing 

boundary precipitation of modified Z-phase, {Cr(V,Nb)N} has been correlated [2].) The 
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interface-situated arrays of coarsened particles (both Laves and M23C6) have been shown 

to provide nucleation sites for creep cavities that subsequently grow by coupled 

mechanisms of interface sliding, diffusion, and deformation. Such mechanisms of creep 

cavity nucleation, growth, and coalescence have previously been extensively studied and 

modeled [3-7]. 

A related class of microstructural coarsening mechanisms takes place in the recovery 

of dislocation density and the growth of subgrain domains through processes of dislocation 

climb and glide. While such mechanisms operate at temperature in the absence of stress, 

the kinetics of dislocation recovery is significantly accelerated under stress by deformation-

producing dislocation fluxes [8, 9]. Climb and glide permit mobile dislocation motion 

toward sites both within and at the boundaries of subgrain structures, where dipole-

coalescence-based dislocation recovery mechanisms take place. The kinetics of the 

boundary mobility is accelerated by the reduction in Zener pinning effectiveness that 

accompanies the coarsening of interface M23C6 particles (and, perhaps, to a lesser extent, 

to exchange of distributed MX for Z-phase precipitates). The scale of low-angle subgrain 

structures also coarsens as the dislocations comprising their boundaries are mobilized by 

climb and glide, often doubling (or more) from initial as-tempered dimensions. The extent 

of microstructural recovery grows with the scale of inelastic strain that is accommodated 

by dislocation climb and glide. As a result of these and related dislocation and 

microstructural recovery and particle coarsening processes, macroscopic measures of 

deformation resistance decrease over time.  

Indeed, the gradual monotonic decrease in deformation resistance, as parameterized 

mainly through dislocation interactions with glide barriers including precipitates, solid 

solution species, and microstructural interfaces, is in large part responsible for the 

observed acceleration of strain rate during tertiary creep. The nucleation and growth of 
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Laves precipitates, intermetallics of composition Fe2(Mo,W), removes solid solution Mo 

from the lath and subgrain structures, contributing to a decrease in the relatively small 

contribution of solid solution lattice strengthening. Although the precipitated Laves 

particles resulting from this process can (and do) serve a countering role in strengthening, 

the relevance of such processes is, at best, limited to shorter-life applications that 

necessarily limit the extent of Laves particle growth. At longer exposure times, coarsening 

of the Laves phases to large diameters and spacings obviates any potential strengthening 

contributions from this phase, leaving only its deleterious role in cavity nucleation.  

A mechanistically similar loss of strength is associated with the coarsening of the M23C6 

particles on PAGB, packet, and block boundaries: in addition to the potential for cavity 

nucleation at the coarsened particles, there is a reduced resistance to interface sliding, 

compared to that of the initial distribution of M23C6. The coarsening of pinning particles 

also facilitates subgrain mobility toward larger scales that offer lowered 

interface/boundary resistance to dislocation flux. 

The relative stability of macroscopic flow under such conditions of deformation-

induced “softening” is tied to the strong rate-sensitivity of the thermally-activated climb 

mechanism. Other manifestations of rate-dependent deformation softening in these 

materials include pronounced softening regimes during high-temperature constant strain 

rate tensile testing, and the softening associated with cyclic plastic deformation. The 

evolution of progressive softening is also evident in ambient temperature hardness 

measurements made on interrupted creep tests. 

Because the time-and-deformation-induced reduction in deformation resistance is 

gradual, the deformation driving the softening mechanisms leads to relatively large values 

for creep ductility and the creep life-fraction spent in the tertiary regime. Both of these 

features are characteristic of the creep behavior of 9-12Cr ferritic/martensitic steels at 
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“higher” stress and temperature levels and “lower” creep lives. If the final failure under 

such conditions can be considered as being effectively determined by the deformation 

kinetics of the continuously-accelerating softening processes, it is possible to view the 

“other” damage mechanisms of creep cavity nucleation and growth as assuming a minor, 

or at least, operationally less significant role in characterizing the final creep failure.   

The scenario outlined above summarizes many aspects of the creep resistance of 9-12 

Cr ferritic/martensitic steels, and, to the extent that it is broadly applicable for relevant 

service conditions, one might minimize the need for more detailed assessments of the 

processes of creep cavity nucleation and growth in these alloys. However, as noted above, 

under the lower stress levels typical of service lives well in excess of 100,000 hours, the 

creep ductility often drops dramatically.  Under such circumstances, the stability of 

deformation-induced softening that worked to provide large creep ductility at shorter lives 

is evidently no longer as effective: the continuation of creep deformation to large ductility 

at low stress does not take place. 

The reduction in creep ductility raises questions on what microstructural developments 

might account for such behavior. Recalling the prominent roles of grain boundary creep 

cavitation in limiting creep life and in leading to typically small values of creep ductility 

in a broad range of other metals and alloys, as well as evidence documenting the evolution 

of creep cavity nucleation and growth in the 9-12 Cr ferritic/martensitic steels themselves 

[10, 11] we are motivated to focus attention on the operation of creep cavitation processes, 

bearing in mind particular and somewhat unique details of their microstructure and 

deformation mechanisms, and the joint evolution of these fields under histories of elevated 

temperature and stress. 

Although there is much less data and consensus on operative mechanisms leading to 

low ductility at low stress and long creep life in 9-12 Cr ferritic/martensitic steels, there 
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are strong reasons to focus on grain boundary cavitation in these materials. Collectively, 

the proposed scenario suggests that key features of our modeling capabilities, namely, 3D 

grain boundary sliding and diffusionally-accommodated interface cavitation, along with 

crystal plasticity (CP) treatments of dislocation flow and microstructural evolution, 

perhaps augmented by a diffusional creep mechanism like Nabarro-Herring, offer promise 

of predictive utility.  

Major features potentially associated with low creep ductility:  

• At applied low stress, the dislocation climb and glide creep in the grains is strongly 

diminished compared with higher stress value. Even though the time available for 

microstructural recovery of dislocation structures increases, because the stress is so 

low, the inelastic dislocation climb-and-glide strain (which accelerates the softening 

through dislocation and microstructural recovery; see above) is strongly reduced. 

This tends to “slow down” the deformation-induced softening (per unit 

deformation). But the extra time at temperature does lead to enhanced coarsening 

of M23C6 and the nucleation and growth of Laves particles on boundaries, both of 

which can serve as potent sites for creep cavity nucleation and growth.  

• At the lowest applied stress levels, the grain strain-rates arising from dislocation 

climb and glide might become so small that the dominant creep mechanism 

switches to one based on a diffusional creep mechanism. Earlier work on Gr91 [12] 

has shown a transition in the (raw) stress-dependence of minimum creep rate from 

a creep exponent, n , of the form 

  ( )
min

C nε σ
   (1.1) 

with ~n 10 + or so, (as is typical of creep-strengthened alloys resisting deformation 

by dislocation climb and glide), to linear viscous behavior, with n 1= , at the very 
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low stress levels that might be typical of those used in very long life power plant 

and reactor plant applications. The “standard” climb and glide creep stress 

exponent of n 5=  that is often observed in pure metals is typically not seen in 

particle-strengthened materials, with ~n 10  (or greater, depending on 

temperature) as typical. However, it is possible to reinterpret the Norton creep 

driving stress as an “effective” measure, the difference between macroscopically 

applied stress and a “back stress” due to dislocation interactions with particles and 

the dislocation resistances embedded in high angle boundaries that themselves 

resist coarsening through particle pinning: 

  ( ) ( )
( )

~ 5Cε σ σ− backmin
  (1.2) 

In this view the softening is due to on-going time- temperature-, and deformation-

dependent reductions in σ back . 

• There is some uncertainty as to whether or not the n 1=  mechanism is Nabarro-

Herring (bulk diffusion), or perhaps Harper-Dorn, or Coble in nature. The CP 

constitutive formulations discussed here, focus on mechanisms of dislocation climb 

and glide, and microstructural recovery and particle coarsening, enriched by 

incorporating bulk diffusion in the Ashby map sense of superposing an additional 

creep strain rate based on diffusion in the grains. At stress and microstructural 

state levels where power-law climb and glide dominates, the added linear viscous 

strain rate is negligible, and, conversely, if stress and microstructural state results 

in dislocation-based strain rates that are sufficiently low, the climb/glide 

contribution to strain-rate will be swamped by the linear viscous contribution. 

• Returning to the low stress/long creep life microstructural evolution: because of 

the kinematically-required grain boundary sliding on high-angle boundaries like 
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PABG and packet boundaries, there will always remain stress concentration 

at/near triple points and sliding interface boundaries. The elevated stress in the 

vicinity of such concentrations might well be large enough to (locally) activate the 

dislocation climb/glide deformation that leads to dislocation recovery and 

softening, even though the stress in more remote portions of the grains is still small 

enough that only diffusional creep and thermally-driven ageing are taking place. 

Such a scenario could lead to a situation in which the strong crystallographic 

softening associated with dislocation flux around particles and through coarsening 

subgrain boundaries would be preferentially confined (spatially) to the vicinity of 

the sliding boundaries. Indeed, instances of strongly localized subgrain coarsening 

recovery along PAGB interface segments have been associated with low values of 

long-life creep ductility [13, 14]. 

• If the non-negligible climb/glide deformation and softening is highly-localized along 

interface boundaries, it would nonetheless lead to only a modest increase in the 

macroscopic creep deformation (beyond the background deformation contributed 

by all other operative mechanisms), but locally the softening effect would be large, 

and confined to the immediate vicinity of sliding boundaries that are in the process 

of growing creep cavities.  

Based on the scenario outlined above, among others, we believe that the combination 

of high-performance continuum mechanics simulation tools incorporating mechanism-

based constitutive models of deformation and microstructural evolution that is being 

developed and applied in this dissertation have great potential in elucidating and 

understanding important features of the high-temperature mechanical behavior of 9-12 Cr 

ferritic/martensitic steels in power plant and reactor plant applications. 
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1.2 Crystal Plasticity 

    
A physically-based microstructure model for creep simulation necessitates using a robust 

crystal-plasticity finite element (CPFE) framework to capture much of the anisotropic 

behavior due to mesoscale slip activity in the alloy’s crystal in a continuum fashion. This 

involves modeling the evolution of grains inside the material. The CPFE framework from 

[15] is adopted throughout this work. Fundamentally, this finite-strains CPFE model 

involves a flow rule relating the slip rate along slip systems to the special velocity gradient. 

The special velocity gradient is then used in a hypo-elastic formulation to compute the 

green-naghdi objective stress rate and the algorithmic tangent as described in the following 

section. 

 

1.2.1 Kinematics and the stress rate description  

Let 3
0Ω ⊂   be an open bounded reference configuration and with boundary 0Γ  and let 

3Ω⊂    be its corresponding current (deformed) configuration with boundary Γ . The 

( , )tΧφ  is one-to-one mapping between two particles 0∈ΩX  and Ω∈x : 

 ( )tx = X,φ  (1.3) 

The deformation gradient F  associated with mapping φ  is then defined as the partial 

derivative of this mapping with respect to the reference coordinates: 

 ( ) ( )tt
∂ ∂

= = +
∂ ∂

X, xF X, = I u
X X

φ
GRAD  (1.4) 

where I  is the unit (identity) tensor and u  is the displacement field describing the motion. 

The deformation gradient F can be multiplicatively split into a rotation and a stretch 

tensor: 
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 = =F RU VR  (1.5) 

where R  is the rotational tensor, U  is the right stretch tensor and V  is the left stretch 

tensor. The deformation gradient F  can then also be decomposed multiplicatively into 

plastic and elastic parts:  

 e p e e p p= =F F F V R R U  (1.6) 

Now applying the assumption of small elastic strains ( )e ≈ +V I ε , (1.6)  becomes: 

 ( ) e p p≈ + ε RIF R U  (1.7) 

Then the velocity gradient 1−=L FF  can be written as:  

 ( ) ( )1 p p p p p p 1 T p 1 T− − −= ≈ + + + + ⋅ −L FF RU RU εRU εRU εRU U R U R ε    

  (1.8) 

Removing the quadratic terms from the above equation, it can then be simplified as:  

 p p p= + − + + − +L ε εω ωε ω εl l ε l  (1.9) 

where Tω = RR  is the rate of change of the rotation tensor and p p p 1−=l F F  is the plastic 

part of the velocity gradient. Following [16], pl  in a crystal plasticity framework can be 

defined as:  

 
slipn

p α α α

α

γ ⊗=∑l m s   (1.10) 

where αγ  is the slip rate along individual crystallographic slip systems, αm  and αs  are 

the slip system’s directions and normal and slipn  is the number of slip systems of the 

material’s lattice configuration. The symmetric and skew-symmetric parts of the plastic 

velocity gradient can then be defined as:  

 )
slipn

p α α α

α

γ ⊗=∑D m s  symm (  (1.11) 

 )
slipn

p α α α

α

γ ⊗=∑W m s  skew (  (1.12) 

The spatial rate of deformation tensor is the symmetric part of the velocity gradient, the 

symmetric part of Eq. (1.9) becomes: 
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 ( )T p p p1
2

+ = + − + − +D = L L ε εω ωε εW W ε D  (1.13) 

The Cauchy stress rate equation can then be obtained by multiplying the above equation 

by the elasticity tensor 0C  such that 0=σ C ε  : 

 ( ): : p p p
0 0= = − − + − +C Cσ ε D D σω ωσ σW W σ  (1.14) 

Adopting the Green-Naghdi objective stress rate [17] = + −σ σ σω ωσ


 , Eq. (1.14) becomes 

: 

 ( ): p p p
0= − − +Cσ D D σW W σ



 (1.15) 

Using the definition of the corotational Cauchy stress, the stress and its corresponding 

stress rate becomes T=t R σR  and T=t R σ R


 , respectively. Eq.(1.15) then becomes:  

 ( ): p p p
0= − − +Ct d d tW W t  (1.16) 

where T=d R DR  and p T p=d R D R . Similar to [18], we approximate the plastic rotation 

evolution using the plastic vorticity tensor as follows: 

 p p p= ⋅R w R  (1.17) 

where p e p eT= ⋅ ⋅w R W R . Effectually, the plastic rotation is defined at the micro-

constitutive level, which is valid up to modest plastic strains and when the plastic strains 

weakly affect the elastic response [19]. The time discretization of the above equation then 

becomes:  

 ( ): p p p
n 1 0 n 1 n 1 n 1 n 1 n 1 n 1 t+ + + + + + +

 ∆ = ∆ −∆ − ∆ + ∆ ⋅∆ Ct d d t W W t  (1.18) 

 

1.3 Summary 

This dissertation develops a physically-based microstructural model of creep deformation 

in Ferretic-Martensitic steels, suitable for temperatures in the ° °−550 600  range and 
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loading stresses less than 200 MPa. The purpose of this modeling is to have a conservative 

estimate of the life-expectancy of such alloys in stress and temperature conditions typical 

in nuclear reactors. The model is incorporated into a finite element modeling framework 

whose constitutive equations describe observed phenomena in that family of alloys. 

Various techniques of the microstructural modeling are investigated, generally divided 

into two parallel parts. The first part simulates the Prior Austenite Grains (PAG) and 

the other one simulates the Prior Austenite Grain Boundaries (PAGB). The PAGs are 

represented by solid finite elements in a Crystal Plasticity (CP) framework that utilizes a 

hypoelastic finite-displacement formulation. Meanwhile, the PAGB are represented by 

interface elements that are intended to simulate various mechanisms comprised of grain 

boundary sliding and cavity nucleation and growth along the PAGB.  Those various 

developed techniques are then tested against published experimental creep data for the 

9Cr-1Mo-V alloy [20], with the goal of matching secondary and tertiary creep, as well as 

the minimum creep rate achieved for various stress rates.  

 

This work is organized as follows: 

To model low-cyclic fatigue in the alloy, a strain-gradient method was proposed. Chapter 

2 develops a method to project a smooth global strain-related field across the model’s 

nodes. This was done to avoid the use of higher-order elements or solving for fields other 

than the displacement (mixed methods). The strain-related field in question is the elastic 

rotation tensor eR  and the global smoothing method uses a patch-recovery technique 

similar to [21]. Since the aforementioned method involves extrapolating eR  from gauss 

points onto element nodes, a Lie-group to Lie-algebra mapping was implemented to 

preserve the orthogonality of the rotation tensor [22]. Additionally, an implicit update 

scheme was developed for the internal variables used in the crystal plasticity formulations. 

Numerical tests were perfomed to test stability, robustness and accuracy of the method. 
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A surrogate Mechanical Threshold Stress (MTS) hardening model was used for the tests 

as it was already verified for aluminum alloys (FCC) simulations [15], hence reducing any 

uncertainty arising from the type of hardening model used.  

Chapter 3 describes the initially proposed anisotropic dislocation-based modeling of the 

PAGs. The model, based on the works of [23, 24], relates the state of dislocation 

substructure to the evolution creep resistense in PAGs in the Ferritic-Martensitic alloys. 

The parameters used in the model were calibrated against the experimental data of [25]. 

Since the calibration involves more than 20 parameters, the curve fiiting was done using 

a Genetic-Algorithm technique developed by [26]. To further cut the run time of all 

simulations needed, an isostrain approximation was employed into a single element with 

100 crystals (each crystal has a different orientation but is subjected to the same amount 

of incremental strain). After the best-fit parameters were obtained, they were plugged into 

a 100-grain cell model (10402 and 3922 solid and interface elements, respectively). This 

cell model was then simulated to failure (around 20,000 hrs) and compared to 

experimental data [20].     

Due to the inaccuracies exhibited by the dislocation-based model in capturing the creep 

response, a new model was introduced in Chapter 4. The solid element part of the model 

includes deformation mechanisms from dislocation and diffusional motion within the prior 

austenite grains (PAG) while the interface part includes viscous sliding and cavity growth 

and nucleation along grain boundaries, the latter considered to be the material’s primary 

deformations modes. The cavity growth model builds upon the smeared cavity population 

model of [11, 27, 28] by including the effect of creep strain and stress triaxiality from 

material points in the grains next to the grain boundary. Several simulations were 

conducted to understand the features of each deformation mode. First, a study on a 

polycrystalline microstructure with compliant elastic grain boundaries revealed a 

sensitivity of the finite element method to stress concentrations at triple points. This 
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study influenced the calibration process of the material parameters for each component 

mechanism, targeted at 600 °C response against Grade 91 creep data from [29]. A post-

process decomposition approach provided an analysis of the complete cell model response. 

Each mechanism plays a role at different stages of the creep response, including the effect 

of grain diffusional creep on the minimum strain rate. 

Chapter 5 continues the work of Chapter 4 by examining the effect of stress level, stress 

triaxiality, and temperature on the engineering and microscale response of Grade 91 under 

elevated temperature service. Stress levels ranging from 140 MPa to 60 MPa were 

simulated. The chapter elucidates this mechanism shift with a simple micromechanical 

model that reproduces and explains the results of the full CPFEM simulations described 

here. 

Due to the oscillations of the traction field present on the interface elements simulating 

the PAGBs, Chapter 6 develops a Discontinuous Galerkin (DG) method with evolving 

stability parameters based on the shape and material of the elements facing each other. 

This was done by utilizing the Variational Multiscale concepts and weakly enforcing the 

displacement and traction continuity along such interfaces. A number of numerical tests 

were performed to investigate the stability and robustness of the method. 

Finally, Chapter 7 abridges the conclusions of this dissertation and presents subjects of 

future research. These subjects include extending the Lie Group/Algebra method of 

Chapter 2 to GND model of Bailey and Geers, comparing uniform and preferential texture 

effects in RVE of Grade 91 crystal plasticity creep model, extending the stabilized DG 

crystal plasticity method in Chapter 6 to include grain boundary sliding effects, and 

applying machine learning method (e.g. Neural networks) to improve the fit of model 

parameters to experimental data and quantify sensitivities.  
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VARIATIONAL PROJECTION METHODS FOR GRADIENT 

CRYSTAL PLASTICITY USING LIE ALGEBRAS1 

 

2.1 Introduction 

The development of constitutive models incorporating strain gradient effects have become 

particularly important for the design of metallic components with dimensions on the order 

of microns. Polycrystalline materials have been observed to exhibit a size-dependent effect 

[30, 31] whereby experiments conducted on specimens with smaller grain sizes have 

exhibited higher flow stress [32]. These effects are also manifested through Stage IV 

hardening, exhibiting linear hardening rather than saturation at large strains [33]. Recent 

contributions from continuum dislocation mechanics theories have provided further 

rational basis to these mechanisms. For example, Scardia et al. [34] describes a rigorous 

upscaling theory for quantifying strengthening effects from dislocation pile ups. Also, 

Wulfinghoff and Böhlke [35] modeled dislocation pile-ups using a continuum dislocation 

formulation that includes curvature field variables and dislocation transport. 

For models focused on the component scale (mesoscale), size effects have often been 

incorporated into continuum formulations through strain gradient terms [22, 36, 37] based 

on elastic incompatibilities generated from geometrically necessary dislocations (GND) 

[38]. Other size-dependent formulations have been devised through micro-forces 

conjugated to strain gradients [39, 40], micromorphic continua [41], and micropolar single 

crystal plasticity [42]. However, in these theories, the additional constitutive terms take 

                                            
1 This Chapter has been adapted from “Truster, T.J., Nassif, O., 2017. Variational projection methods for 
gradient crystal plasticity using Lie algebras. International Journal for Numerical Methods in Engineering, 
110, pp.303-332". 
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the form of partial differential equations rather than ordinary differential equations. 

Hence, the additional field usually must be treated as an internal degree of freedom (DOF) 

rather than an internal variable. The most rigorous numerical formulations treat either 

the dislocation density [43] or the plastic strain field [44, 45] as nodal DOF and solve the 

resulting mixed field problem. Alternative variational approaches can be formulated as 

dual problems for determining the nodal forces conjugate to the gradient terms [46]. 

However, both classes of methods are computationally expensive when solved in a 

monolithic fashion due to the expanded matrix equations. Also, these gradient terms may 

not be the primary source of hardening within the material system. Thus, we will consider 

simplified numerical approaches for evaluating the strain gradient that involve projections 

of an internal variable onto an internal degree of freedom field. 

A simple numerical approximation of the strain gradients is to perform projections onto 

discontinuous fields that are defined over each finite element. In an early approach, Dia 

[47] proposed a model for GND within face-centered cubic (FCC) materials to capture the 

grain size effect. Extensions of this method to three dimensions include Meissonnier et al. 

[36] for modeling effects of precipitates in a two phase nickel superalloy and Messner [15] 

for modeling aluminum-lithium alloys. While the elemental methods are simple to 

implement, the projected strain gradient is closely tied to the finite element length scale, 

and issues with mesh dependency have been observed by Cheong et al. [48]. Also, linear 

triangular and tetrahedral elements are not compatible with this technique.  

As an alternative to the elemental projection, the internal variables can be projected onto 

a globally smooth field defined from the nodal shape functions of the domain mesh. An 

early example of these nodal methods is the super element technique proposed by Abu 

Al-Rub and Voyiadjis [49], accomplished by a local least squares fit over patches of 

elements. While this method applied only to structured meshes, a similar technique 

allowing unstructured meshes was developed by Han et al. [22] using the patch recovery 
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technique from Zienkiewicz and Zhu [21], a classical technique employed for stress post-

processing, error estimation, and mesh adaptivity. The patch recovery approach 

determines each projected nodal value by solving a local problems posed over the elements 

surrounding that node. Later developments were conducted by Gan and Akin [50, 51] to 

evaluate second derivatives within phenomenological plasticity models for modeling shear 

bands. Due to increased zone of support, the nodal projection is not tied as closely to the 

mesh size as is the case for the elemental projection, lessening the possibility for mesh 

sensitivity issues. 

One subtle point overlooked by several of these methods is the preservation of tensorial 

properties during the projection operation and subsequent interpolation. For example, Dia 

[47] suggests an ad hoc scaling to ensure that the determinant of the plastic deformation 

tensor remains equal to unity. Also, approximations to the Nye tensor involving elastic 

rotations may fail to account for the orthogonality of the tensors [15]. Recently, a 

framework was proposed by Mota et al. [52] for projections that preserve tensorial 

properties by invoking the exponential and logarithmic mapping of tensors. Their method 

represents an enhancement to classical 2L  projection techniques for transferring state 

variables at integration points between adaptively refined meshes; see e.g. the work of 

Ortiz and Quigley [53] for strain localization modeling. However, these approaches have 

primarily been considered only for transferring state variables without subsequently 

differentiating the field. Also, because the formulation is posed over the entire domain, 

the method’s computational expense is directly tied to the treatment of the resulting 

matrix equation. 

In the present work, we develop and compare several projection methods for computing 

the gradient terms within a geometrically necessary dislocation based crystal plasticity 

model. We select the mechanical threshold stress based model [33, 54, 55] for FCC 

materials as a prototypical constitutive model, which includes temperature and strain rate 
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dependence in the plastic slip equations. Since small elastic strains are assumed within a 

hypoelastic kinematic formulation, the Nye tensor is expressed in terms of gradients of 

the elastic rotation tensor. Two projection methods are compared: an elemental method 

[15] and a recently proposed nodal method [56]. The nodal method incorporates the Lie 

group – Lie algebra relations from [52] to ensure that the projected elastic rotation tensor 

remains orthogonal. A lumped approximation of the global projection matrix is utilized 

such that the method is computationally more economical than a mixed formulation. We 

also investigate the impact of explicit and implicit time integration for the plastic rotation 

tensor upon numerical stability and computational cost. The implicit scheme is 

accomplished using a staggered approach within each iteration of the Newton-Raphson 

method for the equilibrium equation. Previous studies have typically pursued only a single 

spatial and temporal discretization scheme in isolation. Therefore, a distinct contribution 

of the present work is the systematic comparison of these approaches within a unified 

framework. The various methods are assessed through a series of numerical problems 

involving several element types both in two and three dimensions. Problems involving 

multi-axial loading and several grains within the domain are considered. The performance 

of the methods are quantified in terms of accuracy, stability, and computational cost 

through such measures as the number of Newton iterations. 

A discussion of the elemental and nodal projection methods along with the Lie group and 

Lie algebra relations is contained in Section 2.3. Section 2.4 presents the explicit and 

implicit time integration algorithms for the plastic rotation tensor. Numerical studies for 

these methods are conducted in Section 2.5. Finally, conclusions are drawn in Section 2.6. 
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2.2 Gradient-based Crystal Plasticity Finite Element Method 

2.2.1 Constitutive model and effects of geometrically necessary dislocations  

As a means to relate the plastic slip rates sγ( )  to the current applied stress σ  and other 

factors, we adopt the mechanical threshold stress (MTS) based model proposed by Koks 

et al. [54], which accurately captures stage II and stage III hardening in FCC metals [57, 

58] . Additionally, the model is extended to stage IV hardening by including effects from 

geometrically necessary dislocations (GND), which renders the model as nonlocal and 

necessitates particular algorithmic treatment [33, 55]. The pertinent equations are 

summarized herein to provide context for the projection method. 

A power law expression is taken to relate the slip rate sγ( )  to the resolved shear stress sτ ( )  

on slip system s( ) through the macroscopic strain rate ε  and threshold stress τ  as follows: 

 
n 1s

s sε τγ τ
τ τ

−

=




 

( )
( ) ( )  (2.1) 

 s s p pT sτ  = ⋅ ⋅ b R tR n



( ) ( ) ( )  (2.2) 

 :2
3ε = d d  (2.3) 

Note that the reference shear rate ε  is evaluated through the unrotated deformation rate 

tensor d  applied to the material point in the crystal, which isolates the treatment of rate 

effects into the threshold stress τ  [54]. 

Three terms contribute to the threshold stress τ : an athermal term aτ  and strain-rate 

and temperature sensitive intrinsic stress yτ  and work hardening stress wτ : 

 a y w
0 0

µ µτ τ τ τ
µ µ

   
= + +   

   
  (2.4) 

where µ  and 0µ  are the shear moduli at current temperature and reference temperature 
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(0 Kelvin), respectively. The hardening stress wτ  is approximated by a Voce-type 

hardening law: 

 
( )

( )
slipn s

sw w
0

s 1 v w

1
t

κ

λτ τ τθ γ
τ τ=

 ∂
= + + ∂  
∑   (2.5) 

where 0θ  is an initial hardening rate, κ  controls the shape of the hardening curve between 

the initial flow point ( w 0τ = ) and the saturation stress vτ , and s
λτ
( )  is a modification for 

geometric hardening described momentarily. Both the intrinsic stress yτ  and the 

saturation stress vτ  are related to their reference state values ˆyτ  and v̂τ  at a zero 

temperature and reference strain rate through an Arrhenius relation: 

 ( )
*

*
,*

* *
,*

ˆ, ln

1
1 p
q

0B
3

0

k TT 1
b g

ε
τ ε τ

µ ε

 
   = −    
    

 







 (2.6) 

where the subscript * takes the value y  and v  and T  denotes the absolute temperature. 

The other parameters are defined as follows: normalized activation energy ,*0g , reference 

strain rate ,*0ε , shape-fitting constants *p  and *q , magnitude of Burgers vector b , and 

Boltzmann constant Bk . 

The hardening stress s
λτ
( )  is the distinguishing feature of the model, which represents the 

additional resistance to dislocation slip on system s( ) due to GND. This term is related 

to the linear GND density s bλ( )  impeding slip on a particular system according to the 

expression given by [33, 55]:  

 ( ) ( )
2 2

s s
0

0

bk
2λ

η µτ λ
θ

=  (2.7) 

where 1
3η =  and 0k  is a material parameter controlling the hardening from geometrical 

contributions. The linear dislocation density s bλ( )  for each system is determined from 

the current deformation state through the Nye tensor α  as follows:  
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 ( ) ( )( ) ( )( ):s s sλ = αn αn  (2.8) 

 
e 1

mje 1
ijk k m

i

F
X

−
− ∂

= −∇× = ⊗
∂

α F e e  (2.9) 

where ijk  is the permutation symbol and s pT s=n RR n( ) ( ) . Nye [38] was the first to relate 

the elastic incompatibility α  at a continuum point to the presence of geometrically 

arranged dislocations in a small neighborhood. 

For small elastic strains (1.7), the inverse of the elastic deformation gradient simplifies to:  

 ( ) ( )1 1e 1 e e p 1 p 1 p T eT− −− − −= ≈ = = =F V R IRR R R R R R  (2.10) 

Nonetheless, including the effects of GND on the work hardening stress wτ  (2.5) induces 

a nonlocal character to the constitutive model. The higher order derivatives of strain (2.9) 

– (2.10) require special treatment which is addressed by the numerical methods discussed 

in Section 0.  

 

2.2.2 Finite element approximation: spatial and temporal discretization  

These constitutive equations are now employed to pose a boundary value problem over 

domain sdnΩ⊂   during a time interval of interest [ ],0 T= . The time-dependent field 

( ), sdnt = ∈X x φ  characterizes the deformation of body Ω  and yields the deformation 

gradient = ∂ ∂F Xφ  appearing in the elastoplastic decomposition (1.7). The equilibrium 

equation defined on the current configuration ( ), tΩφ  is stated as follows: 

 ( ), t+ = Ω0σ b φdiv   in  (2.11) 

 ( ) ( ), ,ut t= ΓXφ φ φon  (2.12) 

 ( ), tσ⋅ = Γσ n t φ      on  (2.13) 
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where ( )div  is the divergence operator with respect to x , b  is the external body force 

vector, φ  is the prescribed deformation on the Dirichlet boundary uΓ , t  is the prescribed 

traction on the Neumann boundary σΓ , and n  is the outward unit normal vector in the 

current configuration on the domain boundary u σΓ = Γ Γ . 

Using standard arguments from continuum mechanics, the strong form (2.11) - (2.13) can 

be converted to an equivalent weak form, which is nonlinear due to the kinematics and 

constitutive model discussed previously. This time-dependent weak form will be solved 

approximately by employing standard Lagrange finite elements in space and backward 

Euler integration in time. Hence, we adopt the representation ( ) ( )h
n 1t += +  N X dXφ  for 

the deformation field, where N  denotes the matrix of global shape functions defined over 

a set of finite elements eΩ ⊆Ω , X  is the vector of nodal coordinates, and d  is the nodal 

displacement vector. Also, the time interval   is divided into a series of time steps 

[ ], ,...,1 N0 t t  with (possibly variable) time increment n 1 nt t t+∆ = − . Sparing the details (see 

e.g. [59]), the resulting nonlinear system of equations for the deformation field 

( ),h h
n 1 n 1t+ += Xφ φ  at a given time step n 1t + ∈   is stated as: 

 ( ) ( ) ( )
int , ,T T T

n 1 n 1 n 1 n 1 n 1v a v
σφ φ φ+ + + + +Ω Γ Ω

= = + =∫ ∫ ∫F F F N b N t F B σext ext intd d d  (2.14) 

where B  is the matrix of global shape function derivatives in the current configuration, 

and the external loads b  and t  as well as the Cauchy stress σ  have been converted to 

column vectors.  

In the usual finite element setting, each of the integrals in the nonlinear system (2.14) 

would be approximated using numerical integration. As such, the internal variables that 

characterize the material state would be tracked at each Gauss quadrature point within 

an element eΩ  for evaluating the Cauchy stress n 1+σ  via the time-discrete form of (1.15). 

However, the dependence of the stress on the Nye tensor α  according to (2.7) - (2.9) 
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induces a nonlocal character and necessitates defining the gradient of the internal variable 

field eR . Also, either explicit or implicit approximations could be considered for 

connecting the temporal evolution of these gradient-based terms to the Cauchy stress. 

Therefore, in the following sections, we will review and propose several numerical 

treatments for these gradient-based terms within (2.14) both in space and in time. 

 

2.3 Spatial Approaches for Evaluating the Nye Tensor  

As mentioned in the previous section, the curl operator appearing in the definition of the 

Nye tensor (2.9) - (2.10) requires the spatial variation of the elastic rotation tensor eR  

across the domain. Therefore, a field approximation is needed for this tensor quantity 

rather than an internal variable representation. The most mathematically rigorous 

approach is to employ mixed methods whereby eR  is interpolated as an independent field 

along with the displacement field. A related method for interpolating the dislocation 

density of each slip system was proposed by Bayley et al. [43]. However, such mixed 

methods are very computationally expensive when solved in a monolithic fashion. Also, 

the GND term involving the Nye tensor within (2.7) is not expected to be the predominant 

component of the plastic response but rather to contribute primarily to later hardening 

stages. Therefore, less rigorous numerical approximations are justified, in particular those 

employing projections of the elastic rotation from discrete integration point values onto a 

nonlocal field. We consider two classes of methods herein: projections onto elemental fields 

and projections onto nodal fields. 

To simply the notation, we will use the variable Z  in place of eTR  to denote the transpose 

of the elastic rotation tensor, which is the field required for evaluating the Nye tensor 

(2.9). Subscripts will denote the spatial components of the tensor, e.g. 32Z . Superscripts 

will denote the restriction of the quantity to an integration point by using a lower case 
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letter (e.g. a
ijZ ), to an element using the letter e , and to a node using an upper case letter 

(e.g. A
ijZ ). 

 

2.3.1 Elemental projection of elastic rotation 

A simple numerical approximation of the derivative in (2.9) is to perform calculations 

within individual elements. Namely, the integration point values a
ijZ  are projected onto 

discontinuous fields that are defined over each finite element. This class of approaches 

are historically the first methods applied to gradient plasticity. Examples of elemental 

projection methods using extrapolation with finite element shape functions include [36, 

47, 48, 60]. 

For the studies herein, we adopt the elemental projection method employed by Messner 

[15] as a reference for comparing with the nodal methods in the following sections. This 

method involves a least squares fit of the Gauss point values a
ijZ  to a linear field within 

each element, applied separately for each component, as summarized in Box 1. Let aZ  

denote the value of a particular component ( ),i j  at Gauss point a , and let aξ  and aη  

denote the isoparametric coordinates of the Gauss point. The elemental projected field 

( ),Z ξ η  is represented in terms of three constants to be determined: 

 ( ), cZ Z Z Zξ ηξ η ξ η= + +  (2.15) 

These constants are determined through a least-squares fit, such that ( ),a a aZ Zξ η ≈  for 

each Gauss point. Then, the partial derivatives of the elemental projected field are 

constant over the element: Z Z ξξ∂ ∂ =  and Z Zηη∂ ∂ = . These partial derivatives are 

mapped from the isoparametric space to the physical space using the element Jacobian 

matrix at each integration point, ( ),a a aξ η∂ ∂J = X ξ . Repeating this process for each 
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component yields the elemental projected field Z  and its gradient ∂ ∂Z X  evaluated at 

each Gauss point. An example of the projected field for a four-node bilinear element is 

shown in Figure 2-1. 

 

Box 1. Algorithm for elemental projection 

For each tensor component ijZ : 

1. Solve for coefficients: [ ] [ ] [ ]TT Tc
ij ij ij ijZ Z Zξ η   =   1 ξ η 1 ξ η 1 ξ η Z   

2. Compute constant gradients: , , ,ij X ij X ij XZ Z Zξ ηξ η= +  and , , ,ij Y ij Y ij YZ Z Zξ ηξ η= +   

 

 
The primary advantage of the elemental projection is its simplicity. Algorithmically, the 

calculations remain local to each finite element, which means that the method is usually 

easy to implement within element-based finite element codes. This simple approximation 

to the contribution of GND has captured the grain size dependent features exhibited in 

experiments [15, 36, 47, 48]. 

However, the linear field Z  possesses only a nonzero first derivative and therefore cannot 

be applied to higher-order gradient theories, such as the dislocation-based back-stress 

formulation of [43] for fatigue modeling. The method also does not apply to linear 

triangular and tetrahedral elements since the stress field and therefore quadrature values 

a
ijZ  are constant. Note that linear triangular elements typically exhibit volumetric locking 

when modeling incompressible plastic flow. Such locking may be alleviated by utilizing 

mixed methods or patch-based enhanced strain methods; see [61, 62] and references 

therein. 

Additionally, studies for a polycrystalline specimen under tension by Cheong et al. [48] 

have indicated mesh sensitivity with respect to the grain size. Those authors suggest that  
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Figure 2-1. Elemental projection of elastic rotation Z  

 

the sensitivity arises because the element diameter provides the length scale within this 

projection method. However, the results from Dia [47] for 2D examples do not indicate a 

sensitivity between mesh size and grain size. Other studies have shown [63] that 

substantial numbers of finite elements per grain may be required to resolve heterogeneous 

deformation and reorientation, irrespective of the contributions from GND. To analyze 

these sensitivity issues, we conduct a convergence rate study for the elemental projection 

method in Section 5.1. 

 

2.3.2 Nodal projection of elastic rotation 

As an alternative to the elemental projection, the integration point values a
ijZ  can be 

projected onto a globally smooth field defined from the nodal shape functions of the 

domain mesh. Then to evaluate the Nye tensor (2.9), the Lagrange shape functions are 

differentiated to obtain directly the field’s derivative within each element. Examples of 

nodal projections include the patch recovery methods [22, 49, 64] [50, 51] and the global 

2L  methods of Ortiz and Quigley [53] and Mota et al. [52].  
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Our proposed nodal projection method [56] builds upon the work by Mota et al. [52], but 

the distinguishing feature is that a lumped approximation of the projection matrix is 

utilized in order to minimize the cost of the calculations. Let the globally smooth field for 

the rotation tensor Z  be interpolated using the same Lagrange shape functions as used 

for the deformation field hφ : 

 ( ) ( )
umnpn

A A
ij ij

A 1
Z N Z

=

= ∑X X   (2.16) 

where umnpn  is the number of nodes in the mesh and AN  are the shape functions appearing 

in the matrix N  within the discrete form (2.14). Then the 2L  projection of the integration 

point values aZ  onto the field Z  is expressed through the following integral equation 

(posed in the reference configuration) [52, 53]: find h∈Z  such that for all h∈ζ : 

 ( ): V 0
Ω

− =∫ ζ Z Z d  (2.17) 

with the discrete functional space h ⊂   defined in terms of the Sobolev space ( )1H Ω  

of functions with square-integrable derivatives: 

 ( ) n nh 1H
×

 ⊂ = Ω   sd sd  (2.18) 

A representation of the tensor quantities Z  and Z  is shown in Figure 2-2 on a small 

mesh. Fortunately, the integral (2.17) can be evaluated directly using the same quadrature 

points as for the internal force vector in (2.14), which are exactly the locations where aZ  

is defined. Substituting the quadrature formulas yields the following expression:  

 : :
unmp unmp unmpn n n

B AB A B B

B 1 A 1 B 1
M

= = =

=∑ ∑ ∑ζ Z ζ F  (2.19) 

 ( ) ( )
inteln n

BA B ea A ea ea ea

e 1 a 1
M N N j w

= =

=∑∑ X X  (2.20) 

 ( )
inteln n

B B ea ea ea ea

e 1 a 1
N j w

= =

=∑∑F X Z  (2.21) 
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(a) 

 
(b) 

Figure 2-2. Nodal projection of elastic rotation: (a) initial values aZ  at Gauss points; 
(b) projected field AZ  at nodes 

 
where the test function h∈ζ  has been represented using the same shape functions as in 

(2.16). The matrices in (2.20) and (2.21) are evaluated using the typical assembly 

operation over elements and integration points, where ( )( )detea eaj = J X  denotes the 

determinant of the Jacobian matrix and eaw  denotes the quadrature weight at the 

integration point. In particular, the matrix BAM  has the same form as the consistent mass 

matrix in elastodynamics problems, and it is usually non-diagonal because of the product 

B AN N  between different shape functions. Thus, the solution of (2.19) involves the 

factorization of BAM , which greatly increases the cost of the method compared to the 

elemental projection in Section 2.3.1. Therefore, we adopt a lumped approximation of the 

mass matrix BAM  to simplify the calculation of the nodal projection. The HRZ lumping 

method [65] is chosen such that the lumped mass matrix contains all positive terms even 

for higher order finite elements. This method involves computing the element mass matrix, 

dropping the off-diagonal terms, and scaling the diagonal terms such that mass of the 

element is maintained. The lumped approximation of (2.20) is then given by: 
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 ( ) ( )
intn

BA B ea A ea ea ea
e

a 1
m N N j w

=

=∑ X X  (2.22) 

 
unmp unmpn n

BA
e e

B 1 A 1
M m

= =

= ∑ ∑ , 
unmpn

AA
e e

A 1
M m

=

= ∑  (2.23) 

 ( )
BA
e AA

e e e

0 A B
m

m M M A B

≠=  =




, 
eln

BA BA
e

e 1
M m

=

=∑

  (2.24) 

Due to the diagonal form of BAM , the solution of (2.19) takes a simplified form: 

 ,...,A A AA
umnpM A 1 n= =Z F  for each  (2.25) 

These nodal coefficient tensors AZ  are substituted into (2.16) to provide the definition of 

the nodal projection field, which can be differentiated to yield the components for 

evaluating the Nye tensor (2.9): 

 ( ) ( )
umnpn A

A

A 1

N
=

∂ ∂
= ⊗

∂ ∂∑Z X X Z
X X



  (2.26) 

Since the definition of the mass matrix is time-independent, the values from (2.22) –(2.24) 

may be precomputed at the start of an analysis and recalled from memory for use in 

evaluating the nodal projection at each time step. Thus, the evaluation of the Nye tensor 

from the nodal projection involves a classical gather-scatter operation: a loop over all 

elements to gather the nodal values AZ  using (2.25), and a second loop over all elements 

to evaluate the derivatives at the integration point locations eaX  using (2.26). The impact 

on solution accuracy by using a consistent or lumped form of the projection matrix is 

assessed numerically in Section 2.5.3. 

Remark: When the crystallographic orientation is different between two elements (such 

as along a grain boundary), the elastic rotation field is not necessarily expected to be 

continuous in the physical specimen. The elemental projection naturally accommodates 

such discontinuities. However, the nodal projection or patch recovery techniques will result 

in a continuous field unless special care is taken. In the present studies, we allow 
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independent nodal values for the rotation field along grain boundaries by assembling the 

mass matrix contributions to separate degrees of freedom for elements along grain 

boundaries. 

 

2.3.3 Preserving rotation tensor orthogonality using Lie group-algebra 

relations 

Although the projection methods in the preceding sections are conceptually straight-

forward, an important issue has been ignored regarding a property of the elastic rotation 

tensor eR . Recall that rotation tensors are members of the space of orthonormal tensors 

( )SO 3 : 

 ( ) { }, detTSO 3 1= = =A AA I A  (2.27) 

As observed by Mota et al. [52], this space of tensors is not closed under addition, meaning 

that the sum of two orthonormal tensors is not necessarily orthonormal. Rather, ( )SO 3  

is closed under multiplication and therefore can be characterized as a Lie group. 

The implication is that the interpolation formulas (2.15) and (2.16) will produce tensor 

fields that are not orthonormal everywhere. For example, the values AZ  produced by the 

linear combination as well as their interpolation back to the integration points (2.16) may 

not be orthonormal tensors. This loss of orthogonality does not invalidate the numerical 

method because we do not employ the projected field Z  or Z  within the constitutive 

equations such as the rotation update formula (1.17); rather, the integration point values 

aZ  are retained for all computations requiring the rotation. Nonetheless, this issue may 

upset the accuracy of the Nye tensor α  computed from the projected field and 

subsequently bias the evolution of the geometric hardening contribution from the GND 

term (2.7). 
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A resolution to this interpolation issue is proposed by Mota et al. [52], who recognized 

that each Lie group has an associated Lie algebra which is closed under the operation of 

addition. In the case of orthonormal tensors, the associated Lie algebra is the space of 

skew tensors ( )so 3 : 

 ( ) { }Tso 3 = =A A A  (2.28) 

Observe that the sum of any two skew tensors ( ), so 3∈A B  results in a skew tensor 

( )so 3= + ∈C A B . Therefore, the interpolation operations (2.15) and (2.16) apply 

naturally to skew tensors. With these motivations, we adopt a modified procedure for 

evaluating the Nye tensor field α . 

First, the values for the elastic rotation tensor aZ  are mapped from the Lie group ( )SO 3  

into the Lie algebra ( )so 3  by applying the tensor logarithm:  

 ( )lna a=z Z  (2.29) 

The resulting skew tensors az  at each integration point are then carried through the 

remainder of the nodal projection method described in Section 3.2, arriving at a nodal 

field ( )z X  according to (2.16) and (2.25). Finally, the value of the smoothed elastic 

rotation tensor field ( )Z X  at any point is obtained by applying the tensor exponential 

to the skew tensor field ( )z X : 

 ( ) ( )( )exp=Z X z X

  (2.30) 

since the exponential operator is the inverse map from the Lie algebra ( )so 3  to the Lie 

group ( )SO 3 . 

However, the gradient of the elastic rotation is required for evaluating the Nye tensor α  

according to (2.9). Therefore, we proceed one step further than the procedure in [52] and 

directly differentiate the mapped-projected field expressed in (2.30):  
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 ( ) ( )( ) expexp :∂ ∂ ∇ = ∇ =  ∂ ∂
z zZ X z X

z X
 







 (2.31) 

The value of the tensor exponential derivative exp∂ ∂z z   can be evaluated by several 

numerical schemes, see e.g. [52, 66]. Applying (2.31) at each integration point aX  in 

element eΩ  provides the approximation for the Nye tensor α  and the linear dislocation 

density sλ( ) , completing the constitutive description. The complete procedure combined 

with the steps in Section 3.2 are summarized in Box 2. 

Compared to the elemental projection, the advantage of the nodal approach lies in the 

rigor of the numerical approximation. Namely, the entire rotation tensor eR  is 

interpolated as a single entity with the orthonormal property preserved. The component-

wise calculations of the elemental projection method can never be expected to preserve 

such properties of the entire tensor. Also, the zone of support for the nodal projection 

spans many elements, so the numerical approximation of the GND term (2.7) is not tied 

as closely to the mesh size as is the case for the elemental projection method, lessening 

the possibility for mesh sensitivity issues. Also, the nodal projection method 

accommodates higher-order interpolation functions, which can be useful for evaluating 

higher-order derivatives as needed for extended constitutive models such as [43]. 

Remark: According to Mota et al. [52], this algorithm is capable of representing spatially 

uniform fields exactly and also yields stable interpolations without spurious oscillations. 

 

2.4 Temporal Representation of Rate-Dependent Terms  

With the spatial discretization of the strain gradient GND terms from Section 0 in hand, 

we now turn to the temporal discretization of the constitutive rate equations. Both explicit 

and implicit time integration may be considered for the various material and kinematic 

quantities in the MTS model, and this choice affects the accuracy, robustness, and  
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Box 2. Algorithm for nodal projection 

1. Logarithmic map using (2.29): ( )lna a=z Z  for each int,...,a 1 n=   

2. Assembly using (2.21) – (2.24): ( )
eln

AA AA
e e e

e 1
M m M M

=

=∑   and 

( )
inteln n

A A ea ea ea ea

e 1 a 1
N j w

= =

=∑∑f X z  

3. Compute nodal values using (2.25): A A AAM=z f 

  for each ,..., umnpA 1 n=  

4. Evaluate derivative using (2.26): ( ), ,

umnpn
a A A a
ij k ij k

A 1
z z N

=

= ∑ X   for each int,...,a 1 n=   

5. Differentiate exponential map: [ ]expa
ijkl ijkl

H = ∂ ∂z z   at ( ) ( )
umnpn

a A A a
ij ij

A 1
z z N

=

= ∑X X   

6. Compute rotation gradient using (2.31): , ,
a a a
ij k ijmn mn kZ H z=

  for each int,...,a 1 n=   
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stability properties of the resulting numerical model. Examples of formulations using 

explicit integration for both the stress and internal variable fields are the works of Lee et 

al. [67] and Bittencourt [68], which are suitable for dynamic applications with higher strain 

rates. Herein, we follow [15, 18, 69, 70] and adopt a mid-point rule for evaluating the 

unrotated deformation rate d  and a backward Euler scheme for evaluating the unrotated 

Cauchy stress t  and threshold stress τ . This implicit treatment yields improved stability 

and accuracy across larger time step sizes t∆  compared to explicit methods. However, the 

plastic rotation pR  and Nye tensors α  may be treated in an explicit or implicit fashion. 

Thus, the time-discrete counterparts of the objective stress rate (1.16), hardening relation 

(2.5), and plastic rotation evolution (1.17) can be expressed in a generic sense as follows: 

 ( )/, , , , ,i p
n 1 n n n n 1 2 n 1 n 1 n nf β βτ+ + + + + += + ∆ ∆ = ∆t t t t d t R α  (2.32) 

 ( )/, , , , ,p
n 1 n n n n 1 2 n 1 n 1 n ng β βτ τ τ τ τ+ + + + + += + ∆ ∆ = ∆d t R α      (2.33) 

 ( ) ( )/exp , , , , ,p p p p p
n 1 n n n n 1 2 n 1 n 1 n nhβ β β βτ+ + + + + + + += ∆ ⋅ ∆ = ∆R w R w d t R α  (2.34) 

 ( )e 1 T p
n 1 n 1 n 1 n 1

−
+ + + +

  = −∇× = −∇×   α R R R  (2.35) 

where the functions f , g , h  denote the rate terms from the aforementioned equations, 

and β  is a parameter denoting the explicit ( )0β =  or implicit ( )1β =  treatment of pR . 

The unrotated deformation increment /n 1 2+∆d  at the intermediate time /n 1 2t +  is defined in 

terms of the spatial strain increment associated with the nodal displacement n 1+d  and nd  

and the rotation tensor /n 1 2+R ; see [69, 70] for more details. All other quantities, such as 

the internal force vector int
n 1+F , are evaluated at time level n 1t + . This mid-point rule enables 

the stress update (2.32) to be performed exactly as in the small strain context, with the 

slip rates sγ( )  evaluated through (1.12) using /n 1 2+∆d  in place of d . The square brackets 

in (2.35) symbolize the use of either the elemental projection or nodal projection to obtain 

a nonlocal representation of the elastic rotation field eR  for evaluating the curl operator. 
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Note that the elastic rotation eR  is obtained at each Gauss point from the product of the 

polar decomposition rotation tensor R  and the plastic rotation pR  as shown in (2.10) 

prior to applying the algorithms from Section 0. 

The explicit and implicit algorithms for pR  are described in the following sections, and 

their implications on accuracy will be assessed in Section 2.5. 

 

2.4.1 Explicit integration through post process procedure 

Previous numerical implementations of the MTS model [15, 18] have adopted explicit 

treatment for pR  and α , which was justified for modeling problems where the evolution 

of GND during Stage IV hardening has slower time scales compared to the primary 

hardening in Stages I-III. 

A schematic of the algorithmic solution procedure combining (2.32) – (2.35) with the 

global equilibrium equation (2.14) is presented in Box 3 for proceeding from step n  to 

n 1+ . The nonlinear equilibrium equation is solved iteratively using the Newton-Raphson 

algorithm, where the single iteration counter is denoted by i . Crucially, the plastic 

rotation p
nR  and Nye tensor nα  are held frozen at their values from the previous time step 

n  during all iterations. The other arguments, summarized by the variable 

{ }/ , ,i i i i
n 1 n 1 2 n 1 n 1τ+ + + += ∆χ d t  , are updated within the equilibrium iteration loop. The 

computation of the internal force vector ,i
n 1+Fint  occurs in the usual manner by a loop over 

all Gauss points in the mesh. The stress update (2.32) and hardening update (2.33) are a 

coupled set of nonlinear equations which are solved by a local Newton algorithm at each 

Gauss point; see [18] for details on these local solvers and the expression for the tangent 

moduli required for the global stiffness matrix i
n 1+K . 
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Box 3. Explicit material update procedure 
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Once the balance of external and internal forces is achieved within a specified tolerance, 

the equilibrium iteration loop is terminated. Then, a post-process procedure is invoked to 

compute the plastic rotation pR  and Nye tensor α  using the converged displacements 

and stresses, amounting to an explicit computation. First, the plastic rotation tensor is 

evaluated at each Gauss point using (2.34). Then, either the elemental or nodal projection 

method can be employed to compute the α  field, which is interpolated back to the Gauss 

points. These values are then retained for use in the following load step. 

Clearly, the benefit of explicit integration is that the number of self-consistent equations 

is limited to the displacement and stress fields, thereby speeding up the calculations. 

Because the update of rotations is performed outside of the Newton loop, this method fits 

naturally within the standard implementation of nonlinear finite element codes. Also, the 

definition of the tangent stiffness matrix i
n 1+K  is simplified since the linearization does not 

need to take account of variations in the elastic rotation and Nye tensors. However, this 

post-processing procedure results in a hybrid explicit/implicit approach with certain 

kinematic quantities lagging behind by one-time step. Also, the assumption of slowly 

varying rotations places a restriction on the size of the loading increment to maintain 

stability and accuracy of the computed response. Addressing this issue by reducing the 

load step size can increase the overall computational cost across the greater number of 

load steps. 

 

2.4.2 Implicit integration through staggered procedure 

To obtain a fully implicit algorithm, we can transfer the computation stage for the plastic 

rotation and Nye tensors inside of the equilibrium Newton-Raphson loop. As shown in 

Box 4, this amounts to an expanded material update phase during which the stress n 1+t ,  
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Box 4. Staggered implicit material update through subcycling 

 
  



 

40 
 

hardening n 1τ + , rotation p
n 1+R , and Nye tensor n 1+α  are made self-consistent with the 

current nodal displacement increment i
n 1+∆d . However, solving the four equations (2.32) 

– (2.35) concurrently would require major revisions to the stress/hardening update 

framework at the Gauss point level. Therefore, this set of equations is solved in a staggered 

fashion using a fixed point algorithm. 

The fixed point material update procedure contained within the red outlined steps within 

Box 4 essentially alternates between the Gauss point stress update and the Nye tensor 

methods from Section 2.2. Each pass through the alternation is termed herein as a 

“subcycle” and is denoted by a counter j . We discuss the procedure within the context 

of the nodal projection method from Section 2.3.2; the steps are simplified for the 

elemental projection. First, the stress update is performed to obtain j 1
n 1
+
+χ  at each Gauss 

point using frozen values for ,p j
n 1+R  and j

n 1+α , which is identical to the process in Section 

2.4.1. Then, we perform a second pass through the Gauss points to evaluate (2.34) to 

obtain ,p j 1
n 1

+
+R  for use in the projection (2.35). Here, the values of j 1

n 1
+
+t  and j 1

n 1τ +
+  are kept 

frozen. Also, since the plastic vorticity pW  (1.12) depends on the slip rates sγ( )  (2.1) and 

thus upon the resolved shear stress sτ ( )  (2.2) in the current configuration, expression (2.34) 

is nonlinear in terms of ,p j 1
n 1

+
+R , which can be solved locally via fixed point or Newton’s 

method. Finally, the nodal projection method is applied to the elastic rotation tensor 

, ,eT j 1 T p j 1
n 1 n 1 n 1

+ +
+ + +=R R R  to compute the Nye tensor j 1

n 1
+
+α  as discussed in Section 2.3.2. Note that 

the polar decomposition rotation n 1+R  is fixed during each of the subcycles since the 

unrotated deformation increment /
i
n 1 2+∆d  is also fixed (the superscript i  has been 

suppressed for clarity). 

After the subcycle is completed, the values of the Cauchy stress, hardening parameter, 

and elastic rotation are compared with those from the previous subcycle. If the computed 

difference is above a specified tolerance, then a new subcycle is performed, first using 
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,p j 1
n 1

+
+R  and j 1

n 1
+
+α  within the stress update followed by j 1

n 1
+
+t  and j 1

n 1τ +
+  within the rotation 

update. We have adopted the following three quantities within the convergence criteria 

(denoted by j
n 1+r ) for the fixed point material update, where the tolerance is set to 

710ε −=  and 2l
  denotes the Euclidean norm: 

1. Nodal values of elastic rotation Ar : , , ,
2 2

2 2e j 1 e j 2 e 0
A A Al l

A A
ε+ − ≤∑ ∑r r r    

2. Gauss point values of stress σ : 2 2

2 2j 1 j 2 0
a a al l

a a
ε+ − ≤∑ ∑σ σ σ  

3. Gauss point values of hardening τ : 
2 2j 1 j 2 0

a a a
a a
τ τ ε τ+ − ≤∑ ∑    

When these convergence criteria are met, then the values n 1+t , n 1τ + , p
n 1+R , n 1+α  have 

simultaneously solved the implicit rate equations (2.32) – (2.35) and thus are self-

consistent. The value of the Cauchy stress n 1+σ  is then available for assembly of the 

internal force vector, and the remaining portion of the Newton-Raphson equilibrium 

iteration proceeds unchanged with respect to Box 3 and Box 4. 

The aforementioned staggered procedure has several advantages over other possible 

implicit schemes. First, the Gauss point stress update and nodal projection method have 

remained isolated, which minimizes the burden to implement the method in existing codes. 

Also, the size of the global stiffness matrix has not expanded, which would be necessary 

for monolithic solution of mixed formulations such as those advocated in [43]. Rather, the 

self-consistent field values are obtained through sequential passes through the material 

update algorithm. Also, the stress update phase as well as the nodal projection method 

are highly parallelizable, making the staggered algorithm suitable for high performance 

computing platforms. Finally, if the number of equilibrium iterations does not increase 

(e.g. if the effects of the Nye tensor on the linearization are neglected in the calculation 

of the stiffness matrix i
n 1+K ), then the overall cost of the method is comparable with the 
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hybrid explicit method presented in Section 2.4.1. The only additional runtime would 

come from the multiple passes through the stress update phase per Newton iteration. 

The main disadvantage of the staggered procedure as presented is that the convergence 

rate of the subcycles is limited by the use of the fixed point algorithm. Therefore, we 

investigate the robustness of the fixed point algorithm in Section 2.5 for several numerical 

tests. The Newton algorithm could possibly be used to improve the stability of the 

staggered procedure; however, the linearization of the nodal projection method is not 

straightforward. From the numerical studies that follow, the typical number subcycles 

required for convergence is 5 to 6. This higher computational time during the material 

update is likely overshadowed by the factorization of the stiffness matrix for large-scale 

problems. 

Remark: Observe that a shuffling of the steps for the explicit algorithm in Box 3 would 

unify the implementation of both algorithms. Namely, if the rotation tensor update and 

evaluation of the Nye tensor are performed at the end of the stress update during each 

iteration, then these quantities would be prepared for use in the subsequent time step. This 

minimizes the revisions to the program architecture and enables a switch between the 

explicit and implicit algorithms simply by limiting the number of subcycles to 1. The 

tradeoff is that the calculated values are simply overwritten during Newton iterations prior 

to equilibrium convergence.  

Remark: At the start of the staggered material update during each equilibrium iteration, 

the initial values of the plastic rotation ,p 0
n 1+R  and Nye tensor 0

n 1+α  are assigned from the 

previous time step, p
nR  and nα . Alternatively, the values could be initialized from the 

values obtained at the end of the material update during the previous equilibrium iteration, 

e.g. ,p i 1
n 1

−
+R  and i 1

n 1
−
+α . However, the physical domain is not necessarily equilibrated during 

the previous iteration, and thus each of the field quantities likely contains errors. These 

errors could bias the staggered material update to converge to a nonphysical branch of the 
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material response. Similar arguments also justify retaining the Cauchy stress and 

hardening variables from the previous step to initialize the stress update procedure [59]. 

 

2.5 Numerical Results 

In this section, we investigate the accuracy, robustness and stability of each aspect of the  

proposed nodal projection formulation with Lie algebra mapping against the baseline 

elemental projection method [15] for three test cases. The first two problems simulate a 

single crystal using linear shape functions: the first employs a two-dimensional mesh of 

rectangular elements whilst the second employs a three-dimensional mesh of hexahedral 

elements. The third problem simulates the behavior of a polycrystalline material using 

quadratic triangular elements. All elements are fully integrated using Gauss quadrature. 

Different features of the methods are investigated for each problem. The convergence of 

the elemental projection method versus the nodal projection is investigated in the first 

problem through a mesh refinement study. The second problem tests the robustness and 

stability of the explicit and implicit integration strategies by subjecting a specimen to 

multi-directional loading and unloading with large load increments and reporting the 

required number of Newton-Raphson iterations. Lastly, the third problem illustrates the 

behavior of the formulations for a polycrystalline domain modeled with quadratic finite 

elements while comparing the lumped approximation of the projection matrix to the one 

with full information. Numerical simulations were conducted using a Matlab finite element 

code with the refined solutions computed using research code WARP3D [71]. 

2.5.1 Flexure loading and size effect 

For this problem, the bending of a single crystal strip subjected to monotonically 

increasing rotations is investigated. A schematic of the beam is shown in Figure 2-3. The 
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bending of single-crystal aluminum specimens was studied experimentally by [72] and has 

been computationally modeled using a discrete dislocation dynamics approach [73] and a 

continuum crystal plasticity model [74]. In particular, the beam bending induces non-zero 

strain gradients that give rise to higher yield stress or strain hardening. Presently, our 

objective is to quantify the domain size effect produced by the GND term in equation 

(2.7) as well as to test the numerical convergence of the nodal projection method compared 

to the elemental one as discussed in 2.3.1. 

Two domain sizes are considered: a smaller beam with L 12=  μm  and h 4=  μm  and a 

larger beam with L 48=  μm  and h 16=  μm . In both cases, different levels of refinement 

for the FE meshes are employed, with the coarsest mesh containing 12 4×  trilinear 

hexahedral elements and another three levels of refined meshes are obtained by uniform 

bisection, with one element through the thickness t 1=  μm . The solution obtained on a 

refined 384 128×  elements mesh is taken as the reference solution for evaluating the norms 

of displacement error and considered to be fine enough such that the dominant elasto-

plastic response of the beam is accurately captured. The twelve FCC slip systems 

{ }111 110  are assigned to the elements of the single crystal, and the orientation of the 

lattice is specified through the Kock’s Euler angles as . , . .69 2 65 9 26 6φ° ° °Ψ = Θ = =  and . 

The material properties for the beam specimen are listed in Table 2-1 and correspond to 

the Aluminum alloy AL5182, as adopted from [54]. Note that an approximate value of 

order unity is assigned to 0k  as suggested in [33]; in practice, this parameter would also 

be calibrated against experimental data. The shear modulus µ  is modeled by [54] as 
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Figure 2-3. Single-crystal bending schematic 

  

Table 2-1. Material properties for beam bending model 

Property Value Property Value 

E  78,811 MPa n   20 

ν  0.33 ,0 yε  7 110 − s  

0µ  28815 MPa v̂τ  59 MPa 

0D  3440 MPa  ,0 vg  1.6 

0T  215 K  vq  1.0 

b  . 72 86 10−×  mm vp  0.66667 

aτ  3.333 MPa ,0 vε  7 110 − s  

ˆyτ  99 MPa 0θ  800 MPa 

,0 yg  1.196 0k  .2 0  

yq  1.5 κ  .1 0  

yp  0.5   
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 exp
1

0
0 0

TD 1
T

µ µ
−

  = − ⋅ −    
 (2.36) 

where 0µ  is a reference value of the shear modulus and 0D  and 0T  are empirical constants. 

The beam is modeled in plane strain by imposing the z  displacement to be zero at all 

nodes in the mesh. Additionally, the top and bottom surfaces are treated as traction-free, 

and shear stress on the left and right faces is prescribed to be zero. The horizontal 

displacement of the left and right faces is evaluated in terms of the applied rotation θ  as 

follows:  

 ( ) ( )/ , , / ,x xu x L 2 y y u x L 2 y yθ θ= − = − = =  (2.37) 

 

In the following simulations, the rotation θ  is incremented during 80 load steps at a rate 

of 145 10θ −= ×  rad/s  up to a maximum value .0 04θ =  radians. The small deformations 

generated by this applied rotation ensure that the beam response is dominated by pure 

bending. The resultant moment M  is computed by integrating the moments of the axial 

stresses at the end faces about the centerline of the beam:  

 ( )
/

/
/ ,

h 2

xxh 2
M y L 2 y dyσ

−
= ∫  (2.38) 

This resultant moment is normalized against the elastic moment at the proportional limit, 

the point where the slope of the stress-strain curve ceases to be constant. Accordingly, the 

response loses proportionality approximately at the load level .refM M 1=  

The simulations are performed at temperature T 300= K. The response of the two beam 

specimens 12 4×  µm  and 48 16×  µm  under the applied flexural loading is obtained using 

both the elemental and nodal projection methods and explicit integration of the rotation 

tensor. First, the convergence of the method is assessed qualitatively by plotting the 

relative moment refM M  versus the applied angle θ  in Figure 2-4 for increasing levels of 

mesh refinement using the nodal projection method which yielded same graphs as the  
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Figure 2-4. Comparison of normalized moment versus applied rotation for beam of size  
12 4×  µmusing nodal projection method 

 

element projection one.  Only the results for the 12 4×  µm  beam are shown; the values of 

refM  are listed in the figure. The figure indicates that the computed strain hardening 

decreases with mesh refinement. The moment-rotation curve appears to converge from 

above to the solution of the refined mesh. 

Next, the moment-rotation curves are compared in Figure 2-5 for each beam size as 

obtained on the 96 32×  element meshes. Note that the curves have been normalized by 

7
refM 2 10−= × ⋅ N mm  in order to highlight the common response within the elastic regime. 

Again, the results of the nodal projection simulation are qualitatively identical to the 

elemental one. A size effect is clearly present in the response of the beams in Figure 2-5 

upon the onset of plastic flow. While lower strength is observed at higher temperature, 

increased hardening is apparent for the smaller beam compared to the larger one, with an 

increase in the moment refM M  by about 20% at .0 04θ = . Recall that the only difference 

between the simulations is the dimensions of the beam; the number of elements, applied 

rotation, and all material properties are kept constant. For classical continuum plasticity 

models, the normalized moment curves for two specimen sizes would be identical both in  
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Figure 2-5. Comparison of normalized moment versus applied rotation using nodal 
projection for both beam sizes 12 4×  µm  and 48 16×  µm  and 96 32×  mesh. 

 

the elastic and plastic regimes. Such models are based on flow rules that are entirely local 

in nature. In contrast, the GND term within the MTS model, given by (2.7), incorporates 

the effect of strain gradients into the constitutive response. The increased hardening for 

the smaller beam can be explained as follows. For an equal level of applied end rotations 

θ , the curvature κ  of the 12 4×  µm  beam will be larger than the 48 16×  µm  beam. For 

small elastic deformations, the strain at any fiber parallel to the x-axis  is xx yε κ= . 

Therefore, a non-zero strain gradient ,xx yε κ=  exists, which contributes to the GND 

hardening term. For larger curvatures, the effect of the GND term increases, leading to 

greater hardening in the post-elastic regime of Figure 2-5.  

Figure 2-6 presents the relative 2L  norm and 1H  semi-norm for the displacement error 

obtained for each test case using the following equations:   

 ( ) ( ) ( ) ( )( ) 2

2

2

1 1
h ref 2 2

h h ref h ref ref refL
refL

L

e d d

−

Ω Ω

−    
= = − ⋅ − Ω ⋅ ⋅ Ω   

   
∫ ∫

u u
u u u u u u u

u
 (2.39) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2-6. Displacement error norms for the explicit elemental and nodal projection 

methods for (a) 2L  error for the 12 4×  µm  beam, (b) 1H  error for the 12 4×  µm  

beam, (c) 2L  error for the 48 16×  µm  beam and (d) 1H  error for the 48 16×  µm  
beam. 
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where hu  is the displacement field for one of the four levels of refinement and refu  is the 

displacement field for the reference solution computed on a very fine mesh (384 128× ). 

The error norms are evaluated at two applied rotations .1 0 0005θ =  and .2 0 04θ =  to 

investigate the accuracy of the elastic and plastic response, respectively. Clearly, all 

simulations exhibit nearly constant slopes or rates of convergence, which is a strong 

indication of the stability of the element projection method. The elastic response of the 

beams for each size and temperature gave the close to optimal rates of about 2.0 for the 

2L  norm and 1.0 for the 1H  semi-norm for linear polynomial shape functions. At the 

plastic load level, when the Nye tensor term is active, the convergence rates do drop 

somewhat below the optimal values. The elemental and nodal projection methods gave 

similar convergence rates with the nodal one having a slightly better 2L  norm, meaning 

that no degradation of accuracy happens when using the nodal method. These stable  

results are in agreement with the performance observed by [47] and do not show the mesh 

sensitivity found by [48].  

As an additional result, contour plots on the deformed configuration of the flexural stress 

xxσ  for  T 300= K  at the load levels θ = 0.0015 and .0 04θ =  are provided in Figure 2-7 

and Figure 2-8, respectively. For the smaller load level in Figure 2-7, the variation of the 

stress field is linear through the depth of the beam, as expected. At the higher level of 

rotation, the stress profile is more uniform in the upper and lower regions of the beam, 

indicating that plasticity is dominant throughout the cross-section. Stress concentrations 

are observed at the ends of the beam and are more pronounced for the larger beam. 
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(a) 

 
(b) 

Figure 2-7. Flexural stress xxσ  (MPa) at elastic load level .0 0015θ =  radians for (a) 

beam size 12 4×  µm  and (b) beam size 48 16×  µm  

 
(a) 

 
(b) 

Figure 2-8. Flexural stress xxσ  (MPa) at plastic load level .0 04θ =  radians for (a) beam 

size 12 4×  µmand (b) beam size 48 16×  µm  
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2.5.2 Three-dimensional multipath loading  

The objective of this problem is to investigate the accuracy, robustness and stability of 

the implicit time integration of pR  for a three-dimensional domain subjected to large 

displacements applied in multiple directions. The problem was designed to be a 

challenging test for the numerical formulation. However, such deformations can be 

experienced during complex forging or thermo-mechanical treatment and as such do have 

physical significance. The model as shown in Figure 2-9 consists of two material regions: 

a single crystal cube with side length L 1 µ=  m  denoted by white elements and elastic 

regions on both ends of the cube with length .bL 0 6667 µ=  m  denoted by shaded elements.  

 

 

The elastic (buffer) regions provide a transition between the boundary conditions on the 

faces of the domain and the single crystal region in order to lessen the stress concentrations 

at the corners of the central cube. The surface .x 0 0=  is fully fixed with = 0u , and 

prescribed time-varying displacement are applied uniformly across the .x 2 333 µ=  m  

surface. These displacements are first increased (termed as loading) and subsequently 

returned to zero (termed as unloading) as shown by arrows in Figure 2-9. The loading 

 

Figure 2-9. 3D Multipath loading schematic 
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and unloading direction sequences are ordered differently to induce a heterogeneous stress 

state and therefore harsh conditions for the algorithmic stress update. Each loading or  

unloading phase consists of a displacement .iu 0 4 µ=  m  applied to the surface mentioned 

above in t 400=  s . The material parameters for the single crystal are maintained as the 

Aluminum-5182 alloy from Table 2-1, with temperature T 300=  K  and the Kocks Euler 

angles . , . , .45 0 0 0 30 0φ° ° °Ψ = Θ = =  . The buffer regions are treated as a hypoelastic 

material with modulus ,E 19 700=  MPa  and .0 33ν = .   

The problem was solved by all three proposed gradient-based methods: explicit time 

integration of pR  with elemental projection and nodal projection as well as implicit time 

integration of pR . A coarse mesh is employed as shown in Figure 2-9; the center cube 

contains 6 6 6× ×  elements while each buffer region contains 6 6 2× ×  elements. All 

elements are fully integrated eight-node linear hexahedral. The results from this coarse 

mesh are compared to those obtained on finer meshes solved through the explicit method: 

one medium mesh with 12 12 12× ×  elements for the center cube, and a fine mesh with 

24 24 24× ×  elements for the center cube. Two time discretizations are considered: the first 

with one hundred increments per phase and the other with fifty increments per phase. 

To assess the accuracy of the solution techniques and highlight the response, we report 

the shear stress component xyσ , as it is representative of the level of heterogeneity 

observed in the solution. Contour plots are provided only for the elemental projection, 

explicit integration case with 100 load increments per phase. Figure 2-10 presents the 

deformed configuration of the specimen at the end of each of the six phases. The stress 

field in the crystal plasticity region appears to be homogenous for the first two phases 

(shown in Figure 2-10 (a) and (b)); stress concentrations appear only within the buffer 

region. Heterogeneities begin to appear in the central stress field during phase three as 

observed in Figure 2-10(c). Also, the crystal plasticity elements near the buffer region 

exhibit a distorted or kinked shape. Those kinks persist during the subsequent unloading  
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2-10: Shearing stress xyσ  (MPa) for the explicit time integration of pR  at the 

end of each phase: (a) phase 1; (b) phase 2; (c) phase 3; (d) phase 4; (e) phase 5; (f) 
phase 6 
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phases, indicating the development of localized permanent plastic deformation. These 

distortions do not prevent the nonlinear equation solver from converging even for the large 

time step size for the 50 increment case.  

The localized features of the solution are not completely captured by the coarse mesh due 

to kinematically limited linear hexahedral elements. For comparison, the xyσ  fields at  

selected phases are provided in Figure 2-11 for the finer meshes. There, the localized 

features appear to be smoother in Figure 2-11 (a) and (b) and the magnitude of the 

stresses has reduced somewhat compared to the coarse mesh in Figure 2-10 (c). Taken 

together, the trend of contour fields upon mesh refinement indicates that the numerical 

solution is converging. Additional refinement would be needed to fully resolve the internal 

heterogeneities. Nonetheless, the gradient crystal plasticity method considered herein does 

exhibit robust numerical performance for this problem. 

We also provide a qualitative comparison in Figure 2-12 of the three numerical treatments 

of pR  at the end of phase 3 (full loading of the specimen). The shear stress contour and 

deformed shape produced by the three methods is nearly identical. While the accuracy of 

the elemental and nodal methods is similar, we are more interested in assessing the relative 

computational cost of each method. Therefore, the number of the Newton iterations 

required for the numerical convergence at each step is shown in Figure 2-13 and Figure 

2-14. A common convergence criterion of six orders of magnitude reduction of the norm 

of the out-of-balance force vector was applied for each case. For all three stress updating 

techniques, convergence did not change significantly for either 50 or 100 increments per 

loading phase. The average number of Newton iterations per step for each method was 

about 4.7, except in the second unloading phase when more iterations were needed. 

Overall, the algorithm required more iterations during the first load step of a new load 

direction phase. This behavior is attributed to the global solution strategy of the finite 

element code, which uses displacement extrapolation to initialize the Newton method for  
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(a)  

(b) 

 

 
(c) 

 
(d) 

Figure 2-11: Shearing stress xyσ  (MPa) for the explicit time integration of pR : (a) 

12 12 12× ×  mesh at the end of phase 3; (b) 24 24 24× ×  mesh at the end of phase 3; (c) 
12 12 12× ×  mesh at the end of phase 6; (d) 24 24 24× ×  mesh at the end of phase 6 
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Figure 2-13. Newton’s iterations for each loading step, 100 steps per phase 

 

 
(a) 

 
(b) 

 

 

 

 

  
(c) 

Figure 2-12. Shearing stress xyσ  (MPa) for the three methods: (a) explicit time 

integration with elemental projection; (b) explicit time integration with nodal 
projection; (c) implicit time integration 
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Figure 2-14. Newton’s iterations for each loading step, 50 steps per phase 

 

each load step. Extrapolation produces inaccurate initial guesses for non-proportional load 

paths. In general, all three methods required similar numbers of iterations. Therefore, the 

computational cost of each method is almost identical. For large-scale problems, the 

computing time to factorize the global stiffness matrix overwhelms the time for the stress 

update or pR  calculation. Note that simulations with 25 increments per phase were also 

attempted. However, the accuracy of the solution fields was significantly degraded due to 

the discretization error in the backward Euler equations; further increase of the step size 

led to divergence of the equation solver. 

Finally, we investigate the computational cost of the implicit pR  integration method by 

showing in Figure 2-15 the number of subcycles for the fixed-point algorithm per load 

step. Recall that the fixed point algorithm to obtain self-consistent values of stress and 

pR  is performed during each global Newton iteration. As long as the number of subcycles 

does not increase during the simulation, then the overall computational time for the 

algorithm is still controlled by factorization time. Indeed, this number remains constant 

throughout the simulation for Figure 2-15 (a) except during the start of unloading. 

However, the average number increases to 6.5 per iteration during the unloading phases 

of the 50 increment case. This behavior indicates a certain sensitivity of the fixed point 
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algorithm to the level of plastic heterogeneity in the solution. Overall, the implicit method 

appears to be robust with respect to the evolving nonlinearity of the problem.    

Remark: While the nodal projection method yields similar results to the elemental 

projection counterpart, the nodal projection could be used for higher-order gradient 

constitutive models where second derivatives of the rotation tensor are needed. Similarly,  

 

 
(a) 

 
(b) 

Figure 2-15. Fixed-point subcycles for each loading step, (a) 100 steps per phase (b) 
50 steps per phase 

 

the Lie mapping step in the projection would enable a fully implicit method whereby the 

nodally projected rotation tensor field can be used with the stress update rather than the 

original values at the Gauss points. The tensors obtained from linear interpolation alone 

may not be orthonormal and thus would generate errors within the constitutive equations. 

 

2.5.3 Two-dimensional polycrystalline domain under compression 

The objective of this problem is to investigate the behavior of the crystal plasticity model 

for a specimen with multiple crystallographic orientations under a large compressive 
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strain, with features characteristic of metallic microstructures with multiple grains. Also, 

the accuracy of the lumping scheme for the nodal projection discussed in Section 3.2 is 

investigated by comparing it to the consistent variational projection without lumping. 

The specimen as shown in Figure 2-16 is . .1 0 1 0 µ×  m  containing twenty grains of the 

same material but different crystallographic orientations. In contrast to previous cases, 

the finite element mesh for this model consists of quadratic triangular elements generated 

from a Voronoi tessellation. Thus, this problem provides a testbed for evaluating higher-

order polynomial elements within the projection formulations. 

 

 
Figure 2-16. Problem description 

 
The specimen is constrained by symmetry conditions on the bottom and left faces. A 

uniform prescribed displacement was applied to the surface to achieve a constant true 

strain rate of 410ε −= ; the final true strain is %50ε =  after 100 increments. The right 

face of the specimen is taken as traction-free to accommodate the large deformations. 

Plane strain conditions are assumed. For simplicity, the Euler angles representing the 
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grains orientation were taken in such a way that the grains under loading will rotate only 

about the z-axis. Thus, the orientation of the crystal lattice with respect to the xy-plane 

can be specified through a single angle measured counterclockwise from the positive x-

axis. Twenty uniformly-spaced orientations were generated between 0 171  and . To 

further investigate the behavior of the multi-grain problem, these orientations were 

assigned to the grains in the microstructure in two different patterns, denoted Set (1) and 

Set (2), as shown in Figure 2-17. The crystal plasticity material parameters are again 

taken from Table 2-1 with .0k 1 0=  and the temperature set to T 300=  K .    

 

 

(a) 

 

(b) 
 

Figure 2-17. Initial lattice orientations with respect to the horizontal axis: (a) Set (1); 
(b) Set (2) 

 
This problem is modeled using both the explicit (elemental and nodal projections) and 

the implicit methods. The 50% applied strain leads to a deformation and rotation of the 

lattice for several grains. The final lattice orientations in the deformed configuration are 

shown in Figure 2-18 for each set. Comparing these orientations with Figure 2-17, we 

observe that the amount of rotation is not constant between all grains, and some grains  
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(a) 

 

 
(b) 

Figure 2-18. Final lattice orientations: (a) Set (1); (b) Set (2) 

 

develop internal heterogeneity of orientation. The largest measured misorientations 

between the initial and final configuration are 50o  for Set (1) and 41o  for Set (2). We 

also notice a tendency for grains with neighbors of similar orientation to deform together 

and reach a state with nearly equal lattice orientation, having the appearance of a larger 

grain. However, these simulations involve only a small population of 20 grains with plane 

strain confinement, so these observations may not translate to three-dimensional, larger 

specimens; see e.g. [75]. The von Mises stress field obtained from each microstructure is 

provided in Figure 2-19(a) and (c). Figure 2-19 (b) and (d) illustrates the absolute 

difference in the Von Mises stress field between using the lumped and the consistent 

projection matrices. The maximum error is about 5% for a few nodes, and the remaining 

nodal values typically have closer agreement. Given the reduced cost, one would argue 

that lumping the projection matrix gives good approximation. By comparing the stresses 

with the grain rotations in Figure 2-18, we observe that grains which experience larger 

rotation also tend to carry higher stresses. The highest stresses for both microstructures  
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(a) 

 
 
 
 
 

vσ
lumped  

 
 

 
(b) 

 
 
 
 
 

v vσ -σconsistent lumped  

 

 
(c)  

 
(d) 

Figure 2-19. Von Mises stress (MPa) at the end of 50% true strain loading for the 
lumped nodal projection for (a) set 1; (c) set 2 as well as the absolute difference of 

the stress field between the consistent and lumped nodal projection for (b) set 1; (d) 
set 2  
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are also found near the left half of the domain closer to the confinement or symmetry 

boundary conditions. The traction-free right surface of the domain deforms differently 

based on the set of initial Euler angles. Also, the mesh lines from Set (1) and (2) trace 

out the different deformations undergone by each domain. Some of the elements exhibit 

a distorted shape; the use of quadratic interpolations helps to minimize the effect of 

distortion on the computed solution. 

Qualitatively, the stress field for the different solving methods and projection techniques 

are quite similar to those reported in Figure 2-18 and Figure 2-19. Therefore, the values 

of particular field quantities are provided in a series of tables, all at the level of 50% 

strain. The overall computational effort of each method was also similar, requiring an 

average of about 5 Newton-Raphson iterations for convergence during each time step.  

This polycrystalline numerical test also enables the investigation of the effect of assumed 

level of continuity in the elastic rotation field eTR  for the nodal projection method. Recall 

from Figure 2-18 that grains having different initial orientations also tended to exhibit 

different amounts of relative rotation between the initial and final configuration. 

Therefore, the projection of the elastic rotation onto a globally continuous field for the 

calculation of the Nye tensor may not be an appropriate representation of the physical 

response. Thus, simulations are performed with the nodal projection method where the 

rotation tensor is projected on a grain-by-grain basis (termed as grain-local). Note that 

nodes along the grain boundaries may thus have distinct values of the rotation tensor for 

each element in different grains, which requires additional bookkeeping. As a simplified 

approach, results are also provided for the implicit nodal method with projection carried 

out across the entire domain (termed as domain-global), yielding a continuous field for 

eTR  and a single value at each node. Recall that the projected fields are used solely for 

computing the Nye tensor and do not enter into the lattice orientation used for the crystal 

plasticity kinetics. 



 

65 
 

Two representative points are selected for comparing the method results, as shown in 

Figure 2-16: point A near a grain boundary and point B from an element in the interior 

of a grain. All methods produce similar values for the von Mises stress as given in Table 

2-2. The solutions differ in the 3rd significant digit. This level of agreement is less that 

what was found for the problem in Section 2.5.2, mainly due to the heterogeneity of the 

grains.  

Remark: Notice that the results of the lumping scheme differ in about only 1% - 2% from 

those of the consistent counterpart. Therefore, even considering the large deformations 

and heterogeneous stresses encountered in this test, the nodal projection using the lumped 

matrix provides an accurate approximation with less computational cost compared to the 

consistent matrix. 

Next, we report the 2l  norm of the Nye tensor 
2

α  for elements C and D in Table 2-3. 

Due to the plane strain nature of the problem, only the components zxα  and zyα  are non-

zero; see (2.9). For element D on the grain interior, the variation in the values of the Nye 

tensor were within 20% of each other, with the largest difference exhibited by the 

consistent nodal projection ones. However, element C near a grain boundary has a larger 

discrepancy between each method, with the largest norm reported for the elemental 

projection method. Generally, the elemental projection method has the largest discrepancy 

compared to the other methods. However, the lumped nodal projection values also differ 

significantly from the consistent projection ones. Note that the mechanical fields in 

polycrystals typically exhibit large gradients near the grain boundaries that lead to 

reduced accuracy in the finite element results. According to the convergence properties 

seen in Section 5.2, the differences between the Nye tensor values of each method are 

expected to decrease with higher mesh refinement. Also, these noticeable variations in the 

Nye tensor reflect a significantly smaller variation in the stress field due to it having a 

higher order of accuracy.   
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Table 2-2. Nodal value of von Mises stress (MPa) for Set (1) at two locations 

Node 
Explicit 

elemental 
projection 

Explicit 
lumped 
nodal 

projection, 
grain-local 

Implicit 
lumped 
nodal 

projection, 
grain-local  

Explicit 
consistent 

nodal 
projection, 
grain-local 

Implicit 
consistent 

nodal 
projection, 
grain-local 

Implicit 
lumped nodal 
projection, 
domain-
global 

A 134.70 133.87 133.99 131.20 131.35 135.53 
B 122.76 123.90 123.94 122.47 122.49 123.83 

 

Table 2-3. Nye tensor 2l  norm for Set (1) at two locations 

 

To more closely examine the effect of assumed continuity for eTR  on the solution, contour 

plots for the 2l  norm of the Nye tensor are shown in Figure 2-20 for both microstructures. 

In general, the trend across Sets (1) and (2) is that the computed Nye tensor is very 

similar for elements that are located within the grains (do not have any nodes which are 

attached to a grain boundary). Otherwise, elements that share an edge with a grain 

boundary differ in their Nye tensor values. Thus, the effect of the discontinuous 

interpolation of the eTR  field is localized to the layer of elements near grain boundaries 

that are directly aware of the discontinuity. For this benchmark problem, the choice of 

the grain-local or domain global projection for the nodal method does not affect the 

computed stress field or deformed shape of the microstructure. This behavior is reasonable 

since the contribution of the GND hardening term has a second order effect on the solution 

physics compared to the other first order hardening terms. Thus, either projection field  

Element 
Explicit 

elemental 
projection 

Explicit 
lumped 
nodal 

projection, 
grain-local 

Implicit 
lumped 
nodal 

projection, 
grain-local  

Explicit 
consistent 

nodal 
projection, 
grain-local 

Implicit 
consistent 

nodal 
projection, 
grain-local 

Implicit 
lumped nodal 
projection, 
domain-
global 

C 17.040 6.082 6.086 8.685 8.686 7.568 
D 1.293 1.338 1.337 1.975 1.975 1.338 



 

67 
 

 
(a) 

 
(b) 

2
α  

 

 
(c) 

 
(d) 

Figure 2-20. Nye tensor 2l  norm for implicit integration of pR : (a) Set (1) with 
grain-local projection; (b) Set (1) with domain-global projection; (c) Set (2) 

with grain-local projection; (d) Set (2) with domain-global projection 
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may be appropriately used unless the accuracy of the Nye tensor field along grain 

boundaries is of significant importance of the particular application. 

 

2.6 Conclusion 

We have presented and compared several numerical methods for evaluating the plastic 

strain gradient within a geometrically necessary dislocation (GND) crystal plasticity  

formulation. The GND density is expressed through the Nye tensor, which is represented 

in terms of the gradient of the elastic rotation tensor in the context of small elastic strains. 

Herein, the elastic rotation tensor is variationally projected from discrete quadrature 

points onto smooth fields defined either within individual elements or across the nodal 

shape functions of the spatial mesh. These projections are simplified by utilizing lumped 

approximations of the global projection matrix, thereby avoiding the significant cost of 

mixed methods for displacement and dislocation density fields. A distinguishing feature of 

the method is the use of tensorial mappings between Lie groups and algebras to preserve 

the orthogonality of the rotation tensors. Also, within the stress update procedure for 

crystal plasticity, the differential equation for evolution of the elastic rotation and Nye 

tensors can be treated either in explicitly or implicitly, with the latter solved in a staggered 

fashion using a fixed-point algorithm. 

Numerical studies were conducted for three benchmark problems to compare the 

algorithmic performance of the three proposed methods: explicit elemental projection, 

implicit nodal projection, and implicit nodal projection, as well as testing the accuracy of 

the lumped projection matrix approximation compared to the consistent matrix. For the 

bending of a single crystal beam, the explicit elemental method reproduces the size effect 

whereby the normalized moment versus rotation curve exhibits greater hardening for 

beams with smaller dimensions. Convergence of the displacement and strain fields is 
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achieved at nearly optimal rates for a mesh refinement study performed for linear 

quadrilateral elements, with no loss of accuracy when using the nodal projection over the 

elemental one. The second problem subjects a single crystal cube with linear hexahedral 

elements to harsh multi-directional loading. The displacement and stress results of all 

three methods were very similar. Also, the number of global Newton iterations per load 

step were comparable, meaning that each method requires similar computing time for 

large scale problems. The third problem consisted of a polycrystalline microstructure 

discretized into quadratic triangular elements. Two versions of the implicit method were 

tested: a domain-global projection of the elastic rotation and a grain-local projection. The 

resultant stress fields obtained from all methods were very similar, and convergence was 

achieved within a similar number of Newton iterations. The values of the Nye tensor 

exhibited larger differences especially when compared to values from the consistent 

projection matrix simulations in the vicinity of grain boundaries depending on the type of 

projection, but closer agreement was seen for elements located on grain interiors. These 

favorable results are strong indicators that the GND-based formulation can be extended 

to higher-order gradient crystal plasticity formulations. 
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DISLOCATION DENSITY-BASED CRYSTAL PLASTICITY 

MODELING OF CREEP DEFORMATION IN GRADE 91 

3.1 Introduction 

This chapter discusses the development of the crystal plasticity (CP) finite element 

modeling framework with the goal of predicting the evolution of the dislocation 

substructure that is vital to characterizing the evolution of the creep resistance of Gr91 

during service life [76]. In contrast to the Norton-Bailey isotropic creep model, the use of 

crystal plasticity to model the inelastic response within the grains of the microstructure 

accounts for crystalline anisotropy, which gives rise to preferential directions of plastic 

strain. Also, the use of dislocation mechanism-based flow rules provides a means to track 

the average internal state of the material within the grains in terms of quantities that can 

be experimentally measured, such as dislocation density and mean radius of precipitates. 

These factors provide additional means to validate the computational modeling framework 

but more importantly provide a window toward studying the local stress and strain states 

along with dislocation structure that promote the actual evolution of defects such as 

cavities along grain boundaries. 

The goal of this modeling effort was to calibrate a dislocation density-based 

constitutive model from macroscopic stress-strain curves obtained under various 

temperatures and strain rates, which are easily measured in the lab. This model would 

then be employed to simulate the creep response of Gr91 and validated against creep 

curves in the literature at 550C temperature. However, as discussed Section 3.3, this 

validation was not entirely successful. Nonetheless, the novel numerical modeling 
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developments herein provide key benefits to the modeling of Gr91 and related 

polycrystalline metals as detailed below. 

The following section describes the vision for the crystal plasticity framework for Gr91 

steel in terms of mechanism-based constitutive relations, crystallographic relationships of 

prior austenite grains (PAG), and strain-gradient enhanced formulations to model 

Bauschinger effects produced by geometrically necessary dislocations. Then, Section 3.3 

describes the somewhat reduced scope of the implemented CP constitutive relations for 

modeling plasticity and creep within PAG of Gr91, and the determination of material 

parameters within those relations by fitting stress-strain curves at different strain rates 

and temperatures to experimental tension tests using a genetic algorithm (GA). These 

constitutive relations and material parameters are employed to predict the creep response 

of fully-resolved microstructural models. Lastly, the remaining theoretical and 

computational developments required to realize the model vision outlined in Section 3.2 

are discussed in Section 3.5. 

 

3.2 Overview of crystal plasticity modeling in relation to 

microstructural features 

As described in Chapter 1, the microstructure of Gr91 consists of a complex hierarchy 

of defect structures with increasingly finer spatial dimensions. During the normalizing 

process, the prior austenite grains (PAG) transform to lath martensite, and fractions of 

each grain interior experience different lattice transformations that are approximated by 

the Kurdjumov-Sachs misorientation relationship [77]. These regions of distinct martensite 

variants are referred to as packets, which have similar lath morphology but possibly high 

angle lattice mis-orientation. A substantial amount of dislocation density is also generated 



 

72 
 

during the normalizing process and self organizes into structures, the largest of which are 

called blocks. Within blocks, alternating patterns of densely packed and immobilized 

dislocations interspaced by relatively uninterrupted atomic lattice are observed and are 

termed as laths [76]. Due to their geometrical arrangement, the laths are often called 

dislocation cells, and the regions of high and low dislocation density are termed as cell 

walls and cell interiors, respectively. This hierarchical network of dislocations, packet 

boundaries, and PAG boundaries provides substantial barriers to motion of mobile 

dislocation density and thus high resistance to creep. Nonetheless, recovery of this network 

occurs at high temperatures and sustained mechanical stress, leading ultimately to creep 

rupture. Therefore, to develop capabilities for predicting the useful service life of Gr91, a 

crystal plasticity finite element modeling framework is developed to capture the recovery 

processes of these microstructural features. 

The virtual laboratory for modeling this microstructural evolution consists of 

representative volume elements (RVE) containing many finite elements arranged in 

patterns to approximate the PAG. Similar microstructural models using both 2D (plane-

strain) and 3D realizations were developed previously by Cochran et al. [78] with emphasis 

on the grain boundary deformation mechanisms. Due to the prohibitive expense of 

resolving length scales across several orders of magnitude, only the PAG and packets will 

be explicitly represented; the subgrain features (blocks and laths) will be modeled through 

the constitutive relations within the solid finite elements. 

An example microstructure containing a few grains is shown in Figure 3-1 (a). The 

grains are outlined by solid black lines, while some of the packets within grains are shown 

with dashed lines. The lattice orientation of all finite elements within a single packet are 

assigned a common value at the start of numerical simulations. The orientation of packets 

is obtained as follows. The orientation of each grain is selected randomly from the texture  
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(a) 

 

(b) 

Figure 3-1. Example representative volume element (RVE) of microstructure 
containing packets within prior austenite grains: (a) depiction of volume showing 

PAG boundaries with solid lines and packet boundaries as dashed lines; (b) 
interface finite elements along grain boundaries. Each of the grains and interfaces 

are numbered in order to easily assign material properties. 
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of the parent austenite material so that the RVE provides a statistical representation of 

that texture.  

Then, the packet orientations are selected randomly from the 24 combinations of 

transformations expressed by the Kurdjumov-Sachs relationship. Denoting the austenite 

phase as γ  and the martensite phase as α , this relationship is expressed through the 

Miller indices of the rolling direction and normal plane: 

  { } { }111 011
γ α
   (3.1) 

  101 111
γ α
   (3.2) 

Typically, about 3 to 5 packets are modeled within a PAG. The crystal lattice also 

transforms from a face-centered cubic (FCC) crystal to a body-centered tetragonal (BCT) 

crystal, which will be approximated herein as a body-centered cubic (BCC) structure. The 

primary slip systems for BCC crystals are the 12 { }110 111  systems, 12 { }112 111  

systems, and 24 { }123 111  systems, for a total of 48 systems. The motion of dislocations 

in directions specified by these slip systems leads to anisotropic response that is expected 

to affect the stress distribution within grains and along boundaries in contrast to the 

isotropic Norton-Bailey model commonly employed [79]. 

In the crystal plasticity finite element method, the plastic slip of dislocations is driven 

by the resolved shear stress sτ ( )  on each slip system s( ) , as described in Chapter 2. This 

motion gives rise to the observed creeping deformation of the material during experiments. 

Dislocation slip is impeded by several barriers within the blocks and laths which must be 

accounted for in the constitutive model. The primary mechanism of dislocation motion at 

low stress and high temperature is considered as the alternating glide and climb of 

dislocations around pinning obstacles [80, 81]. Climb and glide permit mobile dislocation 
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motion toward sites both within and at the boundaries of subgrain structures, where 

dipole-coalescence-based dislocation recovery mechanisms take place. The kinetics of the 

boundary mobility is accelerated by the reduction in Zener pinning effectiveness that 

accompanies the coarsening of interface M23C6 particles (and, perhaps, to a lesser extent, 

to exchange of distributed MX for Z-phase precipitates). The scale of low-angle subgrain 

structures also coarsens as the dislocations comprising their boundaries are mobilized by 

climb and glide, often doubling from initial as-tempered dimensions. The extent of 

microstructural recovery grows with the scale of inelastic strain that is accommodated by 

dislocation climb and glide. As a result of these dislocation and microstructural recovery 

processes, macroscopic measures of deformation resistance decrease over time. 

Ongoing efforts have been underway to realize these interacting mechanisms of 

dislocation mobility and substructure evolution within the crystal plasticity constitutive 

model for the PAG. The implemented version of the model described in Section 3.3 is 

based on tracking the evolution of the total dislocation density as partitioned to the 

individual slip systems within the body centered cubic (BCC) lattice. This model features 

several mechanisms for dislocation evolution, such as thermally-activated recovery by 

dislocation climb and dipole capture, and it also captures the crystallographic distribution 

of the dislocation network with high fidelity. However, this model treats the hierarchy of 

dislocation structures in a homogenized manner. Other researchers [23, 82, 83] have 

pursued composite dislocation density models in which the total density is decomposed 

into categories of mobile dislocations, immobile dislocations in cell insides, and immobile 

dislocations in cell walls. That decomposition appears to capture the variety of 

deformation rates evident in both monotonic creep tests and cyclic creep-fatigues tests 

with improved accuracy.  
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Therefore, a broader framework is envisioned for the CP constitutive model that 

contains as subsets the currently developed modeling features. The two primary 

components of the framework are (a) treatment of statistically-stored dislocations (SSD) 

through a mechanism-based composite model to capture subgrain evolution and (b) 

treatment of geometrically-necessary dislocations (GND) through a gradient-enhanced 

finite element method to capture back stresses observed during cyclic loading. This CP 

modeling framework provides enhanced capabilities compared to the isotropic Norton-

Bailey model for resolving the distribution of stress within the prior austenite grains and 

other substructure features. Predicting the evolution of these driving stresses is crucial for 

capturing both the loss of creep resistance within the grains as well as the local stress 

state along grain boundaries that influences the rates of cavity nucleation and growth. 

3.2.1 Constitutive model for statistically-stored dislocation density evolution 

The CP constitutive model proposed in Table 3-1 is developed by combining the 

crystallographic model of Busso and McClintock [24] with the physically based isotropic 

model of Barrett et al. [23] The realization of this model described in Section 3.3 has a 

crystallographic distribution of the total SSD density among the 48 slip systems of BCC 

crystals. While a higher fidelity model would capture the anisotropic hardening of these 

slip systems, a composite model with 3 fractions of dislocation density per slip system 

would be prohibitively expensive. Thus, only the isotropic density is tracked in this 

proposed constitutive model. Several physically-based mechanisms are accounted for 

within the dislocation evolution equations. These include precipitate hardening (3.5), 

subgrain strengthening (3.9), motion of mobile dislocations between pinning obstacles 

(3.11), immobilization of dislocations within cell interiors (3.13), coarsening of dislocation 

cell walls (3.15), and coarsening of M23C6 particles through Ostwald ripening (3.18). A 

subclass of these modeling features are included in the current CP model of Section 3.3,  
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Table 3-1. Flow rule and dislocation density evolution for Gr91 constitutive model 

Equation Number 
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Table 3-2. Nomenclature for Gr91 model and physical units employed 

Parameter Description Units 

sv  Slip velocity mm/s 

0F  Effective activation energy for 
dislocation slip 

mJ 

DFe,0  Diffusion coefficient for iron mJ/mm  

ed  Critical distance for mobile 
dislocation annihilation 

mm 

0δ  Initial cell wall dimension mm 
fM23C6  Volume fraction of precipitate dimensionless 
ksol  Solute atom parameter dimensionless 

1α  Material parameter dimensionless 

2α  Material parameter dimensionless 
rM23C6  Mean precipitate radius mm 

wt  Cell wall thickness mm 
ddip  Critical distance for dipole formation mm 
dlock  Critical distance for lock formation mm 
κ  Material parameter dimensionless 

0ρ  Initial total dislocation density 2−mm  

,i 0ρ  Initial immobile dislocation density 2−mm  

,w 0ρ  Initial cell wall dislocation density 2−mm  

,0δα  Lath growth parameter dimensionless 

δβ  Lath growth parameter dimensionless 

δγ  Lath growth parameter dimensionless 
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such as the thermally-activated annihilation due to climb (3.17). However, the 

decomposition of SSD density is expected to enhance the predictive capabilities of the 

modeling framework in regards to cyclic softening. During repeated load reversal, the 

dislocations that are mobilized from pile-ups by reversal of local driving stress may travel 

across subgrains to be captured within the lath boundaries on the opposite side of the 

subgrain, leading to annihilations within the dense cell walls in the process. These 

modeling equations with separate measures of mobile and cell wall dislocation density 

have the capacity for capturing these physical phenomena. 

 

3.2.2 Gradient-enhanced finite element method for geometrically-necessary 

dislocations 

Gr91 steel is known to exhibit cyclic softening during fatigue tests [23, 84, 85], where 

the maximum flow stress decreases and the total deformation increases over several 

hundred cycles. To model these effects in the microstructure, the geometrically necessary 

dislocation (GND) density based model from Bayley and Geers will be employed [43]. In 

this model, the back stress is a function of the GND spatial gradient according to the 

following relation: 

  ( )int ints s
b s e
ατ = ⋅ + ⋅b σ σ n



( ) ( ) ( )   (3.19) 

This model is based on the mechanism of dislocation pile up against grain boundaries. 

When the dislocation density varies spatially, the elastic field produced by individual 

dislocation can be integrated within a small zone of influence to yield a resultant back 

stress. The derivations within [43] provide expressions for the back stress, which are highly 

dependent on the crystallographic orientation. Both edge and screw dislocations are 
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considered. These derivations were applied in general without restriction to particular 

crystallographic slip systems. Therefore, the present developments will extend the existing 

results for face-centered cubic (FCC) systems to body-centered cubic (BCC) systems, 

which is the crystal structure of martensite. 
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( )

( ) ( ) ( )
edge sym

  (3.21) 

where sb( )  is the slip direction within a crystal plane s , st( )  is the tangent vector, and sn( )  

is the unit normal to the plane. 

In order to calculate the GND density gradient, Bayley et al. employed a mixed 

formulation with dislocation density as nodal unknowns. However, that method is 

computationally expensive because each node in the mesh has 18 additional degrees of 

freedom (DOF) which must be included in the global system of equations. Currently, the 

architecture of WARP3D does not permit the addition of DOFs per node. Therefore, a 

simplified approximation is pursued in this work that is based only on displacement nodal 

unknowns and using projections of the elastic deformation gradient tensor to obtain the 

GND. 

The measure of geometrically necessary dislocation density is obtained from the elastic 

incompatibility quantified by the Nye tensor α  (2.9) discussed in Chapter 2. The mapping 

of Nye tensor components into dislocation densities on slip systems is accomplished 

through an 2L  minimization process advocated by Arsenlis and Parks [86], leading to the 

following equation: 
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  ( ) ,
1T T s s s

GND ij i jA
−

= = = ⊗ρ A A A α Bα b t



( ) ( ) ( )    (3.22) 

As a candidate crystal plasticity model, the Mechanical Threshold Strength (MTS) 

model that is implemented in WARP3D was chosen. 

Due to the assumption of small elastic strains (1.7), the quantity which we need to 

interpolate in order to compute the Nye tensor e 1−= ∇×α F  is the elastic rotation tensor 

eR : 

  ,
1e p 1− − = = R R R R FU   (3.23) 

where pR  is the plastic rotation tensor evaluated through the constitutive model and R  is the 

rotation tensor defined from the right polar decomposition of the deformation gradient F . For 

the elemental projection, the values of eR  at the Gauss points in each element are employed to 

fit a linear function for each component, and this linear function is differentiated to obtain the 

curl e 1−∇×F . While the elemental projection was sufficient for conducting the simulations in 

Messner et al. [87], it is an ad hoc procedure. First, this element-based approach does not 

incorporate any communication of the field response between elements of the mesh, dampening 

the nonlocal contribution from the GND hardening term. Also, it is valid only for obtaining the 

first derivatives of the rotation tensor field. In contrast, crystal plasticity models involving a 

measure of the back-stress require the second derivative of the elastic rotation to be well-defined 

[88, 89]. 

In light of these motivations, a new numerical method is developed for extending the 

values of the plastic deformation gradient at the integration points into a non-locally 

defined field. The procedure is motivated by the developments of Mota et al. [52] on the 

projection of internal variables. First, the value of the plastic deformation gradient is 

obtained at each integration point by the usual loop over all the finite elements in the 

mesh during the stress-update process. These values are extrapolated to the nodes of the 
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mesh by using the bilinear finite element shape functions, in a process directly analogous 

to the post-processing of elemental stress fields for contour plots. The multiple values of 

the field at each node, which are generated by the various elements neighboring that node, 

are then averaged to a single value based on the tributary area of the adjoining elements. 

This unique nodal value then forms a field that can be interpolated using the Lagrangian 

finite element shape functions. The derivative of the field is then obtained by directly 

differentiating the Lagrangian shape functions, specifically at the integration points of the 

finite element mesh. This provides the value of the oriented GND density ( )sλ  that are 

needed within the evaluation of the material model listed above.  

To allow for the higher order derivatives of strain required by the GND relation (3.22), 

quadratic hexahedral elements are employed to interpolate the finite element displacement 

field. The flow-chart of this algorithm as well as preliminary results for cyclic tension tests 

that exhibit the Bauschinger effect will be presented at the oral defense. Ongoing efforts 

are pursued to complete the verification of this alternative modeling approach with the 

benchmarks given in the work of Bayley and Geers [43]. 

 

3.3 Dislocation density based crystal plasticity model for Gr91 

A dislocation density-based model was developed and implemented within the multi-

variable crystal plasticity framework of WARP3D to capture the material response across 

a range of deformation modes including strain-driven tensile tests, creep-fatigue, and creep 

[90].  The constitutive model retains the dislocation geometrical interactions proposed in 

the Ma and Roters [91] model but accounts for other microstructurally relevant 

mechanisms for Grade 91 as described in Section 3.2.  The slip systems for face-centered 

cubic (FCC) aluminum were replaced with the body-centered cubic (BCC) systems for 
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martensitic steel.  While dislocations in BCC crystals slip along the [ ]111  direction, the 

relative slip resistance offered along the ( )110 , ( )112 , and ( )123  planes are nearly equal, 

particularly at high temperatures [92].  Therefore, all 48 of these slip systems are utilized 

in the model; each system is listed in Table 3-3.  The interaction of dislocations across 

slip systems is calculated geometrically through sine and cosine functions of the slip planes, 

defining parallel and forest dislocation contributions.  Only statistically stored edge 

dislocations were considered in the crystal plasticity model. 

The relevant equations for the crystal plasticity model proposed for Grade 91 are listed 

in Table 3-4; details on the variable definitions and units are given in [90].  The flow rule 

has been modified from [91] to capture two key features of the material mechanisms.  

First, constitutive models for BCC materials [24] typically consider the lattice resistance 

or Peierls stress to be the most significant short-range obstacle to dislocation motion, 

which is taken as a constant stress 0̂τ  that does not depend on the dislocation network.  

Also, during creep at high temperatures under sustained lower stresses, the motion of 

dislocations may be described through a glide-climb mechanism [23, 93].  In this 

mechanism, the dislocations are pinned against precipitates or dense cell walls in the 

microstructure for extended periods.  A distinguishing feature of the proposed model is 

that the mean free path actually evolves in time due to the coarsening of the M23C6 

carbides and the spreading out of the subgrain cell walls.  The coarsening rate for particles 

is modeled through the Ostwald ripening equation [82], which accounts for agglomeration 

together over time due to diffusion at high temperatures.  However, the simulation results 

in [90] adopt a constant mean free path to focus the contribution to the creep rate 

acceleration to be the grain boundary cavitation alone. 

The crystal plasticity model in Table 3-4 has 12 material parameters, several elastic 

moduli that are functions of temperature, and the initial dislocation density on each of  
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Table 3-3. Slip system Miller indices for slip plane and direction for BCC crystals 

ID Slip System ID Slip System ID Slip System 

(1) ( )110 111     (2) ( )110 111    (3) ( )[ ]110 111  

(4) ( )110 111    (5) ( )101 111    (6) ( )101 111    

(7) ( )[ ]101 111  (8) ( )101 111    (9) ( )011 111    

(10) ( )011 111    (11) ( )[ ]011 111  (12) ( )011 111    

(13) ( )112 111    (14) ( )112 111    (15) ( )112 111    

(16) ( )[ ]112 111  (17) ( )121 111    (18) ( )121 111    

(19) ( )[ ]121 111  (20) ( )121 111    (21) ( )211 111    

(22) ( )[ ]211 111  (23) ( )211 111    (24) ( )211 111    

(25) ( )123 111    (26) ( )123 111    (27) ( )123 111    

(28) ( )[ ]123 111  (29) ( )132 111    (30) ( )132 111    

(31) ( )[ ]132 111  (32) ( )132 111    (33) ( )213 111    

(34) ( )213 111    (35) ( )213 111    (36) ( )[ ]213 111  

(37) ( )231 111    (38) ( )231 111    (39) ( )[ ]231 111  

(40) ( )231 111    (41) ( )312 111    (42) ( )[ ]312 111  

(43) ( )312 111    (44) ( )312 111    (45) ( )321 111    

(46) ( )[ ]321 111  (47) ( )321 111    (48) ( )321 111    
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Table 3-4. Flow rule and dislocation density evolution for Grade 91 constitutive model 

Equation Eqn. Number 

( )

( )

( ) ( ) ( )
M SSD

( ) ( )
pass ( )

0 0

exp 1 sign
ˆ

s

qp

o

f v

F
kT G G

α α α

α α
α

γ ρ λ

τ τ
τ

τ

= ×

  −−  −  
   



 (3.24) – Slip rate 

( )( )
part ,c b t Tα

λλ η=  (3.25) – Mean free path 
( ) ( )
pass Pc Gbα α

ρτ ρ=  (3.26) – Passing stress 

( )( ) ( ) ( ) ( )
F SSD

1
cos ,

N
α β α β

β

ρ ρ
=

=∑ m t  (3.27) – Forest dislocations 

( )( ) ( ) ( ) ( )
P SSD

1
sin ,

N
α β α β

β

ρ ρ
=

=∑ m t  (3.28) – Parallel dislocations 

( ) ( ) ( ) ( )
SSD Lock DR Climb
α α α αρ ρ ρ ρ= − −     (3.29) – Dislocation evolution 

( ) ( ) ( )Lock
Lock F

c
b

α α αρ ρ γ=   (3.30) – Lock formation 

( ) ( ) ( )
DR DR SSDcα α αρ ρ γ=   (3.31) – Dynamic recovery 

( ) ( ) C

( )
2( ) ( ) ( )Climb

Climb Climb SSDexp
mFc

kT kT

α
α α α

τ
ρ ρ γ = − 

 
   (3.32) – Climb annihilation 

part 1.6 1
4

p
p

p

r
b
λ πη

φ

 
= ≈ − 

  
 (3.33) – Relative particle spacing 

(not used) 

( )( ) ( )3 3
,,p p o pr t T r k T t= +  

(3.34) – Particle radius (not 
used) 

0.15pφ =  (3.35) – Volume fraction 

( ) 0
0

0exp 1

DG T G
T
T

= −
  − 
 

 (3.36) – Temperature dependent 
shear modulus 
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the 48 slip systems.  These parameters were estimated by fitting the results of finite 

element tensile simulations to the experimental tensile data from Swindeman [25] for 

Grade 91, which has stress-strain curves for several temperatures and strain rates.  This 

dataset had been used by Mooseburger [94] to calibrate an isotropic plasticity model for 

Grade 91.  Presently, the data for the temperature of 600°C is relevant for the fatigue and 

creep simulations conducted in subsequent sections of this work.  The elastic material 

parameters E  and ν  are fixed to the values appropriate for 600°C as employed by the 

Norton-Bailey model.  The temperature dependence of the shear modulus G  is specified 

to agree with experimentally measured variations [76]. Initial ranges for some of the 

plasticity parameters were determined from explicit integration of the plastic slip rate 

equation and dislocation density equations in MATLAB.  However, the interconnectedness 

of the parameters and their effects on the initial yield point and saturation stress suggested 

that additional help would be needed to isolate the values.  With the goal of selecting 

material parameters that would match the response near the 600°C temperature, a 

modified version of the Genetic Algorithm (GA) was used since a brute force method 

would not be efficient enough when the values of several parameters must be obtained.  

This modified GA method was developed by [95] and adds a domain trimming 

functionality.  

Due to the hundreds of generations and simulations performed during GADT, the 

computational model in WARP3D needed to be very simple and efficient.  Therefore, the 

computational domain was chosen as a single trilinear hexahedral element with dimensions 

5 5 5× ×  mm .  The WARP3D crystal plasticity framework allows for multiple crystals to 

be modeled within a single element by using the Taylor (isostrain) assumption, where 

each crystal is assumed to experience the same applied incremental strain but responds 

with a different internal stress.  The orientation of each crystal can be different, to 

approximate a polycrystal.  Therefore, 100 orientations were sampled from a random 
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texture and applied to the integration points in the single element. The boundary 

conditions of the model were specified for uniaxial tension, and 30 load steps of prescribed 

strain increments are applied to reach a total true strain of .0 03ε =  at constant true 

strain rate, to approximate the experimental conditions. 

The GADT targets the best fit of the stress-strain curves compared to the Swindeman 

tensile data for: T 500= °C  and . 5 16 7 10 sε − −= × , T 550°= C  and . 5 16 7 10 sε − −= × , 

T 600°= C and . 5 16 7 10 sε − −= × , T 600°= C and . 5 16 7 10 sε − −= × , and T 600= °C  and 

. 5 16 7 10 sε − −= × .  The parameters obtained from the GADT are reported in Table 3-5. 

Most of the parameters are in acceptable ranges as described in [91].  However, the 

activation energy 0F  and attack velocity sv  were somewhat larger than expected.  These 

larger values seemed to be necessary to fit the proper strain rate and temperature 

sensitivity observed in the experimental data. 

Figure 3-2 shows the resulting stress-strain curves in tension corresponding to these 

material parameters obtained from the GA.  The parameter set provides adequate results 

for the temperatures 500 C T °= , 550 C T °= and 600 C T °= with higher strain rate.  The 

simulated stresses are larger than the experimental data at lower strain rates.  Also, the 

amount of straining to the saturation point appears to be under-predicted.  However, 

these parameters were obtained when the GA had settled into a stagnant state after 3 

days of iterations where the fitness function values were remaining constant between 

generations.  Also, the initial dislocation density in total across the 48 slip systems is 

about 7 29 10  mm−×  or 13 29 10  m−× , which is a reasonable value for normalized and tempered 

martensitic steel [76].  Thus, the parameter values listed in Table 3-5 are employed within 

the crystal plasticity finite element simulations of the creep response of the 100 grain cell 

model reported in Section 3.2.6. 
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Table 3-5. Best fit material parameters obtained from GADT 

Parameter Value Units 
E  150,000 MPa 
ν  0.285 dimensionless 

0D  . . MPa 

0T  4,800 K 

0G  60,940 MPa 

0ρ  61.852 10×  2mm−  

sv  122.72 10×  1s−  

0F  166.901 10−×  mJ  

0̂τ  621.9 MPa 
p  1.0  dimensionless 
q  1.0  dimensionless 
cρ  0.2495 dimensionless 

partcλη  1,540 dimensionless 

Lockc  0.0058 dimensionless 

DRc  40.86 dimensionless 

Climbc  1512. 7 08 −×  5mm  s Cm  

Cm  0.3259 dimensionless 

climbF  163.457 10−×  mJ  
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Figure 3-2. Stress-strain curves of the boundary value problem solved by GA vs. the 

experimental data by Swindeman. 
 

3.4 Modeling creep response using 3D cell model and dislocation 

density-based model 

The primary benchmark case for evaluating the performance of the crystal plasticity 

model for creep response is a 100-grains cell model discussed in [90] for the Norton-Bailey 

model.  This model is also employed for the simulations with the multi-mechanism crystal 

plasticity model described in Chapter 5.  Therefore, the description of the cell model is 

repeated below, with the few distinguishing features highlighted.  Additionally, key results 

from the multi-dislocation model described in Section 3.2.4 are reproduced from [90] to 

highlight proficiencies and deficiencies in the model predictions that prompted the 

constitutive formulation revisions in Section 3.3.2. 

The 3D cell model is a ( )20.2 mm  cube-shaped domain containing 100 grains that is 

meshed with 10,402 quadratic tetrahedral finite elements.  Figure 3-3 shows the 
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arrangement of the grains within the cell.  For the CP model, the crystallographic 

orientation of each grain needs to be specified. The list of 100 orientations sampled from 

a uniform texture that is employed for the tension and fatigue simulations is also used for 

the cell model.  As shown in Figure 3-3, all of the finite elements within the same geometric 

region corresponding to a grain are assigned the same Euler angles, according to the Kocks 

convention.  

 

Figure 3-3. Representation of 3D cell model for CP model creep simulations: fringe 
plot of first Kocks Euler angle to indicate orientation of crystal lattice. 

 

Two instances of the microstructure are considered.  In the first, full continuity of the 

displacement field is enforced between grains in the model, to focus solely on the creep 

response predicted from the crystal plasticity model of dislocation climb-glide. This finite 

element mesh contains 15,761 nodes, which is fewer than the models in Chapter 2 because 

the nodes along grain boundaries have not been duplicated.  In the second, 3,921 interface 

elements are inserted between the boundaries of the grains, leading to 25,299 nodes in the 

model identical to the finite element meshes analyzed in Chapter 2, and the grain 
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boundary behavior was specified as sliding plus cavity growth but nucleation was 

suppressed.  

The boundary conditions on the cell consist of symmetry conditions on the faces 0x =

, 0,y =  and 0z = .  The effectively incomplete periodic boundary conditions obtained 

through multi-point constraints (MPC) are applied on the other 3 faces of the cube.  For 

the simulations herein, a uniform pressure is applied on the 0.2z =  mm face to represent 

the tensile creep loading.  The stress is increased linearly during 100 steps at 3.6 seconds 

per step to reach maximum load at 0.1 hours.  This stress increase period is subsequently 

referred to as the “load ramp period”.  The values of stress are set to 100, 120, and 140 

MPa to correspond to the load levels investigated experimentally by Kimura et al. [96].  

The temperature is set to 600oC.  The evolution of the dislocation density state variables 

within the crystal plasticity model are expressed through stiff differential equations.  

Therefore, small time step sizes were required to achieve convergence of the nonlinear 

finite element equation solver.  Table 3-6 lists the time steps for the simulations. 

For the crystal plasticity (CP) model, material parameters identified through the 

genetic algorithm listed in Table 3-5 are used for the simulations of both grain deformation 

only and combined grain boundary deformation.  The primary units are: stress, MPa; 

length, mm; time, seconds.  The material parameters for the grain boundary cavitation 

model, listed in Table 3-7, were calibrated in [90] such the Norton-Bailey finite element 

simulation of the 3D cell model at 120 MPa and 600oC produces the same tertiary creep 

response as the experimental data reported by Kimura et al. [96]. 

These simulations are performed on a high-performance Linux cluster with compute nodes 

having 20 cores with 3.1 GHz clock speed.  Each of the simulation cases requires different 

lengths of wall time for analysis completion.  For the CP model simulation with cavity 

growth suppressed and sliding enabled, a typical simulation with 1300 load steps  
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Table 3-6: Description of time steps within CP finite element simulation of creep. 

Ending step Number of steps Time step (s) 
Total model time 

(hr) 
100 100 3.6 0.1 
160 60 36 0.7 
200 40 360 4.7 
400 200 720 44.7 
600 200 1,440 124.7 
800 200 2,880 284.7 

1,000 200 5,760 604.7 
1,200 200 11,520 1,244.7 
1,400 200 23,040 2,524.7 
1,600 200 46,080 5,084.7 
1,800 200 92,160 10,204.7 
4,000 2000 92,160 11,2604.7 

 

Table 3-7. Material parameters for traction-separation rate equations and units 

Property Value Units 

bη  53.6 10×   1MPa s mm−⋅ ⋅   

0a  0.0005 mm 

0b  0.005 mm 

D   194.444 10−×   1 1 3MPa s mm− −⋅ ⋅   
ψ   ( )15 36 75π = °  radians 
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required 13 hours to complete using eight cores.  The statistics reported by the WARP3D 

output file indicate that 80% of the wall time is spent within stress updates for the crystal 

plasticity model.  As shown in Section 3.4.1, changes to the low-level subroutines of the 

CP code within the past year have substantially decreased the run time. 

First, three creep simulations are conducted at the applied stress levels of 100 MPa, 

120 MPa, and 140 MPa for the CP only microstructural cell model.  Similar to the studies 

for the Norton-Bailey model, the macroscopic average creep rate is computed using a finite 

difference calculation of the vertical nodal displacement of the top face of the cube from 

load step to load step. Figure 3-4 shows the variation of the creep rate during the 

simulation for each stress level.  To more clearly interpret the response of the cell, the 

response of the cell model during the first 10 hours is plotted on a larger set of axes in 

Figure 3-4(a), and the response under the constant applied stress is shown in Figure 

3-4(b). 

During the load ramp period, the strains developed in the cell remain essentially elastic 

because the applied stress is below the yield stress of the material at this strain rate 

(approximately 2 1 6 11.0 10  hr 2.8 10  s− − − −× ≈ × ).  Thus, the observed strain rate is the elastic 

strain rate, which is proportional to the applied stress.  After the maximum remote stress 

is reached at 0.1 hour, the strain rate immediately drops to the viscoplastic strain rate 

level corresponding to the CP equations.  These strain rates exhibit a variation with 

applied stress, due to the exponential nature of the flow rule.  Also, the 140 MPa 

simulation reaches a minimum creep rate after about 20,000 hours, indicating that the 

CP model captures the effects of both transient and steady state creep.  However, the 

contribution observed for grain boundary sliding is typically larger than the reduction in 

creep rate shown in Figure 3-4(b).  Here, the creep rate drops by a factor of 10 over the 

duration from 10 hours to 10,000 hours.  More importantly, the stress dependence of the  
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(a) 

  
(b) 

Figure 3-4. Macroscopic cell strain rate (/h) versus model time (h) for cell model 
without grain boundaries as a function of remote applied stress. (a) early 

portion of the creep response; (b) later portion of the creep response. 

 

CP model under-predicts the variation in the experimental data [96]. This discrepancy 

may be due to missing features in the proposed model, such as the trapping of mobile or 

free dislocation density within subgrain structures that lead to slowly decreasing rates of 

plastic strain during transient creep. 

The second set of creep simulations incorporates the grain boundary mechanisms of 

sliding and cavity growth.  Figure 3-5 shows the results for creep strain rate as a function 

of time for the imposed stress levels of 100, 120, and 140 MPa.  The accuracy of the crystal 

plasticity model is quite striking for the 120 MPa load level, for which the interface 

material parameters were calibrated.  While the minimum creep rate is overpredicted by 

a factor of 5, the time to minimum creep rate is much closer, at about 1,000 hours 

compared to 2,000 hours in the experimental data.  The computed solution is also 

reasonable for the 140 MPA stress level.  However, the creep strain rate for 100 MPa is  
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Figure 3-5. Macroscopic cell strain rate (/h) versus model time (h) for cell model with 

cavity growth and with sliding on grain boundaries as a function of remote 
applied stress. 

 

overpredicted during much of the simulated creep lifespan, and the simulated strain rate 

variation is less compared to the experimental data.  Each of the computed strain-rate 

curves appear flatter than the corresponding measured curves, meaning that less evolution 

of the microstructure is captured in the model during early creep life.  As indicated by 

the results for the CP-only model, the characterized stress-dependent features of the 

crystal plasticity material flow rule require modification to capture this variation correctly. 

The overall trends shown in Figure 3-5 indicate that the current CP model overpredicts 

the creep strain rates experienced within the 3D cell model.  These preliminary results are 

impacted by several factors.  First, the crystal plasticity material parameters are 

calibrated to match the stress-strain curves for older specimens of Grade 91 tested by 

Swindeman [25].  Second, the finite element models used for the calibration process contain 

only one solid element where the grains are approximated using the isostrain assumption.  

Third, the material parameters for the grain boundary constitutive models as well as the 
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NB model for the grains are calibrated together to match the minimum creep rate and 

tertiary response of the experimental data from Kimura et al. [96].  Nonetheless, an 

extensive study of different material parameter sets for the crystal plasticity and interface 

constitutive models did no produce an improved fit to the experimentally observed 

primary creep behavior while simultaneously matching the tensile stress-strain curves from 

Swindeman [25]. This discrepancy suggested that a different creep deformation mechanism 

is active at the lower stress levels that is not captured in the proposed model in Section 

3.2, thereby prompting the investigation of the multi-mechanism model in Chapter 4.  

 

3.5 Conclusions and recommendations for multi-mechanism 

model for creep deformation in prior austenite grains 

A dislocation density-based model including effects from statistically stored and 

geometrically necessary dislocations was developed for modeling the creep and fatigue 

response of Grade 91 and partially implemented within a crystal plasticity framework. 

While some positive features were exhibited by the multi-dislocation density-based model 

in Section 3.3, several drawbacks of this model were also identified.  First, the simulated 

creep curves did not capture the long duration of primary creep exhibited in the 

experimentally measured response, which could affect the history of stress concentrations 

at triple points and grain boundaries that lead to the eventual acceleration of creep strain 

rate.  Second, the stress-sensitivity of the model was less than the measurements of Grade 

91, so that the differences of minimum creep strain rate were not well approximated at 

load levels other than 120 MPa in Figure 3-5.  Third, experimental data for minimum 

creep strain rate obtained by Kloc et al. [97] exhibit a change in deformation mechanism 

at applied stress below 100 MPa at 600 C.  Figure 3-6 shows the variation of minimum 
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strain rate for different stresses from two Grade 91 creep test data sets; other sources 

show similar trends with power law relationship with 1n =  below 100 MPa and 10n >  

above 100 MPa.  Fourth, the previous model contained hardening variables representing 

the dislocation density on each of the 48 BCC slip systems.  Several studies, such as 

Section 3.4.3, indicated that the local anisotropy of the crystal plasticity model did not 

have a significant effect on the bulk response of the cell model during creep simulations.  

Without local stress or strain measurements of crystal-scale deformation during creep 

tests, the added computational expense from tracking many state variables at each 

integration point was difficult to justify. 

In pursuit of understanding the deformation mechanism transition in Grade 91 at 

lower operating stresses at temperatures at or below 600 C, a multi-mechanism crystal 

plasticity model is proposed in the following section that is a combination of dislocation 

creep and diffusional creep.  These two mechanisms, described subsequently, are assumed 

to occur simultaneously through motion of different types of defects (dislocations and 

atoms/vacancies), and thus the strain rates from each are summed together. This CP 

modeling framework provides enhanced capabilities compared to the isotropic viscoplastic 

models for resolving the distribution of stress within the prior austenite grains and other 

substructure features.  Predicting the evolution of these driving stresses is crucial for 

capturing both the loss of creep resistance within the grains as well as the local stress 

state along grain boundaries that influences the rates of cavity nucleation and growth.  
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Figure 3-6. Experimental creep results from [98] and [29] for minimum creep rate 

of Grade 91 loaded in uniaxial tension at 600 °C 
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COMBINED CRYSTAL PLASTICITY AND GRAIN 

BOUNDARY MODELING OF CREEP IN FERRITIC-

MARTENSITIC STEELS: THEORY AND IMPLEMENTATION 

4.1 Introduction 

The modified  9Cr-1Mo-V alloy (Grade 91) was developed for good high temperature creep 

performance in Liquid Metal Reactors (LMRs) by Oak Ridge National Laboratory and 

Combustion Engineering [99, 100] and since then is commonly used as high temperature 

structural components in fossil and petrochemical plants. Section 2 below describes its 

grain structure, precipitates, and other major microstructural features. Next generation 

power reactor concepts are calling for higher operating temperatures to improve efficiency 

and economy while maintaining a long design lifespan [101]. However, test data or material 

response knowledge of creep deformation and rupture is required for maintaining adequate 

design margins. Since sixty-year creep experiments are not practical, designers typically 

extrapolate expected long-term properties from available relatively short-term 

experiments conducted at higher stresses [102]. These extrapolation methods may produce 

non-conservative predictions since the deformation and rupture mechanisms of Grade 91 

are often observed to differ between low (service) and high (testing) stress regimes [98, 

103, 104]. 

Physically-based microstructural modeling provides an alternative manner to quantify 

long-term creep response by incorporating the relevant deformation mechanisms at the 

microscale to simulate macroscale properties, providing a rational basis as opposed to 

empirical models to extrapolate away from the testing conditions used to calibrate the 

model. Early Grade 91 constitutive models such as [94] were developed from unified 
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phenomenological models [105, 106], and thus do not contain information about the 

microstructure evolution. Many experimental characterizations of Grade 91 during and 

after creep tests [80, 81, 103, 107, 108] reveal a coarsening of the dislocation-rich 

substructure and the appearance of coarsened precipitate phases such as Laves and Z-

phases. This evidence has led to a series of physics-based macroscale models for creep 

based on the alternating climb and glide of dislocations [93] influenced by the coarsening 

of precipitates, although at lower stresses viscous diffusion of point defects is also present 

[104].  

Basirat et al. [109] developed a dislocation creep model with mobile and immobile fractions 

united with a continuum damage mechanics treatment of void growth. Another model 

[110] emphasizes the coarsening of the smaller MX precipitates as a contributor to creep 

strain rate acceleration. Recent developments by [111, 112] have led to a dislocation 

density and precipitate evolution model that captures Grade 91 creep response across a 

range of applied stresses and temperatures. Fatigue and creep-fatigue in Grade 91, while 

not addressed by the model proposed herein, is also important to high temperature 

operations in fossil and nuclear plants, and several models exist [113, 114] that are 

physically based on dislocation mechanisms leading to cyclic softening. 

A common aspect of the aforementioned continuum approaches is their limited ability to 

resolve the local distributions of stress and damage across the microstructure that drive 

the creep rupture process [115, 116], specifically in Grade 91 at the scale of crystalline 

grains. Crystal plasticity (CP) finite element modeling is targeted at this length scale to 

resolve the anisotropic motion of dislocations along slip systems at preferential 

orientations. Several phenomenological and dislocation density-based CP models exist for 

Grade 91 [117-122] but mainly target the response at higher strain rates associated with 

yielding, fatigue, and larger cracks. Crystal plasticity modeling of creep historically has 

been limited to single crystal simulations of Ni-based super alloys [123, 124]. Only in the 



 

101 
 

last couple years have polycrystalline models with dislocation climb mechanisms been 

developed for high temperature creep modeling [125], such as a model for Grade 91 

including particle coarsening [126]. 

While Grade 91 microstructural evolution during creep is heavily influenced by dislocation 

mechanisms within the grains, an equally large body of experimental and modeling 

evidence exists for the role of cavity nucleation and growth on creep strain rate 

acceleration and creep rupture. Post-mortem and in-situ characterizations of creep 

specimens [127-131] reveal distributions of cavities of varying size both within grains and 

particularly along prior austenite grain boundaries. Research on ductile fracture by void 

growth in elastoplastic materials was initiated e.g. by [132, 133]. Subsequent models for 

cavity growth along grain boundaries, stemming from the plastic dilatation models of 

[134], were launched by [11, 28] from computational studies of viscoplastic materials 

containing individual spherical cavities. Later enhancements [6, 28, 104, 135-140] have 

produced constitutive equations for growth of continuously distributed cavity populations 

subjected to varying states of stress triaxiality. Other authors [141] propose formulations 

for individual cavity elements that are assembled into networks along grain boundaries. 

These distributed population cavity growth models have been applied, e.g. by [142, 143], 

to simulate growth of specimen-scale cracks via length scale transition methods. Kassner 

and Hayes [144] have reviewed the literature prior to 2003 on cavitation in metals 

mediated by diffusion and creep in the vicinity of grain boundaries; later works have 

included the extension to elliptical voids and further resolution of issues with triaxiality 

[145, 146]. Extensions to other materials such as ceramics [147, 148] have studied the 

transitions between creep-controlled vs diffusion-controlled regimes as well as solving 

coupled problems of mass diffusion by pressure gradients along grain boundaries [149]. 

Nonetheless, the aforementioned studies on cavity growth and nucleation along grain 

boundaries have almost exclusively been limited to two-dimensional analyses of idealized 
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or irregular grain shapes. Meanwhile, the limited available three-dimensional 

polycrystalline models of creep cavitation [150, 151] reveal a greater level of constraint 

against both boundary sliding and opening which dampen the overall creep strain rates. 

Additionally, the background material in neighboring grains is represented as an isotropic 

viscoplastic material via the Norton-Bailey model, thereby neglecting the additional stress 

field heterogeneity that develops from anisotropy as well as possible transitions in active 

dislocation mechanisms. Therefore, a need exists for combining crystal plasticity finite 

element modeling of grains with cavity growth and nucleation along grain boundaries 

within three-dimensional micromechanical models to understand the relative roles of these 

mechanisms throughout the creep life of a single specimen and at different load levels 

across multiple specimens. 

The present two-part work aims to develop such a microstructural model for analyzing 

creep in Grade 91 ferritic-martensitic steel. The model includes deformation mechanisms 

from dislocation and diffusional motion within the prior austenite grains and viscous 

sliding and cavity growth and nucleation along grain boundaries, considered to be the 

material’s primary deformations modes. The physically-based cavity growth model 

extends from the smeared cavity population model of [11, 27, 28] by including the effect 

of creep strain and stress triaxiality from material points in the grains next to the grain 

boundary. These models are implemented into a nonlinear finite element code using both 

solid and interface finite elements that explicitly capture these features in the geometry 

of a cell domain representative of a Grade 91 microstructure. The influence of grain 

boundaries is first studied within a linear elastic microstructural cell model to quantify 

the effect of stress concentrations and mesh resolution on interfacial tractions. Next, 

simulations of uniaxial creep under 100 MPa stress at 600 °C are conducted, and the 

relative role of each mechanism during the stages of primary, secondary, and tertiary 

creep is analyzed. The second part of this work further validates the cell model and its 
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various deformation mechanisms against other short-life creep tests, provides predictions 

of creep response at longer-life at lower stresses, and analyzes the effect of varying levels 

of stress triaxiality on the creep rupture time. 

The remaining sections are organized as follows. Section 2 identifies the most prominent 

mechanisms of the microstructural response in Grade 91 in the creep regime. Section 3 

provides the constitutive equations for the grain and grain boundary models. Section 4 

lists key aspects of implementing these models. Section 5 describes a study on traction 

oscillations, the calibration of the model parameters, and a mechanism decomposition 

study at 100 MPa loading during creep simulations. Conclusions are drawn in Section 6. 

 

4.2 Material and Physical Mechanisms Modeled 

Grade 91 has a hierarchical microstructure [6, 137] within the prior austenite grains (PAG) 

depicted in Figure 4-1. Several martensitic blocks form during normalizing and represent 

different austenite to martensite lattice transformation variants. Each PAG typically 

contains several parallel groups of blocks called packets. Subsequent tempering leads to 

the formation of parallel laths within each block [138]. These features’ typical length scales 

range from about 30 μm diameter for the approximately equiaxed PAGs down to the 

laminar lath structures with internal layer width of 0.2 μm. 

 

The initial dislocation density in Grade 91 is a high value, typically around +13 -210  m  [6], 

and the local density within the dense networks of lath boundaries is even greater. A large 

fraction of the dislocation density within lath interiors is lightly trapped and thus easily 

mobilized during creep loading. The Grade 91 microstructure is also distinguished by a 

peppering of carbides and nitrides. Firstly, M23C6 precipitates, with M denoting an 

alloying species, tend to cluster along PAG and packet boundaries [6, 137]. These  
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Figure 4-1. Schematic of hierarchical features in Grade 19 microstructure 

 

precipitates with diameters around 100 nm [104] provide increased creep strength to Grade 

91 due to their relative stability at high temperatures and their action to pin the 

dislocation networks. Secondly, finer MC and MN precipitates with sizes about 20 nm are 

more uniformly distributed across packet and block interiors. Other Laves and Z phases 

tend to form by coarsening under sustained stress and temperature during service 

conditions [152-154]. 

These outlined metallurgical features of Grade 91, differing from other common high-

temperature materials such as austenitic alloys, have implications on its macroscopic creep 

response. For example, within the service temperature range 550-650 °C, these 9-12 Cr 

steels undergo extended periods of primary creep, with a creep rate that diminishes 

logarithmically down to a minimum creep rate [29, 104, 130]. This material does not 

exhibit a prolonged period of “steady state,” or secondary, creep at the minimum. Rather, 

the creep rate begins to progressively accelerate into the tertiary regime, with the time to 

fracture often scaling with the time to reach the minimum creep rate. 
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The principle deformation mechanisms in Grade 91 during primary and secondary creep 

are dislocation motion and point defect motion. The early-time response is characterized 

by reduction in mobile dislocations [116], which are thermally and mechanically activated, 

that move across the lath interiors and are entangled in the lath boundaries [80]. 

Subsequently as the minimum creep rate is approached, the kinetics of the high density 

of immobilized dislocations are governed by climb over precipitates and other recovery 

mechanisms [104], manifesting as a power-law dependence of stress versus creep rate. In 

parallel, point defects such as vacancies can use both subgrain, block, and packet 

boundaries along with dislocation cores as diffusional highways, since the reduced lattice 

coherence in these regions increases their effective diffusivity. As a reasonable upscaling 

of these hierarchical features, the defect network may be assumed to be uniformly 

geometrically distributed, resulting in effective isotropic diffusion at the PAG scale, with 

an apparent linear relation of stress and creep rate. 

The competition of these mechanisms appears when comparing test data from minimum 

state creep rates obtained from several experiments and load levels. Figure 3-6 compiles 

measured minimum creep rates (of Grade 91) under uniaxial tension at 600 °C obtained 

on P-91 heat resistant steel by Kloc [98] and ASME SA-213 T91 by Kimura [29]. A distinct 

shift appears in the power-law dependence of strain-rate with stress near the 100 MPa 

load level. Hence, extrapolating creep lifetime from tests at higher load levels likely 

underestimates the strain rate and overestimates of the creep lifetime. However, creep 

tests at loads below 100 MPa are only rarely run to specimen failure since the lifetime 

exceeds 50,000 hours (6 years). These interacting mechanisms in the PAG bulk are 

concurrent with the evolving state of the grain boundaries under progressive deformation. 

A prominent mode of creep damage experimentally observed in metals, including low and 

high chromium alloy steels, is the formation and growth of cavities along grain boundaries 

[155, 156]. Creep damage evolves by a combination of nucleation of new cavities and 
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growth of existing cavities. Cavity expansion and coalescence reduces the intact material 

interfacial area, causing higher local stresses in their vicinity and also surrounding 

redistribution of stress to other grains. In Grade 91, post-mortem investigations of creep 

specimens at 600 °C [81] and 625 °C [128] reveal correlations between coarsening of M23C6 

precipitates and emergent Laves phase at PAGB and the location of cavities. Greater 

numbers of cavities appeared along high-angle boundaries such as grains and packets 

compared to the low-angle lath boundaries. Three-dimensional images captured by 

synchrotron X-ray microtomography [129, 157] at various loading stages during creep in 

Grade 91 and high-Cr alloys also indicate congregation of cavities on PAGB, although 

number densities on the order of 6 31 10  mµ− −×  as well as location do vary with load level. 

Grain boundary sliding has also been observed in Grade 91 [128, 140], which can add to 

the overall creep straining and also produce stress concentrations around particles and 

triple junctions of grains that drive cavity nucleation. While the nature of cavity growth 

and nucleation is not fully understood, several experimental and theoretical efforts [11, 

127, 142, 158] present clear effects from the creep strain and triaxial stress state within 

neighboring grains and the normal traction on grain boundaries onto the growth and 

nucleation of cavities, leading to void coalesce and creep damage that eventually causes 

rupture. Thus, a physically-informed grain boundary model for creep damage must take 

account of the intrinsically linked processes and state in the neighboring grains. 

 

4.3 Modeling 

The review of experimental observations of Grade 91 reveals two principal mechanisms: 

(a) bulk motion of grains mediated by dislocation motion as well as point defect diffusion; 

and (b) void nucleation, growth, and coalesce on grain boundaries. These two mechanisms 

motivate a micromechanical finite element modeling approach allowing for both grain 
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boundary and grain bulk deformation, using the concept of a three-dimensional (3D) cell 

model. A typical microstructure realization is presented in Figure 4-3 composed of (a) 

prior austenite grains (PAG) represented as solid elements and (b) prior austenite grain 

boundaries (PAGB) represented as interface elements. Resolving both features distinctly 

in the model enables the determination of how the modes interact. Though our simulation 

cells only capture the coarsest level of the hierarchical microstructure of Grade 91, models 

of this sort still capture all the key microstructural deformation mechanisms causing creep 

and creep-rupture in the material. The constitutive relations for the grain boundary and 

grain bulk are discussed here, while key aspects of their numerical implementation and 

behavior are addressed in Section 4. 

 

4.3.1 PAGB constitutive model 

Each of the approximately planar PAGBs in Grade 91 can add to the overall creep 

deformation both through its in-plane (tangential) sliding and out-of-plane (normal) 

opening mechanisms. According to Section 2, we ascribe their opening deformation to 

cavity formation, growth, and coalescence. The modeling approach employs initially zero-

thickness two dimensional (2D) interface elements on the boundaries of 3D PAG, as shown 

in Figure 4-3 (b), with an associated traction-separation (cohesive) model. The cohesive 

model for cavity nucleation, growth, coalescence and viscous grain boundary sliding 

derives from multiple decades of effort starting with Ashby and co-workers [11, 28, 139], 

and more recently by Sham and co-workers [12, 159]. Our efforts are the first to extend 

the model to three dimensions that enables far more realistic (geometrical) representations 

of the surfaces connecting grains. Modifications are also proposed in the near coalescence 

phase of deformation, the degradation of sliding viscosity under large-scale cavitation, and 

in the nucleation of cavities. 
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4.3.1.1  Cavity nucleation and growth 

The interface-cohesive model approach herein adopts a smeared representation of the 

cavities along PAGB as opposed to tracking individual cavities. Hence, the primary state 

variables at integration points in the interface elements are average cavity radius a , 

center-to-center spacing 2b  between adjacent cavities, and number density N  per surface 

area. Nucleation increases the cavity density, growth increases the cavity size, and both 

contribute to increasing normal separation and decreasing normal traction along PAGB. 

Note that a uniformly spaced rectangular array of cavities is assumed, such that the 

number density and cavity spacing are related by ( )21N bπ= , and that the ratio ( )2 1a b ≤

represents the porosity of the grain boundary. 

While grain boundary cavities are believed to form at high temperatures due to e.g. 

cracking/debonding of M23C6 precipitates, stress concentrations, and dislocation slip band 

pileup [11], the challenges of directly observing nucleation have hindered the quantification 

of its mechanisms and rates. Existing studies [127, 156, 160] indicated that the continual 

cavity nucleation process is moderated by local creep strain rates in neighboring grains, 

with an initialization threshold related to the accumulated creep strain. A cavity 

nucleation model reflecting these observations was developed by [142] and posits that the 

initial number density IN  (e.g. cavities/mm2) evolves according to traction and creep 

rate as follows: 

 ( )0
C

N n eqN F T
β
ε= Σ



   
(4.1) 

where NF  is a rate constant, C
eqε  is the von Mises equivalent creep strain from the 

neighboring PAG as defined in Section 3.2 (4.17), nT  is the normal traction, •  denotes 

the Macaulay bracket returning the positive part of its argument, 0Σ  is a normalization 

parameter, β  is a traction exponent typically taken as 0 or 2, and a superimposed dot 
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denotes material time derivative. Nucleation occurs when the threshold relation (4.2) is 

satisfied: 

 ( )0, ,ethr thr
C

n Iq NS S FS T S N
β
ε≥ = =Σ

 
(4.2)  

Lastly, both experimental observation and [142] suggest that the cavity number density 

reaches a saturation maxN  beyond which creep straining does not form new cavities. 

Once nucleated, cavities grow by two interacting mechanisms: (a) diffusion of atoms along 

the cavity periphery and (b) creep deformation of the locally surrounding material. Figure 

4-2 depicts the geometry of the cavity and this material flow.  

 

 
Figure 4-2. Idealized grain boundary cavity, showing atom flow from cavity surface 

towards its tip into the grain boundary 
 

Detailed finite element models of individual cavities embedded in viscoplastic background 

material [11, 28] have produced relations for the cavity volumetric growth rate V . While 

the diffusional flow is driven solely by the interface normal traction nT , the creep 

contribution is also affected by the grain creep strain rate C
eqε  and the stress triaxiality 

according to the ratio of mean stress mσ  and von Mises equivalent stress eqσ  (see Section 

3.2). Other researchers [6, 28, 104, 135-140] have enhanced these models to fit responses 

of discrete voids over a wide range of triaxialities and porosities ( )2a b . Our model adopted 

for Grade 91 cavity growth, stemming closely from [28], is expressed in (4.3) – (4.13) and 

relates V  to the evolving cavity radius a  and normal grain boundary separation rate 
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( )i
nu 



 
 

, with the superscript (i) denoting the irrecoverable portion. The superscripts (d) 

and (c) indicate respectively the contributions from diffusion and creep, and the subscripts 

L and H indicate respectively the fitting relations for lower and higher levels of triaxiality. 
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(4.5) 

 ( )( ) 8
( )

nd T
V f D

q f
π=

    
(4.6) 

 
2 2 2

2 2 2 max , ,     
( 1.5 )L H

a a af f
a L b b

 
= = +      

(4.7) 

 

{ }

3

( )

3

2 ( ) ( )    if 1

2 ( ) ( )    if 1

n

C m m
eq n n

eq eqc
L

nC m m
eq n n

eq eq

a h m m
V

a h m

σ σε π ψ α β
σ σ

σ σε π ψ α β
σ σ

    + ≥    = 


+ <








    

(4.8) 

 

3
3/

( )

3
3/

12 ( )    if 1
1 (0.87 / )

12 ( )     if 1
1 (0.87 / )

n

C m m
eq nn

eq eqc
H

n
C m m
eq nn

eq eq

ma h m
a b n

V
ma h

a b n

σ σε π ψ α
σ σ

σ σε π ψ α
σ σ

     + ≥   −      = 
   + <   −   







    

(4.9) 

 ( ) 2

3 ( 1)[ ( )]sgn ,    ,    ( )
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2 2(1) ln 3 0.4319,    ( 1) 0.4031
3 9 3
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= − ≈ − = ≈

    
(4.11) 
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 ( )( )1( ) 2 ln 1 3q f f f
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≡ − − −  
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The subscripts VVNT stand for van der Giessen-van der Burg-Needleman-Tvergaard. 

Note that expression (4.3) for opening rate does not include a term involving b  which 

appears erroneously in [161] and subsequent works [142, 143]. The authors intend on 

providing a consistent derivation of (3) for a spherical cavity accounting for mass 

conservation in an upcoming publication. 

The additional material parameters are the grain boundary diffusion coefficient D  and 

the equilibrium cavity tip half-angle (see Figure 4-2, typically 70°). Also, the Rice creep-

diffusion interaction length ( )1/3C
eq eqL Dσ ε=   is a characteristic length scale for which creep 

flow dominates ( )1a L  over diffusional flow ( )1a L . In the present model, we make 

the simplification that new cavities that are nucleated have the same radius a  as current 

cavities.  

A few notable enhancements have been applied to [11, 28] to make the model suitable for 

micromechanical modeling combined with crystal plasticity behavior in the grains. Firstly, 

the creep-drive cavity growth rate terms were derived assuming a power-law viscoplastic 

relation, namely C n
eq eqBε σ=  with a constant exponent n , which explicitly appears in (4.8) 

– (4.10). However, the constitutive response in the neighboring grains discussed in Section 

3.2 does not follow a strict power-law relation. Therefore, an effective exponent effn  is 

computed by the solid elements as described in Appendix A.3 in accord with the evolving 

dominant deformation mechanism in the grains. Secondly, typical formulations of interface 

cohesive elements depend only on the traction vector rather than the entire state of stress 

as in (4.8) – (4.9). Hence, a nonlocal implementation is needed to communicate the 

material state from the solid elements and is discussed in Section 4. Thirdly, we modify 

the q  function (4.13) to accelerate the growth rate for values of areal porosity f  exceeding 

0.25 to represent the coalescence of adjacent cavities; see Appendix A.1. Note that the 

original model can produce non-vanishing tractions along grain boundaries for moderately 
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large porosity while experimental measurements indicate the traction should vanish at 

lower levels.  

 
4.3.1.2  Viscous sliding 

A simple viscous sliding model is adopted at the PAGB to relate the shear traction sT  

to the relative tangential slip rate 
 su : 

 ( )
 0 /s sd sf a bη=T u     (4.14)  

where 0η  is the initial grain boundary viscosity. This model extends to 3D the work of 

Ashby and co-workers [139, 158, 162] on grain boundary sliding in metals at high 

temperatures by introducing a decay function sdf  that degrades the effective viscosity as 

cavities nucleate and grow. A simple form is adopted where 1sdf =  while 0.5a b ≤  and 

degrades linearly to zero as a b  approaches 1. Note that grain boundary sliding does not 

explicitly contribute to the cavity growth and nucleation model. Instead, sliding 

displacements indirectly impact cavity growth by leading to geometric effects, such as 

impingement at triple points, that elevate nearby grain stresses, creep rates and normal 

tractions acting on grain boundaries. 

 

4.3.2 PAG constitutive model 

As shown in Figure 4-3, our cell model for the microstructural evolution of Grade 91 

contains many solid finite elements grouped into regions to explicitly represent the PAG. 

The crystal lattice of the martensite phase is a body-centered tetragonal (BCT) crystal, 

which is approximated herein as a body-centered cubic (BCC) structure. A crystal 

plasticity model is developed to account for the effects of dislocation substructure 

evolution and the transition of dominant deformation mechanisms that are vital to 
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characterizing the evolution of the creep resistance of Grade 91 during service life [108]. 

The plastic anisotropy of the crystalline response gives rise to preferential directions of 

plastic strain that can affect the local stresses and concentrations that promote the actual 

evolution of defects such as cavities along grain boundaries. Additionally, experimentally 

obtained creep strain rates at lower stresses [98] suggest a deformation mechanism 

transition occurs below 100 MPa uniaxial stress at 600 °C. These trends motivated the 

incorporation of terms reflecting diffusional flow within the grains. 

The rate-dependent crystal plasticity kinematics developed previously [87, 163] utilize the 

Green-Naghdi objective stress rate [17, 70, 71] as well as the elastic-plastic multiplicative 

split of the deformation gradient to relate the stress and strain evolution. These 

derivations arrive at an expression relating the unrotated Cauchy stress T=t R σR  to an 

additive decomposition of the unrotated rate of deformation 1 11
2

− − = + d UU U U   and total 

inelastic strain rate ( )id . Note that R  and U  are the rotation and right stretch tensors, 

respectively, from the polar decomposition =F RU . To further understand the 

deformation mechanism transition in Grade 91 observed in Figure 3-6, a multi-mechanism 

inelastic rate model (4.15) is proposed that combines dislocation creep and diffusional 

creep. These two mechanisms, described in subsequent sections, are assumed to occur 

simultaneously through motion of different types of defects (dislocations and 

atoms/vacancies), and thus the strain rates from each are summed together. 

 ( )( ) ( ) ( ): i p pT T
o= − + −t C d d Rw R t tRw R

 
(4.15) 

 ( ) ( ) ( )i p d= +d d d  (4.16) 
 

where ( )pd  is the crystal plasticity strain rate, ( )pw  is the crystal plasticity vorticity, ( )dd  

is the diffusional strain rate, and oC  is the elastic moduli tensor in the unrotated frame. 
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The terms involving plastic vorticity are correction terms that consistently account for 

the lattice rotation [87]. 

In the vicinity of the grain boundaries, von Mises equivalent stresses and strains are 

computed from the tensorial stress and strain values in order to drive the cavity growth 

and nucleation: 

 ( ) ( ) ( )3 1 2
2 3 3 0

: , tr : ,
TC i i C C

eq eq eq eq dtσ ε ε ε′ ′ ′= = − = = ∫σ σ σ σ σ I d d 

  
(4.17)  

 
4.3.2.1  Dislocation creep 

At moderate stresses and high temperature, the primary dislocation mechanism exhibited 

by Grade 91 [81] is alternating glide and climb over various barriers within the blocks and 

laths. This manifests as a power-law dependence of the steady state stress during creep 

tests with a larger exponent indicating the prevalence of precipitates [128]. However, 

several researchers also observe experimentally a prolonged period of primary creep [164], 

which is likely associated with the immobilization of free dislocation density remaining 

after the normalizing process [116] as well as viscous sliding along grain boundaries as 

mentioned in Section 3.1.2. As revealed in the microstructural simulations in Sections 5.3 

and 5.4, both grain and grain boundary deformation terms play a role in representing the 

transient creep response. Therefore, we include a hardening term in the crystal plasticity 

constitutive equations that follow. 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1
,

slip slipn n
p s pT s s p p s pT s s p

S A
s s
γ γ

= =

= ⊗ = ⊗∑ ∑d R m n R w R m n R     

 
(4.18) 

 ( )( ) ( ) ( ) ( ) ( ) ( )1
2

s s s s s s

S
 ⊗ = ⊗ + ⊗ m n m n n m     

  
(4.19) 

 ( )( ) ( ) ( ) ( ) ( ) ( )1
2

s s s s s s

A
 ⊗ = ⊗ − ⊗ m n m n n m     

  
(4.20) 

 ( )
1( )

( ) ( ) ( );
ns

s s sγ τγ τ τ τ
τ τ

−

=


 

    
(4.21) 

   (4.22) 
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 ( )
0

1
1

slipn
sw

w
sv

ττ θ γ
τ =

 
= − 

 
∑ 

  
(4.23) 

 

Here, ( )( ) ( ):s pT s pτ = t R m R  is the resolved shear stress, pR  is the plastic rotation tensor, 

and ( )sm  and ( )sn  are the slip direction and slip plane normal unit vectors in the lattice 

frame for system (s) within the set of 12 primary { }110 111  BCC slip systems. A Voce 

hardening model (4.23) is adopted for the strengthening resistance wτ  within the drag 

stress τ  of the power-law relation for slip rate ( )sγ . The remaining parameters are 

reference strain rate γ , saturation stress vτ , and flow modulus 0θ . We remark that we 

also considered dislocation density-based models with unequal hardening across the 

expanded 48 BCC slip systems. However, we found that such sophisticated models were 

not needed to capture the relevant microstructural deformation mechanisms. Thus, the 

simplified model given by (4.21) – (4.23) was adopted to reduce the computational cost 

of subsequent simulations. 

 

4.3.2.2  Diffusion 

The apparently linear relation between the steady state creep rate and applied stress at 

lower loads [98, 165] is assumed to derive from motion of point defects along various 

highways, e.g. dislocation cores and grain boundaries, in the complicated microstructure 

of Grade 91. A continuum strain rate model for these diffusional effects is conceptualized 

from the flux of atoms or vacancies being driven by differences in chemical potential along 

the boundaries surrounding an individual grain. Atoms flow from lower-normal-stress 

boundaries to higher-stressed boundaries since the plating out on the latter leads to 

effectively lower system energy. The deviator stress provides a first-order measure of the 

differing normal stresses along a given grain’s boundaries, such that a proper accounting 
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of the geometrical effects of diffusion is achieved. Thus, an effective strain rate ( )dd  for 

atomic/vacancy diffusion emerges as being proportional to the deviator stress ( )dev t , 

both expressed in the unrotated frame: 

 ( )( ) devd Dη=d t  (4.24) 
where Dη  is a generic diffusion coefficient to be obtained by scaling arguments and fits 

to experimental data. Diffusion of atoms or vacancies in pure metals is commonly 

differentiated into one of three classes of mechanisms according to grain-size dependence 

or activation energy: Nabarro-Herring creep within grains [166], Coble creep along grain 

boundaries [167], and Harper-Dorn creep [168, 169]. While the complicated microstructure 

of Grade 91 prevents a clean delineation [98], its high dislocation density and small 

subgrain sizes suggest that atomic diffusivity is nontrivial in these quenched and tempered 

alloys even at lower homologous temperatures. Note that the model (4.24) certainly does 

not capture the local effects of atomic diffusion along and near the grain boundaries 

(beyond those associated with cavity nucleation and growth) and coupled mechanical 

deformation and chemical diffusion modeling will be considered in future work. 

 

4.4 Constitutive Model Implementation 

The constitutive models for PAG and boundaries from Section 3 are implemented within 

the finite element code WARP3D [71] due to its features for interface finite elements and 

its extensibility to enable to nonlocal material state transfer from the solid to interface 

elements. Quadratic 10-node tetrahedral elements are employed with B-bar formulation 

of the strain field. The crystal plasticity model implementation uses an implicit backward 

Euler time integration scheme and solves the resulting local nonlinear equations using the 

Newton-Raphson method. The details of its implementation are given elsewhere [87, 163, 

170]. The key equations are summarized in the Appendix A.2, with the inclusion of the 
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diffusional creep contribution. Another new calculation required by the interface cavity 

growth model is the effective power-law exponent effn . That derivation is given in 

Appendix A.3. 

The PAGB constitutive model for cavity nucleation and growth is implemented into 

WARP3D using an explicit time integration strategy, which is adopted primarily to 

simplify the cavity growth formulas that depend on the stress state of the neighboring 

grains. The time-discrete evolution equations for the interface state variables from Section 

3.1 are expressed in detail in Appendix A.1. Gauss quadrature with a 7-point rule is used 

to evaluate the internal virtual work of the quadratic interface elements, and the state 

variables are tracked at each Gauss point. 

Several noteworthy numerical method enhancements were developed to overcome the 

challenges of coupling anisotropic nonlinear constitutive models in the grain and grain 

boundaries. Further details of the implementation and parametric studies of the PAG and 

boundary models for Grade 91 are contained in prior work [12, 159]. First, the ( )q f  

function in the cavity growth model was modified as described in Appendix A.1 to increase 

the overall numerical stability. Second, a basic adaptive time step scheme was added to 

WARP3D to improve convergence and efficiency in the tertiary creep regime. As shown 

in Section 5, the cell model is loaded by a stress that ramps up quickly and is held constant 

so that the cell creeps slowly for several 1,000 hours, such that a time step 500t∆ =  hours 

is reasonable. However, the creep strain rate increases by several orders of magnitude once 

cavity growth progresses, and the global Newton algorithm requires a time step size less 

than 1 hour to avoid diverging nonlinearities. Third, the virgin response of the grain 

boundaries prior to cavity nucleation was approximated by adding a stiff elastic term into 

the traction-separation relation (4.3), essentially as a penalty contribution and also to 

prevent interpenetration along boundaries under compression. The linear stiffness must 

be carefully chosen in a narrow range for this nonlinear problem class to avoid excessive 
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elastic opening as well as oscillatory tractions along the PAGB. This range was determined 

through a sensitivity study in Section 5.1, providing new insights into interface element 

behavior in polycrystalline microstructural models that are gaining popularity [171, 172]. 

 

4.5 Microstructure model and algorithmic aspects 

This investigation focuses on the creep response of bulk (non-weldment) Grade 91 using 

a 3D microstructural cell model containing 100 regions representing prior austenite grains. 

The polycrystalline mesh generator Neper [173] can generate both cuboid and fully 

periodic collections of grains by Voronoi tessellation and space-fill with quadratic 

tetrahedral elements, as in Figure 4-3 (a) and (c). Subsequently, interface elements are 

inserted into the conforming mesh using the fully automated and open source script DEIP 

[174-176] developed by the authors. The behavior of the two geometrical versions of the 

cell model are compared for creep loading in [159]. Both cells are 0.2 × 0.2 × 0.2 mm3 such 

that the average grain size is about 50 µm with a log-normal distribution instantiated 

from a random texture. The standard cuboid model (used for all simulations unless 

specified otherwise) has 25,229 nodes, 10,402 solid elements, 3,921 interface elements, and 

467 essentially planar grain boundaries. The interested reader will find details within [12, 

159] regarding these software programs and generated mesh geometries.  

Each uniaxial creep simulation in this section follows a common load-hold strategy. For 

the cuboid cell model, symmetry boundary conditions are assigned on the three faces 

0x = , 0y = , 0z = , and the nodes along transverse faces 0.2x =  and 0.2z =  are 

constrained to move together in the normal direction as a pseudo-periodic boundary 

condition; the driving uniaxial traction is imposed along 0.2y =  via multi-point 

constraints. The applied traction is ramped from 0 to 100 MPa during 0.1 hours in 10 

equal time steps to correspond with the load-ramp period in [29]. The load is then held  
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(a) 

 
(b) 

 
(c) 

Figure 4-3. 100 grain cell model finite element mesh: (a) cuboid solid elements; (b) 

cuboid interface elements; (c) fully periodic solid elements 

 

constant while the simulation is advanced using adaptive time stepping to track the 

evolution of the PAG and boundary deformation.  

The cuboid cell model in Figure 4-3 (a) is employed for all of the calibration tests and 

creep simulations in this section, which is sufficient for uniaxial tension. The fully-periodic 

cell model in Figure 4-3 (c) is employed for the triaxial loading conditions in Part 2 of 

this manuscript. Our previous studies [159] have demonstrated that cuboid and periodic 

meshes with identical Voronoi grain structure and similar number of finite elements 

produce nearly identical cell-average creep strain response. These observations agree with 

the study of cuboid and periodic representative volume elements of matrix-inclusion 

composites in [177]. 

4.5.1 Oscillating tractions study 

As mentioned in Section 4, several numerical challenges emerged from the coupled 

nonlinear grain and boundary models that caused divergence of the Newton-Raphson 

equation solver at the domain level or material integration level. One worrisome 

observation during the parameter calibration and sensitivity studies of Section 5.2 and 
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[159] was that the normal traction component nT  along PAGB often exhibited oscillations 

with an amplitude larger than the applied stress level. These artificially large tractions, 

believed to be numerical artifacts of the elastic stiffness nK  defined in Appendix A.1, had 

a detrimental effect on the time to onset of cavity nucleation and growth. Therefore, a 

study of this penalty parameter was performed to determine a reasonable range of its 

value to suppress the oscillations. 

Relatively few numerical studies have been performed using finite element modeling of 

representative volume elements containing crystal plasticity within the grains and 

interface elements along grain boundaries. Most such studies have focused on brittle 

fracture or crack propagation rather than on ductile void growth [172, 178, 179]. Earlier 

studies on two-dimensional microstructures considering elasticity [180] and power-law 

creep [181] revealed that heightened stresses can occur at triple junctions between grains 

when low sliding resistance is assumed within the models. Also, a wide body of literature 

from finite element contact mechanics modeling identifies the large stress concentrations 

that emerge when resolving normal and tangential contact tractions [182], particularly for 

frictionless contact where the tangential stiffness vanishes.   

Thus, a series of numerical tests were conducted with varying normal and tangential 

interface stiffness and element types to understand the source of the oscillatory traction 

fields. The initial geometry is shown in Figure 4-3 (a), and all grains are treated as linear 

isotropic elastic with 150E =  GPa and 0.285ν = . Symmetry boundary conditions were 

applied on the 0x = , 0y = , 0z =  planes, the transverse faces are traction free, and a 

uniform displacement 0.001xu =  mm was applied on the 0.2x =  face to yield an average 

uniaxial stress of about 750 MPa. For simplicity, the interface element formulation uses 

a linear relationship between the (normal and tangential) traction components nT  and tT  

and the displacement gaps 
 nu  and 

 tu  with individual stiffness coefficients nK  and tK
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, respectively. The tangential stiffness replaces the role of viscous grain boundary sliding 

in order to allow static, linear simulations. Preliminary estimates of the normal stiffness 

suggested a range of 61.0 10nK = ×  to 81.0 10nK = ×  MPa/mm. The tangential stiffness was 

varied between 1.0tK =  MPa/mm (approximately free sliding) and t nK K= . 

Three different element types are compared: quadratic tetrahedral, linear tetrahedral, and 

linear hexahedral. The linear tetrahedral mesh is obtained by subdividing each quadratic 

element into 8 linear ones, retaining the same number of nodes. A similar subdivision 

strategy yields 4 hexahedral elements from each quadratic element, with a new node in 

the center of each face of the tetrahedral element. Mesh refinement was conducted on the 

linear tetrahedral mesh by uniform subdivision, and these meshes are labeled as coarse, 

medium, and fine in later discussions. 

Fringe plots from the element-averaged stress field xxσ  for varying levels of tK  are 

presented in Figure 4-4. The extreme values on the legend are set to two standard 

deviations above and below the average stress. The deformed configuration is magnified 

50 times to better visualize the grain boundary sliding; hence the grains appear to separate 

and overlap. The free sliding case 1.0tK =  has the largest variations of stress about the 

mean. Essentially, much of the concentrations are at triple junctions, where the load 

transfers between grains by contact at these junctures. As the stiffness increases to 

81 10t nK K= = × , the amplitude of the stress variation decreases to about 20 MPa with 

significantly smaller gaps between grains. Overall, while stress gradients emerge within 

grains, the fields are typically monotonic and do not exhibit values greatly above and 

below the mean next to each other within the same grain. 

We next examine the interface normal traction components for the case of free sliding 

case 1.0tK = ; this represents a worst case since at 600 °C the interface viscosity provides 

moderate to large sliding resistance. Figure 4-5 (a) and (b) compare the traction field nT  
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on the coarse quadratic mesh with low and high normal stiffness. For 61.0 10nK = × , the 

traction field is smooth and generally indicates tension on grain boundaries oriented 

perpendicularly to the load axis and compression along parallel facets, with a magnitude 

on the same order as the stresses in Figure 4-4. In contrast, the simulation in Figure 4-5 

(b) with 81 10nK = ×  exhibits many grain boundaries with neighboring elements having 

positive or negative traction with values possibly exceeding 1000 MPa. These oscillations 

are obviously non-physical and likely emerge from the attempts of the model to weakly 

enforce zero penetration along the interfaces, leading to small positive and negative 

displacement jumps 
 nu  that are amplified through the linear traction relation 

 n n nT K u= . To verify that this behavior is not caused by the quadratic polynomial shape 

functions in the interface elements, the parameters and loading are applied to the linear  

tetrahedral mesh in Figure 4-5 (c) and hexahedral mesh in Figure 4-5 (d). Oscillations of 

similar amplitude and finer frequency also appear in these results. Therefore, the coarse 

mesh appears incapable of accurately resolving the traction field for the free sliding and 

high normal stiffness case. However, we also remark that the normal displacement jumps 

 nu  for the model in Figure 4-5 (a) with 61.0 10nK = ×  are excessively large, reaching up 

to 5 to 10% of the total elongation of the cell. Therefore, this lower stiffness does not 

accurately represent the contact or bond between the grains and thus can provide too 

compliant of a solution for use in the creep analyses. 

Note that frictionless contact of deformable bodies, such as individual spheres under 

Hertzian contact as reviewed for example in [183], is known to produce sharp gradients in 

contact pressures that are only resolved on very fine grids and lead to oscillations on 

coarse grids without special numerical treatments. The present finite element mesh with 

only 20 interface elements per grain boundary is not sufficiently refined to capture the 

concentrated pressure from pinching at triple points. The normal jump field 
 nu  on a  
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Figure 4-4. Stress field xxσ  for exaggerated deformed coarse mesh of quadratic 

tetrahedral elements with 81 10nK = ×  and (a) 01 10tK = × ; (b) 61 10tK = × ; (c) 71 10tK = × ; 

(d) 81 10tK = ×  
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Figure 4-5. Normal traction component field 
 n n nT K u=  on coarse mesh with 01 10tK = ×  

and (a) 61 10nK = × , quadratic tetrahedral elements; (b) 81 10nK = × , quadratic tetrahedral 

elements; (c) 81 10nK = × , linear tetrahedral elements; (d) 81 10nK = × , linear hexahedral 
elements 
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series of uniformly bisected meshes of linear tetrahedral elements is shown in Figure 4-6. 

The oscillations along grain boundaries diminish as the element size decreases. Indeed, the 

center of PAGB facets typically have a uniform stress state with a sharp gradient 

approaching the juncture of multiple grains. These features emerge on the medium mesh 

such that this resolution could be recommended for creep analyses. 

However, the medium mesh contains 153,030 nodes and 98,900, which requires about 24 

hours of wall time for simulating 2000 time steps of a nonlinear creep analysis. Therefore, 

we return to Figure 4-4 (a) showing the overlapping grains and reconsider the interfacial 

material properties. Therein, the discontinuities for 01 10tK = ×  appear to more closely 

represent a closely-packed granular material with particles in contact along interfaces. 

While a certain amount of grain boundary sliding occurs at high temperatures in Grade 

91, a larger value of interface tangential stiffness (and viscosity) are likely needed to more  

closely represent the polycrystalline material. Therefore, Figure 4-7 investigates the effect 

of increasing the tangential stiffness tK  upon the normal traction field, all with 

81.0 10nK = × .  Notice that as the tangential stiffness is increased from part (a) to part (c), 

the normal traction oscillations decrease. The smoothness of the grain boundary fields is 

acceptable for both Figure 4-7 (b) and (c) with the larger values of tK .  

In conclusion, a reasonable range for the tangential stiffness tK  is within a factor of 10 to 

100 of the normal stiffness nK  so that artificial oscillations do not appear on the coarse 

mesh; similar behavior was confirmed for hexahedral and quadratic tetrahedral elements. 

Returning to the nonlinear cavity growth models in Section 3.1, physically observed ranges 

for the grain boundary diffusivity of Grade 91 at the temperature of 600 C are on the 

order of 16 14 1 1 310  to 10  MPa hr mm− − − −⋅ ⋅ ; see [12, 184] and references therein. By assuming 

the viscosity is inversely proportional to the diffusivity provides a corresponding viscosity 

range of 5 7 110  to 10  MPa hr mm−⋅ ⋅ . Thus in Section 5.2, we select an intermediate value of  
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(a) 

 
(b) 

 
(c) 

Figure 4-6. Normal displacement jump field 
 nu  of linear tetrahedral elements with 

01 10tK = ×  and 81 10nK = ×  on: (a) coarse mesh; (b) medium mesh; (c) fine mesh 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 4-7. Normal traction component field 
 n n nT K u=  with 81 10nK = × , linear 

tetrahedral elements: (a) 61 10tK = × ; (b) 71 10tK = × ; (c) 81 10tK = × ; (d) 01 10tK = ×  
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610bη =  to capture grain boundary sliding during primary creep along with the normal 

stiffness 81.0 10nK = × , and this combination of parameters provided stable results for the 

normal traction. 

 

4.5.2 Calibration of material parameters 

The combined grain and boundary constitutive models have 18 parameters to specify,  

summarized in Table 4-1. However, certain deformation mechanisms are most influential 

at particular stages of creep or particular load regimes, enabling small groups of the 

parameters to be fitted independently. Further details on the calibration are discussed in 

[159]. The elastic constants E  and ν  were chosen based on Grade 91 tensile tests at 600 

°C, and the grain boundary normal stiffness nK  and viscosity bη  were assigned from the 

numerical test conclusions in Section 5.1. Next, the grain viscoplastic parameters were 

estimated using the experimental data for steady state creep strain rates. For applied 

stress exceeding 100 MPa at 600 °C, uniaxial tests reported by [29] indicate a power-law 

relation between minimum strain rate and applied stress with a slope of 11.78, suggesting 

12n =  for our model. The Voce model parameters γ  and y vτ τ τ= +  were also estimated 

from these results; the initial slip resistance was set to 40 MPayτ =  similar to other Grade 

91 CP models [113, 114]. Next, the CP parameters for saturation vτ  and hardening 0θ  

were determined from a series of full-field cell model simulations with cavity growth 

suppressed and sliding permitted, adjusted to fit the primary creep regime of cases above 

100 MPa [29]. The remaining PAG model parameter Dη  was established from simulations 

below 60 MPa to fit the steady state strain rates reported by [98] in the apparently 

diffusion-dominated regime. This diffusion coefficient arises from reasonable values for the 

diffusion and activation energy of high-chromium steels [128, 184]. 
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Table 4-1. Grade 91 constitutive model parameters 

Property Value Units Property Value Units 

E  150,000  MPa bη  
61.0 10×  1MPa hr mm−⋅ ⋅  

ν  0.285  dimensionless nK  
81.0 10×  MPa/mm 

yτ  40.0 MPa 0a  
55.0 10−×   mm 

vτ  12.0 MPa 0b  0.06 mm 

n  12 dimensionless D  
151.0 10−×   1 1 3MPa hr mm− −⋅ ⋅   

γ  
89.55 10−×  1hr−  ψ  75° degrees 

0θ  800.0 MPa 0Σ  200 MPa 
Dη  

91.2 10−×  1 1MPa s− −⋅  N IF N  
42.0 10×   dimensionless 

β  2 dimensionless max IN N  
31.0 10×   dimensionless 

 

 

Lastly, the PAGB cavitation parameters were adjusted to fit the cell-averaged strain rate 

to the measured tertiary creep regime at stresses above 100 MPa [29]. Estimates for some 

of the physically-based parameters can be established from experimental measurement, 

such as grain boundary diffusivity D  [12, 184] and initial cavity spacing 0b  and size 0a  

by assuming that precipitates and cavity nucleation sites are highly correlated. Regarding 

cavity nucleation, the maximum areal density of cavities maxN  and traction dependency 

exponent β  can be estimated from post-failure microstructural characterization. The 

remaining parameters NF  and 0Σ  were adjusted as mentioned in [159]. We remark that 

identical PAGB parameters were assigned to all interface elements in the cell model. 

Meanwhile, some experimental evidence supports a misorientation or grain boundary 

energy dependence for the viscosity and diffusivity [185-187]. We intend to study the effect 

of non-spatially-uniform PAGB parameters in future work. 
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4.5.3 3D cell model creep response for various deformation mechanisms 

To better understand the effects of each mechanism within the total cell response, we 

performed a series of creep simulations at 100 MPa loading with certain modes suppressed. 

Figure 4-8 reports the evolution of the cell volume average strain rate and total strain in 

the loading direction. In the legend, the mechanisms are denoted by CP=crystal plasticity, 

D=diffusion, S=sliding, C=cavity growth, and N=nucleation; the listed symbols for a 

given curve imply the mechanism was included in that simulation. The interface 

mechanisms of sliding, growth, and nucleation were suppressed by setting 

12 11.0 10  MPa hr mmbη
−= × ⋅ ⋅ , setting radius evolution 0a = , and setting number density 0N =

, respectively. These results clearly present sequentially enhanced physics in the cell model. 

The CP-only case exhibits the slowest strain rate that continually decreases during the 

entire lifetime and does not reach a steady state.  

 

 
(a) 

 
(b) 

Figure 4-8. Cell-averaged quantities from uniaxial creep simulation at 100 MPa 
applied stress versus test results from [29]: (a) creep strain rate; (b) accumulated 

strain 
 

Recall that only one hardening variable is included in the Voce model (4.23) to represent 

the immobilization of dislocations [116]. The combination of the CP parameters and large 
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stress exponent 12n =  leads to continued hardening that does not saturate by 100,000 

hours. Adding the grain diffusion mechanism (CP,D) does produce a minimum strain rate 

in the model of about 73 10−× 1/hr. The linear stress exponent for diffusion (4.24) implies 

a lower strain rate sensitivity and also prohibits the average strain rate from dropping 

unphysically low. Neither of these curves exhibit accelerating strain rates since the grain 

boundary modes are suppressed. Also, the case with cavity growth included (CP,D,C) 

does not show acceleration either and appears identical to the (CP,D) result, suggesting 

that sufficient peak stresses are not reached in the neighborhood of grain boundaries to 

drive cavity growth. 

Next, the (CP,D,S) case in Figure 4-8 (a) including sliding exhibits a larger increase in 

strain rate during the early time regime. The gradual reduction in strain rate during 1000 

hours aligns with the experimental data from [29]. In light of the studies in Section 5.1, 

grain boundary sliding is shown to create stress concentrations at triple points, where 

grains impinge on each other. These higher local stresses lead to more dislocation creep in 

the grains and an overall higher strain rate. The extended period of continually decreasing 

strain rate does indicate that certain grain boundaries relax their shearing traction by 

sliding and after a period of time can no longer deform once a grain becomes constrained 

by its neighbors in contact. Once all boundaries have locked up, the average strain rate 

approaches to the (CP,D) case without sliding by about 100,000 hours. Next, when cavity 

growth is included in (CP,D,S,C), the response curve remains similar to (CP,D,S) up to 

10,000 hours, after which cavity growth adds a slight acceleration to the strain rate. This 

occurs only after 2% total accumulated strain in Figure 4-8 (b) and upwards of 10% strain 

at peak locations in the cell model, which is much later than when the experiments show 

acceleration. 

Lastly, the simulation response (CP,D,S,C,N) possesses all the mechanisms including 

nucleation.  The minimum strain rate in the simulation is actually greater than the rate 
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from the experimental data. Note that the material parameters in Section 5.2 are specified 

so that the computed strain rate response curves across several load levels have a balanced 

error compared to [29]; see Part 2 and [159] for other load levels. Nonetheless, the time 

(6,000 hours) to minimum creep strain rate is well captured. Note the (CP,D,S,C,N) curve 

exhibits tertiary creep effects while (CP,D,S,C) does not. We explain this large jump in 

strain rate by exploring the other output quantities of the cell model, such as the evolved 

cavity number density. As reported in [159] as well as in Section 5.4, the maximum number 

density across all interface elements in the cell model at 100 hours is 100 times larger than 

the initial number density. This greater number of cavities can also grow, leading to 

reduced traction on some boundaries and shifting of the stress paths within the 

microstructure to induce overall larger average creep strain rate. 

 

4.5.4 Complete model response and decomposed creep strain rates 

The cell volume-average creep strain rate for the complete model in Figure 4-8 is an 

aggregate response of several mechanisms across the 100 grains and many elements in the 

domain. Therefore, domain-average strain rate values are computed for the individual 

mechanisms within this simulation to extract the contributions. The dislocation creep rate 

( )pd  and the diffusional creep rate ( )dd  are directly outputted for each solid element and 

integrated over the cell domain. The total strain rate d  is obtained as the finite difference 

in time of the elemental strain field; the difference between the total and the plastic strain 

rates represents the elastic strain rate. The effective strain from the interfacial 

deformations (opening and sliding) are obtained according to [12] by integrating the tensor 

product of the displacement jump vector and interface unit normal, and the effective 

strain rate is also evaluated as a temporal finite difference. From these tensorial strain 
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rate averages, the axial component yyε  is extracted and reported in Figure 4-9 and Figure 

4-10. 

The log-log plot of time versus strain rate in Figure 4-9 highlights the response of the cell 

model during primary and secondary creep. Clearly, the dominant mechanism changes 

during the creep simulation. Initially while the load is ramped in 0.1 hours, the elastic 

strain rate in the grains is most significant. During the next 10 hours, the grain boundaries 

that were mostly locked together and deforming with the grains during the load ramp 

begin to slide and shed some of their tangential traction. This process relaxes some of the 

stress concentrations at triple points between grains, producing a creep strain rate that 

diminishes by two orders of magnitude during the 10-hour period. In contrast, simulation 

(CP,D) in Figure 4-8 (a) with grain boundary sliding suppressed has an immediate strain 

rate reduction and remains near the minimum strain rate value for the remaining duration. 

Returning to Figure 4-9, the dislocation creep within grains takes over after 10 hours as 

the dominant mechanism, with grain boundary sliding persisting at about 33% of the total 

cell strain rate. Another magnitude of strain rate is lost during the next 1,000 hours since 

the hardening term vτ  in the Voce crystal plasticity leads to increased plastic flow 

resistance. The minimum total strain rate is reached at 6,000 hours, similar to the time 

for the experimental measurement in Figure 4-8 (a) from [29]. 

The average strain rate from the normal direction opening along the grain boundaries, 

shown as the dashed blue curve in Figure 4-9, decreases steadily for the first 300 hours. 

As discussed in Section 5.1 and Appendix A.1, the interface opening contains a 

superposition of the elastic separation/overlap from the nK  term along with the cavity 

growth term (4.3). After 300 hours, the cell average opening rate begins to accelerate. 

Additionally, the microstructural cell model provides more details of the cavities along 

the grain boundaries through the interface element states; such local cavity information 

is compared at several applied load levels in [159]. Recall from Table 4-1 that the initial  
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Figure 4-9. Cell-averaged creep strain rate at 100 MPa loading, decomposed mechanisms 

within grains and along grain boundaries, logarithmic scale 
 

 
Figure 4-10. Cell-averaged creep strain rate at 100 MPa loading, decomposed 

mechanisms within grains and along grain boundaries, linear scale 
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state of all PAGB is 0 50a =  nm, 0 60b =  µm, and 2
0 88 mmN −= . At 300 hours, the average 

values across all interface elements are 02.5avga a=  and 050avgN N= , while the maximum 

values on particular elements are max 010a a=  and max 0500N N= . This maximum areal 

density 2
max 0500 44,000 mmN N −= =  is never exceeded by any interface elements during the 

remaining simulation duration. Part 2 of this manuscript presents grain boundary 

statistics showing that these maximum values occur along facets having their unit normal 

vector aligned with the loading axis, as expected. 

Next, presenting the same decomposed strain rates on a linear time scale in Figure 4-10 

highlights the evolving responses in the tertiary creep regime. Recall that the nucleation 

threshold (4.2) is based on both traction as well as accumulated plastic strain in the 

vicinity of a grain boundary. Hence, this threshold has been exceeded at enough grain 

boundary points by 300 hours so as to produce an accelerating grain boundary opening 

rate in Figure 4-10, well before the total strain rate achieves a minimum. The grain 

boundary sliding rate begins increasing at about 3,000 hours, signifying that the interfaces 

have relaxed and are more flexible due to the opening displacement. The last mechanism 

to accelerate is the grain dislocation creep rate after 10,000 hours. This minor increase 

may derive from stress redistribution between grains caused by diminished traction 

transmission at failed grain boundary facets, which have substantially nucleated and 

grown populations of cavities. Note that the cell-average diffusional creep rate is found to 

be constant during the simulation since the volume average stress is constant, even though 

local stresses may fluctuate during the time history. At the minimum total strain rate of 

7 17 10  hryyε − −= × , its rate is about 20% or ( ) 7 11.5 10  hrd
yyε − −= × . Thus, diffusion is still a 

significant fraction of the total cell response, and 100 MPa is near the transition point in 

[98] between the apparent power law exponents at high and low stress; see Figure 3-6. 

The simulation progresses up to 20,000 hours, and subsequently the Newton method fails 
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to converge even with very small time steps of 0.5 hour. We attribute this divergence to 

the coupled nonlinearities in the model, the stiff crystal plasticity equations, and the 

explicit time integration of the cavity growth model. At 20,000 hours, the average state 

values among all interface elements are 1avga =  µm and 22500 mmavgN −= , while the 

maximum values are max 5a =  µm and 2
max 44,000 mmN −= . These are physically reasonable 

values, since the M23C6 precipitates along PAGB are known to coarsen up to a diameter 

of several microns [108]. 

We clearly see in Figure 4-9 that the individual mechanism contributions to the overall 

cell response are different from their isolated response in Figure 4-8 (a), indicating that 

superposition is obviously invalid for this nonlinear problem. Also, the sequence of 

dominant mechanisms from the simulation results matches with intuition of the material 

response and thus provides insight into the primary, secondary, and tertiary creep 

response of Grade 91. 

 

4.6 Conclusions 

A microstructural model has been developed for analyzing creep in Grade 91 ferritic-

martensitic steel. The model includes deformation mechanisms from dislocation and 

diffusional motion within the prior austenite grains (PAG) and viscous sliding and cavity 

growth and nucleation along grain boundaries, considered to be the material’s primary 

deformations modes. The physically-based cavity growth model extends from the smeared 

cavity population model of [11, 27, 28] by including the effect of creep strain and stress 

triaxiality from material points in the grains adjacent to the grain boundary. These models 

are implemented into a nonlinear finite element code and used for simulations that 

explicitly capture these features in the geometry of the microstructural cell domain. 

Several numerical enhancements were required, such as the communication of nonlocal 



 

137 
 

state variables and the use of adaptive time stepping to solve the stiff nonlinear equations 

during tertiary creep. 

Several simulations were conducted to understand the features of each deformation mode. 

First, a study on a polycrystalline microstructure with compliant elastic grain boundaries 

revealed a sensitivity of the finite element method to stress concentrations at triple points. 

Either a refined mesh or a proper matching of normal and tangential stiffness is required 

to avoid nonphysical oscillations in the interface traction fields. This study influenced the 

calibration process of the material parameters for each component mechanism, targeted 

at 600 °C response against Grade 91 creep data from [29]. Then, a series of creep 

simulations were performed at 100 MPa with different mechanisms suppressed, and the 

effect on the cell average creep rate showed that (1) nucleation was crucial to tertiary 

creep and (2) sliding provides a sizable contribution during primary creep. Lastly, a post-

process decomposition approach provided an analysis of the complete cell model response. 

Each mechanism plays a role at different stages of the creep response, including the effect 

of grain diffusional creep on the minimum strain rate. 

The second part of this work uses the model developed here to examine the effective of 

stress level, stress triaxiality, and temperature on the engineering and microscale response 

of Grade 91 under elevated temperature service. A key result is a transition from a high 

stress, low triaxiality region of notch strengthening behavior to a low stress, high 

triaxiality region of notch weakening. The paper elucidates this mechanism shift with a 

simple micromechanical model that reproduces and explains the results of the full CPFEM 

simulations described here. 
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MICROSTRUCTURAL MODELING OF CREEP 

DEFORMATION IN GRADE 91 AT HIGH AND LOW STRESS 

5.1 Introduction 

A major focus of this dissertation is on the interactions of two major microstructural 

mechanisms governing the response of Grade 91 under creep conditions: growth and 

coalesce of cavities along grain boundaries (modeled by interface elements also including 

grain boundary sliding) and evolution of dislocations and other defects within grains 

(modeled by the crystal plasticity finite element method). This chapter presents the 

combination of the two physics-based models to capture the primary, secondary, and 

tertiary phases of Grade 91 creep response at 600 C at a range of stresses.  Emphasis is 

placed on the agreement of the model with experimental creep curves during all three 

phases at higher load levels, the prediction of creep life accounting for grain diffusional 

creep at lower load levels, and the resulting trends of grain boundary cavity growth that 

align with experimental observations. 

In Section 5.2, the microstructural cell model and problem setup are briefly reviewed.  

A series of finite element simulations are performed in Section 5.2.1 using the calibrated 

grain and grain boundary model parameters at loads ranging between 100 MPa to 160 

MPa.  In Section 5.2.2, the cell average strain rate is decomposed into contributions from 

each mechanism at loads 100 and 140 MPa to determine the dominant mechanisms during 

primary, secondary, and tertiary creep. Differences in the trade-off of mechanisms 

occurring at lower loads 60 to 80 MPa are studied in Section 5.2.3, followed by comparison 

of minimum creep strain rates at lower stresses with data from Kloc et al. [97]  as well as 
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trends for cavity sizes and density reported by Wu and Sandsttrom [188].  Conclusions 

about the modeling framework are drawn in Section 5.3. 

 

5.2 Cell model creep response across a range of stresses 

The primary benchmark case for evaluating the performance of the crystal plasticity 

model for creep response is the 100 grain cell model discussed in Chapters 3 and 4.  The 

3D cell model is a ( )20.2 mm  cube-shaped domain containing 100 grains that is meshed 

with 10,402 quadratic tetrahedral finite elements, and 467 internal grain boundaries made 

from 3,921 interface elements.  The crystal orientations in the 100 grains are sampled from 

a uniform texture.  The boundary conditions on the cell consist of symmetry conditions 

on the faces 0x = , 0,y =  and 0z = .  The effectively incomplete periodic boundary 

conditions obtained through multi-point constraints (MPC) are applied on the other 3 

faces of the cube.  For the simulations herein, a uniform pressure is applied on the 0.2z =

mm face to represent the tensile creep loading.  The stress is increased linearly during 10 

steps at 0.01 hours per step to reach maximum load at 0.1 hours.  This stress increase 

period is subsequently referred to as the “load ramp period”.  The values of stress are set 

to 100, 110, 120, 140, and 160 MPa to correspond to the load levels investigated 

experimentally by Kimura et al. [20].  The temperature is set to 600oC.  The series of time 

steps following the load ramp period vary based on the approximate creep lifetime of the 

specimen and are listed in Table 3-10. 
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5.2.1 Calibration of material parameters against higher stress data 

The multi-mechanism crystal plasticity model was calibrated in Chapter 4 to capture 

the primary creep response evident in the experimentally measured creep curves of Kimura 

et al. [20].  The material parameters for the crystal plasticity model are listed in Table 

5-1, and the simulated creep curves for applied stress 100 to 160 MPa are provided in 

Figure 3-9.   

Table 5-1. Material parameters for multi-mechanism (CP) model 

Property Value Units 

E   150,000   MPa 
ν  0.285   dimensionless 

yτ  40.0 MPa 

vτ  12.0 dimensionless 
n   12 dimensionless 

0θ   800.0 MPa 
m   1 dimensionless 
Dη   91.2 10−×   1 1MPa s− −⋅   

 

The strain rate for each load level overlays very closely onto the experimental data during 

the primary creep regime.  The grain boundary parameters for growth and coalescence of 

cavities were then adjusted along the lines of Section 2.3.1.7 and Section 5.4 to produce a 

close fit for the tertiary regime, and Table 5-2 contains these parameters.  In particular, 

the grain boundary viscosity bη  and penalty stiffness user
linK  have been chosen for moderate 

degree of sliding and stable interface normal traction fields.  The initial cavity size, number 

density, and growth parameters are within ranges of physical characterizations of Grade 

91 from the literature summarized in Chapter 4.   

Figure 5-1 examines the evolution of creep strain rate of the cell model as a function 

of time for various load levels.  For the load level 140 MPa, the simulated strain rate 
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Table 5-2. Material parameters for traction-separation rate equations and units 

Property Value Units 

bη  61.0 10×   1MPa hr mm−⋅ ⋅   
user
linK  81.0 10×   MPa/mm 

0a  55.0 10−×   mm 

0b  0.06 mm 

D   151.0 10−×   1 1 3MPa hr mm− −⋅ ⋅   
ψ   ( )15 36 75π = °  radians 

0Σ   200 MPa 

N IF N   42.0 10×   dimensionless 

max IN N   31.0 10×   dimensionless 
β   2 dimensionless 

 

 
Figure 5-1. Macroscopic cell strain rate (/h) versus model time (h) for cell model using 

calibrated material parameters including dislocation creep and diffusional creep 
within the grains and sliding and cavity nucleation along grain boundaries, 

compared to experimental data from Kimura et al. 
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history appears almost identical to the experimental curve from Kimura et al. [20] during 

the entire test duration. At the lower load levels, the minimum strain rate is over-

predicted by a factor of two or less, and the experimental curve for 160 MPa has a faster 

acceleration than the simulated curve. The time elapsed to minimum creep rate is more 

closely captured by the model.  The stress dependence of the cavity nucleation rate, 

controlled by the parameters β  and 0Σ , help to improve the closeness of the fit. 

Figure 5-2 presents the history of accumulated strain of the cell model for each load 

level.  Note that the measurements of “strain” for the test specimens are typically measures 

of the change in length of a gauge section.  Thus, the very low strain values during the 

first hour of test can include other effects such as slip in the grips and local stress 

redistribution within the specimen that are not accounted for in the cell model.  After 

these trends settle out in 1 to 10 hours, the simulated strain evolution agrees very well 

with the experimental evolution.  The maximum strain level before divergence of the 

numerical simulations are about 1-2 % strain, while the tests typically reach 20% strain 

accommodated by necking.  Detailed investigations of the cell model solution fields in 

[159] reveal that significant cavity growth has taken place by the time 1% overall strain 

is reached, so that the model is capturing the onset and early stages of damage during 

tertiary creep. Overall, the microstructural model with combined grain and grain 

boundary deformation mechanisms fits the experimental creep curves quite well 

considering the typical level of scatter in such experiments. 

 

5.2.2 Decomposition of strain rate into deformation mechanisms 

The overall deformation of the microstructural cell model recorded in Figure 5-1 is a 

combination of several active mechanisms in the grains and grain boundaries, and each of  
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Figure 5-2. Macroscopic accumulated strain (mm/mm) versus model time (h) for cell 
model using calibrated material parameters 
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these features are represented by many finite elements that are each in a separate 

kinematic and kinetic state.  To more deeply probe the contributions to the total observed 

strain rate, domain-average values of strain rate are computed for the solid finite elements 

and interface finite elements, separated by mechanism.  All of the strain-like quantities 

are evaluated as tensors, and the axial component of strain rate xxε  is reported in the 

figures that follow. 

The dislocation creep rate pd  from (3.57) and the diffusional creep rate dd  from 

(3.58) are provided directly by WARP3D for each solid element in the model as a state 

output at each time step.  These values are integrated over the domain to compute the 

volume average. The total strain rate for grains is computed from the finite difference of 

the elemental strain field, and the elastic strain rate is found by subtracting the dislocation 

and diffusion tensors from the total rate tensor. 

Details for the derivation of interfacial strain rates due to grain boundary opening are 

given in the literature in [90].  The resulting expression for strain, valid at small 

deformations, is: 

 

    (5.1) 

where the summation is over all grain boundary elements (g.b.e.), and V is the total 

volume of the cell.  For each interface element, this tensor is decomposed into a component 

aligned with the unit normal vector of the element (representing opening) and a 

component lying in the plane of the element (representing sliding).  These decomposed 

tensors, which have a spatial orientation, are then integrated over the domain and the 

uniaxial component is recorded.  While these formulas are approximations, they provide 
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adequate and useful insight into the dominant deformation mechanism at different times 

during the cell model creep response.  

The decomposition of the cell average strain rate was investigated for specific load 

levels: 140, 100, 80, and 60 MPa.  Figure 5-3 examines the decomposition at the 140 MPa 

load level. Several distinct phases are evident at the higher applied load levels.  During 

the load ramp period and shortly after, the elastic strain rate in the grains and the sliding 

along grain boundaries dominates the total cell deformation, up to about 1 hour.  Then, 

the strain rate from sliding continues to decrease by several orders of magnitude over a 

long period of time, with the transition at 2 hours of grain dislocation creep labeled as 

“Gra. – plast” becoming the largest component of the total strain rate.  Grain boundary 

sliding continues along a curve that is parallel to the grain strain rate, with a strain rate 

about one third of that in the grains.  During this period, the strain rate due to grain 

boundary opening labeled “GBs – opening” continually decreases and is several magnitudes 

below the other components, indicating that only the penalty or elastic part of the grain 

boundary opening is occurring.  At 100 hours, the opening rate begins to increase, most 

likely corresponding to the onset of cavity nucleation and growth at faster rates.  This is 

the first component to show accelerating strain rate, and it occurs about 700 hours before 

the observed overall minimum strain rate of the cell model.  The second component to 

accelerate is the grain boundary sliding, signifying that boundaries are likely relaxing from 

the additional opening displacement and allowing more sliding to take place.  Lastly, the 

grain creep strain rate accelerates after 1000 hours is reached; this may be attributed to 

redistribution of stress between grains due to failed grain boundary facets with large cavity 

populations that no longer transmit much traction across the microstructure.  Note that 

because of the large applied load, the strain rate due to diffusional creep in the grains is 

7 12 10  hr− −× , which is the lowest mechanism contribution to the total cell strain rate.  
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Figure 5-3. Macroscopic cell strain rate decomposition into mechanisms within the grains 

and along grain boundaries at superimposed load level 140 MPa 
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Figure 5-4 presents the strain rate decomposition at the superimposed load of 100 

MPA. Similar trends appear as for the 140 MPa case; the fraction of total deformation 

due to grain boundary sliding remains as one third of the grain strain rate during the later 

portion of primary creep.  The transition from sliding to dislocation creep as the dominant 

mechanism occurs near 10 hours. The sequence of accelerating strain rates, with opening 

followed by sliding followed by dislocation creep, is again present.  The explanation due 

to unlocking of boundary deformation followed by stress shifting to grains along 

alternative load paths is a logical explanation of the sequence of mechanisms apparent in 

the strain rates.  Lastly, diffusional creep is a much larger fraction of the total rate at the 

100 MPa load level, about one tenth of the total at the time of minimum creep strain 

rate. 

 

5.2.3 Prediction of creep response at lower stresses 

The creep response of Grade 91 at operating stress levels is of interest for design of 

reactors.  The duration of tests at these lower stress levels is often prohibitive, and 

therefore modeling of material response is desired.  The calibrated model is thus employed 

for a series of creep deformation simulations of the cell model with applied stress below 

100 MPa.  The load levels of 80, 70, 60, 30, 10, and 1 MPa are chosen because limited 

experimental data for minimum strain rate during creep tests exist for each of these loads 

[189-193].  The sequence of time steps for the 60 to 80 MPa simulations are listed in Table 

5-3. 

First, the decomposition of strain rate during the time history of the cell model is studied 

for the 80 MPa load level, and the result is given in Figure 5-5.  Several distinguishing 

features emerge compared to the behavior of the 100 MPa case in Figure 5-4.  First, the  
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Figure 5-4. Macroscopic cell strain rate decomposition into mechanisms within the grains 

and along grain boundaries at superimposed load level 100 MPa 

 

Table 5-3: Time step size for sequence of steps for various load levels; step size in hours, 
uniform during steps between the numbers in first column; last row is total simulation 

duration in hours 

First series step 80 MPa 70 MPa 60 MPa 
1 0.01 0.01 0.01 
11 0.11 0.11 0.11 
101 0.242 0.242 0.242 
201 0.5324 0.5324 0.5324 
301 1.17128 1.17128 1.17128 
401 2.576816 2.576816 2.576816 
501 5.668995 5.668995 5.668995 
601 12.47179 12.47179 12.47179 
701 27.43794 27.43794 27.43794 
801 60.36346 60.36346 60.36346 
901 132.7996 132.7996 132.7996 

1,001 292.1592 292.1592 292.1592 
2,000 316,496 316,496 316,496 
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Figure 5-5. Macroscopic cell strain rate decomposition into mechanisms within the grains 

and along grain boundaries at superimposed load level 80 MPa 
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transition of dominant mechanism from sliding to grain creep is later for the 80 MPa case, 

at 30 hours.  Also, the dislocation creep rate is comparable to the sliding strain rate during 

much of the primary creep regime; both of the curve have a similar slope of strain rate 

versus time.  Most importantly, the diffusional creep within the grains exceeds the strain 

rate for dislocation creep after 2,000 hours, similar to the time at which the opening strain 

rate reaches its minimum value at 1,000 hours. 

The larger contribution from diffusional creep manifests in the total strain rate of the cell 

model by extending the period of secondary creep, the duration of which the strain rate 

is nearly constant.  Note that the diffusional creep curve is constant after 0.1 hours, the 

ending of the load ramp period.  This behavior agrees with the fact that the volume 

average stress on the cell model is constant over time because the total load does not 

change and small deformations are considered.  The linear relation between diffusional 

creep strain rate and deviatoric stress implies that if the volume average of the deviatoric 

stress is constant, then the volume average of the diffusional creep rate is also constant. 

Figure 5-6 presents the decomposed strain rates for the 60 MPA load case. More 

differences appear compared to the 80 MPa response.  The strain rate contribution from 

dislocation creep is now lower than grain boundary sliding throughout the simulation, and 

it only exceeds the diffusional creep rate during a short period between 1 and 100 hours.  

The duration of the simulation lasts until nearly 300,000 hours, when the Newton-Raphson 

algorithm diverges.  As with all cases before, the opening strain rate accelerates first at 

2,000 hours, followed by grain boundary sliding at 10,000 hours, and lastly by dislocation 

creep at 80,000 hours.  The dislocation creep strain rate increases relatively rapidly near 

the end of life, faster than any of the other mechanisms, although the logarithmic scale 

disguises the fact that the ten-fold increase occurs during 200,000 hours.  The dominance 

of the diffusional creep as the largest strain rate contribution leads to a long period of  
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Figure 5-6. Macroscopic cell strain rate decomposition into mechanisms within the grains 

and along grain boundaries at superimposed load level 60 MPa 
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secondary creep with a minimum strain rate of 7 11 10  hr− −×  between about 200 to 100,000 

hours. 

The creep response of the cell model is reported for several lower stress levels in Figure 

5-7 for the creep strain rate and Figure 5-8 for the accumulated strain.  Note that the 

equation solver diverges at a similar total strain level of 1% to 3% strain for all of the 

load levels.   

As mentioned above, the creep rate curves become “flatter” at the lower stress levels due 

to the increased contribution from diffusional creep in the grains, which is assumed to 

have a time and strain history independent diffusion coefficient. Therefore, grain boundary 

sliding is the most significant contributor to the transient nature of the total strain rate, 

and the boundaries appear to relax the majority of the strain rate by the end of 10 hours, 

when the creep strain rate has decreased by 4 orders of magnitude from the initial strain 

rate at 0.1 hours (which includes the contribution from grain elasticity due to the applied 

stress increase during the load ramp period. 

Figure 5-9 compares the predicted minimum creep strain rate as computed by the cell 

model to two experimental datasets [20, 189].  As mentioned in Section 3.3.2, the variation 

of minimum strain rate reported by Kloc et al. [189] demonstrates a clear shift in dominant 

mechanism near the load level 100 MPa. This trend is also captured in the simulated 

response from the cell model.  Although the predicted creep rates are about half of those 

of [189], the slopes of the curves are parallel.  This result is very important, considering 

that this dataset was not the target set for the calibration at higher stress levels.  In 

particular, the simulation results for lower applied stresses of 1, 10, and 30 MPa are also 

included in Figure 5-9. The simulation results are also in the neighborhood of the data 

from Kimura et al. [20], with faster rates in some cases and slower in others. Due to the 

change in slope on the logarithmic plot, which occurs between the stresses of 60 and 100  
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Figure 5-7. Macroscopic cell strain rate (/h) versus model time (h), model predictions for 

creep response at reduced load levels below 100 MPa 

 

 
Figure 5-8. Macroscopic accumulated strain (mm/mm) versus model time (h), model 

predictions for creep response at reduced load levels below 100 MPa 
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Figure 5-9. Variation of minimum creep strain rate with respect to applied stress from 

cell model compared to experimentally obtained rates for Grade 91 tests at 600 C 
from Kimura et al. and Kloc et al. 
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MPa, the behavior of the cell model is classified into two regimes: “dislocation dominated” 

for response above 80 MPa and “diffusion dominated” for response below 80 MPa. 

Figure 5-10 presents the time to minimum creep rate as a function of applied stress.  The 

time values for the simulations of the cell model are slightly longer than those from the 

experimental dataset [20]. Also, the variation of the simulation results appear to have a 

nonlinear relation of time to minimum versus applied stress for loads below 80 MPa. 

 

5.3 Conclusions 

This section presents the combination of the two physics-based models to capture the 

primary, secondary, and tertiary phases of Grade 91 creep response at 600 C: growth and 

coalesce of cavities along grain boundaries (modeled by interface elements also including 

grain boundary sliding) and evolution of dislocations and other defects within grains 

(modeled by the crystal plasticity finite element method).  Simulations of the cell model 

are conducted at several applied loads, and the resulting cell strain rates are decomposed 

to understand the fraction associated with each mechanism in the modeling framework. 

The response of the 3D cell during the early period of the loading history is 

characterized by sliding of grain boundaries to cause local grain motion, rotation, and 

elevated stresses near surfaces of certain geometrically preferred strains.  At the same 

time and over a longer period, reduction in mobile dislocation density and other dislocation 

processes within grains lead to decreasing creep strain rates over time.  Both of these 

phenomena contribute to the accumulated creep strain of the cell.  After an extended 

period, the heightened stresses along grain boundaries drive the growth of cavities which 

induce an acceleration of the cell creep strain rate. Individual grain boundaries begin to 

experience failure with the geometrical linking up of sufficient grain boundaries to create  
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Figure 5-10. Variation of time elapsed to minimum creep strain rate with respect to 

applied stress from cell model compared to experimentally obtained rates for 
Grade 91 tests at 600 C from Kimura et al. 
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a rupture surface over the cell roughly transverse to the applied loading.  The elapsed 

time and total accumulated strain prior to strain rate acceleration are dependent on the 

applied stress as well as whether dislocation creep or diffusional creep is the dominant 

deformation mechanism within the grains. 

The following points summarize the key findings from these series of simulations. 

• The calibrated material models for the grain and grain boundary models are first 

employed in simulations for remote applied tractions of 100, 110, 120, 140, and 160 

MPa at 600oC.  For the load level 140 MPa, the simulated strain rate history 

appears almost identical to the experimental curve from Kimura et al. [20] during 

the entire test duration.  At the lower load levels, the minimum strain rate is over-

predicted by a factor of two or less, and the experimental curve for 160 MPa has 

a faster acceleration than the simulated curve.  The time elapsed to minimum creep 

rate is more closely captured by the model for all load levels. The maximum strain 

level before divergence of the numerical simulations are about 1-2 % strain, while 

the tests typically reach 20% strain accommodated by necking.  Detailed 

investigations of the cell model solution fields reveal that significant cavity growth 

has taken place by the time 1% overall strain is reached, so that the model is 

capturing the onset and early stages of damage during tertiary creep. 

• The total cell average strain rate tensor was decomposed into component 

mechanisms from grains and grain boundaries by numerically integrating the strain 

tensors associated with solid and interface finite elements across the cell model.  

The decomposition of the cell average strain rate was investigated for specific load 

levels: 140, 100, 80, and 60 MPa.  Several distinct phases are evident at the higher 

applied load levels.  During the load ramp period and shortly after, the elastic 

strain rate in the grains and the sliding along grain boundaries dominates the total 
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cell deformation, up to about 1 hour.  Then, the strain rate from sliding continues 

to decrease by several orders of magnitude up to 2 to 5 hours when the grain 

dislocation creep becomes the largest component of the total strain rate.  At the 

140 MPa load level, the opening rate begins to increase at 100 hours due to the 

onset of cavity nucleation and growth. The second component to accelerate is the 

grain boundary sliding, signifying that boundaries are likely relaxing from the 

additional opening displacement and allowing more sliding to take place.  Lastly, 

the grain creep strain rate accelerates after 1000 hours is reached; this may be 

attributed to redistribution of stress between grains due to failed grain boundary 

facets with large cavity populations that no longer transmit much traction across 

the microstructure.  The explanation due to unlocking of boundary deformation 

followed by stress shifting to grains along alternative load paths is a logical 

explanation of the sequence of mechanisms apparent in the strain rates. 

• The decomposed strain rates at lower applied stresses exhibit distinguishing 

features compared to the 100 MPa case, the lowest load level reported in [20].  At 

80 MPa applied load, the transition of dominant mechanism from sliding to grain 

creep occurs at 30 hours, while the transition is at 10 hours for the 100 MPa case.  

Also, the dislocation creep rate is comparable to the sliding strain rate during much 

of the primary creep regime; both of the curve have a similar slope of strain rate 

versus time.  Most importantly, the diffusional creep within the grains exceeds the 

strain rate for dislocation creep after 2,000 hours, similar to the time at which the 

opening strain rate reaches its minimum value at 1,000 hours.  The larger 

contribution from diffusional creep manifests in the total strain rate of the cell 

model by extending the period of secondary creep, the duration of which the strain 

rate is nearly constant.  Under a 60 MPa applied load, the strain rate contribution 

from dislocation creep is lower than grain boundary sliding throughout the 
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simulation, and it only exceeds the diffusional creep rate during a short period 

between 1 and 100 hours.  The duration of the simulated creep response lasts until 

nearly 300,000 hours.  As with all cases before, the opening strain rate accelerates 

first at 2,000 hours, followed by grain boundary sliding at 10,000 hours, and lastly 

by dislocation creep at 80,000 hours. 

• The predicted minimum creep strain rate computed by the cell model is compared 

with two experimental datasets [20, 189].  The simulated response of the cell model 

captures the clear shift in dominant mechanism near the load level 100 MPa 

reported by Kloc et al. [189].  Although the predicted creep rates are about half of 

those of [189], the slopes of the curves are parallel.  This result is very important, 

considering that this dataset was not the target set for the calibration at higher 

stress levels. 

  



 

160 
 

 

A PRIMAL CONSISTENTLY-EVOLVING STABILIZED 

DISCONTINOUS GALERKIN INTERFACE FORMULATION 

FOR FINITE-DISPLACEMENT CRYSTAL PLASTICITY 

6.1 Introduction 

During the course of the microstructure simulations for Gr91, several numerical stability 

issues were encountered that complicated the nonlinear solution process. Chief among 

these was oscillating normal traction field along grain boundaries when the viscous sliding 

resistance was assumed to be small. A detailed study of this behavior was performed in 

the Argonne National Laboratory report for linear elastic response in the grains to 

prescribe a suitable range for the interface viscosity to avoid the oscillations. Another 

contributing factor to these oscillations was the value of penalty parameter representing 

the elastic stiffness of the interface. An optimal value of the parameter is required: not to 

small to allow gaps or penetration along the grain boundary, and not too large to induce 

instabilities and oscillations. 

 

An alternative formulation for interfacial mechanics including debonding and large 

deformations has been developed by Truster and coworkers during the last five years 

utilizing the Discontinuous Galerkin method with stability parameters derived using 

Variational Multiscale concepts. The majority of developments and analysis of 

discontinuous variational formulations, such as the interior penalty DG method, 

hybridized DG, and weak Galerkin, have focused on linear partial differential equations. 

Fewer methods exist for finite strain hyperelasticity, and even fewer for plasticity. A 
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notable nonsymmetric formulation for elastoplasticity has been advanced by Liu et al., 

with improved accuracy of stresses on interfaces but suboptimal 2L  convergence. 

 

The novel contribution proposed to complete this dissertation research is the development 

and analysis of a finite strain viscoplastic symmetric Discontinuous Galerkin method for 

crystal plasticity. This derivation will combine the contributions from small strain 

plasticity [194], large strain hyperelasticity [195], and hypoelastic crystal plasticity with 

Green-Naghdi rate [87] into a single stabilized interfacial formulation. The first objective 

is to complete the derivation for the interface formulation without separation or sliding of 

the interface (full stick model) since the possible instabilities from crystal plasticity will 

require a detailed analysis first. Time permitting, the second objective would be to 

incorporate viscous sliding in the tangential direction and model primary creep within the 

3D cell models presented in prior sections. 

The additional benefit of the Discontinuous Galerkin representation of the interface is 

that the grain constitutive model and stress tensor are required to be evaluated at the 

interface (grain boundary). This is beneficial for the cavity growth model which requires 

this stress and strain rate state information from the neighboring grain. Currently this 

information is provided through a special algorithmic implementation in WARP3D that 

only allows an explicit implementation of the cavity growth model using the stress state 

from the previous converged time step. Using the terms from the Discontinuous Galerkin 

formulation, this stress would be evaluated at the current time step and would enable a 

fully coupled and implicit grain boundary model implementation. 

 

The following sections are excerpted from published work of Truster and coworkers on 

the elastoplastic and hyperelastic formulations of the Variational Multiscale Discontinuous 

Galerkin (VMDG) method. This information highlights the derivation of the stabilizing 
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terms using localized fine-scale models at the interface. The new proposed contribution 

will investigate the validity of the fine-scale modeling assumptions, e.g. for elastic or 

plastic representation of the fine scales, to provide a robust treatment of discontinuities 

at grain boundaries with crystal plasticity deformations in the grains. 

 

6.2 Governing equations and interfacial weak form  

We begin our developments by treating the case of an interface IΓ  embedded within a 

plastically deforming body sdnΩ⊂  , dividing it into two disjoint regions (1)Ω  and (2)Ω

as illustrated in Figure 6-1(a) and (b). The interface of interest IΓ  could arise due to a 

jump in material properties or a nonconforming finite element discretization.  

 

 

Figure 6-1. (a) reference domain Ω ; (b) insertion of interface IΓ ; (c) spatial (current) 

configuration induced by (1)φ  and (2)φ  [195] 

 

The separate regions on either side of IΓ  are denoted ( )αΩ , the superscript α  takes the 

values 1 and 2. Moreover, expressions that applicable to both regions have their 

superscripts suppressed. Similar to the description in Section 1.2.1, we symbolize points 
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in the material configuration ( )α∈ΩX  and their corresponding images in the spatial 

configuration by ( )( ) ( )t tα= φx X, X,  as shown in Figure 6-1(c). The displacement field u   

associated with the mapping ( )αφ  could then be defined as )( ( ) ( )t tα −u X, = x X, X . Similar 

to [195], we impose a requirement that ( ) ( ) ( )( ) ( ) ( ) ( )  1 1 2 2Ω = Ω Ωφ φ φ , meaning that 

compatibility and equilibrium between regions ( )1Ω  and ( )2Ω  remains with respect to each 

other for all time. A similar requirement on the interface, ( ) ( )

I I

1 2

Γ Γ
=φ φ  , is illustrated in 

Figure 6-1(c). 

Combining the boundary conditions and equilibrium equation for each individual region 

( )αΩ with the balance of tractions and deformation continuity along IΓ  yields the system 

of equations for the composite domain Ω : 

 ( ) ( ) ( )DIV           in 0
α α α+ = Ω0P b  (6.1) 

 ( ) ( ) ( )                     on g
α α α= Γu g  (6.2) 

 ( ) ( ) ( ) ( )           on h
α α α α⋅ = ΓP N h  (6.3) 

 ( ) ( )                on 1 1
0 I⋅ = ΓP N λ  (6.4) 

 ( ) ( )             on 2 2
0 I⋅ = − ΓP N λ  (6.5) 

 
 

( ) ( ):         on 1 2
I= − = Γu u u 0  (6.6) 

   

where the dot over-script denotes the rate form of a quantity 
.

( )) (
t

∂
=

∂



, ( )

0
αb  is the force, 

( )αg  is the prescribed displacement, ( ) ( )DIV tr GRAD=      is the reference divergence 

operator, and ( )αN  is the unit outward normal on the boundary ( )αΓ  of region ( )αΩ . The 

first Piola–Kirchhoff stress tensor is denoted by ( )αP . In this work, the Lagrange multiplier 

method was used to weakly impose interface equations (6.4) - (6.6) for its consistent 

enforcement of the traction equations (6.4) - (6.5) through the incorporating an auxiliary 
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unknown field 0λ  at the interface [194, 196]. The weak form of the governing equations 

(6.1) – (6.6) at a nonspecific instant in time t∈  becomes: Find 

{ }(1) (2) (1) (2)
0, , ∈ × ×u u λ     such that for all { }(1) (2) (1) (2), , ∈ × ×η η μ    : 

 
( )  

( ) ( ) ( ) ( )

( ) ( )                                                                

V

      

DI  d   d

d       
h

I

2

0 0 0 0
1

0

2

1
V dV A

A

α α

α

α

α α α α

α

α α

Ω Ω
=

Γ

Γ

=

+ +⋅ ⋅ ⋅

⋅=

∑ ∫ ∫∫ ∑

∫

η P η b η λ

η h

 



 (6.7) 

  

d 0
I

A
Γ

− ⋅ =∫ μ u  (6.8) 

The expression (6.7) correspond to the weak statement of equilibrium (6.1) while the 

second equation (6.8) corresponds to interface continuity conditions (6.4) - (6.6) expressed 

in terms of the vector-valued jump operator 
 

( ) ( )(1) (2)= −   ; see [194, 197] for further 

details. The definitions for composite functional spaces contained in (6.7) – (6.8), for 

example { }(1) (2),=   , are well-defined for the regions ( )αΩ ⊂ Ω  as follows: 

 ( ){ }sd

( )

( ) ( ) ( ) 1 ( ) ( ) ( ),
g

n
H α

α α α α α α

Γ
 = ∈ Ω = u u u g  (6.9) 

 ( ){ }sd

( )

( ) ( ) ( ) 1 ( ) ( ),
g

n

oH α

α α α α α

Γ
 = ∈ Ω =  0η η η  (6.10) 

 ( ) sd1
2

n

IH −  = ∈ Γ   
λ λ  (6.11) 

Likewise, the displacement field u  is regarded as the unification of the restricted 

displacement fields ( )αu  defined over ( )αΩ . Integrating the first term of equation (6.7) by 

parts and applying the divergence theorem gives: 

 
( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

DIV d GRAD :  d

                                         

 d

d
g

h
0 0 0

0

V V A

A

α α α

α

α α α α α α

α α

Ω Ω Γ

Γ

⋅ = − ⋅

+

+

⋅

∫ ∫ ∫
∫

η P η P η h

η h

 



 (6.12) 

Note that the term ( ) ( )  d
g

0A
α

α α

Γ
⋅∫ η h  in equation (6.12) vanishes due to (6.10). Inserting 

(6.12) back into (6.7) gives:  
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( ) ( ) ( ) ( )GRAD :  d  d  d
I

2 2

0 0 0 0 0
1 1

V V A
α α

α α α α

α α
Ω Ω Γ

= =

− ⋅ − ⋅ =∑ ∑∫ ∫ ∫η P η b η λ 0   (6.13) 

Applying the chain rule to the time derivative of P  and using the definition of the velocity 

gradient 1−L = FF  : 

 ( ) ( )T T T 1 T T TJ− − −= + = + = +P FS FS LFSF FSF F FU tR RtR F   

   (6.14) 

Where T T T1
J

 
 
 

t = R FSF R = R σR



  is the unrotated Cauchy stress tensor described in 

Section 1.2.1. The history-dependent nonlinear plasticity problem is best described in an   

increment form such that the first Piola–Kirchhoff stress tensor can be described as: 

n 1 n n 1+ += + ∆P P P , where the n  subscript denotes the previous time step and the n 1+  

subscript denotes the time step we are solving for, throughout this chapter we shall 

suppress the n 1+  subscript ( ) ( )n 1+
= 

 as:  

 n= + ∆P P P  (6.15) 

The stress increment ∆P  can then be defines using (6.14) and (1.16) as: 

 ( )
( ){ }    : 

1 T T T

1 T p p p T T
0

J

J

− −

− −

∆ = ∆ + ∆

 = ∆ + ∆ −∆ − ∆ + ∆ C

P FU tR R tR F

FU tR R d d t W W t R F
 

(6.16) 

Equation (6.16) shall be solved for implicitly since the unknown appears in both sides of 

the equation. For ease of implementation, we solve for the ∆P  using the algorithmic 

tangent A  developed in Mark’s work [15], reducing equation (6.16) to: 

 ( ): grad TJ −∆ ≈ ∆  P u FA  (6.17) 

The expression (6.17) is essential serves an essential role in the derivations of the following 

section.   
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6.3 Multiscale decomposition 

The objective at this point is converting the mixed interface weak form (6.7) - (6.8) into 

a stabilized displacement formulation by extending the derivations for elastic domains in 

[194, 196]. This framework is underlain by concepts from the Variational Multiscale 

(VMS) method [198]; in particular, a modeling procedure is applied to the fine-scale 

displacement field localized to the interface. The result of the derivation is a stabilized 

primal formulation in which the interface Lagrange multipliers are condensed from the 

method. The main advantages are that fewer unknowns appear in the final system of 

equations and the complications of selecting discrete multiplier interpolations that satisfy 

the BB stability condition [199] are avoided. In what follows, we summarize the major 

steps from the framework of [194, 196] and highlight the distinguishing features arising 

due to inelasticity. For other examples of stabilized methods for solid mechanics developed 

using the VMS method, see the works of [61, 197, 200-202] and references therein. 

To begin the derivation, an overlapping disintegration of the displacement field ( )αu  into 

coarse and fine scales is applied in each region: 

  

( ) ( ) ( )

coarse scale fine scale

ˆα α α= +u u u
 

(6.18) 

 
 

( ) ( ) ( )

coarse scale fine scale

ˆα α α= +η η η  (6.19) 

Next, we apply consistent linearization to the localized problems according to [196]. 

Motivated by the simplified approaches followed in [200, 202] and similar to [203] the 

history effects of the fine scales are treated as negligible, implying that the stress field 

( )αP  is a function of the coarse-scale fields alone. Instead, the fine scales ( )αu  are viewed 

as an incremental perturbation ( )α∆u  about the current course-scale deformation state. 

the stress field can then be described as:  



 

167 
 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ : grad TJα α α α αα −+ ≈ + ∆ = + ∆ 
 P u u P u P u P u u F  A  (6.20) 

We directly adopt the notations of [194, 196] for the finite element partitions. While 

conforming discretizations of each region ( )αΩ  into finite elements ( )
e
αΩ  is employed, the 

discrete spaces are not required to match up along interface IΓ  and are allowed to be 

both nonconforming and of different polynomial order. Also, the fine scales are not 

assumed to vanish along the interface IΓ , in contrast to earlier VMS modeling approaches 

[197].  

Substituting the scale decompositions (6.18) – (6.20) into the time-discrete weak form of 

(6.13), we employ the linearity of the weighting function slot to separate the system into 

a coarse-scale problem   and a fine-scale problem  : 

Coarse-Scale Problem   

 
( )

( )  

( )( ) ( )

( ) ( ) ( ) ( ) ( )

ˆgrad : : grad  d

ˆ ˆ ˆ ˆgrad : : grad    d  d
I

2

1
2

1

V

V A

α

α

αα α

α

α α α α α

α

Ω
=

Ω Γ
=

∆

+ − ⋅ − ⋅ =

∑∫

∑∫ ∫

η u

η u η b η λ 0

A

A
 (6.21) 

  

ˆ d 0
I

A
Γ

− ⋅ + =∫ μ u u  (6.22) 

Fine-Scale Problem   

 
( ) ( )

 

( ) ( )( ) ( ) ( )

( ) ( )

ˆgrad : : grad  d grad :  d

                                                                d  d
I

2 2

1 1
2

1

V V

V A

α α

α

α αα α α

α α

α α

α

Ω Ω
= =

Ω Γ
=

∆ = −

+ ⋅ + ⋅

∑ ∑∫ ∫

∑∫ ∫

η u η σ u

η b η λ

  

 

A
 (6.23) 

We now aim to convert the multiscale system (6.21) – (6.23) into a stabilized reduced 

system expressed only in terms of the coarse-scale displacement field ( )
1ˆn

α
+u  by extending 

the framework of [194, 196]. The two major steps are, first, to apply modeling assumptions 

to (6.23) to derive an analytical expression for ( )
1n

α
+u  at the interface, and second, to embed 
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this expression into (6.22), enabling the condensation of the multiplier field λ  from the 

coarse-scale problem. 

 

6.3.1 Modeling of fine scales 

Beginning from (6.23), we assume that the fine scales are localized to a boundary layer 

surrounding the interface IΓ , which is reasonable since the destabilizing effects of IΓ  

tend to be localized due to the Saint-Venant principle. In particular, we represent ( )αu  in 

the vicinity of the interface using a conforming sub-partition, the details of which are 

contained in [194, 196]. The main idea is that the layer of elements on the sides of the 

interface are partitioned into sectors ( )
s
αω  so that a conforming discretization of the 

interface into segments sγ  outcomes. An illustration is shown in Figure 6-2.  

 

 

Figure 6-2. partitioning the interface into sectors ( )
s
αω  and segments sγ  [195] 

 

This partition facilitates the representation of ( )αu  using edge bubble functions ( )
sb α  

supported over the sectors: 

 ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ),
s s

s s s sα α

α α α α

ω

α

ω

α= =u β b η ξ b   (6.24) 
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where the bubble function ( )
sb α  vanishes on the boundary of the sector ( )

s
αω∂  except along 

the adjoining interface segment sγ . The primary result of this localized representation is 

that the fine-scale problem (6.23) can be decoupled into a series of local ones posed over 

pairs of adjacent sectors ( )
s
αω  sharing segments sγ .  

The specific procedure for the definition of the segments and sectors based on the 

interface topology is discussed in greater detail within [194, 196]. 

The resulting localized counterpart of (6.23) is expressed as follows for each segment 

1,..., segs n= : 

 
( ) ( )

 

( ) ( )

( )

( ) ( )( ) ( ) ( )

( ) ( )

ˆgrad : : grad  d grad :  d

                                                                 d

s s

s s

2 2

1 1
2

1

V V

dV A

α α

α

α αα α α

α α

α α

ω ω

α
ω γ

= =

=

∆ = −

+ ⋅ + ⋅

∑ ∑∫ ∫

∑∫ ∫

η u η σ u

η b η λ

  

 

A
 (6.25)  

The next major step toward deriving an analytical model for the fine scales according to 

the framework of [194, 196] is to perform integration by parts on the coarse-scale volume 

term in (6.25) to obtain an interface traction term on sγ : 

 
( ) ( )( )

( ) ( )

( ) ( )

( ) ( )( ) ( ) ( ) ( )

( )( ) ( )

ˆgrad : : grad  d div  d

ˆ                                                            d

s s

s

2 2

1 1
2

1

1

V V

1 A

α α

α

ω

α αα α α α

α

α

ω
α

α αα

γ

= =

−

=

∆ = ⋅ +

 + ⋅ − − ⋅ 

∑ ∑∫ ∫

∑∫

η u η σ u b

η λ σ u n

  



A
 (6.26) 

By substituting the representation of the fine scales through bubble functions (6.24) and 

the integration by parts formula (6.26) into the localized fine-scale problems (6.25) we 

obtain the expression:  

 
( ) ( )( )

( )

( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

ˆgrad : : grad  d div d

                                                                     d

s s

s

2 2

s s s s
1 1

2
1

s
1

V V

1 A

α α

αα α α α α

γ

α

α α

αα α

ω ω

α

α

= =

−

=

⋅∆ = ⋅ +

 + ⋅ − − ⋅ 

∑ ∑∫ ∫

∑∫

b b β b σ u b

b λ σ n

A
 (6.27) 
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where )

1

( ) (
sd

js

n

s
j

bα α

=

=∑ eb  is a valued as vector bubble function, je  are the basis-vectors. To 

further simplify (6.28), additional assumptions are employed like the ones in [194]. First, 

we ignore the interior residual term. By doing so, we assume orthogonality between the 

coarse-scale residual and the fine-scale bubble function, which is a common assumption 

used by residual-free bubble methods [204, 205]. Second, we extract the traction boundary 

residual outside the integral by applying the mean-value theorem (MVT), converting 

(6.27) from a nonlocal expression to a local one in terms of û  and λ . This technique is 

common among stabilized methods [206, 207]. Finally, we use the average value of the 

bubble function in expression (6.24) for û . Applying those three assumptions to (6.27), 

leads to an expression for ˆ∆u  along each indivial interface segment sγ , analogous to 

stabilized methods: 

 ( )( )( ) ( ) ( )ˆ 11 1 1
s
 ∆ = − ⋅ u τ λ σ u n  (6.28) 

 ( )( )( ) ( ) ( )ˆ 22 2 2
s
 ∆ = − − ⋅ u τ λ σ u n  (6.29) 

where the stability tensor ( )
s
ατ  can be expressed as: 

 ( ) ( )( )

( )

( ) ( ) ( ) ( )
d

grad : : grad  d
d

s

s

s

2

1s

s s s

A
V

A α

γ

α

α α α

ω

αγ
−

= ⋅
∫

∫∫

b
τ b bA  (6.30) 

Similar to other stabilized methods [194, 197, 198, 202], the fine-scale model is residual-

driven. Presently, the residual corresponds to the interface traction equilibrium conditions 

(6.4) - (6.5) accounting for the Lagrange multiplier field λ .  

6.3.2 Embedding in the coarse-scale problem variationally  

With the interfacial representation of the fine-scale field in hand, we return to the coarse-

scale continuity equation (6.22) to perform condensation of the Lagrange multipliers λ  
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in order to derive a definition for the numerical flux at the interface. Employing the 

linearity of the jump operator 
     

ˆ ˆ+ = + ∆u u u u   and making the substitutions (6.28) - 

(6.29) within (6.22) leads to the following:  

 
 

( )( ) ( )( )(1) (2)(1) (1) (2) (2) d 0ˆ ˆ ˆ
I

s s A
Γ

 − + ⋅ − ⋅⋅ − ⋅ =


− ⋅


−∫ u τ λ σ u n τμ λ σ u n  (6.31)  

By adopting a piece-wise 2L  representation of the multipliers over the interface segments 

sγ  as in [194, 196], we directly solve for λ  in terms of the coarse-scale displacements and 

tractions. Since the intervening steps are exactly similar to the linear context in [194], the 

resulting expression is simply recorded as follows: 

 
 

( ) ( ) ( ) ( ) ( ) ( ) ˆ1 1 1 2 2 2
s s s= ⋅ ⋅ − ⋅ ⋅ − ⋅λ δ σ n δ σ n τ u  (6.32)  

Where ( )( ) ( ) 11 2
s s s

−
+=τ τ τ . The representation of the multiplier field (6.32) could be 

interpreted as the numerical flux for the stabilized Nitsche formulation, where the tensor 

( )
s
αδ  is expressed as follows: 

 ( ) ( )
s s s
α α= ⋅δ τ τ  (6.33)  

Observe that, as in [194, 196], (6.33) naturally implies that (1) (2)
s s+ =δ δ 1 . However, only 

in restricted circumstances does (1) (2) 1
2s s= =δ δ 1  as is typically assumed in DG methods 

[208]. 

Equations (6.28) - (6.29) can then be simplified as: 

 ( ) ( )( )  

( ) ( )( ) ( ) ( ) ( )ˆ ˆ ˆ1 21 1 2 1 T
s s∆ = ⋅ + ⋅ − ⋅u δ σ u n σ u n δ u  (6.34) 

 ( ) ( )( )  

( ) ( )( ) ( ) ( ) ( )ˆ ˆ ˆ1 22 1 2 2 T
s s∆ = ⋅ + ⋅ + ⋅u δ σ u n σ u n δ u  (6.35) 

where the additional stability tensor sδ  arises from substitution as:   

 
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )                                             

1 11 1 2 2 2 1 2 1
s s s s s s s s s

11 11 2
s s

− −

−− −

= − ⋅ + ⋅ = − ⋅ + ⋅

 = − +  

δ τ τ τ τ τ τ τ τ

τ τ
 (6.36)  

Integrating the left-hand side of equation (6.21) by parts would give the equation: 
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( ) ( )

( )
( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆgrad : : grad  d div grad :  d

ˆ                                                          grad :  d
s s

s

V V

A

α α

αα

α

ω

α α α

α α

ω

α

γ

∆ = − ⋅∆

+ ⋅ ⋅∆

∫ ∫
∫

η u η u

η n u

 



A A

A
 (6.37)  

As implemented in [194], we ignore the contribution of the domain interior term from the 

right-hand side of (6.37): 

 ( ) ( )( )

( )( ) ( ) ( ) ( ) ( ) ( )ˆ ˆgrad : : grad  d grad :  d
s s

V A
α

αα α α

ω

α

γ

α α∆ = ⋅ ⋅∆∫ ∫η u η n u A A  (6.38)  

this is in alignment with our assumption that the fine-scales will become vanishingly small 

as we get distant from the interface. Additionally, this assumption serves as to simplify 

the final form of this method and it also enables the direct substitution of the interface 

fine-scale model.  

Finally, embedding the fine-scale models (6.34) - (6.35) and numerical flux (6.31) into the 

coarse-scale equilibrium equation would give rise to the weak form of the Crystal Plasticity 

DG:  

 

( )

 
( ) ( )

( ) ( )  

   

( )

( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ ˆgrad : : grad    d

ˆ ˆ ˆ d

ˆ ˆ ˆgrad : grad : d

ˆ ˆ  d

ˆ+ grad :

s

s

s

s

2

1

1 21 1 2 2
s s

1 1 1 1 T 2 2 2 2 T
s s

s

V

A

A

A

α

α α α α α

α
ω

γ

γ

γ

α α

=

− ⋅

 − ⋅ ⋅ ⋅ − ⋅ ⋅ 

 − ⋅ ⋅ ⋅ ⋅ ⋅ 

+ ⋅ ⋅

−

∑∫

∫
∫

∫

η u η b

η δ σ u n δ σ u n

η n δ η n δ u

η τ u

η

A

A A

A ( ) ( )( )( ) ( )( ) ( ) ( )ˆ ˆ  d
s

2
1 21 2

s
1

A
γ

α

α=

⋅ ⋅ ⋅ ⋅ + ⋅ =∑∫ n δ σ u n σ u n 0

 (6.39)  

Equation (6.39) can be cast in a more compact form by defining the weighted average 
flux operators: 

 ( ) ( )( ) ( )( ) ( ) ( ) ( )ˆ ˆ{ } 1 21 1 2 2
s s⋅ = ⋅ ⋅ − ⋅ ⋅σ n δ σ u n δ σ u n  (6.40)  

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆgrad : grad : grad :{ } 1 1 1 1 T 2 2 2 2 T
s s⋅ = ⋅ ⋅ − ⋅ ⋅η n η n δ η n δA A A  (6.41)  

Additionally, we ignore the stress jump term contribution, which is the final term in 

(6.39), improving the computational feasibility of the method, since the number of terms 

that would normally be needed to be calculated for the stiffness matrix and residual force 
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vector are reduced. This term is not usually applied in interface methods [208-212] . 

However, this term may provide additional stability in the occurrence of vastly nonlinear 

material response. Implementing those conventions in (6.39) and removing the 

superimposed signs for clarity, we reach to the stabilized finite-strain CP interface 

formulation in its final form: 

 
( )

 
( )

     

( )

( ) ( ) ( ) ( ) ( )grad : : grad    d

{ } d grad :  d   d{ }
s

s s s

2

1

s

V

A A A

αω

α

γ γ γ

α α α α

α=

− ⋅

− ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ =

∑∫

∫ ∫ ∫

η u η b

η σ n η n u η τ u 0

A

A
 (6.42) 

Note that a similarity is apparent between (6.42) and both linear [208, 212, 213] and 

nonlinear [210, 214-217] Nitsche and DG methods. Nevertheless, a key difference here is 

the definitions for the numerical flux (6.40) - (6.41) and the penalty parameter (6.33), 

where they are derived through the modeling of fine scales to stabilize a Lagrange 

multiplier interface formulation. Specifically, (6.42) is independent from user-defined 

parameters hence no calibrations are needed.  

 

6.4 Numerical Results 

We investigate the accuracy, robustness and stability performance of the proposed 

interface method across a range of numerical problems. Only three-dimensional problems 

are presented, but two-dimensional problems were verified for some problems to give 

similar results. A crystal-plasticity material model is employed for each of the problems 

with a number of different hardening models. Sufficient degrees are used when evaluating 

integral expressions over surfaces and volumes using Gauss quadrature rules. Two test 

cases are considered, to investigate different features of the method. The first problem is 

a patch test with a non-conforming mesh, testing the robustness of the method. 

Robustness in a non-conforming mesh would by default imply that the method is also 
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robust for conforming meshes. The second problem comprises of a 100-grains cell model 

described similar to the one described in section 4.5. This problem was designed to test 

stability under finite displacements as well as benchmarking it to problem where cohesive 

elements were used on the interface. Numerical simulations were conducted using a Matlab 

finite element code which was sped up by converting part of it to the mex format. 

6.4.1 Non-conforming mesh patch test 

For this problem, the monotonic uniaxial loading of a single crystal block is investigated. 

A schematic of the domain is shown in Figure 6-3. Presently, our objective is to verify that 

displacement continuity is weakly enforced through the interface. Having the problem 

verified for a non-confirming mesh insures that all surface integrals in equation (6.42) are 

adequately integrated. Additionally, since the stabilizing parameters are dependant of 

elements’ geometry, the problem also serves to test their robustness. 

 

 
Figure 6-3. Single-crystal uniaxial tension problem 

 

The domain dimensions are 2 1 1 mm× × . The left part of the domain is divided into four 

blocks while one cube element is on the right side of the interface. Periodic boundary 
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conditions are applied to surfaces 0, 0 and 0x y z= = =  while loading is applied to nodes at 

2 mmx = , the other surfaces are treated as traction-free. The MTS model is used to for 

the problem to utilize the FCC slip system. The twelve FCC slip systems { }111 110  are 

assigned to the elements of the single crystal, and the orientation of the lattice is specified 

through the Kock’s Euler angles as 45.0 ,  90.0  and 0.0φ° ° °Ψ = Θ = = . This results in only 

four activated slip systems and no stresses in the transverce direction. This was done to 

have stress response only in the x-direction.  The material properties for the problem are 

the same as the one listed in Table 2-1 which corresponds to the Aluminum alloy AL5182.

In this simulation, the prescribed displacements are incremented during 2000 load steps 

at a strain rate of 5 11 10  s− −= ×ε  up to a maximum value 0.3=ε  as shown in Figure 6-4. 

The large deformations generated by this applied displacements ensure that the block’s 

plastic response is significant. 

The temperature effect on the model is deactivated (T = 0 K), Figure 6-5 shows the 

contour plot of the first principle stress 1σ . It’s clear that the stress field is constant across 

the entire domain. The deformed body also behaves as a single block. The constant stress 

field is due to the same material properties shared by the two sides of the interface, this 

would be different if there was a difference in material properties between the two sides 

or if the slip systems activated aloowed for transverse stress response., That case is 

explored in the next section.  It is also worth noting that adapting a different hardening 

model is fairly easy as Equation (6.42) is general for different types of hardenings as will 

be shown in the next section. 

 

6.4.2 3D cell model response  

The objective of this problem is to investigate the stability and accuracy of the stabilized  
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Figure 6-4. Initial (blue) vs deformed (red) configuration of the model 

 

 
Figure 6-5. Contour plot of the first principle stress. 
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DG for Crystal Plasticity. The model used is the cell model described in Section 4.5.3. 

Similar boundary conditions are applied with loading on the top surface reaching a total 

true strain of ε = 10%  over 400 steps. The strain rate used was 6 11 10  s− −= ×ε  . Similar to 

Section 4.5.3, The 100 grains had randomly distributed orientations and Figure 6-6(a) 

shows pole figures of the initial configuration of the grains’ elements. Due to the large 

displacements the model is subjected to, the final orientations of the elements become 

more distributed as shown in Figure 6-6(b) and the misorientations between grains become 

larger.  

 

 
(a) 

 
(b) 

Figure 6-6. Pole figures for the elements’ orientations in (a) initial configurations and 
(b) final configurations. 

 

The model itself was run with two scenarios for the interface elements: once modeled as 

cohesive zone elements where sliding was not allowed, this is done by assigning a large 

enough 0η  value in Equation (4.14). The convergence rate for the DG scenario was similar 

to that of the CZM with the average number of iterations per loading step close to 3. As 

mentioned previously, the finite strains result in larger misorientations between grains. 
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This could cause instabilities at the interfaces as the contrast on both sides of the interface 

increases. Figure 6-7(a) shows the total interface elements with a highlighted selected 

grain boundary for comparison. The normal traction field n = ⋅T σ n  is selected as contour. 

This specific GB was selected for the large angle of misorientation ( °Φ = 33.87 ) between 

the grains on both of its sides. Figure 6-7(b) shows the aforementioned contour plot for 

cohesive zone elements, oscillations are very apparent as the traction field switch signs 

along the edges. However, Figure 6-7(c), which shows DG-modeled interface elements, 

shows a smoother gradient of tractions with no oscillations at the edge.  This result can 

be seen throughout the model and is due to the stabilizing nature of the DG model. While 

the simulation was not done for a creep test, it should not be a factor as no creep term is 

present in the interface model. 

 

6.5 Conclusion 

In this chapter, a formulation fo DG interface for finite-strain Crystal Plasticity is derived 

by further extending the for finite-strain developments for hyper-elasticity [195] and small-

strain J2 plasticity [203]. A starting point for the derivation is to treat interface continuity 

constraints using Lagrange multipliers concept, which is then stabilized by the usage of 

concepts from the VMS method. A unique feature of this type of formulation is the 

linearization at the interface of the localized fine-scale problems. By doing so, we 

analytically develop models for the fine-scale u  field. Through inserting the fine-scale 

models into the coarse-scale problem, we enhance stability obtained and subsequently 

derive a primal weak form analogous to the classical DG method by enabling the Lagrange 

multipliers to be condensed from the formulation. 

Similar to the hyper-elastic nonlinear context [195], the fine-scale models progress 

with geometric nonlinearity and the local material of the domain. The numerical flux is  
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(a) 

 
(b) 

 

 

  
(c) 

Figure 6-7. Normal traction field for cell model’s interface elements: (a) highlighted 
investigated grain boundary, (b) interface modeled as cohesive zone elements and (c) 

interface modeled as DG elements. 
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defined by accounting the length scale and element geometry, constitutive material model, 

and nonlinear effects, the definitions for the numerical flux and penalty parameter in this 

work accomodate instabilities due to increasing deformations and grains misorientations 

adaptively. 

To simplify the execution of the method, the fine-scale fields were presented through 

polynomial bubble-functions. A similar technique was investigated in previous works. 

Although the method was developed to weakly impose continuity over non-conforming 

meshes within the domain, a trivial extension of the ideas could be done over the 

discretized domain for fully-discontinuous approximations. A non-conforming mesh was 

investigated for robustness and convergence under finite-displacements, as well as the 100-

grain cell model for stability and accuracy. Emphasizing problems with significant 

deformations to verify that the fine-scale models provide stability and retain objectivity 

under large-strains. In the tests, results were accurately attained without additional 

calibration, only using the stability parameters derived. Acceptable performance is shown 

by both quadrilateral and triangular elements for problems with significant mesh 

nonconformity and material mismatch.   
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CONCLUDING REMARKS AND FUTURE WORK 

This dissertation develops a physically-based microstructural model for creep behavior in 

Grade 91 steel combining crystal plasticity and interface finite element methods. The 

modeling studies performed provided insights into the trade-offs in active mechanisms for 

Grade 91 loaded under low and high stresses. A new numerical method is also developed 

for including the effects of geometrically necessary dislocation on the creep resistance of 

the microstructure by studying a gradient formulation. Also, an interface formulation was 

developed for capturing more accurately the interface traction fields along grain 

boundaries within polycrystalline materials that would be suited towards extension to 

include grain boundary sliding and cavity growth.  The original overall goal of the 

microstructural model was to achieve a unified model that could be calibrated at moderate 

strain rates using tension tests and then extended to low and lower strain rates relevant 

for creep. While the dislocation density-based material model of Chapter 3 was not able 

to successfully complete this transition, the multi-mechanism model of Chapter 4 was able 

to capture experimentally observed trends as well as provide insights into the response of 

the material under different triaxiality ratios as well as other insights. 

The present work had the following significant contributions and conclusions: 

• Chapter 2 focused on a gradient method for crystal plasticity that captured the 

effect of the geometrically necessary dislocation effects without using a separate 

gradient field. A projection method was proposed based on Lie group and algebra 

relations to preserve the tensorial properties of the internal variable fields. The 

proposed nodal method was found to be economical compared to the existing 

element-based method while capable of being extended to higher order gradients. 
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• Chapter 3 developed the dislocation density-based model for Grade 91. The 

model was based on thermal and athermal dislocation motion by climb and glide. 

The model did not completely satisfy material response at both moderate and low 

string rates. 

• Therefore, in Chapter 4 we developed a multi mechanism-based model. That model 

should better fit to data at both high and low stresses in the creep regime. It’s 

distinguishing feature is that the model had terms accounting for both cavities as 

well as dislocation evolutions in the material. We observed from strain rate 

decomposition figures the effects of each mechanism during primary, secondary, 

and tertiary creep.  

• Chapter 5 extended results for that method across the other stress levels. 

Particularly it extrapolated to lower stresses beyond which creep tests are not 

practical. 

• The last section worked on developing a Discontinuous Galerkin method to help 

deal with the instabilities that were found in Chapter 4 at interfaces during the 

modeling. A couple of numerical results for shown. We were testing to see that 

the method is indeed more robust for interfaces and can treat problems with 

crystals having different levels of misorientation between grains. 

In terms of future work in modeling Grade 91 as well as augmenting the microstructural 

modeling framework, a few areas of extension are proposed for emphasis. 

These topics include extending the Lie Group/Algebra method of Chapter 2 to GND 

model of Bailey and Geers. Also, comparing uniform and preferential texture effects in 

RVE of Grade 91 crystal plasticity creep model, as well as extending the stabilized DG 

crystal plasticity method in Chapter 6 to include grain boundary sliding effects, and 

applying machine learning method (e.g. Neural networks) to improve the fit of model 

parameters to experimental data and quantify sensitivities.  
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A.1 GB model implementation 

 
The grain boundary constitutive model in Chapter 4 is treated using an explicit forward 

Euler time integration scheme within so-called interface finite elements. The most common 

approach for realizing interface traction-separation models is the intrinsic cohesive zone 

method, although recently other approaches have been proposed such as mixed 

formulations using Lagrange multipliers [218] and primal formulations using numerical 

fluxes [219-221]. In the cohesive zone method, the traction at the interface is an explicit 

function of the displacement jump at the interface, implying that traction vanishes if and 

only if the jump vanishes. Therefore, an artificial stiffness is required to express the 

traction-separation relation prior to cavity nucleation to suppress separation as well as 

for compression to suppress interpenetration: 

 ( ) ( ),e e
n n n n n nT K u T K u= =   



   
   

 (43) 

Here, ( )e
nu 

 
 

 is the elastic or recoverable normal separation and nK  is the normal direction 

stiffness. Ideally, this stiffness will be large enough that grain boundary opening prior to 

cavity growth is a small fraction of the deformations from grain boundary sliding and 

grain creep. However, an overly large normal stiffness is known to cause numerical 

inaccuracies and convergence problems; see studies within [159, 222-224]. A stiffness of 

10 nK  is applied when the traction state is compressive to both ensure numerical stability 

and minimize grain boundary penetration. 

The time-discrete counterparts of the normal traction-separation relation are developed 

as follows. For simplicity, all of the state variables at an interface quadrature point are 

grouped into a state vector ( ) { }, , ,n n n n n nt a b V N= =χ χ  for a series of time steps 0 to T  

with time step t∆  and time at step n  as nt . All evolution equations (4.3) – (4.9) are then 

determined from the state at step n  depending on whether the facet is opening or closing 
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(determined by the sign of ( ), 1 ,n n n nu u t+ − ∆ 

 

 

). When the point is not opening, the sole 

contribution to traction is from (43). For the opening case, the evolved interface state is 

computed from the boundary diffusion ( )dV  plus the local creep ( )cV  contributions 

evaluated at state nχ  from step n . In particular, ( )( )c
nV χ  is evaluated according to (4.8) 

or (4.9) using the neighboring solid element stresses and state that are stored from the 

previous converged time step, as discussed in Appendix A.3. The cavity size and number 

density are then expressed using forward Euler expressions as follows: 

 ( ) ( )( ) ( ) 2
1 4 ( )c d

n n n n na a t V V h aπ ψ+    = + ∆ +   χ χ   (44) 

 ( )1 , 0 ,
C

n n N n n eq nN N tF T
β
ε+ = + ∆ Σ   (45) 

 1 11n nb Nπ+ +=  (46) 

Note that the diffusion-based component ( )dV  of the cavity volume growth rate depends 

on the cavity size and spacing through the geometric function ( )q f  according to (4.13). 

A modified version ( )q f  has been developed in order to simulate cavity coalescence at 

lower porosity 2 2f a b=  as well as to avoid numerical difficulties from the unbounded 

nature of (4.13). The modified function is specified such that ( ) ( )q f q f=  for low porosity 

if f<  and ( ) minq f q=  for high porosity jf f> . The modification employs a cubic Hermitian 

polynomial for the transitional range i jf f f< < , ensuring continuity of magnitude and 

slope at the endpoints of this range. Our numerical sensitivity studies have identified these 

parameters as 0.25if = , 0.49jf = , and 9
min 10q −= . 

Now combining the separation from the linear stiffness (43) in series with the cavity 

growth equations (4.3), (4.5), and (4.6), we obtain: 

 ( )( ) ( ) ( ) ( ) 2i e c d
n n n n nu u u V V b T Kπ = + = + + 

        

  

     
     

 (47) 

Discretization in time yields: 
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 ( ) ( ) ( ) ( )( ) 2
, 1 , , 1 , 1 ,8 ( )c

n n n n n n n n n n n n n nu u t V D T q f b T T K tπ π+ + + − ∆ = + + − ∆ χ 



 

 

 (48) 

In the nonlinear finite element method at an iteration of the Newton method, the current 

displacement jump estimate will be given and the traction is required for evaluating the 

internal force vector. Therefore, (48) is solved for the traction at time 1nt +  to obtain: 

 
( ) ( ) ( )( ) 2

, 1 , ,
, 1 28 ( ) 1

c
n n n n n n n n n

n n
n n n

u u t V b T K t
T

D b q f K t

π+
+

− ∆ − + ∆
=

+ ∆

χ 



 

   (49) 

Note that the normal traction nT  can experience oscillations when evaluated directly from 

(49), leading to premature cavity nucleation in (45). Therefore, our code provides an 

option to compute a pseudo traction nT = ⋅ ⋅n σ n  using the stress state in the neighboring 

solid elements from step n . This modification increases the stability and does not degrade 

the physical accuracy when small time step sizes are employed. 

Lastly, the tangential traction is computed from a straightforward expression of (4.14): 

 ( ) ( ), 1 0 , 1 ,/s n sd n n s n s nf a b tη+ += − ∆T u u 

 

 

    (50)  

While explicit treatment is applied to the interface model, the global equilibrium equation 

remains as a coupled nonlinear system of equations due to the solid elements. To solve 

this system with the Newton-Raphson method, linearized interface expressions are 

required. These expressions for the algorithmic stiffness are obtained from the two traction 

components as: 

 
2

, 1
2 2

, 1

( )
8 ( ) 8 ( ) 1

n n n n n n

n n nn n n n n

T K b q f K
D tK b q fu K D t b q f

+

+

∂
= =

∆ +  ∂ ∆ + 
 

 

 (51) 

 ( ) ( ), 1
0

, 1

/s n
sd n n

s n

f a b tη+

+

∂
= ∆ − ⊗

∂

T
I n n

u 

 

    (52)  

Note that employing the calibrated material parameters of 0 50 nma = , 0 60 μmb = , and 

5 1 1 311  MP h10 a mmD − − −= ⋅ ⋅×  produces values for the stiffness 
128 ( )n nD t b q f
−

 ∆   ranging 

from 14 MPa/mm10   when 0.01 ht∆ =  to 11 MPa/mm10   when 10 ht∆ = . 
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A.2 PAG model implementation 

The solid finite element material model for the PAG utilizes backward Euler integration 

of the evolution equations in Chapter 4 along the lines of [163]. The discrete equations 

extended to include the diffusive contribution are presented as follows for a generic time 

step 1n nt t t+ = + ∆ : 

 ( ) ( )( ) ( ) ( )
1 1 1 1 1 1 1 1 1: p d p p

n n o n n n n n n n+ + + + + + + +
 = = − + ∆ −∆ −∆ + ∆ − ∆ 0 R t t C d d d W t t W  (53) 

 ( ) ( )
2 , 1 0 , 1 1

1
0 1

slipn
s

w n w n v n
s

R τ θ τ τ γ+ + +
=

= = − − ∆∑  (54) 

 ( ) ( )
1( )

( ) ( ) ( ) ( ) ( )1
1 1 1 1

1 1

; , :
ns

s s s s pT s pn
n n n n n n

n n

τγγ τ τ τ τ
τ τ

−

+
+ + + +

+ +

∆ = = t R m R




 

 (55) 

 ( )( )
1 1devd

n nD tη+ +∆ = ∆d t  (56) 

 ( ) ( ) ( )
1 1

1

slipn
p s pT s p

n n n n
s

γ+ +
=

∆ = ∆∑d R m R  (57) 

 ( ) ( ) ( )
1 1 1 1

1

slipn
p s pT s p T

n n n n n n
s

γ+ + + +
=

 
∆ = ∆ 

 
∑W R R q R R  (58) 

Herein, 1 1n n t+ +∆ = ∆d d  is the current strain increment, and notice that an explicit treatment 

of the plastic rotation tensor is utilized. The two residual equations (53) and (54) are 

solved using the Newton-Raphson method expressed via a linearized system: 

 11 12 1

21 22 2wJ R
δ
δτ
    

=    
    

tJ J R
J  (59) 

 
( ) ( ) ( )( ) ( ) ( )( )

( )

1 1 1
11, 2 2 2

( )
( ) ( )11 1

0, 2 3 ( )
1

slip

p p p p
ijkl ik jl il jk ik lj il kj ik jl il jk

n s
s p s pn

ijmn mk nl ml nk mn kl ij mk mn nls
s

J W W W W

D tC C R m Rη

δ δ δ δ δ δ δ δ

γδ δ δ δ δ δ
τ

+

=

= + + ∆ + ∆ − ∆ + ∆

∂∆
+ ∆ + − +   ∂∑ 

 (60) 

 
( )

( ) 1
12,

1

slipn s
s n

ij ij
s w

J C γ
τ

+

=

∂∆
=

∂∑  (61) 
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 ( )
( )

( )1
21, 0 , 1 ( )1

s
p s pn

ij w n v mi mn njsJ R m Rα
γθ τ τ
τ

+
+

∂∆
= − −

∂
  (62) 

 ( )
( )

( ) 1
22 0 1 0 , 1

1 1
1 1

slip slipn n s
s n

v n w n v
s s w

J γθ τ γ θ τ τ
τ

+
+ +

= =

∂∆
= + ∆ − −

∂∑ ∑  (63) 

 ( ) ( ) ( ) ( )
0,

s p s p p s p p s p
ij ijmn km kl ln im mo ko kl lp jp mj io ko kl lp mpC C R m R t R R q R R t R R q R R= + −    (64) 

 
( ) 1( )1

1( )
1

s nsn
ns n

n

n tγ γ τ
τ τ

−+
+

+

∂∆ ∆
=

∂





 (65) 

 
( )

( )1
1

1

s
sn

n
w n

nγ γ
τ τ

+
+

+

∂∆
= − ∆

∂ 

 (66) 

Notice that the chain rule and product rule of differentiation have been applied several 

times, so that the model-dependent terms are (54) and (55) along with (62), (63), (65), 

and (66). These tensorial component expressions are implemented using Voigt notation in 

[71]. Line search techniques can be included into the updates of increments δ t  and wδτ  

to improve the numerical robustness. Further comments on these and other details of 

implementation are contained in [71, 159, 163].  

A.3 Nonlocal variables and effective power law exponent for 

PAGB model 

As mentioned in Chapter 4, the grain boundary cavity growth models of [28, 150, 161] 

includes terms for creep-driven growth that are mediated by an assumed isotropic power-

law viscous representation of matrix flow. In particular, expressions (4.8) – (4.10) have a 

dependence on the exponent n  as well as the effective creep strain and stress. Since the 

mechanical model for the grains in Chapter 4 combines anisotropic crystal plasticity and 

linear viscous diffusive flow, an effective definition for this exponent is needed to account 

for the dominant mechanism shift between high and low stresses both remotely and in the 

neighborhood of certain boundaries, as opposed to simply specifying a constant. This 
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allows a different value for each volumetric finite element incident on a grain boundary 

finite element. 

Recall that Grade 91 has a BCT lattice which we approximate as body-centered cubic. 

Such cubic crystals exhibit only mild viscoplastic anisotropy at elevated temperatures 

compared to lower-symmetry hexagonal crystals. Therefore, it is reasonable to adopt 

equivalent “effective” stress eqσ  and strain rate C
eqε  states according to (4.17) from the 

local material state as the driving forces in the cavity model. These quantities are simply 

evaluated from the dislocation creep (4.18) and diffusional creep (4.24) strain rates. 

However, the more challenging interpretation is the (instantaneous) effective isotropic 

power-law creep exponent, to be extracted from an effective power-law model of the form: 

 ln ln lnC
eq eqB nε σ= +     (67) 

Assuming a constant rate coefficient B , taking the derivative with respect to eqσ  and 

rearranging, we obtain an effective strain-rate sensitivity exponent: 

 eff

( )C
eq eq
C
eq eq

d
n

d
σ ε
ε σ

=




    (68) 

In the isotropic case, with ′σ  coaxial with Cε , the creep exponent relates changes in the 

magnitude of the creep rate to corresponding changes in the magnitude of the stress 

deviator; see relations (4.17). This interpretation of ‘magnitude sensitivity’ will be 

retained in the interpretation of an effective creep exponent for crystal plasticity. Thus, a 

small proportional change in the stress deviator is considered in terms of a dimensionless 

number z  (ultimately set to zero), leading to a set of ‘starred’ state variables in the 

perturbed state: 

 ( ) (1 ) ,z z ′≡ +σ σ     (69) 

 3( ) ( ) : ( ) |1 | ,
2eq eqz z z zσ σ= = +σ σ       (70) 
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 ( ) ( ) ( ) ( ); ; ;( ; ), (1 )s s s sf zτγ τ τ τ= = + 

       (71) 

 ( ) ( )
slip

; ;

1

( ) ( ) ( ) ( )( ) ,d s

S
s

s
n

sz γ
=

= + ⊗∑ε d σ m n 

        (72) 

 2 : .
3eqε = ε ε 

       (73) 

The derivative of the effective creep strain rate with respect to stress can be interpreted 

as:  

 
0 0 00

1 .
C
eq eq eqeq eq

eq eq eqz z zz

d d dd d
dz dzd d dz

ε ε εε σ
σ σ σ

= = ==

= = =
  

  

     (74) 

where according to (70) the denominator simplifies to /eq eqd dzσ σ= . Evaluating the 

numerator requires accounting for the crystallographic slip rate relation (4.21):  

 ( )

( )

slip

slip

( ) ( ) ( )
( ) ( )

( )

( ) (

;

)
( (

;

;
) ( )

(

; ;

1

; ;

1

)
)

( ) 1 1 22 :
2 3

2 ( ; ):
3

2 ( ; ):
3
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eq

n
eq

S
seq eq

n

s

eq

S
seq

d s s
s

s

d s
s s s

s
eq

d z d
dz dz

dd f d
d dz dz

dd f
d dz

ε
ε

σ τ τ τ
ε σ τ

σ τ ττ
ε σ τ

=

=

=

 ∂
= + ⊗ 

∂  
 ∂

+ ⊗
∂

=

∑

∑

εε

dε

ε d

m n

m n





















 




  


  

  

   .




    (75) 

Evaluating at 0z =  leads to the result 

 ( )
slip

10

( ) ( )
( ) ( ) ( )

( )

( ) 2 ( ; ): .
3

s
n

eq

e

C C d s
s s

SC seq
sq eqz

d z d f
dz d
ε τ τσ τ

ε σ τ==

 ∂
= + ⊗ 

∂  
∑ mε d n









    (76) 

Finally, combining expressions (68), (74), and (76) yields the suggested form for 

“equivalent” viscoplastic rate-sensitivity as: 

 ( )
slip( ) ( ) ( )

( ) ( )
( )eff

1

2 ( ; ): .
3

e
C d s s

s

q

s
C C

n
q

S
seq eq

s C
eq e

d fn
d

σ τ τ τ
ε σ ε τ ε=

 ∂
= + ⊗ 

∂  
∑ε d m n



  

    (77) 

Note that the partial derivative 
( ) ( )( ; )s sf τ τ τ∂ ∂  is required for the nonlinear solution 

algorithm for crystal plasticity in Appendix A.3 and thus is readily available. 
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This effective exponent is computed along with the other variables eqσ  and C
eqε  from (4.17) 

as an output after the convergence of the Appendix A.3 Newton algorithm at a solid 

element quadrature point. For an explicit integration of the PAGB model as in Appendix 

A.2, the values of these quantities are retained (and those converged) from time step nt  

and used for step 1nt +  of the interface element material update. For simplicity, the values 

of eqσ , C
eqε , mσ , and n  across all quadrature points of the two elements neighboring an 

interface element are averaged together.  
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