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Abstract

In this work, we proposed dynamic retraining (RU), wind vane module (WVM), BubbleMap

(BMap), and reinforcement authentication (RA) to improve the efficacy of implicit authen-

tication (IA). Motivated by the great potential of implicit and seamless user authentication,

we have built an implicit authentication system with adaptive sampling that automatically

selects dynamic sets of activities for user behavior extraction. Various activities, such as user

location, application usage, user motion, and battery usage have been popular choices to

generate behaviors, the soft biometrics, for implicit authentication. Unlike password-based

or hard biometric-based authentication, implicit authentication does not require explicit

user action or expensive hardware. However, user behaviors can change unpredictably,

which renders it more challenging to develop systems that depend on them. In addition

to dynamic behavior extraction, the proposed implicit authentication system differs from

the existing systems in terms of energy efficiency for battery-powered mobile devices. Since

implicit authentication systems rely on machine learning, the expensive training process

needs to be outsourced to the remote server. However, mobile devices may not always have

reliable network connections to send real-time data to the server for training. In addition,

IA systems are still at their infancy and exhibit many limitations, one of which is how to

determine the best retraining frequency when updating the user behavior model. Another

limitation is how to gracefully degrade user privilege when authentication fails to identify

legitimate users (i.e., false negatives) for a practical IA system.

To address the retraining problem, we proposed an algorithm that utilizes Jensen-

Shannon (JS)-dis(tance) to determine the optimal retraining frequency, which is discussed in

Chapter 2. We overcame the limitation of traditional IA by proposing a W-layer, an overlay

that provides a practical and energy-efficient solution for implicit authentication on mobile
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devices. The W-layer is discussed in Chapter 3 and 4. In Chapter 5, a novel privilege-

control mechanism, BubbleMap (BMap), is introduced to provide fine-grained privileges

to users based on their behavioral scores. In the same chapter, we describe reinforcement

authentication (RA) to achieve a more reliable authentication.
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Chapter 1

Introduction

As its name suggests, implicit authentication, or IA, is a technique that allows the smart

device to recognize its owner by being acquainted with his/her behaviors. It is a technique

that uses machine learning algorithms to learn user behavior through various sensors on the

smart device and achieve user identification [104, 53]. Most of the current authentication

techniques, e.g., password, pattern lock, fingerprint, and iris recognition, are explicit

authentication, which requires user input. Compared to explicit authentication, IA is

transparent to users during the usage, and it significantly increases the usability by reducing

time users spent on login, in which users find it more annoying than lack of cellular coverage

[4, 10, 107].

The rapid growth of mobile devices, especially smartphones, raises security concerns.

One such concern is that traditional authentication methods, such as passwords or hard

biometrics can be potentially circumvented [3]. A recent survey [4] showed that only 44% of

smartphone owners configured PINs or passwords on their devices due to the inconvenience.

Another survey [49] showed that 56% of participants mistyped a password at least one time

out of every ten tries. The passwords can also be guessed and broken. Users need to

constantly change the passwords to maintain their effectiveness, which further decreases the

usability of the devices.

On the other hand, hard biometric-based authentication, such as face recognition, touch

ID and iris scan require expensive hardware and explicit user interaction. Even though

biometrics are much harder to be stolen than passwords, there have been works showing the
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feasibility of hard biometrics forgery [103]. In addition, the environmental variation may

also cause the false identification of hard biometric-based authentication [109, 40].

The disadvantages of the traditional authentication methods have inspired researchers

to develop new authentication methods that are transparent to users and incur a low cost.

One promising method is implicit authentication (IA) based on user behaviors, which can be

considered soft biometrics. Various activities, such as arm swing, walking, and contextual

data (e.g., location) [97, 94, 29] are commonly used to derive soft biometrics. Compared

with password-based and hard biometric-based authentication, IA does not require explicit

user actions since it runs in the background and silently obtains user behaviors. Moreover,

unlike hard biometrics, soft biometrics in IA only require basic hardware and sensors readily

available on smartphones.

To complement primary authentication mechanisms such as PINs and passwords, many

implicit authentication schemes have been proposed as secondary authentication mechanisms

[23, 66, 92, 27, 32, 88, 62, 35, 19]. Among them, leveraging different features, Shi scheme [88],

Multi-Sensor scheme [62], Gait scheme [35], and SilentSense scheme [19] are four different

schemes that represent four research directions of the state-of-the-art implicit authentications

[52]. In addition, current implicit authentication research tends to adopt all the available

features to achieve better authentication accuracy [62, 105, 104]. To evaluate the performance

of proposed methods, we implemented Shi scheme, Multi-Sensor scheme, Gait scheme, and

SilentSense scheme. We also show the proposed methods can seamlessly cooperate with

another framework such as [104, 105] to improve the system’s performance.

Human behaviors are susceptible to change, e.g., a change of routine, which causes the

existing implicit authentication (IA) mechanism to constantly fail to identify users. To

deal with this problem, the state-of-the-art technique used in implicit authentication is to

frequently retrain the model. However, it is difficult to decide an optimal retraining rate

given the complex human behavior. In addition, the system needs to separate the behavior

change of the legitimate user from malicious mimicry attack of the illegitimate user, which

was an unsolved problem since the data samples of users often share common intersections.

In other words, if the retraining frequency is too high, we could waste a lot of energy and

computational resources in order to obtain a high authentication accuracy. If it is too low,

2



the accuracy would be affected, which could cause high false positive and false negative rate

in the authentication.

In addition to the retraining, existing authentication systems handle failed authentication

attempts by locking the users out of their mobile devices. It is unsuitable for implicit

authentication whose accuracy deterioration induces high false reject rate, rendering the

implicit authentication system unusable. Furthermore, existing implicit authentication sys-

tems leverage computationally expensive machine learning algorithms, which can introduce

a large authentication delay. It is difficult to improve the authentication accuracy of these

systems without sacrificing authentication time. The improvement, on the other hand,

should be resilient enough to absorb the impact of users’ behavior change without reducing

authentication transparency. In addition, the model used in the authentication needs to

consider another fact such as mimicry attack, which significantly increases the system’s

design difficulty.

In the following sections, we will analyze some of the most important problems in IA

research, and the corresponding techniques proposed to deal with them. We will also discuss

some fundamental problems that currently have no effective solution. These problems could

become new research directions in the future. Centered on the improvement of authentication

accuracy, the existing research works in IA can be categorized into two classes, scheme (or

structure) improvement and behavioral feature analysis. The following sections are arranged

based on these two classes.

1.1 Basic Scheme

Since most of the existing IA schemes are developed based on the basic scheme, we discuss

it first in this section. The corresponding improvements will be covered in the next section.

The basic IA scheme is shown in Fig. 1.1, which was first proposed in [22]. As shown in

Fig. 1.1, the basic IA scheme has two phases - training and testing. In the training phase,

past behavioral data is input as parameters in the training algorithm. The training result -

i.e., a model with tuned parameters - is then returned for the testing purpose. In the testing

3



phase, which usually happens in real time, recent behavioral data is input into the model,

and a score is returned to either reject or to allow user access.

In the training phase, several different machine learning tools have been applied to analyze

the users’ behavioral data [44, 6, 30], e.g., SVM [62, 32], GMM [87] and statistic topic

model [105]. The training phase usually takes more than a week to find the fine-tuned

parameters for the model using a cluster of fast computers. The testing phase is more light-

weight compared to the training phase, in which a complete testing cycle usually takes a

few seconds in a computation limited device, such as the smartphone. Thus the current

IA framework often offloads the training phase to the server or cloud. The user-end only

contains a fine-tuned model returned from the training phase. If we assume the human

behaviors do not deviate after the training phase, the structure may achieve a high accuracy

during the authentication.

However, due to the behavior deviation, e.g., traveling, the accuracy of the fine-tuned

model may also decay during the usage. Several more sophisticated structures are introduced

to improve the basic scheme [53, 104, 54]. Several other works focus on the selection of

machine learning algorithms and features, which may also improve the system’s accuracy

[94, 62, 32, 36, 37, 61, 81, 41].

Training Algorithm User Model

Past 
Behavior

Recent 
Behavior

Score

Server

Training Phase Testing Phase

Figure 1.1: Overview
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1.2 The Enhancement of Basic Scheme

Current IA research tends to improve the basic scheme as shown in the Fig. 1.1. The

improved schemes are designed to solve different problems, which can be used in different

scenarios in practice. It is possible to combine these schemes into one comprehensive

structure that supports most of the requirements in real usage. However, we will not discuss

the combination of different schemes, which is beyond the scope of the proposal thesis.

Instead, we will discuss several important improvements of the basic scheme in this section.

Applications in most of the smart devices are running in their own environment called

sandbox, which is supported by a virtual machine. An application running in its sandbox is

insulated from the other applications. Instead of designing a system-level IA [53], Khan et

al. tried to build a scheme that can be used at each application individually. Their scheme

is built into the Android framework and provides some basic functions to the application

developers. The function within the scheme is implemented in a library at the user level and

can be used right away without the need to root any devices or be added to the OS, although

it could become part of mobile platforms in the future. They also provide some basic machine

learning algorithm, e.g., kNN and SVM, for developers to facilitate their design of IA scheme.

To reduce the impact of behavior deviation, one of the most common approaches is to

retrain the model. After retraining the new model will contain the most-recent behaviors

of the legitimate user. However, in practice, it is difficult for the IA system to decide the

frequency of retraining since the current IA system does not have a user-feedback mechanism.

The other problems regarding the retraining are new behavioral data selecting and noise

filtering. Focusing on these problems, several research works introduce new techniques,

which constantly detect the behavior deviation, filter out the noise and select the data in

the retraining process [106, 39, 110, 18]. This research significantly enhanced the basic IA

scheme, but the retraining problem in real usage is more sophisticated, which is still an open

problem in IA.

The training phase in IA usually takes place in a remote server or the cloud. The

communication between the server and local devices increases energy consumption and raises

some security issues. In some conditions, the wireless connection may lose and reduce the
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accuracy of IA. The local IA with no server-end could overcome these issues, but it requires

researchers to deal with the energy and computation issue caused by the smart device. A

lightweight IA scheme has been introduced to authenticate a user in an energy-efficient way

[104], in which the training phase can be migrated to a local device when the server is not

available.

1.3 Behavioral Data Analysis

The machine learning algorithm is the core part of implicit authentication (IA). Due to

the large diversity of users’ data, it is hard to find one machine learning algorithm that is

suitable for all the behavioral data sampled from various sensors. To best identify the user,

different machine learning algorithms, e.g., SVM, kNN and GMM, have been selected to

analyze various features pre-selected by researchers. In addition, the way of applying these

algorithms also has a large impact on final identification accuracy.

Currently, most of the IA systems utilize Support Vector Machine (SVM) as the core

machine learning algorithm, such as [36, 63, 19, 62, 18, 106, 53, 39, 9]. The SVM has been

used to analyze the key stroke, gait, finger tip movement, and gait patterns. Some of the

research achieved an impressive result, e.g., in [36]; they achieve a median equal error rate

of 0% for intra-session authentication, 2%-3% for inter-session authentication and below 4%

when the authentication test was carried out one week after the enrollment phase. In [19]

they conduct extensive evaluations of their proposed approaches on the Android smartphone.

In addition, they show that user identification accuracy is over 99%.

The other trend of current IA research focuses on the users’ behavioral features

selection or feature selection. A well-selected feature can achieve high accuracy during the

authentication cycle [56, 52, 93, 27]. In [32], Fen et al. select a touch-related feature in

uncontrolled environments and achieve over 90% accuracy in real-life naturalistic conditions

within a small amount of computational overhead and 6% of battery usage. However, due

to the large divergence of human behaviors, it is very hard to find one feature that separates

all the users. The problem of feature selection becomes more complex if we consider human

behavior deviation and mimicry attack in real usage as shown in [56, 52]. The problem of
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searching for a good feature in the authentication cycle is still an open problem in current

IA research [56, 52].

1.4 Objectives and Scope

The major goal of this research is to perform a comprehensive evaluation of the deployability,

security and usability-related issues of IA. Based on the findings of these evaluations, we also

propose strategies to make IA more practical so that it can be adopted. We organize the

remaining chapters as follows:

Chapter 2 mainly focuses on training and retraining problems in IA. With the rapid

growth of the smart device market, associated security issues become more threatening and

diverse than ever before. Due to the limitations of the traditional explicit authentication

mechanisms (e.g., password-based, biometrics), researchers and the industry have been pro-

moting implicit authentication (IA) that does not require explicit user action and potentially

enhances user experience to further protect devices from misuse. IA typically leverages

various types of behavioral data to deduce a user’s behavior model for authentication

purpose. However, IA systems are still at their infancy and exhibit many limitations, one of

which is how to determine the best retraining frequency when updating the user behavior

model. Another limitation is how to gracefully degrade user privilege, when authentication

fails to identify legitimate users (i.e., false negatives) for a practical IA system. To address

the first problem, we propose an algorithm that utilizes Jensen-Shannon (JS)-dis(tance) to

determine the optimal retraining frequency. For the second problem, we introduce a dynamic

privilege mechanism, again based on JS-dis(tance), to achieve multi-level fine-grained access

control. Our simulation results show that the proposed techniques can successfully detect

the degradation of accuracy of the user behavior model, as well as automatically determine

and adjust to the best retraining frequency. It is also shown that the dynamic privilege-based

access control reduces the impact of false negatives on legitimate users and enhances system

reliability and user experience compared with the traditional lock-only method in case of

authentication failure.
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Chapter 3 describes a method of achieving high-efficiency front-end authentication.

Motivated by the great potential of implicit and seamless user authentication, we attempt to

build an efficient middle layer running on mobile devices to support implicit authentication

(IA) systems with adaptive sampling. Various activities, such as user location, application

usage, user motion, and battery usage have been popular choices to generate behaviors, the

soft biometrics, for implicit authentication. Unlike password-based or hard biometric-based

authentication, implicit authentication does not require explicit user action or expensive

hardware. However, user behaviors can change unpredictably, which renders it more

challenging to develop systems that depend on them. Various machine learning algorithms

have been used to address this challenge. The expensive training process is usually

outsourced to the remote server, but this can potentially increase the chance of data leakage.

In addition, mobile devices may not always have reliable network connections to send real-

time data to the server for training. Motivated by these limitations, we propose a W-layer,

an overlay that provides an energy-efficient solution for real-time implicit authentication on

mobile devices. The size of the data the system needs to collect at different times depends

on the legitimacy of the user. This, in turn, affects how the sampling rate is adjusted, which

can reduce energy consumption. To evaluate our method, we conducted several experiments

on both synthetic and real datasets.

Chapter 4 proposes PersonaIA system to achieve dynamic feature selection in the process

of identifying users. In this work, it solved the data overlapping problem and behavior

changing problem using a statistical topic model in an innovative way to capture a unique

feature set from user’s behavior. More specifically, we proposed a real-time dynamic mapping

between users and their feature sets utilizing the eigenvalue derived from their behavioral

data. The mapping is unique in a specific moment for each individual. Since the feature set is

dynamically chosen to best fit each user’s behavior, the chance that two users’ data will collide

is significantly reduced. In addition, our research work has achieved high authentication

accuracy with a small amount of energy input. The approach we proposed successfully

solved one of the fundamental problems that had not been addressed for many years. It can

be used in almost every implicit authentication system to enhance accuracy. Since the data

overlapping problem is also pervasive in machine learning and associated areas as well, our
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approach can be applied in these areas to reduce the false negative and false positive in the

testing phase.

Chapter 5 proposes BubbleMap (BMap) framework laying above various IA schemes to

enhance their performance in the aspect of security and usability. Specifically, compared

to original IA schemes, the improvements of BMap are: 1) it enhances the system’s

authentication accuracy by increasing the chance of blocking illegitimate user, while reducing

the chance of falsely rejecting legitimate user; 2) it can be seamlessly applied to almost

every implicit authentication scheme and significantly boosts their performance. To evaluate

the proposed framework, we conducted a large-scale simulation using the data from 130

participants. In addition, we implemented BMap-based systems on four state-of-the-art IA

schemes. In two years and eight months, we evaluated BMap on various conditions, and

tracked the usage of 13 participants. In both large-scale simulation and long-term real test,

BMap greatly enhances various IA schemes’ performances with a small amount of time and

energy input.

1.5 Challenges

Compared to hard biometrics such as the fingerprint, human behaviors are more susceptible

to changes due to factors such as time, environment, mood, and age, which renders it more

challenging to design IA systems based on behaviors. Because of the behavior change and

noise produced by various sensors, users’ data often overlaps with each other. If we filter out

the overlapping data, the system may mistakenly block the legitimate users whenever their

data falls in the overlapping area. If we keep the overlapping data, adversaries may take

advantage of it to bypass the authentication. This is one of the fundamental problems in

implicit authentication, which remained unsolved for more than seven years. Furthermore,

the existing research work in implicit authentication utilizes a fixed feature set to achieve

user authentication, which is not applicable in practice due to the behavior change. In my

work, I solved data overlapping problem and behavior changing problem using the statistical

topic model in an innovative way to capture a unique feature set from the user’s behavior.

More specifically, I proposed a real-time dynamic mapping between users and their feature
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sets utilizing the eigenvalue derived from their behavioral data. The mapping is unique

among a specific moment for every individual. Since the feature set is dynamically chosen to

best fit each user’s behavior, the chance that two users’ data collide is significantly reduced.

In addition, my research work has been proven to be able to achieve high authentication

accuracy with a small amount of energy input. The approach I proposed successfully solved

one of the fundamental problems that had not been addressed for many years. It can be

used in almost every implicit authentication system to enhance their accuracy. Since the

overlapping problem is also pervasive in machine learning and associated areas as well, my

approach can be applied in these areas to reduce the false negative and false positive in the

testing phase.

The majority of existing research works rely heavily on machine learning models such as

Support Vector Machine (SVM), k Nearest Neighbor (kNN) and Gaussian Mixture Model

(GMM), where the expensive training process needs to be outsourced to the remote server.

This design not only increases the communication burden between the client and server, but

also potentially increases the chance of private data leakage. However, to achieve front-end

learning in the energy limited smart device is difficult. On one hand, the system needs

to efficiently handle real-time behavior matching, utilizing user’s data that often contains

noise. The authentication accuracy, on the other hand, must at least keep the same as or be

higher than the original system that outsources training process. In my work, I successfully

solved the front-end learning problem by devising a novel system that operates similarly to

the mechanical wind vane to achieve user authentication. The proposed system has higher

authentication accuracy than the state-of-the-art systems used in implicit authentication at

that time; and most importantly, it does not require job outsourcing in the authentication

process. While most research works focused on server-end implicit authentication that

outsources computation to a remote server, I proposed a front-end implicit authentication

system with better accuracy, efficiency and privacy-preserving capability. My work opened

a new research area, which could become the main trend of implicit authentication in the

future.
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Chapter 2

Training and Retraining in Implicit

Authentication

2.1 Introduction

As smart devices become the primary means of communication, more and more people rely

heavily on them as the main way of Internet access [87]. On the other hand, smart devices

store sensitive and private data including bank accounts, passwords, contacts, emails, and

photos, while their security has not gained enough attention [101]. To protect smart devices

from misuse, many authentication methods such as password, draw-a-secret and fingerprint

recognition are employed in various smart device products from different companies [55].

These methods all require explicit user actions (e.g. entering a password, swiping finger),

which can be inconvenient and cause users to bypass authentication. Recently, researchers

and the industry (e.g., Samsung) became interested in implicit methods for authentication

to enhance security and usability. In fact, security and usability are often conflicting goals

in that users tend to disable or bypass the security system if it is not user-friendly.

Generally speaking, Implicit Authentication (IA) is a technique that allows the smart

device to recognize its owner by being acquainted with his/her behaviors. It is a technique

that uses machine learning algorithms to learn user behavior through various sensors on

smart devices and achieve user identification [53]. User behavioral data, such as walking

style, swipe speed, and location, are used to train user behavior models which are then used
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as the reference to match with users’ current behavior. There are several advantages of IA

compared with the traditional explicit authentication. First, behaviors are intrinsic to each

person and are accumulated activities over a period of time, and thus cannot be forgotten

or easily forged. One may often forget his/her passwords but rarely forgets his/her own

behaviors [100]. Even though biometrics are much harder to be stolen than passwords, there

have been works showing the feasibility of biometrics forgery [103]. Second, IA is much more

user-friendly and requires no explicit user action, which leads to enhanced security against

vulnerabilities caused by human factors (e.g., user disabling security features, using weak

passwords that are easier to memorize). A recent survey shows that only 44% of smartphone

owners configure PINs or passcode on their devices [4]. People find password entering

more annoying than lack of cellular coverage, small screen size, and poor voice quality. A

recent bypass flaw of Samsung smartphones reveals that vulnerabilities introduced by human

factors are potentially more dangerous and easier to be overlooked, even if biometrics-based

authentication systems such as fingerprinting and facial recognition are used in place of a

password [3] .

On the other hand, IA has its own limitations, one of which being that it is difficult to

find behaviors that uniquely identify a user, unlike biometrics. Machine learning is most

widely used to tackle this difficulty [17, 80], and there are many research works dealing with

how to select suitable machine learning algorithms for various activity types such as those

obtained from touch [27, 93], accelerometer [94], location [34], etc., as well as how to provide

a general framework for IA [87, 22, 53]. In this research work, on the other hand, we focus

on two critical and difficult problems that affect the practical deployment of IA systems:

model retraining and handling authentication failure that have not been treated sufficiently

in the literature. Retraining is needed since the machine learning accuracy1is affected by the

quality of the training data (i.e., user behavioral data) as time evolves. As more users join

and remain in the system, we are more likely to obtain better training data and capture long-

term changing behaviors of users, and hence need to retrain the learned user behavior model

by refreshing its parameters at appropriate times to reflect such changes. Authentication

failure in this work is referred to as the failure to authenticate legitimate users and block

access to the smart device and apps. This can occur when the user’s behavior changes, e.g.,
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traveling to a strange place. Existing solutions feature a binary decision-making [53, 111]

or similar [63, 18] mechanism that either allows access to or locks the device and some

apps at once, which can result in annoyance and the subsequent bypass or removal of the IA

system. To the best of our knowledge, we are the first to provide satisfactory solutions to the

retraining and authentication failure problems in IA. Our solutions are generally applicable

regardless of the machine learning algorithms being used and will lay the foundation for

realistic IA systems.

Devising suitable solutions for retraining and authentication failure is challenging due to

the following reasons. Finding the optimal frequency of retraining is important but difficult.

If the retraining frequency is too high, we could waste a lot of energy and computational

resources in order to obtain high accuracy. If it is too low, the accuracy would be affected

which could cause high false positive and false negative rate in the authentication. In

addition, it is difficult to achieve intelligent retraining, where the retraining frequency

is different for different users at different times and spaces. To balance between the

performance of the machine learning models and energy consumption, we propose an entropy-

based measurement to determine the best frequency for model retraining. The state of

the art research uses timeline-based retraining [96, 20]. This method takes advantage of

empirical data to determine the best retraining frequency, and uses this time as predefined

measurement for future retrainings. The time cycles between retrainings remain the same.

However, the change in each user’s behavior in IA systems is different and unpredictable.

Even the same person could change behavior at any time in an unforeseeable manner. For

this reason, the timeline-based retraining may not be effective for IA. For the authentication

failure problem, it is highly difficult to balance between false positives (allowing illegitimate

users’ access to the device) and false negatives (denying legitimate users’ access) or offer

great user experience when we only have binary options (lock or unlock the device and

apps). We therefore propose a new access control mechanism based on dynamic privilege

that works by dividing the privilege system into several levels, where each level corresponds

to some category of function units or apps with similar sensitivity or security requirement.

1Accuracy here is defined as the proportion of correct authentication results (i.e., true positives and true
negatives).
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For example: the highest level includes mobile banking apps and contact book; the next level

includes social apps and device ID, and so on. Instead of locking the device directly when

authentication fails, the dynamic privilege mechanism can temporarily assign a reasonable

privilege level to the current user based on the JS-dis in between the testing data and the

training data. Thus, legitimate users will be able to continue using apps such as Facebook and

Maps, but will be temporarily locked out of highly sensitive apps. Access to highly sensitive

apps will be automatically regained as more data about the user is collected, without explicit

user action. The user can also rely on a backup plan, e.g. entering password, to regain the

access. Our simulation results suggest that the dynamic privilege mechanism can largely

reduce unpleasant user experience.

2.2 Related Work

This research work is most related to implicit authentication (IA)- mechanisms based on user

behavior [100], especially those implemented on smart devices [93, 94, 27]. On the contrary,

instead of proposing a new IA mechanism, we address two practical issues inherent in all IA

systems that have been largely ignored in the literature. Our work is thus complementary

and parallel to these existing related works.

In general, IA relies on the behavioral biometrics that are considered as soft biometrics as

opposed to hard biometrics such as facial recognition and iris scan. Specifically, in [93], Sun et

al. propose a multi-touch system to authenticate user based on the motion of different fingers.

De Luca et al. [27] use touch screen pattern as main attribute to identify different persons.

From another angle, Tamviruzzaman et al. [94] propose a multiple-behavior authentication

technique that uses both location and gait pattern as soft biometrics to identify user.

An app-centric approach has been introduced in [53] to simplify the IA development.

Most of these works focus on one time training without further retraining. In [71], Monrose

et al. present the problem of retraining in the authentication, where the machine learning

model is retrained once a new user is introduced. Sheng et al.[86] introduce a technique that

can retrain part of the system when a sufficient sample has been collected. In [96], Thomas

et al. use timeline-based retraining to achieve url spam filtering. In practice, most of the
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machine learning methods use timeline-based retraining. For this reason, the flexibility of

these methods is very limited. The difference between these works and our work is that we use

entropy to indirectly measure the accuracy changes in the IA mechanism to further decide

the retraining frequency. Our method is dynamically adaptable in that it automatically

selects the best retraining frequency for each person which can be varying.

In addition, IA systems implemented on smart devices has been a popular topic recently

[65, 53, 111, 63, 18]. However, these systems handle authentication failures by simply

locking the device which can be annoying and unacceptable if the failures are caused by

false negatives. To overcome this problem, we propose a fine-grained access control system

that again leverages entropy to define privilege levels. This degrades user privilege gracefully

when authentication fails and greatly enhances user experience for IA systems that are prone

to false negatives.

2.3 Preliminary

In this section we provide some background information on entropy, Kullback-Leibler (KL)

divergence and Jensen-Shannon (JS) distance, which we use to develop the retraining and

dynamic privilege mechanisms.

2.3.1 Entropy or Timeline

Entropy, as it relates to dynamical systems, is the rate of information production [78]. In

machine learning, the differences in between entropies are used to measure the similarity in

between the testing data and the training data [44].

In this work, we leverage entropy to measure the behavior change of a user for IA, since

it is more suitable than the timeline-based method. The behavioral change pattern of each

person varies from each other. One may change behavior frequently but others may not. It

is also possible that the change varies from time to time for the same person. For example,

a person’s behaviors can change more rapidly and differently when he/she is traveling in

a strange place. Hence, the timeline-based method is not a good choice for retraining. In

contrast, each time the behavior changes, it is also accompanied by an entropy fluctuation,
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as indicated in our evaluation results. By observing these fluctuations, we can determine the

best retraining frequency.

2.3.2 KL Divergence and JS-Distance

The common way to measure the entropy difference in between two states is by calculating

the KL divergence [57] between them. The KL divergence in between two discrete random

variables X and Y is defined as:

DKL(X||Y ) =
N∑
n=1

p(X = n) log
p(X = n)

p(Y = n)
. (2.1)

If the distributions X and Y are equal, the KL divergence is equal to zero.

However, the KL divergence is not a proper distance measure because it is not symmetric

[44]. Thus, we use a smoothed and symmetric extension, JS-dis for measuring the similarity.

Using (5.6), we can further define the JS-dis as:

DJS(X||Y ) =
1

2
[DKL(X||M) +DKL(Y ||M)], (2.2)

with the averaged variable M = 1
2
(X + Y ).

2.4 The Proposed Implicit Authentication Framework

and Adversary Model

The basic IA framework is shown in Fig. 2.1 (a), which was first proposed in [22]. We

augment it with two key functionalities, retraining and dynamic privilege, to build practical

IA systems.

As shown in Fig. 2.1 (a), the basic IA has two phases - training and testing. In the

training phase, past behavioral data is input as parameters to the training algorithm. The

training result - i.e., a model with tuned parameters - is then returned for testing purpose.
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Figure 2.1: IA Frameworks

In the testing phase, which usually happens in real time, recent behavioral data is input into

the model and a score is returned to either reject or allow user access.

To cope with retraining and authentication failure, we propose a dynamic IA framework

- as shown in Fig. 2.1 (b) - obtaining best retraining frequency and fine-grained privilege

control. Compared with the basic IA framework, we introduce a retraining unit (RU) to

monitor the behavior changes in real time and automatically decide when to retrain the

model. To achieve fine-grained privilege control, we further divide the testing score into

different levels, which correspond to different apps (clustered by their sensitivities). Instead

of locking the device, our mechanism tends to only lock some sensitive apps based on the

testing result.

Adversary Model

We are mainly concerned with adversary who steals the smartphone from a legitimate

user, and uses it for accessing sensitive apps and user data. Due to the properties of basic

IA, the accuracy of identifying the adversary is proportional to the data collected by the

device [87]. Collecting data consumes time which will give the adversary higher chance to

gain longer access to the device.

Furthermore, we consider more powerful adversary with the following capabilities.

• The adversary can imitate the legitimate user by observing the user whenever possible,

but cannot follow the user all the time.

• The adversary has knowledge of the user’s past behavioral data, e.g., by copying the

behavioral data stored in the device learning database.
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2.5 Intelligent Retraining

To achieve long-term high accuracy, user behavior data must be continually sent to the server

to retrain the behavior model and flush the expired parameters. In addition, to achieve low

energy consumption we need to find the best retraining frequency. In this section, we will

discuss how to design such intelligent retraining.

The idea behind our intelligent retraining is to measure the similarity in between the

testing sample and the training samples by using JS-dis. If the distance is larger than the

legitimate threshold, it indicates changes in user behavior and the behavior model needs to

be retrained.

2.5.1 How to Retrain

To measure the difference in between two individual samples in the training and testing

dataset, using JS-dis in Eq. (5.8) we have:

DJS(E||R) =
1

2
[DKL(E||M) +DKL(R||M)]. (2.3)

E in Eq. (5.5) indicates a sample in the t(e)sting dataset, and R indicates a different

sample in the t(r)aining dataset. M is defined as M = 1
2
(E +R).

Since there may be noise or error message in the testing data, we need to further measure

the average JS-dis in between the training samples and the testing sample in each testing

by:

D
(n)
JS =

K∑
k=1

DJS(E(n)||Rk)

K
,

(2.4)

where K is the number of training samples (we call it stride), and (n) denotes the nth testing

sample. Since we only need to consider the most recent training data, it is not necessary

to include all the training samples. In this work, we use K to indicate these recent data.
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For consistency reason, we also cluster K testing samples into one set, which indicates a

behavioral pattern of the current user.

After defining the average JS-dis, we can further calculate the standard deviations for

the elements in each stride as:

s(n) = (
1

K

K∑
k=1

(DJS(E(n)||Rk)−D(n)
JS )2)

1
2 . (2.5)

In the evaluation section, we will show that the average accuracy can be reflected by the

standard deviation of the JS-dis in Eq. (5.4).

2.5.2 When to Retrain

Algorithm 1: Retraining Algorithm

Input: Current Data, Retraining Parameter, Stride
Output: boolean Retraining Decision

1 initialize CD:=Current Data, RP:=Retraining Parameter;
2 initialize Retraining Decision:=false ;
3 CD JS dis[]=JS Dis(TS[],CD) ;
/* TS[] stores all the previous samples in training set */

4 CD JS Dis ave=Average(CD JS dis[]) ;
5 Dis[].add(CD JS Dis ave);
/* Add the average distance of the current sample to the distance array */

6 if (CD.index mod Stride)==0 then
/* Completed a stride */

7 std=StandardDeviation(Dis[]);
8 if (std≥RP) then
9 Retraining Decision=true;

10 else
11 Retraining Decision=false;

12 Dis[].clear;

13 else
14 Retraining Decision=false;

15 return Retraining Decision;
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To determine the best retraining frequency, we define a threshold ε which represents

the acceptable distance such that the accuracy within ε is enough high. If the most recent

distance is larger than ε, we should consider retraining.

The detailed retraining algorithm is described in Algorithm 1. Current Data indicates the

current testing sample , which is a distribution of different features. Retraining Parameter

is the threshold ε. The lower the Retraining Parameter, the higher the accuracy (if the

accuracy has not reached the upper bound.) CD JS dis[] contains the array of distance

in between the current sample and all the previous samples in the training set. Dis[] is

used to calculate the standard deviations in between CD JS Dis ave values. Finally, if the

Retraining Decision is true, it will ask for retraining.

2.5.3 Retraining Process

Fig. 2.2 shows the process of selecting the retraining frequency based on the testing sample

data. Since we already known how to calculate the JS-dis in between the training samples

and the current testing sample, we can further take their average value (D
(n)
JSc) and mark it

as one output of the current stride. In Fig. 2.2, the average value of these JS-distances is

drawn as a deep blue stripe. There are more than one D
(n)
JSc in one stride. In this work, the

training data could come from the original training or the previous retraining.

Average JS-Dis

s

Current Testing Samples

Previous 
Retraining Data

Stride

Figure 2.2: Retraining Process
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We further divide these average values into different stride. Then, we can calculate the

standard deviation for each of these strides’ data. In Fig. 2.2, the current sample’s standard

deviation value is marked as “s”. The final step is to compare the standard deviation with

the predefined ε. For different implementations, we could choose different values of ε. If

ε < s, due to the behavioral pattern change, the accuracy of the user behavior model will

drop significantly, and we should retrain the model after this stride.

2.6 Dynamic Privilege-Based Access Control

The basic idea of dynamic privilege is to divide the testing score into fine-grained levels,

and each level corresponds to some specific apps. By comparing the current user score

with the predefined levels, our mechanism can assign a suitable privilege (by allowing some

apps while disabling others) for this user, achieving a more practical access control. To

successfully design the dynamic privilege mechanism, we need to answer questions such as

how to define each privilege level, what is the entropy distance between each level, how to

assign a reasonable privilege to the user based on the entropy distance in between the test

data and training data, and how to reassign the privilege if the user’s behavior is back to

normal? We will discuss these problems in detail and present solutions.

The dynamic privilege mechanism is realized by keeping a multi-level privilege table.

In this table, the apps are divided into different categories based on their sensitivity and

given different privilege levels. For example, highly sensitive apps such as mobile banking

and contact book will be given the highest level. Lower levels will be given to email, maps,

games, etc. To categorize each app, one can use the default setting or configure the setting

manually. This process depends on the specific implementation on different devices.

2.6.1 Defining the Privilege Levels

The most important step of dynamic privilege-based access control is how to define different

privilege levels. We leverage empirical data to find the average JS-dis in between all the

previous TP (True Positive) samples and FN (False Negative) samples for each person in

the dataset. We first sort these average JS-dis(s) based on their values, and we divide them
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equally to form different clusters. For each user defined level, we define the rule of it utilizing

the average values in the corresponding cluster. For example, after we filter out some noise

clusters, the rule of the first level is defined as the average value in the first cluster, and

using the same technique, we can define the other levels. These levels can be assigned to

apps based on the sensitivity of these apps. Since the empirical data come from the training

set, we need to keep the training set “fresh” enough to maintain good performance of the

dynamic privilege mechanism. To keep it fresh, we need to retrain the model and keep

refreshing the training dataset, which we have discussed in the previous section 2.5.1.

2.6.2 Mapping to the Privilege Levels

After defining the value for each level, we can calculate the average JS-dis D
(n)
JS in between

the current testing sample and each training sample, and further decide the appropriate

privilege for the user at this time.

Algorithm 2: Mapping Algorithm

Input: Current Data, Current Level, Privilege Table[]
Output: New Level
initialize CD:=Current Data, CL:=Current Level, PT[]:= Privilege Table[];
initialize New Level:=null ;

1 for (each training sample i in TS[]) do
/* calculate the JS-dis in between each previous sample and current testing

sample */

2 JS dis[i]=JSdis(TS[i],CD);
3 i++;

4 JS ave=Average(JS dis[]);
5 if JS ave>PT[].Level(CL) then
6 New Level=CL++;

7 else
8 New Level=CL;

/* Retrain if necessary */

9 TS[].add(CD);
10 return New Level ;

The mapping procedure is shown in Algorithm 2. We first find the average JS-dis between

the current testing sample (CD) and all the previous samples (TS[]), and then calculate the
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average value of these average JS-distances (JS ave). Using the defined distance rule for

each level in privilege table (Privilege Table[]), we compare JS ave with the rule associated

with the level. If JS ave is larger, it indicates that the current testing sample is beyond the

tolerance distance to the previous i samples, and we will reduce the user privilege to the

lower level. However, if JS ave is smaller, the current testing sample is still very closed to

the previous i samples, and thus we will keep the user privilege level unchanged.

Fig. 2.3 shows how the dynamic privilege access control works. The blue stripe in the

average JS-dis array indicates the average distance (D
(n)
JSc) in between the current testing

sample and the previous retraining data (same as Fig. 2.2). The privilege table, which

stores the predefined privilege rules based on the training data, is a component that should

reside in the authentication module. The lower the number, the higher the privilege level,

e.g., L2 is a higher level than L3. To update user privilege, the dynamic privilege mechanism

first compares D
(n)
JSc with the predefined rule in the current privilege level of the user. For

example, if the current level is L2, the mechanism will compare D
(n)
JSc with the L2 rule, and

will lower the current privilege if D
(n)
JSc is larger and keep the current privilege unchanged

otherwise.

It is possible that D
(n)
JSc is much smaller than the value stored for the current level in the

privilege table. It means that the difference in between the current user and the legitimate

user is smaller than the given level and indicates that the user privilege should be raised.

In this case, the dynamic privilege mechanism will begin to retrain the model and elevate

the current user privilege to a higher level if it is not already the highest. For example, if

the current privilege is L3, but D
(n)
JSc is much smaller than the L3 rule for a while (e.g. 1

hour), the mechanism will send a retraining signal to the sampling app which will upload

more recent samples to the remote server for retraining. At the same time, the mechanism

will elevate the current user to L2.

2.7 Discussion

Although the accuracy of IA can increase with more advanced technology used in smart

devices, the retraining and authentication failure problems still hinder realistic deployment
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of IA systems. How and when to retrain the user behavior model and what to do when the

legitimate user fails the authentication remain unsolved. To address the retraining problem,

we proposed a technique using JS-distance to determine the best retraining frequency. For

authentication failure, we introduced the dynamic privilege mechanism with finer privilege

levels. Compared with the predefined privilege rule, we can decide which level should

be assigned to the user based on his/her current behavior. Compared with the lock-only

mechanism in the existing related work, the dynamic privilege-based access control can

largely reduce unpleasant user experience by only locking part of the device.

In the future, we will implement the retraining and dynamic privilege algorithms on

mobile devices to evaluate their efficacy and efficiency. We will also incorporate user feedback

to enhance the performance of retraining. From the feedback, system can deduce the false

negative and false positive and choose a suitable retraining rate accordingly. In addition,

we plan to study the impact of false positives (allowing illegitimate users to access phone

contents) that may be induced by our fine-grained dynamic privilege mechanism.
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Chapter 3

High Efficiency Front-End

Authentication

3.1 Introduction

The rapid growth of mobile devices, especially smartphones, raises security concerns. One

such concern is that traditional authentication methods, such as password or hard biometrics,

can be potentially circumvented [3]. A recent survey [4] showed that only 44% of smartphone

owners configured PINs or passcodes on their devices. Another survey [49] showed that 56%

of participants mistyped a password at least one time out of every ten tries, and concluded

that users consider password entry on smart devices more annoying than the lack of coverage,

small screen size, or poor voice quality. Hard biometrics-based authentication, such as face

recognition, touch ID and iris scan require expensive hardware and explicit user interaction.

The disadvantages of the traditional authentication methods have inspired researchers to

develop new authentication methods that are transparent to users and incur low cost. One

promising method is implicit authentication (IA) based on user behaviors which can be

considered soft biometrics. Various activities, such as arm swing, walking, and contextual

data (e.g., location) [97, 94, 29] are commonly used to derive soft biometrics. Compared

with password-based and hard biometric-based authentication, IA does not require explicit

user actions since it runs in the background and silently obtains user behaviors. Moreover,

unlike hard biometrics, soft biometrics in IA only require basic hardware and sensors readily
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available in smartphones. Nevertheless, behaviors are more susceptible to changes due to

factors such as time, environment, mood, and age, which renders it more challenging to

design IA systems based on behaviors.

In this research work, we build an overlay, called W-layer, that runs independently within

the device and can be integrated seamlessly with various machine learning algorithms. To

ensure practical deployment for popular battery-powered devices such as smartphones, pads

and smart watches, our system is made energy-efficient by leveraging lightweight computation

and adaptive sampling. The uniqueness of W-layer is two-fold. First, W-layer provides a

client-side-lightweight IA solution that can replace or assist in the IA solution that relies

on complex machine learning. The majority of existing research work [62, 93, 53, 87] relies

heavily on machine learning models such as Support Vector Machine (SVM), k Nearest

Neighbor (kNN) and Gaussian Mixture Model (GMM), where the expensive training process

needs be outsourced to the remote server. This design not only increases the communication

burden between the client and server, but also potentially increases the chance of private data

leakage. Unlike the framework in [53, 54], W-layer is energy-efficient in that only lightweight

computation is involved in behavior matching and adaptive sampling is employed to keep the

sensing overhead at bay. The resulting solution is therefore practical even on low-end mobile

devices. It will become apparent in our later discussion that W-layer is a self-contained

IA solution that can replace the machine-learning-based solutions. To use W-layer as an

assisting technology, machine learning can be run in the server to obtain a reference behavior

model for each user. This reference model will be used by W-layer to guide activity data

collection and real-time behavior matching. In this case, machine learning will run much less

frequently (assuming behavior change happens less often than authentication) and less real-

time communication will take place. Second, W-layer addresses the challenging problem of

distinguishing between legitimate users’ behavior deviation and illegitimate users’ behaviors

which affects the accuracy and practicality of the system.

In addition, to successfully develop W-layer, we need to solve challenges related to

system design, which are associated with designing the system architecture of W-layer and

developing it into a practical system. Specifically, we need to devise a real-time behavior

matching algorithm which is the core component of and suitable for IA. Furthermore, to
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ensure practical deployment and user acceptance, this algorithm should improve system

reliability by reducing the false negative and false positive rates.

3.2 Related Work

Our work leverages user behavior for IA. The majority of the recent research work, e.g.,

[62, 93, 53, 87, 41, 24], relies on machine learning techniques such as SVM, kNN and GMM.

The expensive training process of these techniques is outsourced to remote server as discussed

in [49, 22]. The main difference between the existing work and our proposed work is four-

fold. First, our method utilizes Jensen-Shannon (JS) divergence to identify the user. It can

achieve IA and significantly reduce energy consumption due to training and server-client

communication. Furthermore, uploading the private data, e.g., GPS and touch, potentially

increases the chance of data leakage, but our approach implements IA independently in the

device and significantly improves personal data privacy. Therefore, our approach represents

a new way of implementing IA. In addition, existing work features a fixed or static set of

activities from which behaviors are derived, and our work features dynamic sets (represented

by the size of stride discussed in Section 3.5). Because of the fixed or static nature, existing

techniques are limited in one way or another whereas our approach is flexible and versatile.

For example, quite a few papers study the touch behavior [63, 18, 19, 27, 93, 70, 85] which is

specific to this generation smartphones. Their techniques may not work for smart watches

and glasses, or even the next generation smartphones (touch may not be the main way of

operating future smartphones). Finally, some existing work allows the user to adjust the

sampling rate, e.g., [62]. But their method essentially still belongs to static IA because the

sampling rate is not automatically adjusted by the system.

3.3 Preliminary

In this section, we introduce tokenization, the method we use to represent activities from

which behavior is deduced. JS divergence is also discussed which we use for similarity

comparison.
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3.3.1 Tokenization

Given a dataset containing various raw sensor data, tokenization is the task of chopping the

data into pieces (tokens). At the same time tags are added to ambiguous tokens, and certain

characters in the stop-word list are discarded. For example, in here, a GPS reading will be

tokenized into the following: (loc69x, loc1333y), and a light reading will be tokenized into:

(l98). We use the prefix to identify each sensor (Therefore loc = location and l = is light).

The number attached to the label is the actual reading from the sensor. After tokenizing

we are now left with a set of tokens. Each token is truncated according to its value(s). For

example, the light meter reading l30.41 and l30.58 would belong to the same token “l30”.

The location reading of “11th Ave, City A” is split into two distinct tokens “City A” and

“11th” by filtering out words according to the stop-word list, e.g., Ave.

3.3.2 Jensen-Shannon Divergence

The common way of measuring similarity in between two distributions is by calculating the

Kullback-Liebler (KL) divergence, which is defined as:

DKL(X||Y) =
N∑
n=1

p(X = n) log
p(X = n)

p(Y = n)
, (3.1)

where X and Y are two distributions.

However, the KL divergence is not well bounded and it is an asymmetrical measurement,

which is not suitable in building our system. To overcome these drawbacks we adopt JS

divergence [64], which is defined as:

DJS(X||Y) =
1

2
[DKL(X||M) +DKL(Y||M)], (3.2)

where M = 1
2
(X + Y). Particularly, for a distribution X, DJS(X||X) = 0; otherwise,

DJS(X||Y) will shift to 1 depending on how large of the difference between X and Y, for

example given PX = [pX1 , pX2 ] = [1, 0], PY = [pY1 , pY2 ] = [0, 1], DJS(X||Y) = 1.
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3.4 System Architecture and Adversary Model

3.4.1 System Architecture

With knowledge briefly described in the previous sections, we are ready to build W-layer.

The system architecture, including the main modules and functional blocks, interfaces, and

data flows, is shown in Fig. 3.1.

As shown in Fig. 3.1, sensor monitors are used for collecting raw behaviors such as

location = (loc69x+−20, loc1333y+−20) and touch screen = Scroll. These data are stored

in the system’s Cache DB component (1), which is implemented using SQLite. The Cache DB

module uses a pre-designed Interface for receiving data and facilitating the implementation

of new sensors and data sources. Another module on the client side is the Behavior Matching

Module implemented as a background service, which we have named the Wind Vane Module

(WVM). The WVM is the main mechanism driving the novel dynamic adaptability of the

system and is in charge of the real-time-client-side authentication. The WVM captures

user’s real-time behaviors (3) and compares it with the legitimate user’s historical behaviors

captured and stored in local storage (hard drive for example). After comparison, a matching

result will be returned that determines if the current user is a legitimate user. The Behavior

Matching Module also controls the sampling frequency and fine-grained data uploading

mechanism (2).

From another aspect data flows in the system can be explained as interactions between

different layers shown in the left part of Fig. 3.1, while W-layer can be viewed as a vessel to

exchange the information between the Machine Learning Model and the WVM. In W-layer,

the communication is enhanced by data serialization, in which data exported from W-layer

is serialized to a single string (different sensors will be attached with different labels).

The Cache DB, shown in Fig. 3.1, temporarily stores the sampling data. Data held in

the Cache DB is periodically exported to the local machine, where the legitimate data is

combined to form the historical dataset. The smartphone’s internal storage is much faster

than the external storage, but is also very limited in size. For a successful implementation

of an IA system, authentication needs to happen in real-time. It is imperative that the

identification unit is implemented using local storage.
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Figure 3.1: The system architecture.

Although our method is designed naturally to support local IA, it can also cooperate with

other machine learning techniques through Function Interface ( 1 and 2 ) which provides

raw data and fine-grained data respectively during the uploading.

3.4.2 Adversary Model

We assume two types of adversary. One is a regular adversary who is unaware of our IA

system, i.e., who does not know or is unable to mimic the legitimate user’s behaviors. We

also consider a powerful adversary, who is able to emulate the behaviors of the legitimate

user. An example of a regular adversary is a random person who finds the lost device and

attempts to use it. An example of a powerful adversary is a close friend, co-worker, or family

member who tends to share a lot of similar activities.

3.5 Wind Vane Algorithm

There are two components of IA systems that are energy intensive: sampling and data

storage. Regularly fetching users’ behaviors and grabbing unnecessary data, such as features

that are useless in distinguishing users, cause excess sampling and storage, which reduces

energy efficiency. W-layer tackles this problem by first having an adaptive sampling rate.

30



When we suspect the legitimacy of a user, we increase the sampling frequency. On the

other hand, we decrease the sampling frequency if the legitimacy is confirmed. In addition,

W-layer selects the most distinguishing features among people for authentication. These

features change over time which can be captured by W-layer. Finally, once we have sent

a minimum amount of data to the Behavior Matching Module, we use JS divergence [64],

which is a widely-used and energy-efficient method for comparing two distributions.

In this section, we will discuss several different IA modules that can achieve fine-grained

sampling while being lightweight enough to run on the client side. Each module builds

upon and improves over the previous one. Moreover, fine-grained sampling can be used

to enhance the performance of other machine learning techniques, e.g., SVM, PLDA [76]

and neural networks. We begin the section by introducing the Basic Module and Stride

Module, which are widely used in current IA systems. After carefully examining the these

modules, we find that they are static in nature and may not adapt to the changing behaviors

well. We then introduce the Dynamic Stride Module, an adaptive alternative. Although

this module can handle dynamically changing behaviors, the problem of behavior deviation

is left unsolved. Behavior deviation occurs when the legitimate user’s behavior deviates too

much from his/her historically “normal” behaviors which could cause mis-authentication.

Finally, we conclude with a complete module called Wind Vane, which successfully extracts

the most representative dynamic behaviors of the legitimate user, and overcomes all the

aforementioned problems.

3.5.1 Basic Module

In general, to achieve IA, a fine-tuned module returned by machine learning technique is

used to identify the legitimate user based on the sampling data stored in the device. We call

this method the Basic Module. Most current IA mechanisms fall into this category and the

next (Stride Module discussed in Section 3.5.2) [53, 49, 62, 60].

We can easily modify the Basic Module to achieve dynamic sampling and energy-efficient

authentication. As shown in Fig. 3.2 (a), the first step is tokenizing raw data sampled

from various sensors. We then count the number of occurrences for each type of tokens and
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Figure 3.2: Implicit authentication modules. (a) Basic Module and (b) Stride Module

generate the distribution for this sample. The distribution can span several sampling cycles

where the tokens are counted accumulatively.

DEFINITION 1. Let S(φ) = {s(φ)1 , s
(φ)
2 , ..., s

(φ)
i∈I ; 1 ≤ φ ≤ Φ} be a behavioral sample space

containing i distinct tokens sampled from various sensors in time φ, where Φ is the maximum

time range and I is index set. The frequency of each token is P (Xi) =
∑
φ n

(φ)
i∑

φN
(φ) , where n

(φ)
i is

number of times each token appearing in time φ, and N (φ) =
∑I

i=1 n
(φ)
i . The accumulative

behavioral pattern (ABP) is defined as: P (X) = {P (X1), P (X2), ..., P (XI)}.

Once the tokenization, trimming and accumulation have been completed, we can perform

authentication (or behavior matching) using JS divergence. Assuming we have a constant

sampling rate t, DJS represents the JS divergence between the tokens’ frequencies in the

Cache DB (can contain either legitimate or illegitimate data) and in the historical data

(must be legitimate). The time gap between two samples is determined by T = t
DγJS

(t >

0, 0 ≤ DJS ≤ 1), where γ represents the weight parameter for DJS, and t is a predefined

constant sampling time. Large JS divergence indicates a higher possibility that the current

user is an adversary.

By comparing between the distributions of the historical data and the current cache data

(which contains several samples as shown in Fig. 3.2 (a)), we can determine the legitimacy

of the current user. Small DJS indicates that the current user is more likely the legitimate

user. In contrast, large DJS indicates the user is an adversary. Based on this result, we can
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either speed up or slow down the sampling rate by controlling the gap between the sampling

cycles using T = t
DγJS

. Generally speaking, representing humans’ behaviors requires more

than one sample. Thus, it may not be enough if we only choose one of the most recent

samples to verify the current user. In the Basic Module, the ABP is represented by choosing

as many samples as possible from the Cache DB.

The Basic Module can dynamically change the sampling rate to suit different situations.

For different users, the sampling rate, which is related to DJS, should be different. Compared

to the traditional method of a constant sampling rate, this module is more flexible for devices

with a small memory.

The Basic Module achieves dynamic sampling with several issues. To calculate DJS,

we must traverse the whole cache dataset. If the cache size is large, the time consumption

would be overwhelmingly high. The other problem is that the cache may still hold old data

from the previous user, and this data may have an adverse effect on DJS. If the previous

user is the legitimate user and the current user is illegitimate, the system will keep the low

sampling rate since the cache contains a small proportion of samples from the current user.

To overcome these problems, we introduce the Stride Module, which is an extension of the

Basic Module.

3.5.2 Stride Module

The underlying mechanism of the Stride Module is to select a subset of the cache data for

authentication purpose. Similar to the Basic Module, by comparing between the current

user’s ABP derived from the subset of the cache data and the historical ABP, we can

determine the legitimacy of the user and adjust the sampling rate accordingly.

The Stride Module is shown in Fig. 3.2 (b). We first define a suitable “stride size,”

which is a subset of the cache data. We divide the whole cache dataset into different chunks,

the size of which is equivalent to the stride size and each of them represents a typical (non-

repetitive) behavioral pattern that minimizes classification error. Instead of comparing the

whole cache data with a legitimate user’s ABP, the Stride Module only examines a small

portion of the data in the cache. Suppose we have a stride with a size of K. Then using

the same calculation in the Basic Module, we can derive the JS divergence between the
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two distributions using DJS = DJS(XK ||Y ). Splitting the cache results in a significant

improvement in speed compared to the Basic Module. For example, if we have a cache that

stored 5000 samples (one day’s data samples) and we set the stride to a value of 50 samples,

the Stride Module can run up to 100 times faster than the Basic Module. This mechanism

is useful when the cache size is large (usually modern smartphones can easily hold 104 to

105 samples from all sensors). Furthermore, since the user’s ABP can be represented by a

limited number of samples, the Stride Module can be used to identify the behavioral patterns

of current users while filtering out noise from the previous users and correctly determining

the sampling rate.

In the Stride Module, we need to find a good stride size to represent the current user.

Such a stride allows W-layer to separate the current user from the previous users with

high accuracy, and has been proven to be effective in detecting powerful adversaries [60].

However, the amount of samples needed to create a behavioral pattern varies among people.

A predefined stride size is not ideal. For example, suppose we only need 12 samples to

represent the behaviors of Alice. If Alice is an adversary, we can separate her from a

legitimate user Bob using only 12 samples. However, this stride size is only suitable for

Alice, and will change over time. Hence, a fixed stride size is not feasible even for the same

person, and we need to consider a more sophisticated module. In the following subsections,

we will focus on how to choose the ideal stride size for each person at different times.

3.5.3 Dynamic Stride Module

Before diving into the Dynamic Stride Module, we need to discuss some facts about ABP.

Assuming we have a legitimate user Y and an adversary X, their behavioral patterns are

represented by P (Y ) and P (X), respectively. We further assume that adversary X has stolen

Y ’s smartphone. If we calculate the JS divergence between two behavioral patterns from

the same person, we will get a value close to 0 because the behavioral patterns should be

extremely similar, e.g., DJS(X||X) = DJS(Y ||Y ) = 0. However, if Y ’s behavioral pattern is

compared with X’s behavioral pattern, the JS divergence should be a positive real number,

which is less or equal to 1. Ideally, it would be close to 1, DJS(X||Y ) = DJS(Y ||X) =

δ > 0, δ ≤ 1. This is because a value closer to 1 indicates a stark difference between the
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two behavioral patterns. Thus, assume the cache DB consists of data from both X and

Y , and this data is called M , we will have 0 < DJS(Y ||M) < δ. If M contains a larger

proportion of the legitimate user’s data, DJS(Y ||M) will be close to 0. It will be close to

1 if M contains enough adversary’s data. Furthermore, once we confirm that the current

user is an illegitimate user, we wish to increase his/her JS divergence as much as possible by

adjusting the stride size. However, if it turns out that the current user is the legitimate user,

we wish to minimize the JS divergence. The corresponding stride size is called the optimal

stride size.

DEFINITION 2. Suppose we have historical ABP - Y, which contains the historical

behavioral pattern of a legitimate user, and the current ABP - X. For the index set J , the

best behavioral pattern for the adversary XA is defined as: argmax
j∈J

DJS(Xj||Y); the

best behavioral pattern for legitimate user XL is defined as: argmin
j∈J

DJS(Xj||Y);

the corresponding number of samples in j is called the optimal stride size, denoted by

|Xj| = C ′.

Let us first discuss how to initialize the module to select the optimal stride size for a

legitimate user. We assume that the first user is legitimate, and the current stride size is set

to C. We want to find the optimal stride with a size of C ′ that produces the smallest DJS,

which should be close to 0. To find the stride size C ′, we enlarge or shrink the current stride

n times and choose the stride with the smallest DJS. We keep repeating this process during

the initialization phase until the difference between the current D
(j)
JS and the previous D

(j−1)
JS

is very small, i.e., D
(j)
JS −D

(j−1)
JS < ε. We use the stride size |Xj| as the optimal stride size in

the initialization step, and let C ′ = |Xj|.

Now we discuss how to select the best behavioral pattern for the adversary during the

authentication. Suppose we begin with a large stride value |Xj−1|, which could be potentially

equal to the entire cache, i.e., |Xj−1| = Ĉ. We have an ABP with JS divergence D
(j−1)
JS , and

later we use an n-times smaller stride |Xj| = Ĉ
n

which gives us D
(j)
JS. If D

(j−1)
JS < D

(j)
JS, we

know that the current stride Sn contains behavioral patterns that may not belong to the

legitimate user. Therefore, we need to further shrink the stride until we reach some point J

where D
(J−1)
JS < D

(J)
JS ≥ D

(J+1)
JS , at which time we know the stride in point J should be the
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optimal stride. We should speed up the sampling rate accordingly since the current user has

high chance to be an adversary.

Fig. 3.3 depicts the Dynamic Stride Module when assuming the current user is an

adversary. In the figure, for each previous stride, the number of samples is monotonically

decreasing, i.e., |X1| > ... > |Xj−1| > |Xj|. On the contrary, the corresponding JS divergence

is monotonically increasing, i.e., D
(1)
JS < ... < D

(j−1)
JS < D

(j)
JS. After D

(j)
JS is reached, we have

already shrunk the stride to be nj−1 times less than the original stride. In Fig. 3.3, since

D
(j−1)
JS < D

(j)
JS ≥ D

(j+1)
JS , and D

(j)
JS is the maximum JS divergence for the current user, we

choose |Xj| as the optimal stride size. If we set n = 2, we can further simplify the problem

to a binary search problem.

This module not only supports dynamic sampling but also automatically determines the

stride size. However, in this module, we made several assumptions. The first assumption is

that the smartphone has been stolen. This assumption may be unreasonable if the legitimate

user experiences behavior deviation, e.g., travel. A better module is needed if this assumption

is relaxed. Also, we assumed that the starting stride is large enough to cover all the behavioral

patterns of the current user, and the size of the stride could be equal to the total cache

size. This design is not the most efficient, and it serves only to gain some fundamental

understanding of finding the best behavioral pattern. In the following subsection, we will

present the Wind Vane Module that is adaptive enough to address all these issues.

3.5.4 Wind Vane Module

In our previous discussion, the legitimate user’s behavior deviations may be detrimental to

the correct execution of IA. Intuitively, deviated behaviors may be temporary or bear more

similarity to the legitimate user’s historical behavioral patterns than illegitimate users. To

capture this intuition, once our system observes that similar historical behavioral patterns

occur again, it increases its confidence about the legitimacy of the user. Translating

this intuition to system design, our system needs to re-observe that the JS divergence

monotonically decreases to confirm the behavior deviation. Thus, we need to build a module

that can not only find the optimal stride size but also detect whether the behavioral change

is due to the legitimate user’s behavior deviation.
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Figure 3.3: Dynamic Stride Module.

We name this module Wind Vane, which is inspired by the module’s similarity to the

mechanical wind vane used to measure the direction of the wind. Instead of measuring

the wind, the proposed WVM measures the change of direction of one’s behaviors and

also observes if the behavior change is due to an adversary or a legitimate user’s behavior

deviation.

The Wind Vane Module (WVM) has the following metrics:

1. Pointer: p, indicating the behavior (wind) direction, either from (L)egitimate user to

(A)dversary or (A)dversary to (L)egitimate user.

2. Wind strength: DJS, equal to the JS divergence.

3. Wind strength threshold: δ. The wind strength (DJS) must be larger than δ to rotate the

wind vane.

4. Duration time: m, behavior (wind) duration.

The difference between the Dynamic Stride Module and WVM is that the Dynamic

Stride Module only shrinks the stride size to find the best behavioral pattern. The WVM

first observes the JS divergence changes, and then decides to either enlarge the stride size or

shrink it according to whether the adversary or the legitimate user is observed.
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Suppose we take a series of continuous strides with equal size, |X1| = |X2| = ... =

|Xn−1| = |Xn|. The corresponding JS divergence for each sample isD
(1)
JS , D

(2)
JS , ..., D

(n−1)
JS , D

(n)
JS .

If at some stride j ≤ n, the system observes that D
(j)
JS < D

(j+1)
JS < ... < D

(j+m)
JS , it will change

the direction of the wind vane from L to A, and p will turn to point to the adversary (from

the legitimate user). Since we are now concerned with an adversary, the system will start

using a faster sampling rate. Also, the WVM will adjust the stride size to indicate the

behavioral patterns of the adversary (maximizing DJS). In contrast, if at some stride j ≤ n,

the system observes that D
(j)
JS > D

(j)
JS > ... > D

(j+m)
JS , it will mark the direction from A to

L (behavior deviation), and p will turn to point to the legitimate user (from the adversary).

In this direction, the system learns that the current user is most likely the legitimate user,

and hence will reduce the sampling rate and adjust the stride size to indicate the behavioral

patterns of the legitimate user (minimizing DJS). In practice, the JS divergence may not

always be monotonically increasing or decreasing due to irregular behaviors or noise. For this

reason, we compare the current DJS with the threshold δ . For example, since we assumed

that the first user is legitimate and predefined δ to be 0.5, DJS should be smaller than δ. If

the system observes in a later sample that the current DJS is greater than δ and this trend

continuously repeats for m times, the WVM will consider the current user to be an adversary

and rotate p to point to the adversary.

Fig. 3.4 describes how the WVM works internally. Unlike a mechanical wind vane, which

can point in any direction, the WVM only points in two directions. The direction change

of the WVM only happens in the following two cases. Case 1 (illegitimate usage): after

initializing the stride size of a legitimate user’s behavioral pattern, the WVM will monitor

the JS divergence in each sample. If it finds that the JS divergence is larger than the threshold

δ and this trend occurs for m samples continuously, the pointer p is set to A. Under this

condition, the WVM will re-initialize the stride size to one with a larger JS divergence.

The corresponding sampling rate will also be increased. Case 2 (behavior deviation): due

to the behavior deviation, the WVM may point to A temporarily but rotate the pointer p

back to L if the system re-observes that the JS divergence decreases monotonically. When

this happens, the WVM will try to find a stride size that minimizes the JS divergence and

decreases the sampling rate accordingly.

38



Case 1

1.  Observing the wind strength change (DJS>δ or DJS≤ δ) 

2.  Whether the duration of the wind reaching to m

If no, go back to step 1 If yes, continue to step 3

3.  Reversing the wind vane to represent the wind change
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Choosing A Smaller DJS

Wind Vane Wind Vane

Figure 3.4: Wind Vane Module.

Compared with the previous modules, the WVM can achieve: (i) less computational

overhead; (ii) less power consumption; and (iii) user behavioral pattern derivation with

adaptive noise filtration.

3.6 Parameter Selection

To facilitate the implementation of the WVM, we analyzed how to select the parameters,

e.g., m, δ and γ. The results are discussed in this section.

3.6.1 Data Collection

The dataset we used in the simulation is the MIT Friends and Family Dataset [5], which

contains 130 participants and a total of 9 types (GPS, accelerometer, SMS, app installation,

battery usage, call logs, app usage, blue-tooth devices log, Wi-Fi access points) recorded

over 5 months. Among all the 132,960,052 samples in the dataset, 10% of them were used in

our experiments. Although the data columns related to user ID, e.g., phone number, were

hashed and never saved in clear text, we still deleted them from the dataset. The data was

tokenized, where the top 30 most frequently used tokens were filtered out.

To simulate the real usage, we prepared two datasets, which correspond to the normal

usage (by the legitimate user) and abnormal usage (e.g., device captured by the adversary).

The first dataset, referred to as the legitimate dataset, contains data sampled only from the
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legitimate user. The second dataset, refered to as the synthetic dataset, was created utilizing

the splicing approach [87] as follows. We randomly select a user to be the legitimate user, and

another user to be the adversary. We splice a portion of the legitimate user’s segment with a

portion of the adversary’s segment. The point at which the two segments are concatenated

is called the splicing moment. In practice, the splicing moment can be regarded as the time

of device capture.

3.6.2 Data Analysis

We randomly selected 40 people in the synthetic dataset, and each person’s data contains

more than 0.12-million samples over 5 months. We further chose the values for δ and m that

minimize the classification error. The average results are shown in Fig. 3.5, in which m was

defined in the range between 1 and 100. Since we selected the stride size that minimizes

the JS divergence, δ shown in the figure is between the minimum JS divergence and 1. We

calculated the accuracy ( TN+TP
TP+FP+TN+FN

) and precision 1( TP
TP+FP

) for each pair of δ and m,

and chose the pair that produces the best results. As shown in Fig. 3.5, the δ and m pair

was marked with a red “X”, and the corresponding accuracy and precision are 92.53% and

97.57%, respectively. In the test, we found that the optimal value of δ is very consistent

across the dataset, scattered between 0.2 to 0.4. However, the optimal value of m fluctuates

between 1 to 20. Another observation is that the best results in accuracy and precision are

not always consistent, which is clearly shown in Fig. 3.5.

Intuitively, γ represents the system’s belief on the effectiveness of JS divergence as the

similarity metric. Together with the JS divergence, it adaptively controls the time gaps

between two samples by t
DγJS

. When γ is large, the system has strong belief on the JS

divergence and WVM. To avoid bias, we choose γ by averaging over the historical testing

results, in each of which a mis-authentication should decrease γ until γ = 0 and a correct

authentication will increase γ until γ reaches the maximum, e.g., 1.5, in the synthetic dataset,

equivalent to roughly 5-minute sampling gaps when DJS = 0.1.

1where TP (true positive) means that the system correctly passes legitimate users, TN (true negative)
means that the system correctly blocks illegitimate users, FP (false positive) means that the system
incorrectly passes illegitimate users, and FN (false negative) means that the system incorrectly blocks
legitimate users.
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(a) (b)

Figure 3.5: Parameter selection. (a) Accuracy, (b) Precision.

3.7 Discussion

We introduced W-layer and the WVM to achieve lightweight IA, while also supporting the

traditional server-based IA. W-layer challenges the traditional design of IA by incorporating

several components and modules on the mobile devices to achieve energy and computational

efficiency, lightweight authentication, dynamic sampling, and easy integration. In addition,

we devise the WVM to further reduce the energy consumption and improve the accuracy

of authentication. To evaluate our methods, we are conducting experiments on both the

synthetic dataset and real dataset.
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Chapter 4

PersonaIA

4.1 Introduction

In this research work, we design and build an implicit authentication system, PersonaIA,

that automatically selects dynamic sets of features for user behavior extraction. To ensure

practical deployment, we integrate lightweight computation and adaptive sampling into the

system, making it energy-efficient for popular battery-powered devices such as smartphones,

pads, and smart watches. There are several key features of PersonaIA that are desirable

for a variety of applications, not limited to authentication. The ability to match a

user’s current behaviors with behavior history and differentiate them from other users’

makes PersonaIA suitable for authentication, authorization, access control, and targeted

advertising. PersonaIA can also detect a user’s behavior deviation from the past which is

most attractive to health-related applications such as assisted living, patient monitoring and

fitness tracking. Moreover, it is possible to fine-tune the system to discover similar behaviors

of a group of people that distinguish them from other groups, which supports emerging

applications including membership applications such as building access and family-based

sharing, as well as group-based recommendation applications such as group purchasing.

Therefore, PersonaIA will be useful in a wide array of domains including cybersecurity,

healthcare and fitness, education, online and mobile social networks, and e-commerce.

The uniqueness of PersonaIA is three-fold. First, PersonaIA uses dynamic sets of

activities (called tokens in this thesis). The majority of existing research work relies on
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activities that are often fixed or static in type and does not select through the extracted

behaviors to find the most desirable ones for different applications [63, 18, 19, 27, 36, 7, 88].

We select sets of available activities that characterize a person where the sets can be

dynamically changing due to human behavior dynamics. Therefore, in addition to extracting

the dominating behaviors (which are often common behaviors) of a person as in the existing

work, our behavior modeling technique has the capability of discovering the most unique ones

on the fly. Second, the challenges and complexity of PersonaIA extends far beyond behavior

modeling. Although modeling human behavior is an important component in this work, it

is not sufficient for the success of PersonaIA which also relies on properties such as energy

efficiency, adaptability, and reliability. In other words, PersonaIA also faces challenges from

system design and implementation. This requires the modeling technique is applied in a

non-straightforward manner and combined seamlessly with other techniques we propose.

For example, unlike the framework in [53, 54], PersonaIA is energy-efficient in that the

client side employs computation outsourcing and adaptive sampling to keep the overhead at

bay. Third, PersonaIA deals with the difficult problem of distinguishing between legitimate

users’ behavior deviation and illegitimate users’ behavior which affects the accuracy and

practicality of the system.

To successfully develop PersonaIA, we need to solve challenges related to modeling and

system design. Modeling-related challenges are associated with finding a suitable machine

learning technique for selecting and extracting dynamically changing user behaviors. We

will need to first identify the requirements for the desirable behaviors in PersonaIA and

their implication on system design, and then find an appropriate modeling technique and

adjusting it for feature selection and behavior extraction. System-related challenges are

associated with designing the system architecture of PersonaIA, and developing it into

a reliable and lightweight system. We will need to avoid expensive computations and

unreliable communications on the energy-constrained client side, and design a suitable

behavior matching algorithm, the core of authentication, that improves system reliability

by reducing the false negative and false positive rates. In this research work, modeling and

system related challenges are mainly overcome by topic models and the novel Wind Vane

Module (WVM).
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We first present a high-level overview of our key idea: modeling, discovering, and selecting

user behaviors, with an example, before diving into technical details. Ideally, the behaviors

PersonaIA relies on should satisfy two requirements: a) likely to occur for a person and b)

not likely repeated by others. The former ensures the behaviors can be observed when needed

by the application, while the latter guarantees the unique identification of the person. Like

popular machine learning algorithms such as SVM and Gaussian mixture model (GMM),

topic models can discover behaviors satisfying a) in a relatively straightforward manner.

Nonetheless, more efforts should be made to discover behaviors for Requirement b), especially

with behavior dynamics, which will be the focus of this work and addressed mainly by topic

models. We use the following example to demonstrate the two requirements. The behaviors

derived from “location” (departing and arriving stations), “time”, and “speed of travel”

are likely to occur for Caltrain commuters in the Bay Area. Nevertheless, these behaviors

are not sufficiently distinctive to tell one Caltrain commuter from another, and we need

to leverage other types of behaviors not related to commuting, e.g., playing Angry Bird on

Caltrain, to satisfy Requirement b). There are two behavior extraction phases in this project:

the reference extraction phase that occurs at the server and the real-time extraction phase

that takes place at the client. The server uses topic models to generate reference behaviors

for each person. The reference behaviors guide the selection of desirable user activities for

personalized authentication (i.e., behavior matching in the real-time extraction phase). The

reference extraction phase can serve as feature selection for other machine learning techniques

(not limited to topic models) to improve their behavior extraction results.

4.2 Related Work

Extracting user behavior through use of topic modeling is a key aspect of our work. Although

initially designed for natural-language documents [17, 80], topic models have been applied

to image, video, genetics, human activities and software debugging [31, 74, 47, 11]. There

are some recent studies on modeling individual or group behaviors [47, 98, 59, 29, 102, 46].

Some of them are very limited in scope, e.g., only one person is considered in [47] and only

location data is considered in [29]. Some merely showed that topic models could be the right
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tool for user behavior modeling without considering the system’s aspects [46, 102]. These

works all differ from our research in one or more of the following ways: i) Our research

focuses on discovering distinctive user behaviors suitable for implicit fingerprinting based on

dynamic activity types and data; ii) Applying topic models straightforwardly does not solve

our problem. The success of PersonaIA relies on many other key mechanisms and techniques,

e.g., WVM, re-training, dynamic privilege; and iv) Our research facilitates system reusability

and extensibility by the design of a modular and generic architecture, supporting further

research and development.

As well, our work relies on leveraging user behavior for IA. The majority of recent research

work focuses on using behavioral biometrics such as touch, motion, shake, and arm swing, to

design authentication applications for smartphones [63, 18, 19, 27, 93, 41, 49, 24]. The main

difference between their work and our proposed research is two-fold. Their work is mostly

concerned with using specific behavior(s) for authentication while ours is centered around

finding out which behaviors most uniquely identify a person and using these behaviors for

authentication. Their work features a fixed or static set of activities from which behaviors

are derived, and our work features dynamic sets. Because of the fixed or static nature, their

techniques are limited in one way or another whereas our approach is flexible and versatile.

For example, quite a few papers study the touch behavior [63, 18, 19, 27, 93, 70, 85] which is

specific to this generation smartphones. Their techniques may not work for smart watches

and glasses, or even the next generation of smartphones, e.g., touch may not be the main way

of operating future smartphones. In addition to these works, an IA framework for Android

has been developed in [53, 54] allowing researchers to improve their authentication schemes.

However, the framework implements the machine learning module in smartphones which can

be impractical. The complex topic models in our system crashed on the smartphone in our

experiment, which is the reason we propose a different approach by shifting the training and

testing of topic models to the server. Some works allow the user to adjust sampling rate, e.g.,

[62], but essentially their methods, unlike ours, belong to static IA where the sampling rate

is not dynamically controlled by the system. In addition to the differences mentioned above,

these works differ from our research in one or several of the following ways: i) We explore

a relatively new learning technique of dynamically selecting sets and sampling rate that are
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shown to be advantageous; ii) The WVM assists in energy-efficient behavior matching and

improves the authentication success rate; and iii) We propose a finer-grained authentication

mechanism which further enhances system reliability and user experience.

4.3 Background Knowledge

In this section, we introduce some background information on Jensen-Shannon (JS)

divergence, partially labeled Dirichlet allocation (PLDA) and associated techniques.

4.3.1 Topic Models

Tokenization: Given a dataset containing various raw sensor data, tokenization is the task

of chopping the data into pieces (tokens). At the same time tags are added to ambiguous

tokens, and certain characters in the stop-word list are discarded. For example, in here, a

GPS reading will be tokenized into the following: (loc69x, loc1333y), and a light reading will

be tokenized into: (l98). We use the prefix to identify each sensor (Therefore loc = location

and l = is light). The number attached to the label is the actual reading from the sensor.

After tokenizing we are now left with a set of tokens. Each token is truncated according to

its value(s). For example, the light meter reading l30.41 and l30.58 would belong to the same

token “l30”. The location reading of “Girard Ave, Philadelphia” is split into two distinct

tokens “Philadelphia” and “Girard” by filtering out words according to the stop-word list,

e.g., Ave.

Topic modeling: The topic modeling is a technique that uncovers the hidden thematic

structure of document collections which in this work is the tokenized dataset. The details of

topic modeling are shown in Table 4.1. A topic is a distribution of tokens with probabilities,

e.g., in Table 4.1 (b), topic 01 contains loc69x, loc1333y, l98, ... with probability of 0.003,

0.003, 0.02, ... respectively. The topic modeling, from another aspect, is a process of feature

selection in which features are represented by various tokens. The features/tokens in the

topic of highest probability represent the most related behaviors that co-occur only with a

certain user, e.g., in Table 4.1 (c), Topic 03 and its corresponding tokens are selected to

represent behaviors of User 01. As shown in Table 4.1 (c), behavior used in topic modeling
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Table 4.1: Topic modeling.

(a)

User Topic distribution

01 02 03 ... N
01* 0.01 0.03 0.59 ... 0.01
... ... ... ... ... ...
23 0.54 0.02 0.01 ... 0.04

(b)

Topic Token distribution

loc69x loc1333y l98 ... vol407
01 0.003 0.003 0.02 ... 0.001
... ... ... ... ... ...
N 0.002 0.002 0.01 ... 0.001

(c)

User Topic† Behaviors‡
01 03 pvol401 = 0.4, pvol400 = 0.3, ...
02 20 pbatt94 = 0.6, pvol4070 = 0.4, ...
... ... ...
23 01 pl98 = 0.1, ploc69x = 0.05, ...

*Label “User XX” uniquely identifies each user. Topic† indicates the topic of the highest probability.
Behaviors‡ are represented by token distributions, e.g., pl98 = 0.1, ploc69x = 0.05, ....

is represented by a token distribution, which serves as a fingerprint in PersonaIA. Many

statistical topic models are developed from the latent Dirichlet allocation (LDA) topic model

[17], which has the total probability: p(ϕ1:K , θ1:D, z1:D, w1:D;α, β)

=
K∏
i=1

p(ϕi; β)
D∏
d=1

p(θd;α)
N∏
n=1

p(zd,n|θd)p(wd,n|ϕ1:K , zd,n),

where ϕk indicates a distribution over each token in kth topic. θd indicates the topic

proportions for the dth dataset. θd,k is the topic proportion for topic k in dataset d. zd,n

indicates the topic assignment for the nth token in dataset d and wd,n is the nth token in

dataset d. α is hyper parameter which controls the sparsity of a topic that is assigned to

each dataset. β is similar to α which controls sparsity of per-dataset token distribution.

Partially labeled Dirichlet allocation (PLDA) is an extension of LDA topic

modeling, which utilizes token frequency in the dataset to deduce a proper topic distribution

for each label. As shown in Table 4.1 (a), different labels uniquely identify each user, and

for each label PLDA [76] will generate a probability distribution of all predefined topics,

e.g., user with label “User 01” contains Topic 01 to Topic N where the topic identifier N is

predefined with probability pN . As training is completed, a fine-tuned topic distribution is

returned as a reference model, where the topic of highest probability is selected as the most

probable topic to identify such user, as shown in Table 4.1 (c). Essentially, in the testing
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phase the real-time data captured by various sensors will be evaluated by the reference model

returned by the training phase. A legitimate user is identified if the highest probability topic

in the real-time data matches the most probable topic of the legitimate user, otherwise the

current user will be identified as illegitimate. Note that for each topic there is an associated

token distribution, as shown in Table 4.1 (b). The matching process is a comparison of

two distributions, one from a reference behavior model and the other from real-time usage,

utilizing Jensen-Shannon (JS) divergence. The relationship between PLDA and the WVM is

two-fold. First, tuning various parameters/topics in PLDA requires term-frequency/token-

frequency prepared by the WVM. Second, the WVM is responsible for authenticating the

user before training is completed, while after PLDA returns a fine-tuned model the WVM

will base authentication on the model. Further description of PLDA topic modeling and

associated data processing phases will be discussed in Section 4.5.

4.3.2 Behaviors in IA

The key to appropriately apply topic models to behavior discovery is to draw analogies

between our daily lives and text documents. Our daily lives can be considered as

unlabeled text documents in topic models. Each document (daily activities) is a mixture

of topics (behaviors), and each topic is a mixture of words (activities). Activities serve

as the “vocabulary” of our daily lives whose hidden meanings are reflected by behaviors.

Specifically, given the daily lives of different people, we can adjust the model to prefer

distinctive behaviors over similar behaviors. The distinctive behaviors and their dominating

activities will guide the activity selection, as well as sensor selection to reduce unnecessary

sensing and energy consumption. The selected sets of activities are referred to as dynamic

sets, because the activities that define a user’s implicit fingerprint are ever changing and

depend on various environmental variables, such as the user’s current location. Using topic

models for behavior extraction is not a new technique, and has been shown to have excellent

results in previous works [47, 29, 98]. We define distinctive behaviors as the most desirable

behaviors for individual fingerprinting. For the behavior to be considered distinctive, it must

satisfy the following, a) the behavior must frequently occur for a user but b) the behavior must

infrequently occur for others. The former ensures that a distinctive behavior can be observed
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while the latter guarantees the unique identification of an individual user. Discovering

behaviors that satisfy (a) is relatively straightforward. However, satisfying requirement

(b) when using dynamic sets of distinctive behaviors is a challenging task, and is the focus

of this work. In addition, for each topic there exists a token distribution, and only the first

10% of tokens of highest probability are selected as main features for user identification.

The frequent behaviors is defined as the subdataset that contains that 10% of tokens. To

differentiate real human behaviors and behaviors used in topic modeling, we call the latter

behaviors as behavior pattern(s), but behavior(s) is also used in the thesis if it does not lead

to ambiguity.

4.3.3 Jensen-Shannon Divergence

The common way of measuring similarity in between two distributions is by calculating the

Kullback-Liebler (KL) divergence, which is defined as:

DKL(X||Y) =
N∑
n=1

p(X = n) log
p(X = n)

p(Y = n)
, (4.1)

where X and Y are two distributions.

However, the KL divergence is not well bounded and it is an asymmetrical measurement,

which is not suitable in building our system. To overcome these drawbacks we adopt Jensen-

Shannon (JS) divergence [64], which is defined as:

DJS(X||Y) =
1

2
[DKL(X||M) +DKL(Y||M)], (4.2)

where M = 1
2
(X + Y). Particularly, for a distribution X, DJS(X||X) = 0; otherwise,

DJS(X||Y) will shift to 1 depending on how large of the difference between X and Y, for

example given PX = [pX1 , pX2 ] = [1, 0], PY = [pY1 , pY2 ] = [0, 1], DJS(X||Y) = 1.
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4.4 System Architecture and Adversary Model

4.4.1 System Architecture

With knowledge briefly described in the previous sections, we are ready to build PersonaIA.

The system architecture, including the main modules and functional blocks, interfaces, and

data flows, is shown in Fig. 4.1. PersonaIA can be separated into two main parts: client

side and server side.

On the client side of PersonaIA sensor monitors are used for collecting raw behaviors

such as location = (loc69x +−20, loc1333y +−20) and touch screen = Scroll. These data

are stored in PersonaIA’s Cache DB component (1), which is implemented using SQLite.

The Cache DB module uses a pre-designed Interface for receiving data and facilitating the

implementation of new sensors and data sources. The final module on the client side is the

Behavior Matching Module, which we have named Wind Vane Module (WVM). The WVM

is the main mechanism driving the novel dynamic adaptability of PersonaIA and is in charge

of the real-time client-side authentication. The WVM captures user’s real-time behaviors

(8) and compares it with the legitimate user’s historical behaviors captured and stored in

local storage (hard drive for example). After comparison, a matching result will be returned

that determines if the current user is a legitimate user. The Behavior Matching Module also

controls the sampling frequency and fine-grained data uploading mechanism (9).
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Figure 4.1: The system architecture of PersonaIA.
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Raw data captured by sensors often contain noise and special characters, e.g., %, comma,

dot, etc. We have built up a stop-word list to automatically preclude the most irrelevant

characters and for some frequently used characters/tokens, e.g., android, app, etc. We also

delete them from the Cache DB. After filtering out the noise the Behavior Matching Module

will upload the fine-grained user’s data to the database server through web services for

further processing (2).

Finally, the Training Server, containing a Web Service, will receive each user’s data (3)

through the Interface and use this data to return an accurate authentication result (6) to

the Client Side (7). The Training Server adopts PLDA ( 3 ) to generate a topic distribution

for each user and finds out the most probable topic (main topic) for each user. Before the

data is sent to PLDA for training, it is formatted to fit the requirements of PLDA. Using

PLDA, the server side returns the corresponding behavior model to the client side, which

measures the difference between the real-time behavior and the historical behavior model.

The comparison between the two is used to adjust the WVM settings. The Interfaces are

introduced to enhance the compatibility of system.

From another aspect data flows in PersonaIA can be explained as interactions between

different layers shown in the left part of Fig. 4.1, while the W-layer can be viewed as a vessel

to exchange the information between the remote server and the WVM. In the W-layer, the

communication is enhanced by data serialization, in which data exported from the W-layer

is serialized to a single string (different sensors will be attached to different labels). After the

server receives the string, the server de-serializes it based on the respective label. The W-

layer is also designed to send the raw data ( 1 ) and the fine-grained data ( 2 ) to the server

through two interfaces. The server trains the model using the data provided by W-layer,

and returns the result back to client. This result is used for more accurate authentication

and adjusting WVM settings. In addition, the adaptiveness of PersonaIA is reflected in the

following ways: 1) the sampling frequency for each authentication, controlled by the WVM,

is dynamically adjusted in which the legitimate user will have lower sampling frequency

than illegitimate users; and 2) for each authentication, the amount of sensor data used for

behavior matching, is dynamically adjusted to reflect the behaviors of current user. The

adaptiveness of PersonaIA is also related to the dynamic property of the behavior set.
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The Cache DB, shown in Fig. 4.1, temporarily stores the sampling data. The data

held in the Cache DB either uploads to the remote server or exports to a local machine

for further processing. The smartphone’s internal storage is much faster than the external

storage, but is also very limited in size. In order for a successful implementation of an IA

system, the authentication needs to happen in real-time. Therefore, it’s integral that the

identification unit is implemented using local storage. Also, the W-layer exports the entire

dataset inside the Cache DB when the server requests data. This design severely reduces

the transmission overhead and also increases the overall system robustness. For example,

when the smartphone is offline the Cache DB will temporarily hold the most recent data,

and send it to the server once the user is back online.

To support different frameworks, W-layer provides two interfaces that can be easily

modified for remotely uploading and locally exporting data. We employ the outsourcing

solution to migrate costly computations to the remote server. However, due to several

limitations of this method, our system is also designed to support local IA using the

WVM. By changing the exporting function within the “ExportFileTask” class, our system

can achieve either remote or local exporting. The sampling control logics and lightweight

authentication in the W-layer will be discussed in Section 3.5.

4.4.2 Adversary Model

We assume there are two different types of adversaries. One is the adversary that is unaware

of the existence of PersonaIA, such as a person that finds a lost phone. We also consider

a more powerful adversary, one who is aware that PersonaIA is on the phone or knows the

behaviors of the legitimate user. An example of a regular adversary is a random person who

finds the lost device and attempts to use it. An example of a more powerful adversary is

a close friend, co-worker, or family member. Since this person is close to the person, they

have a higher potential of emulating the legitimate user’s behaviors.
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4.5 Server-Side User Behavior Models

Through Function Interfaces 1 and 2 shown in Fig. 4.1, sensor data is uploaded to server,

and the uploading process is controlled by the WVM. The topic modeling phase is shown in

Table 4.1. After tokenization we calculate the Accumulative Behavioral Pattern (ABP) in

the dataset selected by the WVM and use Gibbs sampling to approximate the topic and word

distributions in the PLDA topic model [44, 76]. The token with high frequency, appearing

only with a specific user, has a large chance to precipitate a major component of a user’s most

probable topic through Gibbs sampling. As shown in Table 4.1 (b) and (c), a topic contains

tokens returned from the WVM. Intuitively, if a token, e.g., batt94 - battery reading 94%,

appears frequently in dataset, it will have higher probability in that topic than the other

infrequent tokens, e.g., vol4000 - battery voltage reading 4000 millivolt. Since PLDA uses

Dirichlet distribution, for each user it generates a complete topic distribution containing all

topics initially defined, as shown in Table 4.1 (a) and (b). The information about human

behaviors is transformed to a set of token and topic distributions and the highest probability

topic is selected as the most probable topic for identifying the user.

In this example, a dataset labeled by a specific user ID, e.g., User 01, is sent to PLDA

for training. After training, usually done by using Gibbs sampling, a distribution of topics,

ranged from Topic 01 to Topic N with probabilities p1 to pN , is returned as a fine-tuned

model. In this example, the third topic, Topic 03, has the highest probability in the topic

distribution of User 01 and is selected as the most probable topic to identify this user. The

token distribution of this topic reflects the user’s behaviors during the usage, as shown in

Table 4.1 (c). It is not necessary for the token to be human readable since the WVM uses

JS divergence in comparing distributions regardless of grammar and sentence structure.

4.6 Energy-Efficient Client Side

One of the core issues on the client side is making an energy-efficient method to verify

authentication. If an IA application uses too much energy, it will not be feasible to distribute

it on a large scale, e.g., many users. The client side’s energy consumption is mainly due to

53



the Behavior Matching Module. Therefore, behavior matching plays a key role in battery

consumption. In addition to energy efficiency, we must consider other key issues that hinder

realistic deployment on a large scale. This includes how to: initialize the system when there

are no reference behaviors model from the server, handle behavior mismatches, and perform

necessary interactions between the client and server.

Our solution to these problems is a novel Behavior Matching Module called Wind

Vane Module (WVM). Wind Vane is an efficient algorithm that serves as a generic

behavior matching mechanism to support the decision making of different applications, e.g.,

authentication, advertisement, education, etc. WVM is implemented on the client side of

PersonaIA. Outsourcing the most expensive training part to the server side allows significant

improvement to the energy efficiency of our Behavior Matching Module. The sensing and

communication costs incurred by WVM are also low, since the sensing and communication

frequency is reduced when the system is in a normal state (i.e., no unauthorized user is

detected). Specifically, the reference behaviors from the server are updated by re-training

much less frequently and do not need to be sent to the client in real-time in the normal state.
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Chapter 5

BubbleMap and Reinforcement

Authentication

5.1 Introduction

Rich behavioral data gathered by various sensors embedded in smart devices facilitates the

implicit authentication (IA) of users based on their behaviors [105, 87, 62]. In general,

IA systems authenticate users by matching their real-time behavior to their historical

behavior. Real-time behavior is obtained from one or more sensors whose data can uniquely

characterize the user and distinguish them from other users, at the time of authentication.

Similarly, historical behavior is obtained from the same sensors in the past and updated

after new data is collected. IA schemes typically run in the background and stream data

at an appropriate frequency to ensure that data is sufficiently collected, and the battery

consumption is reasonable. IA is a promising method of authentication since it generally

does not require any form of explicit user actions as in password-, biometrics-, or token-based

explicit authentication methods.

As with any other practical security system, IA systems need to strike a good balance

between security and usability. On the one hand, we need the system to cope with the

legitimate user’s behavior deviation and noise [105], e.g., a change of routine, and not falsely

rejecting the user (usability). On the other hand, the system needs to differentiate between

a legitimate user’s behavior deviation and illegitimate users’ behaviors to prevent falsely
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allowing the adversaries to access the system (security). Compared to explicit authentication,

IA more easily induces and is more susceptible to false negatives (falsely rejecting a legitimate

user) and false positives (falsely accepting adversaries), due to the complexity of human

behaviors and limitations of the machine learning algorithms used for extracting the user

behavior model. It decreases the authentication accuracy IA systems are able to achieve

and hinders the systems’ wide deployment. In addition, since smart devices are a popular

platform IA systems run on, energy consumption is an important consideration factor.

In this thesis, we propose BubbleMap (BMap), a framework to dynamically adjust and

map users’ privileges for accessing smart devices. This framework is independent of the

machine learning algorithm used to implement an IA scheme and the features used, and can

be adopted by any existing IA system [62, 93, 19, 32, 88, 42, 85, 21, 94, 93] as a plug-in

to improve authentication accuracy as well as balancing between security and usability. We

introduce intermediate privilege levels to the two-level (full access or no access) systems

used by the existing IA schemes in the Initial Mapping step of BMap. An ideal IA scheme

should always map the legitimate user to the top level (full access), and illegitimate users

to the bottom level (no access). Nevertheless, when the legitimate user’s behavior changes,

it becomes harder to distinguish it from illegitimate users’ behaviors. The intermediate

privilege levels are incorporated in BMap to buffer the impact of behavior deviation so that

the legitimate user still has access to some of the content (e.g., apps with lower security

requirements), and therefore usability of the system is improved. It enhances security of the

system as well in that an adversary will not likely be mapped to the top level immediately due

to the buffering. However, the ultimate goal of BMap is to help the IA system quickly reach a

definitive conclusion by mapping the legitimate user to the top level and illegitimate users to

the bottom level. This is achieved by the remaining steps of BMap, Privilege Movement and

Bubble Expansion in which questions including where to move the current user’s privilege,

and how fast and how much to move it are addressed to reflect users’ dynamically changing

behavior. As shown in our experiments, the time users spend in the intermediate levels is

only 0.4% of their total usage time, and the authentication accuracy of the tested IA systems

enhanced with BMap is universally improved. Main contributions of this work include:
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• We design and develop BMap, and apply it to various state-of-the-art IA systems to

boost their performance in terms of authentication accuracy, security, and usability. It is a

plug-and-play that bridges the gap between IA research and the deployment of IA in practical

systems.

• We evaluate the performances of the existing IA systems enhanced with BMap using

large-scale comprehensive simulations and real-world experiments conducted over two years

and eight months. We give quantitative results on the increase of authentication accuracy and

analysis on improved security and usability. In addition, the energy consumption incurred

by BMap is shown to be small.

5.2 Related Work

The majority of the existing implicit authentication schemes [62, 93, 19, 32, 88, 85, 21] focus

on finding suitable behavioral features such as touch, typing, and other motions that uniquely

identify users. The amount of data gathered by various sensors directly affects the accuracy

of implicit authentication systems [62, 105, 87]. By increasing the time spent in collecting

users’ behavior data, the accuracy of implicit authentication can be improved [62, 87] with

the cost of usability. In this work, we proposed the BubbleMap (BMap) framework to

improve the authentication, accuracy, and usability of the original schemes at the same

time. Dynamically adjusting privilege structure and absorbing the impact of various noises,

BMap adds another layer of protection to implicit authentication systems, and is generally

suitable for various schemes such as [87, 88, 62, 35, 77, 19, 15, 23, 26, 38, 85, 92, 95, 110].

To complement primary authentication mechanisms such as PIN and passlocks, various

implicit authentication schemes have been proposed as secondary authentication mechanisms

[23, 66, 92, 27, 32, 88, 62, 35, 19, 48, 67, 72, 79]. Among them, leveraging different features,

Shi scheme [88], Multi-Sensor scheme [62], Gait scheme [35], and SilentSense scheme [19]

are four different schemes that represent four research directions of state-of-the-art implicit

authentications [52, 84]. In addition, current implicit authentication research tends to adopt

all the available features to achieve a better authentication accuracy [62, 105, 104]. To

evaluate the performance of BMap, we implemented Shi scheme, Multi-Sensor scheme, Gait

57



scheme, and SilentSense scheme. We also show BMap can seamlessly cooperate with another

framework such as [104, 105] to improve the system’s performance.

BMap utilizes privilege control to dynamically adjust users’ privilege. Privilege control

mechanism has been widely used in different areas to enhance systems’ security[82, 33, 108,

43]. Analyzed users’ data, Eiji Hayashi et al [43] suggest to use multi-level authentication

to improve the accuracy and usability of biometric-based authentication systems such as

implicit authentication. However, due to the high complexity of human behaviors, the

implementation of multi-level authentication in implicit authentication has not been seen.

Implicit authentication mainly utilizes biometric behavior such as touch, motion, shake,

and armswing, to identify users [70, 41, 24, 18, 39, 94, 63, 53, 51]. Since users’ behaviors

have large divergence and contain various noises [105, 106, 19], directly applying multi-level

authentication to implicit authentication systems is not feasible. To this end, we analyzed

the functionality of implicit authentication, mathematically modeled the privilege changing

process in implicit authentication, and bridged a fine-grained privilege control to implicit

authentication systems using BMap. In order to adopt sophisticated human behaviors, we

upgraded the traditional fixed-level privilege control [82, 33, 108, 43, 43, 13, 25, 89] to support

any number of privilege levels.

To deal with the behavior and sensor noises, most of the existing implicit authentication

schemes use simple approaches such as resampling [62], averaging the results [19], or no

approach at all [63, 53, 51]. Such noises will degrade system performance in terms of

authentication accuracy. The problem will be exacerbated as the size of the behavior data

grows. We applied a Kalman filter [99] to correct behavior deviation and filter out sensor

noise during the authentication. We showed that a Kalman filter is naturally suitable for

implicit authentication and can be implemented in practice to further improve authentication

accuracy while reducing the system’s latency.

5.3 Preliminary

In this section, we provide background information on machine learning classifiers, kernel

density estimator, and Kalman filter. Among the machine learning algorithms tested, only
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the output of SVM needs to be converted to probabilistic values for BMap to handle, which

will be discussed in Section 5.4.2. Kernel density estimator will be used to estimate the

occurrence frequency of a particular behavior score in Section 5.4.4. Kalman filter filters out

behavior data and sensor reading noises and will be discussed in Section 5.4.4.

5.3.1 Machine Learning Classifiers

SVM is the most widely adopted technique in IA systems [36, 63, 19, 62, 18, 106, 53, 39, 9].

Given a training dataset sampled from a group of people, SVM outputs a hyperplane located

in a high dimensional space to cluster the data into two classes, the legitimate class and the

illegitimate class. During authentication, new data sampled from the current user is verified

according to its position in the hyperplane. The user is deemed legitimate if the new data

falls in the legitimate class. In the proposed BMap, we need to calculate the distance between

the hyperplane and the testing result in a high dimensional space which renders it difficult

with SVM’s traditional output. Instead, we leverage the probability output calculated by

fitting a sigmoid function, 1
1+exp(Afi+B)

, to the margins of the SVM [75], where A and B are

the parameters to estimate and fi denotes the margins of the SVM output. The probability

output of SVM is referred to as behavior score in this work. Behavior scores represent a

user’s behavior in the numeric form and are used by the system to deduce a user’s legitimacy.

Other classifiers such as Gaussian mixture model (GMM) and statistical topic model can

be directly used in BMap without additional transformation, since they output probability

results.

5.3.2 Kernel Density Estimator

Kernel density estimator [83, Measure, 16] serves as a tool to analyze the usage pattern of the

IA system, e.g., legitimate and illegitimate usages in a given time interval, by estimating how

often a given behavior score occurs. This is necessary in distinguishing between the legitimate

user’s deviated behaviors and illegitimate users’ behaviors. Kernel density estimator divides

the interval into small bins with length h, in each of which it calculates the number of

behavior scores that fall into the bin. A distribution of the behavior scores is obtained by
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placing a Gaussian over each score and then adding up the contributions over the whole

dataset. The kernel density model is p(x) = 1
N

∑1
n=1

1
(2πh2)D/2

exp− ||x−xn||
2

2h2
, where D denotes

D−dimensional space, N is the total number of behavior scores, xn is an individual behavior

score and x denotes the center of each bin. The kernel density estimator is used in Bubble

Expansion to adjust the distance of the movement +µ and −µ.

5.3.3 Kalman Filter

Kalman filter [50] is employed in BMap to filter out sensor noise and help correct behavior

deviation. The two types of noises it assumes, process noise and observation noise, can be

used to model behavior deviation (or behavior noise) and sensor noise, respectively, making

it an excellent tool for noise filtering in IA systems. In addition, Kalman filter is loop carried

which means it automatically filters out noises at the time of authentication, rather than

needing more data to perform the filtering as in the existing literature [19, 36, 63, 7, 28, 61,

97]. This property greatly reduces the system’s latency.

5.4 The Proposed BMap Framework

We first provide an overview of the BMap framework and then elaborate on the detailed

design.

5.4.1 System Overview

Generally speaking, existing IA schemes authenticate users by deriving a behavior score ε

using data gathered in a period of time, called time window (or authentication cycle) which

is a design-specific parameter. The score ε is then compared with a threshold, e.g., 0.5,

and if the threshold is exceeded, the system concludes that the current user is illegitimate

and locks the device. When legitimate and illegitimate users have vastly different behaviors,

existing IA schemes can achieve high authentication accuracy 1. However, based on our

1The accuracy of the identification is calculated by ACC = TR+TA
TR+TA+FR+FA , where the true accept (TA)

denotes a legitimate user’s data sample has been correctly identified, otherwise denoted by false accept
(FA), and the false reject (FR) denotes a legitimate user’s data sample has been incorrectly identified to be
illegitimate users’ data sample, otherwise denoted by true accept (TR).
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Figure 5.1: Behavior scores of (a) a legitimate user, (b) an illegitimate user.

preliminary simulations using the Friends and Family dataset [5, 8], more than 70% of users’

behavior data overlaps and cannot be separated by simply setting a threshold. As a simple

example, we randomly selected two participants from the dataset, one as the legitimate user

and the other as the illegitimate user, and converted the system’s output to probabilistic

behavior scores. The time window is set to 15 seconds. As shown in Fig. 5.1 (a) and (b),

the legitimate and illegitimate users both have a large proportion of behavior scores located

around the threshold 0.5 which makes them inseparable. The behavior overlapping problem

can be exacerbated by mimicry attacks where the adversary imitates the legitimate user’s

behaviors [56]. BMap attempts to improve authentication accuracy even in the presence

of this problem, by using the proposed Initial Mapping , Privilege Movement and Bubble

Expansion, which will be discussed in what follows.

On a high level, in Initial Mapping, three bubbles, legitimate bubble, slack bubble, and

illegitimate bubble are created by defining their boundary values α and β based on the

legitimate user’s historical behavior data. Each bubble contains different privilege levels

representing access rights to apps of different security levels. Privilege Movement then
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determines where to move the user’s privilege level based on his current behavior. Bubble

Expansion is used to fine tune the bubble sizes defined in Initial Mapping and how far the

privilege level should be moved in Privilege Movement. It reduces the impact of noisy data

and behavior deviation and therefore improves authentication accuracy. Specifically, the first

step in BMap is to map multiple privilege levels to the three bubbles using Initial Mapping.

We add a few intermediate privilege levels to the two-level (full access or no access) systems

used by the existing IA schemes. Apps are categorized based on their security requirements

and mapped to privilege levels. For instance, in a system with n (n ≥ 3) privilege levels R1

through Rn, apps can be mapped to the levels as shown in Fig. 5.2. Apps with the highest

security requirements such as banking, e-commerce, health and fitness, credit score, and

password manager are mapped to the highest privilege level R1. Apps with lower security

requirements such as social media, texting, games, and utility apps are mapped to lower

levels such as R2, R3, Rn−1. Rn is the lowest privilege level which corresponds to locking

the device no access. The legitimate bubble, slack bubble, and illegitimate bubble contain

the top level R1, the intermediate levels R2 to Rn−1, and the bottom level Rn, respectively.

Note that defining the privilege levels, the security requirements for the apps, and their

correspondence is system and user dependent. It is relevant but not a focus of this work.

Interested readers are referred to [82, 33, 108, 43] for more details. After obtaining the

privilege levels, the system needs to map the user to a specific level Rc based on the user’s

current behavior at the time of authentication. The level Rc is called the user’s current level

as shown in Fig. 5.2. This is performed in the second step of BMap, Privilege Movement.

Once in this level, the user has access to all the apps corresponding to Rc and the levels below

Rc, but not the levels above Rc. Moreover, overlapping behaviors are effectively separated in

this step. Finally, Bubble Expansion is used to dynamically adjust the privilege boundaries

as more behavior data becomes available and to filter out behavior and sensor noises.

Adversaries in BMap BMap defends against password guessing attacks and behavior

mimicry attacks (adversary imitating the legitimate user’s behavior). In password guessing

attacks, we assume that it takes the adversary a few tries (exceeding the limit) to guess

and input the password correctly. Likewise, it requires some time for the adversary to fully

mimic the legitimate user’s behavior[56]. We do not consider an adversary who can enter
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Figure 5.2: The BMap Framework.

the password correctly within the trial limit because this is a general problem common to

all existing authentication systems using password. Without loss of generality, we assume

the use of a backup authentication mechanism to count for when the IA fails, similar to how

a passcode is required (with limited tries) to unlock an iPhone X when Face ID fails. A

password guessing adversary may eventually correctly guess and input the passcode. But

due to Bubble Expansion, every wrong password input accelerates the expansion of the

illegitimate bubble causing the system to quickly map the adversary to the bottom level, thus

reducing false positives. Since mimicry attacks also require launch time [56], BMap defends

against them in a similar manner. BMap also reduces false negatives by quickly mapping

the legitimate user’s privilege back to the top level once a correct passcode is entered within

reasonable tries. We use the terms illegitimate user and adversary interchangeably.

The passcode used to unlock the device is not to be confused with the PIN number which

the user can enter to re-initialize the system and retrain the machine learning model based

on new behavior data[106]. This can be a useful feature when the system keeps failing the

legitimate user’s authentication and needs calibration.
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In this work, we use a subset of all available features in the Friends and Family dataset,

i.e., GPS, accelerometer, touch, SMS, app installation, battery usage, call logs, app usage,

bluetooth devices log, and Wi-Fi access points to evaluate the existing IA schemes. For

example, we use the accelerometer data for Gait [77] and the touch and accelerometer data

for SilentSense [19]. In order to give a fair comparison, we applied BMap to four state-of-the-

art IA schemes, Shi et al. [88], Multi-sensor [62], Gait [77], and SilentSense [19], by strictly

following the feature selection and parameter tuning process in these schemes.

5.4.2 Initial Mapping

We mainly discuss applying BMap to SVM-based IA schemes [62, 77, 19]. For the other IA

schemes [49, 19, 105, 88], since their output is already a probabilistic behavior score, BMap

can be directly applied.

DEFINITION 1. Let behavior score ε ∈ [0, 1] denote the probabilistic output of an SVM

approximated by a two-parameter sigmoid function 1
1+exp(Afi+B)

. In a specific training set 2,

we further divide the interval [0, 1] into n sub-intervals, called bubbles, denoted by Dn ⊂

[0, 1]. The legitimate bubble is the largest sub-interval that contains only true accept (TA)

behavior scores. The illegitimate bubble is the largest sub-interval that contains only true

reject (TR) behavior scores. The slack bubble is the sub-interval in between the legitimate

bubble and illegitimate bubble.

The Initial Mapping mechanism is illustrated in Fig. 5.3. The system first initializes

the value of parameters α and β by fitting the sigmoid function to the SVM output trained

by data sampled from legitimate and illegitimate users. Note that the distance between

α and β can be very small, e.g., 0.01, but they never collide. The legitimate, slack, and

illegitimate bubbles are blown based on these two parameters, in which only the legitimate

bubble can explode. Assuming the system has n privilege levels, in each authentication

cycle as new data is collected, the SVM takes the data as input and outputs a new behavior

score indicating the system’s authentication decision. If the new score falls in the legitimate

2A training set is a dataset that contains various users’ historical behavioral data.
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Figure 5.3: Initial mapping.

bubble, the system will move the user’s current privilege level Rc to R1 (if Rc 6= R1) which

grants the user full access. If the new score falls in the illegitimate bubble, the system will

lock the device. If the new score falls in the slack bubble, the system will map Rc to one of

the observation levels R2, R3, ..., Rn−1, where the user has only limited access.

As shown in Fig. 5.1 (a) and (b), the legitimate and illegitimate bubbles are [0, α]

and [β, 1], respectively. The slack bubble is located in [α, β], which contains ambiguous

behavior scores that could come from either the legitimate user or illegitimate users and need

separation. In a given dataset, we can easily find α and β by searching for the largest and

smallest behavior score ε derived from the legitimate user’s and illegitimate users’ training

data, respectively. In Initial Mapping, we first assume that α and β are fixed and focus on

the mapping of the current privilege level Rc to one of the observation levels in the slack

bubble. We then release this assumption in Section 5.4.4 when we complete our discussion

with the possible movement of the bubble boundaries. Compared to the existing implicit

authentication schemes, Initial Mapping in BMap focuses on both security and usability.

Since the system only grants full access to the user who is most likely to be legitimate,

security is enhanced. When the likelihood declines, instead of completely locking the user

out, the system maps the user to an observation level that grants lower access rights. It
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enhances usability if the user is legitimate while limiting the security breach if the user is

illegitimate. Nevertheless, Initial Mapping only handles failed authentications in a more

gradual way by adding the slack bubble and observation levels. It does not fundamentally

ameliorate the false reject (FR) and false accept (FA) performance, which will be the focus

of Privilege Movement and Bubble Expansion.

5.4.3 Privilege Movement

In Initial Mapping, the current privilege Rc is mapped to one of the defined privilege levels

[R1, R2, ..., Rn] when a new behavior score becomes available at the time of authentication

and remains in that level until more data comes in. Such a mapping mechanism does not

fundamentally improve the FR and FA performance since the system still needs a way to

confirm the user’s legitimacy once her behavior score is mapped to the uncertain observation

level. Recall that the system’s goal is to eventually grant the user full access if she is

legitimate and lock her out otherwise. The slack bubble is just a buffer for a smoother

transition. We introduce Privilege Movement in the mapping of Rc, where Rc is moved up

(towards R1) or down (towards Rn) gradually out of the slack bubble. We assume that the

implicit authentication scheme gives high authentication accuracy, i.e., the legitimate and

illegitimate users’ behavior scores fall into their corresponding bubbles rather than the slack

bubble, when the scheme is newly trained.

We summarize Privilege Movement mechanism in Fig. 5.4. The system keeps track of

the user’s behaviors and once it observes a behavior score that falls into the slack bubble, it

searches through the previous scores to find a more definitive answer. If there were scores in

the legitimate bubble, the system leans towards regarding the user as legitimate and moves

Rc upward with distance −µl at the end of the current authentication cycle. This process

is repeated until Rc reaches R1. Similarly, if there were scores in the illegitimate bubble,

the system leans towards regarding the user as illegitimate and moves Rc downward with

distance +µa at the end of the current authentication cycle. This process is repeated until

Rc reaches Rn. If Rc falls in between privilege levels, the user is assumed access privilege

of the lower level. The movement distances −µl and +µa are design parameters that can

be constants or variables. For the discussion in this subsection, we let µl = l/2 and µa = l
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Figure 5.4: Privilege movement.

where l is the fixed distance between privilege levels. The system is thus less tolerable

and more restrictive when there is evidence that the current user is illegitimate. It is also

more conservative in giving the user higher access privilege when the user’s legitimacy was

confirmed in the past but is currently in doubt. Such design is to enhance security while not

sacrificing usability. Moreover, the FR and FA performance is improved since the system

always tries to move Rc out of the slack bubble based on evidence. Privilege Movement

mechanism has O(1) time complexity, which renders the system’s latency the same as the

implicit authentication schemes without BMap. In the next subsection, we discuss making

µl and µa variables to improve authentication accuracy.

As an example, the behavior score distribution for the legitimate user and illegitimate

user is shown in Fig. 5.5 (a) and (b), respectively, using the aforementioned simulation

with two participants (Fig. 5.1 in Section 5.4.1). The scores are grouped into five one-hour

time slots, where each time slot contains multiple time windows. In each time slot, there

are behavior scores belonging to the legitimate/illegitimate bubble that co-occur with scores

belonging to the slack bubble. The scores that belong to the legitimate/illegitimate bubble

are used as evidence and guidance to move the scores in the slack bubble. When behavior

deviation happens, Initial Mapping may map the legitimate user to the observation level
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Figure 5.5: Behavior scores of (a) legitimate user in a 5-hour period, (b) illegitimate users
in a 5-hour period, and (c) both users in 10 time windows.

and still cause false rejects which are corrected with Privilege Movement. The same is true

for false accepts. In addition, we randomly selected a time slot from Fig. 5.5 (a) and (b),

and magnified it in Fig. 5.5 (c) where the threshold Ω is predefined to best separate the two

users. For the ease of presentation, we assume that there is only one observation level and

three privilege levels in total. In the first time window, the legitimate user’s behavior score

falls in the legitimate bubble (shown in the figure) but her Rc has not reached R1 (not shown

in the figure). The system therefore moves Rc upward for l/2. In the second through fourth

time windows, the score falls in the legitimate bubble again but Rc has reached R1. So Rc

remains in R1. In the fifth through tenth time windows, Rc falls in the slack bubble. Since

the system observed four behavior scores in the legitimate bubble, Rc remains in R1. If the

system observed scores in the illegitimate bubble instead, Rc would have been moved towards

Rn. The illegitimate user in Fig. 5.5 (c) follows a similar Privilege Movement process. Using

the dataset [5], we were able to observe the co-occurrence of legitimate/illegitimate-bubble

behavior scores and slack-bubble behavior scores for the same user in a reasonably short

period of time (2-3 minutes), in all of the two-participant simulations we conducted.

The effectiveness of Privilege Movement is highly dependent on the size of the legitimate

and illegitimate bubbles. If α and β are fixed, they may become less indicative as more

behavior data from either the legitimate user or illegitimate users become available. This
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problem will be addressed in the Bubble Expansion mechanism where the size of the bubbles is

dynamically adjusted to reflect the behavior change and improve the authentication accuracy.

5.4.4 Bubble Expansion

We now introduce Bubble Expansion, in which the bubble boundaries α and β are updated.

In practice, due to behavior deviation and sensor noise, the initial setting of α and β may

become inaccurate. If behavior scores from the legitimate user keep falling in the slack

bubble, it may indicate that the legitimate bubble is too small and more air is needed to

reduce false rejects. Similarly, the illegitimate bubble may need to be expanded to reduce

false accepts. Authentication accuracy is improved as a result. As shown in Fig. 5.6, the

original legitimate and illegitimate bubbles are [0, α] and [β, 1], respectively. The new

bubbles become [0, α′] and [β′, 1] after expansion. In addition, the system’s latency is

reduced since less Privilege Movement is needed and the system can make decisions more

quickly.

In a given dataset, it is straightforward to find out whether the behavior scores that

keep falling in the slack bubble belong to the legitimate user. In reality however, it is

difficult for the system to know in which case the second-factor authentication (password

input for our discussion) is needed to provide feedback, as previously mentioned. We

assume that the legitimate user will input the correct password and illegitimate users will

input incorrect passwords at the beginning of usage. Although illegitimate users can guess

passwords, after several unsuccessful tries the chance that illegitimate users are locked out is

increased exponentially due to illegitimate bubble expansion. Similarly, an attacker can also

mimic legitimate users’ behavior, but it also requires time [56]. Due to illegitimate bubble

expansion, compared to original schemes, attackers will have a larger chance of being blocked

before they fully mimic legitimate users’ behavior. For this reason, the true reject rate and

the system’s security are increased. Correspondingly, due to legitimate bubble expansion,

legitimate users who input correct passwords at the beginning of usage will have a larger

chance of being mapped to the top privilege level. For this reason, the true accept rate and

the system’s usability are increased.
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Figure 5.6: Bubble expansion.

We model Bubble Expansion by applying physical laws that describe the motion of bodies

under the influence of a system of forces. Specifically, the expansion S in time t is defined

as:

S =
1

2
(a− â)t2 + v0t, (5.1)

where a denotes the acceleration of the expansion, t denotes the number of time windows or

authentication cycles, v0 denotes the initial velocity of the expansion, and â is the resistance

that slows down or stops the expansion. Every time the user inputs the correct password and

the behavior score is outside of the legitimate bubble, more air will be blown into legitimate

bubble, and expand it to contain the behavior score where the expansion is proportional to

the distance between the behavior score and legitimate bubble (ε− α).

The acceleration of the expansion a is defined as:

a =
Rd ∗ ε
W1

+W2 + δ, (5.2)
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where W1 =
∑
i n

(i)
l +n

(i)
a∑

iN
(i) is a balancing parameter that controls the expansion, W2 is a constant

representing the initial acceleration,
∑

i n
(i)
l is the number of times the user inputs the correct

password when her score is in the slack bubble,
∑

i n
(i)
a is the number of times the user

inputs a wrong password when her score is in the slack bubble,
∑

iN
(i) is the total number

of authentication cycles, Rd is the distance between Rc and R1, ε = ε − α is the distance

between the behavior score and legitimate bubble, and δ is the mixture of behavior noise

and sensor noise.

The expansion of the legitimate bubble may result in the inclusion of illegitimate users’

behavior scores that originally fall in the slack bubble. To reduce such false accepts, we

introduce the resistance â that constrains the expansion:

â = a(

∫ α

0

p(εa)dεa + θ), (5.3)

where θ is a constant that prevents α from surpassing β,
∫ α
0
p(εa)dεa denotes the probability

that the legitimate bubble contains behavior scores derived from illegitimate users in the

training set, and εa denotes the behavior score derived from illegitimate users’ data in the

training set.
∫ α
0
p(εa)dεa is estimated using kernel density estimator.

Substituting (5.8) into (5.1) and assuming t = 1, we have

S =
1

2
a(1−

∫ α

0

p(εa)dεa − θ) + v0, (5.4)

where we let V = 1−
∫ α
0
p(εa)dεa−θ, called fluid viscosity, control when the expansion stops.

Substituting 5.6 into 5.4, we have

S =
1

2
(
Rd ∗ ε
W1

+W2)V + v0 + ∆, (5.5)

where ∆ = V ∗δ
2

is estimated and eliminated using a Kalman filter.

In each authentication cycle, if the user inputs the correct password, the predicted state

estimate xk|k−1 which controls the expansion of the legitimate bubble is defined as: xk|k−1 =
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Fkxk−1|k−1 +Bkuk, where Fk =

1 t

0 1

, Bk =

 t2

2

t

 and uk = (Rd∗εa
W1

+W2)V . The predicted

estimate covariance Pk|k−1 is defined as: Pk|k−1 = FkPk−1|k−1F
T
k + Qk, where the process

noise covariance is Qk =

 t4

4
t3

2

t3

2
t2

 ∗ σ2
a with σa being the magnitude of the process noise

(behavior noise). The innovation covariance is Sk = HkPk|k−1H
T
k + Rk, where Hk =

1

0


and Rk is the covariance of the observation noise (sensor noise). Kalman gain is calculated

as: Kk = Pk|k−1H
T
k S
−1
k . Since a Kalman filter is loop carried, we update the state estimate

and associated covariance at the end of each authentication cycle as: xk|k = xk|k−1 +Kk(zk−

Hkxk|k−1), and Pk|k = (I −KkHk)Pk|k−1. We calculate the expansion as Pk|kHk and need to

rescale it before applying it to real systems.

If the user inputs a wrong password, we let uk = εl
Rd∗W1

+ W2, and a similar process

happens for the expansion of the illegitimate bubble. Furthermore, to defend password

guessing, if users continuously input wrong password m times, the legitimate bubble will

explode until users re-blow it by passing the hidden factor authentication discussed in Section

5.4.1. Instead, the illegitimate bubble will keep expanding and finally cause the legitimate

bubble to shrink. Note that the bubble boundaries α and β never collide, since the slack

bubble could become very small, e.g., with length of 0.01, but it never explodes.

In addition to causing false accepts, the expansion of the legitimate bubble also affects

Privilege Movement, or more specifically, the distance of the movement −µl and +µa.

Now that the bubble boundaries α and β are dynamically adjustable, the distance of

the movement needs to be adjusted accordingly. We let −µl = −µl
∫ α
0 p(εl)dεl∫ α
0 p(εa)dεa

and +µa =

+µa

∫ 1
β p(εa)dεa∫ 1
β p(εl)dεl

, where εl and εa denote the behavior scores derived from the legitimate user’s

and illegitimate users’ data in the training set, respectively,
∫ α
0
p(εl)dεl and

∫ α
0
p(εa)dεa

denote the probabilities that the legitimate bubble contains behavior scores derived from the

legitimate user’s and illegitimate users’ data in the training set, respectively, and
∫ 1

β
p(εl)dεl

and
∫ 1

β
p(εa)dεa denote the probabilities that the illegitimate bubble contains behavior scores

derived from the legitimate user’s and illegitimate users’ data in the training set, respectively.
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If the ratio
∫ α
0 p(εl)dεl∫ α
0 p(εa)dεa

is large, it indicates that the legitimate user’s behavior scores still

dominate the legitimate bubble, and the distance of Privilege Movement is appropriate.

Otherwise, the distance needs to be adjusted.

5.5 The Proposed RA Framework

This section begins by introducing reinforcement authentication. It then shows the impact of

behavior deviation. Finally, it describes the human-centered feature selection and behavioral

data alignment.

5.5.1 Framework Overview

The overview of reinforcement authentication is shown in Fig. 5.7. In the beginning, users’

behavioral data sampled by various sensors is temporarily stored in the smart device, which

will package the data and send them to remote servers through a secured channel for further

processing. In the remote server data derived from different users are labeled using a unique

id. The server then uses a personal feature set to train machine learning models, e.g., SVM,

GMM, topic model, and kNN. After training a fine-tuned model is returned. The smart

device can use the model to authenticate users.

The feature selection of reinforcement authentication (RA) has two-fold. The first fold

feature selection is identical to implicit authentication, which selects a set of features that

best separate a group of users. In this feature set, the accuracy differences between various

features might have large diversity. Among them, some of the features might have similar

accuracy, e.g., ± 0.1% accuracy difference, but the others might not. To construct the

feature list, RA utilizes the features that have similar accuracy, while other features are

denoted as system reserved features. As shown in Fig. 5.7, the second fold (human-

centered) feature selection is performed by users. In human-centered feature selection, the

system sends feature list to users through a secured channel. Later on, users reply to the

system by choosing the features that best represent their routine behavior. The system then

combines the replied features and reserved features as a new feature set to identify users.

As mentioned earlier, to successfully identify a user, only a small portion of total features is
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Figure 5.7: Reinforcement authentication (RA).

needed. Redundant features may reduce the performance of the system. Inputting a small

amount of energy, RA utilizes human-centered feature selection to pinpoint a personal feature

set and eliminate redundant features. In return, the total energy and time consumption are

reduced, especially for the training and testing phases. The detail of human-centered feature

selection is described in Section 5.5.2.

Besides human-centered feature selection, to filter out deviation noise, RA introduced

behavioral data alignment. Similar to human-centered feature selection, behavioral data

alignment is also a human-centered approach. As shown in Fig. 5.7, the system sends

every user a behavioral data list that describes their routine behaviors. Each entry in the

behavioral data list describes the main component of the user’s behavior derived by k-means

clustering algorithm. Among these components, some of them represent the user’s routine

behaviors, the others might be deviation noise. By choosing their routine behaviors, users

can help the system identify the behavior deviation; and hence, the authentication accuracy

is increased. The detail of behavioral data alignment is discussed in Section 5.5.3.

In reinforcement authentication, the communication between the user and system is

achieved using two lists, feature list and behavioral data list as shown in Fig. 5.8. In addition,
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Figure 5.8: Feature list and behavioral data list (user-side view). (a) Feature list. (b)
Behavioral data list.

to achieve human-centered feature selection and behavioral data alignment, multiple entries

in the list can be selected and uploaded to the server. Before finally adopted list we also tried

SMS message, dialog box, and another tool to exchange information between the user and

system, but their performance is limited. Compared to another tool, the advantage of using

the lists is obvious. Firstly, it is easy to use and be understood. To send feedback to the

system, users only need to perform a multiple-choice selection instead of writing a message.

Furthermore, since each entry in the list has a fixed structure, the feedback can be easily

processed by the system. From the users’ perspective, they choose their routine behaviors

and corresponding features by answering the query on the lists. On the other hand, from the

system’s perspective, the feedback will further guide it to pinpoint a personal feature set and

corresponding behavioral data for a specific user. To make sure legitimate users understand

the query conveyed by the lists, in real usage, a short menu that describes the importance of

their feedback and the meaning of each feature (including its value) is provided. In the real

test, with some descriptions, users can easily understand the lists including the ones who do

not familiar with reinforcement authentication.

We assume the first user is legitimate. Since human-centered feature selection and

behavioral data alignment take place at the beginning of the usage, the system only uses
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legitimate users’ data to derive the personal feature set and filter out deviation noise.

However, the behavior deviation may also happen during the usage, where the users’ behavior

may need to be adjusted. To this end, reinforcement authentication utilizes a hidden PIN

number, which is different from the password used to unlock the device. Once the PIN is

input, behavioral data alignment will be launched; and the system will adjust the setting

based on the current users’ behavior. It is possible the attacker can guess the PIN, but it is

beyond the scope of this work. Interested readers could find [58, 14, 73] for more details.

5.5.2 Human-Centered Feature Selection

To pinpoint a personal feature set, reinforcement authentication utilizes human-centered

feature selection and feature list. As a vessel, the feature list is used to convey information

between the user and the system. From the users’ perspective, they only need to select

features that closely relate to their routine behavior. In contrast, the system needs to perform

a series of operations to adjust the feature set based on users’ feedback. From the system

perspective, the feature list is shown in Table 5.1. Initially, reinforcement authentication

attaches each available feature in the device with a unique feature ID. Utilizing users’

historical data it then performers the first fold feature selection and clusters the features

to two categories, the system reserved feature and the ambiguous feature. The ambiguous

feature refers to the features that have similar authentication accuracy, e.g., ±0.1% accuracy

difference. As discussed in Section 5.5.1, after human-centered feature selection, some of the

ambiguous features that best represent users’ routine behavior will be selected. The final

feature set is a union of reserved features and user selected features.

In implicit authentication, since the system only performs the first fold feature selection,

the final feature set contains all the features including ambiguous ones, which significantly

decrease the system’s performance. To reduce the number of ambiguous features, one way

is to analyze each user’s behavioral data and derives a personal feature set. This approach,

however, is not feasible in practice, given GB-size or even TB-size users’ behavioral data.

Another approach is to randomly choose features from a group of ambiguous features which

have a similar authentication accuracy. Likewise, this approach is not feasible because it

decreases the authentication accuracy. For instance, suppose touch feature and location
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Table 5.1: Feature List (System-side View)

Feature ID Feature Name Selected System Reserved*

01 Touch Strength N/A Yes

02 Touch Area N/A Yes

03 GPS Yes No

... ... ... ...

N Light Strength Yes No

*The final feature set is a union of system reserved features and user selected features.

feature have similar authentication accuracy. If the system chooses the location feature

instead of the touch feature, the authentication accuracy of users who have special touch

behaviors, e.g., left-handed user, will decrease. Similarly, if the system chooses the touch

feature instead of the location feature, the authentication accuracy of users who have a

unique walking trajectory will decrease.

Leveraging human-centered feature selection, reinforcement authentication can pinpoint a

personal feature set for each user with a small amount of energy consumption. As mentioned

before, reinforcement authentication works in a duplex way. In human-centered feature

selection, legitimate users’ feedbacks enhance the feature selection process and improve the

system’s performance. Moreover, actively choosing their personal feature set, users play an

important role in the feature selection phase. Subconsciously, due to operant conditioning

[91, 90, 68], they tend to repeat the chosen behavior to pass the authentication. For example,

left-handed users will tend to use their left hand more often after human-centered feature

selection. The details of user-side enhancement and operant conditioning are discussed in

Section 5.5.4.

5.5.3 Behavioral Data Alignment

This section describes related techniques used in reinforcement authentication, including

behavioral data alignment and behavioral data list.
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(a) (b)

Figure 5.9: Impact of deviation noise. (b) Users’ data that contains noise. (c) Users’ data
after filtered out noise.

Noise Filtering

For demonstration purpose, we adopt two dimensional GPS data in dataset [5] to show the

impact of deviation noise in implicit authentication. Another sensors’ data, e.g., light meter,

accelerometer, and touch sensor, are similar. Each data sample is drawn in Fig. 5.9 (a).

Note that multiple testing results may overlap together in one point in the figure. We use

k-means clustering algorithm to find the main components of the data samples, which are

marked using “X” sign. In this example, there are two main components among all the data

samples, located on the bottom left and top right. We analyzed the data and found out

the data samples closed to the top right X belong to the location that the user accidentally

visited, which should be filtered out as noise. Some illegitimate users’ data samples are also

closed to this location. If the system fails to filter out the noise data samples, it cannot

separate the illegitimate and legitimate users. Deviation noise is shown in Fig. 5.9 (a)

significantly decreases the authentication accuracy.

Since the user actually traveled to that place marked by top right X, it contains sufficient

data samples to become one of the main components. The existing noise filtering approaches

cannot simply filter out the noise around the top right X without knowing the fact that the

user only visited that place by accident. In fact, in implicit authentication, without additional

calculation, the system will not know they are noise data due to the transparency.
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Table 5.2: Behavioral Data List (System-side View)

B. ID.* Feature 1 Value Feature 2 Value ...

01 light strength 90-100 accelerometer [x,y,z] ...

02 light strength 0-20 accelerometer [x,y,z] ...

... ... ... ... ... ...

06 light strength 1500-2000 accelerometer [x,y,z] ...

*The behavior ID (B.ID.) uniquely identifies each behavior.

Behavioral Data List

Table 5.2 shows behavioral data list from the system perspective. Each row in the behavioral

data list refers to the behavior of the user. In behavioral data list, different behaviors that

are uniquely identified by their ID were derived using k-means clustering algorithm. A

behavioral data list is composed of feature names derived from a personal feature set and

their corresponding values. From the users’ perspective, the behavioral data list is shown

as a query contained multiple choices. For example, given a behavioral data list shown in

Table 5.2, the system will generate a six-entry query on the user-side application.

In addition, some of the feature names and their corresponding values are translated

into human-readable text before sending to users. For example, accelerometer and its

corresponding values are translated to gait patterns, e.g., sitting, walking, and running.

The values of light strength are mapped to different levels, e.g., weak, moderate, and strong.

The translate/map process follows the descriptions of [1, 2]. The interested reader could

refer to the literature for more details.

Behavioral Data Alignment

In behavioral data alignment, as shown in Fig. 5.10, for every feature in the final feature

set, the system applies k-means clustering algorithm to its corresponding data recently

sampled from current users. Utilizing the main components returned from k-means clustering

algorithm, the system constructs a behavioral data list, in which each entry in the behavioral

data list corresponds to the main component returned by k-means clustering algorithm.

The training server then sends the behavioral data list to users, who will select some of
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the behavioral data that best match their routine behaviors. At the end of the selection,

the smart device will return the selected behavioral data to the training server. At this

moment, the system already completed one round behavioral data alignment. While the

system executing behavioral data alignment, it continuously fills databases with the new

behavioral data sampled recently. Once more, the system will apply k-means clustering

algorithm to the new-sampled data, but at this time it will also compare the difference

of the main components between two rounds behavioral data alignment (previous round

and current round). If there is no difference between them, behavioral data alignment is

completed. If the current round behavioral data alignment contains new components that

do not exist in the previous rounds, the system will launch another round behavioral data

alignment until there is no more new component left in the data. Behavioral data alignment

aims to achieve an agreement between the system and users. In the real test, behavioral data

alignment often repeats three rounds on an average.

Since behavioral data alignment only takes place at the beginning of the usage, only

legitimate users’ data will be sent to the training server. Illegitimate users’ data will not be

used to generate behavioral data list. It prevents illegitimate users from taking advantage

of the system by injecting their behavioral data to the dataset.

User-side 
enhancement

Server-side 
enhancement

Behavioral data list

Selected 
behavioral data 

list
Matching

Yes

No

Data Sampling
K-means

Figure 5.10: Behavioral data alignment.
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In practice, to better achieve behavioral data alignment, a threshold parameter, σ, is used

to filter out insignificant data samples. In reinforcement authentication, the system adopts

wind vane algorithm [104] to dynamically adjust sampling frequency, in which a data sample

contains all available sensors’ value in a specific time slide, e.g., light strength, touch and

GPS sensors at 4:04pm Oct 7 2018. Moreover, one sampling cycle may contain many data

samples, in each of which the system records the data sample’s value. Among these values,

some of them may appear many times, e.g., light strength 97 may appear many times in one

sampling cycle. Leveraging a hash map, the system stores sensors’ values and the number of

times they appeared in the current sampling cycle. To construct the new behavioral data list

in the current round behavioral data alignment, only the data sample that appears enough

number of times, e.g., larger than the threshold σ, is used.

In a sampling cycle p, given a specific data sample with the value of x, n denotes the

number of time it outputs x. Among all sampling cycles P , the total number of data samples

used to construct behavioral data list is:

N (x) =
P∑
p=1

n(x)
p , (5.6)

where n
(x)
p > σ. Given x′ contained only the data samples that satisfy the condition

n
(x)
p > σ, the cost function in k-means clustering algorithm can be represented as:

argmin
S

k∑
i=1

∑
x′∈Si

∑
N

‖ x′N − µi ‖2, (5.7)

where µi is the mean of points in Si. In the real test, we also use the transformed cost

function that minimizes the pairwise squared deviations of data samples in the same cluster

to derive behavioral data list:

argmin
S

k∑
i=1

1

2|Si|
∑

x,y∈Si

∑
N

‖ xN − yN ‖2 . (5.8)
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5.5.4 A Duplex Authentication

Reinforcement authentication is a duplex authentication, where the authentication process

is enhanced by both the user and system. Human-centered feature selection and behavioral

data alignment improve the authentication system in the aspects of energy consumption,

time consumption, and authentication accuracy; and hence, from the system point of view,

the authentication process is enhanced. Likewise, the authentication process is also implicitly

enhanced by users.

The user-side enhancement leverage operant conditioning associated principles in psy-

chology, named reinforcement and punishment [91, 90, 68]. One of the most important

prerequisites of operant conditioning is both the chosen behaviors and corresponding

stimulus are known by organisms (users), where the stimulus in this work refer to pass

the authentication (reinforcement) or be blocked (punishment). For legitimate users, since

they are main entities who perform human-centered feature selection and behavioral data

alignment, the chosen behaviors is known, which are their routine behaviors. The stimulus

is also known by users. Therefore, the chosen behaviors and their corresponding stimulus

establish operant conditioning. Passing the authentication by repeating the chosen behaviors

will enhance those behaviors. Finally, legitimate users will tend to repeat the chosen

behaviors, while another behavior that had not been selected will appear less frequently.

Therefore, the true accept ratio increases.

For illegitimate users, since they did not perform human-centered feature selection

and behavioral data alignment, operant conditioning cannot be established. Furthermore,

compared to implicit authentication schemes that focus on a specific feature set, e.g.,

gait, touch, and location, reinforcement authentication adopts all the available features,

which reduce the chance of illegitimate users known the chosen behaviors. Due to the

aforementioned reasons, the false accept ratio decreases.

In comparison, due to the transparency, neither the features used by the system nor the

corresponding behavior data are known by legitimate users in implicit authentication. Hence,

operant conditioning cannot be established. Because of its ignorance of users’ feedbacks, and

the authentication accuracy of implicit authentication is constrained.
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Chapter 6

Evaluations

This section aims to present the performance of the PLDA topic model and various modules

which have already been discussed. We will evaluate our methods from the following aspects:

time consumption, stride size selection, and sampling rate.

We adopt the MIT Friends and Family Dataset [5] for our testing database, which contains

130 participants and has a total of 9 features (GPS, accelerometer, SMS, app installation,

battery usage, call logs, app usage, blue-tooth devices log, Wi-Fi access points) recorded

over five months. It is a complete dataset about human behavior based on sensor data. In

130 participants, we randomly select 23 people, labeled from User 01 to User 23, as our main

dataset to evaluate our methods.

The original dataset was separated into eight different CSV files (not including survey

forms), and most of these files have been attached with a timestamp. The users’ behavioral

dataset is derived by combining all of these eight CSV files according to the time stamp.

Since some of the data stored in the dataset has less relation to our evaluation purpose, we

have deleted these data and left the others unchanged. For example, the app installation

data contains all the apps installed on the smartphone. These data will have fewer changes

when an adversary steals the device.

The feature selection, achieved by tuning various parameters in the topic model, is

integrated in the training phase in PLDA, in which the most related features are represented

by the highest probability tokens in the topic. Due to the fact that users with heterogeneous
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data generally tend to generate different topic-token distributions, the main features that

identify a specific legitimate user are usually unique and highly related to a user’s ABP.

We prepare two datasets to imitate the normal usage (by the legitimate user) and

abnormal usage (i.e., device captured by the adversary). The first dataset contains only

data sampled from the legitimate user and is called the legitimate dataset. The second

dataset is created by injecting data randomly sampled from other users into the legitimate

dataset. It is called the synthetic dataset. We use the splicing approach [87] to inject data:

we randomly select a user to be the legitimate user, and another user to be the adversary. We

splice a portion of the legitimate user’s segment with a portion of the adversary’s segment.

The point at which the two segments are concatenated is called the splicing moment. In

practice, the splicing moment can be regarded as the time of device capture. The adversary’s

data portion is kept in the range of 25% to 50% of the new synthetic data.

6.1 Server-Side Evaluation

Now we consider the performance of PLDA in the synthetic dataset. First, we should choose

a reasonable number of topics, which can be decided by calculating the perplexity1using 10-

fold cross-validation. We used 155 MB of sensor data from 23 people over five-month periods

from the Friends and Family Dataset with the following types of data: GPS, accelerometer,

SMS messages, call logs, Bluetooth device logs, app installation data, app running data, and

battery usage information. In the dataset used for simulation, pseudo-identifiers are applied

to call log, SMS log and browser scans. All human-readable text, like phone numbers and

text messages are captured as hashed identifiers, and never saved in clear text [5]. We plot

the perplexity of the model and set the maximum number of topics to be 500. The lowest

point occurs at around 300 topics, indicating that we need at least 300 topics to properly

describe all 23 people during five months of usage as shown in Fig. 6.1 (a). Note that

after reaching 300 topics, the perplexity slightly ramps up, which is due to overfitting and

confirms that our choice of 300 topics is optimal. The hyper parameters, α and β, in the

Dirichlet distribution, control the shape of the distribution. They are set to 0.01 to prefer

the distinctive behaviors in each person, as more weight will be assigned to key behaviors
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when the hyper parameters are small. The number of iterations indicates the number of

rounds of Gibbs sampling, which is the main technique used in PLDA to approximate topic

and token distributions. This result also shows a significant deviation of human behaviors

over five months, where most behaviors change with time and there are a large amount of

behaviors that are unique for a specific individual.

For each person, the topic with the highest probability that occurs only with them is

selected to represent their key behavior. We tested our system using the all-against-all

method in which we compared each person against all other 22 people using the synthetic

dataset. We evaluated the precision rate 2( TP
TP+FP

), which on average achieves 93.3% in the

synthetic dataset. We also calculated the accuracy rate ( TN+TP
TP+FP+TN+FN

), which on average

achieves 98.6% using the same dataset. Accuracy and precision for each person are shown

in Fig. 6.1 (b) in detail. The state-of-the-art IA techniques have accuracies between 90%

and 93% [62, 60]. In our previous work [106], we also compared the accuracy of different

machine learning techniques widely used in the IA research, and showed that PLDA has the

highest accuracy in differentiating users.

6.1.1 Retraining

Since the data set is very large (more than 17GB) with various of different data, we further

divide and sort the data based on the type of features, and the final dataset contains 31

features plus 1 index with total 132960052 records.

We run several different kinds of machine learning methods using k fold cross-validation

method. For each different types of machine learning algorithms, we record its accuracy3and

the corresponding timeline. In this experiment, we only train once at the beginning and

we want to show the accuracy curve from one day to one-month time range. Since the data

1The perplexity is defined as

perplexity = exp{−
∑M

d=1 logp(wd)∑M
d=1 Nd

} (6.1)

where w indicates the token for person d, and N is the total number of token, the numerator
∑M

d=1 logp(wd)
is called log likelihood.

2where TP (true positive) indicates the system correctly passing legitimate users, TN (true negative)
indicates the system correctly blocking illegitimate users, FP (false positive) indicates the system incorrectly
passing illegitimate users, and FN (false negative) indicates the system incorrectly blocking legitimate users.
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Figure 6.1: Initialization of PLDA topic model on server side. (a) Perplexity, (b) Accuracy
and precision in synthetic dataset.

contains 5 months of information, we take the average of these 5 months. For the fine grain

data like days and weeks, we also take the average value.

Fig. 6.2 shows the accuracy curves for PLDA, LDA, SVM with linear kernel and SVM

with RBF kernel in the one-month time range. Since LDA uses unsupervised learning

method, the accuracy is much lower than the others. From Fig. 6.2, we can clearly see

that the accuracy drops significantly in between 5D(ays) to 6D(ays), 6D to 1W(eek), 1W to

2W, 2W to 1M(onth) due to the behavioral change4. Thus, even the adversary knows the

user’s historical data and uses it to imitate the legitimate user, the IA mechanism will still

lock the device because of the behavioral change. However, the behavioral changes may also

lead a locking of the device for a legitimate user. To prevent such unfriendly locking, we

need to retrain the model. The following subsection will present details of retraining, which

can be done automatically.

3More formally, we can define the accuracy as

TP + TN

TP + FP + TN + FN
(6.2)

where TP indicates the number of true positive authentications, FP indicates the number of false positive
authentications, TN indicates the number of true negative authentications and FN indicates the number of
false negative authentications

4There are slight differences in between PLDA and the other two SVM methods, but generally speaking,
they all follow the same trend.
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Figure 6.2: Accuracy for different machine learning methods

6.1.2 JS-Distance in Long-Term Testing

In this experiment, we calculate the JS-dis in between each day and all the days including

itself for each person through the monthly time range. For example, we calculate the first

day with the first day, the first day with the second day and first day to n day for each

person. We take the average value of all persons. Then we draw the comparison result in the

first row of the heat map. Similarly, the n row represents the comparison result in between

n day’s data and all the other day’s data including itself. The average comparison time is

trivial - it only takes less than 0.1 seconds to calculate the average JS-dis in between 1 day’s

samples for each person.

Fig. 6.3 shows the heat map for the average value of 1 day through the whole month

using PLDA. The distance has been marked by different colors. Red color indicates long

JS-dis with the maximum of 0.5. Deep blue indicates short JS-dis with minimum 0. The 0

value is resulted by compared with themselves.

From Fig. 6.3 we can clearly see that there are more red color slots in between the 5D to

1M than the former days. Moreover, in each time the accuracy dropped (Fig. 6.2), the JS-dis

also fluctuates (Fig. 6.3) - this experiment shows the relationship in between the accuracy

of machine learning model and the JS-dis for user behavioral dataset. By observing this

fluctuation of JS-dis we can indirectly decide when to retrain the model.
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Figure 6.3: JS-dis heat map: red color indicates long JS-dis and deep blue indicates short
JS-dis

6.1.3 Retraining Frequency

By taking the standard deviation of each stride k in the first row in Fig. 6.3, we can clearly

see the fluctuation of the JS-dis. All the strides reflect the accuracy change rate except the

first stride (containing 0 distance).

From Fig. 6.3 we can clearly see that there exist fluctuations in between day5 to week2.

These fluctuations correspond to the accuracy changes in Fig. 6.2. The largest value of the

difference in between any two standard deviations is the value within the range of 6D to 2W

with the value of 0.024, and we can set the legitimate threshold ε = 0.02 for this dataset.

6.1.4 Levels for Dynamic Privilege

We utilize empirical data, which is the average JS-dis in between TPs and FNs in the

dataset, to initialize the privilege levels. In practice, we do not know the correctness (e.g.

FN, FP, TN, TP) of IA unless the user sends feedback to the training server, but we know

its correctness using empirical data. We assume the empirical data reflect the key attributes

of the legitimate user. Actually, the retraining process can reinforce the effectiveness of

empirical data, and we can readjust the privilege level in each retraining.

In this experiment, we compare the JS-distances using the data of the same person and

take the average of these values. We select three persons from the dataset to demonstrate
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Figure 6.4: Level in dynamic privilege

our method and the result is presented in Fig. 6.4. First, we pick up one person from the

dataset, marked as Person1. Second, we find out first two persons who have been mistakenly

marked - FN (Actually, “they” are the same person - Person1). Fig. 6.4 shows the result

of this test. The blue points indicate the TP for identifying Person1 as the legitimate user.

From Fig. 6.4, we can see these points are closer to the Person1. The red points indicate

that the FN of mistakenly identifying the Person1 to be Person2. Similarly, these points

are closer to the Person2. The green points indicate the FP of mistakenly identifying the

Person1 to be Person3.

The level can be defined as the following: First, we find the average JS-dis in between

each TP sample and the other TP samples for all persons in the whole dataset, called D
(N)
JS .

In Fig. 6.4, it is the average JS-dis in between each blue point and other blue points. After

that, we find out all the FN samples for all persons and average the JS-distances in between

these FN samples and all the previous TP samples. In Fig. 6.4, the first FN sample for

Person1 is the first time that red/green point occurs, and we average the JS-distances in

between this point and all the other blue points to derive an average JS-dis. Similarly, we

can calculate all the average JS-distances between m FN samples and all the previous TP

samples, and we sort these m JS-distances based on their value. Then, we divide these

values into different clusters, and further define the first level to be the average value of first

clusters, marked as D
(N ′)
JS . Utilizing the same method, we can define the second level D

(N ′′)
JS ,
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where D
(N ′′)
JS is corresponding to the average JS-dis of the second cluster, in which we average

JS-distances between samples.

FN test

Using the same dataset, we will show the performance of four levels dynamic privilege

regarding the FN rate. First, we find out (for each individual) the average JS-dis D
(N)
JS

for each FN test. Then we use the same technique discuss previously to define each level

rule. The results are shown in Table 6.1.

Using D
(K)
JS in Table 6.1 as the distance rule for our testing dataset, we rerun the former

experiment which uses data from the same person. The detail of this experiment is described

in the following: in the initialization, after we find all the FN samples in the historical dataset,

we further calculate their JS-dis and sort them by their value (the detail is described in the

previous subsection). When we finish the sorting procedure, we cluster these values and

average each cluster to derive level rule as shown in the second row (D
(K)
JS ) in the Table

6.1. In the testing phase, each stride5has been input into the user model, in which we also

calculates DJS in between the current stride and previous TP samples. Suppose we are in

L1 and the user model produces a DJS larger than 0.342, the dynamic privilege control units

will lower the current user’s privilege to L2. In each testing, we record the number of FN and

their corresponding privilege levels to see whether or not the dynamic privilege mechanism

can map the user to a reasonable level. Because we use the same person’s data, we expect

the most of the testing results will be in the high level with minimum privilege limitation.

Furthermore, we also expect the FN will have less impact of the current user.

In Table 6.1 row 3, the result shows that: 79.93% of the FNs make the system run at

L1. In this level, there is no privilege limitation for users. 11.03% of the FNs make the

system run at the L2 with bank and high privacy apps locked. 5.92% of the FNs make the

system run at the L3 with contacts, social and some low privacy apps locked. In this level,

one can perform a few basic operations on the phone such as call, SMS, time checking and

so on. Only 3.12% of the FNs can lead a directly locking of the device. From the result, we

can see that the dynamic privilege could largely reduce the unfriendly user experience by

5Please refer section 2.5.3 (Retraining Process).
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Table 6.1: Levels and their performances

L1 L2 L3 L4

D
(K)
JS 0.342 0.387 0.467 N/A

FN 79.93% 11.03% 5.92% 3.12%

Adversary 1.31% 13.09% 11.04% 73.56%

*L1: full privilege. L2: lower privilege with bank,
contacts, email list and high privacy apps locked. L3:
lowest level privilege with all apps locked except some
low privacy apps such as call, SMS, time and so on. L4:
lock.

reducing the effect of FN. The reason is that the legitimate users may have some behavior

changes but these changes are much smoother compared with the adversaries. The dynamic

privilege will take the longer time to reach to the lowest level than the traditional method.

If we bring in retraining method talked above, such lock will seldom happen.

Adversary test

We rerun the experiment using adversary setting. In this setting, we simulate the “stolen

event” by injecting other users’ data. For example, in Fig. 6.4, we use the data from

Person2 and Person3 to rerun the test based on the training data of Person1. In this work,

the testing JS-dis is the average distance in between all the Person1 training samples and

Person2/Person3 testing samples. In this experiment (as shown in Table 6.1 row 4), there

are 73.56% of the adversaries have been directly lowered to level 4, which means the user will

be directly locked. 11.04% of the adversaries have been lowered to L3 with the minimum

privilege. 13.09% of the adversaries can reach to L2. Only 1.31% of the adversaries can

have the full control of the device with L1 privilege. Compared with the basic IA without

dynamic privilege control, we improve the average precision rate from 79.75% to 98.69%.

From this experiment, we can see that the dynamic privilege can improve the IA performance

dramatically. The reason is that the behavior of adversary has larger difference compared

with legitimate user’s. From the other point of view, the average JS-dis D
(N)
JS is large in

between the legitimate user and the adversary. As the result, the dynamic privilege will

directly drop to the lowest level and lock the device.
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Since we can define the rule of first privilege level to be a small number, this setting

can prevent the adversary from accessing the device even if he can imitate the behavior

of legitimate user with minor difference. Furthermore, in practice, since it is very hard to

imitate the legitimate user in a long term, the IA mechanism will eventually lock the device

once it finds the behavioral pattern mismatch.

6.2 Client-Side Evaluation

6.2.1 Time Consumption for Different Modules

Due to the importance of energy consumption and computation time for the smartphone,

we evaluate them first.

We evaluate the performance of four different modules in Fig. 6.5 (a) using the legitimate

dataset. We see the Dynamic Stride Module and WVM outperform the others. Since the

dataset contains only one user, the performances for both the Dynamic Stride Module and

WVM are the same in this measurement.

In Fig. 6.5 (a), the x-axis indicates the number of samples (cache size), and the y-

axis shows the time consumption at the authentication stage. We calculated the time

consumption using a Samsung Nexus S with 5000 to 15000 samples in the cache. It has

some fluctuations in the curve of the Basic Module, but the Dynamic Stride Module and the

WVM were faster than the others.

Since computing the JS divergence and choosing the best behavioral pattern of the current

user is the one of the most energy-consuming parts of our system, we want to minimize the

cost of these processes for each stride. In the experiment, we used the legitimate dataset to

evaluate the stride size changing for each series of samplings. The results are shown in Fig.

6.5 (b).

In Fig. 6.5 (b), the x-axis shows each sampling point in the initialization step. The time

gap between each sampling point is calculated by T = t
DγJS

, where t = 10000ms and γ = 1.5.

For each time point, the corresponding DJS is shown in Table 6.2. The y-axis indicates the

size of the current stride.
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(a) (b)

Figure 6.5: Time consumption and stride size in the initial stage. (a) Time consumption,
(b) Stride size.

In the Stride Module, the stride never changes after initialization. The average stride

size for the Dynamic Stride Module and WVM is less than 800 (about 400 when reaching

stable status). As mentioned before, it is possible to initialize the fixed stride size, which

is suitable for a specific dataset. However, in practice the behavioral patterns for different

people are distinct. In Fig. 6.5 (b), we chose the best stride (425) at the beginning. It is only

suitable for this dataset and may be inapplicable in practice. Thus, we design the size of

each stride to be changed adaptively to match different behavioral patterns in the Dynamic

Stride Module and the WVM.

6.2.2 Stride Size

To gain a better understanding of how DJS affects the stride size and sampling rate in WVM,

we record the time consumption for each sampling in Table 6.2.

From Table 6.2, at the initialization stage, we have an average JS divergence of 0.44,

and the WVM assumes that the first user as being legitimate. However, the best stride

size is unknown, and the WVM has two choices - enlarge or shrink the stride size. Since the

current user is legitimate, the WVM will adjust the stride size to reduce JS divergence. Here,

it chooses to shrink the stride n times, where n = 2 is predefined to simplify the problem
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Table 6.2: JS divergence for each time slot and the corresponding calculation time

1t 2t 3t 4t 5t 6t 7t

DJS 0.44 0.33 0.40 0.37 0.35 0.35 0.35

Time (s)* 0.03 0.02 0.02 0.02 0.02 0.02 0.02

Gap (s) 33.7 50.5 38.6 43.8 47.7 47.5 47.5

*The average time (in seconds) for calculating JS divergence in each sampling point beginning from 1t to
7t. “Gap” indicates the time gap (in seconds) between each sampling point.

to binary search, since comparing to the opposite operation “enlarging,” the “shrinking”

operation reduces DJS to 0.33. Then it reaches to the next sampling point “3t” and chooses

to enlarge the stride size because this will reduceDJS comparing to the “shrinking” operation.

This process repeats 6 times and converges at 7t, which takes a total of 309 seconds. We can

reduce response time by decreasing the weight parameter γ, but this potentially increases

the energy consumption. We will discuss the way of choosing γ in Section 6.5.

6.3 System Implementation

We have implemented an experimental system using the techniques presented in the previous

sections. The prototype called PersonaIA, has four main components: background service,

database, data upload/export control unit, and front UI (User Interface). The system is

implemented using Android SDK with API level 7, and the WVM is developed and embedded

as a background service. PersonaIA runs on a Samsung Nexus S smartphone, which has

a total of 383 MB memory and 1000MHz of CPU bandwidth. It periodically samples the

following sensors’ data: accelerometer, location, light meter, compass and touch. The system

UI is shown in Fig. 6.6 (a) and (b).

First, a background service periodically captures all sensors’ data. Since all the apps in

the Android system are running within their sandbox, the actions performed in one app can

not be captured in another app. To avoid this technical obstacle, we implement a background

service, which periodically captures the sensors’ data and passes them back to PersonaIA.

For efficiency purposes, the WVM is designed in the service, and for each sampling, it

reads “wind strength” and compares it with the predefined threshold δ. Also, it records the
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“wind duration” m of a current user, which will further be used to decide behavior direction

(legitimate or illegitimate). In each behavior change, PersonaIA will re-initialize the stride

size to fit the behavioral pattern of the current user (finding the best behavior pattern for

the user).

All sensor data is serialized and sent to the cache (shown in Fig. 6.6 (c)), which will

de-serialize the received data and store the trimmed data in a SQLite database. Fig. 6.6

(c) shows parts of the data fields in the database using SQLite Debugger. The database

utilizes user id, name and phone number to uniquely identify each device while keeping

this information as keys for querying purposes. The cache size can vary to meet different

requirements - one can set the cache size through system UI shown in Fig. 6.6 (a). The

actual cache size setting depends on the memory size for various devices. For example,

Samsung Nexus S can hold roughly 6000 samples, but when the number of samples reaches

6000, it may consume all the memory in the device and slow down the calculation speed of

the system significantly. The system will automatically upload or export (depending on the

implementation of the Function Interface) the samples once it reaches to a predefined size.

6.3.1 User Interface

Most of the sensor data is shown in the UI including fine/coarse-grain location, light meter,

and accelerometer. Since constantly refreshing the UI may consume extra energy, we only

update the JS divergence, current cache size, and sampling rate in each behavioral change

(calculated by t
DγJS

). The user must click the update button to check other sensors’ data.

On first usage, PersonaIA will ask the user to establish the reference behavior pattern by

clicking the “Export” button shown in 6.6 (a). Before clicking the button, the user should

wait for PersonaIA to collect enough data from their routine behaviors, which is critical for

the future authentication. There is no default setting here, since for each user the routine

behaviors vary, and is the same as the number of samples.

PersonaIA allows the researcher to select different cache sizes. For example, in the Fig.

6.6 (b), the current cache size is 500. If the total samples reach 500, PersonaIA will either

upload the data to the server or export the data to local storage. Adversary testing score

is shown in the yellow bar in Fig. 6.6 (a) with maximum setting of 1 and minimum setting
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(a) (b) (c)

Figure 6.6: Screenshots of PersonaIA. (a) Identification score and various parameters, (b)
Data exporting using authentication interface and (c) Cache database overview using SQLite
debugger.

of 0. In this setting, if the score goes below 0.5, the system will consider the current user

as legitimate, because a lower score indicates that the current user is most likely legitimate.

In Fig. 6.6 (a), the score is above 0.5 and the system will consider the current user as an

adversary. Finally, after the stride size converges, the sampling rate (ms), which has been

shown in the right corner of UI, will be stable when the sampling rate difference is between

0.5 - 1 per second.

The user can choose to either enable or disable WVM by checking the box shown in the

Fig. 6.6 (a). The system will automatically upload/export the data to the remote/local

storage if the box is checked. Otherwise, the exporting unit, which is shown in Fig. 6.6 (b),

will not be triggered.
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Table 6.3: CPU and memory consumption for different apps

T.W.C.* Amazon F.B.* Gmail PIA*

CPU Avg% 16 46 21 24 12

CPU Max% 39 100 39 24 23

Mem.(MB) 68 120 136 26 29

*The abbreviation T.W.C. is for The Weather Channel app, F.B. for FaceBook, PIA for PersonaIA.

6.3.2 Utilization Information

CPU Utilization: We measure the CPU utilization of our system on the Samsung Nexus

S using the CPU monitor app, which allows one to monitor the CPU utilization of all the

processes running on a smart device. We first start our service and it consumes 5% CPU

utilization at the beginning and then reaches 10%. After nine minutes, the CPU utilization

was stabilized between 11% - 13%. When the service is running the stride initialization

stage, the CPU utilization will reach 22% - 23% at most, and then goes back to 11% -

13%. Since the initialization step only spans a few sampling cycles in average, most of the

time the device is running in the low CPU consumption stage with CPU utilization between

11% - 13%. We compared the CPU usage of PersonaIA with other popular apps. The list

contains The Weather Channel, Facebook, Gmail, and Amazon (as shown in the Table 6.3).

We found that PersonaIA has the lowest CPU usage. We can conclude that PersonaIA is

lightweight even on the relatively low-end Nexus S smartphone.

Memory and Storage: The memory consumption of our system is nearly constant. It

consumes 28 MB(±4 MB) memory of the total 383 MB on the device, if we select the total

cache size of 1000 samples. We can further reduce the memory consumption by setting the

cache to some small value, e.g., 500. The front app consumes about 4.08 MB storage in the

device, but the USB storage consumption could vary from 1 MB to several GB depending

on the frequency of data exporting. If we have a long time (one month) with no network

connection, we should clean the external storage.

Battery Usage: In addition to the CPU and memory usage, we also conduct a test

to compare the battery usage between four modules. For each module, we only consider

the client-side matching algorithm and authentication mechanism with the training phase
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offloaded to the server side. We run each module independently by the same group of users

each time, and capture the battery usage using GSam battery monitor app, which shows

the battery usage in percentage of the total usage. To minimize the interference between

modules, we run each module independently for 24 hours. The testing results are shown

in Fig. 6.7 (a), in which “Basic” indicates the Basic Module, “Stride” indicates the Stride

Module and “Dynamic” indicates the Dynamic Stride Module respectively. The current IA

frameworks, e.g., [49, 53, 62], belong to either the Basic Module or the Stride Module. As

shown in Fig. 6.7 (a), even if they have used JS divergence, the performance would be

inferior to the proposed WVM. The battery usages of the Basic Module, Stride Module,

Dynamic Stride Module and WVM are 34.1%, 19.3%, 30.0% and 14.5% of the devices’ total

battery usage. We conclude that the Basic Module and Dynamic Stride Module consume

more energy than the Stride Module and WVM because they use all samples in the cache

database to identify a user. The size of stride in Stride Module is selected to be the one

that minimizes classification errors, but remains constant for different users, which may be

infeasible in practice even if it consumes a small amount of energy as we discussed in Section

3.5.2. The WVM outperforms other modules due to its adaptiveness in controlling sampling

rate and stride size.
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Figure 6.7: Energy efficiency, accuracy and precision. (a) Battery usages in different modules,
(b) Accuracy and precision in real usage.
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Accuracy in Real Usage: To further study the performance of PersonaIA, we collected

21074 samples from 7 volunteers of different ages and genders during six-week-testing periods.

The test is performed by randomly matching two volunteers in a group. There are 6 groups

in total. One person in the group is the legitimate user while the other is the adversary. For

the training phase, the legitimate users are asked to carry the device for more than one week

and send their data to the server for training. In the testing phase, the WVM is enabled

to authenticate users with an average wind strength δ = 0.5. Users, both legitimate and

adversary, are required to report the number of times PersonaIA fails to identify them out

of the total number of times the system is used. In addition, to evaluate the sensitivity of

PersonaIA, we calculated the accuracy and precision rate in the first five minutes of the

volunteers’ usage in the testing phase. Finally, we derive the overall accuracy and precision

for each group, which is shown in Fig. 6.7 (b).

We observe in Fig. 6.7 (b) that for Group 1 through Group 5, the average precision

(94.09%) and accuracy (96.70%) are similar to the tests using the synthetic dataset,

indicating that the most probable topic among all topics can be used to separate users

in these groups. However, PersonaIA failed to identify the illegitimate user in Group 6

where the accuracy and precision are less than 50%. The reason for this is that in Group 6,

both users have similar behaviors: they live in the same apartment and work in the same

place. In this case, to capture the difference between the two users, PersonaIA can only

rely on touch and accelerometer data out of all the data types we used. After analyzing

the data, we found that the columns for these two data types are almost empty in most

samples, which means that the users had left the device somewhere without actually using

it. Interestingly, PersonaIA achieves very high accuracy (97.83%) in differentiating between

users from Group 6 and users from Groups 1 through 5. In practice, the data contained in

Group 6 can be filtered out without losing authentication correctness.

We evaluated the accuracy of PersonaIA in the first five minutes of usage, using data

from legitimate and illegitimate users. The average accuracy in identifying legitimate users

is 90.39% considering all groups and 98.47% considering only Groups 1 through 5. Table

3 shows the average accuracies for every minute. As the WVM adjusts the stride size
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Table 6.4: Accuracies In Five Minute Testing

1min 2min 3min 4min 5min

Acc% 95.37 96.48 95.91 97.82 98.47

Acc%* 87.81 88.74 88.26 89.85 90.39

*The first row contains testing only from Group 1 to Group 5, and the second row contains all group’s
testing results.

and sampling rate in each time period, e.g., one to two minutes, the accuracy increases

accordingly, but the rate at which it increases is slower than expected.

6.4 Another Measurement

6.4.1 User-Side Services

Running on the Android system, user-side services were written by Java using Google-SDK.

Besides system-level services, a sampling service periodically wakes up sampling algorithm,

which gathers all the available sensors’ data and stores them in the cache database developed

using SQLite. The sampling speed and wake-up time is dynamically adjusted for the energy-

saving purpose. Device-server data transmitting service contains behavior matching and

data transmitting units. The behavior matching unit is responsible for identifying users by

comparing their behaviors using the model returned from the training server. The data can

be further encrypted in the data transmitting units. In this work, however, we mainly focus

on BMap; the data privacy preserving and associated techniques are beyond the scope of this

study. Interested reader can refer [81, 12] for more details. Data transmitting unit is used

to upload sensors’ data stored in the cache database to database server through a secured

channel. The user-side services were installed and tested on Motorola G2 with Andoird

version of 6.0. It has 1GB memory, 8GM local storage, a Quad-core 1.2 GHz GPU, and

Adreno 305 CPU. Running in the background, the use-side services are transparent to users.
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6.4.2 Server-Side Implementation

The database server is implemented using Firebase which is a NoSQL database and can

easily handle multiple users’ data transmissions. The training server utilizes a Lenovo 16GM

memory quad-core processor machine with 2.4GHz frequency in each core. The server has

two GPUs, which are an integrated Intel HD Graphics 4000 GPU and a Nvidia GeForce

GTX 660M GPU. All users’ data are stored in JSON format as shown in Fig. 6.8. The

data uploading procedure has several steps discussed as following. In the beginning, based

on device ID, behavioral data is stored in different branches in the JSON tree with distinct

label, e.g., L9ed8NEiPN7pYN8XISM, as shown in Fig. 6.8 (a). The device ID and label are

one-to-one correspondence relationship. A monotonically increasing index is created to store

each data sample as shown in Fig. 6.8 (b). The index and time stamp uniquely identify

each data sample. For example, in 6.8 (b) index “0” and time stamp “08-07-2018 12:21:3”

uniquely identify the data sample in the JSON tree. Behavioral data sampled from various

sensors is stored in different branches, e.g., in the index “0” it stores address, id, latitude,

and another seven different types of behavioral data. To bridge database server and training

server, we implemented a lightweight program using Javascript, which can achieve a fast

data transmission.

(a) (b)

Figure 6.8: Database server. (a) Users are stored in different branches of database. (b) Data
is stored in JSON format.
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6.4.3 Real Experiment

To evaluate the performance of BMap, we conducted a long-term real test since April 2016.

Spanning two years and eight months, we tracked the usage of 13 different volunteers using

the proposed system. In the experiment, each device only has one legitimate user, while

another user is deemed as an illegitimate user. In addition, every illegitimate user is required

to guess password and mimic legitimate users’ behavior during the usage. To this end, the

devices’ passwords are randomly chosen with length of eight characters that contain both

letters and numbers. For each device, one of 13 volunteers was using it in a period of time

(longer than two weeks); and thus, each device stores data from 12 illegitimate users and

one legitimate user.

In the previous experiment, due to the limitation of the dataset, we can only evaluate

BMap on Shi scheme and Multi-Sensor scheme. However, in the long-term real test, we

gathered rich usage information from all users. Besides the features used in the synthetic

experiments, we also collected touch-related data, e.g., trajectory, pressing time, and

corresponding accelerometer reading, which makes the evaluation of BMap on Gait scheme

[35] and SilenSense scheme [19] possible. To this end, we implemented Gait scheme and

SilentSense scheme in our system. Similar to the implementation of Shi scheme and Multi-

Sensor scheme, we use the recommended settings of Gait scheme and SilentSense scheme

from their original papers. In addition, we applied k-fold cross-validation to choose the best

value of the parameters in each scheme, and to conduct training and testing. The feature

selection strictly follows the description of the original papers.

Authentication Accuracy

To evaluate the accuracies’ improvement of BMap on different schemes, in the beginning,

we measured the authentication accuracies of original schemes using testing dataset. Using

the same setting, we then applied BMap to the schemes, and repeat the measurement on

the same testing dataset. The results are shown in Fig. 6.9. As shown in the figure,

for most of the users, BMap-based schemes have higher authentication accuracy than the

original schemes. We calculated the average accuracy for original Shi scheme, Muti-Sensor
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scheme, Gait scheme, and SilentSense scheme, which are 79.39%, 84.71%, 74.46%, and

73.56% respectively. We also calculated the average accuracy for BMap based Shi scheme,

Multi-Sensor scheme, Gait scheme, and SilentSense scheme, which are 88.79%, 94.68%,

81.61%, and 85.85% respectively. For all four schemes, BMap boosts their authentication

accuracy significantly, especially for the Multi-Sensor scheme and SilentSense scheme. The

authentication accuracy improvements of Shi scheme, Muti-Sensor scheme, Gait scheme, and

SilentSense scheme are 9.4%, 9.97%, 7.15%, and 12.29% respectively. Although none of the

illegitimate users successfully guessed the correct passwords, they can still mimic legitimate

users’ behavior and pass the authentication, which is one of the biggest problems in today’s

implicit authentication schemes [56]. Especially for the Gait scheme and SilentSense scheme,

their corresponding mimicry attacks are very effective. However, as shown in Fig. 6.9, BMap

can still reduce the success rate of the attacks and increases the authentication accuracies of

the schemes.

In this test, for both original schemes and BMap-based schemes, we stored the number

of times legitimate user been locked by the device within 7250 attempts. To compare, we

recorded the number of times illegitimate user been locked by the device in 7250 attempts.

The testing results are shown in Table 6.5. Comparing to the original scheme and BMap-

based scheme, we can see the number of time legitimate user been locked is reduced; and

hence, the usability of the system is increased. Similarly, the number of time illegitimate

user been locked is increased. The security of the system is enhanced since illegitimate user

will have larger chance been blocked.

Table 6.5: The number of times users been locked

Scheme Original scheme BMap-based scheme

Legi.* locked Ille.* locked Legi.* locked Ille.* locked

Shi scheme 213 4863 179 6243

MultiSensor 187 5640 53 7015

Gait scheme 379 4310 205 5186

SilentSense 179 3973 174 5800

* Legi. denotes the legitimate user. Ille. denotes the illegitimate user.
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Figure 6.9: Accuracy improvement for both original schemes and BMap-based schemes. (a)
Shi scheme. (b) Multi-Sensor scheme. (c) Gait scheme. (d) SilentSense scheme.

Time Consumption

We evaluated the time consumption of BMap, and compared it with time consumptions of

training, data transmitting, data initialization, and data exporting in the original systems.

Table 6.6 shows the time consumption for different schemes. The column denotes different

stages of various schemes. As shown in the table, the time consumptions of BMap on different

schemes are very small compared to another operation. The total time consumption of each

scheme after applied BMap is shown in the final column of the table.

In addition, since implicit authentication utilizes a group of data exported recently to

identify users, e.g., 5000 samples in each group, the size of the group impacts the time

consumption of the system. Given different data exporting frequency, the time increment of

BMap is shown in Fig. 6.10 (a). Furthermore, among different group sizes, we calculated

the average time-consumption percentages of BMap in different schemes, which are 0.9%,

0.0912%, 0.657%, and 1.037% for Shi scheme, MultiSensor scheme, Gait scheme, and

SilentSense scheme correspondingly. Specifically, the time consumptions of BMap in Data

Transmission, Initial Mapping, Privilege Movement, and Bubble Expansion are shown in Fig.

6.10 (b).
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Figure 6.10: Time Consumption. (a) Time consumption percentage in different group sizes.
(b) Time consumptions of different stages.

Energy Consumption

Besides the time consumption, we also conducted several experiments to measure the

difference between original schemes and BMap-based schemes in the aspect of energy

consumption. In the experiment, we measure the batter usage in the original schemes

by calculating the average working hours of battery after fully charged. To compare, we

also measured the batter usage in the BMap-based schemes. The details are shown in

Fig. 6.12. As shown in Fig. 6.12 (a), the average working hours of original schemes and

BMap-based schemes are almost the same. Specifically, we calculated the battery working

hour reduction by applying BMap, which is less than 0.9% of the total working time. The

average battery consumptions in Data Transmission, Initial Mapping, Privilege Movement,

and Bubble Expansion are shown in Fig. 6.12 (b).

6.4.4 Other Performance Measurements

We calculated the percentage of behavior scores that were mapped to each privilege level in

BMap, for the legitimate user and illegitimate users. As shown in Fig. 6.11 (a), less than

0.4% of the behavior scores are mapped to the observation levels, which indicates that BMap

is fast and highly effective in making the final decision.
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Table 6.6: Time consumption for different schemes (sec)

BMap Training Trans.* Init.* Export Total

Shi scheme 0.046 0.524 0.96 1.57 1.03 4.13

MultiSensor 0.051 40.63 4.69 2.137 5.16 52.66

Gait scheme 0.127 14.28 0.95 2.917 1.03 19.30

SilentSense 0.140 3.291 1.03 1.918 1.06 7.43

* Trans. denotes the total data transmission time consumption in the system except BMap. Init. denotes
the time consumption of data initialization. In addition, the data initialization contains data formatting

and noise filtering.

We also calculated the behavior score distributions in each privilege level for time windows

10 through 100 as shown in Fig. 6.11 (b). The z-axis denotes the number of behavior scores.

The y-axis denotes the time windows. The x-axis denotes the privilege levels, where the left

three levels that contain top, observation, and bottom levels, are plotted from the legitimate

user’s behavior scores; similarly, the right three levels are plotted from illegitimate users.

For both users, the number of scores which fall in the observation level is small, less than

118 given total of 27138 scores, which is similar to the result in Fig. 6.11 (a).

6.5 Discussion

This section aims to answer and discuss some important questions about PersonaIA.

Local min./max. values for legitimate/illegitimate user:

The rationale behind our design is that the most recent behaviors tend to have more

interpreting power of the user than past behaviors. This is observed from our experimental

results using the Friends and Family dataset, which showed that human behaviors deviate

with time (i.e., topics found by our topic model are diverse). For the legitimate user,

the WVM will find the most recent local minima, which is reflected in the JS divergence

and the corresponding stride size. For the illegitimate user, the WVM will find the most

recent local maxima. We agree that it would be interesting and useful to study the global

minima/maxima for the legitimate/illegitimate user, since behaviors should be repetitive.

This global minima/maxima can in fact be obtained from the topic model because the topic
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Figure 6.11: The proportion of behavior scores in each level. (a) Average proportion. (b)
Proportion in time windows 10 through 100.

model takes the entire dataset (recent and past) to run. We plan to explore it in our future

research given the page limit of this work.

How to choose the values of parameter γ, m and δ:

Intuitively, γ represents the strength of JS divergence or the system’s belief on the

effectiveness of JS divergence. Together with JS divergence, it adaptively controls the time

gaps between two samples by t
DγJS

. When γ is large, the system has a strong belief on JS

divergence and the WVM. To avoid bias, we choose γ by averaging over the historical testing

results, in each of which a mis-authentication should decrease γ until γ = 0 and a correct

authentication will increase γ until γ reaches the maximum, e.g., 1.5, equivalent to about

five-minute-sampling gaps when DJS = 0.1.

The duration time m is similar to γ, which controls the response time of the WVM. Due

to behavior deviation of the legitimate user, the WVM may obtain a large JS divergence

but it should not change direction immediately until it collects more evidence about the

illegitimacy of the user. Therefore, m cannot be too small. On the other hand, a large m

reduces the sensitivity of the WVM in detecting illegitimate users. Using the training set,

we can easily find the most reasonable m which minimizes the classification errors. We can

find a suitable wind strength of δ in a similar way. Please note that we may still have the

bias on the training set, even though we used k-fold cross-validation. Retraining may be

necessary in this case, the detail of which can be found in our paper [106].
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Figure 6.12: Battery Consumption. (a) Average battery consumptions for both original
schemes and BMap-based schemes. (b) Average battery consumptions of different stages.

Data privacy and protection:

It is possible that the adversary compromises the database server and obtains sensitive

behavioral data from the users. Several techniques, including hash/obfuscation, TrustZone

[60] and Software Guard eXtensions (SGX) [45], have been developed against the attack.

This problem, although important, is out of the scope of this work.
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Chapter 7

Conclusions and Future Works

In this study, we investigated various problems in implicit authentication and proposed dy-

namic retraining (RU), wind vane module (WVM), BubbleMap (BMap), and reinforcement

authentication (RA) to improve the efficacy of implicit authentication (IA).

Although the accuracy of IA can increase with more advanced technology used in smart

devices, the retraining and authentication failure problems still hinder realistic deployment

of IA systems. How and when to retrain the user behavior model and what to do when

the legitimate user fails the authentication remained unsolved. In Chapter 2, to address

the retraining problem, we proposed a technique using JS-distance to determine the best

retraining frequency. For authentication failure, we introduced the dynamic privilege

mechanism with finer privilege levels. Compared with the predefined privilege rule, we

can decide which level should be assigned to the user based on his/her current behavior.

Compared with the lock-only mechanism in the existing-related work, the dynamic privilege-

based access control can largely reduce unpleasant user experience by only locking part of

the device.

In Chapter 6, we tested our methods on a dataset of 130 persons with more than 5-months

worth of records. The simulations showed that our retraining techniques can successfully

detect the accuracy changes, suitable for use in IA system. The results also show that the

dynamic privilege mechanism can largely reduce the effect of false-negative authentication

failure.
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In Chapter 3 and 4, we introduced the W-layer and the WVM to achieve lightweight IA,

while supporting server-based IA with embedded topic models. The W-layer challenges the

traditional concept of server-based IA by adding several components between the server and

sensors to achieve energy and computational efficiency, lightweight authentication, sampling

control, and high compatibility. In addition, we proposed the WVM to further reduce energy

consumption and improve the correctness of authentication. The WVM can extract the best

representative behavioral pattern of the current user, and compare it with the historical

behavioral pattern of a legitimate user. Since the WVM is designed in the W-layer, it

inherits all the properties of the W-layer. On the server side, we implemented PLDA for

more accurate authentication, and it achieves 93.3% precision and 98.6% accuracy in the

synthetic dataset.

In Chapter 5, we proposed BubbleMap (BMap) and reinforcement authentication (RA)

to enhance the performance of various implicit authentication (IA) schemes. As a framework

seamlessly lying above them, BMap can significantly boost the performance of the original

schemes. In BMap, we modeled the privilege changing process of users and bridged the

privilege control mechanism to implicit authentication. To this end, we introduced Initial

Mapping, Privilege Movement, and Bubble Expansion techniques. In addition, we evaluated

BMap in a large-scale simulation on state-of-the-art IA schemes. We also implemented BMap

and performed a long-term test over two years and eight months. The test results show

BMap can increase the performance of the original schemes with a small amount of energy

consumption. Specifically, in the real experiment, the average authentication accuracies

of Shi scheme, Multi-sensor scheme, Gait scheme, and SilentSense scheme are 79.39%,

84.71%, 74.46%, and 73.56% respectively; and the average authentication accuracies after

applied BMap are 88.79%, 94.68%, 81.61%, and 85.85% respectively. The time consumption

increased by BMap is less than or equal to 1% for all four of the schemes. Similarly, the

battery consumption increased by BMap is less than 0.9% of the total working time. We also

proposed reinforcement authentication that achieves human-centered authentication utilizing

human-centered feature selection and behavioral data alignment. Compared to the machine-

centered approaches used in implicit authentication, the proposed methods achieve better

user authentication in the aspect of authentication accuracy, time utilization, and energy
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efficiency. In the future, we will share the system’s source code, parameter setting, and

dataset on our lab website to benefit associated research.
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