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Abstract

The reaction between NO and atomic hydrogen to form HNO is one that has been

studied both experimentally and theoretically due to the observation of HNO in interstellar

matter, as well as HNO’s role as an intermediate product in some atmospheric reactions.[5]

However, this reaction can also produce the HON molecule when performed in solid argon

or para-hydrogen matrix environments at extremely low temperatures (10K and below 5K,

respectively). [15, 20] Surprisingly, the HNO and HON products are formed at comparable

rates in the para-hydrogen matrix, even though the reaction to form HNO has no energy

barrier whilst the formation of HON must surpass a 12 kcal/mol barrier.[20, 5] The molar

absorptivities of these two molecules are required to thoroughly study the kinetics of the

H + NO reaction occurring within the matrix; since the IR spectrum is taken in situ, these

values must be obtained computationally.

The Double Harmonic Approximation (DHA) is a common method for calculating the

molar absorptivities of a molecule; however, the DHA does not consider anharmonicity

or coupling between vibrational levels. We propose both of these additions as important

contributors to the molar absorptivities of HON due to the highly anharmonic character

of its O-H vibrational mode, and therefore applied Vibrational Second-Order Perturbation

Theory (VPT2). Unfortunately, while the VPT2 method provided better models of the

potential energies than the DHA, the dipole moment polynomials were less accurate when

compared to the ab initio data. Application of the linear variational method instead of

VPT2 allowed us to control over whether or not coupling was included in the system, as

well as the number of anharmonicity terms added (degree of polynomial), and we found a

10th order polynomial with a linear combination of the harmonic wavefunctions nine lowest

v



energy levels was necessary to best model a single vibrational mode. The combinations

of harmonic wavefunctions from each vibrational mode required when modeling the entire

system is still unclear, but the inclusion of coupling between the modes has a significant

effect on the calculated anharmonic frequencies and should be taken into account in any

future analysis.
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Chapter 1

Introduction and General Information

1.1 About HNO and HON

The molecule known as nitroso hydrogen or nitrosyl hydride (HNO) has been studied

experimentally due to its role as an intermediate in various atmospheric chemical reactions,

and presence in interstellar space. [5, 15] These reactions include the generation of NO

pollutants through combustion [15] or the decomposition of ozone. [5] However, theoretical

calculations first showed − and experiments later verified − that the molecule HON should

be formed along-side HNO, albeit at lesser concentrations depending on the conditions under

which it was formed.

The author of a 1994 computational study [14] provided the following suggested guidelines

for the experimental generation HON: “Probably the best method of forming the XON

isomers is via matrix isolation experiments in which NO and X radicals diffuse, although

the mobility of the NO radical especially must be limited. It does not seem likely that

any appreciable formation of the XON isomers will occur in the gas-phase, and therefore

these species may be safely ignored in the study of atmospheric chemistry.” [14] While this

conclusion may set to rest any further concerns about the presence of HON alongside HNO

in the atmosphere, it still supplies a new question: what happens when HON is generated

in matrix isolation experiments, as hypothesized by Lee? [14]

1



1.2 Experimental Background: Anderson Group

Dr. David Anderson at the University of Wyoming has undertaken a series of experiments

that aim to provide an answer to that question, amongst others. These experiments are

performed in a solid para-hydrogen matrix, rather than the more common argon environment.

When irradiated, para-hydrogen matrix serves as the source of H atoms that ultimately react

with the NO radical to form HNO and HON. The apparatus used by the Anderson and his co-

workers holds the matrix at extremely low temperatures ranging from 1.8 to 4.3 K, a regime

where quantum effects are influential; the Anderson group is interested in learning how the

quantum effects of the diffusion of the H atom through the matrix affects the formation of

the products.

The technique of using matrix isolation spectroscopy for bimolecular reactions is

fundamentally reliant upon species diffusion through the matrix. The bimolecular reaction

H + NO −−→ HNO

studied by the Anderson group occurs when an H atom diffuses through the solid pH2 matrix

and reacts with a NO radical impurity; therefore the rate of the reaction is determined by

the diffusion coefficient of the H atom. [20] This is because much heavier NO reactant is

immobilized, or ‘stored’, within the rare-gas matrix due to its very small diffusion coefficient

at these temperatures.

The H atom diffuses through the pH2 matrix by the reaction

H + H2 −−→ H2 + H

which has an exchange reaction barrier of approximately 10 kcal/mol. [20] However, since the

matrix is solid pH2 and therefore kept at temperatures below 5 Kelvin, the energy barrier

cannot be overcome; the H atom instead travels through quantum tunneling. When a NO

impurity is encountered, the product HNO should form without delay as the reaction has no

2



energy barrier (seen in Figure 1.1).

The Anderson group produces the NO doped pH2 matrix through rapid vapor deposition,

with NO and pH2 gases co-deposited onto a BaF2 optical substrate in a liquid-He cryostat; the

pH2 gas was previously prepared using an ortho/para converter. Throughout the experiment,

the temperature of the crystal is measured and intermittent Fourier-transform infrared

(FTIR) spectra are taken to track the generation of products over time and thus the kinetics

of the reaction. The experiment is initiated by irradiating a small portion of the crystal with

a 193 nm 8 ns pulse, which dissociates approximately 30% of the NO radicals; these N and

O atoms then react with the neighboring H2 molecules to form

N + H2 −−→ NH + H

N + 2 H2 −−→ NH3 + H

O + H2 −−→ OH + H

OH + H2 −−→ H2O + H

The resulting H atoms diffuse through the pH2 matrix via quantum tunneling until they

interact with another impurity: this could be a NO radical, another H atom, or one of the

photodissociation products. The Anderson group observed NH, NH3, and H2O to be the

primary products created by the photolysis through the above reactions; the products of the

H atom diffusion were identified as HNO, NOH, trans-HNOH, and NH2OH.

1.3 Experimental Measurements: Anderson Group

Throughout the experiment, FTIR spectra are collected to identify and quantify the products

created by the reaction. As the reaction proceeds, the Anderson group measured a continual

decrease in NO concentration, thus indicating that formation of HNO and HON is due to

the diffusing H atoms reacting with NO monomers in the matrix; this decrease can be seen

in Figure 1 of Ref. [20]. Between traces a and b shown in that figure, the concentration of
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Figure 1.1: The energy profile for the reaction of H + NO; all energy values used were
taken from the paper by Bozkaya. [5]
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NO decreased by 28%, which yielded the photoproducts NH, NH3, and H2O seen in Figure

2 of Ref. [20].

These absorption spectra show the vibrational peaks associated with certain molecules

increasing over time. Each vibrational peak is a response associated with a certain molecular

vibration; the energy absorbed by the molecule, and thus the radiation frequency, is

dependent upon the molecular structure. For example, a non-linear triatomic molecule such

as HNO or HON will have three response peaks, as according to the formula 3N-6 where

N is the number of atoms in the molecule. These response peaks are generalized as two

‘stretching’ modes, where the bonds extend and contract, and a ‘bending’ mode where the

angle becomes more obtuse and acute. The frequencies associated with certain vibrational

modes have been approximately quantified, such as an O-H bond appearing approximately in

the 3200-3600 cm−1 range, or a nitro compound N-O bond having a strong response between

1500-1550 cm−1.

The Anderson group identified the products formed by identifying the different peaks

present in the IR spectra. Additionally, they were able to calculate the concentration of the

NO in the matrix using a correlation between concentration and the measured absorbance.

This relation in its most basic form is described by the Beer-Lambert Law, which states that

A(λ) = ε(λ)bc

where A is the measured absorbance, ε is the molar absorptivity coefficient of the specific

molecule, b is the path length the light travels, and c is the concentration of the sample. [17]

If the molar absorptivity coefficient of the species is known (and it meets the requirements of

the Beer-Lambert law), the species concentration can be calculated. For some molecules, the

molar absorptivity coefficient at a given wavelength is easily obtained experimentally through

calibration measurements; other molecules can more difficult to produce and isolate, thereby

preventing the acquisition of pure samples for calibration.
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HNO and HON are both molecules that do not yet have experimentally determined molar

absorptivity coefficients. This means that instead of explicitly determining a concentration

value for these molecules as they did with NO, the Anderson group must instead turn to

computationalists to supply the theoretical molar absorptivity values, which are then used to

calculate the concentration. While there is a possibility for error due to assumptions made

during the calculation of the these coefficients, theorists can check the accuracy of their work

against experimental results.

1.4 Molar Absorptivity Computation

The value of a calculated molar absorptivity coefficient can vary depending on the electronic

structure method, level of theory, and basis set specified. The more rigorous and complete the

theoretical approach is, the closer the calculated value should be to experiment. Additionally,

characteristics of the molecule must also be taken into account: for example, if the molecule

exhibits a weaker or longer bond than other similar species, it is likely diffuse functions

should be included in the basis set. Due to these possible variations, it is important to

compare calculated results against experimentally obtained values. For molecules that have

more than one normal mode, though the response peaks may be of different magnitudes, the

concentration of the molecule is constant. Therefore a ratio of the integrated absorbance

values can be taken to obtain a ratio of the molar absorptivity coefficients.

A(λ2) = ε(λ2)bc

A(λ1) = ε(λ1)bc
(1.1)

By comparing the ratio of calculated molar absorptivity coefficients − and their associated

wavelengths − to those of experiment, the computationalist can evaluate whether their

calculated values are sufficiently accurate to be used to determine concentration.

As stated earlier, HNO and HON are non-linear triatomic molecules with three

vibrational modes. One benefit of examining such small molecules is that more rigorous

levels of theory can be employed without being too computationally expensive. A comparison
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Figure 1.2: The HON molecule oriented on the xy plane. The oxygen is centered at the
origin, with the O-N bond along the positive x-axis. The hydrogen is oriented in the positive
y-direction.

between different combinations will be examined in the next chapter.

1.5 Kinetics Results: Anderson Group

The Anderson group used molar absorptivity values calculated by Maier et al. [15] to

determine the concentrations of HNO and HON present in the pH2 matrix from their

corresponding FTIR peak intensities. They found that at 1.8 Kelvin the concentrations

of HNO and HON increased at an equal rate after photolysis, until the concentration of H

atoms was almost zero at approximately 300 minutes as seen in Figure 5 of Ref. [20]. This

result is unexpected as the two products were identified as 1HNO and 3HON; calculations

by Bozkaya [5] show 1HNO to have no reaction energy barrier, while 3HON has a reaction

barrier of 12kcal/mol. However, as mentioned above, the product formation was found to be

limited by the quantum diffusion limit of the H atoms and not the rate at which the H

atom reacted with any orientation of the NO impurity. The Anderson group did note that

a change in temperature from 1.8 K to 4.3 K affected the concentration of 1HNO but not

that of 3HON, as shown in Figure 6 of Ref. [20].

In order to best and fully quantify the products made, the Anderson group needs molar

absorptivities that are as accurate as possible. To do so for 3HON entails thoroughly

characterizing the normal modes, and possibly adding additional corrections such as
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anharmonicity and coupling to the original calculations should they prove inadequate. The

next chapter shall discuss literature that employed this strategy for HNO and HON.
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Chapter 2

Literature Investigations of HNO and

HON

There are three main papers investigating the vibrational properties of the HON molecule,

from both experimental and computational standpoints. The results described include har-

monic frequencies, dipole moments, reaction energies, barrier heights, molar absorptivities,

as well as investigating isotopic effects on these listed properties. The methodologies used to

obtain these results varies between the three studies: for example, Lee performed calculations

on a closed-shell HON molecule as opposed to the later experimentally observed 3HON, and

the transition states between HNO and HON were calculated computationally by Bozkaya

while Maier experimentally determined them through ultraviolet irradiation.

2.1 Lee

Lee’s calculations were completed for 1HON, rather than the experimentally observed 3HON.

However, the conclusions Lee drew from his work regarding the qualitative vibrational

frequencies and molar absorptivity ratios can still be compared to those of 3HON, while the

transition energies between and barrier heights of closed shell isomers are compared to those

calculated by Bozkaya. [5] The CCSD and CCSD(T) levels of theory were used to obtain

all values, with the self-constructed TZ2P basis set. This consisted of Dunning’s [5s3p/3s]
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basis functions [9] on H, O, and N, and an additional two sets of d polarization functions for

both O and N. [13] Force constants were obtained by applying the finite difference method

to analytical first derivatives of the energy.

The portion of Lee’s work that focused on HON was aimed at determining whether HON

was likely to form experimentally; he accomplished this by first characterizing the molecule’s

vibrational modes, and then determining its formation energy from the initial reactants of

H and NO as well as the barrier height relative to its isomeric counterpart HNO.

2.1.1 Vibrational Frequencies and IR Absorption Intensities

Prior calculations by Lee [13] allowed for comparison between the ordering of the vibrational

frequencies of HNO and HON: Lee noted that both molecules placed the stretching mode

between the hydrogen and the central atom as the highest frequency, followed by the

bending mode, with the lowest frequency consisting of the N-O bond stretch. The harmonic

frequencies of 1HON as calculated by Lee are: ω1 = 3319, ω2 = 1462, and ω3 = 1238 cm−1,

with respective molar absorptivity values of 27, 13, and 52 km/mol. That Lee calculated

an approximately 2:1:4 ratio between the molar absorptivity values of the modes lends

further credence to the conclusion by experimentalists [20, 15] that 3HON is being generated

and measured, as the response peak of the second vibrational mode is extremely low

experimentally.

Table 2.1: Variables calculated or recorded by the three authors, as discussed in the
following sections.

Lee (1HON) Bozkaya Maier

Computation X X X
Experiment X

Geometry X X X
Frequencies X X X

Barrier Heights X X
Dipole Moment X

Molar Absorptivities X X
Isotopes X X
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Table 2.2: Mulliken population analysis as calculated by Lee. Lee declared 1HNO the more
stable of the two molecules as it “satisfies the octet rule without resorting to the use of
partial charges”. [14]

HON

CCSD CCSD(T)

X +0.34 +0.34
O −0.33 −0.31
N −0.01 −0.02

HNO

CCSD CCSD(T)

X +0.22 +0.22
N +0.05 +0.04
O −0.27 −0.26

2.1.2 Stability and Barrier Height

When comparing HNO and HON, Lee concluded that 1HNO was the significantly more

stable molecule of the two due to being able to form without requiring partial charges to

satisfy the octet rule; this conclusion is supported by his Mulliken charge analysis, where

HNO has significantly less charge separation between the hydrogen and the N-O portion of

the molecule. The geometry analysis also showed that the H-O bond length was slightly

longer than most but still covalent.

The energy difference between 1HNO and 1HON was calculated to be 42.3 kcal/mol in favor

of HNO at 0 K, with a barrier height of 9.3 kcal/mol from 1HON to reach the transition state

for isomerization. Therefore Lee concludes that while HNO is much more likely to form first,

due to its lower ground-state energy and charge stability, some 1HON should be expected

to form in matrix isolation at low temperature. However, while Lee is partially correct that

HON is observed at low temperatures, experimentalists actually measure 3HON.

2.2 Bozkaya

Bozkaya’s article and calculations focused heavily on the kinetics of all four species of H+NO:

their isomerizations, dissociation reactions, isotopic substitutions, in addition to calculating

their geometries and harmonic and anharmonic vibrational frequencies. The CCSD(T) level

of theory with the cc-pCVQZ basis set was used when calculating all single point energies and

geometries, while the reaction energies and barrier heights were determined via a series of
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Table 2.3: Comparison between values calculated by both Lee [14] and Bozkaya [5]
using differing levels of theory for 1HON. Lee used CCSD(T)/TZ2P, while Bozkaya
used CCSD(T)/cc-pCVQZ. Despite Bozkaya having a significantly larger basis set, their
calculations for the equilibrium geometry, harmonic frequencies, and isomerization reaction
energy were all quite close. Whether this trend would continue for the anharmonic frequencies
is unfortunately unanswered, as Lee did not continue with anharmonic corrections.

Lee Bozkaya

Eh −130.195 Ha −130.339 Ha
rHO 0.986 Å 0.9854 Å
rON 1.276 Å 1.2626 Å
θHON 109.9° 110.42°
ω1 3319 cm−1 3317 cm−1

ω2 1462 cm−1 1473 cm−1

ω3 1238 cm−1 1289 cm−1

Isomerization Reaction 42.3 kcal/mol 42.23 kcal/mol
Dissociation Barrier 9.3 kcal/mol 7.88 kcal/mol

increasing corrections to the Hartree-Fock energy while extrapolating towards the complete

basis set limit.

2.2.1 Vibrational Frequencies and Isotopic Substitutions

Bozkaya calculated the harmonic and anharmonic vibrational frequencies, which were

obtained using the VPT2 method, for each molecule and transition state that was studied and

compared them to other computational results when possible. Additionally, the anharmonic

frequencies calculated for the commonly observed 1HNO molecule were compared to

experiment with a maximum variation of only 8 cm−1, although Bozkaya did not compare

to any experimental results for 3HON.

Analysis indicated that most of the isotopes still showed tunneling effects, and a general

summary of Bozkaya’s conclusions is that the isotopes decreased the probability of the

isomerization or dissociation reactions occurring but did not significantly change the reaction

rate. Of the six cases, only two had additional notes: the dissociation reactions of 1HON

and 3HON. Since the potential energy curve of 1DON is much steeper than 1HON, the

probability of the molecule dissociating decreases which leads Bozkaya to state that 1DON
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Figure 2.1: Singlet (left) and triplet (right) transition state energy profiles for the HNO
to HON transitions and dissociations, as calculated by Bozkaya. All energies are relative to
1HNO. [5]

is more likely to be observed than 1HON. The molecule 3HON is influenced by tunneling

effects when below 500 K, while tunneling is only significant for 3DON when below 300 K.

2.2.2 Isomerization and Dissociation Reactions

Bozkaya calculated isomerization reaction and dissociation barrier energies by using succes-

sive correlation corrections to extrapolate towards both the Full Configuration Interaction

(FCI) and Complete Basis Set (CBS) limit. He found the transition state barrier of the

1HNO → 1HON isomerization (70.06 kcal/mol) to be higher than the isomerization reaction

energy of 42.23 kcal/mol, indicating that a 2-step process of dissociating to H + NO then

forming 1HON would be more likely to occur. This is supported by Bozkaya’s calculations

for dissociation energies showing that the barrier height for the dissociation of 1HON is only

7.88 kcal/mol, and the formation of 1HNO has no barrier. An energy profile of this transition

and dissociation is shown in Figure 2.1 on the left.

The potential energy surface for the isomerization and dissociations of 3HNO and 3HON

is not as clear-cut as that of the singlets. While the energy of the dissociated reactants

lies below that of the transition state, the energy barriers to forming either product are

close in energy. However, the product distribution kinetics performed for 3HNO and 3HON

demonstrate no isomerization from the initial product whatsoever for 3HNO, and only a brief
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window of opportunity at 400 K for 3HON. At 500 K and above, both molecules decompose

to form H + NO.

Bozkaya concludes his explanations with a comparison of the kinetics analysis of the

products distribution for each potential energy surface. The 1HON molecule dissociates

at room temperature due to its low activation energy, while 3HON is a stable product until

approximately 400 K. The formation of either product from their respective isomer of HNO is

not probable, but 3HON may be observed experimentally while 1HON is extremely unlikely

to exist. Additionally, Bozkaya states that tunneling effects at low temperatures have a

strong influence on the isomerization and dissociation reactions of the molecule, which could

play a role in the experimental observations of Anderson and Maier.

2.3 Maier

Maier is unique amongst the three papers discussed here in that he includes both

experimental and theoretical results and spectra. The experimental results were collected for

molecules created in an argon matrix at 10 K, while the theoretical results were calculated

using the Double Harmonic Approximation on the Gaussian suite. Maier compares the

experimentally obtained vibrational frequencies and integrated absorption intensities to

the calculated harmonic frequencies and molar absorptivities for HON, DON, HO15N, and

DO15N. He also used photoisomerization to induce a transition between HNO and HON.

Figure 2.2: Transition between HNO and HON when irradiated with light, as observed by
Maier. [15] Light of λ = 313 nm is required to isomerize from HNO to HON; to go from
HON to HNO, light of λ = 254 nm is applied.
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2.3.1 Difference Spectrum and Peak Comparison

When photoisomerization was induced in either direction, the IR spectrum taken measured

an increase in the concentration of NO radical; therefore Maier concluded that the transition

between HNO and HON passed through a dissociation as seen in Figure 2.2, rather than

a transition state structure. The collected spectra were used to generate a ‘difference

spectrum’, as seen in Figures 1 and 2 of Ref. [15]. Maier’s calculated vibrational frequencies

and molar absorptivities were used to generate theoretical IR spectra to compare to these

experimental results, and showed a qualitative level of agreement.

The second vibrational mode of HON (ν2) was not experimentally measurable due to

its low intensity, in addition to being coupled with the third vibrational mode (ν3). The

frequencies and intensities of the modes that were observed, however, showed a somewhat

fluctuating agreement with the computational results (Table 2.4). This is likely due to

limited modeling parameters, which will be discussed later in detail. Still, the experimental

and theoretical values had qualitative agreement.

2.3.2 Isotope Effects

Where HON does not have a measurable second vibrational mode, ν2 is the highest intensity

response peak of DON. Exchanging the hydrogen for its deuterium isotope effectively

decouples the two lower frequency modes in addition to significantly changing the absorbance

intensity ratios of the three modes, as seen in Table 2.4. By contrast, exchanging N for its

15N isotope has little effect on the vibrational frequencies and absorption intensities of all

three modes. This is likely somewhat due to it having only gained an additional 1/14th of its

original mass, unlike hydrogen which doubled in mass.
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Table 2.4: Experimental and calculated values for the four isotopomers of HON. The vibrational frequencies are in units
of cm−1, with relative intensities are given in parentheses. [15] [b] BLYP/6-311++G**. [c] QCISD/6-311++G**. [d] Not
measurable due to too low intensity. [e] Absolute intensity: 163 km/mol. [f] Absolute intensity: 177 km/mol. [g] Absolute intensity:
160 km/mol. [h] Absolute intensity: 168 km/mol. [i] Absolute intensity: 76 km/mol. [j] Absolute intensity: 95 km/mol. [k] Absolute
intensity: 73 km/mol. [l] Absolute intensity: 93 km/mol.

Vibration HON HO15N DON DO15N

ν1

exp. 3467.2 (19) 3466.4 (19) 2563.6 (28) 2564.6 (20)
BLYP[b] 2479.8 (27) 2479.8 (27) 2532.8 (30) 2532.8 (31)
QCISD[c] 3780.3 (42) 3780.3 (44) 2751.9 (42) 2751.9 (43)

ν2

exp. −[d] −[d] 1149.0 (100) 1127.9 (100)
BLYP 1157.7 (0) 1145.7 (0) 1092.2 (100)[i] 1071.6 (100)[k]

QCISD 1232.1 (1) 1222.4 (5) 1171.1 (100)[j] 1149.2 (100)[l]

ν3

exp. 1095.6 (100) 1085.6 (100) 868.8 (79) 867.2 (74)
BLYP 1030.2 (100)[e] 1020.7 (100)[g] 815.2 (70) 813.6 (72)
QCISD 1142.5 (100)[f ] 1129.1 (100)[h] 895.8 (81) 893.9 (52)
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2.3.3 Multiplicity Analysis

The calculations done by Maier indicate that the lowest-energy state of HNO has a singlet

multiplicity, which is common throughout the literature. The HON molecule, however, is

predicted to be a triplet with an energy gap of 20 kcal/mol between the ground states. When

Maier compared the vibrational frequencies of 3HON to the experimental spectrum, the peaks

proved a better match than with 1HON. This confirmation backs up Bozkaya’s conclusion

from kinetics thirteen years later, and limits some of the usefulness of Lee’s data from five

years before.

2.4 Overall Summary and Comparison

Lee’s paper in 1994 was a good theoretical analysis as to what was limiting the observation

of HON, and how that barrier could be surpassed experimentally. However, his calculations

were only for 1HON and an open-shell system was not included despite allusions towards the

possibility. Five years later, Maier published what he stated to be the first matrix isolation

and identification of HON in a solid argon matrix at 10 K. A transition between HON and

HNO was induced through photoisomerization, with the intermediate products determined

to be the dissociated H + NO. The calculations that accompanied Maier’s experimental

IR spectra showed that the products formed were 1HNO and 3HON, and their vibrational

frequencies provided the closest matches to experiment.

In 2012, Bozkaya completed a series of kinetics calculations on the dissociation and

isomerizations of all four species of the H + NO reaction. While he cited Lee, there was no

mention made of Maier’s results which would likely have been beneficial in supporting his

conclusions. Regardless, the results of both Maier and Bozkaya agree that 3HON is observed

experimentally rather than 1HON, and that the molecule will dissociate rather than follow

a transition state when isomerizing.
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Chapter 3

The Double Harmonic Approximation

When first considering the vibrational motion of a molecule, the most simple approximation

to make is one of harmonicity: that the energy of the molecule changes identically with both

a positive and negative magnitude of displacement of the normal mode q. This has the effect

of truncating the potential energy equation at the second-order term. A harmonic system

is also much easier to treat quantum mechanically, as the energy levels are evenly spaced at

~ω, and the wavefunctions have a known form. This approximation is the basis of one of

the most common methods for calculating molar absorptivity values, the Double Harmonic

Approximation (DHA). The DHA uses the simplicity of the shortened equations for potential

energy and dipole moment to calculate the molar absorptivity of a normal mode with fewer

required calculations than the other, more involved, methods that will be discussed later.

3.1 Molar Absorptivity

No matter the rigor of the method being applied, the basis of calculating the molar

absorptivity remains the same: the harmonic frequencies and normal mode displacement

vectors of the molecules are determined, the normal mode displacements are used to calculate

the transition dipole moments, and finally the frequencies and transition dipole moments

are applied to find the molar absorptivity values of the molecule. What does change is the

amount and intensity of the calculations between the first and second steps, as will be seen

in Chapter Four.

18



Figure 3.1: The curvature of a harmonic oscillator as a function of normal mode
displacement (q).

3.1.1 Determining Normal Modes

The identity of a normal mode is defined by its energy level and molecular displacement,

while the vibrational frequency of a normal mode is the difference in energy between that

energy level and the ground state. To calculate these components for the three normal

modes of the triplet HON molecule, a mass-weighted Hessian matrix was constructed and

diagonalized.

A Hessian matrix consists of second-order partial derivatives of a function, in this case

of the energy with respect to displacement of the coordinates. Therefore, the first step in

obtaining the mass-weighted Hessian matrix is the optimization of the molecule to obtain

the equilibrium energy and geometry values. The entries of the Hessian matrix can be

numerically calculated by applying the finite difference method, where h is some small

Figure 3.2: The three internal coordinates of the HON molecule.
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displacement value.
∂2U

∂x2
=
U(x+ h) + U(x− h)− 2U(x)

h2
(3.1)

∂2U

∂x∂y
=
U
(
x+h
y+h

)
− U

(
x−h
y+h

)
+ U

(
x+h
y−h
)

+ U
(
x−h
y−h
)

4h2
(3.2)

Equation (3.1) is applicable to all ‘on-diagonal’ terms of the matrix, while Equation (3.2)

applies to all ‘off-diagonal’ terms. While these derivatives could be found using Cartesian

coordinates, it would require over 100 calculations whereas defining the system in internal

coordinates requires only 19 calculations in total.



∂2U
∂r2OH

∂2U
∂rOH∂rON

∂2U
∂rOH∂ cos θ

∂2U
∂rON∂rOH

∂2U
∂r2ON

∂2U
∂rON∂ cos θ

∂2U
∂ cos θ∂rOH

∂2U
∂ cos θ∂rON

∂2U
∂ cos θ2


However, the coordinate displacements of the vibrational modes are easier to interpret,

visualize, and mass-weight when expressed in Cartesian coordinates, so the 3x3 Hessian

matrix is converted to a 6x6 Hessian matrix according to the following transformation:

Fcart(l) =
∑
j

∑
k

d(intj)

d(cartl)

∂2U

∂(intj)∂(intk)

d(intk)

d(cartl)

When expressed another way, where x1 and x2 are the combination of Cartesian coordinates

being considered, and y1, y2, and y3 are the three internal coordinates:

∂2f(y1, y2, y3)

∂x1∂x2
=

3∑
i=1

3∑
j=1

∂yi
∂x1

∂2f(y1, y2, y3)

∂yi∂yj

∂yj
∂x2

(3.3)

These derivatives ∂yi
∂xn

are contained in what is known as ‘Wilson’s B Matrix’, which for

this molecule is
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Figure 3.3: The calculation of new coordinates for a normal mode: where A=the
displacement coordinates from the eigenvector, q=the magnitude of choice, B=the
equilibrium coordinates of the molecule, and C=the new coordinates of the normal mode.


cos θ sin θ − cos θ − sin θ 0 0

sin2 θ
rOH

− sin θ cos θ
rOH

− sin2 θ
rOH

sin θ cos θ
rOH

− sin θ
rON

0 sin θ
rON

0 0 −1 0 1 0


The resultant 6x6 Hessian matrix consists of the Hx, Hy, Ox, Oy, Nx, and Ny Cartesian

coordinate derivatives as the rows and columns; each value is then multiplied by
√
m1m2

−1

and all units converted to atomic units to obtain the final mass-weighted Hessian matrix.

The diagonalization of the 6x6 Hessian matrix yields six eigenvalues, three of which are

near zero, and their associated eigenvectors. The other three eigenvalues correspond to the

three vibrational modes of the molecule, where the eigenvalue is equal to the square of the

vibrational frequency. The associated eigenvectors contain the displacements of each atom

along a Cartesian axis, in the same order as the rows and columns of the Hessian matrix.

By adding or subtracting these values from the Cartesian coordinates of the equilibrium

geometry, new coordinates are obtained that describe the position of the atoms during the

vibration of that normal mode.
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3.1.2 Calculating Transition Dipole Moment and Molar Absorp-

tivity

The dipole moment of a molecule is the difference in two charges with opposite signs across

a given distance: to calculate the dipole moment of a molecule at a given geometry, the

change in those charges as a function of the electric field (Fρ) is determined by calculating

the energy of the molecule when placed in oriented electric fields of varying strengths. Then,

by taking the following derivative

µρ = − ∂E
∂Fρ
|Fρ=0

the dipole moment, µρ, of the molecule along a given Cartesian axis ρ can be calculated.

The number of points used to calculate this dipole moment can be as few as three, if a linear

fit is confirmed.

In order to calculate the transition dipole moment, the dipole moments as a function of

normal mode must be obtained. This means that for a range of displacements of a normal

mode on either side of the equilibrium geometry, the dipole moment is first calculated and

then fit as a function of that displacement magnitude q. Once the polynomial fit has been

achieved, the linear term is extracted as

∂µρ
∂q
|q=0

which is then used to obtain the transition dipole moment |Mji|2 between vibrational levels

j = 0 and i = 1, where Mji is in units of Debye.

|Mji|2 =
∑
ρ

| 〈i|µρ|j〉 |2 (3.4)

Finally, this transition dipole moment |Mji|2 and the corresponding normal mode frequency

ν0, in units of cm−1, are substituted into the following formula to obtain molar absorptivity
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Ā in units of km/mol: [17]

Gji = 41.6238|Mji|2 Ā =
Gjiν0

16.60540
(3.5)

3.2 Assumptions of the DHA

As stated in the name, the Double Harmonic Approximation assumes that the energy of

the molecule as a function of the normal mode is harmonic. Since the dipole moment is the

negative first derivative of the energy with respect to the electric field, this therefore requires

the dipole moment to be linear. These restrictions can be seen when expanding V (q) and

µ(q) via a Taylor series, then truncating them at the third and second terms, respectively.

V (q) = V (q)q=0 + q
dV (q)

dq q=0

+
q2

2!

d2V (q)

dq2 q=0

(3.6)

µρ(q) = µρ(q)q=0 + q
dµρ(q)

dq q=0

(3.7)

The second term of Equation 3.6 is zero at equilibrium and d2V (q)
dq2

is calculated by the

Hessian matrix, while V (q)q=0 is the equilibrium energy of the molecule. Therefore Equation

3.6 can be rewritten as:

V (q) = V (q)eq +
~ω
2
q2 (3.8)

This means that the terms of the potential energy equation for the DHA are set even

before performing an ab initio scan of the energies as a function of normal mode displacement.

However, this is not the case for the dipole moment equation. Due to the DHA assumption for

dipole moment being a linear term truncation (Equation 3.7), the transition dipole moment

term |Mji|2 =
∑

ρ | 〈i|µρ|j〉 |2 is

|Mji|2 =
∑
ρ

∣∣∣∣ 〈i|µρ(q)q=0 + q
dµρ(q)

dq q=0

|j〉
∣∣∣∣2

This expression can be simplified based on two pieces of knowledge about of the system:

first, that the observed IR spectra peaks are for the transition between the n = 0 and n = 1
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energy levels, j = 0 and i = 1; and second, that since the system is a harmonic oscillator,

movement between the energy levels can be described by the ladder operators â+ and â. The

raising operator â+, when applied to a harmonic wavefunction |φn〉, raises the energy level

n by one and produces an eigenvalue times that new wavefunction:

â+ |φn〉 =
√
n+ 1 |φn+1〉 â |φn〉 = n |φn−1〉

The same process is true for the lowering operator â, which lowers the energy level by one;

however, n can never be less than 0 which indicates the ground-state energy level. If the

lowering operator is applied to φ0, the result is an eigenvalue of 0. The movement of the

harmonic oscillator can be either up or down one energy level, so the operator describing

this transition is a linear combination of the applied raising and lowering operators:

q̂ =
â+ + â√

2
(3.9)

When the energy levels of i and j are specified, the first term of |Mji|2 becomes the

overlap integral of 〈1|0〉 multiplied by a constant which is therefore zero, and second term

simplifies to

|M01|2 =
∑
ρ

∣∣∣∣dµρ(q)dq q=0

〈1|q|0〉
∣∣∣∣2

The movement between energy levels is denoted by the term 〈1|q|0〉; the lowering operator

can be substituted in for q, yielding a final expression for the transition dipole moment that

depends only on the calculated dipole moments of the normal mode.

|M01|2 =
∑
ρ

∣∣∣∣∣
√

1

2

dµρ(q)

dq q=0

∣∣∣∣∣
2

(3.10)

3.3 Calculations using DHA

All ab initio energy calculations were completed using the NWChem [22] computational

program; for these DHA calculations the methods QCISD [19] and CCSD(T) [6] were

implemented, with the 6-311++G** Pople [8, 12, 11, 7] and aug-cc-pVTZ Dunning basis

24



sets. [10] All other calculations were done using programs written in Maple, which can be

found in the Appendices for reference.

The QCISD and CCSD(T) methods applied here both include electron correlation,

which is a correction that accounts for the instantaneous interaction between electrons

in a molecule. QCISD stands for quadratic configuration interaction of single and double

excitations, and corrects size-consistency errors that occurred with the CISD method; it was

developed by the Pople group, and is on par with the CCSD method. Size-consistency is the

concept that the energy of two non-interacting systems is equal to the sum of their energies

when calculated separately, and is one of the main issues caused by limiting the terms

included in configuration interaction. CCSD(T) is an abbreviation for the coupled-cluster

method with full treatment for single and double excitations, and perturbative treatment

used to estimate triple excitations. Unlike configuration interaction, coupled-cluster has no

errors with size-consistency as it uses an exponential ansatz for the wavefunction instead of

a linear combination ansatz.

The two basis sets used are by different creators, Pople and Dunning. The Pople basis

sets use different numbers of primitive Gaussian functions to model the atomic orbital basis

function. The 6-311++G** basis set is a split-valence triple-zeta basis set, with additional d

and p polarization functions on non-hydrogen atoms and hydrogen respectively, and diffuse s

and p functions for all atoms. For HON, this includes a total of 51 basis functions. Dunning’s

basis sets are called ‘correlation-consistent’ and are optimized using CISD wavefunctions; due

to this, they are focused at best modeling the correlation energy of valence electrons. All

Dunning basis sets contain polarization functions on the valence shells, denoted by ‘pV’, after

which comes the size of the basis set; the aug-cc basis sets have additional diffuse functions

added to each atom. the aug-cc-pVTZ basis set is a correlation-consistent polarized valence

triple-zeta basis set and contains a total of 115 basis functions for HON. [Paci]
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3.3.1 System Specifications

The displacement value h was set at 0.01 when calculating the values of the Hessian matrix.

The frequencies extracted from the diagonalization of that matrix were converted to units

of cm−1, and the displacement vectors converted to Å. The value of q in Figure 3.3 ranged

from -5 to 5 in increments of 0.5; all future data discussed also uses these parameters. The

electric fields used to obtain the dipole moments of the molecule had strengths of -0.002 and

0.002 atomic units and were applied along either the x-axis and y-axis for each normal mode,

at each value of q.

Although the Double Harmonic Approximation uses the linear term of a polynomial fit

to calculate the transition dipole moment of a normal mode, this does not necessarily mean

that a linear equation is the best fit. For a given degree of polynomial, the y-intercept of

each fitted equation should be equal to the equilibrium dipole moment of the molecule; if

this is not the case, higher-order terms are required. Convergence in the y-intercept term

occurred between the cubic and quartic fits, and so the linear term of the cubic polynomial

was extracted and used to calculate the transition dipole moment |Mji|2 (Equation 3.10).

3.3.2 Comparison with Literature Values

Bozkaya used the CCSD(T) method and a cc-pCVQZ basis set to calculate molecule

geometries, energies, and frequencies that can be compared with our results. The cc-pCVQZ

basis set contains 174 total basis functions for hydrogen, oxygen, and nitrogen, whereas the

aug-cc-pVTZ basis set used for our calculations contains 115. Despite Bozkaya’s calculations

containing significantly more functions to describe the atomic orbitals, our equilibrium

geometries and harmonic frequencies were quite close to their reported values for both HON

and its isotopic counterpart DON. However, Bozkaya did not calculate molar absorptivities

for the molecules, and so any further comparisons will continue in Chapter Four.

Maier, however, calculated harmonic frequencies and molar absorptivities for HON, DON,

and their isotopic nitrogen counterparts using QCISD and the 6-311++G** basis set which
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Table 3.1: Left column calculated using CCSD(T)/aug-cc-PVTZ; right column (Bozkaya’s)
calculated using CCSD(T)/cc-pCVQZ. [5]

Calculated Bozkaya’s

Eh −130.271 Ha −130.417 Ha
rHO 0.972 Å 0.9676 Å
rON 1.335 Å 1.3255 Å
θHON 107.3° 107.47°

HON ω1 3699 cm−1 3728 cm−1

HON ω2 1232 cm−1 1247 cm−1

HON ω3 1118 cm−1 1138 cm−1

DON ω1 2692 cm−1 2713 cm−1

DON ω2 1151 cm−1 1180 cm−1

DON ω3 892 cm−1 897 cm−1

has 78 basis functions. As seen in Table 3.2, there is very close agreement between our

calculated values and those of Maier, thus reinforcing our conclusion that Maier used the

Double Harmonic Approximation to obtain the molar absorptivities listed. Nearly every

value is a close match, except for one: the molar absorptivities of the third vibrational

mode of DON. We find this value to be strangely off when all other numbers agree so

closely, especially considering that the HON and HO15N pair had extremely similar molar

absorptivities; it would be expected that DON and DO15N would follow this trend as our

own values did.

To ensure that this discrepancy was not due to a miscalculation on our parts, we

calculated the harmonic frequencies and molar absorptivities also using CCSD(T)/6-

311++G**, and compared both Pople basis set results to those obtained with the

CCSD(T)/aug-cc-pVTZ combination in Table 3.3.
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Table 3.2: A comparison between our calculated vibrational frequencies and molar
absorptivities, and those of Maier [15], using QCISD/6-311++G**.

Frequencies (cm−1) Molar Intensities (km⁄mol)

Calculated Maier Calculated Maier

HON
3778.2 3780.3 75.2 74.3
1231.8 1232.1 2.69 1.77
1141.5 1142.5 182 177

HO15N
3778.2 3780.3 75.2 73.9
1222.3 1222.4 9.48 8.40
1128.0 1129.1 169 168

DON
2750.4 2751.9 39.9 40.
1169.7 1171.1 94.8 95
895.9 895.8 49.1 77

DO15N
2750.4 2751.9 39.9 40.
1147.9 1149.2 92.6 93
894.0 893.9 48.6 48
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Table 3.3: Comparison between the three combinations of method and basis set we used to calculate harmonic frequency and
molar absorptivity.

Frequencies (cm−1) Molar Intensities (km⁄mol)

QCISD/
6-311++G**

CCSD(T)/
6-311++G**

CCSD(T)/
aug-cc-PVTZ

QCISD/
6-311++G**

CCSD(T)/
6-311++G**

CCSD(T)/
aug-cc-PVTZ

HON
3778.2 3744.7 3699.6 75.2 68.7 81.0
1231.8 1220.6 1231.7 2.69 1.60 4.5
1141.5 1127.5 1118.1 181.5 183.9 196.0

HO15N
3778.2 3744.3 3699.6 75.2 70.4 81.0
1222.3 1210.6 1222.8 9.48 11.6 10.9
1128.0 1114.6 1104.3 169.4 163.8 180.1

DON
2750.4 2725.6 2692.4 39.9 37.8 41.7
1169.7 1158.8 1150.6 94.8 98.5 86.4
895.9 884.9 892.5 49.1 49.4 56.6

DO15N
2750.4 2725.6 2692.4 39.9 37.8 41.7
1147.9 1137.1 1129.0 92.6 96.1 84.1
894.0 883.1 890.7 48.6 48.8 56.2
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The Dunning basis set clearly has an effect on the molar absorptivity values, raising them

when compared to the Pople basis set with the exception of mode 2 of DON and DO15N,

which decreased instead. This is rather intriguing as mode 2 is the 100% intensity mode

for the deuterium isotope according to Maier’s experiments, and when comparing our own

molar absorptivity values. Still, whether the cc-pVTZ calculations provide more accurate

data is debatable as there are no experimental values to compare to; at best, ratios of the

molar absorptivity values can be compared to integrated intensities of experimental peaks.

However, we can hope that if the frequency values are closer to those of experiment, then

the molar absorptivity values may be closer to the true value as well.

Regarding the isotopic substitutions, changing N for 15N had no effect on the vibrational

frequencies of mode 1 − which makes sense because it is the H-O stretch − and caused

inconsistent fluctuations for modes 2 and 3. Swapping hydrogen for deuterium decreased the

vibrational frequency of mode 1 by approximately 1000 cm−1, and increased the separation

between modes 2 and 3, hopefully decoupling them. We have yet to further pursue this

phenomenon, however.

3.3.3 Comparison with Anderson’s Values

The vibrational frequency values measured by the Anderson group each have an associated

response peak of some absorption intensity; as explained in Equation 1.1, a ratio of these

integrated absorbance intensities is proportional to the ratio of their corresponding molar

absorptivity coefficients, thus comparisons between calculations and experiment can be done

for the frequencies and molar absorptivity ratios as seen in Table 3.4.

Since mode 2 has such a minimal response as to be unmeasurable, there is no experimental

frequency value ν2, and the only integrated absorbance intensity ratio is between mode 3

and mode 1; we still include the calculated mode 2 values here for the sake of completeness.

When comparing accuracy between the methods QCISD and CCSD(T) for a given basis

set, CCSD(T) calculates closer vibrational frequencies while QCISD yields a closer molar

absorptivity ratio, which is inconclusive as to which method is more accurate. A comparison
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Table 3.4: Comparison between our calculated frequencies and experimentally measured
frequencies. [20] Bottom line is a ratio between molar absorptivities for calculated values,
and integrated absorbance intensities for experimental values.

QCISD/
6-311++G**

CCSD(T)/
6-311++G**

CCSD(T)/
aug-cc-pVTZ

Experiment

ν1 3778.24 3744.68 3699.61 3475.85
ν2 1231.80 1220.64 1231.66 —
ν3 1131.51 1127.48 1118.12 1098.84
ν3/ν1 2.41 2.67 2.42 2.38

between basis sets 6-311++G** and aug-cc-pVTZ for the method CCSD(T), however, shows

the Dunning basis set to be more accurate for both vibrational frequencies and molar

absorptivity ratio. Additionally, the molar absorptivity ratio calculated by CCSD(T)/aug-

cc-pVTZ is extremely close to that of QCISD/6-311++G**. From these comparisons, we

can somewhat confidently conclude that the more rigorous method and higher order basis

set are more accurately describing the vibrational states of HON.

However, ‘more accurately’ does not mean that this description is sufficiently accurate.

A plot of the harmonic energy functions for each normal mode was overlaid with the

corresponding ab initio energy values in Figure 3.4. While modes 2 and 3 have some harmonic

curvature apparent, the offset between the calculated energy values and the harmonic energy

function is still significant for points past q = ±2. By contrast, mode 1 is clearly not parabolic

and not at all well-described by the Double Harmonic Approximation.
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Figure 3.4: The ab initio energies (black) and quadratic curves from the Double Harmonic Approximation (blue) as a function
of normal mode displacement. While modes 2 (center) and 3 (right) have recognizable harmonic curvature, mode 1 (left) is
clearly not well-described by the DHA.
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3.4 Conclusions about DHA

The Double Harmonic Approximation can be a good starting point for approximating the

molar absorptivity values of a molecule’s normal modes. However, while the harmonic energy

functions and dipole moment cubic fits for 3HON are in excellent agreement with the ab

initio data points for the q = ±0.5 displacements in Figures 3.4 and 3.5, any values of q

beyond those limits display some amount of error, depending on the vibrational mode. This

is especially prevalent for the potential energy curve of mode 1, and the x- and y-dipole

moments of mode 3.

It is clear that higher order polynomials must be employed to describe the system and

minimize this error. This is best indicated by mode 1, whose potential energy surface has

clear anharmonic curvature; all terms included in the potential energy function beyond the

quadratic are anharmonic adjustments. The next concern is, what approach should be taken

in order to calculate these anharmonic corrections?
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Figure 3.5: The ab initio calculated dipole moments (black) and cubic fit equations (blue)
used for the Double Harmonic Approximation as a function of normal mode displacement.
Top row are dipole moments in the x-direction, bottom row are in the y-direction.
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Chapter 4

Beyond the Double Harmonic

Approximation

4.1 Anharmonicity

The potential energy curve in Figure 4.1 is an example of an anharmonic oscillator, with a

steep rise in energy as the atoms draw closer and a slower rise that levels off as the atoms move

apart. As mentioned in Chapter 3, the Double Harmonic Approximation does accurately

describe a small portion of the curvature near the origin, and so the potential energy equation

of the harmonic oscillator can be used as a starting model. [16] The corrections added on to

this model take the form of higher order polynomial terms, whose coefficients can be included

in the Hamiltonian operator to obtain the energy levels of the anharmonic oscillator.

As the system is no longer a harmonic oscillator, the energy levels are no longer exactly

~ω apart; instead, as the energy of the system increases the separation between the energy

levels decreases. This means that ladder operators cannot be applied to the wavefunctions

of the anharmonic oscillator to determine transition probability as they had been with the

Double Harmonic Approximation. One of our methods for obtaining the anharmonic molar

absorptivities requires explicitly calculating this value and so this issue will be addressed at

that point, as well as how it is overcome.
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Figure 4.1: A plot of the potential energy as a function of mode 1 for 3HON. Left: harmonic
wavefunctions of n=0, n=1, n=2 energy levels; the n=1 and n=2 wavefunctions extend far
outside the limits of the potential energy curve on the left. Right: anharmonic wavefunctions
of n=0, n=1, n=2 energy levels; linear combinations of harmonic wavefunctions modify the
n=1 and n=2 anharmonic wavefunctions to better lie within the limits of the potential energy
curve, and thus are more accurate. This is most clearly seen at the n=2 energy level, but is
also somewhat apparent at n=1.

4.2 Coupling

While ideally each vibrational mode is distinct and not interacting with other vibrational

modes of the molecule, this is unlikely when two modes are close in energy. This interaction

between the modes means that it is difficult to separate a specific vibrational movement and

assign it to one energy level, for example; the total potential energy of the system is also

different from what it would be were the modes non-interacting.

The HON molecule has already provided a reason for including coupling through the

literature: while two of the papers (Anderson [20] and Maier [15]) discussed in Chapters 1

and 2 refer to vibrational mode 2 as the O-N stretch and vibrational mode 3 as the bend of

the molecule, another (Lee [14]) switches those designations so mode 2 is the bend and mode

3 is the O-N stretch. Our own observations of the vibrational modes yielded inconclusive

results as the two modes appeared to experience both movements simultaneously. As these
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two modes are only 100 cm−1 apart in energy, it is plausible that coupling is a contributor

to the system and should be considered accordingly when calculating the energy.

V (q1, q2, q3) = V1(q1) + V2(q2) + V3(q3) + V12(q1, q2) + V13(q1, q3) + V23(q2, q3) + V123(q1, q2, q3)

(4.1)

Coupling between each pair of vibrational modes, as well as all three modes simultaneously,

should be included to fully model the system; however three-way coupling can be extremely

difficult to calculate. The results presented here currently only take two-way coupling into

account.

4.3 Vibrational 2nd Order Perturbation Theory (VPT2)

Vibrational second-order perturbation theory (VPT2) is an approximation method for the

Schrodinger equation that assumes the potential energy surface of the system can be

expressed as a quartic polynomial with respect to the coordinates of the vibrational modes.

[25, 2]

V (q) =
1

2

∑
ωiq

2
i +

1

3!

∑
φijkqiqjqk +

1

4!

∑
φijklqiqjqkql (4.2)

The first term describes the harmonic portion of the potential, while the cubic and quartic

terms describe the anharmonic effects; φijk and φijkl are the third- and fourth-order

derivatives of the potential energy with respect to displacement of the normal mode q. The

total Hamiltonian of the system is therefore also a sum of the harmonic approximation of the

system and additional cubic and quartic corrections, referred to as perturbations (Equation

4.3).

Ĥ = T̂ +
1

2

∑
ωiq

2
i +

1

3!

∑
φijkqiqjqk +

1

4!

∑
φijklqiqjqkql (4.3)

The harmonic approximation of the system is known as the unperturbed Hamiltonian

operator Ĥ(0) [16] and includes the first two terms of Equation 4.3, while the cubic terms

are included in the first-order Hamiltonian Ĥ(1) and the quartic terms in the second-order
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Hamiltonian Ĥ(2), as seen in Equation 4.4. [25]

Ĥ(0) = T̂ +
1

2

∑
ωiq

2
i Ĥ(1) =

1

3!

∑
φijkqiqjqk Ĥ(2) =

1

4!

∑
φijklqiqjqkql (4.4)

The cubic and quartic force constants φ are calculated from numerical derivatives, which

requires some small displacement value h to be defined; the third- and fourth-derivative

equations of the finite difference method can be found in the Appendix. Literature includes

various suggestions for the magnitude of this variable: some quantum chemical software

default to 0.047 a0 [1, 2], while some authors suggest ranges between 0.006 to 0.02 a0 [2], or

the step size of each mode being proportional to the square-root of the harmonic frequency

[24], and others recommend step sizes ranging from 0.12 a0 to 0.2 a0 depending on the degree

of derivative. [25]

4.3.1 Applying VPT2

The frequencies and molar absorptivities of HON, HO15N, DON, and DO15N were calculated

using VPT2 by first obtaining 57 ab initio energies for use with the finite difference method.

A total of 19 different displacement components were used, ranging between 0.1Åto 0.5Åin

increments of 0.025Åin order to determine the best displacement value. Once the cubic and

quartic force constants had been calculated, they were plugged into the following equations

[25] along with the harmonic frequencies (ω) to solve for the anharmonic constants (units

of cm−1). The ‘on-diagonal’ terms (Equation 4.5) are those whose quadratic force constants

were taken relative to the same vibrational mode, and so would lie along the diagonal of a

matrix, while the opposite is true for the ‘off-diagonal’ terms (Equation 4.6). [4]

16χii = φiiii −
∑
j

(
8ω2

i − 3ω2
j

)
φ2
iij

ωj
(
4ω2

i − ω2
j

) (4.5)
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4χij = φiijj −
∑
k

φiikφjjk
ωk

+
∑
k

2ωk
(
ω2
i + ω2

j − ω2
k

)
φ2
ijk

∆ijk

†

∆ijk = (ωi + ωj − ωk) (ωi + ωj + ωk) (ωi − ωj + ωk) (ωi − ωj − ωk) (4.6)

†Rotational term is excluded because rotational corrections are not being considered at this time.

These six resultant anharmonic constants (χ11, χ22, χ33, χ12, χ13, and χ23) were used to

calculate the three anharmonic vibrational frequencies of the molecule:

νi = ωi + 2χii +
1

2

∑
i 6=j

χij (4.7)

A similar process was followed to determine the anharmonic transition dipole moments

of each vibrational mode, although the equation is too long to place here and therefore can

be found in the Appendix. [23] However, the equation required also calculating the linear,

quadratic, and cubic derivatives of the dipole moments in the x- and y-directions with

respect to the normal modes. These values, the previously calculated quadratic, cubic, and

quartic force constants, and the harmonic frequencies were all used to obtain two anharmonic

transition dipole moments: one in the x-direction, and the other in the y-direction. These

values were plugged into Equation 3.5 for Gji from Chapter 3 and, with the corresponding

anharmonic frequency values, used to obtain the anharmonic molar absorptivities of the

vibrational modes.

4.3.2 Results of VPT2

Of the 19 displacement values used, the two smallest values of 0.1 and 0.125Å yielded results

that were abnormal when compared to the larger displacement values. As the displacement

values continued to increase, the frequency and molar absorptivity values both decreased at a

roughly linear rate and showed no sign of leveling off, which was concerning. However, there

was a slight plateau around 0.3Å, and so all numerical results referred to were calculated

using the 0.3Å displacement.
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Table 4.1: A comparison of our VPT2 anharmonic frequencies to those calculated by
Bozkaya. [5]

Ours Bozkaya

HON
3492.44 3523
1194.68 1215
1086.87 1108

DON
2563.6 2605
1125.16 1156
869.80 876

Before comparing the results of VPT2 to other models, they were first checked against

the anharmonic frequencies calculated by Bozkaya. [5] While both sets of calculations used

the CCSD(T) level of theory, Bozkaya used a higher level of basis set, cc-pCVQZ, that

additionally differs from aug-cc-pVTZ in that it contains core-valence functions but no diffuse

functions. It is interesting to note that our calculated anharmonic frequencies are closer to

those of experiment than Bozkaya’s, despite using a smaller basis set, as seen in Table 4.1.

However, it is likely this is due to the lack of diffuse functions included in the cc-pCVQZ

calculations which appear important to include due to some of 3HON’s unique characteristics.

When comparing the results obtained using VPT2 to values previously discussed,

the anharmonic frequencies calculated using VPT2 decreased relative to the harmonic

frequencies calculated using the Double Harmonic Approximation, but drew much closer

to the experimental values measured by the Anderson group [20] and Maier [15] as can be

seen in Table 4.2. VPT2 does seem to over-correct the lower frequency modes however, as

mode 3 of HON and mode 2 of DON both changed from being above or approximately equal

to the experimental measurements to between 10-25 cm−1 below. A comparison with the

molar absorptivity ratios of Maier was not done as the intensities of Maier’s spectra were

generated through isomerization rather than a product-limited reaction.

While calculating the frequencies and molar absorptivities was a good comparison to

determine if the method was doing better than the Double Harmonic Approximation, we

were also able to check the quality of model another way. Since the cubic and quartic force
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Table 4.2: A comparison between the vibrational frequencies and molar absorptivities
calculated using the Double Harmonic Approximation (DHA) and VPT2. VPT2 values
given were calculated using a displacement value of 0.3Å.

Frequencies (cm−1) Molar Abs. (km⁄mol)

DHA VPT2
Maier
(Exp)

DHA VPT2

HON
3699.61 3492.43 3467.2 80.958 62.533
1231.66 1194.68 — 4.5217 1.9321
1118.12 1086.87 1095.6 196.01 168.17

HO15N
3699.61 3493.17 3466.4 80.972 62.500
1222.84 1185.34 — 10.953 7.1552
1104.27 1075.39 1085.6 180.11 160.49

DON
2692.39 2563.6 2592.95 41.718 34.917
1150.56 1125.16 1149.0 86.423 82.659
892.46 869.80 868.8 56.582 53.176

DO15N
2692.39 2583.02 2564.6 41.712 34.921
1128.95 1104.41 1127.9 84.094 80.445
890.67 868.14 867.2 56.204 52.887

constants were calculated using the finite difference method, we substituted the on-diagonal

terms into a quartic polynomial for each vibrational mode and plotted the equation against

the ab initio energies used to obtain the force constants originally; this process was repeated

using the dipole moment derivatives and the ab initio obtained dipoles. Each of the 19 of

the displacement values was plotted for the potential energy and x- and y-dipole moments

in Figure 4.2, although there was little variation between the functions.

Just as with the DHA, not all of the data points are modeled by the polynomial. The fit

is much better since the anharmonic terms are included, but begins to diverge from the data

points for q values of ±4 and beyond when plotting the potential energy. The dipole moment

plots show even more deviation, with the y-dipole moments of all three modes ceasing to fit

well beyond ±3. The lack of fit for the x-dipole moments is not nearly as blatant, but is

still obvious. Since the quartic polynomial does not model the potential energy curve well,

it is clear that higher order anharmonic corrections are required, which means going beyond

VPT2.
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Figure 4.2: Top: VPT2 calculated polynomials plotted against ab initio energies (points).
Center and Bottom: VPT2 calculated polynomials plotted against ab initio obtained dipoles
(points), for the x-dipole (center) and y-dipole (bottom) components. Only on-diagonal
terms were considered and plotted against their respective modes in each case.
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4.4 Variational Method: Fitting of ab initio Energies

While the application of perturbation theory allowed for the inclusion of anharmonicity in

the system, the 4th order polynomial was not sufficiently accurate. In order to use higher

order polynomials to model these vibrational modes and calculate their frequencies and

molar absorptivities, a different approximation method is required. The variational method

approximates the system with a trial wavefunction, then minimizes the energy with respect

to the variational parameters. The energy of this trial wavefunction will always be higher

than the true energy of the system, and any variations made that lower the resultant energy

are closer to the exact answer. [Sherrill]

Considering these possible higher order terms, the potential energy equation describing

this system has the following form:

V (q) = V0 + c2q
2 + c3q

3 + c4q
4 + c5q

5 + ...+ cnq
n (4.8)

The corresponding Hamiltonian operator describing this system is expanded to the same

power, where the coefficients of the potential energy equation are also those of the

Hamiltonian operator:

Ĥ = T̂ + c2q̂
2 + c3q̂

3 + c4q̂
4 + c5q̂

5 + ...+ cnq̂
n (4.9)

To obtain these constants for the Hamiltonian, we calculate ab initio potential energy surfaces

as a function of each individual vibrational mode, as well as two-dimensional energy surfaces

that included vibrational mode coupling. A polynomial equation is then fit to the resultant

curve, and the coefficients extracted for use with each respective Hamiltonian; however, since

each set of coefficients describes a specific set of conditions regarding which vibrational modes

are active or frozen, each Hamiltonian operator is also bound by those same conditions. The

summation of these partial descriptions then forms a final operator that describes the entirety

of the system.
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If coupling is not being considered as part of the system, the overall Hamiltonian

matrix would consist of the harmonic oscillator, with the additional terms describing the

independent anharmonic contributions arising from modes 1, 2, and 3.

Ĥnc = Ĥ0 + Ĥ(q1) + Ĥ(q2) + Ĥ(q3) (4.10)

To calculate the energies of the system when coupling is considered, the Hamiltonian matrices

with vibrational modes 1 and 2, 1 and 3, and 2 and 3 simultaneously active are included.

The coefficients of these operators are derived from a two-dimensional fit, considering each

possible combination where both modes contribute.

Ĥc = Ĥ0 + Ĥ(q1) + Ĥ(q2) + Ĥ(q3) + Ĥ(q1, q2) + Ĥ(q1, q3) + Ĥ(q2, q3) (4.11)

4.4.1 Linear Variation Method

The linear variation method defines the trial wavefunction ψ as a linear combination of

basis functions φ. [16] As the anharmonic oscillator being considered is a correction to

the harmonic oscillator, its trial wavefunction can be defined as a linear combination of

harmonic wavefunctions. Therefore, the anharmonic wavefunction of the system ψ(q1) can

be rewritten as ψ(q1) =
∑i

ν1=0 cν1φν1(q1). When this expansion is continued one step further

to a wavefunction dependent upon all three vibrational modes:

ψ(q1, q2, q3) =
i∑

ν1=0

j∑
ν2=0

k∑
ν3=0

cν1,ν2,ν3φν1(q1)φν2(q2)φν3(q3) (4.12)

The number of harmonic wavefunctions considered for each vibrational mode are denoted

by the integers i, j, and k, and so the total number of terms in the linear combination of

ψ(q1, q2, q3) is (i + 1) × (j + 1) × (k + 1). Since the Hamiltonian is operating on harmonic

wavefunctions, the terms of its expansion once again consist of raising and lowering operators

(Equation 3.9). A symbolic example of this application is shown in Equation 4.13, yielding
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q̂2 0 1 2 3 4

0 X X
1 X X
2 X X X
3 X X
4 X X

Figure 4.3: Example matrix of the q̂2 operator for harmonic energy levels 0 through 4.
Rows are the initial energy level (νx) and columns are the final energy level (ν ′x). X marks
any combinations that yield a non-zero value.

a linear combination of the coupling between the initial and final energy levels n and m.

〈m|q̂2|n〉 =
1

2

[√
n2 − nδm,n−2 + (2n+ 1)δm,n +

√
(n+ 1)(n+ 2)δm,n+2

]
(4.13)

The application of the q̂2 operator to a harmonic energy level will only yield a non-zero value

if the final energy level is −2, 0, or +2 relative to the initial. For a system that considers

the harmonic energy levels from 0 to 4, for example, this would mean that only the marked

elements in the q̂2 matrix (Figure 4.3) contain a non-zero value.

Since the anharmonic wavefunction that q̂n is being applied to consists of the product of

three harmonic wavefunctions, the dimensions of the q matrices are (i+ 1)× (j+ 1)× (k+ 1)

and each overall matrix element is the product of three separate matrix elements. A symbolic

form of this is shown in Equation 4.14, where n = n1 + n2 + n3 for the powers of q̂.

〈ν ′1ν ′2ν ′3|q̂n1,2,3|ν1ν2ν3〉 = 〈ν ′1|q̂
n1
1 |ν1〉 〈ν ′2|q̂

n2
2 |ν2〉 〈ν ′3|q̂

n3
3 |ν3〉 (4.14)

An explicit example of Equation 4.14 is written below, for a single matrix element of the q̂4

operator, with i, j, and k each equal to 4.

〈3|q̂21|1〉 〈2|q̂22|0〉 〈1|q̂03|0〉 (4.15)

While the first two terms of Equation 4.15 are non-zero, the third term 〈1|q̂03|0〉 is does not

result in equivalent energy levels and therefore the value of the overall matrix element is
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Figure 4.4: The potential energy surfaces of the coupling between modes 1 and 2 (left), 1
and 3 (center), and 2 and 3 (right).

zero; the term would be located in the 2nd row (1 × 1 × 2) and 24th column (4 × 3 × 2) of

the 125× 125 matrix (5× 5× 5). The optimal number of energy levels i, j, and k to include

in the approximate wavefunction is determined later in this chapter.

4.4.2 Fitting the Uncoupled and Coupled Systems

In order to determine the importance of including coupling terms in the calculations, energies

were calculated both with and without coupling terms included. The non-coupling or

uncoupled system included terms that were dependent upon a single vibrational mode, while

the coupled terms required single-point energy calculations where two vibrational modes were

modified to obtain a two-dimensional potential energy surface as a function of both normal

modes.

To determine the most accurate polynomial fit to use when describing the system, a series

of increasingly higher-order polynomial equations were applied to the ab initio energies of

each vibrational mode, and the root mean-squared error (RMSE) values collected. Table 4.3

shows that a 4th order fit, as was used in VPT2, proves to be an extremely poor descriptor

as the RMSE value of mode 1 is larger than the value of the energy level itself, 3699 cm−1,

thus reinforcing the need for a higher-order fit. A ‘convergence’ in the RMSE values begins

with the 10th order for mode 1, and the 8th order for modes 2 and 3; therefore a 10th order

polynomial fit is required to best describe the system. This conclusion is also applied to the
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two-dimensional coupling equations.

For the two-dimensional equations, only the difference between the coupled and

uncoupled potential energy surfaces for each pair of vibrational modes was used to avoid

fitting extraneous amounts of data. Figure 4.5 contains a visual representation of this for

each coupled pair, where the first plot of each row in the figure is a summation the energies

of two non-coupled vibrational modes (such as in the first row of Figure 4.6) plotted at all

combinations of displacement. The final result is a set of points with values of zero along

the x- and y-axes, and the remaining values consisting of the correction to the energy when

coupling between those two modes is considered. This also prevents the two-dimensional

equation from having to consider any ‘diagonal’ non-coupling polynomial terms, as those are

found by fitting the relevant non-coupled vibrational mode.

The constants obtained by the fitted equations in Figure 4.6 are applied to the

corresponding q̂ matrices in the Hamiltonian operators of Equations 4.10 and 4.11, so that

the final Hamiltonian matrix can be obtained. However, this first requires that a trial

wavefunction for the linear variation method be decided upon so the q̂ operator to be applied.

4.4.3 Degree of Variation

As the number of harmonic wavefunctions included in the linear combination of Equation

4.12 increases, the energies obtained by trial wavefunction should converge towards a lowest

Table 4.3: Root Mean-Squared Error (RMSE) of energies (cm−1) for uncoupled modes.
Bolded values show where RMSE stopped decreasing by approximately an order of magnitude
when fitting polynomial increased.

q1 q2 q3

4th order 4003.2 356.77 96.304
5th order 1638.6 241.20 98.941
6th order 296.86 12.465 8.5598
8th order 18.087 1.6857 0.77050
10th order 1.4155 1.1134 0.34757
12th order 1.2182 0.95763 0.26636
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Figure 4.5: The potential energy surfaces of the coupled modes 1 and 2 (top), 1 and 3
(middle), and 2 and 3 (bottom). The left column shows the summation of the energy surfaces
of the individual modes at each combination of displacements; the center column contains ab
initio coupled energy surface; the surface in the right column is plotted using the difference
between the center and left columns, and the coupling polynomial is fit to these data points.
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Figure 4.6: The non-coupling (top) and coupling (bottom) fitted potential energy surfaces.
The blue dots on the coupling plots are the data points used to fit the two-dimensional
polynomial equation.
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value. These energy values were obtained by diagonalizing the Hamiltonian matrix, which

resulted in a set of eigenvalues and their corresponding eigenvectors. Since there are three

vibrational modes, there are three independent degrees of variation to take into account. In

order to determine the lowest number of harmonic wavefunctions that should be included

while still modeling the system accurately, the Hamiltonian matrix of each separate mode

was diagonalized. From these we obtained the ground- and first-excited state energies of

each vibrational mode, for a sequentially increasing number of included harmonic energy

levels.

The bolded values in Table 4.4 denote the relevant number of energy levels included for

each mode before some degree of convergence was reached. As our initial calculations for

the linear variation method restrict all three modes to the same final energy level, levels 0

→ 8 is the target set of harmonic wavefunctions for linear combination.

4.4.4 Calculated Frequencies and Molar Absorptivities

The notation used in this section is as follows: the maximum energy level included for a

vibrational mode refers to all calculations completed with that set of harmonic wavefunctions,

and a set of three integers denotes the maximum energy level for modes 1, 2, and 3 in that

order. For example, the numbers ‘5,4,4’ would refer to mode 1 including levels 0 → 5, and

Table 4.4: Frequency values (cm−1) individually calculated for the non-coupled modes
using the 10th order polynomial fit. Increasing numbers of harmonic energy levels, beginning
from the ground-state, were included to see how many terms were required before the energy
converged.

νn q1 q2 q3

0 → 4 3533.56 1242.742 1126.896
0 → 5 3514.51 1242.744 1126.875
0 → 6 3512.60 1242.735 1126.867
0 → 7 3511.09 1242.734 1126.864
0 → 8 3510.36 1242.734 1126.864
0 → 9 3510.23 1242.734 1126.864
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Table 4.5: All values were calculated using CCSD(T)/aug-cc-pVTZ. The harmonic values
were calculated using the Double Harmonic Approximation from Chapter 3. The ’Converged
to’ row contains the significant figures that had ceased changing as the number of included
harmonic levels increased.

Non-coupled Frequencies (cm−1) Molar Absorptivities (km⁄mol)

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

Harmonic 3699.6097 1231.6635 1118.1235 80.958 4.5217 196.011

2,2,2 3649.1360 1243.2526 1128.0374 57.541 5.0105 164.361
3,3,3 3579.1434 1243.2883 1128.4002 57.809 5.0327 165.759
4,4,4 3533.5693 1242.7421 1126.8955 56.715 5.0314 165.645
5,5,5 3514.5076 1242.7435 1126.8754 56.015 5.0312 165.619
6,6,6 3512.6042 1242.7352 1126.8675 55.900 5.0311 165.621
7,7,7 3511.0856 1242.7342 1126.8642 55.825 5.0311 165.621
8,8,8 3510.3560 1242.7342 1126.8642 55.788 5.0311 165.621

Converged to 3510 1242.7342 1126.8642 55. 5.0311 165.621

modes 2 and 3 each with levels 0→ 4.

As the degree of variation included for each vibrational mode had been determined indi-

vidually, we repeated the calculations using the sum of the three non-coupled Hamiltonian

matrices to obtain the frequencies of each mode relative to the system. The maximum

energy level included for each mode began at 2, and continued sequentially up to 8. For

these calculations, the maximum energy level of the modes were kept equivalent so that

i=j=k. The results of these calculations can be found in Table 4.5, with the frequency

and molar absorptivities calculated using the Double Harmonic Approximation included for

reference. Modes 2 and 3 both began to converge towards a minimum energy around the

0 → 7 levels, as predicted by the separated calculations; mode 1, however, could likely use

even more harmonic energy levels included in the linear combination as it had not quite

converged to the 1 cm−1 digit. The molar absorptivities reflect these same conclusions,

converging at 0→ 7 or even earlier for modes 2 and 3.

A comparison of the anharmonic frequencies and molar absorptivities calculated using the

linear variation method to those obtained through the DHA show that while the frequency
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of mode 1 decreased, the frequency of modes 2 and 3 actually increased. This is opposite

the trend observed with VPT2, and so it indicates that a major component of the system

is not being included. The molar absorptivity values for modes 1 and 3 are approximately

on par with those of VPT2, but mode 2 has again increased where VPT2 decreased. Since

these values were calculated using the non-coupling terms of the Hamiltonian operator only,

a comparison with values that include coupling is paramount.

With the inclusion of coupling terms, as described in Equation 4.11, the changes in the

energies of each mode become more difficult to interpret. One of the most obvious effects

of including coupling, as seen in Table 4.6, is that the 0→ 8 linear combination is unstable

for all three modes; the energy value increases dramatically in each case, which indicates

that the description of the system has failed in some way. This failure is also apparent in

mode 1 for the 0→ 7 energy levels, as the value decreases sharply compared to its previous

converging trend. Another obvious result, however, is that the addition of the coupling terms

decreases the energy of the vibrational modes to be much closer to the values calculated by

VPT2 and observed experimentally.

Since mode 1 is no longer stable at the 0→ 7 energy level set, it is apparent that further

analysis into the effects of coupling on the system are required. One method of achieving this

is to consider different combinations of maximum energy levels across the vibrational modes,

rather than all three modes having the same maximum value. Additionally, an analysis of

the coefficients in the eigenvector of an anharmonic wavefunction could provide insight into

which terms have the most contribution.
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Table 4.6: Vibrational frequencies and molar absorptivity values calculated from the non-
coupled and coupled Hamiltonian matrices, for an increasing number of included harmonic
energy levels.

Freq. (cm−1) Non-coupled Coupled

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

2,2,2 3649.1360 1243.2526 1128.0374 3625.7499 1214.5696 1087.8806
3,3,3 3579.1434 1243.2883 1128.4002 3538.3740 1208.0945 1077.9936
4,4,4 3533.5693 1242.7421 1126.8955 3493.7363 1206.5255 1073.7876
5,5,5 3514.5076 1242.7435 1126.8754 3473.2576 1206.2840 1073.1313
6,6,6 3512.6042 1242.7352 1126.8675 3463.1233 1206.2436 1072.9261
7,7,7 3511.0856 1242.7342 1126.8642 3304.7611 1206.2202 1072.8200
8,8,8 3510.3560 1242.7342 1126.8642 4715.6069 2551.5535 1478.7074

Converged to 3510 1242.734 1126.8642 3400 1206.2 1072.

Molar Abs. (km/mol) Non-coupled Coupled

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

2,2,2 57.541 5.0105 164.361 57.172 4.8949 158.510
3,3,3 57.809 5.0327 165.759 57.151 4.8902 158.354
4,4,4 56.715 5.0314 165.645 56.075 4.8848 157.839
5,5,5 56.015 5.0312 165.619 55.358 4.8835 157.720
6,6,6 55.900 5.0311 165.621 55.113 4.8834 157.693
7,7,7 55.825 5.0311 165.621 52.545 4.8833 157.678
8,8,8 55.788 5.0311 165.621 74.943 10.3298 217.333

Converged to 55. 5.0311 165.621 55 4.883 157.6
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Chapter 5

Conclusions

We have shown that the Double Harmonic Approximation, while a good initial basis for

modeling a vibrational system, is not sufficient to end at when describing the 3HON

molecule. The anharmonic corrections added by Vibrational Second-Order Perturbation

Theory brought the vibrational frequencies closer to those measured experimentally; however,

the ratio of the molar absorptivities between modes 3 and 1 for VPT2 was 2.62, which was

further away from the Anderson group’s calculated 2.38 (personal communication) than the

2.42 of the Double Harmonic Approximation. Additionally, plots of the quartic polynomials

showed that the force constants used were still insufficient at describing the entirety of the

potential energy curve.

The next step beyond VPT2 was to use the linear variation method, and approximate

a trial wavefunction as a linear combination of multiple harmonic wavefunctions. The

Hamiltonian operator applied to this trial wavefunction contained force constants up to the

10th derivative, as that was the polynomial order that best fit the potential energy curves. We

determined that including the coupling terms in the Hamiltonian matrix made a significant

difference when calculating the vibrational frequencies for each mode, but concluded that

different combinations of the maximum energy levels of the modes needed to be explored.
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5.1 Varying Energy Level Combinations

Of the three vibrational modes, the most anharmonic is clearly mode 1; therefore while

performing a systematic analysis of energy level combinations, mode 1 should never remain

constant while both modes 2 and 3 change. As an initial first step of this analysis, we

calculated the vibrational frequencies of the non-coupled and coupled modes while varying

the maximum energy levels of modes 1 and 2 from i = j = 5 up to 9, with mode 3 remaining

constant at 0 → 4, and while varying modes 1 and 3 with mode 2 constant for the same

ranges. The non-coupled and coupled anharmonic frequency values of mode 1 for these

combinations are reported in Table 5.1.

There are two key observations that can be drawn from this, relative to the results at

the end of Chapter 4. The first is that the frequencies of mode 1 are no longer behaving

erratically when increased to a maximum energy level of 9; as long as either mode 2 or

mode 3 is of a lower energy level, it appears to provide a stabilizing influence on mode 1

− or no longer be a cause of destabilization. The second observation is that when mode

2 is held constant, as in the table on the right, the coupled frequencies converge over a

short range; by contrast, when mode 3 is held constant and mode 2 varies with mode 1,

the coupled frequencies experience much larger differences while converging towards a lower

energy value. This indicates that the coupling between modes 1 and 2 may be stronger

than the coupling between modes 1 and 3, but further investigation into the eigenvector

coefficients is recommended to confirm or deny this.

Table 5.1: Anharmonic frequencies (cm−1) of mode 1 calculated using the linear variation
method. Left: mode 3 held constant while modes 1 and 2 include increasing numbers of
energy levels; Right: mode 2 held constant while modes 1 and 3 include increasing numbers
of energy levels.

Non-coupled Coupled

5,5,4 3514.51 3476.32
6,6,4 3512.60 3467.84
7,7,4 3511.09 3464.56
8,8,4 3510.36 3462.74
9,9,4 3510.23 3460.78

Non-coupled Coupled

5,4,5 3514.51 3488.30
6,4,6 3512.60 3486.81
7,4,7 3511.09 3485.26
8,4,8 3510.36 3484.64
9,4,9 3510.23 3484.45
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5.2 Impact of Research

Previous work by Bozkaya [5] has shown the importance of including anharmonic effects when

calculating the vibrational frequencies of 3HON, but there is no documentation examining

the impact of anharmonicity on the dipole moments of this triatomic molecule. We have

found that the inclusion of anharmonicity and coupling, as well as the methods used to

calculate these parameters, have significant effect on the dipole moments and thus the molar

absorptivity values and ratio of the vibrational modes.

Correct modeling of the dipole moments of the molecule is imperative for obtaining

reasonable molar absorptivity values, and we found that accurate vibrational frequencies

are not always indicators of a reliable model. Additionally, coupling effects for 3HON must

be considered in addition to anharmonicity when calculating vibrational frequencies and

dipole moments, as neglecting the coupling terms results in increasing deviations from the

experimental molar absorptivity ratio. Whether 1HNO exhibits such impact from coupling

terms would be interesting to determine at a later point in time.

5.3 Future Directions

It is clear that there are still many nuances and mysteries in how the coupling between the

three vibrational modes of 3HON affect the calculated frequencies and molar absorptivities.

Some additional ways to explore these avenues include making contour plots of the ground

and excited energy levels for different combinations of vibrational mode coupling, plotting the

trial wavefunctions with respect to a given vibrational mode, or analyzing the contributions of

each harmonic wavefunction as given in the eigenvector. It is also possible that in addition to

the two-way coupling already being considered, three-way coupling may have a non-negligible

effect on the energy of system.

There is no shortage of future work to be continued with this project, although the

researcher must be cautious to not fall into the trap of over-fitting the system, for modeling
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a system with too many parameters is just as faulty as modeling it with too few. However,

a thorough knowledge of the system being studied will prevent this issue and aid future

interpretation of results.
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A Additional Equations

A.1 Finite Difference Method

Third Derivatives:

φiii =
V (xi + 2h)− 2V (xi + h) + 2V (xi − h)− V (xi − 2h)
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Fourth Derivatives:

φiiii =
V (xi + 2h)− 4V (xi + h) + 6V (xi)− 4V (xi − h) + V (xi − 2h)
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A.2 VPT2

Transition Dipole Moment[23, 3]:
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B VPT2 Force and Dipole Constants

The following four sections contain the VPT2 force and dipole constants derived through

the Finite Difference Method with a displacement of 0.3Å, for the isotope variations of HON

investigated. The terms i, j, k, and l denote the normal modes being considered (1, 2, or

3). The calculations were performed using CCSD(T)/aug-cc-pVXZ.
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B.1 HON

Table B.1.1: Cubic force constants φijk (cm−1) of HON in normal coordinates.

ijk TZ QZ

111 -2609.10919 -2637.34200
112 -44.25554 -47.84107
113 33.33172 33.06437
122 450.57048 397.60215
123 -429.81742 -432.01403
133 367.49580 420.41427
222 -224.78955 -244.03171
223 -65.78999 -73.38880
233 -197.32172 -211.11206
333 -294.66784 -256.35382

Table B.1.2: Quartic force constants φijkl (cm−1) of HON in normal coordinates.

ijkl TZ QZ

1111 1559.79677 1571.98631
1112 -41.85608 -39.88093
1113 37.89766 38.98173
1122 -518.29186 -469.09857
1123 440.25201 446.87334
1133 -405.84078 -466.07581
1222 80.57730 77.38351
1223 -36.15769 -41.61014
1233 18.96237 25.04999
1333 12.34529 7.63085
2222 164.27952 139.50469
2223 -121.11540 -100.99847
2233 171.91269 176.13945
2333 -60.18118 -80.17454
3333 202.11579 217.86030
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Table B.1.3: Linear dipole moment constants µαi (Debye) of HON in normal coordinates.

x-component y-component

i TZ QZ TZ QZ

1 -0.0274506 -0.0279054 0.0408852 0.0417887
2 -0.0224146 -0.0148872 -0.0012719 -0.0018040
3 0.1367785 0.1378688 -0.0069611 -0.0062095

Table B.1.4: Quadratic dipole moment constants µαij (Debye) of HON in normal
coordinates.

x-component y-component

ij TZ QZ TZ QZ

11 0.0092807 0.0093337 -0.0065246 -0.0063720
12 -0.0011433 -0.0015217 -0.0033666 -0.0032244
13 -0.0049540 -0.0050108 0.0019340 0.0022790
22 -0.0013010 -0.0007294 -0.0066262 -0.0059927
23 0.0060169 0.0058954 0.0037412 0.0037026
33 -0.0082928 -0.0086946 -0.0054203 -0.0059093

Table B.1.5: Cubic dipole moment constants µαijk (Debye) of HON in normal coordinates.

x-component y-component

ijk TZ QZ TZ QZ

111 0.0036347 0.0039467 -0.0056134 -0.0056517
112 -0.0002081 0.0001013 -0.0003415 -0.0005305
113 -0.0031671 -0.0031202 0.0026741 0.0028657
122 0.0000614 0.0001896 0.0014996 0.0013993
133 0.0040065 0.0045485 -0.0022687 -0.0020136
222 0.0009083 0.0006007 -0.0034633 -0.0031371
223 -0.0002178 -0.0004167 0.0017386 0.0018737
233 -0.0014804 -0.0019289 -0.0012404 -0.0012280
333 -0.0026806 -0.0025136 0.0041354 0.0043834
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B.2 HO15N

Table B.2.1: Cubic force constants φijk (cm−1) of HO15N in normal coordinates.

ijk TZ QZ

111 -2609.10841 -2637.41115
112 -40.82218 -44.05646
113 36.54653 36.66480
122 525.08632 479.76810
123 -418.05680 -428.14366
133 296.60684 342.04620
222 -206.91871 -222.39694
223 -49.36075 -54.07615
233 -176.26546 -192.17043
333 -333.83102 -304.84180

Table B.2.2: Quartic force constants φijkl (cm−1) of HO15N in normal coordinates.

ijkl TZ QZ

1111 1559.78398 1572.03357
1112 -44.64189 -43.06770
1113 34.40030 35.22760
1122 -593.48433 -552.89618
1123 424.99662 440.63452
1133 -332.81325 -385.55566
1222 88.88956 87.40641
1223 -31.61484 -37.89428
1233 11.66576 16.68874
1333 15.79277 13.00374
2222 212.12884 186.18369
2223 -150.02120 -135.68205
2233 158.82298 166.70345
2333 -39.49515 -55.02698
3333 182.15248 188.59710
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Table B.2.3: Linear dipole moment constants µαi (Debye) of HO15N in normal coordinates.

x-component y-component

i TZ QZ TZ QZ

1 -0.0274591 -0.0279143 0.0408845 0.0417884
2 -0.0344271 -0.0281007 -0.00080812 -0.0013495
3 0.1338089 0.1353573 -0.0068854 -0.0061848

Table B.2.4: Quadratic dipole moment constants µαij (Debye) of HO15N in normal
coordinates.

x-component y-component

ij TZ QZ TZ QZ

11 0.0092816 0.0093348 -0.0065244 -0.0063720
12 -0.0006787 -0.0010259 -0.0035170 -0.0034212
13 -0.0049992 -0.0050930 0.0016551 0.0019988
22 -0.0024880 -0.0019465 -0.0072040 -0.0066216
23 0.0065097 0.0065289 0.0036328 0.0036696
33 -0.0072185 -0.0075416 -0.0048098 -0.0052502

Table B.2.5: Cubic dipole moment constants µαijk (Debye) of HO15N in normal coordinates.

x-component y-component

ijk TZ QZ TZ QZ

111 0.0036353 0.0039475 -0.0056139 -0.0056524
112 -0.0004185 -0.0002209 -0.0001165 -0.0002586
113 -0.0031093 -0.0030920 0.0026494 0.0027822
122 0.0003235 0.0002788 0.0016134 0.0015670
133 0.0038307 0.0044205 -0.0023602 -0.0021596
222 0.0006878 0.0007221 -0.0038381 -0.0036175
223 0.0001241 -0.0000288 0.0015994 0.0018046
233 -0.0013875 -0.0016691 -0.0012670 -0.0013117
333 -0.0030003 -0.0029057 0.0037575 0.0040012
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B.3 DON

Table B.3.1: Cubic force constants φijk (cm−1) of DON in normal coordinates.

ijk TZ QZ

111 1618.63707 1636.36731
112 20.88396 176.53105
113 1.75939 2.16267
122 3.18871 23.40674
123 56.09660 47.98549
133 -471.91592 -471.46664
222 479.62243 476.03289
223 -41.24018 -47.81450
233 40.56843 85.15277
333 77.02547 84.82942

Table B.3.2: Quartic force constants φijkl (cm−1) of DON in normal coordinates.

ijkl TZ QZ

1111 827.45464 831.12263
1112 13.69073 -66.44363
1113 -22.70245 -22.14776
1122 -14.01186 -11.38250
1123 40.62675 35.91258
1133 -440.62911 -446.68124
1222 6.20898 9.11578
1223 -1.08733 -6.59475
1233 12.12303 54.30648
1333 40.16657 43.42283
2222 173.02589 164.10199
2223 -23.84304 -20.95551
2233 2.36664 -7.63544
2333 -26.80761 -25.78494
3333 219.21690 218.25354
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Table B.3.3: Linear dipole moment constants µαi (Debye) of DON in normal coordinates.

x-component y-component

i TZ QZ TZ QZ

1 0.0259346 0.0263387 -0.0335750 -0.0343085
2 -0.0951206 -0.0954338 0.0053846 0.0085587
3 0.0858225 0.0859994 -0.0076853 -0.0073440

Table B.3.4: Quadratic dipole moment constants µαij (Debye) of DON in normal
coordinates.

x-component y-component

ij TZ QZ TZ QZ

11 0.0070439 0.0070771 -0.0047402 -0.0046157
12 -0.0039127 -0.0046828 -0.0000977 0.0004177
13 0.0014520 0.0014486 -0.0025473 -0.0026206
22 -0.0000605 0.0013224 -0.0024479 -0.0023128
23 0.0042266 0.0038370 -0.0005387 -0.0003213
33 -0.0062924 -0.0065096 -0.0069323 -0.0068511

Table B.3.5: Cubic dipole moment constants µαijk (Debye) of DON in normal coordinates.

x-component y-component

ijk TZ QZ TZ QZ

111 -0.0022891 -0.0024459 0.0034836 0.0035034
112 -0.0016953 -0.0018298 0.0016717 0.0021237
113 -0.0015074 -0.0014939 0.0011733 0.0012138
122 -0.0016710 -0.0024037 0.0014184 0.0017413
133 -0.0010646 -0.0012582 -0.0005774 -0.0006261
222 0.0031680 0.0036775 -0.0013773 -0.0017896
223 -0.0009426 -0.0016652 0.0013394 0.0015100
233 -0.0003214 -0.0002742 -0.0003117 -0.0003374
333 0.0004794 0.0003973 0.0032284 0.0033470
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B.4 DO15N

Table B.4.1: Cubic force constants φijk (cm−1) of DO15N in normal coordinates.

ijk TZ QZ

111 1618.62311 1621.06671
112 20.74181 20.60924
113 1.65828 0.21026
122 2.47374 2.71312
123 58.54682 57.64906
133 -474.69424 -466.13525
222 466.84099 463.80532
223 -38.76942 -38.42457
233 39.48008 39.67383
333 77.32763 83.54789

Table B.4.2: Quartic force constants φijkl (cm−1) of DO15N in normal coordinates.

ijkl TZ QZ

1111 827.44656 824.77864
1112 13.69398 13.01988
1113 -22.62218 -22.81597
1122 -14.26133 -16.46174
1123 43.03574 42.77630
1133 -442.84626 -444.53952
1222 6.07683 5.45804
1223 -1.22067 -0.04312
1233 11.79864 10.91846
1333 40.25010 43.81736
2222 166.99453 164.00570
2223 -22.33627 -21.66706
2233 2.76741 -0.15745
2333 -28.21454 -26.83039
3333 222.84034 215.80775
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Table B.4.3: Linear dipole moment constants µαi (Debye) of DO15N in normal coordinates.

x-component y-component

i TZ QZ TZ QZ

1 0.0259275 0.0264407 -0.0335734 -0.0342950
2 -0.0947514 -0.0946644 0.0053614 0.0052339
3 0.0856438 0.0860206 -0.0073813 -0.0072701

Table B.4.4: Quadratic dipole moment constants µαij (Debye) of DO15N in normal
coordinates.

x-component y-component

ij TZ QZ TZ QZ

11 0.0070434 0.0069431 -0.0047403 -0.0045062
12 -0.0038847 -0.0038862 -0.0000809 -0.0000971
13 0.0014452 0.0013576 -0.0025592 -0.0025641
22 -0.0001097 -0.0000101 -0.0024039 -0.0023097
23 0.0042277 0.0042007 -0.0004414 -0.0004925
33 -0.0063293 -0.0065365 -0.0069520 -0.0067731

Table B.4.5: Cubic dipole moment constants µαijk (Debye) of DO15N in normal coordinates.

x-component y-component

ijk TZ QZ TZ QZ

111 -0.0022886 -0.0024009 0.0034834 0.0034029
112 -0.0016875 -0.0017806 0.0016604 0.0016270
113 -0.0014967 -0.0014847 0.0011554 0.0012326
122 -0.0016552 -0.0020863 0.0014063 0.0013394
133 -0.0010671 -0.0012943 -0.0005892 -0.0006374
222 0.0030961 0.0033219 -0.0013615 -0.0012935
223 -0.0009013 -0.0013301 0.0013175 0.0013094
233 -0.0003237 -0.0002366 -0.0003177 -0.0003636
333 0.0004598 0.0004236 0.0032751 0.0033926
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C Maple Programs

The following codes were written in the mathematical program Maple, and used to calculate

the normal mode displacements, vibrational frequencies, transition dipole moments, and

molar absorptivities discussed. The input data came from single-point energy calculations

performed using NWChem, and read in from Excel spreadsheets.
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C.1 Normal Modes

This worksheet uses the internal coordinate values of the equilibrium geometry, and the

second derivatives of the internal coordinates as determined through the Finite Difference

Method. It outputs the harmonic vibrational frequencies of the molecule and their

corresponding displacement vectors.
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C.2 Double Harmonic Approximation

This worksheet calculates the molar absorptivities of the vibrational modes using the Double

Harmonic Approximation. It requires the harmonic vibrational frequencies, and the potential

energies of each vibrational mode as a function of displacement for a negative, zero, and

positive energy field in each of the Cartesian directions (x and y).
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C.3 Vibrational Second-Order Perturbation Theory (VPT2)

This worksheet executes the processes ‘Calc Anfreq’ and ‘Calc AnDM’ to calculate the

VPT2 frequencies and transition dipole moments of the molecule for nineteen displacement

values, which are then used to determine the molar absorptivities. It requires the harmonic

vibrational frequencies, the nineteen displacement values, and the potential energies of fifty-

seven different combinations of displacements from the equilibrium geometry (−2q, −q, 0,

+q, and +2q) for modes 1, 2, and 3; each set of energies must be completed for a negative,

zero, and positive energy field in each of the Cartesian directions (x and y).
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C.4 VPT2 Processes

This worksheet contains two processes: ‘Calc Anfreq’ and ‘Calc AnDM’. ‘Calc Anfreq’

calculates the cubic and quartic force constants of the molecule and uses them to determine

the anharmonic vibrational frequencies. ‘Calc AnDM’ calculates the cubic and quartic force

constants, and the linear, quadratic, and cubic dipole constants of the molecule to determine

the transition dipole moments in each of the Cartesian directions (x and y).
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C.5 Anharmonic Contributions

This worksheet is used to determine the polynomial order that best describes the vibrational

modes, and the number of harmonic energy levels to include when calculating the anharmonic

frequencies via the Linear Variational Theorem. It fits polynomial equations of 6th, 8th,

10th, and 12th to the ab initio potential energy curves of each vibrational mode and

extracts the force constants, which are then used to calculate the Hamiltonian matrices for

increasing maximum harmonic energy levels. The resultant total Hamiltonian matrices are

diagonalized and the eigenvalues (anharmonic frequencies) and eigenvectors (contributions of

each harmonic energy level) are extracted. It requires non-coupled energies (as used for the

Double Harmonic Approximation) as well as coupled energies; the coupled energies consist

of 21 × 21 matrices for a negative, zero, and positive energy field in each of the Cartesian

directions (x and y).
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C.6 Linear Variational Theorem

This worksheet executes the processes ‘Coupled Fitting’, ‘Coupled Freq’, ‘Dipole Fitting’,

and ‘Dipole Cont’ to calculate the anharmonic vibrational frequencies, transition dipole

moments, and molar absorptivities of the molecule via the Linear Variational Theorem. The

anharmonic frequencies are calculated using both the non-coupled and coupled Hamiltonian

matrices, and the transition dipole moments are calculated using only the non-coupled

Hamiltonian matrices. The number of included harmonic energy levels for each mode are

specified, and a for loop used to sequence through multiple combinations of increasing

maximum energy level. It outputs the non-coupled and coupled anharmonic frequencies,

and the non-coupled and coupled molar absorptivities.
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C.7 Coupled Fitting Process

This worksheet contains the process ‘Coupled Fitting’. It fits the energies of the molecule

to a 10th order polynomial for each vibrational mode; the non-coupled energies are fit to a

one-dimensional equation, and the coupled energies are fit to a two-dimensional equation.

The coefficients of each fit are extracted as the force constants and saved in a text file.
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C.8 Coupled Frequency Process

This worksheet contains the process ‘Coupled Freq’. It calculates the anharmonic vibrational

frequencies of the molecule by determining q-matrices and multiplying them by their

respective force constants to yield Hamiltonian matrices; the Hamiltonian matrices contain

elements for all possible combinations of initial and final harmonic energy levels for modes

1, 2, and 3 (as considered simultaneously). Both a non-coupled Hamiltonian matrix and

a coupled Hamiltonian matrix are calculated and diagonalized to yield the energies and

wavefunction coefficients of the anharmonic energy levels. The individual non-coupled and

coupled Hamiltonian matrices, total Hamiltonian matrices, and anharmonic frequencies are

saved in a text file.
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C.9 Dipole Moment Fitting Process

This worksheet contains the process ‘Dipole Fitting’. It first calculates the dipole moment

of each vibrational mode for a given displacement, and then fits the resultant values to a

9th order polynomial; since only non-coupled energies are included, only a one-dimensional

equation is used. The coefficients of each fit are extracted as the dipole constants and saved

in a text file.
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C.10 Dipole Moment and Molar Absorptivity Process

This worksheet contains the process ‘Dipole Cont’. It calculates the transition dipole

moments of the molecule by determining q-matrices and multiplying them by their respective

dipole constants to yield Hermitian matrices; the Hermitian matrices contain elements for

all possible combinations of initial and final harmonic energy levels for modes 1, 2, and 3

(as considered simultaneously). Only non-coupled Hermitian matrices are included for the

dipole moment. The eigenvectors determined using ‘Coupled Freq’ are then read and used

with the dipole moment matrices to obtain scalar transition dipole moment values for each

combination of initial and final harmonic energy level, and the value for the 0→ 1 transition

extracted to calculate the molar absorptivities.
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