
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2019

Mixed Integer Programming Approaches to Novel Vehicle Routing Mixed Integer Programming Approaches to Novel Vehicle Routing

Problems Problems

Tony Kent Rodriguez
University of Tennessee, trodrig5@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Rodriguez, Tony Kent, "Mixed Integer Programming Approaches to Novel Vehicle Routing Problems. " PhD
diss., University of Tennessee, 2019.
https://trace.tennessee.edu/utk_graddiss/5411

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F5411&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Tony Kent Rodriguez entitled "Mixed Integer

Programming Approaches to Novel Vehicle Routing Problems." I have examined the final

electronic copy of this dissertation for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Industrial Engineering.

James Ostrowski, Major Professor

We have read this dissertation and recommend its acceptance:

John Kobza, Anahita Khojandi, Michael Langston

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Mixed Integer Programming Approaches

to Novel Vehicle Routing Problems

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Tony Kent Rodriguez

May 2019

c© by Tony Kent Rodriguez, 2019

All Rights Reserved.

ii

Acknowledgments

I would like to thank my advisor, Professor Jim Ostrowski, for his guidance during my time

as a graduate student. His guidance has played an important role in this thesis. I would

also like to thank the members of my committee, Professors Anahita Khojandi, John Kobza,

and Michael Langston. Your questions, encouragements, and advice have helped make this

thesis what it is.

I would like to express gratitude to the University of Tennessee for the funding I received

as a graduate student.

I would like to thank the friends I met while here, whose words of encouragement helped

make this possible. And lastly, I would like to thank Whitney for moving to Texas, which

finally convinced me to hurry up.

iii

Abstract

This thesis explores two main topics. The first is how to incorporate data on meteorological

forecasts, traffic patterns, and road network topology to utilize deicing resources more

efficiently. Many municipalities throughout the United States find themselves unable to

treat their road networks fully during winter snow events. Further, as the global climate

continues to change, it is expected that both the number and severity of extreme winter

weather events will increase for large portions of the US.

We propose to use network flows, resource allocation, and vehicle routing mixed integer

programming approaches to be able to incorporate all of these data in a winter road

maintenance framework. We also show that solution approaches which have proved useful

in network flows and vehicle routing problems can be adapted to construct high-quality

solutions to this new problem quickly. These approaches are validated on both random and

real-world instances using data from Knoxville, TN.

In addition to showing that these approaches can be used to allocate resources effectively

given a certain deicing budget, we also show that these same approaches can be used to help

determine a resource budget given some allocation utility score. As before, we validate these

approaches using random and real-world instances in Knoxville, TN.

The second topic considered is formulating mixed integer programming models which can

be used to route automated electric shuttles. We show that these models can also be used

to determine fleet composition and optimal vehicle characteristics to accommodate various

demand scenarios. We adapt popular vehicle routing solution techniques to these models,

showing that these strategies continue to be relevant and robust. Lastly, we validate these

techniques by looking at a case study in Greenville, SC, which recently received a grant from

iv

the Federal Highway Administration to deploy a fleet of automated electric shuttles in three

neighborhoods.

v

Table of Contents

1 Introduction 1

1.1 Integer Programming . 1

1.2 The Vehicle Routing Problem . 3

2 Allocating Limited Deicing Resources in Winter Snow Events 8

2.1 Introduction . 9

2.2 Deicing Vehicle Routing Problem . 10

2.3 MIP Formulation . 11

2.4 Heuristic Approach . 19

2.4.1 Capacity Expansion in a Flow Network Problem 19

2.4.2 Capacity Expansion Inspired Heuristic 21

2.5 Computational Experiments . 29

2.5.1 Experimental Procedure . 29

2.5.2 Results . 31

2.6 Conclusion and Future Work . 38

3 Using Optimization To Budget For Winter Road Maintenance Activities 40

3.1 Introduction . 40

3.2 Deicing Budgeting Problem . 43

3.3 Computational Experiments . 50

3.3.1 Experimental Procedure . 50

3.3.2 Results . 51

3.4 Conclusion . 54

vi

4 Deploying Automated Mobility Districts 55

4.1 Motivation and Background . 55

4.2 Automated Mobility Districts . 56

4.3 MIP Formulation . 57

4.4 Solution Method . 63

4.4.1 Online Route Construction . 63

4.4.2 Refinement with Tabu Search . 65

4.4.3 An Example . 66

4.5 Computational Experiments . 70

4.6 Results . 76

4.7 Conclusion . 86

5 Conclusions 88

5.1 Allocating Deicing Resources . 88

5.2 Automated Mobility Districts . 90

5.3 Future Work . 91

Bibliography 92

Vita 98

vii

List of Figures

2.1 Feasible first- and second-stage flows across arc (i, j). 15

2.2 s− t and t− s paths may not be disjoint. 24

2.3 Proportion of population unaffected by snow event under different treatment

techniques and levels of salt budget, random instances. 32

2.4 Proportion of arcs in network treated under different treatment techniques

and levels of salt budget, random instances. 33

2.5 Run time of different treatment techniques at various levels, random instances. 34

2.6 Proportion of population unaffected by snow event under different treatment

techniques and levels of salt budget, Knoxville instances. 35

2.7 Proportion of arcs in network treated under different treatment techniques

and levels of salt budget, Knoxville instances. 36

2.8 Run time of different treatment techniques at various levels, Knoxville instances. 37

3.1 Feasible first- and second-stage flows across arc (i, j). 48

3.2 Proportion of deicing materials needed to achieve various outcomes in random

instances. 52

3.3 Proportion of deicing materials needed to achieve various outcomes in

Knoxville, TN instances. 53

4.1 Road network for constructive and Tabu search example. 68

4.2 Test network from Greenville, SC. The corresponding graph contains 554

nodes and 1340 edges. 71

4.3 Distribution of origins of requests within the network. Lighter colored regions

correspond to fewer requests, while darker regions correspond to more requests. 72

viii

4.4 Distribution of destinations of requests within the network. Lighter colored

regions correspond to fewer requests, while darker regions correspond to more

requests. 73

4.5 Distribution of average travel speeds on road segments together with energy

consumption at those speeds. 75

4.6 Average objective value of best found solution under various strategies in

scenarios using default request level. Black bars indicate spread of best and

worst scenarios. 77

4.7 Average objective value of best found solution under various strategies in

scenarios using reduced request level. Black bars indicate spread of best and

worst scenarios. 78

4.8 Average objective value of best found solution under various strategies in

scenarios using additional request level. Black bars indicate spread of best

and worst scenarios. 79

4.9 Average energy consumption per mile (kWh/mi) of best found solution under

various strategies in scenarios using default request level. Black bars indicate

spread of best and worst scenarios. 81

4.10 Average energy consumption per mile (kWh/mi) of best found solution under

various strategies in scenarios using reduced request level. Black bars indicate

spread of best and worst scenarios. 82

4.11 Average energy consumption per mile (kWh/mi) of best found solution under

various strategies in scenarios using additional request level. Black bars

indicate spread of best and worst scenarios. 83

4.12 Average minimum number of vehicles required to be able to satisfy all requests

with without look-ahead initial route construction in each demand level. Black

bars indicate spread of best and worst scenarios. 84

4.13 Example network to show quicker routes may be less energy efficient. 86

ix

Chapter 1

Introduction

This chapter introduces some fundamental concepts that will be further explored through

this thesis. We begin by presenting a brief overview of integer programming and some of the

reasons that it has become popular as a modeling paradigm in recent years. We then turn

our attention to a particular problem which has benefited from this paradigm, which is the

vehicle routing problem.

1.1 Integer Programming

An integer programming (IP) problem is a mathematical optimization problem in which

some of the variables are restricted to be integers. This restriction allows for a diverse set of

scenarios to be modeled, ranging from how many discrete widgets a company should produce

so as to maximize profits to which road segments a delivery vehicle should traverse in order

to deliver said widgets to a set of customers in the most efficient manner.

In this work our focus will be on integer linear programs (ILP), which are integer programs

in which the objective function and all constraints can be expressed as linear functions. With

the added assumption of linearity, an ILP is an optimization problem that can be written in

the following matrix-vector form:

min cTx+ dTy (1.1)

1

subject to:

Ax+Gy ≤ b (1.2)

x ∈ Rn
+, y ∈ Zp+, (1.3)

where c ∈ Qn, d ∈ Qp, A ∈ Qm×n, G ∈ Qm×p, and b ∈ Qm. We note the slight abuse

of notation in (1.2). In this context, u ≤ v for two vectors u and v is taken to mean each

component of u is less than or equal to the corresponding component of v. A pure integer

program is when n = 0 (there are no continuous variables), and a mixed integer program

(MILP) is when n > 0 and p > 0 (there are both continuous and integer variables). The set

{(x, y) | Ax+Gy ≤ b, x ∈ Rn
+, y ∈ Zp+} is called the feasible region.

We note that, even in the restricted case of the y variables being binary (as opposed to

general integers), determining if the feasible region of a MILP is non-empty is one of Karp’s

classical 21 NP-complete problems [28]. Clearly, then, solving a MILP is NP-hard. However,

if y is fixed (or if p = 0), then (1.1) - (1.3) is a linear program, which can be solved in

polynomial time [27]. A more careful consideration of linear programming can be found in

Bertsimas and Tsitsiklis [8].

Even though many aspects of practical problems are inherently non-linear [39], MILP still

represents a powerful tool to address these problems. In addition to the obvious decisions

that can be modeled with integer variables, such as the workers that should be on a shift in

order to satisfy demand, decisions regarding yes/no questions can also be modeled under this

paradigm. Modeling yes/no decisions through binary variables allows a host of operational

decisions to be captured and addressed in MILP models.

An example of a problem which MILP has had great success with is the traveling salesman

problem (TSP). The classical TSP asks the following question: given a set of cities, what

is the shortest route to visit every city and return to the city of origin? We present the

formulation given by Dantzig, Fulkerson, and Johnson in their groundbreaking work [14].

Given a set of cities {1, 2, ..., n} and the distance for each pair of cities i, j given as cij, the

MILP formulation for the TSP is as follows:

2

min
n∑
i=1

n∑
j=1,j 6=i

cijxij (1.4)

subject to:
n∑

i=1,i 6=j

xij = 1 ∀j = 1, 2, ..., n (1.5)

n∑
j=1,j 6=i

xij = 1 ∀i = 1, 2, ..., n (1.6)

∑
i∈C

∑
j∈C

xij ≤ |C| − 1 ∀C ⊆ {2, 3, ..., n} (1.7)

xij ∈ {0, 1} ∀i, j = 1, 2, ..., n (1.8)

In (1.4) - (1.8), xij encodes if the path goes from city i directly to city j. We also note

that the primary technique put forward in [14] to solve a continental United States-spanning

49 city TSP instance, namely the use of cutting planes, is still in use today.

The encoding of yes/no questions in binary variables also allows many separate questions

to be addressed in the same MILP model. This can be important as many operational

decisions in a practical setting can impact other decisions that must be made, sometimes

even in other systems. This aspect of MILP is important for Chapters 2, 3, and 4, as each

of the problems considered in this work have multiple systems which require operational

decisions to be made.

1.2 The Vehicle Routing Problem

The vehicle routing problem (VRP) is that of determining an optimal set of routes a fleet of

vehicles must traverse in order to make deliveries to a set of customers. First introduced by

Dantzig and Ramser in [15], where it was called the truck dispatching problem, the vehicle

routing problem has become an important and well-studied problem within the fields of

combinatorial optimization and graph theory. The problem of efficiently routing vehicles is

a problem faced throughout several industries on a daily basis. Because of this, the economic

3

and ecological impacts are significant. Recently, the prestigious 2016 INFORMS Edelman

Award was given to UPS for their work on integrating optimization approaches into their

daily operations [25]. With their work on the VRP and optimizing other business activities,

UPS estimates their new approaches will save up to $400 million annually. Further, by

routing trucks more efficiently, they expect their CO2 emissions to drop by 100,000 tons

annually.

One of the most common ILP formulations for the VRP is the traveling salesman

generalization presented in [15]. In this formulation, it is assumed the input graph G = (V ,A)

has as its vertex set V the set of customers and the vehicle depot D. It is assumed that this

graph is complete, with (i, j) ∈ A representing the path necessarily to go from the location

corresponding to node i to the location corresponding to node j. We assume cij is the cost

associated with traversing this path from i to j. Thus, given G and the corresponding cij

values, together with the number of vehicles (or routes) available K, the VRP is

min
∑
i∈V

∑
j∈V

cijxij (1.9)

subject to:∑
i∈V

xij = 1 ∀j ∈ V \ {D} (1.10)

∑
j∈V

xij = 1 ∀i ∈ V \ {D} (1.11)

∑
i∈V

xiD = K (1.12)

∑
i∈V

xDi = K (1.13)

∑
i 6∈C

∑
j∈C

xij ≥ r(C) ∀C ⊆ V \ {D}, C 6= ∅ (1.14)

xij ∈ 0, 1 ∀i, j ∈ V (1.15)

In this formulation xij represents whether some route contains the path from node i to

node j. Constraints 1.10 and 1.11 ensure that only a single vehicle arrives and departs from

4

each customer. Constraints 1.12 and 1.13 force exactly K vehicles to leave and arrive at

the depot. The constraints in 1.14 are especially important in VRP formulations. These

ensure that the routes are connected, which, together with 1.12 and 1.13, makes sure that

each route also includes the depot. As they eliminate subtours, they are sometimes referred

to as subtour elimination constraints. We note that there are exponentially many of these

constraints. These constraints, and others which have been designed to cut off solutions

which contain subtours, have received much attention in the past [32, 11, 37]. In general,

the VRP is an NP-hard problem [13].

Since the VRP is a generalization of the traveling salesman problem, it is tempting to

think that the same solution approaches that have proved useful for that problem would also

be useful for solving VRP instances. This is often done with a combination of heuristics

and enforcing the constraints in 1.14 in a lazy fashion (i.e. only add the constraints which

are violated by candidate solutions). With these approaches, TSP instances with thousands

of nodes can often be solved on modern hardware, with the largest instance solved to date

having 85,900 nodes [7, 45, 5]. While these approaches have seen some success with VRP,

the sizes of instances which can be reliably solved is often limited to hundreds of nodes [33].

Because of the applicability of VRP problems, it is often necessary to produce high-quality

solutions to VRP instances with thousands of nodes in short periods of time. This being the

case, many heuristic solution approaches have seen wide use over the years.

One of the first heuristics developed for VRP instances remains one of the most popular to

date. This is the savings heuristic, developed by Clarke and Wright [12]. This likely remains

a popular approach because the idea is simple, implementations tend to be straight-forward,

and it often yields good results, despite the fact that it lacks a refinement phase. Roughly

speaking, this heuristic first produces |V| − 1 routes of the form (D, i,D) for i ∈ V \ {D}.

That is, each route has the vehicle leave the depot, visit customer i, then immediately return

to the depot. After this initialization, at each iteration, two routes are chosen and merged

so as to maximize the reduction in cost (or savings) of the merge. This is repeated until

no more feasible merges are possible, or until the pre-defined number of routes has been

achieved.

5

The savings algorithm presented by Clarke and Wright is a greedy heuristic. As such,

while it tends to be fast, it also can perform poorly. In a sense, as this algorithm takes

pairs of routes and merges them, one pair at a time, this is similar to trying to solve a

maximum weight graph matching problem by iteratively selecting edges of maximum weight

and adding them to the matching. Viewing the savings algorithm in this way, one obvious

modification is to compute the pairwise savings of each route merge then find the maximum

weight matching in the corresponding graph. For more details on this approach, see [16].

In addition to various savings heuristics, another important class of VRP algorithms

are cluster first, route second algorithms. Like the savings algorithms, most of these are

purely constructive, having no refinement phase apart from potentially rerunning the same

algorithm but with slightly different parameters. As the name would suggest, the main idea

behind these approaches are to first cluster the customers according to some approach, and

then to form the individual routes in the second phase. For standard VRP instances, given

a partition of the customers, the routes can be constructed by solving the corresponding

TSP instance. The main difference between these approaches then is in how the customers

are clustered. Fisher and Jaikumar form the clusters by solving a generalized assignment

problem [21], while Ryan, Hjorring, and Glover determine the clusters by considering a set

partitioning problem [48]. When the nodes of the graph have an obvious and meaningful

embedding in the plane, Renaud and Boctor cluster the customers according to their angles

from the depot [46].

In addition to constructing routes, many successful heuristic approaches refine the routes

after construction. These refinements take two forms: interroute refinements, and intraroute

refinements. Interroute refinements attempt to find better clustings of the customers, while

intraroute refinements attempting to find better routes under the current clustering. It is

common for a refinement strategy to alternate between interroute and intraroute refinements.

In the event that the routes can be proven to be optimal under a given clustering, obviously

intraroute refinements are unnecessary. While this can often be done in VRP instances such

as the one presented in 1.9, modern variations of the VRP often have several additional

complicating aspects.

6

Whether performing interroute or intraroute refinements, some of the most popular

approaches are metaheuristics rather than VRP-specific searches. Local searches have been

especially popular. This is likely due to the same reasons the savings heuristic remains

popular: they are often simple to understand, simple to implement, and perform well. One

such solution method is the Tabu search put forward by Glover [24]. Tabu search is a type

of iterative local search that is often quite good at escaping locally optimal points which are

not globally optimal. It does this by allowing the next solution at the next iteration to have

a non-improving (or even strictly worse) objective value. Because of this, cycling could easily

become a problem. In order to prevent cycling, some characteristic of the current solution

is stored (this characteristic being tabu), and for some number of iterations, solutions with

the given characteristic will not be considered.

In Chapters 2 and 3, we show that heuristic approaches which are similar to the savings

heuristic can be useful in routing deicing vehicles to cover a set of arcs within a graph.

Furthermore, in Chapter 4, we compare simple on-demand constructive heuristics with a

Tabu search in the context of routing automated shuttles to pick up and deliver customers

in an on-demand fashion.

7

Chapter 2

Allocating Limited Deicing Resources in

Winter Snow Events

This chapter is based on a paper submitted by Tony K. Rodriguez, Olufemi Omitaomu, and

James A. Ostrowski:

Tony K. Rodriguez, Olufemi Omitaomu, James A. Ostrowski. Allocating Limited

Deicing Resources in Winter Snow Events. Submitted to Journal on Vehicle

Routing Algorithms.

Authors Omitaomu and Ostrowski posed the question. Authors Rodriguez and Ostrowski

developed the algorithmic framework. Author Rodriguez developed the software, ran

the computational experiments, wrote the manuscript, and created all tables and figures.

Authors Omitaomu and Ostrowski edited the manuscript.

In this chapter we develop a novel method for allocating resources in the context of

reinforcing a network to make it more robust. This approach is based off of network flows

with difficult complicating subproblems, in this case vehicle routing. In addition to a new

mixed integer programming formulation for the problem, we develop a constructive heuristic

for the problem. We implement these approaches and show the strategies are better than

the currently used methods.

8

2.1 Introduction

Every winter, many cities face significant costs due to winter storms and road maintenance.

Snow and ice removal from roadways constitute a large portion of these costs, with the

direct costs totaling about $1.5 billion annually in the United States of America [17].

In addition to these extensive direct costs, several indirect costs also exist. Improperly

managed snow and ice events can result in obstructed and unsafe roadways, which leads to

prolonged business, school, and local government closures, in addition to an increase in traffic

accidents. Furthermore, the use of salt and other deicing chemicals causes damage to roads

and corrosion to infrastructure and vehicles [18]. As a result, intelligently managing winter

road maintenance fleets and decisions about which roads to treat by utilizing traffic data and

environmental factors can result in substantial increases to the well-being of a community.

The problem considered in this work is a variation of the Snow Plow Routing Problem.

This is a generalization of the Chinese Postman Problem [36] and the Capacitated Arc

Routing with Intermediate Facilities problem [23]. Often it is assumed that enough resources

are present to treat the road network under consideration completely. As a result, many of the

works that consider these problems have as their objective to minimize the monetary cost of

treating the road network, the time cost of treating the road network, the cost of maintaining

the fleet required to treat the road network, or some metric meant to capture inefficiencies

in treatment schedules [41, 42, 43, 44, 29]. While much research has been directed towards

problems of this kind, many works do not consider resource limiting constraints [29]. Since

many municipalities throughout the United States lack the resources to treat their roads

completely during a snowfall event, these models have limited utility in practice.

The focus of this work is to provide the City of Knoxville, TN with a rigorous framework

and methodology to manage its snow removal and deicing planning. Like many municipalities

in the southeastern United States, the City of Knoxville lacks the resources to treat the entire

road network during each snowfall event. The aim of this research is to determine which

roads to treat and the degree to which they should be treated to utilize the limited resources

available more efficiently. This paper lays the groundwork by defining the problem and

introducing a mixed integer programming (MIP) formulation of the problem, as well as a

9

constructive heuristic that performs well on the instances considered. The remainder of the

paper is structured as follows. In Section 2.2, the problem is formally defined. The MIP

formulation of the problem is contained in Section 2.3. Section 2.4 describes a heuristic

approach to solve the problem. Section 2.5 outlines the experimental procedure and results,

and Section 2.6 draws some conclusions.

2.2 Deicing Vehicle Routing Problem

Deicing chemicals, such as brine solutions and common road salt, together with plowing are

effective tools for snow and ice removal. Because many municipalities lack the resources

to treat every road within their boundaries completely, there are two significant limitations

with many snow removal systems: (i) the same amount of deicing material is applied to every

road, and (ii) the treated roads are preselected based only on traffic counts. In practice, this

results in streets with a high traffic volume being treated, while feeder streets, trouble spots,

and neighborhood roads often go untreated. Consequently, many residents are unable to

make it safely to these treated roads, lowering the overall utility gained from the treatment.

However, simply placing roads with trouble spots higher in priority to be treated could

also be unfavorable, as these roads may have little traffic. Further, some high-traffic streets

require little to no treatment due to environmental conditions at that location. These factors

together lead to some road segments being over treated, while entire swaths of the road

network go untreated. In a sense, while many approaches consider traffic data as well as

driving and weather conditions, none of them utilize them together in a cohesive manner.

As a result, these approaches can fail to identify the bottlenecks present in the road network

that citizens will encounter during snowfall events.

To address these issues, the following approaches are proposed. Data on solar radiation of

road segments and local weather forecasts, together with slope data about a road network,

can be used to quantify the fact that not all roads have equally bad driving conditions

during snowfall events. The solar radiation data and weather forecasts can be used in an

energy-balance framework [38] to estimate the amount of snow throughout the road network.

This information, together with slope data, is used to compute the Road Vulnerability Index

10

(RVI) of a road segment to a given snow event. RVI is meant to be a measure of how a snow

event impedes travel along a road segment, with higher RVI values corresponding to more

dangerous driving conditions. While we have access to these data sets for our Knoxville,

TN case study, we acknowledge that many municipalities will have access to different data,

as well as having different metrics by which they measure driving conditions. As a result,

our focus in this work is not on the specifics of computing the RVI of road segments, but

rather the mixed integer programming model that incorporates these RVI values. RVI values

should account for the fact that driving conditions are not equally bad on all road segments

during a winter snow event, with higher values corresponding to worse driving conditions.

Additional approaches and potential considerations for vulnerability scores can be found

in [50, 6, 49, 47].

To find the right balance of treating high-traffic streets versus trouble spots and

neighborhood roads, a two-stage network flow model is presented to model traffic on the

road network. It is assumed that the traffic capacity of a road segment is bounded by a

function of the traffic count of that road segment under normal driving conditions, the RVI

of the road segment, and the degree to which the road segment has been treated. This,

together with population and traffic data, allows for the modeling of sources and sinks, as

well as various kinds of traffic in the network. The objective is to find a snow plow route

that will maximize the flow through the road network after treatment, subject to salt, fuel,

and time constraints. This allows for the identification not only of which roads should be

treated but also the amount of deicing solution that should be applied to the treated roads.

2.3 MIP Formulation

The problem studied consists of routing deicing vehicles to a subset of the roads in the

network in a way that maximizes the utility of the treated network. These routes must obey

constraints on the salt and fuel capacities of the vehicles, as well as constraints on the total

salt and fuel usage and total time allotted.

Let G = (V ,A) be a multigraph, where the vertex set V represents the intersections and

various locations within the city, and the arc set A represents the road segments of the road

11

network. We denote by S ⊂ V the set of residences within the city and will refer to these

as supply nodes, and by D ⊂ V the set of commercial and government locations, that we

will call demand nodes. Also let Dep ∈ V be the fuel and salt depot location. In the model

presented, we assume a single depot, but this can be easily generalized to multiple depots by

using techniques similar to those in [29]. Further, let P be the set of heterogenous deicing

vehicles. We denote the salt capacity of vehicle p ∈ P as Qp
S and the fuel capacity as Qp

F .

For an arc (i, j) ∈ A, let TCi,j and RV Ii,j be the traffic count and RVI, respectively,

for the corresponding road segment. Let Smaxi,j , Smini,j be the maximum and minimum,

respectively, amount of deicing material allowed for road segment (i, j), and Stotal the total

amount of deicing material available. Also, we denote by Ti,j the amount of time it takes

to traverse the road segment and F p
i,j be the amount of fuel vehicle p ∈ P uses to traverse

road segment (i, j), with T total and F total being the total amount of plow time and fuel,

respectively, available. Note that a vehicle may traverse a road segment without treating

that road segment. Due to the speeds typically driven within a city, we assume that all

vehicles take approximately the same amount of time to traverse a given road segment –

that is, travel time across a road segment is a function of the road segment alone.

Below we provide a concise list of the parameters and variables within the mathematical

formulation.

G = (V ,A) Directed multigraph of the road network.

S Subset of nodes that represent first-stage flow sources/second-stage flow sinks.

D Subset of nodes that represent first-stage flow sinks/second-stage flow sources.

P Set of deicing vehicles.

Si First-stage flow supply/second-stage flow demand at node i ∈ S.

Di First-stage flow demand/second-stage flow supply at node i ∈ D.

Smaxi,j Maximum amount of deicing material allowed for road segment (i, j) ∈ A.

Smini,j Minimum amount of deicing material possible for road segment (i, j) ∈ A.

12

Stotal Total amount of deicing material available.

Ti,j Amount of time required to traverse road segment (i, j) ∈ A.

T total Total amount of vehicle time available.

F p
i,j Amount of fuel required for vehicle p ∈ P to traverse road segment (i, j) ∈ A.

F total Total amount of fuel available.

Qp
F Fuel capacity for vehicle p ∈ P .

Qp
S Deicing material capacity for vehicle p ∈ P .

TCi,j Traffic count for road segment (i, j) ∈ A.

RV Ii,j RVI for road segment (i, j) ∈ A.

γi,j, αi,j, βi,j Weights to account for the impact of traffic count (γi,j), RVI (αi,j), amount of

deicing material (βi,j) on capacity of a road segment (i, j) ∈ A.

f Second-stage flow through the network (continuous).

fi,j First-stage flow across arc (i, j) ∈ A (continuous).

f ′i,j Second-stage flow across arc (i, j) ∈ A (continuous).

ypi,j Number of times vehicle p ∈ P traverses road segment (i, j) ∈ A (integer).

xpi,j Indicates whether vehicle p ∈ P traverses road segment (i, j) ∈ A (binary).

spi,j Deicing material applied to road segment (i, j) ∈ A by vehicle p ∈ P (continuous).

Since we are representing traffic in the road network via network flows, we will consider

two flows through the network. These flows are the first- and second-stage flows. The first-

stage flow is to represent individuals trying to leave their residence to go to a commercial or

government location, while the second-stage flow represents individuals trying to return to

their residence from one of these locations. Less formally, the first-stage flow represents the

morning traffic, while the second-stage flow represents the evening traffic.

13

As is typically done in network flow models with several sources and sinks, we add two

artificial nodes s and t as dummy source and sink nodes for the simplicity of modeling. Let

s ∈ V be the dummy source node for the first-stage flow and t ∈ V be the dummy sink node

for the first-stage flow. We note that the first-stage flows, in a sense, represent traffic in

a certain direction, while the second-stage flows represent traffic in the opposite direction.

Because of this, t will be the dummy source node for the second-stage flow, while s is the

dummy sink for the second-stage flow. We assume, for all i ∈ S, the arcs (s, i) and (i, s) are

in the graph. Similarly, for all j ∈ D, we assume (j, t) and (t, j) are in the graph. We further

assume arcs (s, t) and (t, s) are in the graph, each with capacity of ∞. Since these dummy

nodes provide easy-to-find minimum cut sets, they will also be used to limit the flows to and

from the residence and destination nodes.

For each arc (i, j) ∈ A and each vehicle p ∈ P , let ypi,j be the number of times p traverses

arc (i, j), xpi,j indicate whether or not p traverses arc (i, j), spi,j be the amount of deicing

material applied to (i, j) by p. We note that the xpi,j variables are redundant, however their

introduction allows some of the constraints to be written more concisely. In a sense, the x

variables can be thought of as dictating the underlying graph of a Chinese Postman Problem,

while the y variables are used to construct the routes on the graph defined by the x variables.

We note that the underlying graph is assumed to be a multigraph, allowing for multiple

arcs between two nodes. This allows the model to account for multiple lanes on a given road

segment by having multiple edges between the two nodes representing the end points of the

road segment. However, it is important to note that this will induce multiple symmetries

within the model that will have to be dealt with in order to solve instances of any practical

size. One way to cut off such symmetries would be forcing one lane to be treated prior

to the others. As an example, suppose e1 and e2 are edges between i and j with identical

characteristics. To ensure e1 is treated before e2 is treated, for each vehicle p ∈ P , the

constraint xpe1 ≥ xpe2 is added. This ensures that e2 is treated only if e1 is also treated.

Since the goal is to allocate deicing resources in such a way as to maximize the number

of people that can leave home, travel as they need, then return home, the objective of the

MIP model is to maximize the second-stage flow through the network. Let f be the variable

to measure the second-stage flow through the network. For each arc (i, j) ∈ A, let fi,j be

14

the first-stage flow across the arc, and f ′i,j be the second-stage flow across the arc. Since

these flows represent traffic flows that occur at different times of the day, they will interfere

with one another minimally. Note that, for the dummy source s and a supply node v, the

first-stage flow across (s, v) represents the number of people who are able to leave this source,

while for the dummy sink t and a demand node u, the second-stage flow across arc (t, u)

represents the number of poeple who are able to leave this demand node. For standard

(multi-commodity) network flow problems, the sum of the flows across an arc cannot exceed

the arc’s capacity. However, since the flows in this model do not interfere with one another,

we allow the sum of the flows to (perhaps) exceed the arc’s capacity, so long as neither of

the flows individually do. For example, if an arc (i, j) has a capacity of 5, then fi,j = f ′i,j = 5

is a feasible flow. Figure 2.1 illustrates this.

i j
capacity = 5

first-stage flow = 5

second-stage flow = 5

Figure 2.1: Feasible first- and second-stage flows across arc (i, j).

Many municipalities for which this approach would be useful primarily deal with snow

and ice removal via deicing materials, as most snowfall events result in too little snow

accumulation for plows to be useful. As a result, the model presented here does not include

variables for snow plowing. The model is as follows:

max f (2.1)

subject to:

f ≤
∑
i∈D

f ′t,i (2.2)

fi,j ≤ γi,jTCi,j

− αi,jRV Ii,j + βi,j
∑
p∈P

spi,j ∀(i, j) ∈ A (2.3)

f ′i,j ≤ γi,jTCi,j

15

− αi,jRV Ii,j + βi,j
∑
p∈P

spi,j ∀(i, j) ∈ A (2.4)

fi,j ≤ γi,jTCi,j ∀(i, j) ∈ A (2.5)

f ′i,j ≤ γi,jTCi,j ∀(i, j) ∈ A (2.6)∑
i|(i,j)∈A

fi,j =
∑

i|(j,i)∈A

fj,i ∀j ∈ V (2.7)

∑
i|(i,j)∈A

f ′i,j =
∑

i|(j,i)∈A

f ′j,i ∀j ∈ V (2.8)

fs,i ≤ Si ∀i ∈ S (2.9)

fi,t ≤ Di ∀i ∈ D (2.10)

f ′i,s = fs,i ∀i ∈ S (2.11)

f ′t,i = fi,t ∀i ∈ D (2.12)∑
i∈S∪{t}

fs,i =
∑
i∈S

Si (2.13)

∑
i∈D∪{s}

f ′t,i =
∑
i∈D

Di (2.14)

Smini,j xpi,j ≤ spi,j ∀(i, j) ∈ A ∀p ∈ P (2.15)∑
p∈P

spi,j ≤ Smaxi,j ∀(i, j) ∈ A (2.16)

∑
p∈P

∑
(i,j)∈A

spi,j ≤ Stotal (2.17)

Mxpi,j ≥ ypi,j ∀(i, j) ∈ A ∀p ∈ P (2.18)

xpi,j ≤ ypi,j ∀(i, j) ∈ A ∀p ∈ P (2.19)∑
(i,j)∈A

spi,j ≤ Qp
S ∀p ∈ P (2.20)

∑
(i,j)∈A

F p
i,jy

p
i,j ≤ Qp

F ∀p ∈ P (2.21)

∑
p∈P

∑
(i,j)∈A

F p
i,jy

p
i,j ≤ F total (2.22)

∑
p∈P

∑
(i,j)∈A

Ti,jy
p
i,j ≤ T total (2.23)

16

∑
i|(i,j)∈A

ypi,j =
∑

i|(j,i)∈A

ypj,i ∀j ∈ V ∀p ∈ P (2.24)

∑
j|(Dep,j)∈A

ypDep,j ≥ 1 ∀p ∈ P (2.25)

∑
(i,j)∈A
i∈C,j 6∈C

Mxpi,j ∀C (V \ {Dep}

≥
∑

(i′,j′)∈A
i′,j′∈C

xpi′,j′ ∀p ∈ P (2.26)

xpi,j ∈ {0, 1} ∀(i, j) ∈ A ∀p ∈ P (2.27)

ypi,j ∈ Z+ ∀(i, j) ∈ A ∀p ∈ P (2.28)

spi,j ≥ 0 ∀(i, j) ∈ A ∀p ∈ P (2.29)

fi,j ≥ 0 ∀(i, j) ∈ A (2.30)

f ′i,j ≥ 0 ∀(i, j) ∈ A (2.31)

f ≥ 0 (2.32)

Constraints (2.2 − 2.14) are the flow aspect of the model. (2.1 − 2.2) ensures that the

objective function captures the total second-stage flow to the residences. (2.3 − 2.4) sets

the capacity of each arc to depend on the traffic count, RVI, and deicing material on the

arc, with (2.5 − 2.6) being trivial upper bounds on the flow across an arc. (2.7 − 2.8) are

flow conservation constraints. (2.9) ensures first-stage flow from a residence cannot exceed

the number of people at that residence, and (2.10) ensures first-stage flow to a destination

cannot exceed the number of people who want to go to that destination. (2.11−2.12) ensures

that the second-stage flow from a destination does is equal to the first-stage flow arriving at

that destination, and similarly for residences. (2.13− 2.14) ensure that the total first-stage

flow (resp. second-stage flow) from the artificial source and sink nodes is equal to the sum

of the sources (resp. sinks), with flows along the arcs (s, t) and (t, s) being un-routed flows.

Constraints (2.15−2.32)model the deicing, resource constraints, and vehicle routing. Due

to the nature of some of the valves used to disperse deicing materials, there may be a non-zero

minimum amount of deicing material that can be applied if the valve is open. Constraints

(2.15) capture this. There is also a maximum amount of deicing material that can be laid on a

17

road segment, (2.16) models this. (2.17) ensures the total deicing chemicals applied does not

exceed the budget. (2.18−2.19) tie the x and y variables together. It should be noted thatM

in these constraints is a large constant, with M = max(i,j)∈A,p∈P{Qp
F/F

p
i,j} being sufficient.

(2.20− 2.21) are the fuel and salt capacity constraints for each vehicle, and (2.22− 2.23) are

the fuel and time budget constraints. (2.24) ensures that if a vehicle goes to a location, it

must leave that location, and vice versa, while (2.25) makes sure that every vehicle leaves the

depot. (2.26) are similar to subtour elimination constraints in Traveling Salesman or Vehicle

Routing instances, and we will refer to these constraints as disconnected subtour elimination

constraints. The disconnected subtour elimination constraints ensure that, for any subset of

nodes that does not include the depot, any vehicle route that includes a closed walk along

these nodes must eventually leave these nodes. We note that these constraints are written in

terms of the x variables, whereas the y variables ultimately contain the information needed

to construct the individual routes. As mentioned previously, the x variables determine the

underlying set of edges that will have vehicles traversing them, while the y variables contain

the routes that will cover these edges. The disconnected subtour elimination constraints

force the subgraph induced by these edges to be connected. This, together with (2.24), force

each vehicle’s route to be a single closed walk. Just as in the subtour elimination constraints

in TSP and VR instances, we note that there are exponentially-many disconnected subtour

elimination constraints. As before, M is a large constant, with M = |A| being large enough.

A practical consideration in any deicing plan is quickly treating certain routes, such as

emergency routes or bridges. The MIP model presented does not account directly for these

considerations, and, to some degree, this is intentional. The approach presented is attempting

to use deicing resources so as to maximize the people who can use the road network, not

necessarily to maximize the treatment (or promptness of treatment) of emergency routes.

Additionally, since many municipalities have effective treatment for emergency routes already

in place, this approach is meant to augment current decision-making processes rather than

wholly replace them. Regardless, there are at least two simple constraints that can be added

to force certain edges to be treated. To ensure only that a given arc (i, j) is treated by some

vehicle, the constraint
∑

p∈P x
p
i,j ≥ 1 can be added. Often, critical road segments need to

be fully treated. To force a certain minimum treatment level TL on road segment (i, j), the

18

constraint
∑

p∈P s
p
i,j ≥ TL can be added to the model. We note that the second approach

is tighter than the first, as any solution that satisfies the second constraint also satisfies the

first. Finally, the constructive heuristic presented later can easily be modified to account for

these considerations, which we explain in Section 2.4.

2.4 Heuristic Approach

In this section, we will discuss the details of a constructive heuristic approach for this

problem. The heuristic has two phases: first, to build a priority queue of arcs to be treated,

and second to route the deicing vehicles so as to treat the arcs in the queue. In order to

build the priority queue of arcs to be treated, we take inspiration from a similar problem

known as the Capacity Expansion in a Flow Network Problem or the Parametric Budget

Problem [35, 22]. We will first discuss the Capacity Expansion in a Flow Network Problem,

as well as its solution approaches. We will then adapt this approach to building a priority

queue of arcs to be treated in our heuristic approach.

2.4.1 Capacity Expansion in a Flow Network Problem

The Capacity Expansion in a Flow Network Problem, first described by Fulkerson in [22]

(where it was called the Parametric Budget Problem), is a variant of the Maximum Network

Flow Problem. In this variant, the objective remains the same (find a feasible flow from

the source to the sink that is maximum), but the capacities of the arcs in the graph can

be increased, subject to some budgeting constraints. Typically, the amount by which the

capacity of a particular arc can increase is bounded, as is the total amount by which all

capacities can be increased.

More formally, let G = (V , E) be a graph. Let s ∈ V be the source node, and t ∈ V be

the sink node for a network flow. Let f be the flow from s to t, with fuv the flow along edge

uv ∈ E . Further, we let cuv be the capacity of arc uv ∈ E and buv the “budget” expended

to increase the capacity of arc uv ∈ E . Also let auv be the weight that determines the effect

of spending budget on arc uv ∈ E on the capacity of the arc. The Capacity Expansion in a

Flow Network Problem is as follows:

19

max f (2.33)

subject to: (2.34)∑
v|(v,u)∈E

fvu −
∑

v|(u,v)∈E

fuv = 0 ∀u ∈ V , u 6= s, t (2.35)

f +
∑

v|(v,s)∈E

fvs =
∑

v|(s,v)∈E

fsv (2.36)

∑
v|(v,t)∈E

fvt =
∑

v|(t,v)∈E

ftv + f (2.37)

fuv ≤ cuv + auvbuv ∀(u, v) ∈ E (2.38)

buv ≤ bmaxuv ∀(u, v) ∈ E (2.39)∑
(u,v)∈E

buv ≤ bmax (2.40)

fuv ≥ 0 ∀(u, v) ∈ E (2.41)

buv ≥ 0 ∀(u, v) ∈ E (2.42)

f ≥ 0 (2.43)

Since this problem is a continuous linear programming problem, it can be solved in

polynomial time [27]. However, a graph theoretic primal-dual approach is known that will

solve this problem. The basic idea is as follows. First, solve the flow problem, ignoring the

expansion aspect of the problem. Then, as long as there is some budget left to increase the

capacities, find the s− t path with the lowest marginal cost to send additional flow. If this

cost is finite, increase the capacities of the saturated arcs in this s− t path until the marginal

cost changes or the budget is exhausted. Repeat until the budget is exhausted, or no finite

cost s− t path exists [35].

Note that, given the marginal cost of sending additional flow along each arc within G,

the cheapest s− t path can be determined via a shortest path approach. If an arc uv is not

saturated (i.e. fuv < cuv), then it is not necessary to increase the capacity of the arc to send

additional flow along the arc. In this case, the marginal cost of the arc is 0. If the arc uv is

saturated but it is still possible to increase the capacity (fuv = cuv and buv < bmaxuv), then the

20

marginal cost of the arc is 1/auv. Lastly, if the arc uv is saturated and the capacity cannot

be expanded (fuv = cuv and buv = bmaxuv), then no additional units of flow may be sent along

this arc. This corresponds to a marginal cost of ∞. Equation 2.44 computes the marginal

cost of sending additional flow across an arc, using the above observations. The algorithm

to solve the Capacity Expansion in a Flow Network Problem is given in Algorithm 1. We

note that Algorithms 1 and 2 are due to Fulkerson and are contained in [22].

π(uv) =

0 if fuv < cuv

1
auv

if fuv = cuv and buv < bmaxuv

∞ if fuv = cuv and buv = bmaxuv

(2.44)

Notice that if we are only concerned with allocating deicing materials along the roadways,

while ignoring the vehicle-routing aspects present, then Problem 2.1-2.32 is very similar to

Problem 2.33-2.43.

2.4.2 Capacity Expansion Inspired Heuristic

As mentioned previously, the approach used for the heuristic can be broken into two main

phases. Phase I consists of creating a priority queue of edges to treat, and phase II is routing

the trucks.

In order to create the priority queue, we take inspiration from Algorithm 1. The main

idea behind Algorithm 1 is to continue to find the s− t path in G with the lowest marginal

cost of sending additional flow. The deicing vehicle routing problem studied in this work

can be thought of as a capacity expansion max flow variant, with a complicating underlying

subproblem (vehicle routing in this case). Thus we can adapt Algorithm 1 to approximate the

ideal set of arcs to treat while providing an ordering of the arcs to approximate the importance

of treating said arc. We note that, even while ignoring the vehicle routing aspect of the

problem, there are two significant differences between Problem (2.33-2.43) and Problem (2.1-

2.32). Namely, the flow problem aspect of Problem (2.1-2.32) has multiple sources and sinks

and multiple types of flows, and constraints 2.15 may force a semi-continuous nature on the

deicing material variables.

21

Algorithm 1: Fulkerson’s algorithm for solving the Capacity Expansion in a
Network Flow problem
1 function CapacityExpansion (G = (V,E), s, t, a, b, c, bmax);

Input : A graph G, source vertex s, sink vertex t, a vector containing all auv
values a, a vector containing all buv values b, a vector containing all cuv
values c, a maximum budget vector bmax;

Output: maximum flow value F ;
2 initialization;
3 Solve Maximum Network Flow problem on G with all expansion variables (buv) set

to 0;
4 G′ ← (V,E) a weighted graph, where w(uv) = π(uv); // used to compute path with

lowest marginal cost
5 budgetUsed← 0; //keeps track of total expansion budget used
6 F ← maxFlow from 3; // maximum flow
7 while budgetUsed < bmax do
8 p←cheapest s− t path in G′;
9 eF ← extraF low(p, b, c, f);

10 if eF = 0 then
11 break; // unable to send additional flow
12 budgetRequired←

∑
e∈pw(e)G′eF ; // how much budget is required to send eF

additional units of flow
13 if budgetRequired > bmax − budgetUsed then
14 eF ← eF · bmax−budgetUsed

budgetRequired
; // adjust eF to be maximum amount possible by

budget constraint
15 fuv ← fuv + eF for all uv ∈ p;
16 F ← F + eF ;
17 Update weights of edges in G′;
18 budgetUsed← budgetUsed+ budgetRequired;
19 end
20 return F ;

22

Algorithm 2: Function to determine the maximum amount of additional flow that
can be sent along an s− t path at the current cost
1 function extraFlow (p, b, c, f);

Input : An s− t path p, vectors b, c, f from 2.33-2.43
Output: Extra flow that can be sent along p at current cost

2 initialization;
3 eF ←∞; // initialize to something big
4 for edge e in p do
5 if fe < ce then
6 eF ← min{eF, fe − ce};
7 else if fe = ce and be < bmaxe then
8 eF ← min{eF, bmaxe − be};
9 else

10 return 0; // fe = ce and be = bmaxe , unable to send additional flow along path
11 end
12 end
13 return eF ;

23

Often within network flow problems with multiple sources and sinks, an artificial master

source node and an artificial master sink node are added to the problem. This allows for

the model to then be treated as a single source/sink problem. The deicing vehicle routing

problem we are studying has multiple flows in addition to multiple sources and sinks. While

master source and sink nodes can be added to make the MIP easier to formulate, considering

this modified graph will not work for Algorithm 1. To address the fact that multiple sources

and sinks are present, we instead propose computing multiple shortest paths, and taking the

shortest of these. For each source si ∈ S and each sink tj ∈ D, we need the si − tj path

with the lowest marginal cost of sending additional first-stage flow along it as well as the

tj − si path with the lowest marginal cost of sending additional second-stage flow along it.

Note that the marginal cost of the tj − si path may depend on the optimal si − tj path and

vice versa. Since these shortest paths are being computed so that their capacities can be

expanded, it is possible that the shortest si − tj path and the shortest tj − si path share an

edge. If an edge has a non-zero cost in the si − tj path, then it should have a zero cost in

the tj − si path, as its appearance in the si − tj path means it has been chosen to have its

capacity expanded. To see this, consider the graph in Figure 2.2, where s is the source for

the first-stage flow (and the sink to the second-stage flow), and t is the sink for the first-stage

flow (source for the second-stage flow). Note that the only s − t path is not disjoint from

the only t− s path. Thus, if the capacity of arc ab is increased to allow more first-stage flow

across the arc, it is not necessary to increase this arc’s capacity for the second-stage flow.

s

a

t

b

Figure 2.2: s− t and t− s paths may not be disjoint.

To account for this, instead of a single dual graph being maintained, as in Algorithm 1,

two dual graphs are maintained. One is to compute the shortest paths with respect to the

first-stage flows, and the other is to compute the shortest paths with respect to the second-

stage flows. Additionally, since the objective function of Problem (2.1-2.32) can be thought

24

of as the amount of flow that can leave its source, find a sink, leave said sink, and return to

its source, it is necessary to compute all si − tj shortest paths in the first dual graph, then

use those paths to update the weights in the second dual graph and compute the tj − si

shortest paths in the second dual graph. We note that this approach ultimately suffers from

the same problems that graph theoretic multi-commodity flow algorithms suffer from. While

these problems can be solved in polynomial time via linear programming, there is no known

polynomial time algorithm that does not use linear programming.

The complication due to constraints 2.15 are addressed in a simple manner. We note that,

for an arc ij, after Smini,j deicing material has been applied to it, then the marginal cost to

send additional flow across that arc no longer needs to consider the semi-continuous nature of

the spi,j variables. Thus the marginal cost of an arc is approximately given by Equation 2.44.

However, prior to that, we need to account for the fact that there is a minimum amount of

deicing material that must be applied to the arc. Since our approach is only approximating

the path with the lowest marginal cost currently, we modify Equation 2.44 as follows:

π′(uv) =

0 if fuv < cuv

1
auv

if fuv = cuv, buv < bmaxuv

and
∑

p∈P s
p
uv > 0

1
auv

+ Sminuv if fuv = cuv, buv < bmaxuv

and
∑

p∈P s
p
uv = 0

∞ if fuv = cuv, buv = bmaxuv

(2.45)

At each iteration, once the source-sink pair with the lowest estimated marginal cost has

been identified, the approach used to determine the expansion of the edges in the relevant

paths is identical to that of Algorithm 1. That is, simply find the edge in the relevant paths

whose cost will change with the least amount of additional flow. The increase in flow required

to increase the cost of this edge is the amount of additional flow that can be sent along these

paths at the current cost.

In order to produce the priority queue mentioned, we note that at each iteration, the

previously discussed approach searches for the cheapest bottleneck at that iteration. Thus,

25

the first set of arcs that should be treated is the set of arcs that are at capacity (and can

have their capacities increased) in the paths identified in the first iteration. The second set

of arcs that should be treated is the set of arcs that are at capacity in the second iteration.

And so forth. This is the basis of Algorithm 3.

After the queue is built, phase II of the heuristic begins, detailed in Algorithm 4. This

phase is where the deicing vehicles are routed. While vehicle routing problems can often be

difficult to solve, especially on large instances, we note that heuristics will likely be sufficient

for this problem. Deicing vehicles hold enough deicing materials to treat approximately

70 lane-miles, while holding enough fuel to travel approximately 300 miles. Put simply, the

trucks will often run out of salt before they run out of fuel. As a result, it is often unnecessary

to route the trucks optimally with respect to distance traveled.

Since a priority queue is present, the idea behind the vehicle routing heuristic used is to

build up the routes with a simple insertion rule as arcs from the queue are processed, similar

in spirit to the Clarke and Wright savings heuristic [12]. We assume that the beginning and

ending location is known for each truck. We initialize the route of each deicing vehicle as the

shortest path from its beginning location to its ending location. For each arc in the priority

queue, the truck used to treat this arc is determined by, of the trucks that have enough

deicing material remaining to treat the arc, which truck has to travel the smallest marginal

distance to treat this arc. The distance required to treat a new arc is determined by a simple

insertion heuristic. Considering the route p as a series of vertices p = v0, v1, ..., vn−1, the cost

to treat an arc ij, denoted ν(ij), is defined as

ν(ij) := `(ij) + min
1<=k<=n−1

{sp(vk−1, i) + sp(j, vk)− `(vk−1, vk)} (2.46)

where sp(u, v) is the length of the shortest path between u and v, and `(u, v) is the length

of the arc (u, v). This is simply the increase in the route length by adding ij to the route

while keeping the order of the other arcs in the route the same. Note that this “cost” is in

terms of the length added to the route of the truck. While it is expected that the trucks

will run out of salt before they run out of fuel, some care needs to be given to ensure the

26

Algorithm 3: Algorithm to build priority queue of arcs to treat
1 function BuildQueue P;

Input : A deicing vehicle routing problem instance P;
Output: priority queue of arcs to treat Q;

2 initialization;
3 Solve P with all x, y, s variables set to 0;
4 Q← []; // priority queue of arcs to treat
5 budgetUsed← 0; //keeps track of total expansion (deicing material) budget used
6 while budgetUsed < bmax do
7 currentBestPathCost←∞; // initialize, cost of shortest paths for current best

source/sink pair
8 currentBestSource← −1; // initialize, current best source
9 currentBestSink ← −1; // initialize, current best sink

10 for si a source node, tj a sink node do
11 G′to ← (V,E) a weighted graph, where w(e) = π′(e);
12 pto ←shortest si − tj path in G′to;
13 G′from ← (V,E) a weighted graph, where w(e) = 0 if e ∈ pto and w(e) > 0 in

G′to, w(e) = π′(e) otherwise;
14 pfrom ←shortest tj − si path in G′from;
15 if cost(pto) + cost(pfrom) < currentBestPathCost then
16 // found a better source/sink pair, update
17 currentBestPathCost← cost(pto) + cost(pfrom);
18 currentBestSource← si;
19 currentBestSink ← tj;
20 end
21 eF ← extraF low(pto, s, TC, f); // find most restrictive arc in G′to
22 eF ← min{eF, extraF low(pfrom, s, TC, f ′)}; // find most restrictive arc in G′from

and compare to previous most restrictive arc
23 if eF = 0 then
24 break; // unable to send additional flow
25 compute actualBudgetRequired; // how much budget is required to send eF

additional units of flow
26 if actualBudgetRequired > bmax − budgetUsed then
27 eF ← eF · bmax−budgetUsed

actualBudgetRequired
; // adjust eF to be maximum amount possible

by budget constraint
28 fuv ← fuv + eF for all uv ∈ pto; f ′uv ← f ′uv + eF for all uv ∈ pfrom;
29 F ← F + eF ;
30 Push arcs to treat, and how much treatment they receive, to Q;
31 budgetUsed← budgetUsed+ budgetRequired;
32 end
33 return Q;

27

Algorithm 4: Algorithm to route vehicles to treat arcs
1 function RouteTrucks P, Q;

Input : A deicing vehicle routing problem instance P and arc priority queue Q;
Output: A feasible truck route R;

2 initialization;
3 for vehicle ∈ P do
4 Rvehicle ← shortest path from vehicle start depot to vehicle end depot; // route

of vehicle
5 saltUsedvehicle ← 0; // amount of salt used by vehicle
6 end
7 for e ∈ Q do
8 for vehicle ∈ P if vehicle has enough salt to treat e do
9 vehicleToTreat← argmin{ν(e)}; // vehicle that can treat e at cheapest cost

10 if vehicleToTreat is able to treat e then
11 update RvehicleToTreat and saltUsedvehicleToTreat;
12 else
13 return R; // if the most-capable vehicle is unable to treat the arc, no

vehicle is capable
14 end
15 end
16 end
17 return R;

28

truck routes remain feasible with respect to fuel usage time allowance. Further, since it is

easy to determine if a given truck has enough salt remaining to treat an arc, this approach

provides a nice compromise between approximating the difficult aspect of the problem while

still capturing the important information.

As mentioned previously, critical routes are an important consideration in any winter road

maintenance scheme. While the MIP model presented is not meant to incorporate these, the

heuristic approach is meant to be an in-between strategy, incorporating ideas from both the

current approach that many municipalities use (priority queues) and the MIP model (RVI

values and overall network flow). As such, the heuristic can be easily adapted to account for

critical routes and links. Since these arcs represent high-priority road segments, simply add

them to the beginning of the priority queue at the start of phase I of the heuristic. This will

ensure these road segments receive the treatment needed. Further, as treatment to these

segments is often time-sensitive, phase II can be modified so that, after these critical arcs

are treated, no less-critical arcs may be inserted into the vehicles’ routes before these arcs.

This forces these arcs to be treated first.

2.5 Computational Experiments

2.5.1 Experimental Procedure

All coding was done in C++ with extensive use of the Boost C++ Libraries [9]. The integer

programming solver used was Gurobi version 7.5.1. All tests were done on a 16 core (32

thread) workstation with 2 Intel Xeon E5-2670 processors (2.6 GHz), 256 GB RAM, running

Ubuntu 14.04.5. Due to the large number of disconnected subtour elimination constraints,

these constraints were enforced in a lazy fashion by checking candidate solutions for subtours

that do not include the depot. If such subtours were found, a violated disconnected subtour

elimination constraint was added as a lazy constraint. Experiments were run using default

parameters. Each instance was given a time limit of 30 minutes.

Two sets of instances were created, one using random graphs and one using a combination

of actual and simulated data. In the random set, 3 graphs were created, with 200, 300, and

29

400 nodes. Each node was randomly assigned as a residence (10% chance), a destination (10%

chance), or an intersection (80% chance). One intersection node was randomly chosen as the

fuel/salt depot for each graph. In the data-driven graphs, 3 locations within Knox County,

TN were selected at random, while a fourth was created using data from downtown Knoxville.

For each of the 7 graphs, 11 different deicing material budget levels were considered. For all

the graphs except the downtown Knoxville graph, the levels corresponding to a total deicing

material budget of between 5% and 25% of what would be necessary to treat the network

fully. For the downtown Knoxville graph, significantly less deicing material was necessary,

and so these budget levels were between 0.5% and 1.5%.

In the random instances, the arc sets of the graphs were generated in two phases. The

first phase generated the subgraph on the intersection nodes. This was done in an Erdős-

Rényi fashion [40] so that the average in- and out-degree of a node was 3. If the resulting

graph was not strongly connected, the arcs were removed and another arc set was generated.

This was repeated until the resulting graph was strongly connected. The second phase added

the remaining arcs. This was done with a modified Barabási-Albert model [4] so that the

average degree of the residences and destinations was 2.

As for the parameter values in the random graphs, RVI values were assigned randomly

from a uniform distribution, while arc lengths were assigned randomly from an exponential

distribution. Fuel requirements, traversal times, and salt requirements for each road segment

were assumed to be proportional to the length of the segment. Additionally, residence and

destination data were selected randomly from an exponential distribution.

For the data-driven graphs, 4 locations within Knox County, TN were utilized to generate

these graphs, with 3 being chosen at random and the last corresponding to downtown

Knoxville. Lengths of each road segment is known for Knoxville, TN, so this data was

not generated randomly. Again, traversal times, fuel requirements, and salt requirements for

each road segment was assumed to be proportional to the length of the segment. Further, it

is known whether each node is an intersection, residence, or destination. While RVI values

are meant to take weather forecasts into account, assuming uniform snow coverage, RVI

values for Knoxville, TN are known, and these values were used.

30

In both sets, because the flows are meant to represent the flow of traffic, the parameter

γi,j was set to 1 for all arcs. We note that the RVI values are between 0 and 6, inclusive,

with 0 representing road segments that receive full sunlight and have little to no pitch, with

6 representing road segments that receive little sunlight and have a grade of at least 10%.

The αi,j parameter of each road segment was scaled such that an RVI value of 0 corresponds

to a flow capacity of 100% of the clear-weather traffic count with no treatment, and an RVI

value of 6 corresponds to a flow capacity of 20% of the clear-weather traffic count with no

treatment. That is, αi,j = 2
15
TCi,j. The βi,j parameter was scaled so that each lane requires

200 lbs. of deicing material per mile to be treated fully [17], so βi,j =
TCi,j

200`(i,j)
, where `(i, j)

is the length of arc (i, j).

Additionally, since many cities consider only traffic counts to determine priorities for the

roads to treat, we compare our solutions with solutions obtained by treating the arcs with

the highest traffic counts first.

2.5.2 Results

Figures 2.3-2.5 report the computational results for the random instances, while Figres 2.6-

2.8 report the results for the Knoxville instances. n is the number of nodes in the graph,

m the number of arcs in the graph, and treatment level is the total salt budget for the

instance, given as a proportion of the total amount of salt required to treat all roads fully.

MIP corresponds to the solution obtained by using Gurobi as the solver, Heuristic reports

the data for the heuristic developed in Section 2.4, and Current Approach is the results of

ranking roads according to traffic counts only. While the number of arcs treated is not part

of the objective function of the model, a significant motivation behind this work is to utilize

de-icing resources so as to be able to treat more roads. As a result we also report the number

of arcs that were treated. Since the MIP approach was given a time limit of 1800 seconds,

in the event of a timeout, we only report the data from the best-found solution.

The quality of the solutions found by the currently used approach were significantly

surpassed by the solutions obtained from the MIP formulation and the heuristic approach,

both in terms of the objective function and the number of arcs treated. In the random

instances, the MIP approach sees an average flow improvement of 68.9% over the current

31

Figure 2.3: Proportion of population unaffected by snow event under different treatment
techniques and levels of salt budget, random instances.

32

Figure 2.4: Proportion of arcs in network treated under different treatment techniques and
levels of salt budget, random instances.

33

Figure 2.5: Run time of different treatment techniques at various levels, random instances.

34

Figure 2.6: Proportion of population unaffected by snow event under different treatment
techniques and levels of salt budget, Knoxville instances.

35

Figure 2.7: Proportion of arcs in network treated under different treatment techniques and
levels of salt budget, Knoxville instances.

36

Figure 2.8: Run time of different treatment techniques at various levels, Knoxville
instances.

37

approach, while the heuristic approach sees an average improvement of 45.9% over the current

approach. Additionally, in the Knoxville instances, the MIP approach provides an objective

function improvement of 60.9% over the current approach, while the heuristic approach

performs 41.9% better than the current approach.

We note that the instances became computationally easier for the MIP solver as the

budget increased, while the opposite trend was exhibited for the heuristic approach. While

not reported directly, the MIP approach reached the time limit of 1800 seconds in 4 of the 33

random instances, and in 6 of the 44 Knoxville instances. Interestingly, all 6 of the timeouts

were on the same instance, Knox2. Additionally, the heuristic approach never took longer

than 10 seconds in any of the 77 instances, having an average run time of 3.01 seconds on

the Knoxville instances, and 0.60 seconds on the random instances.

2.6 Conclusion and Future Work

Traffic counts alone are not enough when planning winter road maintenance strategies. By

utilizing traffic patterns, meteorological data, and road network topology and topography,

better maintenance strategies can be developed. By decreasing over-treatment of non-critical

road segments, we can develop strategies which not only reduce the population affected by

snow events, but also decrease deicing material use in general. In addition to the obvious

savings enjoyed by having more efficient strategies, using our resources more wisely also

reduces many of the non-primary costs associated with winter road maintenance, such as

road damage and pollution.

Lastly, the current approach in many municipalities always treats the same roads. The

model proposed here can suffer from the same limitation without high-quality weather

forecasts. While certainly some people within any area won’t mind this, many find themselves

living on roads that never get treated. With this in mind, some natural questions are:

1. How many optimal/near-optimal solutions are there, and how different are these

solutions?

38

2. If the problem were to find a set of solutions such that each road is treated in at least

one of these solutions, how far from optimal would the worst solution be?

3. Is there a set of near-optimal solutions that will treat most roads with roughly equal

probability? How much in terms of optimality would have to be sacrificed to find such

a set?

4. Many large urban areas will have residence nodes interspersed with commercial

locations, which can interfere with a two-stage flow model’s results. However, this can

be overcome by introducing multiple first and second-stage flows, but these problems

can quickly become computationally taxing. What is the fewest number of flows that

can be used to address this issue?

39

Chapter 3

Using Optimization To Budget For

Winter Road Maintenance Activities

In the previous chapter, an optimization model was presented which seeks to maximize the

utility of a deicing allocation scheme under a given budget. In this chapter, we seek to

address the inverse question: that is, given a certain minimum acceptable utility level, what

is the deicing budget that is necessary in order to attain that level? We show that the

techniques developed in the previous chapter can also be applied to this setting. We provide

computational experiments which validate these approaches.

3.1 Introduction

Many local governments across the United States of America face significant costs related to

winter storm road maintenance. A significant portion of these costs are due to ice and snow

removal from roadways through the use of plows and deicing agents, which totals $1.5 billion

annually in the US [17]. Further, improperly managed roadways also have several indirect

costs associated with them. For example, untreated roadways are more dangerous for drivers,

which can lead to increases in traffic congestion and traffic-related fatalities. Because of this,

many local governments will temporarily close certain offices and services during winter snow

events, which can further impact the social, educational, and economic well-being of local

40

citizens and businesses. As a result, it is important that local municipalities adopt effective

winter road maintenance strategies and budget for these events appropriately.

Because of the potential for savings in these areas, optimizing the various decisions related

to winter road maintenance strategies is a well-studied family of problems. A thorough

series of survey papers was written by Perrier et al. in 2006-2007 [41, 42, 43, 44] wherein

many of the aspects of winter road maintenance were discussed. In the past, authors have

primarily focused on system designs for spreading deicing materials and removing snow

from roadways, approaches to dispose of snow removed from roadways, where to locate salt

and fuel depots, fleet sizing, and optimizing the routes the individual deicing vehicles take

when performing maintenance. Many of these approaches either directly or indirectly utilize

some variant of the Snow Plow Routing Problem (SPRP), which is itself a generalization

of the Chinese Postman Problem [36] and the Capacitated Arc Routing with Intermediate

Facilities problem [23]. The primary focus of these models deals with routing the individual

road maintenance vehicles, with the objective often being to minimize some metric that

captures costs or inefficiencies in the management system.

In almost all of the previous work on routing individual vehicles, an implicit assumption

within the models presented is that enough resources are present to treat the road network

under consideration. While this assumption is reasonable in many of the locations where

these problems have been studied in the past, such as Boston, MA and Pittsburgh, PA,

it is simply untrue in other locations, such as Knoxville, TN, Atlanta, GA, and Raleigh,

NC, to name a few. Because this assumption is violated in many locations, several local

municipalities are unable to leverage large portions of the work that has been done towards

these problems when designing their winter road maintenance strategies. Due to the fact

that several locations either lack the fleet size, deicing material budget, or both, necessary

to treat their entire road network during a snow event, these municipalities must determine

which roads will be treated and which will not, in addition to the previously mentioned

considerations. To our knowledge, no works addressing limited resource variations of this

type have been considered until recently.

Due to this gap in the literature, in a previous work [2] we developed a results-oriented

approach to allocating limited deicing materials during winter snow events that incorporates

41

meteorological, environmental, population, and traffic data to make decisions about which

roads to treat and the degree to which these roads should be treated. Our approach can

be summarized as minimizing the number of citizens negatively affected by the snow event,

subject to deicing material, fuel, and vehicle-hour budget limitations, as well as individual

route feasibility. This is done by identifying bottlenecks in the road network due to snow by

modeling traffic as a two-stage flow through a network in which the capacities of arcs can

be increased by applying deicing materials along the corresponding roadways.

Notably, however, there is still a gap we were unable to find addressed in previous works.

Namely, given a certain road maintenance strategy, how much money should a particular

municipality expect to spend on deicing materials, fuel, and person-hours? While additional

funds can be allocated throughout the season if needed, this often incurs additional costs that

could have been avoided if appropriate plans had been made initially. Because substantial

winter snow events occur with a high frequency in locations such as Boston, MA, which

receives an average of 44 inches of snow per year, these local governments ensure enough

resources are available for each snow event to treat their road network promptly. However,

many places are more similar to Knoxville, TN, where the typical winter sees 7 snow events,

with an average accumulation of slightly less than one inch per event. Because snow events

tend to be mild, it is often not in the citizens of Knoxville’s best interests to ensure every road

is treated in each snow event, as increasing winter road maintenance budgets necessitates

lowering other budgets. Thus there are two opposing objectives that must be taken into

account. On one hand, it is important that enough resources are present to provide some

minimum acceptable level of service for these winter snow events. But on the other, increases

in winter road maintenance budgets often necessitate lowering other funds and services. In

short, winter road maintenance budgets that are too low can lead to undesirable outcomes

when snow events occur, while budgets that are too high can decrease the utility gained from

those funds by limiting other services.

Our goal in this manuscript is to extend the work in [2] to fill this gap in the literature,

allowing for estimates of the amount of deicing material required to meet a given level of

service in a winter snow event. This paper lays the groundwork by defining the problem and

introducing a mixed integer programming (MIP) formulation of the problem. The remainder

42

of the paper is structured as follows. Section 3.2 contains the definition of the problem and

the mathematical formulation. Section 3.3 outlines the experimental procedure and results,

while 3.4 draws some conclusions and discusses future work.

3.2 Deicing Budgeting Problem

A natural way to address budget allocation problems is through stochastic programming

techniques [26]. Stochastic programming, or optimization under uncertainty, is a modeling

paradigm and framework that allows optimization problems to incorporate uncertainties

present within the various quantities and parameters of the underlying situation represented

by the model. Because of its broad applicability and usefulness, some examples of budgeting

problems that have been studied with stochastic programming techniques are portfolio

allocation [31], reliability in flow networks [34], and highway project selection [1]. However,

in order to use stochastic programming techniques to optimize decisions, it is necessary to be

able to solve the deterministic instance of a given problem. For this reason, we will focus our

efforts here on determining the deicing budget necessary to attain a certain pre-determined

level of service on a given road network in a single realization of a snow event. We call this

the Deicing Budgeting Problem.

More formally, letQ(ξ, Z) be the utility function for a deicing budget level Z under a snow

event ξ. The Deicing Budgeting Problem is to minimize the budget level Z subject to some

minimum acceptable utility score ω. The simple mathematical programming formulation

(3.1) captures this.

min Z (3.1)

subject to:

Q(ξ, Z) ≥ ω (3.2)

While the approach discussed here can be used with a general utility function Q, the one

we will consider in this work is the function in [2]. For the sake of brevity, below we provide

43

a complete list of the variables and parameters of our utility function Q. We offer the MIP

formulation in (3.3) and provide a limited description of the model. For a more thorough

explanation, the reader is referred to [2].

G = (V ,A) Directed multigraph of the road network.

S ⊂ V Subset of vertices which represent to-flow sources/from-flow sinks.

D ⊂ V Subset of vertices which represent to-flow sinks/from-flow sources.

P Set of plows.

Si for i ∈ S The to-flow supply/from-flow demand at vertex i ∈ S.

Di for i ∈ D The to-flow demand/from-flow supply at vertex i ∈ D.

Smaxi,j for (i, j) ∈ A Maximum amount of deicing material allowed for road segment (i, j).

Smini,j for (i, j) ∈ A Minimum amount of deicing material possible for road segment (i, j).

Z Total amount of deicing material available.

Ti,j for (i, j) ∈ A Amount of time it takes a vehicle to traverse road segment (i, j).

T total Total amount of plow time available.

F v
i,j for (i, j) ∈ A, v ∈ P Amount of fuel required for vehicle v to traverse road segment

(i, j).

F total Total amount of fuel available.

Qv
F for v ∈ P Fuel capacity for vehicle v.

Qv
S for v ∈ P Deicing material capacity for vehicle v.

TCi,j for (i, j) ∈ A Traffic count for road segment (i, j).

RV Ii,j for (i, j) ∈ A RVI value for road segment (i, j).

44

γ, α, β0, β1 Weights to account for the impact of traffic count (γ), RVI (α), amount of deicing

material (β0), whether the road segment has been plowed (β1) on a road segment’s

capacity.

s, t ∈ V Dummy source and sink nodes for simplicity in modeling.

Dep ∈ V The fuel/deicing material depot vertex.

f dummy variable used to measure flow through the network, continuous.

fi,j for (i, j) ∈ A to-flow across arc (i, j), continuous.

f ′i,j for (i, j) ∈ A from-flow across arc (i, j), continuous.

wvi,j for (i, j) ∈ A, v ∈ P whether vehicle v traverses road segment (i, j) at least once, binary

yvi,j for (i, j) ∈ A, v ∈ P number of times vehicle v traverses road segment (i, j), integer

xvi,j for (i, j) ∈ A, v ∈ P whether vehicle v treats road segment (i, j), binary.

svi,j for (i, j) ∈ A, v ∈ P deicing material applied to road segment (i, j) by vehicle v,

continuous.

pvi,j for (i, j) ∈ A, v ∈ P whether vehicle v plows road segment (i, j), binary.

Q(ξ,Z)=max f (3.3)

subject to:

f≤
∑
i∈D

f ′t,i (3.4)

fi,j≤γ(ξ)TCi,j−α(ξ)RV Ii,j

45

+β0(ξ)
∑
v∈P

svi,j ∀(i,j)∈A (3.5)

f ′i,j≤γ(ξ)TCi,j−α(ξ)RV Ii,j

+β0(ξ)
∑
v∈P

svi,j ∀(i,j)∈A (3.6)

fi,j≤γ(ξ)TCi,j ∀(i,j)∈A (3.7)

f ′i,j≤γ(ξ)TCi,j ∀(i,j)∈A (3.8)∑
i∈δ+(j)

fi,j=
∑

i∈δ−(j)

fj,i ∀j∈V (3.9)

∑
i∈δ+(j)

f ′i,j=
∑

i∈δ−(j)

f ′j,i ∀j∈V (3.10)

fs,i≤Si ∀i∈S (3.11)

fi,t≤Di ∀i∈D (3.12)

f ′i,s=fs,i ∀i∈S (3.13)

f ′t,i=fi,t ∀i∈D (3.14)∑
i∈S∪{t}

fs,i=
∑
i∈S

Si (3.15)

∑
i∈D∪{s}

f ′t,i=
∑
i∈D

Di (3.16)

Smini,j xvi,j≤svi,j ∀(i,j)∈A ∀v∈P (3.17)∑
v∈P

svi,j≤Smaxi,j ∀(i,j)∈A (3.18)

∑
v∈P

∑
(i,j)∈A

svi,j≤Z (3.19)

xvi,j≤yvi,j ∀(i,j)∈A ∀v∈P (3.20)

yvi,j≤M ·wvi,j ∀(i,j)∈A ∀v∈P (3.21)∑
(i,j)∈A

svi,j≤Qv
S ∀v∈P (3.22)

∑
(i,j)∈A

F v
i,jy

v
i,j≤Qv

F ∀v∈P (3.23)

∑
v∈P

∑
(i,j)∈A

F v
i,jy

v
i,j≤F total (3.24)

46

∑
v∈P

∑
(i,j)∈A

Ti,jy
v
i,j≤T total (3.25)

∑
i∈δ+(j)

yvi,j=
∑

i∈δ−(j)

yvj,i ∀j∈V ∀v∈P (3.26)

∑
j∈δ+(Dep)

yvDep,j=1 ∀v∈P (3.27)

∑
(i,j)∈A
i∈C,j 6∈C

wvi,j≥
1

|G[C]|E

∑
(i,j)∈A
i,j∈C

wvi,j ∀C(V \{Dep} ∀v∈P (3.28)

wvi,j∈{0,1} ∀(i,j)∈A ∀v∈P (3.29)

xvi,j∈{0,1} ∀(i,j)∈A ∀v∈P (3.30)

yvi,j∈Z+ ∀(i,j)∈A ∀v∈P (3.31)

Let G = (V ,A) be a multigraph describing the road network under consideration. It is

assumed that the nodes are one of three types: nodes to represent intersections, nodes to

represent residences, and nodes to represent businesses or other locations people travel to

throughout the day. The mathematical formulation in (3.3) models traffic through the road

network as a two-stage network flow. A two-stage flow model is used in order to capture the

dominant traffic patterns throughout the day, with the first stage representing morning traffic

(people leaving home to go to work) and the second stage representing evening traffic (people

leaving work to return home). As such, the nodes representing residences act as sources

for the first-stage flow and sinks for the second-stage flow, while the nodes representing

businesses or other locations of interest act as sinks for the first-stage flows and sources for

the second-stage flows. In (3.3), we note that the second-stage flows depend on the first stage

flows (i.e. you cannot leave work to go home if you were unable to get to work initially).

However, one important difference between this flow model and other forms of multi-flow

models is how the first and second stage flows interact. For most multi-commodity network

flow models, the sum of the flows across any given arc must obey the capacity limitations of

that arc. Because these flows are meant to represent the flows of traffic that occur at different

times of the day, we only require that each flow individually obey the capacity limitations

of that arc. For example, if an arc (i, j) has a capacity of 5, then the first-stage flow must

47

be no more than 5, and the second-stage flow must be no more than 5, but the sum of the

first- and second-stage flows may be more than 5. This point is illustrated in Figure 3.1.

i j
capacity = 5

first-stage flow = 5

second-stage flow = 5

Figure 3.1: Feasible first- and second-stage flows across arc (i, j).

The objective of (3.3) is to maximize the second stage flow through the network, which

is the number of people who were able to go to and return from work successfully. We

assume the capacities of the arcs are a function of the traffic counts on the corresponding

road segment on a typical day, the driving conditions on the road due to the snow event, and

the degree to which the road segment has been treated. The degree to which the capacity

of a given arc has been lowered due to the driving conditions depends on a metric we call

the road vulnerability index (RVI), with higher RVI values corresponding to more dangerous

driving conditions. RVI values are computed using meteorological and road slope data, with

the idea being that road segments which are shaded and hilly will, all other factors being

equal, be more dangerous to drive on than flat road segments in direct sunlight. We assume

that the capacity of a particular arc is a linear function of these parameters. Informally,

we think of the traffic count on a typical day as being the default capacity of that road

segment, with the capacity being discounted proportionally to the RVI of the road segment.

Capacities of road segments can be increased through treatment (plowing and/or applying

deicing materials), with higher levels of treatment reducing the discount factor of the snow

event.

Overall, (3.3) can be thought of as having three primary aspects. In a sense, the flow

aspect of the problem is the primary aspect of (3.3). The flows across the network have

the standard network flow constraints, which are contained in (3.4)–(3.16). Because the

capacities of arcs can be increased through treating road segments, the flow aspect of (3.3)

is subject to resource allocation constraints, contained in (3.17)–(3.25). Lastly, the resource

48

allocation aspect of the problem is contingent upon being able to produce feasible vehicle

routes to apply the treatments. The constraints that model this aspect are (3.26)–(3.28).

In (3.3), there have four parameters that play a significant role, namely α, γ, β0, β1. These

are weights that determine the impact of traffic counts, RVI values, and treatment levels on

the capacity of an arc. We assume that a given snow event can be described by the values

these parameters take for that snow event. As a result, these are treated as functions of the

snow event realization ξ.

We note that the formulation given in (3.1) relies on solving (3.3) for a given budget

Z and parameter realization ξ. An instance of this problem on the scale of a modest city

such as Knoxville, TN would result in a substantial MIP. Due to the combinatorial nature

of these types of problems, MIPs of this scale are often intractable, in the sense that we are

typically unable to solve them within a reasonable amount of time using current hardware

and solution techniques. However, we note that for this particular problem, assuming a fixed

snow event realization ξ, (3.1) is a problem in a single variable, Z. Further, we note that

(3.1) is monotonically increasing with respect to Z. Because of this, a number of simple

optimization algorithms are suitable for solving (3.1), such as a binary search, provided (3.3)

can be solved or approximated reasonably quickly.

Because of the need to solve (3.3) quickly, we developed a heuristic that exploits the

nature of the problem based off work by Fulkerson in [22], in which he introduces the

Parametric Budget Problem (PBP). Other authors will refer to this problem as the Capacity

Expansion Network Flow Problem [35]. We note that the complicating aspect of (3.3) is

the vehicle routing portion. Without this aspect, (3.3) is nearly identical to the PBP, with

the only difference being the PBP assumes a single source and sink, whereas (3.3) has

multiple sources and sinks. Fulkerson presents an algorithm in [22] which solves the PBP

by iteratively finding a source-sink path along which the flow can be increased with the

lowest marginal cost per unit flow. This is repeated until either the budget for increasing

arc capacities runs out, or no finite-cost path is present in the graph. This technique can

be extended to produce high-quality solutions to a relaxed version of (3.3) in which the

vehicle routing aspect of the problem is temporarily ignored until a near-optimal allocation

of deicing resources which exhausts all available resources is achieved. This is done by

49

computing approximate marginal costs for source-sink paths, in much the same fashion as

Fulkerson’s approach. It is worth noting that this approach is just a heuristic to solving (3.3)

even with the vehicle routing aspect being ignored, as it ultimately falls victim to the same

difficulties that graph theoretic approaches to solving multi-commodity flow problems do.

After the quasi-ideal resource allocation scheme is computed, a constructive vehicle routing

heuristic is employed to attempt to find feasible deicing vehicle routes that allow these road

segments to be treated.

3.3 Computational Experiments

3.3.1 Experimental Procedure

Two sets of instances were generated for the computational experiments. One set of instances

were generated in a hybrid Erdős-Rényi [40] and modified Barabási-Albert [4] fashion, and

another set was generated using a combination of actual and simulated data for the Knoxville,

TN road network. All coding was done using Python 2.7, with the integer programming solver

Gurobi version 7.0.1 being used. All tests were done on a 16 core (32 thread) workstation

with 2 Intel Xeon E5-2670 processors (2.6 GHz), 256 GB RAM, running Ubuntu 14.04.5.

In the exact approach, as detailed in [2], certain constraints were added on the fly in a lazy

fashion by checking candidate solutions for violated constraints. The time limit given to

each instance depended on the type of instance, with the random problems being given a

time limit of 30 minutes and the Knoxville instances being given 60 minutes.

In the flow-based model, we assume each node in the graph corresponds to a location in

the road network. The locations are divided into residences, intersections of road segments,

and other locations of interest. As a result, there are three sets of nodes in the corresponding

graphs. In the random instances, the arc set for the intersection nodes were generated in

an Erdős-Rényi fashion [40] so that the average in- and out-degree of a node was 3. If the

resulting graph was not strongly connected, the arcs were removed and another arc set was

generated. This was repeated until the resulting graph was strongly connected. At this

point, each node corresponding to a residence or other location of interest was added to

50

the graph in a Barabási-Albert fashion with degree 2. Three instances of varying sizes were

generated in this manner, with 200, 300, and 400 nodes. In each instance, 80% of the nodes

were assigned as intersections, 10% as residences, and 10% as other locations. One of the

intersections was chosen at random to act as the location of the salt and fuel depot. All

graph parameters except traffic flows for these instances were generated from exponential

distributions. The traffic counts were generated by solving a network flow problem on the

graph under the assumption that no traffic had been interdicted by snowfall.

For the other instances, 3 areas within Knox County, TN were utilized to generate the

graphs. For each location within these areas, data is available that allows us to distinguish

intersections from non-intersections. Additionally, population estimates exist for each non-

intersection location. A rather complete picture is available for these instances in regard to

all parameters except traffic counts. The limited traffic count data available was used in

conjunction with an approach similar to that used in the random graphs to generate traffic

counts for these instances. Since the areas chosen do not contain salt depots, an intersection

node was chosen at random for each area to act as the salt and fuel depot.

3.3.2 Results

Figures 3.2, 3.3 summarize the results. For each instance, n reports the number of nodes in

the graph andm reports the number of arcs in the graph. Budget reports the deicing material

budget, which has been normalized to fall between 0 and 1, with 0 being no deicing materials

allotted and 1 being enough to treat the entire network completely. MIP corresponds to the

solution obtained using the full model in (3.3) with Gurobi as the solver, while Heuristic

reports the data for the constructive heuristic based off [22] which was outlined in Section 3.2.

While we note in Section 3.2 that a simple binary search should be sufficient to solve (3.1),

we have constructed the Pareto frontier for the budget levels that are of interest for this

problem. We have highlighted the budget necessary to ensure that no more than 20% of the

population is negatively affected by the snow event.

While solve times are not reported here, we note that the MIP approach unsurprisingly

had difficulties solving some of the larger instances in the allowed amount of time. In the

random n = 400 instance, the MIP approach ran out of time in almost half of the tests. The

51

Figure 3.2: Proportion of deicing materials needed to achieve various outcomes in random
instances.

52

Figure 3.3: Proportion of deicing materials needed to achieve various outcomes in
Knoxville, TN instances.

53

tests on the largest Knox County instance, n = 6867, the MIP approach ran out of time in

every test. When this occurred, the best incumbent solution was used for Figures 3.2-3.3.

While the heuristic approach was always able to outperform the MIP approach in regard

to run times, often the MIP approach was able to solve the problem to provable optimality.

In these cases, it is of course impossible for the heuristic solution to be of higher quality than

the MIP solution. However, in the largest Knox County instance, we note that the heuristic

approach was able to outperform the MIP approach at the higher budget levels.

3.4 Conclusion

We note the sometimes drastic convexity of the Pareto frontiers within the results. This

illustrates that the proportion of affected population was highly sensitive to the budget

at lower budget levels, with modest increases in budget levels sometimes corresponding to

quite drastic reductions in the affected population. This suggests a few routes for future

research, with the most obvious one being to further explore the sensitivity of this region.

This sensitivity also suggests the need for high-quality weather forecasts in order to predict

required budget levels accurately. Additionally, in a sense, this work can be seen as an

attempt to maximize the utility gained from public funds. Perhaps instead of optimizing

under the constraint of a minimum acceptable level of service as was done in (3.1), one could

instead use the slope of the Pareto frontier and determine a budget while considering the

marginal utility gained from additional funds.

54

Chapter 4

Deploying Automated Mobility Districts

This chapter is related to a paper submitted for publication:

H M Abdul Aziz, Tony K. Rodriguez, Venu Garikapati, Lei Zhu, Stanley E.

Young, Yuche Chen. Optimizing Fleet Operations in Automated Mobility

Districts: serving On-demand Mobility with Automated Electric Shuttles.

Submitted to Transportation Research Part C.

Figures 4.1, 4.2, 4.4, 4.3, and 4.5 come from that paper, as well as the example in Section

4.4.3.

In this chapter, we develop a mixed integer programming formulation which can be used

to address the operational decisions of routing and fleet composition for automated mobility

districits. Because this formulate scales poorly with the input size of instance, we also

develop a two constructive heuristics to produce solutions, as well as a Tabu search that

can be used to refine these solutions. Computational experiments are run using data from

Greenville, SC. These experiments demonstrate that the methods developed are capable of

producing viable solutions and aid in operations planning.

4.1 Motivation and Background

Due to automated vehicle technology, the mobility-as-a-service landscape will soon see

changes that would have been difficult to imagine until recently. However, there are still

55

many hurdles present which prevent shared, automated vehicle systems from completely

overhauling the status quo, with the main limitations being economic considerations for

the automobile industry as a whole, regulations which are ill-suited for fully autonomous

vehicles, and a lack of infrastructure suitable for such fleets [19, 3]. Despite these challenges,

low-capacity automated electric shuttles (AES) fleets have been deployed in several cities,

typically within dense urban areas, in an effort to provide cost-effective and energy-saving

alternatives in personally-owned vehicles. Currently, Europe seems to be leading the way,

with EasyMile having deployed EZ10 AESs in dozens of locations1. Local Motors’ olli is being

developed and planned for deployment in several US cities, including Knoxville, TN2, and

recently the Federal Highway Administration awarded a grant to deploy these technologies

in three locations within Greenville, SC [20].

Due to the limitations previously mentioned, many of the currently deployed AES fleets

are within geo-fenced regions, often with limited access to outside traffic. While most

locations will adopt these technologies incrementally, in a “something everywhere” fashion,

these current regions are realizing more of an “everything somewhere” approach. Due to this,

Young et al. [51] has proposed a development framework known as an Automated Mobility

District (AMD). An AMD is a small-scale implementation of automated connected vehicle

technology that is designed to see the full benefits an AES fleet can offer. There are four key

characteristics of an AMD deployment: (i) a fleet of fully autonomous vehicles (such as an

AES fleet); (ii) a geo-fenced service area; (iii) strict regulations on the access of roadways to

outside traffic; and (iv) multi-modal access at the boundaries of the geo-fence.

4.2 Automated Mobility Districts

Automated mobility districts (AMDs) have often been studied in the context of mobility as

a service. As such, much of the focus of these works has been towards optimizing mobility

or customer satisfaction. Because of the looming threats of climate change and energy

insecurities, overall energy consumption of the system has become a motivating factor in
1http://www.easymile.com/
2https://localmotors.com/meet-olli/

56

studying and deploying AMDs, with Zhu et al. [52] reporting greater energy efficiency, in

addition to increased mobility, from the use of AMDs.

This work is meant to extend the modeling and simulation of AMD models developed by

Young et al. [51] and Zhu et al. [52] by optimizing fleet operations within the AMD while

accounting for several practical considerations. To capture the efficiency of fleet operations,

the objective function will be the total on-the-road time of the vehicles within the AMD.

The first aspect we will address is customer satisfaction. In this work, customer

satisfaction is modeled by having time windows in which customers must be picked up

via constraints. We note that, in essence, this approach addresses customer satisfaction by

ensuring that 100% of customers are picked up within their preferred time window. It is

important to note that implementing optimization models within physical AMDs will likely

necessitate using stochastic or robust approaches to account for the inherently stochastic

nature of ride-hailing and sharing. However, because common approaches to dealing with

such stochasticity involve solving multiple deterministic models, we will not directly address

the stochastic nature of this problem in the optimization model. We note, though, that

chance constraints or penalty methods for unsatisfied customers seem to be an obvious way

to incorporate these considerations into the model directly.

Since the vehicles are satisfying passenger requests, in addition to time windows for

customer pickups, another aspect of AMDs is customer loading and unloading times as well

as the capacities of the vehicles within the AMD. Both of these will be modeled by constraints

within the MIP model presented. Further, because the range of electric vehicles is often very

limited, the model will also include constraints limiting the range of the vehicle routes. We

show the impacts of having full and partial demand information available. Lastly, in the

context of vehicle routing problems, we show a method that can be used to account for

travel costs that vary over time.

4.3 MIP Formulation

The problem studied in this work consists of routing autonomous electric vehicles to satisfy

pickup and drop off locations within a network using the least amount of vehicle-hours

57

possible. In addition to the typical aspects of vehicle routing models, these routes must

obey pickup and drop off time window constraints, maximum distance constraints, vehicle

capacity constraints, loading and unloading times of pickups and deliveries, and varying

travel times.

For the parameters of the problem, we let G = (V ,A) be a multigraph, where V is the set

of pickup/delivery locations within the network as well as the starting and stopping depots

for each vehicle, and the arc set A represents the paths to and from each location. We denote

by K the set of vehicles, R the set of pickup/delivery requests, and T the time steps. For a

request r ∈ R, we let p(r) ∈ V be the pickup node for r, and d(r) ∈ V be the delivery node.

Since each pickup and delivery is assumed to require some non-zero loading and unloading

time, we let σ(r) be the loading time required to pick up r, and θ(r) be the unloading time

required to deliver r. Further, the pickups must occur within some time window, and we

denote this window by [sr, er], with sr being the earliest pickup time, and er being the latest

pickup time. With respect to the on-demand pickup and delivery problem, sr can be thought

of as the time at which the pickup request comes in.

For each arc (i, j) ∈ A and time period t ∈ T , we let `ti,j be the length of the path from i

to j in time period t. For each vehicle k ∈ K, τ k,ti,j is the time required for vehicle k to travel

from i to j in time period t, and ck,ti,j is the “cost” of traveling from i to j in time period t be

vehicle k. In our experiments, we assume ck,ti,j = τ k,ti,j , however we make the distinction here

for the sake of generality. Lastly, for each vehicle k ∈ K, we let uk be the passenger capacity

of k, and dk be the maximum distance vehicle k can travel. A summary of the parameters

is given below.

G = (V ,A) Directed multigraph of the road network.

K Set of vehicles.

R Set of pickup-delivery requests.

T Maximum number of time steps.

uk Capacity of vehicle k ∈ K.

o(k), o′(k) Start and end depots of k ∈ K, respectively.

58

p(r), d(r) Pickup and delivery location for r ∈ R, respectively.

σ(r), θ(r) Amount of time required to pickup and drop off r ∈ R, respectively.

cktij Cost for vehicle k ∈ K to traverse arc (ij) in time step t.

sr, er Window for pickup times for r ∈ R.

dk Maximum distance k ∈ K can travel on a single charge.

`ij Length of arc (ij) ∈ A.

τ ktij Time required for k ∈ K to traverse (ij) ∈ A in time step t.

bt Time at which period t begins, 1 ≤ t ≤ T .

For the variables, because the travel costs (and thus paths, times, and lengths) can

change in each time period, we must modify the typical VRP variables to take into account

which time period events occur. For each (i, j) ∈ A, k ∈ K, and t ∈ T , variable xk,ti,j
indicates if vehicle k traverses (i, j) in time period t. To ensure the x variables take on the

appropriate values, we also introduce wk,ti to indicate if vehicle k ∈ K leaves node i ∈ V

in time period t ∈ T . Further, as pickups and deliveries are being made on vehicles with

capacity constraints, for each (i, j) ∈ A, k ∈ K, and r ∈ R, we let yk,ri,j indicate if vehicle

k traverses (i, j) while actively satisfying request r. To account for the subtour elimination

constraints in a polynomial fashion [32], for every pair of nodes i ∈ V , j ∈ V and for each

vehicle k ∈ K, the variable zki,j indicates if i precedes j in the route of vehicle k (not

necessarily immediately). Lastly, as the times at which events occur is important, for each

node i ∈ V and for each vehicle k ∈ K, we let tki be the arrival time of k at node i, and tki be

the departure time of k from node i. A description of these variables, followed by the MIP

model, is presented below.

wkti Indicates if vehicle k ∈ K leaves i ∈ V in time period t. Binary.

xktij Indicates if vehicle k ∈ K traverses (ij) ∈ A in time period t. Binary.

ykrij Indicates if vehicle k ∈ K traverses (ij) ∈ A while transporting request r ∈ R. Binary.

59

zkij Indicates if i ∈ V precedes j ∈ V in route of vehicle k ∈ K. Binary.

tki Arrival time of k ∈ K at node i ∈ V . Continuous.

t
k
i Departure time of k ∈ K at node i ∈ V . Continuous.

min
∑
k∈K

∑
ij∈A

∑
1≤t≤T

cktijx
kt
ij (4.1)

s.t.
∑
j|ij∈A

xk1ij ≤ 1 ∀k ∈ K ∀i = o(k)

(4.2)∑
j|ij∈A

xk1ij =
∑
j|j`∈A

∑
1≤t≤T

xktj` ∀k ∈ K ∀i = o(k) ∀` = o′(k)

(4.3)∑
i|ij∈A

xktij =
∑
`|j`

∑
t′≥t

xkt
′

j` ∀t ≤ T ∀k ∈ K ∀j ∈ V \ {o(k), o′(k)}

(4.4)∑
k∈K

∑
j|ij∈A

ykrij = 1 ∀r ∈ R ∀i = p(r)

(4.5)∑
k∈K

∑
j|ji∈A

ykrji = 1 ∀r ∈ R ∀i = d(r)

(4.6)∑
i|ij∈A

ykrij =
∑
`|j`∈A

ykrj` ∀k ∈ K ∀r ∈ R ∀j ∈ V , i 6= p(r), ` 6= d(r)

(4.7)∑
r∈R

ykrij ≤ uk
∑

1≤t≤T

xktij ∀(ij) ∈ A ∀k ∈ K

(4.8)∑
1≤t≤T

xktij ≤ zkij ∀i, j ∈ V ∀k ∈ K, o(k) 6= i, o′(k) 6= j

(4.9)

60

zkij + zkji ≤ 1 ∀i, j ∈ V ∀k ∈ K, o(k) 6= i, o′(k) 6= j

(4.10)

zkij + zkj` + zk`i ≤ 2 ∀i, j, ` ∈ V ∀k ∈ K

(4.11)

t
k
i + τ ktij − tkj ≤M

(
1− xktij

)
∀(ij) ∈ A ∀k ∈ K ∀t ≤ T

(4.12)

tkp(r) + σ(r) ≤ t
k
p(r) ∀r ∈ R ∀k ∈ K

(4.13)

tkd(r) + θ(r) ≤ t
k
d(r) ∀r ∈ R ∀k ∈ K

(4.14)

sr ≤ tkp(r) ∀r ∈ R ∀k ∈ K

(4.15)

t
k
p(r) ≤ er ∀r ∈ R ∀k ∈ K

(4.16)∑
ij∈A

∑
1≤t≤T

`ijx
kt
ij ≤ dk ∀k ∈ K

(4.17)∑
j|ij∈A

xktij ≤ wkti ∀k ∈ K ∀t ≤ T ∀i ∈ V

(4.18)∑
1≤t≤T

wkti ≤ 1 ∀k ∈ K ∀i ∈ V

(4.19)

bt −M(1− wkti) ≤ t
k
i ≤ bt+1 +M(1− wkti) ∀i ∈ V ∀k ∈ K ∀t ≤ T

(4.20)

t
k
p(r) ≤ tkd(r) ∀k ∈ K ∀r ∈ R

(4.21)

wkti ∈ {0, 1} ∀t ≤ T ∀(ij) ∈ A ∀k ∈ K ∀r ∈ R

(4.22)

61

xktij ∈ {0, 1} ∀t ≤ T ∀(ij) ∈ A ∀k ∈ K ∀r ∈ R

(4.23)

ykrij ∈ {0, 1} ∀t ≤ T ∀(ij) ∈ A ∀k ∈ K ∀r ∈ R

(4.24)

zkij ∈ {0, 1} ∀t ≤ T ∀(ij) ∈ A ∀k ∈ K ∀r ∈ R

(4.25)

For the details of the model, 4.2 ensure that each vehicle is assigned to at most a single

route, while 4.3 ensure the routes start and stop at allowable depots. As with many VRP

variations that use a network flow-inspired approach, 4.4 force vehicles to leave each node

traveled to (flow in equals flow out).

Since the vehicles are being routed to pickup and deliver requests, constraints 4.5-4.6

require that each request is satisfied, and 4.7 are flow conversation constraints for passenger

transportation (passengers must leave intermediary nodes they enter). Constraints 4.8

perform two roles. First, they ensure that vehicles which transport passengers over an

arc must traverse that arc, and second that vehicles cannot carry more passengers than their

capacity allows along any given arc.

The next few constraints constitute the subtour elimination constraints. 4.9 ensures

that node i precedes node j in the route of a vehicle if that vehicle traverses arc (i, j).

Further, since it cannot be the case that two nodes both precede one another in any

given route, constraints 4.10 are added. Lastly, constraints 4.11 act as a kind of triangle

“precedence” inequality constraints. These three sets together constitute the subtour

elimination constraints [32].

The next sets of constraints account for the temporal nature of this problem. Constraints

4.12 ensure that, if a vehicle travels from i to j, then the arrival time at j cannot be earlier

than the departure time from i plus the time required to travel from i to j. To account

for the fact that pickups and deliveries require some amount of time to perform, constraints

4.13-4.14 are added. To model the fact that the pickups must be within some time window,

constraints 4.15-4.16 are included. We note that while this model does not account for time

windows on deliveries, constraints similar to these could be added to model that as well.

62

Finishing out the model, 4.17 are distance traveled constraints for the vehicles. 4.18 tie

the x and w variables together, ensuring that if a vehicle traverses an arc leaving a node i

in time period t, then it leaves node i in time period t. 4.19 force vehicles to leave a node

in at most one time period. To ensure the w variables take on the appropriate values, we

include constraints 4.20. Since pickups must occur before deliveries, 4.21 are present. And

lastly, 4.22-4.25 are the integrality constraints.

It is important to note that the model presented in 4.1 assumes complete knowledge of

the problem parameters. While many classical optimization problems have this assumption

built into them, many practical problems often have the specifics of the parameters revealed

over time rather than a priori. We will further discuss this limitation in Section 4.4, but

it should be noted that this will likely prove to be an important detail in any practical

implementation of this approach for this problem.

4.4 Solution Method

Since a mixed integer formulation of the problem is given in 4.1, it is tempting simply

to attempt to use a commercial solver, such as Gurobi or CPLEX, to solve this problem.

However, while the formulation presented is polynomial in size, we note that this formulation

is still quite large for even modest instances. Because of this limitation, we present a

constructive heuristic with a refinement procedure. In the first phase, an online approach is

used which assigns incoming requests to routes based on the marginal cost of adding that

request to a given route. In order to refine these initial routes, a Tabu search is utilized [24].

4.4.1 Online Route Construction

In order to construct the initial routes of the vehicles, an online framework is utilized. In

many classical optimization problems, it is assumed that all of the information relevant to

solving the problem is known a priori. By contrast, in an online problem, only an incomplete

knowledge of the future is available initially. In many of these problems, information is

revealed over time, often requiring the solutions previously found to be updated. While the

fields of robust and stochastic optimization have been developed to address these types of

63

problems, two major drawbacks to utilizing these frameworks exist. First, in order to produce

solutions which can be used in practice, high-quality data about the information of the

parameters contained in the problem is often required. In addition to needing high-quality

data, any naive implementation of these approaches will require significant computational

resources.

Because of these limitations, another common approach to addressing the online nature

of certain problems is the use of online algorithms. An online algorithm is one which is

designed to be able to construct partial solutions when given only partial information, while

being able to update these solutions as more information is revealed. Due to the on-demand

nature of the problem considered in this work, there is an obvious online greedy algorithm

that can be used to produce a set of initial solutions. Each vehicle maintains a route which

contains the nodes visited by the vehicle, the times at which these visits occur, and the

pickups and deliveries performed. Previously, the pickups were assumed to have a time

window [sr, er] during which they could be picked up. Another way to think of this is the

pickup request comes in at time sr, and the passenger is willing to wait up to er − sr units

of time for the pickup to occur. For this approach, the requests are ordered according to the

time at which the request is made (sr). When a new request is made, the marginal cost of

adding this request to each vehicle’s route is computed. The vehicle which can satisfy this

request at the lowest marginal cost is then assigned to this request, and its route is updated

to reflect this.

Since there are many ways in which a request can be added to a vehicle’s route, all

pickups and deliveries are done in a first-in, first-out (FIFO) fashion. That is, given two

requests r and r′ and any route which contains both of them, if sr < sr′ (the request time

of r occurs before the request time of r′), then r must be picked up before r′, and r must be

delivered before r′. Since the pickups have time windows in which they must occur and the

deliveries do not, the times at which pickups occur is more restrictive. Due to the greater

freedom of time frames in which deliveries can occur, performing pickups is given priority

over performing deliveries. This was done by scheduling the deliveries in a greedy fashion,

assigning them to occur at the first feasible time; that is, after the corresponding pickup

64

had occurred, and in between other node visits in such a way as to maintain overall route

feasibility.

We now turn our attention to the online aspect of the problem. As stated previously,

the MIP model assumes all of the parameter information is available a priori, whereas any

(at least naive) real-world implementation will find this assumption untenable. Because of

this, we consider two different ways to construct the initial routes. The first assumes every

aspect of the route can be reconfigured each time the route is updated. We will call this

the look-ahead approach, as, in a sense, it mimics what the outcome would be if the vehicles

could, at each node, look ahead in their future route and take the path that would result

in the lowest cost. When constructing the look-ahead routes, and especially in the Tabu

search refinement, it is useful to think of the routes as a set of requests to be fulfilled, rather

than the sequence of nodes, times, and requests, since the route can be readily reconstructed

given just the requests to be fulfilled.

The second method used to construct the initial routes is truly an online approach. Each

time a new request r is made, it is assumed that the node visits in the route which occurred

before sr (the time at which request r is made) are fixed and only the future route can be

updated. We will call this approach the without look-ahead approach.

4.4.2 Refinement with Tabu Search

After the initial routes are constructed, the refinement phase begins. We note that the

refinement phase is meant to provide a solution approach for the MIP given in 4.1, and as

such, the initial routes will be the look-ahead routes constructed. In this phase, as mentioned

previously, it is useful to think of the routes as just a set of requests to be satisfied. In

order to refine the initial routes, the approach used was a Tabu search [24] with request

interchanges. Tabu search is a type of local search heuristic with short-term memory, while

request interchange defines what it means for solutions to be neighbors. Tabu search is an

iterative heuristic in which neighbors of the current solution are examined. The neighbor

with the best objective value is then chosen as the current solution in the next iteration of

the search. We note that a neighbor does not need to be improving to be chosen, it simply

needs to be the neighbor with the best objective value. Because of this, Tabu search is useful

65

for escaping locally optimal points which are not globally optimal. To avoid cycling (that

is, continuously choosing only a small set of solutions), a Tabu list is maintained. Items

or structures on the Tabu list represent characteristics which the examined neighbors are

forbidden from having. Neighbors found to have the characteristics on the Tabu list are thus

not considered as potential candidates for the next iteration.

To define the neighbors of a solution, we think of the routes as a set of clusters (or sets)

of the requests. Two solutions (sets of routes, which are themselves sets of requests) are

considered neighbors if there are two routes within them that both differ from one another

by at most one request. Another way to think of this is by constructing a neighbor from a

given solution. To construct a neighbor, select two routes from the solution, call them R0

and R1. There are two allowable moves to construct a neighbor: move some request from

R0 to R1, or move some request from R0 to R1 and another request from R1 to R0. We call

these operations request interchanges.

The Tabu search algorithm can be found in Algorithm 5. From the perspective of the

Tabu list, the forbidden structure would be the routes from the previous iteration that differ

from the routes of the current solution. That is, forbidding neighbors from having the same

clustering of the requests as the previous solution. The stopping criterion for the Tabu search

was failing to find an improving solution after a certain number of iterations.

4.4.3 An Example

We illustrate the online route building approach and the Tabu search with the following

example. For the sake of simplicity, we will ignore the time-dependent travel costs, and

assume simply that each edge has a travel cost and length of 1. Suppose the following is the

request schedule, given as O – D pairs:

• R0: 9 – 4, s0 = 0, e0 = 2

• R1: 1 – 6, s1 = 0, e1 = 2

• R2: 4 – 9, s2 = 4, e2 = 6

• R3: 6 – 1, s3 = 4, e3 = 6

66

Algorithm 5: Function to refine routes by tabu search.
1 function TabuRefinement R = {R1, R2, ..., R|K|};

Input : A set of routes R.
Output: A set of routes bestRoutes with cost less than or equal to the cost of

initial routes.
2 initialization;
3 bestRoutes← R; // current best set of routes
4 tabuList← {}; // short-term memory of forbidden exchanges
5 listT ime← {}; // iteration at which each tabu item was added to list
6 while iterationCount < iterationLimit do
7 bestSavings←∞;// best savings to be found from a request exchange

bestExchange← ((0, 0), (0, 0)); // best ((request, route),(request, route)) pair
so far

8 foreach Ri 6= Rj do
9 foreach x ∈ Ri, (x,Rj) 6∈ tabuList do

10 foreach y ∈ Rj, (y,Ri) 6∈ tabuList do
11 Compute route for R′i = Ri ∪ {y} \ {x}, R′j = Rj ∪ {x} \ {y};
12 if cost(R′i) + cost(R′j) - cost(Ri) - cost(Rj) < bestSavings then
13 bestSavings← cost(R′i) + cost(R′j) - cost(Ri) - cost(Rj);

bestExchange← ((x,Ri), (y,Rj));
14 end
15 end
16 end
17 end
18 Perform bestExchange;
19 tabuList.push_back((x,Ri));
20 tabuList.push_back((y,Rj));
21 if cost(R) < cost(bestRoutes) then
22 bestRoutes← R;
23 tabuList← {};
24 iterationCount ← 0;
25 end
26 end
27 return bestRoutes;

67

Suppose we have the road network given in Figure 4.1.

9 D 1

8 10 2

7 11 3

6 5 4

Figure 4.1: Road network for constructive and Tabu search example.

Given two vehicles with sufficient maximum travel distance and capacity, the optimal

routes are

• V0: D – 11 – 2 – 3 – 42 – 5 – 61 – 7 – 8 – 92 – D

• V1: D – 90 – 8 – 7 – 63 – 5 – 40 – 3 – 2 – 13 – D

with blue superscripts indicating pickups and red superscripts indicating drop offs. The

travel time of each route is 10 for a total cost of 20. Consider what the initially constructed

routes would be.

When the first two requests come in, the initial routes could be

• V0: D – 90 – D – 1 – 2 – 3 – 40 – 3 – 2 – 1 – D

• V1: D – 11 – D – 9 – 8 – 7 – 61 – 7 – 8 – 9 – D

At the time requests 2 and 3 come in, V0 would be at node 2 and V1 would be at node

8, with their remaining routes being

• V0: 2 – 3 – 40 – 3 – 2 – 1 – D

• V1: 8 – 7 – 61 – 7 – 8 – 9 – D

68

In the without look-ahead approach, the best option is to assign V0 to satisfy request 2

and V1 to satisfy request 3. This results in the overall routes

• V0: D – 90 – D – 1 – 2 – 3 – 402 – 3 – 2 – 1 – D – 92 – D

• V1: D – 11 – D – 9 – 8 – 7 – 613 – 7 – 8 – 9 – D – 13 – D

In this case, each route has a cost of 12, for a total cost of 24 (20% higher than optimal).

Each route can also be considered as a set of requests, with V0’s route being {0, 2} and V1’s

route being {1, 3}. Note that all (reasonable) routes that satisfy {0, 2} have a cost of 12. In

this example, the look-ahead solution presented would construct optimal routes because, in

a sense, this approaches allows decisions made in the past to be changed.

In the Tabu search phase, we search for other ways of clustering the requests. The initial

routes as sets again are

• V0 : {0, 2}

• V1 : {1, 3}

The first request interchange considered would be

• V0 : {0, 3}

• V1 : {1, 2}

Consider building V0’s route. Since it is not possible to pick up and drop off R0 and still

get to R3 (R3 is only willing to wait until time t = 6 to be picked up), R3 must be picked up

before R0 is dropped off. Since drop offs are done in a first in, first out fashion, the outline

of V0’s route must be:

1. Pick up R0

2. Pick up R3

3. Drop off R0

4. Drop off R3

69

This will result in the overall route being

• V0: D – 90 – 8 – 7 – 63 – 5 – 40 – 3 – 2 – 13 – D

which has a cost of 10. Similarly, we will get V1’s route to be

• V1: D – 11 – 2 – 3 – 42 – 5 – 61 – 7 – 8 – 92 – D

These routes are the optimal routes.

4.5 Computational Experiments

Recently, Greenville, SC has been awarded a Federal Highway Administration (FHWA)

grant to deploy automated taxi shuttle systems in three areas in the county [20]. In order

to effectively implement these systems, we analyzed AMD deployment scenarios for the

Greenville, SC network, which is illustrated in Figure 4.2. This network, together with the

corresponding request data, represent the bulk of the computational experiments performed.

The overall network configuration and origin-destination trip requests were obtained

from the regional travel demand model in the Greenville-Pickens Area Transportatoin Study

(GPATS). This study contains datasets on origin-destination trip requests for four periods

throughout the day: (i) AM Peak, which is from 6:01 to 9:00, (ii) Mid-Day, which is 9:01

to 16:00, (iii) PM Peak, 16:01 til 19:00, and (iv) Night Time, covering 19:01 through 6:00.

The AM Peak dataset contains information on 378 trips, covering the following modes of

transportation: (i) on-demand fixed-route automated shuttle service (20%), (ii) on-demand

door-to-door automated shuttle service (30%), (iii) walking (10%), (iv) regular vehicle traffic

(40%). The origin-destination data from (i) and (ii) were combined to form the baseline on-

demand requests for our scenarios. After data processing and cleansing, 177 on-demand

requests distributed across the network were used. The distribution of the origins of these

requests can be found in Figure 4.3, while the distribution of the destinations of these requests

can be found in Figure 4.4.

70

Figure 4.2: Test network from Greenville, SC. The corresponding graph contains 554 nodes
and 1340 edges.

71

Figure 4.3: Distribution of origins of requests within the network. Lighter colored regions
correspond to fewer requests, while darker regions correspond to more requests.

72

Figure 4.4: Distribution of destinations of requests within the network. Lighter colored
regions correspond to fewer requests, while darker regions correspond to more requests.

73

In addition to this baseline setup, two additional demand levels were also considered. In

one of these, 25% of the requests were chosen at random to be ignored in order to simulate

fewer requests. This resulted in an instance with 134 requests. In the other, 10% of the

requests were chosen at random to be duplicated while having the duplicate’s request time

chosen at random in order to simulate a higher demand, which resulting in 194 requests.

For the road segment parameters, we note that the road segments were given as a series

of latitude and longitude points in a Shapefile. Using a linear interpolation of the points,

the length of each road segment was computed.

In order to determine the travel time across the road segments of the network, the open

source traffic simulation tool SUMO [30] was used at a resolution of 5 minutes. These were

then used to estimate travel times on a 15-minute scale, which is what was ultimately used

as the travel times. In the event SUMO failed to produce a travel time along a road segment,

it was assumed traffic would move at 90% of the speed limit for that segment, and the travel

time implied by this was used. Since the total time horizon considered was 180 minutes, 12

time periods of 15 minutes each were used.

In addition to travel times and distances, the energy required for each route was also a

metric of interest because the automated shuttles are expected to be electric vehicles. The

energy required to traverse a road segment is a function of the length of the road segment

and the travel time, with longer road segments requiring more energy, and slower travel

times also requiring more energy. The specific values were developed by using the Future

Automotive Systems Technology Simulator (FASTSim), which is an open-source vehicle

powertrain analysis model for light-duty vehicles [10]. Using FASTSim and the characteristics

of a popular automated electric shuttle EasyMile EZ10. Figure 4.5 shows the distribution of

average speeds along the road segments as well as the energy consumption at each of those

speeds.

We note that the model proposed also accounts for passenger loading/unloading times,

as well as the maximum amount of time passengers are willing to wait for a shuttle to arrive.

Passenger loading and unloading times had three levels that were considered: 30 seconds, 60

seconds, and 90 seconds. Similarly, the amount of time allotted to fulfill a request had three

levels: 60 seconds, 120 seconds, and 180 seconds.

74

Figure 4.5: Distribution of average travel speeds on road segments together with energy
consumption at those speeds.

75

From an operational perspective, most (if not all) of the characteristics previously

mentioned will not be easily controlled by an operating entity. There are two primary

aspects that can be readily addressed: (i) routing, and (ii) fleet composition. For this reason,

in addition to comparing the three solution approaches mentioned in Section 4.4, sensitivity

analysis on the vehicle characteristics was also performed. The two characteristics were

examined: (i) maximum vehicle travel distance, and (ii) passenger capacity of each vehicle.

As the MIP model presented allows for rather generic objective functions, total travel

time of the fleet of vehicles was used for our experiments. This was done to attempt to find

approximate the concerns most operators would have with routing the individual vehicles.

Travel times should be short because (i) overall system utilization, and therefore customer

satisfaction, is important, and (ii) having the vehicles on the road for less time tends to cost

less money.

We note that computational results using the MIP model are unavailable. This is due

to the size of the model resulting from the Greenvills, SC data. While we were unable to

determine the exact size of the model, our machine, running Ubuntu 18.04, with 256 GB

of RAM, lacked the memory to be able to fully build the model. As a result, we do not

present exact solutions, nor do we present data on the optimality gap of the various solution

techniques.

All experiments were done using a 16 core (32 thread) machine, running Ubuntu 18.04,

with 256 GB of RAM. All coding was done in C++. Standard graph algorithms used were

implementations from Boost’s Graph Library [9].

4.6 Results

Figures 4.6, 4.7, 4.8 contain the travel time results. As would be expected, having vehicles

with longer ranges decreases total travel time, and having vehicles with higher capacities

also decreases total travel time. Across the different strategies, Tabu search on average

outperformed the with look-ahead strategy by 10% and the without look-ahead strategy by

16%.

76

Figure 4.6: Average objective value of best found solution under various strategies in
scenarios using default request level. Black bars indicate spread of best and worst scenarios.

77

Figure 4.7: Average objective value of best found solution under various strategies in
scenarios using reduced request level. Black bars indicate spread of best and worst scenarios.

78

Figure 4.8: Average objective value of best found solution under various strategies in
scenarios using additional request level. Black bars indicate spread of best and worst
scenarios.

79

When considering just the effects of maximum distance on the solutions, we note that

there was often a significant improvement in total travel time when going from a 20km

vehicle range to 30km, with some instances seeing a nearly 30% reduction in total travel

time. The difference was markedly less pronounced when going from a range of 30km to

50km, however, despite the relative difference in ranges being larger in this gap. At some

point, having vehicles with higher ranges will not improve solution quality for any vehicle

routing problem. We begin to see these diminishing returns when moving to the 50km range

for these instances.

The effect of passenger capacities on total travel time was less pronounced, averaging

between 0% and 2% across the instances. While several instances saw a change in solution

quality when going from a capacity of 2 passengers to 4 passengers, very few saw any changes

at all when going from 4 passengers to 8 passengers.

The effects of vehicle capacity on the number of vehicles required saw a similar story. As

the capacity increased from 2 to 4, there were often a reduction in the number of vehicles

required, but never more than a few percent. When increasing the capacity from 4 to 8,

though, few instances saw any change at all. This can be seen in Figure 4.12.

As before, vehicle range played a large role in the amount of vehicles needed, with higher

rangers corresponding to requiring fewer vehicles to satisfy all of the requests. And again,

we see the largest difference when moving from vehicles with a range of 20km to a range of

30km. On average, this larger range allows all the requests to be satisfied using nearly 30%

fewer vehicles. As was the case before, the relative difference between the 30km and 50km

ranges were significantly less.

The energy consumption of the routes provided the most surprising results. These can be

found in Figures 4.9, 4.10, and 4.11. Typically, the routes produced by the Tabu search were

more energy efficient, in terms of energy per vehicle mile, than the other strategies, but this

was not uniformly the case as it was with travel times. In many instances, the Tabu search

actually produced routes which were less energy efficient than the other strategies. The

same trend held when considering the effects of vehicle range on the energy efficiency. As

the vehicle range increased, the routes found required less time, but the energy consumption

per mile increased.

80

Figure 4.9: Average energy consumption per mile (kWh/mi) of best found solution under
various strategies in scenarios using default request level. Black bars indicate spread of best
and worst scenarios.

81

Figure 4.10: Average energy consumption per mile (kWh/mi) of best found solution under
various strategies in scenarios using reduced request level. Black bars indicate spread of best
and worst scenarios.

82

Figure 4.11: Average energy consumption per mile (kWh/mi) of best found solution under
various strategies in scenarios using additional request level. Black bars indicate spread of
best and worst scenarios.

83

Figure 4.12: Average minimum number of vehicles required to be able to satisfy all requests
with without look-ahead initial route construction in each demand level. Black bars indicate
spread of best and worst scenarios.

84

This can seem especially paradoxical when considering the information contained in

Figure 4.5. Since the Tabu search is looking for routes which require less time, it seems

reasonable that these would also be routes that have several road segments which can be

traversed at a high speed. As seen in Figure 4.5, the higher the speed, the lower the energy

consumption. So it would seem reasonable that the Tabu search should produce routes which

consume less energy per vehicle mile. The same trend, under this reasoning, would also be

expected from increasing the vehicle range.

One possible mechanism for explaining this apparent discrepency is hinted at by

Figures 4.4 and 4.3. Several of the requests are to essentially go across the network. Towards

both the beginning and end of these trips, many of the road segments are neighborhood or

otherwise congested streets, while in between them lie highways and road segments with a

higher throughput. In many of these scenarios, the most energy-efficient leg of the journey

is when after the vehicle has picked up all passengers and before it begins to drop them

off. With higher ranges, more of these passengers can be picked up in each vehicle, thus

reducing the number of trips across the network that are required to satisfy these requests.

What is not reduced, however, is the amount of vehicle miles that must be spent while active

picking up or delivering passengers, which is the less energy-efficient aspect of the journey.

A illustrative example of this is given below.

Suppose the graph given in Figure 4.13 is the road network, where each link has length 1

mile, traffic on the blue links travel at 10km/h, and traffic on the red links travel at 20km/h.

That is, the travel time on the blue links is 0.161 hr, and the travel time on the red links is

0.0805 hr, and the energy cost to traverse a blue link is 1.21 KWh, and the energy cost to

traverse a red link is 0.867 KWh. Suppose D is the vehicle depot (where the vehicles start

and stop their routes), and there are two requests: (A)− (Z) and (C)− (X).

Now suppose each vehicle has a maximum distance of 8 miles. Then the only set of

feasible routes is:

• D −B − A−B −D − Y − Z − Y −D

• D −B − C −B −D − Y −X − Y −D

85

D

A

B

C

X

Y

Z

Figure 4.13: Example network to show quicker routes may be less energy efficient.

The total travel time is then 8·(0.161+0.0805) hr = 1.93 hr, while the total energy used is

8 ·(1.21+0.867) KWh = 16.6 KWh. Thus the average energy per mile is 16.6 KWh/16 mi =

1.04 KWh/mi.

Suppose now that each vehicle has a maximum distance of 12 miles. A new route becomes

feasible which satisfies both requests with a single vehicle.

• D −B − A−B − C −B −D − Y − Z − Y −X − Y −D

For this new route, the total travel time is 8 · 0.161 + 4 · 0.0805 hr = 1.61 hr, and the

total energy used is 8 · 1.21 + 4 · 0.867 KWh = 13.1 KWh. Note that this route requires less

vehicle travel time, and is improving with respect to the objective function used. For this

scenario, the average energy per mile is 13.1 KWh/12 mi = 1.09 KWH/mi.

4.7 Conclusion

We have developed a mathematical model that can be used to route on-demand shuttles

within an automated mobility district. We have also shown that techniques that have been

proven to work well for many vehicle routing problems can also be applied to this problem.

We have also shown that using a Tabu search can offer significant savings in terms of vehicle

travel time when compared to on-the-fly route generation. Because this approach requires

a priori knowledge of the demand distribution, this suggests that significant savings can be

achieved with high-quality models and data that can be used to forecast demand and overall

traffic patterns within an AMD.

86

Further, we have shown that these approaches can be used at-scale on city-wide instances

for not only routing and day-to-day planning, but also in the context of overall fleet

composition planning. Our results from Greenville, SC suggest that having moderate-range

automated electric shuttles (approximately 30km range) with a passenger capacity similar to

that of a typical sedan (4 people) offers many of the benefits seen from larger, more expensive

automated shuttles. This is desirable because batteries often represent a significant portion

of the costs of electric vehicles, and both the size of the vehicle and the maximum range of

the vehicle directly affect the battery storage needed.

Lastly, while not directly related to automated mobility districts, we have also shown an

approach that can be used on other vehicle routing problems to model travel times and costs

changing as the temporal aspect of the problem evolves.

87

Chapter 5

Conclusions

In this chapter we conclude the thesis and offer directions on future research.

5.1 Allocating Deicing Resources

Chapters 2 and 3 present a framework for designing winter deicing maintenance strategies

in a data-driven and results-oriented way. Chapter 2 focuses on developing the model

and a constructive solution approach, while Chapter 3 develops a framework in which the

approaches in Chapter 2 can be used to budget for deicing activities. While the developed

solution techniques offer improvements over currently existing strategies, we note that simply

building the corresponding MIP model and attempting to solve it with an off-the-shelf solver,

such as CPLEX or Gurobi, offered better solutions than our constructive heuristic. This was

often the case even in the event of a timeout on the part of the solver. While we still feel

these contributions are important as they allow resource-lacking municipalities to be able

to develop approaches that do not rely on expensive commercial software licenses, there are

still modifications that may be useful to consider to improve the presented approach.

One immediate consideration that may be made to the heuristic approach presented in

Chapter 2 is in the first phase when the priority queue is built. Currently, while we are

cognizant of the fact that the edges treated to improve the first-stage flow will impact the

marginal costs of the second-stage flow, our approach does not account for the fact that

the reverse is also true: the edges treated to improve the second-stage flow will impact that

88

marginal costs of the first-stage flow. Perhaps because of this interplay, there were some

instances in which the heuristic failed at finding paths to route additional traffic, despite the

fact that there were some paths available that could be treated given the resource levels in

that instance. It seems apparent that this interplay has the capability to impact solution

quality.

With this in mind, an obvious fix is to not only update the second-stage dual graph with

the information from the first-stage shortest path, but also to update the first-stage dual

graph with the information from the second-stage shortest path. Naturally, some questions

immediately come to mind. First, note that if the first-stage dual graph is changed, this will

likely change the first-stage shortest path. This, in turn, will change the second-stage dual

graph, which could change the second-stage shortest path. However, we are attempting to

update the first-stage dual graph by appealing to the second-stage shortest path. One way

to ensure these changes are limited could be by fixing certain aspects of the path chosen.

However, this could become computationally expensive. Are there other ways of addressing

this?

A second concern would be that of convergence criteria. Since the marginal costs of the

edges will not be monotonically increasing or decreasing under these updates, it is not readily

apparent that performing these iterations will result in first- and second-stage shortest paths

and dual graphs which eventually converge. What additional work must be done to ensure

that an iterative approach such as this will converge?

An additional concern that should be addressed is the way the traffic is currently modeled.

At the moment, the objective is to maximize the throughput of the network. Perhaps

a better metric to consider would be the likelihood of traffic accidents (which would be

minimized, naturally). Since traffic accidents tend to be correlated with traffic flows, with

more traffic corresponding to fewer accidents, this metric may introduce non-linearities within

the problem which will need to be accounted for.

89

5.2 Automated Mobility Districts

Chapter 4 considered routing automated shuttles within an automated mobility district as

well as planning the fleet of vehicles used. We designed a mixed integer programming model

which, in theory, is capable of routing the fleet of vehicles. We were also able to show the

impact of various vehicle parameters on the quality of solutions obtained, as well as the size

of the fleet that would be needed to satisfy the requests given the various parameters.

One aspect of the current approach that could be improved is the size of the current

model. We note that the usage of the phase “in theory” in the previous paragraph was

intentional, as any naive implementation of the provided mathematical model for an instance

on the scale of a city seems unlikely to be solvable given current hardware limitations. It

seems vanishingly unlikely, then, that current software approaches would be able to make

much headway on instances like this, even if they were able to fit in memory. Because of this,

additional work must be done, likely either through reformulations and/or decomposition

techniques.

One potentially promising avenue was somewhat utilized and alluded to in the text. It

was mentioned that it was often useful to think of a route as a set of requests to be fulfilled,

rather than a series of nodes visited along with the corresponding pickups, deliveries, and

times at which the visits occur. With this in mind, perhaps a better exact technique would

be to think of this problem as more of a clustering (or graph coloring) problem, where the

clusters represent the clustering of the requests. In this framework, it seems likely that

considerable decompositions could be achieved since the resources necessary to compute

the objective value of any given route is relatively low and the routes readily decompose

individually, allowing large swathes of the variables and constraints to be ignored.

In addition to this, we note that the instances from Greenville, SC were built utilizing

both on-demand requests as well as the requests on the fixed-route shuttles. The current

approach does not account for fixed-route shuttles. However, practically (if not actually)

every municipality which provides some form of public transportation, AMD or otherwise,

utilizes fixed routes. Modifying the presented model to account for this seems like a

reasonable next step.

90

5.3 Future Work

In addition to the questions asked in the previous sections, we note that one aspect of these

problems that became apparent is the need for high-quality data to be able to properly utilize

these techniques. In the context of AMDs, being able to reliably forecast future demand and

route vehicles accordingly saw significant savings in terms of on-the-road travel time for the

vehicles. Further, in order to utilize our deicing resources more effectively, it is imperative

that we are able to forecast weather and traffic patterns in a reliable manner.

91

Bibliography

92

[1] (2006). A Stochastic Optimization Model for Highway Project Selection and Programming

under Budget Uncertainty. 43

[2] (2017). Modeling Road Vulnerability to Snow Using Mixed Integer Optimization. IISE

Annual Conference and Expo. 41, 42, 43, 44, 50

[3] Adams, E. (2017). How Long, Really, Until Self-Driving Cars Hit the Streets? - The

Drive. 56

[4] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev.

Mod. Phys., 74:47–97. 30, 50

[5] Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2007). The Traveling

Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics).

Princeton University Press, Princeton, NJ, USA. 5

[6] Asamer, J. and Reinthaler, M. (2010). Estimation of road capacity and free flow speed

for urban roads under adverse weather conditions. In 13th International IEEE Conference

on Intelligent Transportation Systems, pages 812–818. 11

[7] Baldacci, R., Toth, P., and Vigo, D. (2010). Exact algorithms for routing problems under

vehicle capacity constraints. Annals of Operations Research, 175(1):213–245. 5

[8] Bertsimas, D. and Tsitsiklis, J. (1997). Introduction to Linear Optimization. Athena

Scientific, 1st edition. 2

[9] Boost (2018). Boost C++ Libraries. http://www.boost.org/. Last accessed

12JUN2018. 29, 76

[10] Brooker, A., Gonder, J., Wang, L., Wood, E., Lopp, S., and Ramroth, L. (2015).

FASTSim: A Model to Estimate Vehicle Efficiency , Cost and Performance. SAE Technical

Paper, (April):21–23. 74

[11] Christofides, Nicos (1976). The vehicle routing problem. R.A.I.R.O. Recherche

opérationnelle, 10:55–70. 5

93

http://www.boost.org/

[12] Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12(4):568–581. 5, 26

[13] Cordeau, J.-F., Laporte, G., Savelsbergh, M., and Vigo, D. (2007). Vehicle Routing,

volume 14, pages 195–224. 5

[14] Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale traveling-

salesman problem. Journal of the Operations Research Society of America, 2(4):393–410.

2, 3

[15] Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management

Science, 6(1):80–91. 3, 4

[16] Desrochers, M. and Verhoog, T. (1991). A new heuristic for the fleet size and mix

vehicle routing problem. Computers & Operations Research, 18(3):263 – 274. 6

[17] et al., J. J. H. (1991). Highway deicing - comparing salt and calcium magnesium acetate.

Technical Report 235, Transportation Research Board. 9, 31, 40

[18] et al, J. R. (2010). Maine winter roads: Salt, safety, environment and cost. Technical

Report 10-06, Margaret Chase Smith Policy Center, The University of Maine. 9

[19] Fagella, D. (2017). Self-Driving Car Timeline for 11 Top Automakers. 56

[20] FHWA (2017). Fhwa awards $4 million grant to south carolina’s greenville county

for automated taxi shuttles. Press Release: FHWA Awards $4 Million Grant to South

Carolina’s Greenville County for Automated Taxi Shuttles, 10/4/2017, Federal Highway

Adminstration. 56, 70

[21] Fisher, M. L. and Jaikumar, R. (1981). A generalized assignment heuristic for vehicle

routing. Networks, 11(2):109–124. 6

[22] Fulkerson, D. R. (1959). Increasing the capacity of a network: The parametric budget

problem. Management Science, 5(4):472–483. 19, 21, 49, 51

[23] Ghiani, G., Improta, G., and Laporte, G. (2001). The capacitated arc routing problem

with intermediate facilities. Networks, 37(3):134–143. 9, 41

94

[24] Glover, F. (1989). Tabu search—part i. ORSA Journal on computing, 1(3):190–206. 7,

63, 65

[25] INFORMS (2016). Ups 2016 edelman. 4

[26] John R. Birge, F. L. (2011). Introduction to Stochastic Programming. Springer. 43

[27] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.

Combinatorica, 4(4):373–395. 2, 20

[28] Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103. Springer

US, Boston, MA. 2

[29] Kinable, J., van Hoeve, W.-J., and Smith, S. (2016). Optimization models for a real-

world snow plow routing problem. In Integration of AI and OR Techniques in Constraint

Programming, pages 229–245. 9, 12

[30] Krajzewicz, D., Bonert, M., and Wagner, P. (2006). The open source traffic simulation

package sumo. RoboCup 2006 Infrastructure Simulation Competition, 1:1–5. 74

[31] Krokhmal, P., Palmquist, J., and Uryasev, S. (2002). Portfolio optimization with

conditional value-at-risk objective and constraints. Journal of risk, 4:43–68. 43

[32] Laporte, G. (1986). Generalized subtour elimination constraints and connectivity

constraints. The Journal of the Operational Research Society, 37(5):509–514. 5, 59, 62

[33] Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4):408–

416. 5

[34] Lin, Y.-K. (2004). Reliability of a stochastic-flow network with unreliable branches

nodes, under budget constraints. IEEE Transactions on Reliability, 53(3):381–387. 43

[35] McMasters, A. W. (1972). Optimal capacity expansion in a flow network. Technical

Report NPGS55MG72091A, United States Naval Postgraduate School. 19, 20, 49

[36] MEI-KO, K. (1962). Graphic programming using odd or even points. Chinese Math.,

1:273–277. 9, 41

95

[37] Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960). Integer programming formulation

of traveling salesman problems. J. ACM, 7(4):326–329. 5

[38] of Agriculture, U. S. D. (2004). Snowmelt. In National Engineering Handbook. Part

630, Hydrology, chapter 11. 10

[39] O’Neill, R. P., Castillo, A., and Cain, M. B. (2012). The iv formulation and

linear approximations of the ac optimal power flow problem. Published online at

http://www. ferc. gov/industries/electric/indus-act/market-planning/opf-papers/acopf-2-

iv-linearization. pdf. 2

[40] P. Erdős, A. R. (1959). On random graphs. Publicationes Mathematicae, 6:290 – 297.

30, 50

[41] Perrier, N., Langevin, A., and Campbell, J. F. (2006a). A survey of models and

algorithms for winter road maintenance. part i: system design for spreading and plowing.

Computers & Operations Research, 33(1):209 – 238. 9, 41

[42] Perrier, N., Langevin, A., and Campbell, J. F. (2006b). A survey of models and

algorithms for winter road maintenance. part ii: system design for snow disposal.

Computers & Operations Research, 33(1):239 – 262. 9, 41

[43] Perrier, N., Langevin, A., and Campbell, J. F. (2007a). A survey of models and

algorithms for winter road maintenance. part iii: Vehicle routing and depot location for

spreading. Computers & Operations Research, 34(1):211 – 257. 9, 41

[44] Perrier, N., Langevin, A., and Campbell, J. F. (2007b). A survey of models and

algorithms for winter road maintenance. part iv: Vehicle routing and fleet sizing for

plowing and snow disposal. Computers & Operations Research, 34(1):258 – 294. 9, 41

[45] Rego, C., Gamboa, D., Glover, F., and Osterman, C. (2011). Traveling salesman

problem heuristics: Leading methods, implementations and latest advances. European

Journal of Operational Research, 211(3):427 – 441. 5

96

[46] Renaud, J. and Boctor, F. F. (2002). A sweep-based algorithm for the fleet size and mix

vehicle routing problem. European Journal of Operational Research, 140(3):618 – 628. 6

[47] Roh, H.-J., Sharma, S., and Sahu, P. K. (2016). Modeling snow and cold effects for

classified highway traffic volumes. KSCE Journal of Civil Engineering, 20(4):1514–1525.

11

[48] Ryan, D. M., Hjorring, C., and Glover, F. (1993). Extensions of the petal method for

vehicle routing. Journal of the Operation Research Society, 44:289–296. 6

[49] Snelder, M. and Calvert, S. (2016). Quantifying the impact of adverse weather conditions

on road network performance. European Journal of Transport and Infrastructure Research,

16(1). 11

[50] TRB (2000). Highway Capacity Manual. Transportation Research Board, Washington,

DC. 11

[51] Young, S. E., Hou, Y., Garikapati, V., Chen, Y., Zhu, L., Renewable, N., and Pkwy,

D. W. (2017). Initial Assessment and Modeling Framework Development for Automated

Mobility Districts. In ITS World Congress, pages 1–13, Montreal, Canada. 56, 57

[52] Zhu, L., Garikapati, V., Chen, Y., Hou, Y., Aziz, H. M. A., and Young, S. (2018).

Quantifying the Mobility and Energy Benefits of Automated Mobility Districts Using

Microscopic Traffic Simulation. 57

97

Vita

Tony Kent Rodriguez was born in Kingsport, Tennessee to Evelyn Mullins. He attended

Volunteer High School in Church Hill, TN. Upon graduation, Tony spent 2 years in various

places within Colorado doing volunteer work. Afterwards, Tony returned to east Tennessee,

where he eventually enrolled at East Tennessee State University. In the spring of 2012, Tony

earned a Bachelor of Science in Mathematics. Receiving a National Science Foundation GK-

12 Fellowship to fund his graduate studies at East Tennessee State University, Tony would

go on to receive a Master of Science in Mathematics in the spring of 2014. In the fall of

that same year, he would enroll in the University of Tennessee, Knoxville’s PhD program in

the Industrial and Systems Engineering department under the guidance of James Ostrowski.

He was supported in part by the University of Tennessee’s Chancellor’s Fellowship. During

his time at the University of Tennessee, Tony also collaborated with Oak Ridge National

Laboratory’s Modeling and Simulation Group, where he would find the questions that were

addressed in his PhD dissertation. Tony completed his PhD in Industrial Engineering in

May 2019.

98

	Mixed Integer Programming Approaches to Novel Vehicle Routing Problems
	Recommended Citation

	tmp.1581698523.pdf.3LIsH

