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ABSTRACT 

 
This dissertation examines the role of short sellers in our capital markets. The first chapter examines 

the impact constraints on short sellers have on the liquidity. Prior literature has struggled to cleanly identify 

whether constraining short sellers is harmful or not for liquidity. We exploit a plausibly exogenous shock 

to shorting supply that occurs on dividend record dates to test the relation between shorting constraints and 

market quality. This shock arises due to a combination of equity settlement rules and the tax treatment of 

the payments in lieu of dividends that stock lenders receive when they loan their shares. We find a 

temporary degradation in liquidity on dividend record dates in the form of larger effective spreads. Our 

evidence that liquidity deteriorates on dividend record days, especially in stocks that likely have less slack 

in lending supply, suggest shorting supply constraints affect the cost of transacting faced by all traders. The 

second chapter investigates whether sell side equity analysts use the trading activity of short sellers in their 

information set. By taking advantage of a lagged disclosure of short interest I can identify the relationship 

between analysts’ actions and the trading of short sellers more directly than prior literature. I find that 

analysts exhibit an increased propensity to downgrade their recommendations for a stock after a disclosed 

increase in short selling. I also find a significantly positive relationship between changes in short interest 

and the likelihood of a downward EPS revision. Overall, these results suggest that market participants 

extract information from short-sellers’ trading activity. 
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INTRODUCTION 

 
Short sellers serve an important role in our capital markets acting as informational intermediaries 

and they leave a noticeable footprint on today’s equity markets. Boehmer, Jones, and Zhang (2008b) and 

Diether, Lee, and Werner (2009b) report that short sales account for one-quarter to one-third of all trading; 

Rapach, Ringgenberg, and Zhou (2016) show that average firm-level short interest has steadily increased 

over the past four decades to an average of about five percent of shares outstanding during the 2003-2014 

period. The first chapter of this dissertation examines whether constraining short sellers’ ability to transact 

will have an impact on liquidity costs. Theory offers two channels through which short selling frictions 

may affect liquidity. The first is competition. Increased competition drives down market maker rents and 

should facilitate liquidity improvements (Grossman and Miller, 1985). The second channel is adverse 

selection. Here, the effects are ambiguous. On the one hand, shorting constraints may remove informed 

traders from the market, reduce adverse selection, and improve liquidity. On the other hand, if the frictions 

are restrictions that disproportionately sideline the least sophisticated short sellers, adverse selection may 

increase (Diamond and Verrecchia, 1987). We exploit a plausibly exogenous shock to shorting supply and 

find a temporary degradation in liquidity. This finding suggests shorting supply constraints affect the cost 

of transacting faced by all traders. 

The second chapter of this dissertation examines whether sell-side equity analysts use the trading 

activity of short sellers in their information set. Causal inferences on this relationship have been elusive in 

the literature as the actions of short sellers and analysts are typically endogenously determined. I take 

advantage of the lagged disclosure of short interest to isolate the response of analysts to the trade disclosure 

of short sellers. This allows for stronger causal inferences. I find that analysts do change their behavior after 

the disclosure of short interest. This finding suggests that analysts do extract information from the trading 

activity of short sellers.  
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CHAPTER I 

CAUSAL EFFECTS OF SHORT-SELLING SUPPLY ON MARKET QUALITY 
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The first chapter is co-authored with Dr. Eric Kelley. 

Abstract 

 
We exploit a plausibly exogenous shock to shorting supply that occurs on dividend record dates to 

test the relation between shorting constraints and market quality. This shock arises due to a combination of 

equity settlement rules and the tax treatment of the payments in lieu of dividends that stock lenders receive 

when they loan their shares. Using ordinary dividend events between 2004 and 2016, we find a temporary 

degradation in liquidity on dividend record dates in the form of larger effective spreads. We find notably 

stronger effects for stocks with characteristics associated with less slack in equity lending supply, and for 

those paying larger dividends. 

1. Introduction 

 
By sheer volume alone, short sellers leave a noticeable footprint on today’s equity markets. 

Boehmer, Jones, and Zhang (2008b) and Diether, Lee, and Werner (2009b) report that short sales account 

for one-quarter to one-third of all trading; Rapach, Ringgenberg, and Zhou (2016) show that average firm-

level short interest has steadily increased over the past four decades to an average of about five percent of 

shares outstanding during the 2003-2014 period. Nevertheless, short selling remains costly and is in some 

cases impossible. Some impediments arise in equity lending markets, while others are imposed by 

regulators.1 How do frictions to short selling affect liquidity and other dimensions of market quality? 

Answering this question with precise causal inferences is essential for regulators who shape policy as well 

as the growing number of asset managers who participate in equity lending. 

Theory offers two channels through which short selling frictions may affect liquidity. The first is 

competition. When unconstrained, short sellers may act as liquidity providers in a manner similar to the 

traditional market-making sector, absorbing transient buying imbalances as they arise. Increased 

                                            
1 Kolasinski, Reed, and Finggenberg (2013) empirically study search frictions in the U.S. equity lending market. See 
Jones, 2012, for a historical discussion of various restrictions to short selling in the U.S. 
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competition drives down market maker rents and should facilitate liquidity improvements (Grossman and 

Miller, 1985). Thus, the competition channel predicts short-selling frictions will deteriorate liquidity. The 

second channel is adverse selection. Here, the effects are ambiguous. On the one hand, shorting constraints 

may remove informed traders from the market, reduce adverse selection, and improve liquidity. On the 

other hand, if the frictions are restrictions that disproportionately sideline the least sophisticated short 

sellers, adverse selection may increase (Diamond and Verrecchia, 1987). 

An ideal experiment would test these theories by exogenously limiting short sales in a set of stocks 

and comparing market quality outcomes with those from similar control stocks. In this spirit, prominent 

work studies short-selling bans implemented around the 2008 financial crisis period. Boehmer, Jones, and 

Zhang (2013) and Beber and Pagano (2013) show that liquidity deteriorates, and volatility increases for 

banned stocks during the crisis. While these papers exploit well-defined and highly publicized shocks to 

the ability to short, causal interpretations are elusive. The short sale bans were applied to financial firms as 

endogenous outcomes of crises, events marked by changes to information asymmetry, stress on firms 

involved in market making, and overall policy uncertainty. Thus, skeptics are unconvinced the correlations 

documented by these authors imply causation. Outcomes of the SEC’s RegSHO Pilot, which removed the 

uptick rule for a random set of firms in 2005, bolster this doubt. Alexander and Peterson (2008) and Diether, 

Lee, and Werner (2009b) associate the elimination of the ostensible barrier to shorting with slightly wider 

spreads for NYSE stocks. Boehmer, Jones, and Zhang (2008a) report similar increases in spreads in 

conjunction with the permanent repeal of the uptick rule in 2007.2 

Kaplan, Moskowitz, and Sensoy (2013) create their own laboratory and mitigate endogeneity 

concerns. They work alongside a large money manager to increase lending supply for a random set of hard-

to-borrow stocks while leaving unchanged the supply for a set of control firms. The resulting supply shock 

was substantial. For the average stock in the first (second) phase of the experiment, the money manager 

made available for lending shares totaling 18% (36%) of short interest. But interestingly, these authors find 

                                            
2 A number of papers associate shorting activity with market quality. Examples include Bris, Goetzmann, and Zhu 
(2007) and Boehmer and Wu (2012). 
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no significant stock price effect, nor do they detect any change in spreads, volatility, or skewness. Thus, the 

shock to lending supply had no bearing on a host of market quality measures. Viewing the literature as a 

whole, causal interpretations of the effect of shorting constraints on market quality are tenuous. 

In this paper, we exploit a nuance in the United States tax code that, combined with equity 

settlement rules, offers a plausibly exogenous and transient shock to shorting supply. This shock occurs 

each time a firm pays a dividend – four times per year for most dividend-payers, so we need not rely on 

periods of market stress such as the financial crisis to study shorting constraints. Moreover, the shock falls 

on the dividend payment date of record, which occurs after the cum dividend and ex dividend dates. While 

the cum and ex dates attract dividend capture trading (Henry and Koski, 2017), the record date represents 

a day void of expected new information. Thus, dividend record dates facilitate study of the causal effects 

of lending supply. We detail the mechanics driving this shock in Section 1 below, and we provide evidence 

that lending fees indeed spike on dividend record dates in Section 3.a. 

Our main results reveal a deterioration in liquidity around the supply shock. Using each firm-

dividend event as its own control, we find that percentage and dollar effective spreads, which are common 

measures of liquidity, are about five percent greater on dividend record days than on nearby control days. 

This difference is highly statistically significant. The economic magnitude of this effect is roughly constant 

across the 2004-2007 and 2009-2016 subperiods as well. We find the late period result particularly 

interesting as the equity lending market has become larger, more transparent, and generally more accessible 

in recent years. For example, the Risk Management Association reports that in 2009 the value of lendable 

U.S. Equities, for fifteen large financial institutions, was $2.011 trillion, whereas, in 2017 that same value 

has grown to $7.394 trillion. We provide additional evidence the liquidity deterioration occurs through both 

a competition channel and an adverse selection channel. We also find very limited evidence that volatility 

and intraday variance ratio, a common measure of informational efficiency, increase marginally. 

While our main liquidity result emerges primarily in stocks smaller than the median NYSE-listed 

firm (about $2 billion market capitalization), we find economically and statistically significant results in 

some samples of larger stocks as well. These stark size patterns are not surprising since equity lending 
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supply is usually slack (D’Avolio, 2002; Kolasinski, Reed, and Ringgenberg, 2013) and the constraint likely 

does not bind in large cap stocks. When we apply even more stringent sample filters by only considering 

stocks that were hard-to-borrow around prior dividend events, the deterioration in market quality is 

generally larger. We also find modestly stronger results for high dividend paying stocks and in a much 

smaller sample of special dividends, cases which represent relatively greater tax-based disincentives to lend 

shares over the record day. 

Our contribution rests squarely on the ability to identify meaningful exogenous variation in 

lendable supply. The existing body of work has understandably struggled to establish causality, and we 

highlight three important findings that offer credibility to our test design. First, our methodology assumes 

a temporary change in equity lending market conditions. Using daily equity lending fee data, we show fees 

indeed spike on dividend record dates and immediately fall back to pre-dividend levels (Figure 1). Second, 

this change to equity lending conditions manifests in a spike in equity delivery failures as well (Figure 2). 

Prior studies link failures to high loan fees (Evans, Geczy, Musto, and Reed, 2008), and Thornock (2013) 

shows failures increase around record dates in his 2005-2007 sample period. We show that Thornock’s 

result also holds during the 2009-2016 period. Third, we utilize differential tax rates as the ultimate driver 

of the lending supply shock. Since this friction was non-existent prior to the 2003 U.S. tax code changes, 

we compare liquidity on dividend record dates during eighteen-month intervals before and after the change. 

Using each dividend-paying firm as its own control, we show that liquidity deteriorates on record dates 

exclusively in the post-tax change period. 

Our overall message complements that of Blocher, Reed, and Van Wesep (2013), who also use 

dividend events as an exogenous shock to shorting supply. While our focus is on liquidity and other market 

quality metrics, they study price levels. Miller (1977) predicts that constraints in shorting supply combine 

with differences in opinion to drive overpricing. Blocher, Reed, and Van Wesep (2013) offer strong support 

of this theory. For stocks with binding constraints, they find abnormally positive returns leading up to the 

ex-dividend day and reversals thereafter. Together, our results suggest that constraints to shorting supply 

distort two related dimensions of financial markets: price levels and liquidity. 
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2. Institutional Background and Related Literature 

 
A trader engaging in a short sale must locate and borrow shares from some other investor who 

already owns them. This equity loan is usually arranged through intermediaries, and it is priced according 

to the supply and demand of lendable shares in a fragmented and opaque market. Empirical researchers 

beginning with D’Avolio (2002) offer a peak into this market and document loan supply typically exceeds 

demand (i.e., supply is slack and therefore does not affect lending fees). However, in some cases, the supply 

constraint binds, lending fees are high (the stock is “on special”), and short selling is costly if not 

impossible. Moreover, lender market power emerges from search costs, which leads to higher and more 

disperse fees across lenders (Duffie, Garleneau, and Pedersen, 2002; Kolasinski, Reed, and Ringgenberg, 

2013). 

Binding constraints could arise when few owners have lending programs, which may be the case 

with very small stocks or stocks with low institutional ownership. Alternatively, regulators may impose 

temporary or permanent bans on short selling, which is tantamount to constraining supply to zero. As a 

result, some empirical studies use low institutional ownership as a proxy for constraints (e.g., Nagel, 2005; 

Asquith, Parteek, and Ritter, 2005); others study bans (e.g., Boehmer, Jones, and Zhang, 2013; Beber and 

Pagano, 2013).3 The fact that short-selling constraints as well as proxies such as institutional ownership 

often arise endogenously presents a challenge to this research. Specifically, while prior work has developed 

a robust understanding of relationships between shorting constraints or activity and many other economic 

outcomes, strict causal inferences remain treacherous. 

 We are not the first to exploit the dividend payment mechanism as a shock to lending supply. 

Thornock (2013) recognizes this experimental setting and provides a thorough discussion of the underlying 

mechanics. He also offers numerous industry references suggesting lenders withdraw shares around 

dividend record dates. The setup contains three critical elements. First, in our sample period, equity 

transactions on day T settled on day T + 3. As a result, the dividend record date, which establishes ownership 

                                            
3 Other examples include Kolasinski, Reed, and Thornock (2012) and Marsh and Payne (2012). 
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of the dividend, is typically three trading days after the dividend cum day, the final day one could purchase 

the share and have rights to receive the dividend. Second, the equity lending market has same-day 

settlement, so one who sells a stock short on a cum dividend day (T) needs not borrow the share until the 

record date (T + 3) to settle the short sale transaction.  

The third element is driven by taxes. When a stock is on loan over the dividend record date, the 

borrower reimburses the lender the amount of the dividend since the buyer in the short transaction would 

be the legal shareholder of record. This “payment in lieu” of the dividend is taxable at the lender’s marginal 

tax rate, which is possibly as high as 35%. Had the lender instead held the stock and received the dividend 

outright, the dividend could have been taxed at a qualified rate of 15% according to the Jobs and Growth 

Tax Relief Reconciliation Act of 2003. Thus, any tax-sensitive lender would have a disincentive to lend 

shares over a dividend record date, resulting in a potential dramatic contraction in lending supply. At the 

same time, there is no new expected information about a particular stock on its dividend record date, and 

any arbitrage dividend capture trading likely occurs on the cum-day and ex-day.4 

A numerical example illustrates the tax effect. Consider an investor in the 35% marginal tax bracket 

who owns a 10,000 share position in a firm with a price of $31.87 and per share dividend payment of $0.13 

(the median values from the early sample reported in Table 1 Panel A below). After the 2003 tax change, 

this dividend could qualify for a tax rate of 15%. The investor receiving the dividend outright would 

therefore owe $195 in taxes. If the investor had instead lent the shares, he would owe $455 in taxes on the 

same amount received as a payment in lieu of dividend. The tax differential of $260 represents an extra 

eight basis points of the position value. A loan fee adjustment that accounts for this differential would be 

an annualized increase of (8 bps x 252 days) = 20.5%. For this reason, lenders (or more likely their agents) 

                                            
4 Researchers at least as early as Pettit (1972) study informational effects on dividend announcement days. 
Prominent examples of cum-day and ex-day pricing studies are Elton and Gruber (1970), Lakonishok and 
Vermaelen (1986), and Michaely (1991). Henry and Koski (2017) analyze dividend capture strategies. 
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may increase their fees by a large margin or simply withhold shares from lending around dividend record 

dates. Either outcome reflects an exogenous and transient contraction in lending supply.5 

 Thornock (2013) examines dividend events from 2005 through 2007 and documents a number of 

interesting results. Using data from nine large equity lenders, he finds that lending fees spike and shares on 

loan fall around dividend record dates. These patterns are particularly strong for tax sensitive lenders, which 

are exactly those who have a disincentive to lend over record dates. He also finds the dispersion of loan 

fees across lenders and the likelihood of equity fails to deliver both increase, which are consistent with short 

sellers facing greater search costs (see also Kolasinski, Reed, and Ringgenberg, 2013) and loan fees (Evans, 

Geczy, Musto, and Reed, 2008). 

3. Data 

 
III.a.  Sample 

We gather dividend information, prices, market values, and returns from CRSP for all dividends 

with ex-days between January 1, 2004 and December 31, 2016. We restrict our sample to ordinary quarterly 

taxable cash dividends (CRSP distcd = 1232) of $0.01 or greater that are paid by ordinary common shares 

listed on the NYSE, NASDAQ, or AMEX exchanges. We also exclude events with stock prices below $5 

or above $1,000 per share on the cum dividend date. The former mitigates concerns related to highly illiquid 

stocks and price discreteness; the latter avoids distortions in dollar spreads amongst very highly priced 

stocks. In addition, we drop events with other distributions on the same day as the dividend and those with 

stock splits during the 30 trading days prior to and following the ex-day. Finally, we require that the 

dividend record date be exactly two trading days after the ex-day. 

We obtain equity loan fees and scores reflecting the cost to borrow from the Markit Securities 

Finance database, which provides daily stock-level measures for buy-side clients from July 2006 forward. 

Markit aggregates data from custodians and equity lending agents to cover a large fraction of the U.S. 

                                            
5 Lenders may also choose to recall their shares on loan. Such a recall event, combined with the inability of short 
sellers to easily locate alternative shares to borrow, may result in the forced covering of existing positions. We 
discuss the implications of recalls and forced covers in Section 3.d below. 
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market. Since one symptom of borrowing frictions is an abnormally high number of delivery failures (e.g., 

Evans, Geczy, Musto, and Reed, 2008), we supplement the loan fee data with equity fails-to-deliver 

statistics downloaded from the SEC’s Freedom of Information Act website. 

We obtain short interest (SI) data from Compustat. The U.S. stock exchanges report short interest 

in shares once per month (as of the 15th) through August 2007 and twice per month (as of the 15th and 30th) 

thereafter. For consistency, we limit our analysis to the mid-month reports for the entire series. We 

normalize short interest by dividing the number of shares held short by shares outstanding from CRSP. 

Since some stocks are rarely if ever shorted under any conditions, we drop events where average short 

interest over the prior six months is below 0.1% of shares outstanding. Finally, we gather quarterly 

institutional ownership (IO) from Thomson Financial’s 13F database, which we also scale by shares 

outstanding. 

We consider two sample periods in our primary analysis. The first, which we label the “early 

period”, is 2004 to 2007. Since the tax law underlying our experimental design was enacted in 2003, 

beginning our analysis in 2004 offers equity lenders and their agents ample time to make necessary 

adjustments to lending practices around dividends.6 This sample contains 15,933 dividend events from 

1,596 unique firms. We end the early period in 2007 because regulators imposed shorting bans, removed 

Rule 203 “locate” exemptions, and tightened close-out requirements on delivery failures (Rule 204T), all 

during the financial crisis period in 2008. Excluding 2008 from our analysis also alleviates general concern 

related to illiquidity and volatility in the crisis that might confound our inferences.   

The second period, which we label the “late period”, spans 2009 through 2016, and it contains 

31,059 dividends paid by 1,757 unique firms. Changes to short selling rules enacted during the financial 

crisis are in full force during the late period. In addition, the late period coincides with a gradual increase 

in transparency in the equity lending market. For example, data providers such as Markit that offer short 

sellers near real-time information on the conditions of the lending market became more prevalent around 

                                            
6 In subsequent analysis, we utilize the events between July 1, 2001 and December 31, 2002 to compare market 
quality on record dates before and after the tax change. 
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this time. With the evolution of the securities lending market, the extent to which supply constraints bind 

and ultimately affect market quality may be reduced in the later period of our experiment.  

III.b. Liquidity and other market quality measures 

 For each trading day in the thirty days leading up to ex-day through the thirty days after the record 

day, we calculate liquidity and other market quality measures from TAQ data. We use the monthly TAQ 

files from 2001 through 2010 and the daily files from 2011 through 2016, following Holden and Jacobsen’s 

(2014) data filters and computational procedures.7 Our key measure of liquidity is the percent effective 

spread, 

 

��% = 2|�� − 
�|

�

, (1) 

 

which is twice the absolute difference between the transaction price (pt) and the prevailing quote midpoint 

(mt) at the time of the trade t, all scaled by the quote midpoint. We also consider the dollar effective spread 

(ES$), which is simply the numerator of (1). We average spreads for each stock-day, using trade values as 

weights. 

As is standard in the literature, we decompose effective spread into the realized spread (RS) and 

price impact (PI). We calculate realized spread as 

 

��% = 2
��������� − 
����

�

, (2) 

 

where the BuySell indicator variable equals +1 (-1) for buyer-initiated (seller-initiated) trades signed 

according to the Lee and Ready (1991) algorithm. The difference between the transaction and some future 

                                            
7 Specifically, we require “normal” quote conditions (A, B, H, O, R, W), and we drop quotes that are cancelled or 
withdrawn, ask and bid =0 or missing, markets are locked or crossed markets, or bid-ask spread >$5. We delete any 
abnormal trades. If the NBBO has two quotes in same millisecond, we use the one that is last in sequence. 
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quote midpoint mt+k represents the component of the spread that reverses and is a proxy for compensation 

for market making. We compute price impact as 

 

��% = 2
�������
��� − 
��

�

. (3) 

 

Because it measures the permanent price change associated with a trade, price impact also captures a 

dimension of liquidity. We consider both 30 seconds and 5 minutes as alternate values for k. Like ES, we 

compute both dollar and percentage measures of RS and PI, and we average each at the stock-day level 

using trade values as weights. We winsorize all spread variables each calendar day in our sample using the 

5th and 95th percentiles. 

We compute two additional market quality measures from TAQ data. Our estimate for volatility 

(Range) is the difference between the maximum and minimum intraday transaction prices, scaled by the 

day’s volume-weighted average price. This intraday trading range estimate is also used by Boehmer, Jones, 

and Zhang (2013). If short sellers benefit market quality through liquidity provision, their presence may 

dampen volatility. Thus, an exogenous shorting constraint should be associated with greater volatility. 

Alternatively, short sellers who trade too aggressively or act as noise traders may increase volatility. 

Our final market quality measure is based on intraday variance ratios. If stock prices follow a 

random walk, return variance should scale linearly with the return horizon. Thus, the variance of 30-minute 

returns should be twice the variance of 15-minute returns. We compute the variance ratio VR(n,m) the ratio 

of the n-period return variance the m-period return variance, both divided by the length of the period. 

Deviations from unity reflect non-zero return autocovariances, so we use the absolute value of 1 – VR(n,m) 

in our analysis. If short sellers facilitate information incorporation, as opposed to creating noise, we expect 

the variance ratio to depart from one on dividend record dates. 
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III.c. Summary statistics 

We present summary statistics in Table 1. We report the mean and standard deviation, along with 

the 5th, 25th, 50th, 75th, and 95th percentiles separately for the early (Panel A) and late (Panel B) period 

samples. In the early period, dividends in our sample resemble those studied in the literature, with a median 

value of $0.14 and annualized yield of (0.43 x 4 =) 1.72%. The median market capitalization for dividend 

paying firms is $1.6 billion, and the interquartile range is about $5 billion. The sample is comprised of fairly 

liquid stocks, with median effective dollar (percentage) spread of just over $0.03 per share (0.10%) and 

cum-day price of $32.01. Our spread values are comparable to those from Henry and Koski (2017), who 

report a median percentage spread of 0.15% in their study of NYSE-listed dividend payers in the 1999-

2007 period. 

Proxies for shorting constraints and activity suggest slack in the equity lending market. The median 

and interquartile range for fractional institutional ownership are 0.65 and 0.39; these statistics for short 

interest as a fraction of shares outstanding are 0.025 and 0.034. Moreover, the 10th percentile of institutional 

ownership is 0.17, while the 90th percentile of short interest is 0.08, so a rough proxy for shorting supply 

typically far exceeds shorting demand. The lending fee distributions (based on data from July 2006 forward) 

reinforce the view that lending supply is mostly slack. The fifteenth through seventy-fifth percentiles are 

roughly the same, and a meaningful spike occurs in the vicinity of the 90th percentile. Thus, the vast majority 

of stocks are easy to borrow. This picture resembles the mostly flat lending supply curve traced by 

Kolasinski, Reed, and Ringgenberg (2013) using data from an alternative source.  

Statistics for the late period are similar. Not surprisingly, market capitalization, institutional 

ownership, and short interest all increase moderately to median values of $2 billion, 0.68, and 0.03, 

respectively. Median effective spreads are about the same, though the mean value rises from $0.047 to 

$0.080, reflecting wider dispersion in the right tale of the distribution in the later sample. This is consistent 

with Chordia, Roll, and Subrahmanyam (2011) who show that spreads bottomed out just prior to the 

financial crisis. Dividends increase slightly to a median value and annualized yield of $0.17 and 2.16%, 
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respectively. The distribution of equity lending fees resembles that from the early period as most stocks in 

the cross section remain inexpensive to borrow. 

Table 2 presents correlations for the same set of variables, again with the early period in Panel A 

and the late period in Panel B. Noteworthy are the correlations between lending fee and the market 

capitalization and institutional ownership variables. Both are negative, consistent with the common use of 

either market capitalization or institutional ownership as (inverse) proxies for short selling constraints. Our 

main (inverse) market quality variables are negatively correlated with market capitalization and institutional 

ownership and positively correlated with lending fees. 

4. Empirical Results 

 
IV.a. Preliminary analysis of the equity lending market 

We design our tests on the premise that the supply of shortable shares is temporarily constrained 

around dividend record dates; therefore, we conduct a preliminary analysis of the equity lending market. 

Figure 1 plots lending fees from Markit in event time around dividend record dates (labeled in blue). For 

perspective, the cum day is labeled in black and “day 0” represents the ex-day. Panel A shows that for the 

early period (beginning here in July 2006 with daily Markit data), lending fees spike exactly on the record 

day. Panel B shows little has changed in more recent years. The latter result is perhaps surprising given 

increased transparency and integration in the lending market. The figures suggest short sellers desiring to 

initiate positions on the record date will be more constrained in their ability to fulfill the locate requirement. 

Abnormally high delivery failures occur when short sellers cannot locate and borrow shares for 

settlement (three days after they transact). In fact, Evans, Geczy, Musto, and Reed (2008) show that certain 

market makers actually choose delivery failure when lending fees are high. Thornock (2013) documents a 

record day spike in delivery failures using his sample of dividends from 2005 to 2007. We corroborate 

Thornock’s findings over our longer time period. We plot in Figure 2 the fraction of firms with outstanding 
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fails exceeding 10,000 shares in event time around the record date.8 Panel A shows that for the early period, 

the fraction of firms with fails slowly rises through the cum day, spikes on the record date, and then falls 

sharply. About fourteen percent of firms have reported fails on the record date in contrast with about ten 

percent on the following day and ten to twelve percent on the days leading up to the cum day. 

Panel B reveals a similar picture for the late sample, with the fraction of firms with fails spiking to 

near nine percent on the record day relative to four to six percent on days surrounding the event. In the late 

period, the incidence of failure is notably lower on all days for at least two reasons. First, exemptions to the 

“locate requirement” in Reg 203 were lifted in 2008. A more stringent locate requirement further curtailed 

the common practice of “naked shorting” and resulted in fewer delivery failures. Second, Reg 204T, enacted 

in 2008 and made permanent in 2009, required market makers to close out any delivery failures by the 

subsequent day, which resulted in fewer outstanding fails at any given time. 

IV.b. Main Analysis 

We now turn to our main analysis. The literature documents a number of variables that explain 

liquidity and other market quality measures in the cross section. Well-known determinants are firm market 

capitalization, trading volume, listing exchange, volatility, and stock price (see, e.g., the matching 

procedure of Boehmer, Jones, and Zhang, 2013). Rather than controlling for each in a regression that 

imposes a specific functional form, we take advantage of the fact that each of these variables is quite 

persistent for a given firm over the days surrounding a dividend payment and estimate a simple fixed effects 

regression. 

Our principal specification is a pooled regression with event day dummies and firm-dividend fixed 

effects: 

 

                                            
8 Prior to September 16, 2008, only securities with a fails balance exceeding 10,000 were reported, while all 

securities were reported thereafter. To achieve meaningful comparisons with the early period, we use the reported 
data in the late period to compute the fraction of securities with fails exceeding 10,000 shares. 
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where the dependent variable Yit refers to a market quality metric. We note each of our dependent variables 

is an inverse measure such that smaller values represent greater market quality. The model uses daily stock-

level observations for days –30 through +30 relative to the ex-day. The event day dummies Dit estimate 

separately the effects of each day in the [T – 5, T + 5] window around the ex-day, and the intercept captures 

event days in a reasonable benchmark period [–30, –6] and [+6, +30]. Our primary interest is the record 

day dummy DT+2, to which we refer in the tables as RecDay for readability. If shorting supply constraints 

harm market quality, the estimated coefficient on RecDay will be positive. By including firm-dividend fixed 

effects, a firm becomes its own control around each dividend. That is, the effect of any firm-level 

determinant that is fixed over the (– 30, +30)-day window around a specific dividend is captured by these 

dummies. This specification is more flexible and arguably more reasonable than a firm fixed effect 

specification which would hold fixed any unobserved firm effect over the course of the entire sample. 

Nevertheless, we re-estimate our models using firm effects and our results are similar to those we report 

here. 

 We intend to exploit a binding supply constraint on the dividend record date. However, prior 

research shows that lending supply is slack for most stocks on any given day. For example, D’Avolio (2002) 

finds in his sample that less than ten percent of stocks are on special, and Asquith, Parteek, and Ritter (2005) 

show that about 95% of publicly traded stocks have greater institutional ownership (a proxy for lending 

supply) in excess of short interest. Using more recent data covering twelve equity lenders, Kolasinski, Reed, 

and Ringgenberg (2013) estimate the lending supply curve is mostly flat up until quantity exceeds about 

the 75th percentile of shares outstanding at which point stocks become special. As a result, any tests using 

the full sample of dividend events likely lack sufficient power to detect a meaningful effect. 

For most of our analysis that follows, we restrict the sample to dividend events in which the supply 

constraint more likely binds on the record date (e.g., the upward sloping region of the lending supply 
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curve).9 D’Avolio (2002) and many others show that smaller stocks are more difficult to borrow, and the 

negative correlation between loan fees and market capitalization in Table 2 serves as consistent evidence. 

Therefore, we choose a simple size cut and focus on stocks with market capitalization below that of the 

median NYSE firm. With some variation across years, this median value is in the neighborhood of $2 

billion. Accordingly, stocks in our “small group” fall into the traditional small-cap universe, while stocks 

in our “large group” are traditionally considered mid- and large-caps. Even within small capitalization 

stocks, there may be considerable variation to the extent supply constraints bind. Thus, we view our choice 

to focus on this sample as a conservative one that biases our tests against detecting a significant record day 

effect. In later analysis, we apply more stringent cuts on the sample and demonstrate economically stronger 

results. 

 Table 3 presents our main results for liquidity effects. In Column (1), we report that for the early 

period, percentage effective spread increases by 1.21 basis points on the record date. The point estimate is 

highly statistically significant, and it marks about a five percent increase relative to the benchmark period, 

which is represented by the intercept. Importantly, our specification facilitates a comparison of the record 

day effect to that on the two adjacent days, which we label RecDay-1 and RecDay+1 for convenience. The 

incremental effect for the record day is over twice the magnitude of that on the following day, and the 

estimate on the prior day (RecDay-1) is actually negative and once again much smaller in magnitude. Thus, 

the spike in effective spread is largely isolated to the record date. The results for dollar spreads, shown in 

Column (3), are similar. There is a $0.0029 increase on the record day compared to the benchmark period 

spread of $0.061. To put these numbers in perspective, the economic magnitude of the dollar spread increase 

is in the same ballpark as typical exchange access fees, which are currently capped 0.30 cents (30 mils) per 

share.10 

                                            
9 We do not, however, intend to identify firms where the constraint already binds prior to the dividend. In 
unreported tests, we use Markit data (when available) to drop any firm that is hard to borrow (DCBS > 1) on any 
day in the four weeks leading up to the dividend ex-date. This filtering produces results nearly identical to those 
reported in Table 3. 
10 The findings of Battalio, Corwin, and Jennings (2016) suggest access fees are sufficiently large to influence order 
routing choices. 
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We estimate the models using the large firm subsample, and we report the results in the even-

numbered columns for comparison. As expected, since the supply constraint is less likely to bind in these 

stocks, the record day point estimates are much smaller than they are for the small firm subsample. For 

example, the record day dummy for large firms, shown in Column (2), is 0.22 basis points, roughly one-

fifth of the estimate for small firms in Column (1).  

We also note a significant ex-day effect in Column (1) that is about half the magnitude of the record 

day effect. While we find this result interesting, we refrain from making strong interpretations as traders 

respond to ex-day price drops and close out positions associated with dividend capture strategies, which 

may create a number of confounding effects. Our results are also robust to using firm fixed effects or 

replacing the individual event dummies with only an ex-day dummy and a record day dummy (not 

reported).11  

The right-hand side of Table 3 displays results from the late period, 2009-2016. The main result 

that spreads increase on the record day is present in this sample period as well, though completely confined 

to the small stock subsample (Columns (5) and (7)). Magnitudes are roughly the same in the late and early 

samples at 1.58 and 1.21 basis points, respectively. In addition, the spike is more precisely isolated to the 

record day in the late sample, as the point estimates on adjacent days (RecDay-1 and RecDay+1) are 

uniformly negative for both percentage and dollar spreads. Moreover, the ex-day effect is once again about 

half the record day effect for percent spread and statistically indistinguishable from zero for dollar spread. 

We view the robustness of our results across sub-periods as important since the equity lending market has 

become generally more transparent and accessible over time.  

One interpretation of our results is that shorting supply constraints temporarily remove liquidity 

providers from the market, and the increased spreads reflect decreased competition. Indeed, Comerton-

                                            
11 D’Avolio (2002) shows that similar to small capitalization stocks, those with low institutional ownership are more 
likely to be difficult to borrow. We base our sample cuts on institutional ownership rather than market capitalization 
and find similar results to those reported in Table 3. For firms with low institutional ownership, spreads increase by 
a statistically significant 1.68 bps (1.65 bps) on records days for the early (late) period, which is about an order of 
magnitude greater than the effect for firms with high institutional ownership. 
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Forde, Jones, and Putnins (2016) document the importance of liquidity-providing short sellers for market 

quality. A second, and non-mutually exclusive, interpretation is based on adverse selection. Diamond and 

Verrecchia (1987) argue that an increase in shorting costs (a restriction as opposed to an outright 

prohibition) will disproportionately remove less sophisticated short sellers. As a result, adverse selection 

risk increases. Kolasinski, Reed, and Thornock (2013) provide consistent evidence from the financial crisis. 

We decompose effective spread into realized spread, the component that reverses over a given 

horizon, and price impact, the permanent component. The former is a proxy for the compensation for 

liquidity provision, and the latter proxies for adverse selection. We recognize, however, that both are 

notoriously noisy measures because the calculation requires choosing a future and somewhat arbitrary time 

increment over which any “temporary” component of spreads should reverse. We compute two versions 

each of realized spread and price impact, using future time increments of thirty seconds and five minutes. 

We repeat our main tests, using percent and dollar realized spread as the dependent variable and report the 

results in Table 4. We compare the effects on realized spread with those on price impact, the component of 

spreads that reflects the “permanent” price change. 

The results provide some support for each interpretation. Focusing first on the early period, the 

point estimates in Columns (1) and (2) reveal a statistically significant 0.80 basis point increase in 5-minute 

realized spread on the dividend record date for small stocks compared to a 0.13 basis point increase for 

large stocks. Increases in price impact are roughly half this magnitude and only statistically significant for 

small stocks. Collectively, these findings are consistent with the liquidity provision hypothesis. The results 

are robust across percent and dollar realized spread as well as for each time horizon for measuring realized 

spreads (not reported). The late period results reported in Panel B are more consistent with an adverse 

selection story. There, we see a positive but insignificant record-day effect on 5-minute realized spreads for 

even the smaller stocks (t-statistic = 1.25). In contrast, price impact increases by 1.13 basis points for small 

stocks and is statistically unaffected in large stocks. When we repeat our analysis using 30-second rather 

than 5-minute realized spreads and price impacts, our results are qualitatively and quantitatively similar. 
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We next analyze dividend record date effects on volatility and intraday variance ratios. We report 

the results in Table 5. In contrast to the liquidity results documented in Table 4, the record day supply 

shocks appear largely innocuous to these additional dimensions of market quality. Focusing on the small 

capitalization results, the record day effect on volatility reported in Column (1) is negative and marginally 

statistically insignificant (t-value = -1.70) in the early period. However, the immediately adjacent days 

exhibit similar negative effects. The record day effect in the late period, shown in Column (5), is negative 

and insignificant. The variance ratio tests in Columns (5) and (7) reveal point estimates that are positive but 

insignificant in both the early and late periods. As in the case for volatility, incremental record day effects 

are indistinguishable from those on adjacent days. 

The mostly insignificant record day effects on volatility and variance ratios are inconsistent with 

Boehmer, Jones, and Zhang (2013), who document large increases in volatility for financial stocks subject 

to the 2008 short sale ban. They also differ from Boehmer and Wu’s (2012) finding that shorting activity is 

related to more efficient intraday prices and Saffi and Sigurdsson’s (2011) result associating lending supply 

with longer-run variance ratios. Our findings in Table 5 are more in line with Kaplan, Moskowitz, and 

Sensoy (2013), who show that exogenous shocks to lending supply have no bearing on volatility. In the 

next section, we apply more stringent sample cuts to place these findings under more scrutiny. 

IV.c. Subsample Analysis 

Our tests up to this point suffer from a lack of power for at least two reasons. First, because loan 

supply is typically slack even in small capitalization stocks, supply shifts around dividend record dates may 

not impose a binding constraint. Second, lenders’ tax-based incentives may not be economically sufficient 

to warrant a shift in supply. The relatively low power of our tests increases our confidence in the strength 

of the liquidity results from Tables 3 and 4, but it raises questions about our lack of results for the market 

quality measures examined in Table 5. In this section, we apply more stringent sample cuts to study a set 

of stocks we believe to be most susceptible to meaningful supply effects. Of course, the resulting loss of 

observations in the sampling process could reduce power, so the ultimate outcome is an empirical question. 
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Markit provides its clients each day a Daily Cost to Borrow Score (DCBS) that ranges from 1 to 

10. For stocks that are easy to borrow, DCBS equals one. Any value exceeding one indicates non-zero 

borrowing costs. DCBS on a typical day is one for about 93% of stocks in our small capitalization sample. 

To identify a subset of stocks for which the supply constraint will likely bind on the record date, we use a 

stock’s DCBS from its prior dividend record date and only retain those with prior DCBS > 1. For this 

subsample, we include all stocks regardless of size since DCBS directly measures borrowing cost. In the 

late period, there are 1,221 dividends paid by firms with prior DCBS > 1, of which 985 are in the original 

small capitalization sample. Since daily Markit data is only available from July 2006 forward, imposing 

this DCBS filter in the early period is too restrictive to leave a meaningful early period sample for this 

analysis. 

We repeat our main analysis for effective spread, volatility, and the variance ratio using all stocks 

with high prior DCBS and report the results in Table 6. The record day coefficient for effective spread is 

1.72 basis points, which is statistically significant and larger in magnitude than the coefficient reported in 

Table 4.12 In this subsample, the record day coefficient for variance ratio, presented in Column  (3), is also 

positive and statistically significant. This result is noteworthy since the tests using the less restrictive sample 

(e.g., all small capitalization stocks in Table 5) were unable to detect a significant effect. The coefficient 

explaining volatility in Column (2) is also positive, but insignificant. 

Since the income tax differential applies to payments in lieu of dividends, lenders have a greater 

tax-based incentive to reduce the lending supply of stocks with higher dividend yields, all else equal. For 

out next test, we therefore split the small capitalization sample into high and low dividend yield stocks 

using the median dividend yield as the breakpoint between groups. Table 7 presents these results, which 

are somewhat mixed. For the early period, the record day effect for high dividend yield stocks is about 50% 

larger than that for low dividend yield stocks (1.49 basis points vs. 0.99 basis points), and this difference is 

                                            
12 For comparability with the small capitalization sample results presented in Table 3, we repeat this analysis using 
only small capitalization firms. The record day coefficient explaining effective spread is 2.15 basis points with a t-
statistic of 2.15. 
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statistically significant. For the late period, the record day effect is 1.44 basis points for high dividend yield 

stocks and 1.76 basis points for low dividend yield stocks. Turing to other measures of market quality, 

results for both the high and low dividend yield stocks generally resemble those in Table 6 as we detect 

little effect on volatility or the variance ratio. 

The stocks categorized as “high yield” in the previous tests still pay somewhat modest dividends. 

The summary statistics reported in Table 1 indicate a median dividend yield of about two percent annualized 

in each sample. We conduct an additional out of sample test based on particularly large dividends with a 

sample of special dividends (CRSP distcd = 1272). The special dividends that fall under this distribution 

code are taxed the same as ordinary dividends. This sample is substantially smaller than our main sample; 

we find 150 special dividends in the early period and 213 special dividends in the late period for small 

capitalization firms that meet the same filters as before. But these dividends are larger than the (annualized) 

ordinary dividends as well. The median yield for the early (late) sample is 2.05% (3.28%). 

We estimate our main specification using special dividends and report the findings in Table 8. The 

economic magnitudes of the record day effects on effective spreads dwarf those we observed for even the 

most interesting subsamples of ordinary dividends. For the early period, the record day coefficient presented 

is 2.17 basis points, statistically significant and larger than the same coefficient in the sample high dividend 

yield stocks reported in Table 7. The record day coefficient for the late period is even larger at 2.78 basis 

points, but it is not statistically significant (t-statistic = 1.39), likely driven in part by the lack of power of 

the much smaller sample of special dividends. We also report a positive record day effect on volatility, 

though it is only statistically significant in the late period. As with many of our other tests, we find no record 

day effect on variance ratios.  

In sum, the results in the section reinforce our main liquidity results from Table 3. Record day 

effects for effective spreads are uniformly positive and statistically significant. When we focus on situations 

in which lending supply constraints most likely bind, the record day effects are even stronger, again 

consistent with our conclusion that short sellers serve as important liquidity suppliers. Results for the other 

market quality measures we examine – volatility and variance ratios – are generally consistent in sign with 
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our predictions, but their lack of robust, statistical significance prevent us from making any strong 

statements. 

IV.d. Loan Recalls and Short Squeeze Effects 

Tax-based disincentives to lend shares on a dividend record day may affect short sellers through 

two distinct, yet non-mutually exclusive channels. First, some traders who desire new short positions may 

remain sidelined because they cannot easily locate borrowable shares. This supply constraints mechanism 

coheres with our main narrative. Second, loan recalls force short sellers to cover open positions by 

purchasing shares in the open market if they (or their brokers) are unable to find alternative shares to 

borrow. This latter scenario, which resembles a short squeeze, presents interpretational difficulties. Insofar 

as abnormal buying pressure induced by covers affects liquidity directly, perhaps through changes in 

inventory risk or the shifting of potential shorts to the other side of the market as aggressive buyers, the 

spread increases we document are not clearly attributable to lending supply constraints per se. 

Because neither loan recalls nor short covers appear in any of our datasets, we cannot easily 

disentangle these mechanisms. Instead, we conduct two alternative tests, both of which suggest a short 

squeeze is not the sole driver of our findings. Our first test analyzes stock price patterns around dividend 

record dates. A short squeeze on the record day implies a positive record-day return followed by a reversal 

as the buying pressure subsides. We therefore estimate Equation (4) as above, except we use market-

adjusted stock return as the dependent variable. Panel A of Table 9 reports coefficient estimates for each 

relevant day. Across time and stock-size subsamples, we find no evidence of a significantly positive 

abnormal record-day return; three of the four coefficients are insignificant, and one of them significantly 

negative. We report consistently negative abnormal returns on the day following the record day. But these 

coefficients more reasonably reflect the (sometimes delayed) reversal of a positive abnormal return leading 

up to the ex-day, as documented in Blocher, Reed, and Van Wessep (2013).  

Since a short squeeze mechanism is associated with positive buying pressure, our second test 

separates all dividend events according to the sign of the record day return. If our results from Table 3 stem 

from recall-induced buying pressure that somehow also harms liquidity, we expect the spread findings to 
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concentrate in events with positive record day returns. Panel B and C of Table 9 reveals this is not the case. 

While Panel B shows a positive record day spread effect for events with positive record day returns, the 

most striking results are in Panel C. Specifically, columns 1 and 3 reveal a statistically significant increase 

in effective spread even on negative-return record days. Comparing Panel C with Panel B, we see the record 

day effect for the late period (column 3) is stronger for negative return days than for positive return days, 

while the opposite is true for the early period.  

IV.e. Falsification Tests Around the 2003 Tax Change 

Our identification strategy relies critically on equity lenders paying different tax rates on qualified 

dividends and payments in lieu of dividends. Prior to the Jobs and Growth Tax Relief Reconciliation Act 

of 2003, no tax differentials existed as dividends were taxed as ordinary income. As a result of this 

legislation, the tax rate on qualified dividends became 15%, while payments in lieu were still taxed at the 

lender’s marginal tax rate on ordinary income. Thus, if tax induced constraints on lending supply drive our 

central results, we should find no effect prior to 2003. To conduct this falsification test, we gather all 

dividends according to our original sampling procedure with ex-days between July 1, 2001 and December 

31, 2002. We choose this start date because the tick size on U.S. exchanges was reduced from sixteenths to 

decimals in early 2001, and Bessembinder (2003) confirms changes in various market quality measures. 

We therefore focus on 4,455 dividends paid by 1,060 unique firms during the 18-month period between 

decimalization and the dividend tax change where market structure was roughly constant. 

Summary statistics reported in Table 10 reveal that dividends and dividend-paying firms during 

this period are comparable to those in our early period, summarized in Table 1. The median dividend in the 

pre-tax change sample is the same as that in the early period, the median price is $29.99 compared to $32.01, 

and median market capitalization is marginally smaller. Most notable is the fact that spreads are wider in 

the pre-tax change period, consistent with a gradual downward trend in spreads during the early 2000s. 

We conduct our test by pooling the pre-tax change sample with dividend events having ex-days 

between January 1, 2004 through June 30, 2005 (the first 18 months of the early period). This sampling 

gives roughly equal weight to events before and after the tax change while allowing the full year of 2003 
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for the policy change to take effect.13 We then estimate a version of Equation (4) with the following 

modifications. First, we include the dummy variable Post that equals one after 2003 and zero otherwise, 

and we interact this variable with the dummies corresponding to various days in event time. Second, we 

replace the firm-dividend fixed effects with a firm fixed effect. Including this variable implies each firm 

serves as its own control. Thus, we account for any unobservable firm-level determinant of spreads. The 

interpretation of the Post x event day dummy variable interactions is the incremental effect of a particular 

event day after the tax change. 

The main coefficient of interest is that on the Post dummy interacted with the record day dummy. 

We hypothesize a positive coefficient on this variable and an insignificant coefficient on the record day 

dummy. An insignificant direct effect on the record day implies spreads are no different on the record day 

prior to the tax change. Table 11 reports the results. The coefficients of interest for effective spreads are 

indeed positive and significant. The incremental record-day effect during the post-tax change period is 1.48 

basis points for small firms and 0.45 basis points for large firms. These values are quite close to the point 

estimates we report for the early period in Table 3, and the direct record date effect in this specification is 

negative but indistinguishable from zero. Together these findings, are consistent with the record date effect 

on spreads existing exclusively after the 2003 tax change. Consistent with the much weaker and often 

insignificant results for volatility and variance ratios that we present in our previous tables, we generally 

do not find meaningful incremental effects for these variables around the tax change.   

5. Conclusion 

 
Short selling constraints often emerge as endogenous outcomes of either market-wide or 

idiosyncratic conditions. For example, regulators in several countries imposed shorting bans around the 

2008 Financial Crisis period. More generally, individual stocks may be “on special” when changes in 

investor beliefs result in heightened demand to borrow stocks to sell short. As a result, identifying a 

                                            
13 President George W. Bush signed the bill into law on May 28, 2003. 
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causal effect of short-selling constraints on economic outcomes like liquidity has proven treacherous. The 

dearth of clean causal inferences impedes policy makers concerned with market quality and the allocative 

role of prices in the real economy.  

Our identification strategy sidesteps these concerns. The plausibly exogenous variation in lending 

supply on a dividend record date, an otherwise informationless event, facilitates a unique test of the 

relation between shorting supply constraints and market quality. Our evidence that liquidity deteriorates 

on dividend record days, especially in stocks that likely have less slack in lending supply, suggest 

shorting supply constraints affect the cost of transacting faced by all traders. This message is important as 

a growing body of research argues liquidity influences expected returns (Amihud and Mendelsen, 1986; 

Acharya and Pedersen, 2005). Authors studying crisis periods argue that policies prohibiting or limiting 

short selling decrease liquidity. Our results suggest such a decrease would occur in normal economic 

times as well and bolster the conclusions that the ability to short-sell improves the functioning of financial 

markets. 

That our findings are mostly confined to smaller stocks does not imply our conclusions lack 

generalizability. Rather, it reflects the well-established fact that in U.S. equity markets, lending supply is 

typically slack and dividend record date supply shocks do not bind in large firms. In this vein, any 

naturally occurring shock to lending supply aside from an outright ban is unlikely to bind for large firms. 

As a practical matter, this recognition points to the tradeoff between studying bans and natural 

experiments such as ours. Researchers must weigh the benefits of exploiting bans, e.g., the ability to 

examine even the largest firms, against methodological concerns that bans are often endogenous. 

So which potential short sellers are sidelined? While our datasets are not amendable to addressing 

this question, we offer some conjectures to guide future research. First, the shock to lending supply 

unlikely affects high frequency traders, at least directly. HFT are largely immune from transitory 

increases in borrowing costs—they close out net positions before the end of a trading day and need not 

actually borrow shares. Second, we doubt traditional market makers are sidelined either. Some lenders 

(e.g., tax exempt institutions) are unaffected by the taxation of substitute dividends. If market makers 
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have better access to the equity lending market than other traders do, they may still be able to find shares 

and borrow cheaply through dividend record dates. Large institutions and hedge funds likely have access 

as well. More reasonably, we conjecture that sidelined investors are smaller institutions and retail 

investors, whose brokers are unwilling to search for borrowable shares. Our findings suggest these traders 

contribute to a well-functioning market for liquidity.  
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Appendix 

Table 1.1 Summary Statistics  

This table provides summary statistics for dividend events in our sample. Panel A presents results from the early 
period, 2004-2007. Panel B presents results from the late period, 2009-2016. The variable Market Value is  calculated 
by multiplying the prior year end share price and the number of shares outstanding. The variable Effective Spread Pre 
Dividend is the average  effective spread in days (-30, -6) relative to the ex-dividend day. The variable Variance Ratio 
is average variance ratio in days (-30, -6) relative to the ex-dividend day. The variable Volatility is average range in 
days (-30, -6) relative to the ex-dividend day. The variable Share Price is the price (in dollars) as of close of trading 
on the cum-dividend day. The variable Institutional Ownership is the percentage of shares outstanding that are held 
by institutions (based on 13-f filings). The variable Short Interest is the average proportion of shares outstanding that 
are short in the prior six-months. The variable Dividend Amount is the dollar amount of the dividend. The variable 
Dividend Yield is calculated as the Dividend Amount divided by the Share Price.  The Indicative Fee variable is the 
average lending fee in days (-30, -6) relative to the ex-dividend day, measured in basis points. The statistics we report 
are the mean, standard deviation (SD), and the 5th, 25th, 50th, 75th, and 95th percentile. We winsorize spread 
variables, Indicative Fee, Range, and Variance Ratio at the 5% level by trading day. 
 

  

 
Panel A: 2004 - 2007 

 Mean SD P5 P10 P25 P50 P75 P90 P95 
Dollar Effective 
Spread (cents) 

4.664 3.711 1.669 1.858 2.343 3.257 5.404 9.870 13.070 

Share Price ($) 38.51 48.21 12.28 15.44 22.26 32.01 45.92 63.24 76.43 
Institutional 
Ownership (%) 

58.94 26.88 0.00 17.19 40.90 64.83 80.38 89.71 93.80 

Short Interest (%) 3.771 4.092 0.445 0.723 1.328 2.520 4.763 8.148 10.936 
Dividend Amount ($) 0.173 0.151 0.030 0.040 0.075 0.135 0.230 0.340 0.420 
Dividend Yield (%) 0.005 0.004 0.001 0.002 0.003 0.004 0.007 0.010 0.012 

Indicative Fee (bps) 62.98 138.28 37.50 37.50 37.50 37.50 50.00 50.00 62.50 

N (Dividends) 15,933                 
N (Firms) 1,596     

    
        

     
Panel B: 2009 - 2016 

 Mean SD P5 P10 P25 P50 P75 P90 P95 
Dollar Effective 
Spread (cents) 

8.004 14.109 1.148 1.266 1.721 3.212 7.380 17.013 33.509 

Share Price ($) 41.42 42.78 9.28 11.97 18.53 31.96 52.17 77.90 99.05 
Institutional 
Ownership (%) 

62.79 23.87 11.31 27.54 50.19 68.09 80.16 88.95 93.20 

Short Interest (%) 4.220 4.318 0.719 1.032 1.668 2.811 5.149 9.077 12.719 
Dividend Amount ($) 0.226 0.246 0.038 0.050 0.090 0.170 0.290 0.455 0.580 
Dividend Yield (%) 0.006 0.005 0.001 0.002 0.003 0.005 0.008 0.011 0.014 

Indicative Fee (bps) 61.50 247.66 25.00 37.50 37.50 37.50 37.50 50.00 75.00 

N (Dividends) 31,059                 
N (Firms) 1,757     
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Table 1.2 Correlation Matrix 

This table provides correlations for key variables in our analysis. Panel A presents results from the early period, 2004-2007. Panel B presents results from the late 
period, 2009-2016. The variable Dividend Amount is the dollar amount of the dividend. The variable Share Price is the price (in dollars) as of close of trading on 
the cum-dividend day. The variable Ln(MV) is the natural log of Market Value. The variable Dividend Yield is calculated as the Dividend Amount divided by the 
Share Price. The variable IO is Institutional Ownership and is the percentage of shares outstanding that are held by institutions (based on 13-f filings). The variable 
Short Interest is the average proportion of shares outstanding that are short in the prior six-months. The variable Range is average range in days (-30, -6) relative 
to the ex-dividend day. The variable Variance Ratio is average variance ratio in days (-30, -6) relative to the ex-dividend day. The variables Dollar ES and Percent 
ES are the average effective spread in days (-30, -6) relative to the ex-dividend day, measured in dollars and percent, respectively. The Ln(Fee) variable is the 
natural log of Indicative Fee. 
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Panel A: 2004 - 2007 

 

Dividend 
Amount 

Price Ln(MV) 
Dividend 

Yield 
IO 

Short 
Interest 

Volatility 
Variance 

Ratio 
Dollar 

ES 
Percent 

ES 
Ln(Fee) 

Dividend Amount 1.000           

Price 0.424 1.000          

Ln(MV) 0.307 0.227 1.000         

Dividend Yield 0.576 -0.141 -0.055 1.000        

IO -0.030 0.078 0.325 -0.211 1.000       

Short Interest -0.081 -0.045 -0.127 -0.008 -0.050 1.000      

Volatility -0.270 -0.099 -0.336 -0.088 -0.057 0.288 1.000     

Variance Ratio -0.025 -0.049 -0.172 0.070 -0.107 -0.046 -0.088 1.000    

Dollar ES 0.055 0.143 -0.507 -0.034 -0.365 -0.180 0.195 0.084 1.000   

Percent ES -0.175 -0.153 -0.699 0.100 -0.442 -0.174 0.315 0.160 0.814 1.000  

Ln(Fee) 0.007 -0.065 -0.202 0.159 -0.189 0.366 0.205 0.018 0.127 0.239 1.000 
            

 Panel B: 2009 - 2016 

 

Dividend 
Amount 

Price Ln(MV) 
Dividend 

Yield 
IO 

Short 
Interest 

Volatility 
Variance 

Ratio 
Dollar 

ES 
Percent 

ES 
Ln(Fee) 

Dividend Amount 1.000           
Price 0.472 1.000          
Ln(MV) 0.324 0.391 1.000         
Dividend Yield 0.498 -0.176 -0.105 1.000        
IO -0.001 0.101 0.270 -0.155 1.000       
Short Interest -0.034 -0.068 -0.094 0.036 0.055 1.000      
Volatility -0.215 -0.217 -0.375 0.034 -0.060 0.193 1.000     
Variance Ratio -0.035 -0.020 -0.354 0.013 -0.203 -0.126 -0.002 1.000    
Dollar ES 0.060 0.126 -0.093 -0.039 -0.164 -0.097 0.005 0.183 1.000   
Percent ES -0.087 -0.111 -0.257 0.037 -0.244 -0.119 0.106 0.175 0.897 1.000  
Ln(Fee) 0.011 -0.068 -0.188 0.143 -0.240 0.363 0.096 0.076 0.060 0.112 1.000 
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Table 1.3 Effective Spreads around the Dividend Dates 

This table presents the results of a pooled regression with event day dummies for the period (T-5, T+5) around the ex-dividend day, seen in Equation (4). The 
dummy variable for the cum-dividend day (T-1) is CumDay. The dummy variable for the ex-dividend day is ExDay. The dummy variable for the record-dividend 
day (T+2), which is our main variable of interest, is RecDay. We only report the coefficients for the CumDay through the RecDay+1. The dependent variable in 
columns 1 and 3 is the Percent Effective (ES%), measured in basis points, and the dependent variable in columns 2 and 4 is the Dollar Effective Spread (ES$), 
measured in cents. We cut the sample based on the market value of the firm relative to the NYSE decile breakpoints. If the firm has a Market Value at or below 
the 5th decile we consider them as Low MV, otherwise they are High MV. Columns 1 and 2 present results from our "early" sample (2004-2007) and columns 3 
and 4 present results from our "later" sample (2009-2016). We winsorize all spread variables each calendar day at the 5% level. We include firm-dividend fixed 
effects in the regression. The t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 
  

 
2004-2007   2009-2016 

Dependent 
Variable 

ES%  (bps) ES$ (cents)   ES%  (bps) ES$ (cents) 

Sample Cut Low MV High MV Low MV High MV   Low MV High MV Low MV High MV 

  (1) (2) (3) (4)   (5) (6) (7) (8) 

CumDay 
-0.647*** -0.284*** -0.150*** -0.101***  -2.153*** -0.481*** -0.471*** -0.203*** 

(-5.43) (-5.53) (-4.92) (-5.24)  (-9.01) (-3.45) (-8.37) (-4.75) 

ExDay 
0.602*** 0.734*** 0.176*** 0.236***  0.764*** -0.052 0.067 -0.025 

(5.05) (14.33) (5.77) (12.25)  (3.20) (-0.38) (1.20) (-0.59) 

RecDay-1 
-0.383*** -0.129** -0.078** -0.062***  -0.461* -0.328** -0.098* -0.154*** 

(-3.21) (-2.51) (-2.56) (-3.21)  (-1.93) (-2.35) (-1.74) (-3.61) 

RecDay 
1.210*** 0.224*** 0.288*** 0.062***   1.575*** -0.072 0.356*** -0.031 

(10.14) (4.38) (9.44) (3.20)   (6.59) (-0.51) (6.32) (-0.72) 

RecDay+1 
0.538*** -0.052 0.156*** -0.032  -0.328 -0.115 -0.126** -0.143*** 

(4.51) (-1.01) (5.11) (-1.64)  (-1.37) (-0.83) (-2.24) (-3.35) 

Constant 
24.481*** 7.143*** 6.116*** 2.926***  38.987*** 17.862*** 9.208*** 6.446*** 

(1,493.61) (1,014.51) (1,458.66) (1,106.56)  (1,187.81) (931.78) (1,191.76) (1,101.33) 

Dividend FE Yes Yes Yes Yes  Yes Yes Yes Yes 

Adjusted R2 0.680 0.433 0.687 0.502   0.661 0.882 0.736 0.881 

N (Dividends) 8426 7507 8426 7507  15672 15387 15672 15387 
N (Dividend 
Days) 530,836 472,941 530,836 472,941  987,331 969,380 987,331 969,380 
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Table 1.4 Realized Spreads and Price Impact around the Dividend Dates 

This table presents the results of a pooled regression with event day dummies for the period (T-5, T+5) around the ex-dividend day, seen in Equation (4). The 
dummy variable for the cum-dividend day (T-1) is CumDay. The dummy variable for the ex-dividend day is ExDay. The dummy variable for the record-dividend 
day (T+2), which is our main variable of interest, is RecDay. We only report the coefficients for the Cum Day through the RecDay+1. The dependent variable in 
columns 1, 2, 5 and 6 is the Percent Realized Spread (RS%), measured in basis points. The dependent variable in columns 3, 4, 7, and 8 is the Percent Price Impact 
(PI%), measured in basis points. We cut the sample based on the market value of the firm relative to the NYSE decile breakpoints. If the firm has a Market Value 
at or below the 5th decile we consider them as Low MV, otherwise they are High MV. The left side of the table presents results from our "early" sample (2004-
2007) and the right side of the table presents results from our "later" sample (2009-2016). We winsorize all spread variables each calendar day at the 5% level. We 
include firm-dividend fixed effects in the regression. The t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

 

 
2004-2007   2009-2016 

Dependent Variable RS%  (bps) PI% (bps)   RS%  (bps) PI% (bps) 

Sample Cut Low MV High MV Low MV High MV   Low MV High MV Low MV High MV 

  (1) (2) (3) (4)   (5) (6) (7) (8) 

CumDay 
-0.56*** -0.17*** -0.09 -0.07  -0.59*** -0.17* -1.50*** -0.41*** 

(-4.31) (-3.07) (-0.77) (-1.34)  (-4.02) (-1.90) (-7.22) (-3.66) 

ExDay 
0.02 0.53*** 0.49*** 0.10*  -0.14 -0.03 0.70*** -0.13 

(0.16) (9.49) (4.24) (1.94)  (-0.96) (-0.29) (3.35) (-1.20) 

RecDay-1 
-0.33** -0.06 -0.06 -0.08  -0.09 -0.02 -0.49** -0.35*** 

(-2.51) (-1.05) (-0.53) (-1.47)  (-0.58) (-0.26) (-2.36) (-3.16) 

RecDay 
0.80*** 0.13** 0.41*** 0.08   0.18 0.08 1.13*** -0.12 

(6.13) (2.30) (3.54) (1.53)   (1.25) (0.88) (5.43) (-1.05) 

RecDay+1 
0.41*** 0.05 0.07 -0.11**  -0.19 -0.07 -0.11 -0.10 

(3.16) (0.98) (0.61) (-2.19)  (-1.31) (-0.82) (-0.53) (-0.92) 

Constant 
11.11*** 3.25*** 12.37*** 3.87***  14.59*** 5.990*** 22.19*** 10.41*** 

(622.63) (425.90) (786.66) (549.47)  (720.53) (486.21) (777.72) (681.31) 

Dividend FE Yes Yes Yes Yes   Yes Yes Yes Yes 

Adjusted R2 0.362 0.157 0.276 0.207  0.481 0.713 0.331 0.750 

N (Dividends) 15,933 31,059 15,933 31,059  15,933 31,059 15,933 31,059 

N (Dividend Days) 530,830 472,939 530,825 472,935   987,163 969,379 987,159 969,375 
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Table 1.5 Volatility and Price Efficiency 

This table presents the results of a pooled regression with event day dummies for the period (T-5, T+5) around the ex-dividend day, seen in Equation (4). The 

dummy variable for the cum-dividend day (T-1) is CumDay. The dummy variable for the ex-dividend day is ExDay. The dummy variable for the record-dividend 

day (T+2), which is our main variable of interest, is RecDay. We only report the coefficients for the Cum Day through the RecDay+1. The dependent variable in 

columns 1, 2, 5 and 6 is Volatility (measured in percent). The dependent variable in columns 3, 4, 7, and 8 is the Variance Ratio (multiplied my 100). We cut the 

sample based on the market value of the firm relative to the NYSE decile breakpoints. If the firm has a Market Value at or below the 5th decile we consider them 

as Low MV, otherwise they are High MV. The left side of the table presents results from our "early" sample (2004-2007) and the right side of the table presents 

results from our "later" sample (2009-2016). We winsorize dependent variables each calendar day at the 5% level. We include firm-dividend fixed effects in the 

regression. The t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

 

  

 
2004-2007   2009-2016 

Dependent 
Variable 

Volatility Variance Ratio   Volatility Varince Ratio 

Sample Cut Low MV High MV Low MV High MV   Low MV High MV Low MV High MV 

  (1) (2) (3) (4)   (5) (6) (7) (8) 

CumDay 
-0.018 -0.008 0.044 -0.126  -0.014 -0.037*** 0.036 -0.143 
(-1.05) (-0.66) (0.32) (-0.88)  (-1.11) (-3.98) (0.35) (-1.44) 

ExDay 
0.170*** 0.057*** 0.101 0.210  0.122*** 0.045*** 0.261** 0.095 

(9.99) (4.64) (0.72) (1.46)  (9.78) (4.87) (2.54) (0.96) 

RecDay-1 
-0.050*** -0.017 0.163 -0.137  -0.011 -0.043*** 0.089 0.114 

(-2.95) (-1.37) (1.17) (-0.96)  (-0.91) (-4.58) (0.86) (1.15) 

RecDay 
-0.029* -0.031** 0.213 0.439***   -0.013 -0.068*** 0.064 -0.029 
(-1.70) (-2.53) (1.53) (3.06)   (-1.05) (-7.29) (0.63) (-0.29) 

RecDay+1 
-0.027 -0.064*** 0.179 0.301**  0.009 -0.042*** -0.125 0.067 
(-1.60) (-5.22) (1.29) (2.10)  (0.71) (-4.46) (-1.22) (0.67) 

Constant 
2.757*** 2.060*** 19.232*** 18.363***  3.126*** 2.301*** 20.337*** 17.564*** 
(1,179.82) (1,216.42) (1,006.77) (930.70)  (1,826.34) (1,797.82) (1,439.78) (1,293.07) 

Dividend FE Yes Yes Yes Yes  Yes Yes Yes Yes 

Adjusted R2 0.276 0.339 0.0302 0.0176   0.4 0.455 0.0724 0.0165 
N (Dividends) 8,426 7,507 8,416 7,507  15618 15329 15461 15194 
N (Dividend 
Days) 530,825 472,940 530,177 472,930   983,918 965,712 974,020 957,224 
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Table 1.6 Market Quality around the Dividend Dates- Cuts on DCBS 

This table presents the results of a pooled regression with event day dummies for the period (T-5, T+5) around the ex-

dividend day, as seen in Equation (4). The dummy variable for the cum-dividend day (T-1) is CumDay. The dummy 

variable for the ex-dividend day is ExDay. The dummy variable for the record-dividend day (T+2), which is our main 

variable of interest, is RecDay. We only report the coefficients for the Cum Day through the RecDay+1. The sample 

used in this table is that of firms that have a daily cost to borrow score (DCBS) greater than one six months prior to 

the dividend event. The table presents results from our "later" sample (2009-2016). The dependent variables are ES%, 

which is the Percent Effective Spread measured in basis points, Volatility measured in percent, and Variance Ratio 

multiplied by 100. We winsorize all dependent variables each calendar day at the 5% level. We include firm-dividend 

fixed effects in the regression. The t-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

  

Dependent Variable ES%  Volatility Variance Ratio 

  (1) (2) (3) 

CumDay 
-1.630* -0.007 0.342 

(-1.95) (-0.17) (0.87) 

ExDay 
2.353*** 0.165*** 0.809** 

(2.81) (4.27) (2.06) 

RecDay-1 
-0.227 0.059 -0.861** 

(-0.27) (1.53) (-2.19) 

RecDay 
1.722** 0.016 0.842** 

(2.06) (0.41) (2.15) 

RecDay+1 
-0.638 0.081** 0.124 

(-0.76) (2.11) (0.31) 

Constant 
44.017*** 3.177*** 20.074*** 

(383.19) (598.22) (372.71) 

Dividend FE Yes Yes Yes 

Adjusted R2 0.745 0.475 0.052 

N (Dividends) 1221 1214 1202 

N (Dividend Days) 76,952 76,503 75,696 
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Table 1.7 Market Quality around the Dividend Dates- Cuts on Dividend Yield 

This table presents the results of a pooled regression with event day dummies for the period (T-5, T+5) around the ex-

dividend day, as seen in Equation (4). The dummy variable for the cum-dividend day (T-1) is CumDay. The dummy 

variable for the ex-dividend day is ExDay. The dummy variable for the record-dividend day (T+2), which is our main 

variable of interest, is RecDay. We only report the coefficients for the Cum Day through the RecDay+1. We define 

high and low dividend yield as above and below, respectively, the median value of Dividend Yield. The dependent 

variables are ES%, which is the Percent Effective Spread measured in basis points, Volatility measured in percent, 

and Variance Ratio multiplied by 100. Panel A presents results from our "early" sample (2004-2007) and Panel B 

presents results from our "later" sample (2009-2016). We winsorize all dependent variables each calendar day at the 

5% level. We include firm-dividend fixed effects in the regression. The t-statistics are reported in parentheses. * p < 

0.1, ** p < 0.05, *** p < 0.01 

 

  

Panel A: Early 

Period 
            

Dependent Variable ES%  Volatility Variance Ratio 

Sample Cut 
High 

Yield 

Low 

Yield 

High 

Yield 

Low 

Yield 

High 

Yield 

Low 

Yield 

  (1) (2) (3) (4) (5) (6) 

CumDay 
-0.842*** -0.493*** -0.019 -0.022 0.091 0.012 

(-4.34) (-3.32) (-0.90) (-1.21) (0.41) (0.07) 

ExDay 
0.761*** 0.477*** 0.197*** 0.093*** 0.017 0.184 

(3.92) (3.21) (9.28) (5.15) (0.08) (0.94) 

RecDay-1 
-0.637*** -0.182 -0.028 -0.057*** 0.084 0.239 

(-3.28) (-1.22) (-1.30) (-3.13) (0.38) (1.22) 

RecDay 
1.492*** 0.986*** -0.008 -0.041** 0.375* 0.058 

(7.69) (6.64) (-0.39) (-2.28) (1.69) (0.30) 

RecDay+1 
0.825*** 0.310** -0.003 -0.043** 0.373* 0.021 

(4.25) (2.08) (-0.12) (-2.35) (1.68) (0.11) 

Constant 
27.560*** 22.039*** 2.611*** 2.710*** 19.619*** 19.408*** 

(1,034.08) (1,079.34) (896.12) (1,093.04) (644.79) (720.43) 

Dividend FE Yes Yes Yes Yes Yes Yes 

Adjusted R2 0.674 0.672 0.332 0.291 0.0323 0.0288 

N (Dividends) 3727 4699 3727 4699 3721 4694 

N (Dividend Days) 234,800 296,036 234,793 296,032 234,431 295,746 
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Panel B: Late 

Period 
            

Dependent Variable ES%  Volatility Variance Ratio 

Sample Cut 
High 

Yield 

Low 

Yield 

High 

Yield 

Low 

Yield 

High 

Yield 

Low 

Yield 

  (1) (2) (3) (4) (5) (6) 

CumDay 
-2.594*** -1.563*** -0.010 -0.021 -0.127 0.247 

(-7.81) (-4.61) (-0.69) (-1.35) (-0.88) (1.49) 

ExDay 
1.762*** -0.574* 0.162*** 0.031** 0.317** 0.246 

(5.31) (-1.69) (11.66) (2.04) (2.20) (1.48) 

RecDay-1 
-0.566* -0.320 0.003 -0.021 -0.128 0.3450** 

(-1.71) (-0.94) (0.20) (-1.38) (-0.89) (2.08) 

RecDay 
1.441*** 1.755*** 0.004 -0.019 0.210 -0.104 

(4.34) (5.18) (0.30) (-1.25) (1.46) (-0.62) 

RecDay+1 
-0.501 -0.096 0.009 0.011 -0.055 -0.283* 

(-1.51) (-0.28) (0.64) (0.70) (-0.38) (-1.70) 

Constant 
42.673*** 34.051*** 3.029*** 3.001*** 20.705*** 20.599*** 

(935.86) (731.65) (1,583.21) (1,425.00) (1,045.55) (903.84) 

Dividend FE Yes Yes Yes Yes Yes Yes 

Adjusted R2 0.657 0.660 0.474 0.387 0.0702 0.0747 

N (Dividends) 8973 6699 8938 6680 8851 6609 

N (Dividend Days) 565,296 422,035 563,089 420,829 557,641 416,379 
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Table 1.8 Market Quality around the Dividend Dates for Special Dividends 

This table presents the results of a pooled regression with event day dummies for the period (T-5, T+5) around the ex-dividend day, as seen in Equation (4). The 

dummy variable for the cum-dividend day (T-1) is CumDay. The dummy variable for the ex-dividend day is ExDay. The dummy variable for the record-dividend 

day (T+2), which is our main variable of interest, is RecDay. We only report the coefficients for the Cum Day through the RecDay+1. In this table we examine 

special dividends only, dividends that have a distribution code of 1272. The sample used in this table is that of firms that have a daily cost to borrow score (DCBS) 

greater than one six months prior to the dividend event, and we cut the sample based on the market value of the firm relative to the NYSE decile breakpoints. We 

only keep observations if the firm has a Market Value at or below the 5th decile. The table presents results from our "later" sample (2009-2016). The dependent 

variables are ES%, which is the Percent Effective Spread measured in basis points, Volatility measured in percent, and Variance Ratio multiplied by 100. We 

winsorize all dependent variables each calendar day at the 5% level. We include firm-dividend fixed effects in the regression. The t-statistics are reported in 

parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

 

 2004-2007  2009-2016 

Dependent 
Variable 

ES%  Volatility Variance Ratio   ES%  Volatility Variance Ratio 

  (1) (2) (3)  (4) (5) (6) 

CumDay 
-1.412 -0.216 0.42  -6.808*** 0.142 1.527 
(-1.22) (-0.84) (0.32)  (-3.40) (1.15) (1.23) 

ExDay 
5.266*** 1.204*** -0.159  5.829*** 1.157*** 0.752 

(4.55) (4.70) (-0.12)  (2.91) (9.37) (0.60) 

RecDay-1 
0.467 0.474* 0.791  -2.048 0.470*** -0.414 
(0.40) (1.85) (0.61)  (-1.02) (3.81) (-0.33) 

RecDay 
2.169* 0.324 -0.591   2.775 0.327*** -0.064 
(1.87) (1.26) (-0.45)   (1.39) (2.64) (-0.05) 

RecDay+1 
1.46 0.106 -1.035   1.104 0.149 -0.503 

(1.26) (0.41) (-0.80)   (0.55) (1.20) (-0.40) 

Constant 
32.180*** 3.017*** 19.976***  50.610*** 3.261*** 20.764*** 
(202.35) (85.72) (112.04)  (183.91) (192.13) (120.97) 

Dividend FE Yes Yes Yes  Yes Yes Yes 

Adjusted R2 0.687 0.139 0.0314   0.723 0.282 0.03 
N (Dividends) 150 150 119  213 213 126 
N (Dividend Days) 9,450 9,450 7,484   13,419 13,413 7,936 
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Table 1.9 Stock Returns and Effective Spreads around the Dividend Dates 

This table presents the results of a pooled regression with event day dummies for the period (T-5, T+5) around the ex-

dividend day, as seen in Equation (4). The dummy variable for the cum-dividend day (T-1) is CumDay. The dummy 

variable for the ex-dividend day is ExDay. The dummy variable for the record-dividend day (T+2), which is our main 

variable of interest, is RecDay. We only report the coefficients for the Cum Day through the RecDay+1. We cut the 

sample based on the market value of the firm relative to the NYSE decile breakpoints. If the firm has a Market Value 

at or below the 5th decile we consider them as Low MV, otherwise they are High MV. In all panels, Columns 1 and 

2 present results from our "early" sample (2004-2007) and columns 3 and 4 present results from our "later" sample 

(2009-2016). In Panel A, the dependent variable is market-adjusted stock returns in percent.  We compute  market 

adjusted returns we subtract the CRSP value-weighted index retrun from the individual stock return. In Panel B and 

C the dependent variable is the Percent Effective Spread (ES%), measured in basis points. In Panel B we examine 

dividend events that have a positive market-adjusted return on the record day. In Panel C, we examine dividend events 

that have a non-positive market-adjusted return on the record day. We winsorize all dependent variables each calendar 

day at the 5% level. We include firm-dividend fixed effects in the regression. The t-statistics are reported in 

parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

  

Panel A: Abnormal Returns           
 2004-2007   2009-2016 

Dependent Variable Market-Adj Rets (%) 

Sample Cut Low MV High MV   Low MV High MV 

  (1) (2)   (3) (4) 

CumDay 
0.0562*** -0.0143  0.0170 -0.0294*** 

(3.57) (-1.09)  (1.42) (-3.02) 

ExDay 
0.1494*** 0.0424***  0.0978*** 0.0439*** 

(9.49) (3.22)  (8.18) (4.51) 

RecDay-1 
0.0433*** 0.0128  -0.0207* -0.0182* 

(2.75) (0.97)  (-1.73) (-1.87) 

RecDay 
0.0189 -0.0033   -0.0304** -0.0117 

(1.20) (-0.25)   (-2.54) (-1.20) 

RecDay+1 
-0.0416*** -0.0001  -0.0182 -0.0209** 

(-2.64) (-0.01)  (-1.53) (-2.14) 

Constant 
-0.0186*** -0.0053***  0.0033** 0.0093*** 

(-8.56) (-2.92)  (2.01) (6.92) 

Dividend FE Yes Yes   Yes Yes 

Adjusted R2 -0.00225 -0.000448  -0.00295 -0.00185 
N (Dividends) 8387 7474  15727 15447 

N (Dividend Days) 528,395 470,874   990,830 973,170 
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Panel B: Positive Return 

Record Days 
          

 2004-2007   2009-2016 

Dependent Variable ES%  (bps) 

Sample Cut Low MV High MV  Low MV High MV 

  (1) (2)   (3) (4) 

CumDay 
-0.642*** -0.209***  -2.075*** -0.456** 

(-3.76) (-2.89)  (-6.11) (-2.26) 

ExDay 
0.392** 0.700***  0.815** 0.045 

(2.30) (9.68)  (2.40) (0.22) 

RecDay-1 
-0.465*** -0.075  -0.592* -0.091 

(-2.72) (-1.03)  (-1.74) (-0.45) 

RecDay 
1.627*** 0.293***   1.242*** 0.039 

(9.52) (4.06)   (3.66) (0.19) 

RecDay+1 
0.582*** -0.063  -0.337 0.036 

(3.40) (-0.87)  (-0.99) (0.18) 

Constant 
24.514*** 7.156***  38.515*** 18.213*** 

(1,044.54) (720.27)  (825.76) (656.88) 

Dividend FE Yes Yes   Yes Yes 

Adjusted R2 0.681 0.452  0.657 0.882 

N (Dividends) 4154 3648  7542 7602 
N (Dividend Days) 261,711 229,802   475,142 478,926 
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Panel C: Negative Return 

Record Days 
          

 2004-2007   2009-2016 

Dependent Variable ES%  (bps) 

Sample Cut Low MV High MV  Low MV High MV 

  (1) (2)   (3) (4) 

CumDay 
-0.650*** -0.337***  -2.252*** -0.502*** 

(-3.90) (-4.64)  (-6.71) (-2.62) 

ExDay 
0.806*** 0.767***  0.701** -0.150 

(4.83) (10.56)  (2.09) (-0.78) 

RecDay-1 
-0.300* -0.180**  -0.317 -0.559*** 
(-1.80) (-2.49)  (-0.94) (-2.91) 

RecDay 
0.810*** 0.155**   1.876*** -0.185 

(4.86) (2.14)   (5.59) (-0.96) 

RecDay+1 
0.492*** -0.041  -0.271 -0.265 

(2.95) (-0.57)  (-0.81) (-1.38) 

Constant 
24.448*** 7.131***  39.476*** 17.466*** 

(1,067.94) (715.31)  (856.39) (662.76) 

Dividend FE Yes Yes   Yes Yes 

Adjusted R2 0.679 0.416  0.665 0.883 

N (Dividends) 4273 3863  8187 7847 

N (Dividend Days) 269,212 243,351   515,780 494,360 
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Table 1.10 Summary Statistics- Ex-Days around Tax Change 

This table provides summary statistics for our sample prior to the dividend tax change in 2003. We include all dividend with an ex-day in the 18-month period 

prior to 2003. The variable Market Value is measured in millions of dollars and is calculated by multiplying the prior year end share price and the number of shares 

outstanding. The variables Dollar Effective Spread Pre Dividend and Percent Effective Spread Pre Dividend are calculated as the average dollar and percent, 

respectively, effective spread in days (-30, -6) relative to the ex-dividend day. The variable Variance Ratio is average variance ratio in days (-30, -6) relative to the 

ex-dividend day. The variable Volatiltiy is average range in days (-30, -6) relative to the ex-dividend day. The variable Share Price is the price (in dollars) as of 

close of trading on the cum-dividend day. The variable Institutional Ownership is the percentage of shares outstanding that are held by institutions (based on 13-f 

filings). The variable Short Interest is the average proportion of shares outstanding that are short in the prior six-months. The variable Dividend Amount is the 

dollar amount of the dividend being paid. The variable Dividend Yield is calculated as the Dividend Amount divided by the Share Price.  The statistics we report 

are the mean, standard deviation (SD), and the 5th, 25th, 50th, 75th, and 95th percentile. We winsorize spread variables, Range, and Variance Ratio at the 5% level 

by trading day. 

 

 

 

 Mean SD P5 P10 P25 P50 P75 P90 P95 

Market Value ($ 1,000,000) 8943 29101 163 231 488 1475 5427 17406 36318 

Dollar Effective Spread (cents) 6.296 4.669 2.027 2.343 3.161 4.754 7.493 13.307 16.894 

Percent Effective Spread (bps) 24.075 21.283 5.268 6.285 9.186 15.862 31.435 56.274 69.954 

Variance Ratio 0.192 0.037 0.139 0.148 0.166 0.188 0.212 0.240 0.260 

Volatility 0.026 0.010 0.013 0.015 0.019 0.024 0.031 0.039 0.044 

Share Price ($) 35.31 37.09 12.16 15.01 21.44 29.99 42.67 57.70 68.70 

Institutional Ownership (%) 57.93 23.86 12.58 21.80 42.07 61.79 76.71 86.18 90.99 

Short Interest (%) 2.390 3.015 0.238 0.397 0.840 1.526 2.784 5.078 7.250 

Dividend Amount ($) 0.167 0.139 0.030 0.040 0.070 0.135 0.225 0.327 0.415 

Dividend Yield (%) 0.005 0.004 0.001 0.002 0.003 0.005 0.007 0.010 0.012 

N (Dividends) 4,455                 
N (Firms) 1,060     
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Table 1.11 Falsification Test – Pre and Post 2003 Tax Change 

This table presents the results of a pooled regression with event day dummies for the period (T-5, T+5) around the ex-

dividend day, as seen in Equation (4). The sample is all ordinary dividends in the 18 months ending December 2002 

or the 18 months beginning January 2004. The dummy variable for the cum-dividend day (T-1) is CumDay. The 

dummy variable for the ex-dividend day is ExDay. The dummy variable for the record-dividend day (T+2) is RecDay. 

We also interact these variables with a Post variable that equals 1 if the Ex-dividend date is after the 2003 tax change. 

We only report the coefficients for the CumDay through the RecDay+1.  The dependent variable in columns 1 and 2 

is the Percent Effective Spread (ES%). The dependent variable in column 3 and 4 is Volatility, measured in percent. 

The dependent variable in column 5 and 6 is the Variance Ratio, multiplied by 100. We cut the sample based on the 

market value of the firm relative to the NYSE decile breakpoints. If the firm has a Market Value at or below the 5th 

decile we consider them as Low MV, otherwise they are High MV. We winsorize all dependent variables each calendar 

day at the 5% level. We include firm fixed effects in the regression. The t-statistics are reported in parentheses. * p < 

0.1, ** p < 0.05, *** p < 0.01 

 

Dependent 
Variable 

ES% (bps) Volatility Variance Ratio 

Sample Cut Low MV High MV Low MV High MV Low MV High MV 
 (1) (2) (3) (4) (5) (6) 

CumDay 
-0.991** -0.465*** -0.108*** -0.210*** 0.161 -0.018 

(-2.38) (-3.13) (-3.14) (-9.48) (0.51) (-0.07) 

ExDay 
1.171*** 2.285*** 0.049 -0.090*** 0.180 -0.211 

(2.81) (15.37) (1.42) (-4.06) (0.56) (-0.82) 

RecDay-1 
-0.249 -0.258* -0.037 -0.161*** 0.211 0.028 

(-0.60) (-1.73) (-1.08) (-7.29) (0.66) (0.11) 

RecDay 
-0.575 -0.210 0.000 -0.118*** 0.134 0.093 

(-1.38) (-1.41) (0.01) (-5.33) (0.42) (0.36) 

RecDay+1 
-0.161 -0.464*** 0.010 -0.136*** -0.117 0.002 

(-0.39) (-3.12) (0.28) (-6.14) (-0.37) (0.01) 

Post 
-23.143*** -8.230*** -0.582*** -1.086*** 0.391*** 0.172*** 

(-266.40) (-268.39) (-91.36) (-203.93) (5.89) (3.22) 

RecDay-1 * Post 
0.150 0.114 0.012 0.119*** -0.027 -0.087 

(0.28) (0.55) (0.31) (3.44) (-0.07) (-0.24) 

RecDay * Post 
1.479*** 0.453** -0.017 0.092*** -0.019 0.514 

(2.78) (2.20) (-0.42) (2.66) (-0.05) (1.43) 

RecDay+1 * Post 
0.290 0.272 -0.035 0.094*** 0.182 0.366 

(0.54) (1.32) (-0.89) (2.73) (0.45) (1.02) 

Constant 
50.498*** 16.282*** 3.083*** 2.952*** 19.819*** 18.642*** 

(787.68) (762.88) (580.75) (922.73) (403.82) (501.60) 

Firm FE Yes Yes Yes Yes Yes Yes 

Adjusted R2 0.571 0.441 0.206 0.273 0.0339 0.017 

N (Dividends) 4872 5383 5383 5249 4864 5383 

N (Dividend 
Days) 306,935 339,129 339,125 330,663 306,401 339,117 
  

  



46 

 

 

Figure 1.1 Indicative Fee around Dividend Dates 

Panel A: Early Period (2004 - 2007) 

 

 

Panel B: Late Period (2009 - 2016) 
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Figure 1.2 Fails to Deliver around Dividend Dates 

Panel A: Early Period (2004 - 2007) 

 

Panel B: Late Period (2009 - 2016) 
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CHAPTER II 

DO ANALYSTS LEARN FROM THE TRADING OF INFORMED INVESTORS? EVIDENCE 

FROM SHORT SELLERS. 
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Abstract 

 
I examine whether sell-side equity analysts use the trading activity of short sellers in their 

information set. Taking advantage of the lagged disclosure of short interest, I find that analysts exhibit an 

increased propensity to downgrade their recommendations for a stock after a disclosed increase in short 

selling. I also find a significantly positive relationship between changes in short interest and the 

likelihood of a downward EPS revision. This relationship is driven by an increased propensity to revise 

down when short interest increases. Overall, these results suggest that market participants extract 

information from short-sellers’ trading activity. 

1. Introduction 

 
Sell-side equity analysts play an important role in our financial markets as they serve as 

informational intermediaries and aid in investment decision making. In addition, markets are 

known to respond to the recommendation changes and earnings estimates of analysts. Prior 

research questions their objectivity, suggesting they are reluctant to incorporate negative 

information and overly optimistic in their stock recommendations (Lin and McNichols 1998; 

Barber, Lehavy, and Trueman 2007) and earnings forecasts (De Bondt and Thaler 1990; Michaely 

and Womack 1999; Hong and Kubik 2003). In this paper, I examine the actions of analysts after 

the disclosure of a specific piece of negative information- a spike in short interest. By examining 

the interactions of analysts and short sellers I provide evidence on the willingness of analysts to 

incorporate negative information into their decisions. Taking advantage of the gap between when 

short sellers positions are disclosed from when they are initiated, I isolate the response of analysts 

to the disclosure itself. More generally, I offer insight into analysts’ information set, also known 

as the “black box.”14  

                                            
14 See Bradshaw (2011) for an explanation of the “black box” and the current state of the literature surrounding the 
information valued and possessed by analysts 
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Analysts and short sellers face different incentives. Analysts may over-recommend stocks 

to obtain additional business or trading commissions from their customers (Lin and McNichols 

1998; Barber et al. 2007; Carleton, Chen, and Steiner 1998) or to gain access to private information 

via direct management contact (Lim 2001). Therefore, analysts may choose to ignore negative 

information (Scherbina 2007) as benefits outweigh the cost of being less accurate. Alternatively, 

they may be systematically optimistic and underreact to negative information and/or overreact to 

positive information (Easterwood and Nutt 1999). Short sellers’ incentives, in contrast, are clearer 

because they place their own capital at stake. Short-sellers’ motivation to make profit drives them 

to incorporate whatever information they discover into their trading, whether it be positive or 

negative. In addition, a robust empirical literature shows that short sellers correctly predict future 

returns (see, for example, Boehmer, Jones, and Zhang 2008). The differing incentives between 

analysts and short sellers create an interesting interaction. Although many studies have examined 

analysts and short sellers, prior studies have bene unable to isolate a direction of causality on 

analysts’ willingness to garner information from short sellers’ trading activity.15  

Whether analysts mimic the actions of short sellers is ultimately an empirical question. On 

one hand, analysts might ignore short sellers if they are overconfident and/or they succumb to 

incentives to disregard negative information. On the other hand, analysts might mimic short sellers 

if they believe that short sellers are more informed (Drake, Rees, and Swanson 2011) and they are 

willing to incorporate the information provided by short sellers. In addition, competition among 

analysts can reduce bias (Hong and Kacperczyk 2010), analyst’s accuracy leads to higher 

                                            
15 Short sellers have information above and beyond that of financial analysts (Drake, Rees, and Swanson 2011). 
Also, short sellers are informed and trade ahead of both analysts’ downgrades (Christophe, Ferri, and Hsieh 2010) 
and earnings announcements (Christophe, Ferri, and Angel 2004). 
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reputations (Jackson 2005), and analysts have incentives associated with compensation and 

promotions to develop strong reputations (Leone and Wu 2002; Hong and Kubik 2003).  

Given that analysts’ information set is unobservable, researchers struggle to draw causal 

inferences about their decision-making. Although the research in this area is limited, Brown, Call, 

Clement and Sharp (2016) offers a glimpse. In their survey of buy-side analysts, they find that 

analysts surveyed highly value 10-K and 10-Q reports when determining stock recommendations. 

In addition, analysts utilize management access, calls and visits with sell-side analysts, and 

knowledge of other investors’ opinions or holdings. It is the knowledge of other investors (short 

sellers) opinions or holdings that I examine. In addition to the lack of observable information, 

studies that examine analysts’ actions face the criticism of confounding information and events. In 

the context of other studies, short sellers’ and analysts’ decisions might be endogenously 

determined.  

I mitigate endogeneity concerns by exploiting the lagged disclosure of short interest, which 

occurs between seven and fourteen days after the short interest effective date.16 Since short interest 

is stale by up to fourteen days on the date it is disclosed, confounding information or events are 

likely outdated. My approach resembles that in Kecskes et al. (2013), who document that short 

sellers provide predictive information to creditors in the bond market on and around the disclosure 

dates of short interest.  

I find that analysts exhibit an increased propensity to downgrade their recommendations 

for a stock after a disclosed increase in short interest. In contrast, their propensity to upgrade is 

                                            
16 Nasdaq stocks report short interest after trading hours on the 7th business day after the effective short interest date. 
NYSE and AMEX stock prior to June 30, 2008 reported short interest after trading hours on the 4th business day 
after the effective short interest date. All short interest reporting dates on and after June 30, 2008 FINRA took over 
the consolidation of all short interest and NYSE and AMEX stocks report short interest after trading hours on the 7th 
business day after the effective short interest date. 
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unaffected by the disclosure of either increases or decreases in short selling. The unwillingness for 

analysts to incorporate positive information may come as a surprise as we know there can be good 

news in short interest disclosures (Boehmer et al. 2010). However, a plausible explanation for the 

asymmetry stems from the clarity of the signal sent by short sellers. An increase in short interest 

is a very clear indication that short sellers believe a stock is overvalued. However, a decrease in 

short interest is ambiguous as short sellers can cover for reasons that are exogenous to the value 

of the stock. For example, capital constraints might force short sellers out of their positions.17 

Given the ambiguity of short interest decreases, analysts can more easily interpret the information 

content of increases in short interest than decreases and therefore they may not respond to 

decreases. In addition, the asymmetry could, in part, be due to the fact the analyst’s 

recommendations tend to be overly optimistic and they are less willing to upgrade their 

recommendation regardless of new information.18 

 I also find a significantly positive relationship between changes in short interest and the 

likelihood of a downward EPS revision. An increased propensity to revise down when short 

interest increases drives this relationship.19 These findings reinforce the interpretation that analysts 

respond to increases in short interest.  

An alternative explanation is that analysts respond to the same information as short sellers, 

but with a lag. In a falsification test, I use a placebo date that is near, but before, dissemination and 

find no significant relationship between downgrades and short interest spikes. Taken together, 

                                            
17 Other reasons include short sellers taking profits because price is now at or below ‘correct’ value, realizing they 

were incorrect in their assessment, or being squeezed out of their positions 
18 See also Ali, Klein, and Rosenfeld 1992; Dugar and Nathan 1995; Michaely and Womack 1999; Hong and Kubik 
2003 
19 This increase is in addition to the unconditional higher probability of a downward revision than an upward 
revision that is documented in the literature on analysts “walk-downs.” This literature shows that analysts optimistic 
forecast bias decreases as we approach the earnings announcement date (Richardson, Teoh, and Wysocki 2004). 
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these results indicate that sell-side equity analysts respond to short interest spikes themselves, as 

opposed to the underlying information short sellers collect. They appear to incorporate the 

knowledge of other investors opinions or holdings into their recommendation decisions and EPS 

revisions. Also, the asymmetry in their willingness to respond to short interest increases and 

decreases suggests that analysts have limited ability in processing noisy signals sent by short 

sellers. 

This paper contributes to multiple strands of research. The first is work on the biases in 

analysts’ recommendations and EPS forecasts. Prior research has reached differing conclusions 

about the existence and source of this bias. This paper provides evidence that analysts are willing 

to incorporate negative information. In addition, I document an asymmetry in analysts’ actions 

around short interest increases and decreases, which may be driven by how noisy short interest 

decreases are relative to increases. Second, this paper adds to the literature on identifying inputs 

into analyst’s outputs (i.e. penetrating the “black box”). This is the first paper to show that analysts 

“black box” contains the trading activity of short sellers. Finally, this paper is related to the analysts 

herding literature. There is evidence that analysts are willing to follow the signals sent by other 

analysts when they issue recommendations (Welch 2000; Jegadeesh and Kim 2009) and when they 

issue earnings forecasts (Trueman 1994), i.e. analysts exhibit herding behavior. Studies of herding 

typically analyze whether market participants learn from and mimic the actions of others within 

their group. This paper relates in the sense that analysts are following a signal conveyed by another 

group of market participants.   

This paper also adds to our understanding of how short sellers influence our financial 

markets, which is of interest to both investors and regulators. If market participants change their 

behavior based on the trading of short sellers, in a manner that benefits price discovery, then 
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imposing constraints on short sellers could be harmful to market efficiency. If regulators are 

unarmed with this information, then changes to the current regulatory landscape may generate 

unintended consequences. The findings in this paper indicate that analysts act as a conduit through 

which information from short sellers can flow to the market. Analyst appear to have skill in 

processing the information content of short interest increases which is consistent with the role they 

serve in the market as informational intermediaries. Also, the findings in this paper suggest that 

since short sellers are an important source of information, more frequent trade disclosure of short 

sellers could be beneficial for our equity markets.   

2. Review / Hypothesis Development 

 
II.a. Related Literature 

Prior research has found that analysts are overly optimistic when they issue 

recommendations (Lin and McNichols 1998; Barber et al. 2007) and future earnings estimates (De 

Bondt and Thaler 1990; Michaely and Womack 1999; Hong and Kubik 2003). The literature offers 

two broad explanations. First, analysts may have acquired negative information throughout their 

research and analysis but choose to ignore it (Scherbina 2008). Reasons for doing so include 

investment banking relationship business (Dugar and Nathan 1995; Lin and McNichols 1998), 

increasing trading commissions (Irvine 2004), and fostering relationships with management 

(Francis and Philbrick 1993; Chen and Matsumoto 2006). Second, analysts may be systematically 

optimistic by underreacting to negative information and/or overreacting to positive information 

(Easterwood and Nutt 1999). This paper seeks to add to this discussion by studying times when a 

specific type of negative information is disclosed and examining analysts’ actions surrounding the 

disclosure.  
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Penetrating analysts’ “black box” is a much more recent focus in the literature. Using 

proprietary data, Soltes (2014) provides evidence that private interactions with management are 

an important source of information for analysts. Confirming that result, Brown, Call, Clement, and 

Sharp (2015) conduct surveys of sell-side analysts and document that private access to 

management is “very useful” for most of sell-side analysts. In addition, Brown et al. (2015) show 

that most analysts find industry knowledge, earnings conference calls, and management’s earnings 

guidance as “very useful” for determining earnings forecasts and stock recommendations. 

Although, they don’t directly test the interactions of short sellers and analysts, Drake et al. (2011), 

analyze short sellers and analysts and provide weak evidence that analysts actions appear to 

correctly incorporate information that is contained in variables that are known to predict future 

returns.  

This paper is also related to short sellers’ impact on the financial markets. Short sellers 

theoretically incorporate negative information into stock prices (Diamond and Verrecchia 1987). 

Empirically evidence shows that short sellers trading predicts future returns (Boehmer, Jones, and 

Zhang 2008). Consistent with their ability to predict returns, short sellers’ trades predict numerous 

corporate events as well as analysts’ actions (Christophe et al. 2010). Examining short selling prior 

to earnings announcements, Christophe et al. (2004) find that short sellers can predict negative 

earnings surprises. Their information appears to go beyond just that of earnings announcements, 

as they have been shown to predict earnings restatements (Desai, Krishnamurthy, and 

Venkataraman 2006; Efendi and Swanson 2009), bond rating downgrades (Henry, Kisgen, and 

Wu 2013), and the discovery and severity of corporate financial misconduct (Karpoff and Lou 

2010).  
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More directly this paper is related to the literature that studies the interaction of short sellers 

and financial analysts. Drake et al. (2011) document that while short selling is associated in the 

correct direction with eleven different fundamental variables that predict returns, analysts fail to 

correctly incorporate the same fundamental information. Therefore, they conclude that short sellers 

are superior in their use of information and investors can increase returns by using short sellers 

trading activity and trading against analysts’ recommendations. The ability of short sellers to 

predict value relevant events extends to that of analysts’ actions. Christophe et al. (2010) document 

that short sellers can reliable predict analysts’ downgrades by showing that there is abnormal short 

selling in the three days prior to the public announcement of an analyst downgrade. Pownall and 

Simko (2005) document that short interest spikes are associated with negative returns around the 

disclosure of short sellers trading activity. Using an exogenous change in short-sale constraints 

(RegSHO), Choi (2018) find that lower short selling constraints are positively associated with 

analysts’ rounding of forecasts.20 Also using RegSHO, Ke, Lo, Sheng, and Zhang (2018) find that 

lowering short selling constraints improves analyst earnings forecast quality.  

II.b. Hypothesis Development 

When an analyst issues a recommendation, they are making a statement about where they 

expect future price to be relative to current price. This is very much in line with what trading 

signals from short sellers represent. When a short seller initiates a position, he/she profits if the 

current price falls in the future. Analysts may choose to fully incorporate the information in an 

unbiased manner. We have evidence that competition among analysts can reduce bias (Hong and 

Kacperczyk 2010), analyst’s accuracy leads higher reputations (Jackson 2005), and analysts have 

                                            
20 RegSHO was adopted in 2005 by the SEC. This suspended a rule known as the “uptick” rule for a random group 
of stocks in the Russell 3000 Index referred to as the “pilot” stocks.  The “uptick” rule was considered a short selling 
constraint as it required short sellers to only transact after an uptick in price. Therefore, the suspension of the 
“uptick” rule for the “pilot” stocks was considered an exogenous decrease in short selling constraints.  
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incentives, associated with their career, to develop strong reputations (Leone and Wu 2002; Hong 

and Kubik 2003). Alternatively, when provided with negative information analysts may choose to 

ignore that information (Scherbina 2008), or they may interpret that information in a bias manner 

(Easterwood and Nutt 1999). Given that short sellers’ trading activity is known to contain 

information about future price and earnings, above and beyond that of analysts, I posit that analysts 

value the information that is contained in the trading activity of short sellers. For the 

recommendation analysis, I hypothesize that analysts’ recommendation decisions, that take place 

immediately after the disclosure of short interest, are consistent with the signal about future price 

that is inferred by the change in short interest. The alternative hypothesis is that analysts ignore 

the information content of short interest when they issue recommendations.   

When analysts issue stock recommendations they typically have a twelve-month time 

horizon and usually change before the twelve months is up. This makes it very challenging to 

measure the accuracy of analysts’ stock recommendations. In contrast, analysts’ EPS estimates 

provide an actual value of their estimate, so when we find out the actual earnings, we will be able 

to precisely determine how accurate the analysts were. In addition, recommendation decisions are 

more infrequent than EPS revisions and, therefore, we will have a larger sample of analysts’ 

actions when studying the EPS revisions. One caveat of studying analysts EPS revisions is that 

their estimates do not directly translate into price predictions like stock recommendations and short 

selling activity do, so the predictions for EPS estimates are not as strong. Regardless, short selling 

has been shown to predict future earnings surprises (Christophe et al. 2004) and therefore analysts 

might learn from shorting activity prior to earnings announcements. For the EPS estimate revision 

analysis, I hypothesize that analysts’ EPS revisions, that take place immediately after the 

disclosure of short interest, mimic the information conveyed by short sellers’ trades. The 
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alternative hypothesis in this case is that analysts ignore the information content of short interest 

when they EPS revisions.    

3. Research Design 

 
III.a. Sample 

I utilize three main datasets in my analysis: Compustat, IBES, and Markit. I start by 

gathering short interest data for NYSE and Nasdaq listed firms from January 1991 to December 

2016. I obtain monthly short interest data from the respective exchanges for the period 1991- 2003. 

After 2003 all short interest data is provided by Compustat. Short interest is reported as the number 

of shares held short on some “effective date.” My identification strategy relies on a gap between 

the effective date and a disclosure date. For most of the sample, the effective date for short interest 

across all exchanges is on or before the 15th of each month.21 However, after September 7, 2007 

exchanges were required to report short positions as of the end of the month as well. Therefore, 

beginning in September 2007, I have two observations per firm-month for short interest. In 

addition to the short interest data, I collect the disclosure dates of short interest from the WSJ and 

on the exchange’s websites.22 This gives me 424 disclosure dates for my sample period. Using the 

disclosure dates of short interest, I merge in analysts’ earnings forecast and recommendation data 

from IBES. IBES data for recommendations (EPS estimates) begins in 1993 (1991). For both 

recommendations and EPS forecasts, I drop all initiations as I only measure changes around short 

interest disclosures. I also require that each analyst recommendation and EPS estimate happen 

                                            
21 If the 15th is a non-trading day, then Brokers/and dealers are required to report positions as of the previous trading 
day  
22 I thank Andrew Zhang for providing data on short interest disclosure dates 
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within the last 250 trading days (about half a year) to eliminate stale recommendations.23 Finally, 

I obtain stock price data from CRSP. 

After merging the analyst’s and stock price data with the short selling data, I require non-

missing stock price data for the day of the dissemination of short interest. To eliminate noise of 

stocks that are rarely, if ever, shorted, I drop observations where the short interest is less than 0.1% 

of shares outstanding as of the effective date of short interest. I drop all short interest 

disseminations that take place in 2008 as the financial crisis was taking place and regulators 

imposed short selling bans and addition restrictions on short sellers.24 I remove short interest 

disseminations that happen in the 5-day window around firms’ earnings announcement dates. I 

also require that the stock price be at least $1 on the day of short interest disclosure. After the 

above data requirements and excluding firms with otherwise missing data, the recommendations 

sample includes 536,017 firm-month observations and the EPS revision sample includes 641,132 

firm-month observations.  

III.b. Measuring Short Selling 

A widely used measure to proxy for short selling activity is relative short interest (RSI) (Drake et 

al. 2011; Pownall and Simko 2005). RSI is the number of shares shorted divided by the number of 

shares outstanding. Following Kecskes et al. (2013), I use changes in RSI from one reporting 

period to the next as my key independent variable.25 Short interest is disclosed publicly up to 

fourteen days after positions effective dates. Nasdaq stocks report short interest after trading hours 

on the 7th business day after the effective short interest date. NYSE stocks, prior to June 30, 2008, 

                                            
23 Prior literature has made a case for eliminating stale recommendations as some analysts stop covering firms. E.g.  
Jegadeesh and Kim (2009) and Drake et al. (2011).  
24 Rule 203 was enacted that imposed a “locate requirement” on short sellers 
25 Results don’t change if I include the change over the previous three reporting periods. Suggesting that the spike 

itself is important information rather than a trend of changes over time 
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reported short interest after trading hours on the 4th business day after the effective short interest 

date. After June 30, 2008 FINRA took over the consolidation of all short interest and NYSE and 

Nasdaq stocks report short interest after trading hours on the 7th business day after the effective 

short interest date. Figure 1 illustrates the timing of short interest accumulation and dissemination. 

In the example provided, the open short selling positions as of December 12th, which settle on or 

before December 15th, are disclosed after the market closes on December 26th. Therefore, the first 

trading day where the market can react to short sellers’ trade disclosure is December 27th. Under 

settlement rules at the time, the open short positions as of the 15th are a result of shorting activity 

that took place three trading days prior.26 Therefore, short sellers trade disclosure as of the effective 

date is a result of positions that happened three trading days ago. As seen in the example provided 

by Figure 1, we have a “Settlement Lag” of 3 days and a “Disclosure Gap” of 11 days. The 14 

days (in this example) between the activity of short sellers and the disclosure of their trading is 

what I use to alleviate the concern of confounding information and contemporaneous signals. 

In secondary analysis I proxy for daily level short selling by using equity lending data. I 

obtain daily equity lending data from Markit, which covers a large fraction of the market for the 

years 2007-2016. The data includes the number of shares that are on loan at a firm-day level. 

Although borrowing a share could be done for reasons other than short selling, virtually all shares 

borrowed are due to investors initiating a short position. When using the equity lending data to 

measure changes in short selling, I construct a proxy for short interest, relative quantity on loan 

(RQOL) as the quantity of shares on loan scaled by the number of shares outstanding reported in 

CRSP. I examine how well this proxy performs by examining cross-sectional correlations of this 

                                            
26 Beginning on September 5, 2017 equity settlement rules changed, and settlement began taking place two business 
days after a transaction. Prior to that date, equity settlement took place three business days after a transaction. Given 
my sample period falls entirely in the three-day settlement window, I will utilize that convention for my analysis.  
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proxy and actual reported short interest. I find that the cross-sectional correlation is above 91% for 

both the recommendation and EPS sample.27 Using RQOL as a daily measure of short interest I 

construct a daily change variable when I measure the change in RQOL from one trading day to the 

next. The Markit data is available to market participants but whether they use this data to make 

decisions is largely unexamined in the literature.28 It is important to note that when a share of stock 

is shorted, settlement of that trade does not happen for 3 days. Figure 2 illustrates the timing. In 

the example, short positions that are initiated on December 12th are not settled until December 15th. 

During settlement is when the share is officially borrowed and would show up in the Markit data. 

Therefore, the observed changes in the equity lending market is coupled with activity that 

happened three trading days ago. In the example, the activity in the equity lending market on 

December 15th is an indication of shorting activity that took place on December 12th. I utilize the 

Markit data and the RQOL variable to examine how analysts react to the signal conveyed by short 

sellers trading activity, with a smaller lag (3 days) than that of short interest (up to 14 days).  

III.c. Measuring Analysts Actions  

I examine both the recommendation changes and EPS estimate revisions of analysts around 

the disclosure of short sellers trading activity. Th key dependent variables in my analysis pertain 

to both recommendations and EPS estimate revisions. I construct both levels of changes and a 

binary variable for upgraded/downgraded (upward/downward) recommendation (EPS revision). I 

measure analyst’s recommendation activity by calculating the net recommendation changes per 

analyst firm pair from the day before dissemination to the three days after as: 

 

                                            
27 See Table 2 and discussion in section III.d. 
28 Markit sells subscriptions to their data that provides same day equity loan market conditions 
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∆��0�,1,� =  ��0�,1,��2 −  ��0�,1,�/3 (1) 

 

Where ��0�,1,��2 is the recommendation for analyst j, covering firm i, as of 3 days after the 

dissemination of short interest and ��0�,1,�/3 is the recommendation for analyst j, covering firm i, 

as of the day before the dissemination of short interest. In IBES, recommendation range from 1 

(Stong Buy) to 5 (Sell). Therefore, changes in recommendations can range from - 4 (Sell to Strong 

Buy) to 4 (Strong Buy to Sell). In addition, to the changes variable I construct a binary variable 

for upgrade or downgrade. The variable Upgrade takes on the value of 1 if the recommendation 

change is less than or equal to -1, and zero otherwise. The variable Downgrade takes on the value 

of 1 if the recommendation change is greater than or equal to 1, and zero otherwise.  

For EPS revisions, I follow the same methodology as for recommendation changes except 

for changes in EPS estimates I standardize the change by the share price to reduce noise associated 

with small or large earnings amounts.29 The formula for changes in EPS estimates is as follows: 

∆����,1,� =  ����,1,��2 − ����,1,�/3
�450��,�/3

 
(2) 

 

Where ����,1,��2 is the EPS estimate for analyst j, covering firm i, as of 3 days after the 

dissemination of short interest, ����,1,�/3 is the recommendation for analyst j, covering firm i, as 

of the day before the dissemination of short interest, and �450��,�/3 is the share price as of close 

                                            
29 See Gleason and Lee (2003); Hilary and Hsu (2013); and Lim (2001)  
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of trading on the day before the dissemination. When measuring the EPS change in a binary 

fashion, I label the variables Downward and Upward. 

III.d. Descriptive Statistics  

I present summary statistics in Table 1 that are average cross-sectional statistics. Reported 

are the mean and standard deviation, along with the 5th, 25th, 50th, 75th, and 95th percentiles 

separately for both the recommendation (Panel A) and EPS (Panel B) samples. All of the main 

variables are winsorized at the 1st and 99th percentile. The average short position is about 4.4% 

(4.0%) of shares outstanding for the recommendation (EPS) sample. This value is much larger 

than the median level of 2.8% (2.5%) due to large values on the right tail of the distribution, as 

seen by a value of 14% (13.2%) at the 95th percentile. This short interest level is slightly higher, 

but comparable to that found in both Drake et al. (2011) and Kecskes et al. (2013) who find the 

average short interest position is 3.2% and 3.0% respectively.30 For the recommendation sample, 

the RSI_Change has a mean value of 0.03 percent, which translates to a position change of about 

$1.5 million, at the mean market value of a firm ($5.375 billion * 0.03%). The 25th and 75th 

percentile of RSI_Change are -0.22% and 0.25%, respectively. Translating those figures to market 

value of equity leads to a position reduction of $11.6 million at the 25th percentile of RSI_Change 

and a position increase of $13.3 million at the 75th percentile of RSI_Change. The values for the 

EPS sample are very similar.  

The average number of analysts that have an active recommendation for a firm when short 

interest is disclosed is 3.77. This number is larger than that found in other research because other 

articles impose more stringent filters. For example, Jegadeesh and Kim (2009) require that when 

                                            
30 The sample period used in these papers do not include more recent data, and short interest in recent years has 
increased as shown in Rapach Ringgenberg, and Zhou (2016) and Drake et al. (2011). 
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a recommendation revision takes place there must be at least two other analysts that have active 

recommendations on the day before the revision. Therefore, they find the mean number of analysts 

issuing recommendations is 7.45. Other articles impose similar sample filters for reasons 

pertaining to the questions their studies are answering. Since the question in this study is about 

how individual analysts react to short interest disclosure these filters are unnecessary. The mean 

consensus recommendation is 2.3 which represents a recommendation that is slightly worse than 

a buy (would be coded as a 2 in my sample). This is consistent with the average recommendation 

found in Drake et al. (2011) who find the average recommendation is slightly below a buy (coded 

as a 4 in their sample) with a value of 3.76.31 Not surprisingly, the consensus recommendations 

are skewed toward a buy as seen by both the mean and median value being less than 3 (a Hold 

decision) and the 95th percentile being only slightly above a Hold decision (3.3).  For the EPS 

sample, the mean (median) number of active estimates issued for a firm when short interest is 

disclosed is 6.99. The mean and median consensus estimate for EPS is $0.30 and $0.25, 

respectively.  

For the recommendation sample, the mean (median) market value of equity (MVE) for a 

firm is $5.3 billion ($1.4 billion). Those same numbers for the EPS sample are $4.4 billion and 

$1.1 billion, respectively. The size of the firms in the sample are comparable to that of prior 

research studying analysts and short sellers.  With a sample period of 1994 to 2006, Drake et al. 

(2006) find the mean (median) MVE to be $3.5 billion ($0.8 billion). The mean share price for a 

stock in the recommendation (EPS) sample is $31.55 ($29.94).  

                                            
31 IBES provides recommendation decisions that range from 1 (Strong Buy) to 5 (Sell). Some papers in the literature 
reverse the convention so that a 5 represents a strong buy and a 1 represents a sell.  
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Table 2 presents correlations for the same variables listed in Table 1 for both the 

recommendations (Panel A) and EPS (Panel B) samples. The correlations presented are average 

cross-sectional correlations. For robustness purposes I construct an alternative measure of change 

in short interest called ABSS. Similar to Pownall and Simko (2005) and Kecskes et al. (2013), I 

subtract from the raw change the average change in the prior year and then scale by the standard 

deviation of change. The correlation of ABSS and RSI_Change is 0.75 (0.74) in the 

recommendation (EPS Revision) sample. Another correlation that is noteworthy is the correlation 

between MVE and NumRec (NumEPS). This correlation for the recommendation (EPS) sample is 

0.38 (0.49). This is consistent with larger firms having more analyst coverage for both 

recommendations and EPS estimates.  

4. Analysis 

 
IV.a. Univariate Results 

Prior literature has documented an asymmetry between analysts’ willingness to downgrade 

versus upgrade their recommendations, and therefore I study the decision to upgrade separately 

from downgrade decisions. In addition to the continuous variable for a change in short interest, I 

create groups based on the top and bottom quartile and decile of short interest changes.  I label 

these variables Top25, Bot25, Top10, and Bot10. The idea is that observations where Top25 or 

Top10 take on the value of 1 are instances where short interest increased a significant amount. 

Therefore, the signal conveyed by short sellers is unambiguously negative as short sellers are 

indicating a stock is overvalued. Along those same lines the observations where Bot25 or Bot10 

take on the value of 1 are instances where short interest decreased a significant amount (short 

sellers covered more positions than they initiated). The signal that is conveyed when short interest 

decreases is noisy relative to short interest increases because short sellers can cover for a variety 
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of reasons, some of which are exogenous to stock price. These reasons include short sellers being 

squeezed out of their positions by adverse price movements and facing capital constraints. Table 

3 provides descriptive statistics and univariate results on recommendation changes that take place 

after the dissemination of short interest based on these groups.  

When comparing the Top10 versus Bot10 we see a one-unit downgrade is more likely than 

a one-unit upgrade when short interest increased, and a one-unit upgrade is more likely than a one-

unit downgrade when short interest decreased. In particular, there are 10.8% more one-unit 

downgrades than upgrades when in the Top10 and there are 7.3% more one-unit upgrades than 

downgrades when in the Bot10. I also calculated the weighted-average change based on the 

frequencies and magnitude of the changes. The weighted-average changes reveal that there is a net 

downgrade if short interest increases and a net upgrade when short interest decreases. Also, the 

magnitude of the average change is stronger when the short interest change is higher. This can be 

seen by comparing the average change on Top25 (Bot25) of 0.024 (-0.032) to the average change 

on Top10 (Bot10) of 0.075 (-0.046).  

IV.b. Multivariate Analysis 

I examine analysts’ actions in the 3 trading days after short interest disclosure using 

separate probit models for downgrades and upgrades. Analysts’ actions are affected by other 

factors in the market, so I include control variables to account for known predictors of 

recommendations. These variables are shown in equation (3). There is one observation per 

disclosure date for each analyst-firm pair. I denote a downgrade by analyst j, covering firm i, at 

time period t as Downgradei,j,t, which takes on the value of 1 if analyst j downgraded their 

recommendation for firm i, and zero otherwise. I denote an upgrade by analyst j, covering firm i, 

at time period t as Upgradei,j,t, which takes on the value of 1 if analyst j upgraded their 
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recommendation for firm i, and zero otherwise. Equation (3) shows the model for the downgrade 

decision, I use the same equation for an upgrade except for the dependent variable is Upgradei,j,t. 

 

In equation (3), RSI_Change is the change in relative short interest since the prior reporting period. 

ConRec is the consensus recommendation level as of the day before the dissemination of short 

interest. ConRec_Change is the change in the consensus recommendation in the 3 trading days 

leading up to the disclosure date. NumRec is the number of analysts that have an active 

recommendation of the day before the disclosure date.32 MVE and Prc are the market value of 

equity and stock price for the firm as of the day before dissemination of short interest. MVE is 

calculated as the number of share outstanding times the share price. Ret3 is the stock return for the 

firm leading up to the disclosure date.  

 Using this model, I aim to determine analysts’ response to the signals conveyed by short 

sellers after the disclosure of their trading. In addition to the continuous variable for change in 

short interest, I run the same model with the binary variables based on the top and bottom quartiles 

and deciles of short interest changes. Including the stock level variables ConRec, ConRec_Change, 

and NumRec control for analysts’ tendency to update their recommendation based on other 

analysts’ actions or the environment for analysts covering that firm. I include MVE and Prc to 

                                            
32 For robustness I test using the number of recommendations as of the end of the previous month for robustness 

purposes and the main results are unchanged 
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control for firm characteristics that could influence analysts to act in different ways. Including 

Ret3 is primarily motivated by Conrad et al. (2006), who find that analysts update their 

recommendations around large price changes. In all the analysis using the probit model I cluster 

standard errors at both the analyst level and by disclosure date period.33 

In addition to studying recommendations, I examine analysts’ EPS revisions using equation 

(4). As with recommendations, I study upward revisions separately from downward revisions in 

the 3 trading days after the disclosure of short sellers trading activity using a probit model where 

the decision to revise their EPS upward or downward is coded as a 1 if there is an upward or 

downward revision, respectively. The variable Upward takes on the value of 1 if the change in 

EPS, as calculated in equation (2), is positive, and zero otherwise. The variable Downward takes 

on the value of 1 if the change in EPS is negative, and zero otherwise.  

 

Equation (4) shows the model for the downward revision, I use the same equation for an 

upward revision except for the dependent variable is Upwardi,j,t. The controls variables are similar 

to that used in the recommendation analysis except the consensus is now based on EPS estimate 

as of the day before disclosure of short interest. Also, the number of analysts which have an active 

EPS estimate replaces the number of analysts with an active recommendation. In addition to the 

                                            
33 All results are robust to clustering standard errors by industry as opposed to analyst 
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continuous variable for change in short interest, I run the same model with binary variables based 

on the top and bottom quartiles and deciles.  

IV.c. Main Results 

Table 4 presents the probit results for equation (3). Column 1 presents results using the 

continuous measure of change in short selling. Column 2 (3) presents results using a discrete level 

of change that falls into the top or bottom quartile (decile). Looking first at the main variable of 

interest, I find a positive significant relationship between analysts’ actions after the disclosure of 

short interest and the signal conveyed by the disclosure. In particular, the coefficient on 

RSI_Change is 2.77 and is significant at the 1% level. This evidence suggests that analysts are 

more likely to downgrade their recommendation after a disclosed increase in short selling. In order 

to determine if this relationship is driven by a reduced likelihood in the event of a decrease in 

shorting or by an increased likelihood in the event of an increase in shorting we turn to columns 2 

and 3. The results from column 2 and 3 indicate that the relationship is primarily driven by 

increases in short selling. In particular, the coefficient on Top25 and Top10 is 0.052 and 0.081, 

respectively. Both of these results are significant at the 1% level. To put this into economic terms, 

the results suggests that if the increase in short selling is in the top 25% (10%) then there is an 

increased marginal likelihood of a downgrade of about 5% (8%). When comparing these 

coefficients to the loadings on Bot25 and Bot10 we see that the coefficients on the bottom groups 

are much smaller in magnitude and not significant. The difference in magnitude of the coefficients 

for the top quartile versus top decile suggest that the larger the change in short selling the more 

likely analysts are to downgrade.  

Consistent with the findings in Conrad et al. (2006) I find a negative and significant 

relationship between returns and analysts’ likelihood of downgrading a firm. This can be seen by 
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looking at the loading on Ret3, which is -0.488 and significant at the 5% level. The interpretation 

here is that if returns are positive for a firm, there is a decreased likelihood of an analyst covering 

that firm issuing a downgrade. In comparison, the economic magnitudes documented in Table 4 

are along the same order, but larger than those documented in Conrad et al. (2006) who examine 

analysts’ actions around large return events. In addition, I find that the more analysts that have 

active recommendations, the more likely a downgrade is. This is consistent with Hong and 

Kacperczyk (2010) who find that competition among analysts reduces bias. In addition, the worse 

the consensus recommendation to begin with, the lower the likelihood of a downgrade. This could, 

in part, be due to their being less bias when the consensus is worse. Also, larger firms have lower 

likelihoods of downgrades after the disclosure of short sellers trading. Overall, Table 4 provides 

evidence that analysts are willing to incorporate negative information conveyed by the trading 

activity disclosure of short sellers. This suggests that analysts, to some degree, value being accurate 

more than they value the benefits enjoyed by being overly optimistic, which include access to 

management and revenues from additional business generated. 

The probit results for likelihood of an upgrade can be found in Table 5. The model used in 

this table is the same as seen in Equation (3) with the exception of the dependent variable now 

being Upgradei,j,t. There is no meaningful relationship between the change in short selling and the 

likelihood of issuing an upgrade recommendation. This result is consistent with prior findings on 

the asymmetry in analysts’ actions after good versus bad news. For example, Conrad et al (2006) 

find that following stock price increases analysts are no more likely to upgrade versus downgrade, 

however, after stock price decreases analysts are much more likely to downgrade. This could be 

driven by analysts being overly optimistic to begin with because they want to appease management 

at the firm or because the signal conveyed by short interest decreases is unclear. However, analysts 
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also value being accurate in their recommendations. Therefore, if analysts know they are overly 

optimistic then they may choose to ignore positive signals because the new information makes 

their current recommendation more accurate without action.  

Taken together the results from Table 4 and Table 5 suggest that there is an asymmetry in 

the willingness of analysts to mimic the trading activity of short sellers. I find that analysts are 

willing to downgrade after a negative signal is provided, but they are not willing to upgrade after 

a positive signal is provided.34 There are various reasons why an asymmetry can exist in analysts’ 

recommendation decisions. One plausible explanation of why this asymmetry exists is that analysts 

can’t reliably interpret positive signals conveyed by short sellers. An alternative explanation is that 

short sellers are viewed as informed market participants that provide negative information to the 

market, but not reliable positive information. Given that short sellers are known to be informed, 

these results suggest that an input that goes into analysts’ decision making is the trading activity 

of short sellers. Put another way, short sellers provide information to sell-side equity analysts via 

the disclosure of their trades.  

Next, I examine the propensity of analysts to revise their EPS estimates after the disclosure 

of short interest. I start by looking at the likelihood of a downward EPS revision after the disclosure 

of short interest. Table 6 presents the probit results for equation (4). Column 1 presents results 

using the continuous measure of change in short selling. Column 2 (3) presents results using a 

discrete level of change that falls into the top or bottom quartile (decile). I find a positive significant 

relationship between the likelihood analysts’ revise their EPS estimates down after the disclosure 

of short interest and the signal conveyed by the disclosure. In particular, the coefficient on 

                                            
34 Using an alternative measure of change in short interest (ABSS) I find similar results. The construction of the 
measure is explained in section III.b. 
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RSI_Change is 1.994 and is significant at the 1% level. This suggests that analysts are more likely 

to revise their EPS estimate down after a disclosed increase in short selling. In order to determine 

if this relationship is driven by a reduced likelihood in the event of a decrease in shorting or by an 

increased likelihood in the event of an increase in shorting we turn to columns 2 and 3. The results 

from column 2 and 3 indicate that the relationship is driven by increases in short selling. In 

particular, the coefficient on Top25 and Top10 is 0.023 and 0.047, respectively. The coefficient 

on Top25 (Top10) is statistically significant at the 5% (1%) level. To put this into economic terms, 

the results suggests that if the increase in short selling is in the top 25% (10%) then there is an 

increased marginal likelihood of a downward EPS revision of about 2% (5%). The coefficient on 

Top10 is more than twice that of the coefficient on Top25. This suggests that the strength of the 

signal conveyed by short sellers impacts the willingness of analysts to act. When comparing these 

coefficients to the loadings on Bot25 and Bot10 we see that the coefficients on the bottom groups 

are not significantly different from zero.  

In the recommendation analysis for downgrades, the coefficient on Ret3 is negative and 

significant. The interpretation is that if returns are positive then there is a reduced likelihood of a 

downward EPS revision. Also, the number of analysts that have an active EPS estimate is 

positively correlated with the likelihood of a downward revision. Unlike the recommendation 

analysis, firm size does not appear to be related to the likelihood of a EPS revision. Overall, Table 

6 provides evidence that analysts are willing to incorporate negative information conveyed by the 

trading activity disclosure of short sellers when they issue EPS revisions. This suggests that 

analysts, to some degree, value being accurate in the EPS estimates more than they value the 

benefits enjoyed by being overly optimistic. 
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The probit results for likelihood of an upward EPS revision can be found in Table 7. The 

model used in this table is the same as seen in Equation (4) with the exception of the dependent 

variable now being Upwardi,j,t. There is not a significant relationship between the change in short 

selling and the likelihood of issuing an upward revision. In particular, the coefficients on the main 

variables of interest insignificantly differ from zero. This result is consistent with the findings in 

the recommendation analysis.  Prior research has documented that analysts “walk down” their EPS 

estimates after initiation of the estimate until the earnings date (Richardson, Teoh, and Wysocki 

2004). That is, analysts are overly optimistic, and the bias is reduced up until the earnings date. 

That being said, there is an unconditionally higher probability of a downward revision than an 

upward revision. This helps explain why analysts do not revise upward after the disclosure of short 

selling regardless of the signal being conveyed by short sellers.  

Taken together the results from Table 6 and Table 7 suggest that there is an asymmetry in 

the willingness of analysts to mimic the trading activity of short sellers when they issue EPS 

revisions. I find that analysts are willing to revise down after a negative signal is provided, but 

they are not willing to revise up after a positive signal is provided. The reasons for why this 

asymmetry exist are like those provided for the recommendation analysis.  

IV.d. Alternative Tests 

The purpose of the tests to this point have been to identify the relationship between analysts 

and short sellers trading using the lagged disclosure of their trading. In more recent years (after 

2006), equity loan data provides a proxy for daily level short selling that is comparable to RSI.  For 

the recommendation (EPS) sample, the average RQOL is 4.9% (4.6%).35 As mentioned in the data 

                                            
35 In un-tabulated results I compute the average RSI for observations where Markit data is available (Post 2007) and 
confirm that RQOL is a subset of RSI which is consistent with Markit providing data from most of the largest equity 
lenders, but not all.  
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section, the correlation between RSI and RQOL is of high importance as I am using RQOL as a 

daily-level proxy for RSI that can only be constructed at the monthly or bi-monthly level. The 

correlation reported for the recommendation (EPS) sample is 91.28% (91.40%). This correlation 

is measuring the cross-sectional correlation between the RQOL, on the effective date for reported 

short interest, and the RSI that is reported as of that same date. This correlation provides strong 

evidence that RQOL is serving as an adequate daily-level proxy for the level of short sellers’ 

positions.  

Although this data is not a direct measure of short selling, the quantity on loan is highly 

correlated with shares held short. In other words, information about shorting has become more 

knowable, though it may be costly to acquire. Therefore, analysts could infer the trading of short 

sellers based on the equity loan data well before the disclosure date. Whether or not analysts do 

this is an empirical question. To answer this question, I conduct a set of tests that rely on 

RQOL_Change as the key independent variable. This variable is constructed as a change from one 

trading day to the next. Giving that analysts could update this information from one trading day to 

the next, I shrink the window where I examine analysts’ recommendations and EPS revisions to 

just the next trading day. In other words, the dependent variables used in this analysis are created 

based on equation (1) and (2) but I shorten the window from 3 trading days to 1 to eliminate 

information being inferred in the days in between. The results from the tests that incorporate the 

equity loan data are reported in Tables 8, which examine recommendations and IX, which examine 

EPS revisions.   

Table 8 reports results for both the downgrade decision (columns 1-3) and the upgrade 

decision (columns 4-6). The main results reported are largely similar to those from the main 

specification.  The coefficient on RQOL_Change for the likelihood of a downgrade is 6.891 and 
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significant at the 1% level. The coefficient on RQOL_Change for the likelihood of an upgrade is 

0.961 and not statistically significant. Taken together these results indicate that analysts’ 

propensity to downgrade is related to the trading of short sellers from three days prior, but the 

likelihood of an upgrade is unrelated. I refrain from making any strong inferences from these tests 

as the timing of the events are very close and confounding information is of consequence.  

Table 9 reports results for both downward EPS revisions (columns 1-3) and upward EPS 

revisions (columns 4-6). The results reported are similar to those from the main specification.  The 

coefficient on RQOL_Change for the likelihood of a downward revision is 4.846 and significant 

at the 1% level. The coefficient on RQOL_Change for the likelihood of an upgrade is 2.089 and 

not statistically significant. The results contained in Table 9 indicate that the downward EPS 

revisions of analysts are correlated with increased trading activity of short sellers three days prior. 

Also, there is no relationship between upward EPS revisions and short sellers trading activity three 

days prior. Again, I refrain from making strong inferences as the three-day window between when 

short sellers trade and when analysts revise is not long enough to ensure they both are not acting 

on a common signal. Taken together, the results using the equity loan data suggest that the 

relationship documented around the dissemination of short interest could be an underestimate as 

in recent years analysts might be clued into what short sellers are doing before dissemination.  

IV.e. Tests around Global Settlement and RegFD 

 There is reason to believe that the willingness of analysts to incorporate negative information has 

not been constant over time. There was speculation in the early 2000’s that investment bankers 

had undue influence on equity analysts, and this conflict of interest led to biased public reports 

issued by analysts. In addition, there was speculation that managers were engaging in selective 

disclosure of material information. These speculations resulted in both regulatory and legal 



 

76 

 

actions. Regulation FD (Reg FD) was enacted in October 2000 and the Global Analyst Research 

Settlement (Global Settlement) was announced in December 2002. As a result of the Global 

Settlement the distribution of analyst’s recommendations became more balanced. Barber et al. 

(2006) show that analysts were more likely to issue negative recommendations in the post-

regulation period compared to the pre-regulation period. Also, Reg FD has been shown to have an 

impact on analysts’ recommendations and their earnings forecasts. Gintschel and Markov (2004) 

find that the price impact of recommendations and earnings forecast was reduced significantly 

after Reg FD. Their conclusions suggest that the regulation was successful in curtailing selective 

disclosure.  

 The impact these two particular regulatory actions had on analysts motivates testing how 

their willingness to incorporate negative information has changed over time. I conduct my main 

tests on recommendations before and after the Global Settlement and Reg FD. Given the date that 

the regulations happen are in close proximity to each other, I label the five-year period before Reg 

FD (1995-1999) as the “Pre” period and the five-year period after the Global Settlement (2003-

2007) as the “Post” period. The results of these test are reported in Table 10. I run two separate 

specifications for the “Pre” and “Post” periods to allow for different loadings on the control 

variables as the structure of these relationships could change as well. The model used for these 

tests is like that in equation (3). 

Panel A of Table 10 reports the results for the likelihood of a downgraded recommendation. 

Columns 1-3 report results for the “Pre” period and Columns 4-6 report results for the “Post” 

period. In Panel A, I find that the relationship between willingness to downgrade and the disclosed 

value of short interest does not exist in the “Pre” period. The coefficient on RSI_Change is 1.132 

and is not significant. I find that the relationship between willingness to downgrade and the 
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disclosed value of short interest does exist in the “Post” period. The coefficient on RSI_Change is 

6.197 and is significant at the 1% level. Panel B reports results for the likelihood of an upgrade 

decision. The results on the upgrade decisions largely do not exist in either the “Pre” or “Post” 

period.  

Taken together the results in Table 10 provide evidence consistent with these regulations 

increasing the likelihood of analysts incorporating pessimistic information into their 

recommendation decisions. The purpose of this paper is not to determine if these regulations were 

effective in removing the optimistic bias of analysts. However, the results reported are consistent 

with a story that analysts were overly optimistic prior to these regulations and less willing to 

downgrade based on available negative information, but after the regulations they are more willing 

to impound negative information. Worth noting is that the economic magnitude of the coefficient 

on RSI_Change for the downgrade analysis is more than two times the economic magnitude of 

that same coefficient from the main analysis. This suggests that the main results may underestimate 

the relationship in a post Reg FD and Global Settlement market.  

IV.f. Falsification Test Using non-disclosure dates 

The identification strategy in this paper relies heavily on the lagged disclosure of short 

interest coming on a date that is removed from the information environment at the time short sellers 

built their positions. Using this lagged disclosure alleviates concerns associated with confounding 

information. Also, the strategy assumes analysts find out about short sellers trading on the 

dissemination date itself and not before. Taking together, these two points would lead to a 

prediction of no relationship prior to the disclosure date itself. That is, there should be no 

association between RSI_Change and the actions of analysts prior to the discourse date of short 

interest. To conduct this falsification test, I slide the window that I analyze the actions of analysts 
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back to the three days before the dissemination of short interest. In other words, I replicate the 

main tests but use the three days before the dissemination as a false dissemination date. At this 

time short sellers’ positions are already established just not yet disclosed. The model used in this 

table is the same as seen in Equation (3) and all the controls are formed the same way as in Table 

4. I report the results of the falsification test for recommendations in Table 11.  

 Panel A of Table 11 reports the probit results for the likelihood of a downgrade. Column 

1 presents results using the continuous measure of change in short selling. Column 2 (3) presents 

results using a discrete level of change that falls into the top or bottom quartile (decile). Looking 

first at the main variable of interest, I find no significant relationship between analysts’ actions 

after the falsified disclosure of short interest and the signal conveyed by the disclosure. The 

coefficient on RSI_Change is 0.94 and is not statistically significant. By itself, this result should 

give confidence that the prior results are not being driven by confounding information and there 

seems to be something particularly important about the disclosure date itself. Looking at the results 

in column 2 and 3 we see a positive relationship for both positive and negative signals from short 

sellers. This is particularly interesting as this suggest that analysts are more likely to downgrade a 

firms’ stock when there is a large change in short selling regardless if it is negative or positive. 

This could in part be due to analysts speculating when a firm has more volatility in their stock.  

Turning now to the falsification test for upgrades, we look at Panel B from Table 11. I find 

that there is a negative and marginally significant relationship between the change in short interest 

and the likelihood of an upgrade. Specifically, the coefficient on RSI_Change is -1.26 and is 

significant only at the 10% level. Given the level of significance we can’t make any strong causal 

interpretation. In sum, when using a nearby date as a falsified dissemination date, the result on the 
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relationship between analysts’ likelihood of a downgrade and the change in short selling goes 

away. If the disclosure itself was the important event this is what we would expect.  

5. Conclusion 

 
This study examines analysts’ willingness to incorporate information conveyed by short 

sellers into their stock recommendations and EPS revisions. Casual inferences on the relationship 

between the actions of short sellers and analysts have been elusive in the literature because of 

identification concerns. However, I take advantage of a large lag in the disclosure of short sellers 

trading to alleviate concerns of confounding information and contemporaneous signals.  

I find that after the disclosure of an increase in short interest analysts have an increased 

propensity to downgrade a firm and issue a downward EPS revision. The fact that short interest is 

publicly disclosed up to fourteen days after its effective date suggests analysts are responding to 

the disclosure of short interest rather than private signals they discover at the same time short 

sellers do. Using a falsification test I find that this relation goes away when using a date near and 

prior to the disclosure date. This gives confidence that the disclosure date itself is important in this 

relationship. In other tests, I find this result does not exist in the time-period before Reg FD and 

the Global Settlement, which where regulations that are documented to have reduced the optimistic 

bias in both recommendations and EPS estimates. I find no change in the likelihood of an upgrade 

or upward EPS revision after a disclosed change in short selling.  

In summary, this study provides evidence that sell-side equity analysts view short interest 

disclosures as informative about negative information. However, there is an asymmetry in that 

they don’t interpret positive information from decreases in short interest. This asymmetry could 

be driven by the ambiguous nature of short interest decreases or by analysts being overly optimistic 

to begin with. These findings add to the literature on both analysts and short sellers. Regarding 
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short sellers, I add to our understanding of how they can serve as information intermediaries in our 

equity markets. The results in this paper suggest that short sellers provide information to the equity 

markets through their trade disclosure. An implication of this finding is that restricting short 

sellers’ ability to transact might have indirect consequences on analysts, and ultimately the 

informational efficiency of price. Also, the results in this paper suggest that more frequent trade 

disclosure of short sellers could result in better informational efficiency. Regarding analysts, I add 

to our understanding of inputs in the “black box” of analysts. Also, I add to prior findings that 

analysts are asymmetric in their actions which suggests they can have incentives that lead to less 

accuracy. The asymmetry documented in this paper provide evidence that analysts have the skill 

to interpret negative signals conveyed by increases in short interest, but not when it comes to 

decreases in short interest. Understanding the effect short sellers can have on analysts’ actions can 

have major implications for the informational content of analysts’ recommendations, EPS 

estimates, and reports. 
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Appendix 

Table 2.1 Sample Summary Statistics  

This table provides summary statistics for short interest disclosure events in the sample. Panel A presents results from 

the recommendations sample which runs from 1993 to 2016. Panel B presents results from the EPS revisions sample 

which runs from 1991 to 2016. The statistics provided are average cross-sectional statistics taken at the disclosure 

dates of short interest across all firms. The variable RSI is the relative short interest, calculated as the number of shares 

held short in a firm divided by the number of shares outstanding. NumRec is the number of recommendations that are 

active for a given firm at the disclosure of short selling. ConRec is the average recommendation across all analysts 

following a given firm at the time of disclosure of short interest. NumEst is the number of EPS estimates that are active 

for a given firm at the disclosure of short selling. ConEst is the average EPS estimate across all analysts following a 

given firm at the time of disclosure of short interest.  RSI_Change is the change in RSI from the prior period to the 

current. PRC is the share price for a firm as of the day before the disclosure of short interest. Ret3 is the three-day 

return for a given firm leading up to the disclosure of short interest. MVE is the market value of equity for a firm as 

of the day before the disclosure of short interest, which is calculated as the share price times the number of shares 

outstanding. The statistics reported are the mean, standard deviation (SD), and the 5th, 25th, 50th, 75th, and 95th 

percentile. I winsorize all variables at the 1% level. 

 

 Panel A: Recommendation Sample 
 Mean SD P5 P25 P50 P75 P95 

RSI (%) 4.353 4.595 0.496 1.431 2.787 5.473 13.998 

NumRec 3.768 2.881 1.000 1.526 2.874 5.110 9.667 
ConRec 2.314 0.673 1.028 1.892 2.313 2.839 3.305 
RSI_Change (%) 0.028 0.718 -1.060 -0.217 0.008 0.248 1.198 
RET3 (%) 0.020 4.028 -6.281 -2.071 -0.065 1.995 6.680 
PRC ($) 31.55 23.27 5.55 14.80 26.00 42.05 77.45 
MVE ($millions) 5,375 12,791 132 498 1,357 4,169 24,789 

N  536,017       

 

 Panel B: EPS Sample 
 Mean SD P5 P25 P50 P75 P95 

RSI (%) 3.999 0.044 0.004 0.013 0.025 0.050 0.132 
NumEst 6.987 5.721 1.014 2.668 5.260 9.782 18.745 
ConEst ($) 0.30 0.39 -0.22 0.09 0.25 0.47 0.98 
RSI_Change (%) 0.026 0.007 -0.010 -0.002 0.000 0.002 0.011 
RET3 (%) 0.011 4.100 -6.419 -2.113 -0.070 2.023 6.790 
PRC ($) 29.94 22.32 5.19 13.89 24.46 39.91 73.90 
MVE ($millions) 4,419 10,668 108 396 1,086 3,332 20,490 

N 641,132       
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Table 2.2 Sample Correlation Matrix 

This table provides correlations for key variables in the analysis. Panel A represents results for the recommendations 

sample. Panel B presents results for the EPS estimates sample. The statistics reported are average cross-sectional 

correlations. The variable RSI is the relative short interest, calculated as the number of shares held short in a firm 

divided by the number of shares outstanding. NumRec is the number of recommendations that are active for a given 

firm at the disclosure of short selling. ConRec is the average recommendation across all analysts following a given 

firm at the time of disclosure of short interest. NumEst is the number of EPS estimates that are active for a given firm 

at the disclosure of short selling. ConEst is the average EPS estimate across all analysts following a given firm at the 

time of disclosure of short interest.  RSI_Change is the change in RSI from the prior period to the current. ABSS 

measures an abnormal level of short interest. It is calculated by taking the change in short interest less the average 

change over the prior year, divided by the standard deviation of change over the prior year. PRC is the share price for 

a firm as of the day before the disclosure of short interest. MVE is the market value of equity for a firm as of the day 

before the disclosure of short interest, which is calculated as the share price times the number of shares outstanding. 

 

  

 Panel A: Recommendation Sample 

 ABSS PRC ConRec MVE NumRec RSI RSI_Change 

ABSS 1.0000       

PRC -0.0061 1.0000      

ConRec -0.0211 -0.0383 1.0000     

MVE -0.0076 0.3726 -0.0106 1.0000    

NumRec -0.0196 0.2585 0.0674 0.3753 1.0000   

RSI 0.0023 -0.0444 0.0589 -0.1455 0.0999 1.0000  
RSI_Change 0.7522 0.0001 -0.0213 -0.0100 -0.0031 0.1198 1.0000 

 Panel B: EPS Sample 

 ABSS PRC ConRec MVE NumEst RSI RSI_Change 

ABSS 1.000       

PRC -0.007 1.000      

ConEPS 0.005 0.530 1.000     

MVE -0.008 0.393 0.207 1.000    

NumEst -0.021 0.336 0.171 0.485 1.000   

RSI 0.000 -0.024 -0.116 -0.125 0.100 1.000  
RSI_Change 0.742 0.004 0.004 -0.009 -0.008 0.121 1.000 
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Table 2.3 Descriptive Statistics on Recommendation Change 

This table presents descriptive statistics of recommendation changes around the disclosure of short interest. I 

summarize the recommendation changes based on which of the four groups the short interest changes fall into. These 

groups have the following names: Bot10, Bot25, Top10, and Top25. If the change in short interest is in the bottom 

10th percentile, then you are classified into the group Bot10.  If the change in short interest is in the bottom 25th 

percentile, then you are classified into the group Bot25.  If the change in short interest is in the top 10th percentile, 

then you are classified into the group Top10.  If the change in short interest is in the top 25th percentile, then you are 

classified into the group Top25. Panel A presents the results for the short interest increases that are in the Top25 and 

Top10.  Panel B presents the results for the short interest decreases that are in the Bot25 and Bot10. The 

recommendations are coded as follows: 1 equates to a Strong Buy, 2 equates to a Buy, 3 equates to a Hold, 4 equates 

to an Underperform, and 5 equates to a Sell. A positive change in recommendation indicates a downgrade, and vice 

versa for a negative change. The average recommendation change provided in the table is computed by multiplying 

the frequency of change by the magnitude of the change (computed as the difference in previous recommendation and 

new recommendation (ranges from -4 to 4)). 

 

  

Panel A    

 Top25 Sample  Top10 Sample 

Rec Change Frequency % Total   Frequency % Total 

Upgrade 4 13 0.0021  5 0.0021 
Upgrade 3 8 0.0013  3 0.0012 
Upgrade 2 520 0.0854  206 0.0846 
Upgrade 1 998 0.1639  416 0.1708 
No Change 605,863 99.4792  242,247 99.4389 
Downgrade 1 1059 0.1739  461 0.1892 
Downgrade 2 538 0.0883  257 0.1055 
Downgrade 3 21 0.0034  11 0.0045 
Downgrade 4 15 0.0025  8 0.0033 

      
 Avg. Change 0.0236   Avg. Change 0.0751 

      
Panel B      
 Bot25 Sample  Bot10 Sample 

Rec Change Frequency % Total  Frequency % Total 

Upgrade 4 9 0.0015  4 0.0016 
Upgrade 3 18 0.0030  9 0.0037 
Upgrade 2 519 0.0852  226 0.0928 
Upgrade 1 1018 0.1671  409 0.1679 
No Change 606,050 99.5099  242,389 99.4963 
Downgrade 1 920 0.1511  381 0.1564 
Downgrade 2 480 0.0788  188 0.0772 
Downgrade 3 11 0.0018  4 0.0016 
Downgrade 4 10 0.0016  6 0.0025 

      

  Avg. Change -0.0317   Avg. Change -0.0456 
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Table 2.4 Probit Analysis Likelihood of a Downgrade 

This table provides results from a Probit analysis on the likelihood of a downgrade. The model used in this table is 

represented in equation (3). The observation level is at the analyst-firm pair level. The dependent variable in all 

columns is Downgradei,j,t, which is a binary variable that measures whether a given analysts downgraded their 

recommendation for a firm. The recommendations are coded as follows: 1 equates to a Strong Buy, 2 equates to a 

Buy, 3 equates to a Hold, 4 equates to an Underperform, and 5 equates to a Sell. A positive change in recommendation 

indicates a downgrade. Downgradei,j,t  takes on the value of 1 if the change in recommendation from prior to the 

disclosure, to three days after is positive. It is calculated as seen in equation (1). RSI_Change is the change in RSI 

from the prior period to the current. Top25 and Bot25 are dummy variables that equal 1 when the RSI_Change is at or 

above the 75th percentile or at or below the 25th percentile, respectively. Top10 and Bot10 are dummy variables that 

equal 1 when the RSI_Change is at or above the 90th percentile or at or below the 10th percentile, respectively. 

Standard errors are clustered by both the analyst and time dimension. The z-statistics are reported in parentheses. * p 

< 0.1, ** p < 0.05, *** p < 0.01 

 

 

  

  (1) (2) (3) 

RSI_Change 2.7782***   

 (3.06)   

Top25  0.0515***  
  (3.95)  

Bot25  0.0193*  
  (1.65)  

Top10   0.0808*** 
   (4.93) 

Bot10   0.0233 
   (1.39) 

ConRec -0.2104*** -0.2112*** -0.2117*** 
 (-20.48) (-20.63) (-20.70) 

ConRec_Change -0.4903*** -0.4913*** -0.4903*** 
 (-4.18) (-4.19) (-4.19) 

MVE -0.0011*** -0.0009*** -0.0009*** 
 (-4.32) (-3.91) (-4.01) 

Prc -0.0005*** -0.0005*** -0.0005*** 
 (-3.27) (-3.27) (-3.20) 

NumRec 0.0065*** 0.0061*** 0.0061*** 
 (5.08) (4.74) (4.75) 

Ret3 -0.4884** -0.4897** -0.4896** 
 (-1.97) (-1.99) (-1.99) 

Constant -2.3519*** -2.3664*** -2.3586*** 
 (-87.16) (-85.30) (-86.89) 

Clusterd SE's Yes Yes Yes 

Observations 2,105,508 2,105,508 2,105,508 
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Table 2.5 Probit Analysis Likelihood of an Upgrade 

This table provides results from a Probit analysis on the likelihood of an upgrade. The model used in this table is 

represented in equation (3). The observation level is at the analyst-firm pair level. The dependent variable in all 

columns is Upgradei,j,t, which is a binary variable that measures whether a given analysts upgraded their 

recommendation for a firm. The recommendations are coded as follows: 1 equates to a Strong Buy, 2 equates to a 

Buy, 3 equates to a Hold, 4 equates to an Underperform, and 5 equates to a Sell. A negative change in recommendation 

indicates an upgrade. Upgradei,j,t  takes on the value of 1 if the change in recommendation from prior to the disclosure, 

to three days after is negative. It is calculated as seen in equation (1). RSI_Change is the change in RSI from the prior 

period to the current. Top25 and Bot25 are dummy variables that equal 1 when the RSI_Change is at or above the 75th 

percentile or at or below the 25th percentile, respectively. Top10 and Bot10 are dummy variables that equal 1 when 

the RSI_Change is at or above the 90th percentile or at or below the 10th percentile, respectively. Standard errors are 

clustered by both the analyst and time dimension. The z-statistics are reported in parentheses. * p < 0.1, ** p < 0.05, 

*** p < 0.01 

 

  

  (1) (2) (3) 

RSI_Change 0.5836   

 (0.70)   

Top25  0.0229*  
  (1.87)  

Bot25  0.0185  
  (1.53)  

Top10   0.0114 
   (0.72) 

Bot10   0.0115 
   (0.75) 

ConRec 0.1677*** 0.1671*** 0.1672*** 
 (17.63) (17.53) (17.54) 

ConRec_Change -0.0133 -0.0135 -0.0135 
 (-0.07) (-0.07) (-0.07) 

MVE -0.0005*** -0.0004** -0.0005*** 
 (-2.82) (-2.44) (-2.68) 

Prc -0.0004*** -0.0004*** -0.0004*** 
 (-2.77) (-2.76) (-2.75) 

NumRec 0.0030*** 0.0028** 0.0029** 
 (2.63) (2.43) (2.55) 

Ret3 0.9770*** 0.9724*** 0.9741*** 
 (3.62) (3.61) (3.62) 

Constant -3.2459*** -3.2542*** -3.2468*** 
 (-122.89) (-121.40) (-123.10) 

Clusterd SE's Yes Yes Yes 

Observations 2,105,508 2,105,508 2,105,508 
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Table 2.6 Probit Analysis Likelihood of a Downward EPS Revision 

This table provides results from a Probit analysis on the likelihood of a downward EPS revision. The model used in 

this table is represented in equation (4). The observation level is at the analyst-firm pair level. The dependent variable 

in all columns is Downwardi,j,t, which is a binary variable that measures whether a given analysts revised their EPS 

estimate down for a firm. Downwardi,j,t  takes on the value of 1 if the change in an analysts’ EPS estimate from the 

day prior to the short interest disclosure, to three days after, is negative. The change is calculated as seen in equation 

(2). RSI_Change is the change in RSI from the prior period to the current. Top25 and Bot25 are dummy variables that 

equal 1 when the RSI_Change is at or above the 75th percentile or at or below the 25th percentile, respectively. Top10 

and Bot10 are dummy variables that equal 1 when the RSI_Change is at or above the 90th percentile or at or below 

the 10th percentile, respectively. Standard errors are clustered by both the analyst and time dimension. The z-statistics 

are reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

  

  (1) (2) (3) 

RSI_Change 1.9935***   

 (2.62)   

Top25  0.0227**  
  (2.31)  

Bot25  -0.0005  
  (-0.05)  

Top10   0.0466*** 
   (4.00) 

Bot10   0.0059 
   (0.49) 

ConEst 0.0000** 0.0000* 0.0000* 
 (1.96) (1.95) (1.92) 

ConEst_Change 0.0001* 0.0001* 0.0001* 
 (1.93) (1.91) (1.88) 

MVE 0.0000 0.0000 0.0001 
 (0.16) (0.38) (0.44) 

Prc -0.0000 -0.0000 -0.0000 
 (-0.34) (-0.33) (-0.32) 

NumEst 0.0060*** 0.0060*** 0.0060*** 
 (9.91) (9.76) (9.76) 

Ret3 -1.7870*** -1.7878*** -1.7859*** 
 (-6.48) (-6.49) (-6.49) 

Constant -2.1216*** -2.1265*** -2.1262*** 
 (-142.98) (-136.46) (-141.43) 

Clusterd SE's Yes Yes Yes 

Observations 4,855,397 4,855,397 4,855,397 
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Table 2.7 Probit Analysis Likelihood of an Upward EPS Revision 

This table provides results from a Probit analysis on the likelihood of an upward EPS revision. The model used in this 

table is represented in equation (4). The observation level is at the analyst-firm pair level. The dependent variable in 

all columns is Upwardi,j,t, which is a binary variable that measures whether a given analysts revised their EPS estimate 

up for a firm. Upwardi,j,t  takes on the value of 1 if the change in an analysts’ EPS estimate from the day prior to the 

short interest disclosure, to three days after, is positive. The change is calculated as seen in equation (2). RSI_Change 

is the change in RSI from the prior period to the current. Top25 and Bot25 are dummy variables that equal 1 when the 

RSI_Change is at or above the 75th percentile or at or below the 25th percentile, respectively. Top10 and Bot10 are 

dummy variables that equal 1 when the RSI_Change is at or above the 90th percentile or at or below the 10th percentile, 

respectively. Standard errors are clustered by both the analyst and time dimension. The z-statistics are reported in 

parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

 

  

  (1) (2) (3) 

RSI_Change -0.8404   

 (-1.09)   

Top25  -0.0129  
  (-1.15)  

Bot25  -0.0065  
  (-0.57)  

Top10   -0.0212 
   (-1.45) 

Bot10   -0.0074 
   (-0.52) 

ConEst 0.0000** 0.0000** 0.0000** 
 (2.19) (2.20) (2.20) 

ConEst_Change 0.0000** 0.0000** 0.0000** 
 (2.04) (2.07) (1.96) 

MVE 0.0003* 0.0002* 0.0002* 
 (1.81) (1.67) (1.70) 

Prc 0.0000 0.0000 0.0000 
 (1.20) (1.19) (1.19) 

NumEst 0.0045*** 0.0045*** 0.0045*** 
 (7.20) (7.09) (7.13) 

Ret3 1.5071*** 1.5097*** 1.5098*** 
 (4.81) (4.82) (4.82) 

Constant -2.0547*** -2.0504*** -2.0523*** 
 (-99.94) (-94.87) (-97.76) 

Clusterd SE's Yes Yes Yes 

Observations 4,855,397 4,855,397 4,855,397 
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Table 2.8 Likelihood of a Recommendation Change- Equity Loan Data 

This table provides results from a Probit analysis on the likelihood of a recommendation change. The model used in 

this table is represented in equation (3). The observation level is at the analyst-firm pair level. The dependent variable 

in columns 1-3 is Downgradei,j,t, which is a binary variable that measures whether a given analysts downgraded their 

recommendation for a firm. The dependent variable in columns 4-6 is Upgradei,j,t, which is a binary variable that 

measures whether a given analysts upgraded their recommendation for a firm.  The recommendations are coded as 

follows: 1 equates to a Strong Buy, 2 equates to a Buy, 3 equates to a Hold, 4 equates to an Underperform, and 5 

equates to a Sell. A positive change in recommendation indicates a downgrade and a negative change indicates an 

upgrade. These changes are calculated in equation (1). RQOL_Change is the change in RQOL from one trading day 

to the next. Top25 and Bot25 are dummy variables that equal 1 when the RQOL_Change is at or above the 75th 

percentile or at or below the 25th percentile, respectively. Top10 and Bot10 are dummy variables that equal 1 when 

the RQOL_Change is at or above the 90th percentile or at or below the 10th percentile, respectively. Standard errors 

are clustered by both the analyst and time dimension. The z-statistics are reported in parentheses. * p < 0.1, ** p < 

0.05, *** p < 0.01 

 

 

 

  

 Downgrade = 1  Upgrade = 1 

 (1) (2) (3)   (4) (5) (6) 

RQOL_Change 6.8782***    0.9265   

 (4.16)    (0.56)   

Top25  0.0879***    0.0311***  
  (11.10)    (4.01)  

Bot25  0.0596***    0.0324***  
  (7.42)    (3.95)  

Top10   0.1085***    0.0592*** 
   (11.07)    (5.80) 

Bot10   0.0679***    0.0499*** 
   (6.73)    (4.93) 

ConRec -0.1318*** -0.1349*** -0.1347***  0.2146*** 0.2133*** 0.2128*** 
 (-16.84) (-17.27) (-17.29)  (38.20) (37.87) (37.84) 

ConRec_Change -0.2307 -0.2290 -0.2284  -0.1318 -0.1312 -0.1317 
 (-0.82) (-0.82) (-0.82)  (-0.47) (-0.47) (-0.47) 

MVE -0.0009*** -0.0006*** -0.0007***  -0.0003* -0.0002 -0.0002 
 (-4.36) (-3.42) (-3.71)  (-1.81) (-1.25) (-1.23) 

Prc 0.0000 0.0000 0.0000  -0.0003*** -0.0003*** -0.0003*** 
 (0.20) (0.22) (0.19)  (-2.97) (-2.94) (-2.85) 

NumRec 0.0061*** 0.0050*** 0.0052***  0.0046*** 0.0042*** 0.0040*** 
 (4.13) (3.40) (3.55)  (3.57) (3.14) (3.08) 

Ret3 -2.7854*** -2.7645*** -2.7599***  3.4938*** 3.4806*** 3.4753*** 
 (-16.75) (-16.77) (-16.75)  (20.13) (20.10) (20.12) 

Constant -2.8453*** -2.8727*** -2.8546***  -3.6867*** -3.6980*** -3.6918*** 
 (-89.46) (-90.57) (-90.44)  (-177.52) (-181.11) (-179.15) 

Clusterd SE's Yes Yes Yes  Yes Yes Yes 

Observations 10,753,640 10,753,640 10,753,640   10,753,640 10,753,640 10,753,640 
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Table 2.9 Likelihood of an EPS Revision- Equity Loan Data 

This table provides results from a Probit analysis on the likelihood of an EPS revision. The model used in this table is 

represented in equation (4). The observation level is at the analyst-firm pair level. The dependent variable in columns 

1-3 is Downwardi,j,t, which is a binary variable that measures whether a given analysts revised their EPS estimate 

down. The dependent variable in columns 4-6 is Upgradei,j,t, which is a binary variable that measures whether a given 

analysts revised their EPS estimate up.  A negative change in an EPS estimate indicates a downward revision and a 

positive change indicates an upward revision. These changes are calculated in equation (2). RQOL_Change is the 

change in RQOL from one trading day to the next. Top25 and Bot25 are dummy variables that equal 1 when the 

RQOL_Change is at or above the 75th percentile or at or below the 25th percentile, respectively. Top10 and Bot10 are 

dummy variables that equal 1 when the RQOL_Change is at or above the 90th percentile or at or below the 10th 

percentile, respectively. Standard errors are clustered by both the analyst and time dimension. The z-statistics are 

reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01 

  

 Downward = 1  Upward = 1 

 (1) (2) (3)   (4) (5) (6) 

RQOL_Chg 4.8464***    2.0891   

 (3.53)    (1.37)   

Top25  0.0224***    0.0073  
  (3.49)    (0.96)  

Bot25  -0.0007    -0.0017  
  (-0.11)    (-0.24)  

Top10   0.0309***    0.0115 
   (3.76)    (1.25) 

Bot10   0.0101    -0.0128 
   (1.23)    (-1.48) 

ConEst 0.0000*** 0.0000*** 0.0000***  -0.0000*** -0.0000*** -0.0000*** 
 (3.71) (3.72) (3.72)  (-3.59) (-3.58) (-3.59) 

ConEst_Chg -0.0001* -0.0001* -0.0001*  -0.0112*** -0.0112*** -0.0112*** 
 (-1.72) (-1.71) (-1.72)  (-2.63) (-2.63) (-2.63) 

MVE 0.0003*** 0.0003*** 0.0003***  0.0004*** 0.0004*** 0.0004*** 
 (3.18) (3.52) (3.52)  (4.58) (4.77) (4.61) 

Prc -0.0000 -0.0000 -0.0000  0.0000*** 0.0000*** 0.0000*** 
 (-0.70) (-0.69) (-0.70)  (3.00) (3.01) (3.00) 

NumEst 0.0113*** 0.0113*** 0.0113***  0.0138*** 0.0138*** 0.0138*** 
 (17.79) (17.72) (17.72)  (19.14) (19.19) (19.15) 

Ret3 -2.3917*** -2.3889*** -2.3894***  2.1769*** 2.1760*** 2.1773*** 
 (-14.24) (-14.24) (-14.24)  (13.43) (13.43) (13.43) 

Constant -2.6471*** -2.6524*** -2.6511***  -2.8015*** -2.8029*** -2.8015*** 
 (-258.87) (-244.57) (-254.15)  (-232.61) (-220.91) (-229.09) 

Clusterd SE's Yes Yes Yes  Yes Yes Yes 

Observations 8,155,265 8,155,265 8,155,265   8,155,265 8,155,265 8,155,265 
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Table 2.10 Likelihood of a Recommendation Change- Around Global Settlement and RegFD 

This table provides results from a Probit analysis on the likelihood of a recommendation change before and after the 

Global Settlement and Reg FD.  The model used in this table is represented in equation (3). The observation level is 

at the analyst-firm pair level. The dependent variable in Panel A is Downgradei,j,t, which is a binary variable that 

measures whether a given analysts downgraded their recommendation for a firm.  The dependent variable in Panel B 

is Upgradei,j,t, which is a binary variable that measures whether a given analysts upgraded their recommendation for 

a firm.  In both panels. Columns 1-3 represent the “Pre” regulation period which spans from 1995 - 1999, and columns 

4-6 represent the “Post” regulation period which spans from 2003 - 2007. The recommendations are coded as follows: 

1 equates to a Strong Buy, 2 equates to a Buy, 3 equates to a Hold, 4 equates to an Underperform, and 5 equates to a 

Sell.  The recommendations are coded as follows: 1 equates to a Strong Buy, 2 equates to a Buy, 3 equates to a Hold, 

4 equates to an Underperform, and 5 equates to a Sell. A positive change in recommendation indicates a downgrade 

and a negative change indicates an upgrade. These changes are calculated in equation (1). RSI_Change is the change 

in RSI from the prior period to the current.  Top25 and Bot25 are dummy variables that equal 1 when the RSI_Change 

is at or above the 75th percentile or at or below the 25th percentile, respectively. Top10 and Bot10 are dummy variables 

that equal 1 when the RSI_Change is at or above the 90th percentile or at or below the 10th percentile, respectively. 

Standard errors are clustered by both the analyst and time dimension. The z-statistics are reported in parentheses. * p 

< 0.1, ** p < 0.05, *** p < 0.01 

  

Panel A    

Dependent 
Variable 

Downgrade 
 

Downgrade 

Sample Pre Reg FD and Global Settlement  Post Reg FD and Global Settlement 

 (1) (2) (3)   (4) (5) (6) 

RSI_Chg 1.1321    6.1972***   

 (0.49)    (3.04)   

Top25  0.0039    0.0865***  
  (0.12)    (3.11)  

Bot25  -0.0090    0.0237  
  (-0.34)    (0.82)  

Top10   0.0250    0.1285*** 
   (0.63)    (3.81) 

Bot10   0.0056    -0.0111 
   (0.13)    (-0.32) 

ConRec -0.2247*** -0.2249*** -0.2243***  -0.1971*** -0.1972*** -0.1983*** 
 (-9.68) (-9.60) (-9.64)  (-10.63) (-10.63) (-10.71) 

ConRec_Chg -0.6497*** -0.6499*** -0.6495***  -0.2679 -0.2714 -0.2693 
 (-5.23) (-5.24) (-5.24)  (-0.69) (-0.70) (-0.70) 

MVE -0.0012 -0.0013 -0.0012  -0.0020*** -0.0018*** -0.0018*** 
 (-1.59) (-1.64) (-1.56)  (-2.92) (-2.60) (-2.70) 

Prc 0.0000 0.0000 0.0000  -0.0005 -0.0005 -0.0005 
 (0.31) (0.31) (0.31)  (-0.76) (-0.70) (-0.70) 

NumRec 0.0087*** 0.0087*** 0.0086***  0.0028 0.0023 0.0026 
 (2.87) (2.82) (2.78)  (0.96) (0.78) (0.89) 

Ret3 -0.1500 -0.1510 -0.1453  -0.6257 -0.6329 -0.6255 
 (-0.37) (-0.38) (-0.36)  (-1.24) (-1.26) (-1.24) 

Constant -2.3097*** -2.3080*** -2.3123***  -2.3422*** -2.3692*** -2.3547*** 
 (-43.61) (-41.49) (-43.38)  (-40.21) (-40.55) (-40.93) 

Clusterd SE's Yes Yes Yes  Yes Yes Yes 

Observations 300,958 300,958 300,958   449,232 449,232 449,232 
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Panel B    

Dependent 
Variable 

Upgrade 
 

Upgrade 

Sample Pre Reg FD and Global Settlement  Post Reg FD and Global Settlement 

 (1) (2) (3)   (4) (5) (6) 

RSI_Chg 0.0202    0.4274   

 (0.01)    (0.26)   

Top25  0.0317    0.0214  
  (1.09)    (0.86)  

Bot25  0.0598**    0.0016  
  (2.21)    (0.06)  

Top10   0.0163    0.0114 
   (0.41)    (0.38) 

Bot10   -0.0024    0.0203 
   (-0.06)    (0.64) 

ConRec 0.1739*** 0.1761*** 0.1742***  0.1728*** 0.1729*** 0.1726*** 
 (6.05) (6.23) (6.12)  (10.99) (10.99) (10.96) 

ConRec_Chg -0.1668 -0.1640 -0.1670  -0.3305 -0.3309 -0.3301 
 (-0.77) (-0.76) (-0.77)  (-0.90) (-0.90) (-0.90) 

MVE 0.0002 0.0004 0.0002  0.0001 0.0001 0.0001 
 (0.38) (0.75) (0.41)  (0.14) (0.25) (0.23) 

Prc 0.0000 0.0000 0.0000  -0.0001 -0.0000 -0.0000 
 (0.14) (0.14) (0.15)  (-0.09) (-0.07) (-0.07) 

NumRec 0.0063** 0.0057* 0.0063**  0.0013 0.0012 0.0012 
 (1.99) (1.82) (1.97)  (0.62) (0.61) (0.59) 

Ret3 1.7387*** 1.7385*** 1.7397***  0.5624 0.5622 0.5589 
 (3.91) (3.93) (3.92)  (1.10) (1.10) (1.09) 

Constant -3.2168*** -3.2395*** -3.2185***  -3.2740*** -3.2811*** 
-3.  

2774*** 
 (-57.44) (-61.15) (-58.78)  (-68.37) (-64.84) (-68.33) 

Clusterd SE's Yes Yes Yes  Yes Yes Yes 

Observations 300,958 300,958 300,958   449,232 449,232 449,232 
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Table 2.11 Probit Analysis Falsification Test 

This table provides results from a Probit analysis on the likelihood of a recommendation change using a falsified 

dissemination date for short interest. The date window used to capture analysts’ recommendation changes is the three 

days prior to the dissemination. The model used in this table is represented in equation (3). The observation level is at 

the analyst-firm pair level. The dependent variable in Panel A is Downgradei,j,t, which is a binary variable that 

measures whether a given analysts downgraded their recommendation for a firm.  The dependent variable in Panel B 

is Upgradei,j,t, which is a binary variable that measures whether a given analysts upgraded their recommendation for 

a firm. The recommendations are coded as follows: 1 equates to a Strong Buy, 2 equates to a Buy, 3 equates to a Hold, 

4 equates to an Underperform, and 5 equates to a Sell.  The recommendations are coded as follows: 1 equates to a 

Strong Buy, 2 equates to a Buy, 3 equates to a Hold, 4 equates to an Underperform, and 5 equates to a Sell. A positive 

change in recommendation indicates a downgrade and a negative change indicates an upgrade.  More details on the 

formation of the dependent variables for the falsification test can be found in Section IV.f. RSI_Change is the change 

in RSI from the prior period to the current. Top25 and Bot25 are dummy variables that equal 1 when the RSI_Change 

is at or above the 75th percentile or at or below the 25th percentile, respectively. Top10 and Bot10 are dummy variables 

that equal 1 when the RSI_Change is at or above the 90th percentile or at or below the 10th percentile, respectively. 

Standard errors are clustered by both the analyst and time dimension. The z-statistics are reported in parentheses. * p 

< 0.1, ** p < 0.05, *** p < 0.01 

 

  

Panel A    

  (1) (2) (3) 

RSI_Change 0.8601   

 (1.10)   

Top25  0.0293***  
  (2.87)  

Bot25  0.0314***  
  (2.81)  

Top10   0.0591*** 
   (4.27) 

Bot10   0.0339** 
   (2.31) 

ConRec -0.2023*** -0.2029*** -0.2030*** 
 (-22.43) (-22.51) (-22.53) 

ConRec_Change -0.2928** -0.2927** -0.2918** 
 (-2.37) (-2.36) (-2.35) 

MVE -0.0036*** -0.0032*** -0.0032*** 
 (-7.91) (-7.14) (-7.07) 

Prc -0.0003** -0.0003** -0.0003** 
 (-1.97) (-2.04) (-1.99) 

NumRec 0.0087*** 0.0082*** 0.0082*** 
 (7.80) (7.24) (7.23) 

Ret3 -1.3842*** -1.3806*** -1.3768*** 
 (-7.44) (-7.44) (-7.43) 

Constant -2.2597*** -2.2724*** -2.2666*** 
 (-94.69) (-94.03) (-95.32) 

Clusterd SE's Yes Yes Yes 

Observations 2,282,261 2,282,261 2,282,261 
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Panel B    

  (1) (2) (3) 

RSI_Change -1.2589*   

 (-1.68)   

Top25  -0.0119  
  (-1.07)  

Bot25  0.0111  
  (0.97)  

Top10   0.0094 
   (0.65) 

Bot10   0.0213 
   (1.52) 

ConRec 0.1722*** 0.1722*** 0.1721*** 
 (20.05) (20.07) (20.04) 

ConRec_Change 0.0028 0.0029 0.0033 
 (0.02) (0.02) (0.02) 

MVE -0.0006 -0.0006 -0.0005 
 (-1.42) (-1.39) (-1.12) 

Prc -0.0003** -0.0003** -0.0003** 
 (-2.44) (-2.44) (-2.44) 

NumRec 0.0043*** 0.0043*** 0.0042*** 
 (3.78) (3.78) (3.58) 

Ret3 1.0271*** 1.0271*** 1.0274*** 
 (4.58) (4.58) (4.59) 

Constant -3.1640*** -3.1639*** -3.1665*** 
 (-130.91) (-126.63) (-130.80) 

Clusterd SE's Yes Yes Yes 

Observations 2,286,261 2,286,261 2,286,261 
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Figure 2.1 An example of the timeline of events for the disclosure of short interest 

 
This figure provides an example of the timing that takes place and that we consider when constructing our key 
variables and our sample. In this example, the Short Interest Period (seen above) is from August 30th to September 
15th. The SEC will report the aggregate amount of short interest per firm as of 15th of September, we refer to this 
level as Short Interest, t-1. They will release the short interest level as of the end of the end of trading on the 15th on 
September 25th because they wait eight trading days after the end of the Short Interest Period before they release said 
information, we refer to this period as the Waiting Period (seen above).  From September 25th until October 10th there 
will be no additional short selling information released by the SEC and therefore insiders will only have the 
information about the level of short selling based on what was released on the September 25th. I study the transactions 
of insiders from September 25th to October 10th, a period we refer to as the Observation Period (seen above) and 
aggregate them in order to construct the Net Insider Transactions, t variable. 
 

  

Dec. 15th Dec. 26th

Disclosure GapSettlement Lag

Dec. 12th

Open short positions as of 

the end of trading on this 

date make up short interest

Short interest is 

disclosed after trading 

hours on this date

Last day short positions can 

be initiated to be included 

with next short interest report
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Figure 2.2 An example of the timeline of events for the equity loan data 

This figure provides an example of the timing that takes place and that we consider when constructing our key 
variables and our sample. In this example, the short interest period (seen above) is from august 30th to September 
15th. The sec will report the aggregate amount of short interest per firm as of 15th of September, we refer to this level 
as short interest, t-1. They will release the short interest level as of the end of the end of trading on the 15th on 
September 25th because they wait eight trading days after the end of the short interest period before they release said 
information, we refer to this period as the waiting period (seen above).  From September 25th until October 10th there 
will be no additional short selling information released by the sec and therefore insiders will only have the information 
about the level of short selling based on what was released on the September 25th. I study the transactions of insiders 
from September 25th to October 10th, a period we refer to as the observation period (seen above) and aggregate them 
in order to construct the net insider transactions, t variable. 
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CONCLUSION 

 
In this dissertation, I examine the role that short sellers play in our equity markets. In particular, I 

examine how their presence can improve liquidity for the entire market and how they serve as 

informational intermediaries. In the first chapter of the dissertation we investigate how restricting the 

ability of short sellers impacts market quality. Specifically, we examine how exogenously limiting the 

ability of short sellers to establish their position impacts liquidity costs. We find evidence that when short 

sellers are constrained liquidity costs rise, particularly for stocks that have less slack in lending supply. 

Our evidence that liquidity deteriorates suggests shorting supply constraints affect the cost of transacting 

faced by all traders. This message is important as a growing body of research argues liquidity influences 

expected returns (Amihud and Mendelsen, 1986; Acharya and Pedersen, 2005). Authors studying crisis 

periods argue that policies prohibiting or limiting short selling decrease liquidity. Our results suggest such 

a decrease would occur in normal economic times as well and bolster the conclusions that the ability to 

short-sell improves the functioning of financial markets. The second chapter of the dissertation studies 

whether sell side equity analysts use the trading activity of short sellers when they form their 

recommendations and EPS estimates. For my identification, I study analysts’ actions after the disclosure 

of short interest, which happens with a lag. This lag divorces the information environment when short 

sellers initiate their positions from when they are disclosed. This allows for stronger causal inferences that 

have been elusive in prior literature. I find that analysts exhibit an increased propensity to downgrade 

their recommendations for a stock after a disclosed increase in short selling. I also find a significantly 

positive relationship between changes in short interest and the likelihood of a downward EPS revision. 

These results suggest that analysts extract information from short-sellers’ trading activity. 
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