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Abstract 

 

In forensic and archaeological applications, degraded DNA presents challenges 

during extraction, amplification, and analysis. Many of these issues can be addressed 

through the application of next-generation sequencing (NGS) techniques, including 

maximizing yields of fragmented DNA and identifying contaminant DNA. NGS is 

prompting a convergence between ancient and forensic genetic methods along several 

avenues, including DNA extraction. This dissertation discusses the convergence of 

extraction techniques contextualized within validation studies of ancient and modern 

DNA research. 

Two validation studies are presented. The first study validates and explores the 

impact of a non-destructive DNA extraction technique developed by Bolnick and 

colleagues (2012). The “non-destructive” (Bolnick) DNA extraction technique yields 

both mitochondrial and nuclear DNA.  While the teeth tested remained macroscopically 

intact, there was loss of tooth microstructure in the tooth root and enamel, shown through 

treated vs. untreated weights and histological analysis. Scanning electron microscopy 

(SEM) results showed minimal staining of the tooth. There were no significant carbon or 

oxygen isotopic difference between treated and untreated teeth. The damage 

characterized shows that the protocol is minimally destructive but may still be of interest 

to stakeholders desiring maintenance of macroscopic, but not microscopic, integrity.  

The second study focuses on the quantity and quality of DNA extracted from 

post-mortem blood samples stored on untreated blood cards. Short-tandem repeats 
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(STRs) typed from the cards are used for ancestry-based analysis. The study validated 

two different hypotheses: 1) cadaveric blood stored on untreated blood cards yields 

enough DNA for typing of STRs and 2) STRs typed from blood cards yield geographic 

ancestry information. Results of the second case study indicate that post-mortem interval 

impacts the DNA quality of samples extracted from untreated blood cards. Tri-hybrid 

ancestry and admixture analysis indicate that the original thirteen CODIS loci have utility 

in estimating geographic ancestry. 

These validation studies show the complications of working with degraded DNA 

in both ancient and forensic contexts. NGS approaches provide an opportunity in both 

fields to move beyond traditional markers to type expansive regions of the genome for 

both subfields and provides a way of addressing many issues of degraded DNA facing 

ancient and forensic researchers.  
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The process of DNA extraction from human cellular material is well into its 

second century. Today, most human DNA analysis relevant to clinical settings as well as 

to direct-to-consumer genetic tests is readily isolated from fresh, recently collected 

sample material composed of blood, saliva, or other tissues (Brown et al. 2015; Yang et 

al. 2018). The high quality of clinically-sourced DNA stands in stark contrast to the kinds 

of samples that are recovered in forensic and archaeological contexts. Unlike DNA 

collected from living organisms, DNA from these contexts is typically highly degraded, 

characterized by a low starting template, high levels of fragmentation, and miscoding 

lesions (Butler 2012; Shapiro and Hofreiter 2014; Burrell et al. 2015; Hansen et al. 2017).  

While both forensic and ancient DNA present challenges to the researcher, 

extending from the initial stages of sample preparation through the analysis, these are 

unique. Furthermore, while the objectives of forensic and ancient DNA laboratory work – 

including the recovery, amplification, and analysis of nuclear and mitochondrial DNA 

from skeletal remains and hair – are shared, a disconnect exist in the approaches applied 

to these two forms of degraded DNA. This critical disconnect in the theory, methods, and 

practice used in ancient DNA and forensic laboratories can be attributed to several 

fundamental reasons. 

The end goals of ancient and forensic DNA differ, prompting an emphasis on 

different markers and analytical techniques. In forensic genetics, the primary focus of 

most DNA-based applications is individual identification, most commonly involving the 

comparison of a target (Q) profile against a known (K) reference sample for direct (“K to 

Q”) and kinship-based matching (Butler 2012; 2015; Murphy 2017). In contrast, ancient 
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DNA applications rarely, with few exceptions (Coble et al. 2009; King et al. 2014), deal 

with individual identifications. Rather, ancient DNA research questions, as they apply to 

humans, are largely driven by questions of human history and prehistory, including 

evolutionary relationships (Green et al. 2010; Meyer et al. 2012; Meyer et al. 2014; 

Rogers et al. 2017), human migrations (Haak et al. 2005; Skoglund et al. 2012; Llamas et 

al. 2016), pathogens (Warinner et al. 2014; Margaryen et al. 2018; Søe et al. 2018), and 

diet (Seersholm et al. 2016; Weyrich et al. 2017).  

These divergent research avenues have traditionally required different sets of 

DNA markers to achieve their respective ends. Forensic genetic approaches have been 

almost solely dependent on the typing of nuclear DNA short tandem repeats (STRs) and 

their smaller counterparts, miniSTRs (Butler et al. 2003; Alaeddini et al. 2010). While 

STRs have shown some limited utility for ancestry estimation (Algee-Hewitt et al. 2016), 

the primary focus has remained on identification by profile matching.  In contrast, early 

studies in ancient DNA focused almost solely on mitochondrial DNA, which is present in 

higher copy number than nuclear DNA and provides the most common avenue for 

ancient population genetics prior to the advent of next-generation sequencing (NGS) 

(Merriweather et al. 1994; Stone and Stoneking 1993; Schurr et al. 1999). While in recent 

years, improved methods have tremendously expanded the scope of studies in ancient 

DNA analysis to encompass sequencing of whole mitochondrial genomes (Llamas et al. 

2016; Lindo et al. 2017), nuclear genomes (Rasmussen et al. 2010; Rasmussen et al. 

2014; Ávila-Arcos et al. 2017), and large-scale panels of nuclear single nucleotide 

polymorphisms (SNPs) (Lazaridis et al. 2014; Olade et al. 2018).   
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Unlike ancient DNA laboratories, forensic DNA analysis requires the validation 

of all laboratory procedures and analyses following Quality Assurance Standards (QAS) 

as issued by the DNA Advisory Board of the FBI beginning in 1998 (Butler 2012). Such 

validation practices are structured typically according to three different assessment levels: 

developmental validation, internal validation, and periodic performance checks. 

Developmental validation occurs external to the lab in question and is performed by 

manufacturers, typically focusing on kit and technological platforms. Internal validation 

is performed in the lab by testing new methods and reagent kits. Finally, periodic 

performance checks are also made internally in the lab and are designed to ensure that 

current protocols and reagents are working as expected. The necessity for validation of 

methods used in medico-legal contexts is understandable, due to the requirements set 

forth in the Daubert (1993) and Frye (1923) rulings, allowing for discovery requests of 

laboratory procedures to be admissible in court (Butler 2012). In contrast, ancient DNA 

laboratories are not subject to such constraints and have more leeway in regard to 

methods development and modifications to laboratory protocols. This contrast in research 

practice, along with the different markers targeted, has influenced the protocols used for 

and the analyses applied to these two forms of degraded DNA. 

However, in spite of the traditional differences between methodologies, 

technological advances in DNA sequencing may now prompt a convergence between 

ancient and forensic DNA approaches. NGS, or massively parallel sequencing (MPS) 

methods are increasingly applied in forensic DNA contexts. Platforms such as the 

Illumina MiSeq FGx and Applied Biosystems GeneStudio S5 system with Precision ID 
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combine traditional STR markers with modern sets of SNPs. Like these platforms, new 

directions in forensic genetics now incorporate library preparation methods, which are 

commonly used in NGS for ancient DNA, into their workflows. Library preparation 

readies extracted DNA for sequencing on NGS platforms by sizing DNA fragments to 

specified lengths and attaching platform-specific chemistry oligonucleotides adapters to 

each fragment (Head et al. 2014). Integration of library preparation and targeted captures 

allow for sequencing of smaller fragment sizes, appropriate for degraded forensic DNA, 

while allowing for increased coverage of the genome, providing more statistical 

robusticity for analyses. While the constraints on forensic genetics laboratories regarding 

validation remain, the overlap between methods used in ancient DNA applications and 

forensic genetics will increase as forensic methods integrate more NGS-based practices.  

This dissertation draws connections between current standard practices in ancient 

DNA research and forensic genetics. Methods of extraction in ancient DNA studies are 

explored in detail in Chapter 2, providing a review of past and present protocols for 

isolating degraded DNA. While forensic genetic applications currently require relatively 

large fragments for STR analysis (approximately 100-400 basepairs, or bp), new 

approaches harnessing the capabilities of NGS may require the adoption of ancient DNA 

approaches to DNA isolation. Extraction protocols in forensic genetics tend to focus on 

automation and reduction of inhibiting substances (Davoren et al. 2007, Rucinski et al. 

2011, Pajnič et al. 2016); however, ancient DNA protocols have been adapted to purify 

and retain more and, increasingly, smaller fragments (Dabney et al. 2013, Rohland et al. 

2018). The third chapter validates the effectiveness of a non-destructive extraction 
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method developed by Bolnick and colleagues (2012), here using ancient and forensically-

significant human teeth and testing its applicability to a forensically-targeted next-

generation sequencing kit. While one of the primary limitations of DNA analysis is the 

requirement for destruction of sample material, some alternatives exist, including the 

non-destructive extraction method explored in the aforementioned chapter.  Additionally, 

Chapter 3 features a microscopic-level characterization of the impact of this non-

destructive extraction protocol and explores the potential applications of this method. The 

fourth chapter explores traditional forensic DNA methods in a case study assessing the 

quality and quantity of DNA for typing forensic short tandem repeat (STR) markers from 

cadaveric blood samples. This chapter uses a model-based clustering program, 

STRUCTURE (Pritchard et al. 2000) to conduct ancestry and admixture estimation using 

STR markers typed from the untreated blood cards. 

The following discussion highlights the importance of effective extraction 

techniques for forensic and ancient DNA research contexts. Traditional markers of 

ancient and forensic DNA research, including mitochondrial DNA and STRs, are the 

focus of analyses in the subsequent chapters, along with the application of NGS for 

modern samples. Through exploring the role of and technical aspects of ancient DNA 

extraction, critically validating and assessing a non-destructive DNA extraction protocol, 

and offering insights into untreated blood cards for long-term DNA storage and STR 

typing, this work offers a view of the congruencies between degraded DNA approaches 

in both ancient DNA and forensic genetics research. Overviews of each chapter are 

provided, contextualized within the scope of degraded DNA research. 
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A Short History of Research on Degraded DNA 

 

Two separate technological breakthroughs have revolutionized work with 

degraded DNA over the last three decades: the invention of polymerase chain reaction 

(PCR) in 1985 and the development of next-generation sequencing (NGS) by 454 Life 

Sciences in 2005 (Kulski 2016). These innovations dramatically altered the landscape for 

both forensic and ancient DNA research by significantly increasing the potential for data 

retrieval using degraded DNA. The quality of downstream analyses like traditional PCR, 

library preparation, capture methods, and sequencing nevertheless remain both highly 

dependent on the quality of extracted DNA and the availability biological material for 

DNA sampling. In contrast to PCR and high-throughput sequencing as watershed 

innovations, DNA extraction methods have seen gradual, but marked, improvement over 

the last thirty years. While these methods have improved, they, nevertheless, require the 

destruction of sample material which can be problematic as well as prohibitive in some 

situations involving human remains, sensitive museum collections, or forensic cases. 

The saying, “garbage in, garbage out” applies for DNA extraction and subsequent 

analyses. If DNA extraction methods fail to recover any or at least adequate amounts of 

endogenous DNA, even the most advanced, downstream technologies are practically 

useless. Failure to remove inhibitors, or the adoption of extraction protocols that 

introduce additional inhibitors, can compromise chances of sample amplification, 

regardless of target markers. When working with degraded samples in both ancient and 

forensic contexts, choosing the most appropriate DNA extraction protocol is critical to 

successful amplification, sequencing, and analysis. While most of the emphasis over the 
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past decade has focused on novel approaches, such as next-generation or high-throughput 

sequencing (Hofreiter et al. 2015, Sarkissian et al. 2015) and bioinformatics-based 

analyses (Jonsson et al. 2013, Skoglund et al. 2014), it is critical to state how these new 

innovations are always constrained by the initial quality and quantity of DNA isolated 

during extraction. Additionally, many projects focused on ancient DNA are limited due to 

the destructive nature of the extraction process, thus leaving room for methodological 

improvement in both sampling techniques as well as DNA extraction methods. 

The importance of choosing the most appropriate DNA extraction and the 

downstream applications cannot be overstated. These decisions should be based on a 

careful consideration of the sample type, sample preparation, recovery site context, and 

ultimate goal of the analysis or desired outcome. In spite of great technological advances 

in sequencing technologies over the past three decades, research on degraded DNA 

remains unavoidably dependent on the suitability of sampling techniques and efficacy of 

extraction methods, given the nature of  the target samples. In addition to providing a 

thorough validation and assessment of a proposed non-destructive DNA extraction 

protocol, this research also emphasizes the importance of DNA extraction in research 

design for both ancient DNA and forensic genetics and provides a comprehensive 

overview of both past and present methodologies.  

The first documented extraction of cellular DNA occurred by happenstance, 

during attempts by Friedrich Miescher to isolate proteins from human cellular material in 

1869 (Dahm 2005). While endeavoring to separate proteins from human pus gathered 

from hospital bandages, Miescher isolated another material which he dubbed “nuclein,” 
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since it was clearly from the nucleus, a substance which we now recognize as 

deoxyribonucleic acid, or DNA (Dahm 2005).  

More than one hundred years later, the field of DNA research witnessed another 

leap forward with the first successful extraction of ancient DNA from a museum 

specimen, the extinct quagga (Higuchi et al. 1984). Soon after, Svante Pääbo (1985) 

published his account of successful extraction of DNA from an ancient human, drawn 

from the tissue of an Egyptian mummy. These discoveries launched the field of ancient 

DNA, and many publications touting successful extraction of DNA from ancient 

materials, even from dinosaurs, soon followed. Researchers soon realized, however, that 

much of the DNA extracted was in fact contamination and not endogenous DNA 

(Lindahl 1997, Pääbo et al. 2004). The term endogenous simply means that the DNA is 

that of the individual being sampled for the analysis, in contrast to exogenous DNA, 

which comes from outside sources and can include the human researcher and other 

sources of contamination.  

Further complicating matters, degraded forms of DNA, both materials from 

ancient and forensic contexts, share distinctive characteristics that separate these forms 

from DNA extracted from living organisms. Unlike DNA from living individuals, 

“ancient” and “forensic” DNA is typically extracted from deceased individuals, for which 

the organism’s DNA repair-mechanisms are no longer functioning. These two types of 

degraded DNA are defined for the purpose of this dissertation’s discussions as “forensic” 

and “ancient.” Forensic samples are those samples up to 100 years in age and/or of 

medico-legal significance which exhibit degraded DNA characteristics, such as high 
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fragmentation, and which may also be low copy number (LCN), or DNA recovered from 

small number of cells (Gill 2001).   

Similarly, “ancient” samples are almost always highly degraded, always 

exceeding 50 years of age, and typically much older, and are not of medico-legal 

significance. “Modern” DNA is simply defined as DNA from contemporary, living 

organisms that is expected to be well preserved. Accordingly, it is used in discussions of 

good quality, high or ultra-high molecular weight, DNA that is not classified as ancient or 

forensic. In ancient samples, DNA is typically highly fragmented and characterized by 

deaminated bases, caused by hydrolytic damage and microbial action over tens or 

hundreds or thousands of years (Hofreiter et al. 2001, Pääbo 2004). Based on these 

characteristics, ancient DNA is more difficult to amplify and sequence than modern and 

forensic DNA. Moreover, the superior quality of modern DNA will often be 

preferentially selected over degraded DNA in chemical reactions designed to copy or 

amplify DNA fragments, such as polymerase chain reaction (PCR).  

This dissertation provides a comparison between DNA types, using case studies to 

illustrate the issues relating to extraction and analysis of ancient DNA versus modern 

DNA samples. While ancient samples are often more fragmented and express an 

increased number of deaminated bases than forensic samples, the concerns related to 

dealing with highly degraded samples are similar between these two subfields of human 

genetics. Sample preparation, contamination control, and removal of inhibitors are key 

factors required of the extraction protocols used in both ancient and forensic lab contexts, 

and these are thoroughly explored through the lens of ancient DNA in Chapter 2. 
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Limitations on sample material access for both ancient and forensic DNA analysts also is 

a shared concern, for which a potential solution is presented and tested in Chapter 3. 

Issues associated with degradation of post-mortem blood from untreated blood cards 

offer insights for forensic body donation programs but also show the limitations of small 

marker sets for ancestry and admixture analysis as shown by a comprehensive assessment 

of the archival value and research potential of these kinds of samples in Chapter 4. 

 

Ancient DNA 

 

The realization that much of the previously published ancient DNA research was 

contamination led to caution regarding ancient DNA and authentication (Lindahl 1997, 

Cooper and Poinar 2001). Best practices for traditional lab-based methods, including 

PCR and Sanger sequencing were set forth by Cooper and Poinar (2001), who set forth 

several principles for quality ancient DNA research and confirmation of authenticity of 

endogenous results. The most important principles include: 1) placement of ancient DNA 

work must occur in dedicated “clean” lab facilities, in which PCR is performed in a 

separate area (often a separate building) from sample preparation, extraction, and PCR 

preparation;  2) independent extractions from separate sample materials should be 

performed; if possible, these should be independently verified in a separate lab facility;  

3) replicability – the results should be replicable with additional sample material from the 

same individual; and 4) results should show characteristics of ancient DNA behavior, 

including fragmentation and deamination of bases (Cooper and Poinar 2001). These 
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recommendations set the standard for judging the quality of experiments, remain the gold 

standard for traditional Sanger sequencing methods, and have even been extended with 

some modifications to NGS analyses (see Skoglund et al. 2014).  

Over the last ten years, Sanger sequencing has been largely replaced by next-

generation sequencing technology (NGS), also known as high-throughput sequencing. 

The majority of NGS sequencing for ancient and forensic DNA, and most laboratory-

based sequencing, is performed on the Illumina platform, with small percentages of 

projects performed on platforms such as Applied Biosystems’ Ion Torrent (Tackney et al. 

2015), Ion GeneStudio S5 (Bochtler et al. 2018) and SNaPshot machines, as well as 

Affymetrix platforms and restriction-site associated DNA sequencing (RAD-seq) or 

RAD-tagging (Tin et al. 2014). 

NGS technology provides an ideal platform for ancient DNA in that it favors 

small fragment sizes and requires library preparation techniques that allow for capture of 

degraded DNA (Hofreiter et al. 2014, Marciniak et al. 2015). Traditional Sanger 

sequencing requires flanking primers of at least 15 base pairs on each end of a target 

fragment to sequence, with the shortest possible fragment sizes around 60-100 base pairs, 

whereas NGS allows for sequencing of fragment sizes between 30-400 base pairs, which 

enhances the capabilities for working with degraded samples.  

While some researchers in traditional lab sciences prefer longer fragments, the so-

called “limitations” of NGS actually benefit the degraded DNA research where shorter 

fragment sizes (30 bp and above) tend to be the norm (Dabney et al. 2013). NGS methods 

also allow for rapid typing of large portions of the genome, whether through random 



13 

 

assortment using shotgun sequencing methods or targeted capture using hybridization 

capture methods, in contrast to the limitations of small regions of the genome specifically 

targeted in Sanger sequencing.  

NGS has enabled multiple breakthroughs in the analysis of degraded DNA. 

Researchers became able to sequence samples that were too degraded for traditional 

Sanger technology, including the Kennewick Man or the Ancient One (Rasmussen et al. 

2015), the Anzick child (Rasmussen et al. 2014), and Cheddar Man (Brace et al. 2018). 

NGS also allows for sequence DNA from specimens of especially great antiquity, 

including the whole mitochondrial genome of an ancient hominid ancestor from Sima de 

los Huesos dating to over 400,000 years (Meyer et al. 2014) and the genome from a 

Pleistocene horse dating to over 700,000 years (Orlando et al. 2013). Despite these 

advances, however, ancient DNA research is still constrained by the limitations presented 

by DNA extraction, as explored in Chapter 2.  

 

Forensic Genetics 

 

Forensic samples range from high quality samples that require dilution prior to 

amplification to extremely degraded samples and/or those containing high levels of 

inhibitors that impede PCR reactions (Pineda et al. 2014). While the CODIS core loci set 

of twenty short tandem repeats (STRs) remains the gold standard in forensic genetics, 

recent research has expanded beyond sole dependence on STRs. While mini-STRs (those 

under 125 bp) were once the most promising option for working with degraded samples 
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(Coble and Butler 2005), their application in forensic contexts now has limited utility 

(Nieuwerburgh et al. 2014). Instead, the use of NGS, including library preparation and 

targeted captures, allows for an enhanced marker set recovery and improved 

discrimination criteria, both with reduced total input DNA.  

For example, NGS target enrichment probe captures allow for sequencing of both 

STRs and single-nucleotide polymorphisms (SNPs) with deep coverage for robust variant 

calling (Shih et al. 2018). To compare methods, in a validation of the GlobalFiler™ 

Express PCR Amplification Kit which includes typing for 21 autosomal STRs including 

the CODIS core loci, 1 Y-STR, 1 Y indel, and an Amelogenin marker, minimal input was 

0.05 ng, though optimal input was much higher – between 2.5-10 ng (Flores et al. 2014). 

In contrast, in validations of the Illumina FGx ForenSeq™ DNA Signature Prep Kit, 

input DNA amounts as low as 0.065 ng produced full profiles with 100% call rates of 

expanded marker sets, including 27 autosomal STRs, 24 Y-STRs, 7 X-STRs, and 94 

identity-informative SNPs (Jäger et al. 2017). Input amounts as low as 0.00782 ng 

produced partial profiles of 50% concordance (Jäger et al. 2017). Traditional PCR based 

chemistries, like the GlobalFiler™ Express PCR Amplification Kit require intact primer 

binding sites to sequence STRs and other markers (Shih et al. 2018). NGS methods are 

not bound by primer binding sites, allow for deep coverage of captured regions providing 

more discriminatory power, and can also be used to distinguish between mixtures (Shih et 

al. 2018). 

With improvements in sequencing technology, library preparation, and targeted 

captures, forensic genetics has expanded to include ancestry informative markers (Caratti 

https://www-sciencedirect-com.proxy.lib.utk.edu:2050/science/article/pii/S1872497317300200#!
https://www-sciencedirect-com.proxy.lib.utk.edu:2050/science/article/pii/S1872497317300200#!
https://www-sciencedirect-com.proxy.lib.utk.edu:2050/science/article/pii/S1872497317300200#!
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et al. 2015), phenotypic markers (Butler 2015; Caratti et al. 2015; Parson 2018), and 

methylation studies for age estimation (Parson 2018). These improvements have also 

facilitated the development of new forensic markers with the ability to differentiate 

between individuals, interrogate biogeographical ancestry, and deconvolute mixtures 

(Bulbul et al. 2017). Kidd and colleagues have developed a panel of 65 microhaplotypes, 

or short DNA fragments that include two or more haplotype-distinguishing SNPs, 

encompassing only 198 SNPs for ancestry inference, using samples with limited input 

DNA (Kidd et al. 2017; Bulbul et al. 2017). NGS has expanded forensic genetic 

applications beyond STR profiles, incorporating ancestry-based and phenotypic markers 

as well as enhanced abilities to discriminate between individuals and deconvolute mixed 

samples. NGS platforms such as the Illumina MiSeq FGx in combination with the 

Verogen ForenSeq DNA Signature Prep kit may set the standard for future forensic 

marker sets. While other platforms, such as the Life Technologies Ion S5, allow for NGS 

applications for forensic samples, the ForenSeq kit is the only kit on the market that 

combines traditional forensic STRs with ancestry, phenotypic, and identity SNPs. 

Through combining 230 markers in a single reaction, the ForenSeq kit sequenced on the 

MiSeq FGx will allow for widespread use, thereby setting de facto protocols for NGS 

applications in forensic genetics. 

NGS-based methods in forensic science may prompt increased convergence 

between forensic and ancient DNA-based methods for bone and tooth samples. 

Extraction methods in ancient DNA research have recovered increasingly small DNA 

fragments (~20-80 bp), once thought useless during the days of Sanger sequencing that 
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required larger sites for primer binding. With improvements in sequencing technology, 

those smaller fragments, which are informative, especially when targeted for SNPs. As 

forensic genetics continues to integrate more NGS methods, extraction methods may 

recover even smaller fragments (Dabney et al. 2013; Rohland et al. 2018).  

Whereas forensic genetics has emphasized automated methods for high-

throughput laboratory analyses (Witt et al. 2012; Kallupurackal et al. 2015), ancient DNA 

extractions have largely remained un-automated. Only recently has a new protocol been  

released that allows for automated extraction using liquid handling systems similar to 

those used in forensic laboratories (Rohland et al. 2018). This reflects a convergence in 

methods from ancient DNA to forensic genetics and vice versa.  

 

Non-Destructive DNA Extraction Techniques 

 

DNA extraction methods have traditionally used destructive approaches to sample 

preparation, wherein a portion of the sample tissue (bone, tooth, hair, nail, exoskeleton, 

etc.) is pulverized to facilitate cell lysis and release of DNA from the cellular matrix 

(Hagelberg and Clegg 1991; Skoglund et al. 2012; Dabney et al. 2013). Sample 

preparation often involves manual grinding using hammers (Merriwether et al. 1994), 

mortar and pestles (Gondek et al. 2018), or mechanical pulverization using freezer mills 

(Hanni et al. 1994) or ball mills (Kistler et al. 2014). However, the destructive nature of 

DNA analysis may delay or prohibit access to samples (Lindahl 1997) from museums 

and out of respect for the views of human descendants and descendant communities. 
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Alternatives for destructive analysis are also needed for forensic research collections, 

where destructive analysis is often limited by prescribed protocols for donors or to 

prevent destruction of individual morphological data. 

Several non-destructive DNA extraction methods have been presented. Minimally 

destructive techniques include those that maintain the integrity of the specimen by 

removing small amounts of sample material through targeted drilling, including an 

orthograde entrance technique for tooth samples (Alakoc and Aka 2009) and a 

minimally-invasive cranial base drilling method to access bony material from the petrous 

portion (Sirak et al. 2017). 

Others suggest avoiding drilling and pulverization altogether. These approaches 

utilize a buffer step in which the sample is soaked and then removed, macroscopically 

intact (Rohland et al. 2004; Porco et al. 2010; Bolnick et al. 2012; Hofreiter 2012; Tin et 

al. 2014). These protocols target preserved insect specimens and use soaking buffers that 

are then extracted directly, maintaining specimen integrity (Gilbert et al. 2007; Thomsen 

et al. 2009; Porco et al. 2010; Tin et al. 2014). 

The first protocol to use this approach for primate samples was developed by 

Rohland and colleagues for DNA extraction from museum specimens, using teeth from 

chimpanzees and hyena bones, coats (hides), and soft tissue dating between 47 and 164 

years (2004). Rohland and colleagues compare three different extraction buffers, a 

sodium phosphate buffer with proteinase K, a Tris and sodium chloride buffer with 

proteinase K, and a guanidine thiocyanate (GuSCN) buffer without proteinase K after a 

two-day and seven-day soak (2004). DNA isolation by isopropanol precipitation was 
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used in conjunction with the sodium phosphate and Tris-sodium chloride buffers 

(Vigilant et al. 2001), while the GuSCN buffer utilized a silica suspension extraction 

protocol (Boom et al. 1990; Rohland et al. 2004). The GuSCN protocol outperformed the 

other methods in tests using PCR to amplify target mitochondrial DNA from 215-414 bp 

in length but the authors were unable to type nuclear microsatellite markers (Rohland et 

al. 2004).  

The Rohland et al. (2004) method was validated using teeth from eight prehistoric 

humans from Spain (Gomes et al. 2015). Comparing traditional extraction methods 

(Rohland and Hofreiter 2007) with the non-destructive method, Gomes et al. (2015) 

showed that there was no significant difference in real-time PCR results between the two 

extraction protocols for a total of four samples, suggesting that the Rohland et al. 2004 

non-destructive protocol performed as well as the traditional destructive method (2015).  

A similar soaking buffer-based approach was used by Bolnick and colleagues 

(2012) for ancient bone and tooth samples and is thoroughly validated and its utility 

discussed in Chapter 3. Bolnick and colleagues opted for an EDTA and proteinase K 

soaking buffer with a limited exposure time (16-24 hours) followed by extraction using 

Rohland and Hofreiter’s 2007 silica-suspension based protocol (2012). The method by 

Bolnick and colleagues produced both PCR-amplifiable mitochondrial and nuclear DNA. 

Both protocols reported no indications of macroscopic damage to the teeth after soaking 

(Rohland et al. 2004; Bolnick et al. 2012); however, this assertion is assessed more 

thoroughly in Chapter 3. 
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Chapter Overviews 

 

Chapter 2 – Next Generation Sequencing and the Convergence of Ancient and 

Forensic DNA Extraction Techniques 

 

The second chapter covers Next Generation Sequencing and the convergence of 

ancient and forensic DNA extraction techniques. This chapter presents a review of the 

literature and discussion of the parallels between DNA extraction protocols for ancient 

DNA research and forensic genetics. As the first comprehensive review of extraction 

protocols in almost twenty years (MacHugh 2000), this chapter reveals how DNA 

extraction methods in ancient DNA analyses are poised to influence forensic genetics 

protocols for next-generation sequencing (NGS) techniques. The rise of NGS of both 

subfields is prompting a convergence of extraction methods to exploit the strengths of 

NGS and yield the highest amounts of usable DNA for analysis. 

Through evaluation of the most fundamental publications and widely-used 

extraction methods, the chapter details trends of ancient DNA extraction and compares 

them to forensic genetics methods. Common chemical agents used in extraction 

techniques are outlined and their applications explored. The three primary types of 

extraction techniques – phenol chloroform, silica-based, and bead-based methods – are 

detailed. The chapter provides an overview of DNA extraction approaches from a broad 

array of ancient sample materials, both human and non-human. Materials ranging from 

bone and tooth samples, to hair, calculus, soil, and other materials are discussed, detailing 

optimal sampling techniques and protocols. The limitations and capabilities of modern 
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extraction techniques for ancient DNA play a role in amplification as well as sequencing 

and analysis. This downstream effect can be seen not only in ancient samples but also in 

forensic genetics contexts. For example, the extraction protocol for the blood card 

samples used in the chapter 4 did not sufficiently remove inhibiting substances from the 

isolated DNA. This highlights the prime importance of optimizing effectiveness of 

extraction techniques, which is a need in both forensic and ancient DNA analysis. 

 

Chapter 3 – Validation and Impact Assessment of a Non-destructive DNA Extraction 

Method on Modern and Ancient Tooth Samples 

 

The third chapter, Validation and Impact Assessment of a Non-destructive DNA 

Extraction Method on Modern and Ancient Tooth Samples, presents results from a 

validation study of a “non-destructive” DNA extraction method. First published by 

Bolnick and colleagues in 2012, this approach is tested using both ancient tooth samples, 

as detailed in the authors’ protocol, as well as modern teeth extracted within the past five 

years. In addition to testing the Bolnick and colleagues’ protocol, an additional extraction 

protocol using the Bolnick soaking buffer is tested and yields compared for modern 

samples to determine which is most effective. Weights, measurements, and photographs 

were collected before and after extraction to assess the claim of the method as non-

destructive. Building on the validation study, this chapter identifies small but non-trivial 

damage introduced by the use of the protocol by Bolnick and colleagues on tooth 

samples. While the validation study confirms the potential for using the protocol to 

maintain the macroscopic integrity of the samples, this assessment details the effects of 
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the chemicals used in the protocol (bleach, EDTA, and Proteinase K) on the 

microstructure of teeth in modern tooth samples as well as ancient. The effect of the 

soaking buffer is assessed, externally, using scanning electron microscopy (SEM) and, 

internally, using histology. Microscopic impact is also investigated through isotope 

analysis to determine if this non-destructive method will impact the possibility of future, 

albeit destructive, analyses. Three separate analyses, tooth histology, isotope analysis, 

and scanning electron microscopy, are used to assess the impact of the extraction buffer 

on the microstructure of human tooth samples. This chapter demonstrates that the 

Bolnick protocol can be deemed “minimally destructive” with impacts to tooth 

microstructure observed through metric, histological, and SEM analyses. 

 

Chapter 4 – Assessing DNA Quality and Quantity from Cadaveric Blood Stored on 

Untreated Blood Cards: Impact on STR Quality and the Utility of Variably Amplified 

Markers for the Individual Estimation of Trihybrid Ancestry and Admixture 

Proportions 

  

The fourth chapter explores the quantity and quality of DNA recovered from 

untreated blood cards within the context of a body donation program. While extraction 

methods for Flinders Technology Agreement (FTA) cards have been validated for use 

with post-mortem blood samples, the quality and quantity of cadaveric blood stored on 

untreated blood cards has not been tested. Research on DNA extraction from whole blood 

is common place (Chacon-Cortes et al. 2012; Ghatak et al. 2013; Guha et al. 2018); 

however, few studies have explored the characteristics of blood extracted from cadavers. 

An increased understanding of the quality and quantity of DNA from post-mortem blood 
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samples is essential for forensic centers, enabling long-range planning of DNA-based 

genomic studies. The blood cards were extracted and DNA yields and quality were 

assessed using quantitative PCR (qPCR). Samples were amplified using the Applied 

Biosystems Identifiler kit and fragment analysis was carried out by capillary 

electrophoresis. STR profiles were assessed for relative fluorescent units (RFUs) and 

allele peak heights. Ancestry and admixture analysis were conducted on the data 

collected from the STR profiles generated through the model-based clustering program 

STRUCTURE (Pritchard et al. 2000, Algee-Hewitt et al. 2016). This research determined 

that the blood cards, when extracted between 4 months and 4 years after collection, 

allowed for successful amplification of a full STR profile which could then be used for 

preliminary ancestry estimation using the method established by Algee-Hewitt and 

colleagues (2016). 

 

Chapter 5 – Conclusion 

 

This dissertation integrates current scholarship with case studies on both ancient 

and forensic DNA, highlighting the importance of sample storage methods, sample 

preparation, and DNA extraction. While some methodological differences between 

ancient DNA research and forensic genetics have persisted, the transition to NGS 

methods has encouraged convergence between these two research avenues. A deeper 

understanding of DNA extraction techniques allows for research planning that 
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incorporates sampling, decalcification, purification, and elution methods optimized for 

degraded samples.  

Destructive DNA extraction techniques preclude access to numerous 

archaeological samples, as most museums and collections limit destructive analysis of 

human remains and other materials. By assessing the effects of Bolnick and colleagues’ 

extraction method, the research presented in this dissertation informs future 

anthropological investigations of ancient DNA and provides insights into the applicability 

of this method for more recent, forensic-age samples. Through documenting the effects of 

the method on tooth structure, this research provides an assessment by which collection 

curators and descendant communities will be able to evaluate the potential for non-

destructive or at least, minimally destructive, extraction of DNA. Provided that the 

protocol is deemed minimally destructive on a microstructural level, this research could 

be used to support research on countless museum and archaeological specimens, both 

human and non-human. Finally, a case study on the quality and quantity of DNA 

extracted from untreated blood cards provides insights into the role of sample storage 

materials on DNA degradation. As in ancient DNA contexts, time since death and 

ambient storage conditions can impact DNA preservation. Those issues, along with the 

utility of a limited set of STRs for ancestry and admixture analysis are assessed here. 
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BRIDGING STATEMENT 
 

 

Chapter 1 introduces the three main dissertation chapters with an overview of the 

two fields of degraded DNA research, ancient DNA and forensic genetics, describing the 

similarities between the two fields while outlining the differences brought about by the 

sometimes divergent end goals of each. As the first comprehensive review of the history 

of ancient DNA extraction techniques in recent years, Chapter 2 reveals how the 

sometimes divergent fields of degraded DNA are poised to converge on common 

methods driven by the transition to next generation sequencing (NGS). 

As such, Chapter 2 describes how extraction for degraded samples can be 

harmonized due to shared concerns over degradation, preservation, and inhibition. 

Outlining past examples in which the fields of ancient DNA and forensic genetics 

borrowed from one another regarding extraction techniques, the following chapter 

suggests that the newest innovation in genetic research, next-generation sequencing 

(NGS) is now prompting another era of exchange between the two fields. Ancient DNA 

researchers have advanced methods in extraction of degraded samples to exploit the 

benefits of NGS; forensic geneticists can utilize these improved techniques for working 

with problematic forensic samples.  
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CHAPTER 2: NEXT GENERATION SEQUENCING AND THE 

CONVERGENCE OF ANCIENT AND FORENSIC DNA 

EXTRACTION TECHNIQUES 
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Abstract 

 

In the age of next-generation sequencing (NGS) and bioinformatics-based 

approaches, DNA extraction remains a critical part of ancient DNA research. NGS is also 

driving a convergence of DNA extraction protocols used in ancient and forensic genetics, 

including common reagents, past and present extraction methods, and sample substrates. 

After a review of extraction protocols in each subfield, here we show how new 

techniques and sampling strategies are leading to a homogenization in forensic and 

ancient DNA extraction methods involving bone, teeth, calculus, soil, and other tissues. 

The special considerations of each degraded DNA specialization are outlined including 

degradation, contamination, and inhibition are discussed.  
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Introduction 

 

By detailing the extraction techniques in both forensic genetics and ancient DNA, 

we show that extraction protocols in both disciplines are poised to converge on more 

similar methods for isolating DNA. While DNA extraction poses numerous challenges, 

isolating DNA from degraded samples presents a unique set of concerns in both ancient 

and forensic contexts. However, in spite of shared concerns regarding contamination, 

fragmentation, deamination of bases, and low template samples, ancient DNA research 

and forensic genetics have differed significantly in relation to extraction techniques in 

recent decades. During the nascent years of research in both fields, ancient DNA drew 

heavily from extraction protocols in forensic genetics (O’Rourke et al. 2000). However, 

ancient DNA research, recent advances in extraction methods have been driven by next-

generation sequencing techniques and bioinformatic approaches (Sarkissian et al. 2012; 

Skoglund et al. 2014; Hofreiter et al. 2014; Haber et al. 2016; Slatkin and Racimo 2016), 

leading to breakthrough findings involving anatomically modern humans and other 

hominids (Reich et al. 2010; Meyer et al. 2012; Gokhman et al. 2014), the peopling of the 

Americas (Rasmussen et al. 2014) and Australia (Rasmussen et al. 2011), and other 

ancient human migrations (Fregel et al. 2018; Olalde et al. 2018).This, in turn, has 

motivated proposals for improved DNA extraction protocols for recovery of endogenous 

DNA from ancient samples, prior to library preparation and other downstream analyses 

(Barta et al. 2013; Gamba et al. 2016; Nieves-Colón et al. 2017).  
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These developments in ancient DNA research contrast with forensic genetics, 

which today uses extraction protocols that are optimized for typing of traditional markers, 

primarily short-tandem repeats (STRs) using capillary electrophoresis (CE) rather than 

massively parallel sequencing (MPS). The need for developmental and internal validation 

of protocols, reagents, and extraction kits has largely limited the focus of forensic 

extractions to typing of STRs and mitochondrial DNA.  However, there is increasing 

demand in forensic genetics to apply MPS or next-generation sequencing (NGS) 

approaches to DNA of medico-legal significance (Butler 2015; Jäger et al. 2017. 

Here, we review the background of extraction techniques in both forensic genetics 

and ancient DNA. We propose that extraction protocols in both disciplines are poised to 

converge on more similar methods for isolating DNA, driven by NGS. In forensic 

genetics, especially problematic samples could be addressed using specifically optimized 

protocols for working with degraded samples using NGS approaches.  

 

Background 

 

Ancient samples are generally defined as those exceeding 50 years in age and, 

more importantly, those whose sequences are characterized by high fragmentation and 

the presence of deaminated cytosines (Hofreiter et al. 2000; Pääbo 2004; Shapiro and 

Hofreiter 2014). Forensic samples are those of medico-legal significance.  

The invention of polymerase chain reaction (PCR) in 1985 allowed for the 

advancement of both the fields of ancient and forensic DNA. PCR-based analyses of 
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small quantities of DNA allowed for the study of degraded DNA. The development of 

NGS by 454 Life Sciences in 2005 (Kulski 2016) has more recently revolutionized 

ancient DNA research by exponentially increasing the potential for data retrieval of 

fragmented and damaged DNA. These recent technological advances helped develop the 

field of paleogenomics, or the application of next-generation sequencing to produce 

whole or partial genomes from ancient samples (Shapiro and Hofreiter 2014). Since the 

shift to next-generation sequencing, no comprehensive review of extraction methods has 

been published in recent years (since MacHugh 2000), in spite of significant 

improvements in DNA sampling and extraction techniques.  

On the other hand, forensic genetics has been slow to embrace NGS technology, 

restricted by validation requirements and the need for database comparisons which are 

predominantly based on STRs. As such, forensic extraction methods-based papers often 

focus more on one or more extraction techniques geared toward specific sample 

substrates (Adamowicz et al. 2014; Young et al. 2014; Samsuwan et al. 2018) rather than 

large scale overviews, but have been more broadly covered in a few exceptions (Stray et 

al. 2010; Lee and Shewale 2017). While extraction techniques in ancient DNA research 

have increasingly focused more on recovery for NGS-based projects, extraction methods 

in forensic genetics have largely revolved around kit-based methods, phenol-chloroform 

protocols, and use of automated robotics. 

The importance of selecting the most appropriate DNA extraction techniques for 

the research design cannot be understated. Variables to consider when choosing the most 

appropriate method include collection site conditions, sample type and collection 
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methods, preservation, processing, and downstream analyses. Failure to select the most 

appropriate extraction methodologies can result in reduced DNA recovery, loss of time, 

reagent costs, and waste of precious sample material. Therefore, due consideration must 

be given when choosing the techniques for DNA extraction including taking important 

variables, such as preservation and sample type, into account.  

 

DNA Preservation in Degraded Samples 

 

Characterizing DNA damage and understanding the mechanism behind such 

degradation has been of interest to ancient DNA researchers since the first investigations 

in the 1980s. Early on, descriptions of ancient DNA degradation opened an avenue for 

understanding the qualities of targeted ancient DNA and providing a means of 

demonstrating contaminate-free extraction and amplification (Pääbo 1989, Lindahl 1993). 

Soon after, these characteristics of ancient DNA degradation provided a mechanism for 

authenticating endogenous DNA results (Cooper and Poinar 2000; Pääbo et al. 2004) and 

later were exploited in combination with bioinformatic approaches to filter out 

contamination (Jónsson et al. 2013; Skoglund et al. 2014). DNA preservation in various 

substrates, from bone and teeth to environmental DNA, remains of interest with both 

ancient and forensic samples. Degraded DNA found in materials from both ancient and 

forensic contexts shares distinguishing differences from DNA extracted from living 

organisms.  
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Immediately following the death of an organism, DNA degradation begins, 

galvanized by both enzymatic and non-enzymatic processes (Alaeddini et al. 2010; 

Emmons et al. 2017). Organismal DNA is subjected to damage from enzymes created by 

the breakdown of the cadaver and microbially-produced enzymes, especially during the 

putrefaction stage of decomposition (Alaeddini et al. 2010; Emmons et al. 2017). While 

some evidence points to a cessation of microbial attack at around 500 years (Hedges 

2002), experimentation on fragmentation has been limited. Beyond microbial action, 

hydrolysis and oxidation continue to damage DNA throughout the post-mortem interval 

producing fragmentation, miscoding lesions, and crosslinks that characterize ancient 

DNA sequences (Lindahl 1993; Lindahl 1997; Briggs et al. 2007; Allentoft et al. 2012). 

Understanding of DNA fragmentation is limited by the lack of controlled studies and 

restraints on experimental time frames that can be assessed over the course of a human 

life span. One of the few studies to assess degradation intervals points to a 524-year-half 

life for mitochondrial DNA fragments of 242 bp in the New Zealand Moa, with a 

degradation rate twice as rapid for nuclear DNA (Allentoft et al. 2012). 

Studies on the mechanisms of DNA preservation have also been limited. DNA 

molecules are preserved through binding with the apatite strictures of bones and teeth 

(Grunenwald 2014), through the process of adsorption in which molecules adhere to an 

available surface. Biomimetic studies of DNA adsorption into apatite, similar to the 

hydroxyapatite found in bone and tooth matrices, point to the influence of pH on the 

DNA preservation process. Soil pH significantly impacts DNA preservation, with more 

acidic conditions resulting in more adsorption and thus greater DNA preservation 
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(Grunenwald et al. 2014). While DNA is bound to apatite matrices, increased porosity of 

bone and tooth structures is caused by microbial action, marked by a reduction in 

collagen (Hedges 2002). Environmental variables, including temperature, humidity, and 

soil pH, also affect the binding of DNA to calcium phosphates such as hydroxyapatite, 

affecting DNA absorption and preservation. Temperature, for example, influences the 

adsorption of DNA into apatite material, with lower temperatures (~4 degrees C) 

culminating in reduced adsorption (Grunenwald et al. 2014).  

DNA may also bind to soil matrices, resulting in preservation of environmental 

DNA (Willerslev 2003, Emmons et al. 2017). The integration of DNA into both apatite 

and/or soil matrices allows for persistence of DNA in both the organic and inorganic 

components of bone/soil. The binding of DNA to soil as well as apatite necessitates 

extraction techniques that target the release of DNA from both components, yielding 

more endogenous DNA (Sosa et al. 2013). 

 

Common Components of Extraction Protocols 

 

Most extraction techniques employed in ancient DNA research utilize standard 

ingredients and protocols found in cell biology/microbiology research. The four basic 

steps of DNA extraction include 1) sample preparation, 2) lysis/digestion/decalcification, 

3) purification, and 4) elution. Because bones and teeth are the most common sample 

types for ancient DNA extraction, protocols may include decalcification steps for samples 



41 

 

where DNA has bound to apatite matrices, which are absent from typical DNA 

extractions of blood, tissue, and saliva. 

 

Sample Preparation  

 

Sample preparation begins with surface decontamination and preparation of the 

sample for extraction. Grinding bone and tooth samples exposes additional surface area 

for improved chemical lysis of cellular material: a sub-sample (from 200 milligrams (mg) 

up to 5 grams (g)) is typically removed from the of bone or tooth, either with a Dremel 

tool or by drilling, which powders the sample material during removal. Dremel tools and 

standard drills and bits should be used at low rpm to avoid heat damage to the sample 

(Sawyer et al. 2012; Sandoval-Velasco et al. 2017). Samples typically are reduced to a 

ground powder manually, as with a sterilized mortar and pestle (Sawyer et al. 2012; 

Wannajuk et al. 2013). Other mechanical approaches use liquid nitrogen-based freezer 

mills (Loreille et al. 2007; Pruvost et al. 2007) and laboratory ball mills (Gamba et al. 

2016; Valverde et al. 2016; Sandoval-Velasco et al. 2017), which pulverize the sample 

into a fine powder. Extraction of DNA from soil samples often involves mechanical 

pulverization, such as bead beating, to release microbes from the soil and break down cell 

walls (Slon et al. 2017). 

While early extraction protocols required large amounts of sample material 

exceeding one gram (Hänni et al. 1990; Hagelberg and Clegg 1991), recently more 

efficient protocols require far less, typically around 0.2 g (Brotherton et al. 2013; 
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Thomson et al. 2014; Llamas et al. 2016).  Many sampling situations require minimally-

destructive methods, including collections of museum specimens as well as human 

remains. One less-destructive option is orthograde entrance, in which the tooth sample is 

drilled from crown to root apex leaving the overall tooth morphology intact (Alakoç and 

Aka 2009). Another option is to access the petrous portion of the human cranium through 

a minimally invasive procedure targeting the cranial base (Sirak et al. 2017). In other 

protocols, the whole tooth or bone is soaked in a lysis buffer, removed, and then the 

buffer extracted while retaining the integrity of the sample (Rohland et al. 2004; Bolnick 

et al. 2012). Similarly, whole insects can be submerged in buffer that is then poured off 

and extracted providing non-destructive approaches for analysis of historic non-human 

collections (Gilbert et al. 2007; Porco et al. 2010; Tin et al. 2014). 

 

On Contamination 

 

Regardless of sample preparation method, one of the most persistent problems in 

ancient DNA work is that of contamination, especially relating to ancient human and 

hominin studies wherein contaminate DNA, from the researcher(s), archaeologist(s), or 

other human sources might be closely related to that of the individual(s) sampled and 

more difficult to separate out downstream. The transition to NGS approaches has not 

alleviated the need for sample decontamination but, rather, emphasized the need to 

remove not only DNA of closely related species but also microbial DNA in order to 

increase sequencing efficiency (Korlević et al. 2015). Ancient DNA protocols use various 
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methods for authentication of endogenous DNA, with best practices requiring extraction 

controls, isolated dedicated ancient DNA work areas, recognition of appropriate 

molecular behavior, and reproducibility (Cooper and Poinar 2000). Dedicated lab spaces 

for ancient DNA typically include positive pressured air flow, working in a protective 

cabinet such as a PCR enclosure or other such laminar flow hood, overhead UV lamps 

and benchtop UV crosslinkers, and practicing uni-directional workflow from the 

dedicated ancient lab to post-PCR laboratories. Reagents, lab consumables, lab 

equipment, and cross-contamination during extraction can also introduce contaminant 

DNA (Barta et al. 2013). 

Even when strict laboratory protocols are imposed, contamination can arise prior 

to the sample’s arrival in the laboratory. If the material was excavated under non-sterile 

conditions, or if bone and tooth samples were washed to remove the soil matrix, human 

contaminants could be introduced into the sample material. For example, exogenous 

DNA can be introduced during washing and can permeate both tooth enamel as well as 

cortical bone (Gilbert et al. 2005; Sampietro et al. 2006). While strict controls may be put 

in place for excavating human remains (Yang and Watt 2005), many of the individuals 

sampled in ancient DNA studies are part of long-standing museum collections and have 

been previously handled.  

Both chemical and mechanical methods are used to remove contaminant DNA 

from surfaces. Early studies used dental drills (Haak et al. 2005; 2008) and sand paper or 

sanding attachments to remove portions of the surface area of bones and teeth (Matisoo-

Smith et al. 1997; Yang et al. 1998; MacHugh et al. 2000; Yang 2003; Yang et al. 2004; 
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2008). More recent applications use sand blasting to remove the outer portion of the bone 

or tooth, combined with UV irradiation (Gamba et al. 2012).  

Chemical decontamination is the most often used method for removing exogenous 

DNA, through the use of bleach (6% sodium hypochlorite), hydrochloric acid (HCl), 

and/or sodium hydroxide (NaOH). Yang et al. (2004) combined all three chemicals, 

followed by UV irradiation, while others integrate combinations of HCl and bleach 

(Stone and Stoneking 1993; 1998; Skoglund et al 2012). UV radiation inactivates, or 

damages, longer strands of DNA, such as those greater than 500 base pairs (bp) in length, 

especially in aqueous solutions (Sarkar and Sommer 1993). However, in analysis of 

damage to shorter fragments of less than 250 bp, UV radiation has been shown to be less 

effective in the destruction of DNA fragments (Sarkar and Sommer 1993). Sarkar and 

Sommer (1993) also found that dried DNA contaminants (i.e. not in aqueous solution) 

were less susceptible to UV damage. 

Experimenting with a variety of surface decontamination methods, including sand 

paper, DNAaway (a common laboratory surface decontaminant), and sodium 

hypochlorite, Kemp and Smith (2005) found that immersion in 6% sodium hypochlorite, 

or regular strength bleach, for 15 minutes provides the most effective and cost efficient 

method for removal of exogenous DNA, while also noting that immersion in the same 

bleach concentration for up to 21 hours does not damage endogenous DNA in traditional 

PCR reactions (Kemp and Smith 2005). Additional research has demonstrated the 

efficacy of 6% sodium hypochlorite treatment for lower exposure times (4 minutes) 

(Barta et al. 2013; Kemp et al. 2017). 
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Even after these decontamination steps are followed, DNA contamination may 

persist in ancient samples (Barta et al. 2013). In these cases, bioinformatic approaches 

can be used separate endogenous ancient DNA from more recent contaminants based on 

statistical analysis of ancient DNA characteristics (Shapiro and Hofreiter 2014; Skoglund 

et al. 2014). Bioinformatic approaches, packages such as PMDtools, use degraded DNA 

characteristics, such as fragment length, basepair substitutions in the 5’ position, and 

nucleotide deamination, to statistically infer whether sequences are endogenous ancient 

DNA or exogenous contaminant DNA (Skoglund et al. 2014). 

 

Lysis/Digestion/Decalcification 

 

Following sample preparation and decontamination, the lysis step, sometimes 

referred to as digestion or decalcification in protocols for bone and tooth material, 

involves the breaking open or “lysing” of cellular material. Lysis, or cellular disruption, 

can be achieved through chemical or mechanical methods, or a combination of the two. 

The lysis process is meant to disrupt the cellular architecture so that the DNA becomes 

accessible for isolation. This disruption usually involves one or a combination of 

chemical agents in an aqueous buffer solution that disrupt the cellular membrane, often 

combined with heat and/or agitation. Agents such as ethylenediaminetetraacetic acid 

(EDTA) and proteinase K, sourced from Tritirachium album, are some of the most often-

used, typically with addition of detergents to aid in lysis and Tris-based buffers to 

maintain a stable pH. 
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Purification of DNA 

 

DNA purification is usually performed using one of three approaches: phenol-

chloroform, silica-based methods, or bead-binding methods. The goal of the purification 

step is the isolation, or extraction, of DNA from other cellular materials. Some DNA 

extraction techniques are better suited to working with bone and tooth material than 

others. Other types of sample material, such as human or animal hair, may require 

additional chemicals for extraction. 

 

Phenol-Chloroform Methods 

 

Phenol-chloroform (PC) extractions represent one of the most common extraction 

techniques used in degraded DNA research. Ancient DNA analysts adopted PC protocols 

from forensic genetics in the early years of research (O’Rourke et al. 2000) and they 

remain a standard protocol in forensic analysis (Ferreira et al. 2013; Gielda and Rigg 

2017; Iyavoo et al. 2017). Phenol and chloroform are both organic solvents commonly 

used in DNA extraction protocols, thus these methods are often referred to as organic 

extraction methods. Each of these solvents denature proteins, allowing for precipitation 

and removal of DNA from solution. Phenol alone is unstable and oxidizes into quinones 

that can crosslink DNA, and thus, is often prepared with equal or almost equal volumes 

of chloroform to create stability (Farrell 2005). Phenol and chloroform are also usually 

combined with isoamyl alcohol, which reduces protein foaming during extraction (Farrell 
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2005). Together, often in concentration ratios of 25:24:1 (phenol:cholorform:isoamyl 

alcohol, or PCIA), this combination allows for denaturing and removal of proteins, while 

simultaneously inhibiting nuclease activity (Farrell 2005). 

Both phenol and chloroform are carcinogenic and caustic agents, so work must be 

performed in fume hood, which are not available in all degraded DNA facilities. 

Moreover, both nitrile and neoprene gloves degrade within minutes of contact with PC 

solutions, so chemical barrier gloves such as Silvershield or 8-mil thick ChemTek gloves 

should be worn.  PC protocols were once the preferred method of DNA extraction, but 

more recent trends show ancient DNA studies increasingly favor silica-based methods 

(Rohland and Hofreiter 2007; Dabney et al. 2013; Gamba et al. 2016; Llamas et al. 2016; 

Glocke and Meyer 2017; Hansen et al. 2017; Sirak et al. 2017). This is further supported 

by comparisons of extraction protocols on forensic age skeletal remains in which 

demineralization outperformed phenol chloroform (Jakubowska et al. 2012); however, 

PC remains a standard forensic protocol. 

 

Silica-based Methods 

 

Silica-based methods have been used for decades in ancient DNA work (Boom et 

al. 1990, Yang et al. 1998, Rohland and Hofreiter et al. 2007, Gamba et al. 2016). As 

noted by Boom and colleagues, DNA binds to silica or glass particles with the addition of 

a chaotropic salt in solution (1990). Extraction protocols based on silica suspensions, in 

which silicon dioxide is prepared using a series of suspensions in water and HCl, have 
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been actively used since the 1990s (Boom et al. 1990, Baker et al. 2001) and remain 

relevant protocols (Rohland and Hofreiter 2007, Hansen et al. 2017). Silica is itself a 

PCR inhibitor, so silica in suspension must be completely removed during elution (Yang 

et al. 1998), which is the final step of DNA extraction (see below). More time-efficient 

methods use silica-based columns, such as the Qiagen Min-elute column, as the silica 

remains bound within the column while the sample solution passes through, reducing 

chances of silica carryover during elution. 

 

Bead-based Methods 

 

Extraction methods using bead-based chemistries include both carboxyl and 

streptavidin surface-coated magnetic and non-magnetic microspheres and silica 

microspheres. Carboxyl-coated, as well as silica-based, beads bind with mammalian cells 

without significant modification (O’Brien et al. 2009). However, both streptavidin and 

carboxyl-coated microspheres can be bound with oligonucleotides to capture targeted 

sequences. A method called solid-phase reversible immobilization, or SPRI, has allowed 

for efficient extraction using microspheres, combined with high levels of propylene 

glycol and salts, high ionic washes, and low ionic elution buffers for release of DNA 

from microbeads (Bangs Laboratories 2016). Used occasionally in ancient DNA 

applications (Zhao et al. 2017), bead-based methods are mainly used for size-selection in 

DNA library preparation, forensic DNA applications (Desmyter et al. 2017) and in 

ecological and evolutionary studies (Vo and Jedlicka 2014).  
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DNA Elution 

 

Elution is the final step of the extraction protocol in which the DNA is released 

from one material, such as silica, and put into solution. Elution of DNA is often carried 

out in a variety of buffers, with earlier protocols favoring ultra-purified water (Bailey et 

al. 1996; Burger et al. 1999; Meyer et al. 2000), and more recent using TE buffer (Tris-

EDTA) (Rohland and Hofreiter 2007; Rohland et al. 2010; Neparáczki et al. 2017) or 

TET buffer (Tris-EDTA and Triton-X) (Avila-Arcos et al. 2015; Glocke and Meyer 

2017). In comparisons of long-term storage buffers, TE buffer was shown to be superior 

to water in tests of DNA quantity using qPCR and STR quality (Beach 2014). With the 

increasing popularity of kit-based extraction components and silica-spin columns, kit-

based elution buffers, such as Qiagen’s EB solution, are frequently used (Carpenter et al. 

2013; Seguin-Orlando et al. 2013). 

 

On Inhibition 

 

Extraction of DNA from sample materials often results in the co-extraction of 

substances that inhibit PCR, so-called PCR inhibitors. Many substances associated with 

ancient remains can present as PCR inhibitors, including humic acids (Alaeddini 2012) 

and fulvic acids, both found commonly in soil and water, bone dust, calcium, collagen, 

cave sediment, materials in blood and feces, urea, peat and clay rich soils (Baar et al. 

2011), and heavy metals including copper, iron, gold, and lead (Alaeddini 2012). 
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Furthermore, even samples lacking in environmentally-derived inhibitors can be exposed 

during handling and extraction, as many reagents represent inhibitory substances, 

including silica (Boom et al. 1990), EDTA, detergents and salts used in extraction, 

ethanol, isopropanol (Schrader et al. 2012), and phenol (Alaeddini 2012).  

Although the mechanisms behind PCR inhibition are poorly understood, 

experiments demonstrate that different inhibitory substances in varying amounts affect 

PCR reactions in multiple ways, with most attention focused on the interaction between 

inhibitors and polymerase enzymes (Alaeddini 2012; Schrader et al. 2012).  With the 

transition to more next-generation sequencing and library preparation, PCR inhibitors 

have received less attention; however, the co-extraction of inhibitors remains a significant 

issue for ancient samples regardless of post-extraction amplification strategies. Although 

PCR remains an integral step in library preparation and amplification, some protocols 

circumvent the PCR step and instead are based on high concentrations of input DNA; 

however, this approach is not practical for most ancient samples (Oyola et al. 2012).  

A study comparing three different extraction protocols on the same sample 

material recognized inhibition as a significant factor in library preparation efficiency 

(Glocke and Meyer 2017). Various approaches can be used to circumvent the impact of 

inhibitors on traditional PCR and NGS library preparation. Some experiments indicate 

that silica-based protocols using chaotropic salts are effective in removal of inhibitors 

(Alaeddini 2012) and silica-based columns have been used to remove inhibitors from 

extracted samples (Yang et al. 1998; Kemp et al. 2006). Chimeric polymerases designed 

for resistance against inhibitory substances offer another solution (Baar et al. 2011). The 
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addition of PCR additives such as bovine serum albumin (BSA) in reactions also has 

been shown effective with some ancient DNA samples (Baar et al. 2011; Farell and 

Alexandre 2012). 

Extraction in Ancient DNA Contexts 

 

The first extraction of DNA from cellular material was performed by Friedrich 

Miescher in 1869 (Dahm 2005; Tan & Yiap 2009). Using pus collected from hospital 

bandages, Miescher found that the addition of an acid precipitated a substance and, based 

on his knowledge at the time, “had to ascribe such material to the nuclei” (Dahm 2005). 

While Miescher’s initial isolation of DNA was rudimentary, the past 150 years have 

witnessed numerous advances in DNA isolation methods. The extraction protocols used 

in the majority of ancient DNA studies today trace their origins to a few classic protocols.  

A breakthrough in isolating DNA from ancient tissue utilized a phenol 

chloroform-based extraction method on the quagga, an extinct zebra-like species 

(Higuchi et al. 1984). Shortly following work on the quagga, Pääbo (1985) used another 

modified phenol chloroform method, following Blin and Stafford (1976), to extract DNA 

from the tissue of a 2,400-year-old Egyptian mummy. In the rush of early studies 

following these breakthroughs, however, much of the “ancient DNA” typed was later 

shown to be contamination from modern sources (Handt et al. 1994; Lindahl 1997) 

emphasizing the need for strict contamination controls during extraction (Cooper and 

Poinar 2000; Pääbo 2004).  
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Early gel-based and plasmid extractions exploited the facility of DNA to bind to 

silica particles in the presence of chaotropic salts for development of numerous protocols. 

Based on this property, Boom et al. produced a silica-based protocol for use with human 

serine, urine, and bacteria (1990). Creating a silica suspension of silicon dioxide 

suspended and resuspended with water, followed by hydrochloric acid to adjust pH to 

2.0, the authors combined the silica suspension with a guanidine thiocyanate-based lysis 

and washing buffer to facilitate DNA binding to the silica. The Boom extraction method 

was modified by Hoss and Pääbo (1993) with the addition of a one to several-hour 

digestion soak at 60° C for ancient bone. With and without additional modification, the 

protocol has been used in a variety of ancient DNA applications (Spigelman et al. 1993; 

Taylor 1996; Austin et al. 1997; Stone and Stoneking 1998; Fricker et al. 1997; Donoghue et 

al. 1998; Yoder et al. 1999; Baker et al. 2001).  

Several early extraction protocols used large buffer volumes (over 2 mL) for bone 

and tooth decalcification, incorporating Centricon-brand microcentrator columns to 

concentrate the buffers during elution. One such protocol, devised by Hagelberg and 

Clegg (1991), builds on a phenol-chloroform protocol by Maniatis et al. 1982. The 

authors develop an initial decalcification step for bone powder in EDTA, followed by 

lysis with EDTA, proteinase K, and N-lauroylsarcosine, extraction using phenol-

chloroform, with concentration using a Centricon microconcentrator (1991). This 

protocol was subsequently used in a variety of studies (Stone and Stoneking 1993; Stone 

and Stoneking 1998; Adcock et al. 2001; Hervella et al. 2015). 
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Yang et al. (1997, 1998) proposed a protocol using a silica-spin based column to 

reduce inhibitors from ancient DNA for improved PCR amplification. Their protocol 

used Qiagen’s QIAquick columns, which capture DNA fragments 100 bp and larger, 

producing PCR-amplifiable extracts without needing the fume hood required for phenol-

chloroform-based extractions (Yang et al. 1998). The silica-spin based protocol is now 

used extensively for ancient DNA studies (Yang et al. 2004; Malmstrom et al. 2005; 

Yang and Speller 2006; Yang et al. 2008; Malmstrom et al. 2009), often with 

modifications (MacHugh et al. 2000; Svensson et al. 2007; Edwards et al. 2010; 

Skoglund et al. 2012; Gamba et al. 2014; Raghaven et al. 2014; Lazaridis et al. 2014; 

Teasdale et al. 2014; Pinhasi et al. 2015; Gamba et al. 2016). 

Ancient DNA studies have also combined phenol-chloroform and silica-based 

extractions (Ausubel et al. 1995; Boom et al. 1990; Hoss and Pääbo 1993; Krings et al. 

1997; Caramelli et al. 2003; Lalueza-Fox et al. 2007; Sanchez-Quinto et al. 2012). Until 

recently, phenol-chloroform methods were the most popular protocol for bulk of 

extraction in ancient DNA research (Hagelberg and Clegg 1991; Hänni et al. 1994; 

Scholz and Pusch 1997; Loreille et al. 2007; Orlando et al. 2002; Orlando et al. 2003; 

Shapiro et al. 2004; Haak et al. 2005; Salamon et al. 2005; Weinstock et al. 2005; 

Orlando et al. 2006; Kemp et al. 2007; Larson et al. 2007; Orlando et al. 2008; Orlando et 

al. 2009; Hughes et al. 2006; Deguilloux et al. 2011; Keller et al. 2012; Sarkissian et al. 

2013). Another advance in extraction methods made use of a prepared silica suspension 

(Rohland and Hofreiter 2007). Because it provides a simple and short (2 days) means of 

removing PCR inhibitors, the Rohland and Hofreiter (2007, 2010) protocol and its 
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variants are the preferred ancient DNA extraction protocol for many publications (Green 

et al. 2010; Reich et al. 2010; West et al. 2017; Bolnick et al. 2012; Hansen et al. 2017). 

As an alternative to silica suspension, others have utilized silica-based columns, such as 

the Qiagen Min-elute column (Cui et al. 2013; Dabney et al. 2013; Lazaridis et al. 2014; 

Witt et al. 2015; Kemp et al. 2017; Sirak et al. 2017). 

Prior to the development of next-generation sequencing (NGS) approaches, there 

was little need to recover extremely small fragments that could not be amplified during 

traditional PCR for Sanger sequencing. With NGS, however, sequencing of small 

molecules offered the possibility of retrieval of additional informative sequence data, 

especially in highly degraded samples. Dabney and colleagues noted a lack of very small 

molecules (lower than 40 bp) in downstream analyses integral for NGS sequencing, 

which could be due in part to size selection in double-stranded DNA library preparation 

as well as extraction methods (2013). To maximize recovery of these small molecules, 

Dabney and colleagues modified the Rohland and Hofreiter (2007) protocol, adding a 

guanidine-hydrochloride/sodium acetate/isopropanol binding buffer with increased 

binding buffer to sample ratio, accommodated through the use of reservoir extensions, 

and substituting silica spin columns for the silica suspension (2013). Using this method, 

the authors noted increased recovery of molecules 30 bp and larger from a 300,000-year-

old Pleistocene cave bear from the Sima de los Huesos site in Spain (Dabney et al. 2013). 

The Dabney et al. protocol has been shown as effective when compared to other 

extraction protocols (Gamba et al. 2016; Glocke and Meyer et al. 2017) and has been 
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used in multiple ancient DNA studies (Lazaridis et al. 2014; Meyer et al. 2014; Sirak et 

al. 2017; Brace et al. 2018; Mathieson et al. 2018). 

Others have shown that single-stranded library preparation, rather than library 

preparation methods that target only double-stranded fragments, can recover fragments as 

small as 17 bp, emphasizing the need for extraction methods that recover shorter 

fragments (Glocke and Meyer 2017). In comparison of three extraction methods, Glocke 

and Meyer used a new method with a 2 M guanidine HCl and 70% isopropanol binding 

buffer to limit the exposure of the sample to EDTA, which affects recovery of very short 

fragments, during the binding step. Their findings indicate that this method is more 

effective at recovery of short fragments (20 bp) but less effective at removing inhibitors 

than the silica-based protocol by Dabney et al. (2013).  

Further modifications of DNA extraction techniques for ancient DNA include a 

pre-digestion step that reduces exogenous contamination risks and yields a nearly 3-fold 

increase in endogenous DNA enrichment (Damgaard et al. 2015). This one-hour pre-

digestion step — considerably shorter than a 72-hour EDTA soak suggested previously 

by Hagelberg and Clegg (1991) — uses a buffer composed of 4.7mL 0.5M EDTA, 50μL 

recombinant Proteinase K, and 250μL 10% N-Laurylsarcosyl at 50 °C for varying 

incubation times, after which the supernatant is discarded and an identical buffer added 

for the digestion step (Damgaard et al. 2015).   

Additional improvements are suggested by Allentoft and colleagues relating to a 

new buffer solution (2015). Supplementing the pre-digestion step suggested by 

Damgaard et al. (2015), Allentoft and others provide a new recipe for binding buffer, 
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combining Qiagen PB buffer, sodium acetate, and sodium chloride, resulting in a low pH 

(4-5) solution optimized for short fragment recovery (2015). When tested against both 

silica suspension (Rohland and Hofreiter 2007) and silica spin with reservoir extension 

(Dabney et al. 2013) recovery methods, the new binding buffer performed best with the 

silica suspension protocol (Rohland and Hofreiter 2007; Allentoft et al. 2015). Moreover, 

this combination of methods shifts the average fragment length recovered from 90 bp to 

55 bp, providing an increased recovery of endogenous DNA (Allentoft et al. 2015).  

Subsequent studies (Hansen et al. 2017) have used a combination of the pre-

digestion (Damgaard et al. 2015) including modifications on incubation time (15 min.), 

improved buffer (Allentoft et al. 2015), with standard protocols (Rohland and Hofreiter 

2007). In addition, some extraction protocols can also be adapted for liquid handling 

systems for high-throughput sample extraction, similar to those used in forensic genetics 

laboratories (Rohland et al. 2018). 

 

Extraction in Forensic DNA Contexts 

 

The origins of ancient DNA research and forensic genetics can be traced to the 

1980s. In the same year Svante Pääbo extracted DNA from the tissue of Egyptian 

mummies, Sir Alec Jeffreys and colleagues succeeded in typing highly polymorphic 

markers, so called “mini-satellites,” typed through analysis of restriction fragment length 

polymorphisms (RFLP) (Jeffreys et al. 1985; Weedn 2007). This produced a landmark 

publication on human identification (Jeffreys et al. 1985) and from there, the DNA 
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“fingerprinting” technique proposed by Jeffreys gained traction and was employed in 

court cases in the United Kingdom as well as in the United States beginning in 1986 

(Weedn 2007).  

Many of the earliest studies in forensics genetics used phenol-chloroform (PC) 

based extractions. Chelex-100, a chelating resin, was also shown to be effective in 

isolation of DNA by preventing further degradation of DNA by binding to cations 

including magnesium, used in a variety of forensic applications (Walsh et al. 1991; Sweet 

et al. 1996; Lorente et al. 1998; Phillips et al. 2012). After silica-based extractions 

debuted in the late 1990s in ancient DNA research (Yang et al. 1998), they began to be 

incorporated into forensic genetics workflows (Baker et al. 2001). In comparisons of PC 

and silica-based protocols, silica outperformed PC in recovery of DNA for forensic 

samples (Hoff-Olsen et al. 1999; Davoren et al. 2007) with the exception of some sample 

types (Jakubowska et al. 2012).  

Moreover, silica-based protocols provided an effective alternative to labor-

intensive PC protocols (Edson et al. 2004; Davoren et al. 2007). Column-based 

extractions streamlined the process of extraction (Crainic et al. 2002) and increased 

recovery. The transition to silica-based extractions also allowed for automated 

extractions, including the development of the Qiagen BioRobot EZ-1 (Montpetit et al. 

2005). Automated capabilities also extended to include full demineralization protocols 

(Loreille et al. 2007) for robotics platforms (Amory et al. 2012). Silica protocols have 

further evolved to integrate magnetic particles (Nagy et al. 2005), including the 

PrepFiler™ Forensic DNA Extraction Kit (Brevnov et al. 2009).  
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Forensic DNA samples can vary widely in the amount of DNA as well as the 

quality of DNA; while some samples may yield DNA through simple kit-based 

extractions, others may be more problematic, requiring more specialized approaches 

(Parsons and Weedn 1996). For these more degraded samples, ancient DNA protocols for 

extraction and library preparation have been shown to recover whole mitochondrial 

genomes for human identification (Templeton et al. 2013). Additional work on 

multiplexed primer sets has shown recovery of the full mitochondrial genome for forensic 

samples, including hair, bone, and dust bunnies, allowing for massively parallel 

sequencing on the Illumina platform (Hickman et al. 2018). Further improvements in 

extraction techniques are required to move beyond traditional STR-based typing (Jäger et 

al. 2017) which may prompt the adoption of ancient DNA-derived protocols. 

 

A Note on Bone & Tooth Sampling 

 

The earliest studies suggested that compact, or cortical, bone was optimal for 

ancient DNA analysis (MacHugh et al. 2000). Whenever available, however, teeth have 

almost always represented the preferred sample material in ancient contexts (Ginther et 

al. 1992; Merriwether et al. 1994; MacHugh et al. 2000) and have also been heavily used 

in forensic contexts (Higgins et al. 2013). Recently, further research on DNA yield has 

challenged these early assumptions regarding the preference of teeth over all other bony 

elements. In a study of European individuals spanning the Neolithic, Bronze Age, and 

Iron Age, Gamba and colleagues compare endogenous DNA yields between samples 
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from the human petrous bone, other skeletal elements, and teeth, including whole 

portions of both roots and crowns (2014). In the initial experiment involving six 

individuals, the authors present endogenous DNA recovery from the petrous portion 4-

16-fold greater than the teeth and up to 183-fold great than other skeletal elements 

(Gamba et al. 2014).  

Further research on the utility of the petrous bone by Pinhasi and colleagues 

reveals that the segment of the petrous bone containing the otic capsule, the densest 

portion of the bone, is the most favorable for endogenous DNA recovery, offering hope 

for samples from high temperature/tropical regions (2015). While it seems that the 

petrous portion represents one of the best sampling options for DNA recovery, the 

invasiveness of the procedure and destruction of cranial morphology excludes the 

application of this method for some research applications.  

In response, Sirak and colleagues offer a minimally-invasive cranial base drilling 

method (CBDM) for petrous bone sampling, executed by drilling into the bony ridge 

between the jugular foramen and carotid canal and into the osseous inner ear (2017). In 

comparison to full destruction of the petrous portion, the CBDM method produces less 

endogenous DNA and fewer reads aligned to the human genome than the more 

destructive traditional petrous portion sampling, but performed far better than an 

unidentified postcranial bone sample (Sirak et al. 2017). This method may offer a viable 

option for intact crania that will also accommodate future morphological study (Sirak et 

al. 2017). 
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However, variable preservation of samples must also be considered. Sampling 34 

ancient skeletons, Hansen and colleagues compared DNA yield from portions of the 

petrous and parietal bones as well as teeth. With the exception of poorly preserved dental 

remains in a group of Vikings, the authors found that tooth cementum performs equally 

as well as the petrous portion in situations where teeth are not poorly preserved, and that 

tooth samples outperform petrous samples in cases of poor petrous preservation (Hansen 

et al. 2017).  

For analyses using dentition, improved tooth cementum isolation procedures were 

outlined by Damgaard and colleagues (2015). This technique demonstrates a mean 

increase of 5-fold higher endogenous DNA yields in cementum over dentin, 

accomplished through removal of the enamel with a transverse cut of the tooth and 

drilling out the dentin, resulting in a “root cap” which isolates the cementum (Damgaard 

et al. 2015). While there are some nuances depending on differential preservation, 

Hansen and colleagues reinforce the evidence for prioritizing the petrous portion and 

cementum as samples for ancient genomic studies (2017).  

Although DNA yields for post-cranial elements have been thoroughly examined 

in forensic contexts (Mundorff and Davoren 2014), no systematic studies of post-cranial 

elements have been conducted in ancient skeletal remains. Whereas the general thought 

in forensic genetics on the preference for long bone cortical bone samples had mirrored 

that in ancient genetics, Mundorff and Davoren (2014) demonstrate that small cancellous 

bones yield more DNA than long cortical bones, even with increasing post-mortem 

interval. Although more research is needed, Andronowski et al. (2017) used the same 
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bones and DNA extracts to examine osteocyte structure and determined that the results 

may be due to residual soft tissue in trabeculae of cancellous bone, which may negate the 

applicability of cancellous bones for improved recovery in ancient contexts. More 

analysis is needed to determine the persistence of DNA in individual skeletal elements 

and bone types, both in forensic and ancient contexts. 

In some cases, especially when dealing with infants with no tooth roots available, 

in the absence of the petrous portion, post-cranial bones are the only option for DNA 

extraction. Systematic examination of the preservation of DNA in post-cranial bones for 

ancient DNA analysis is needed and further studies are needed in forensic genetics to 

understand differential preservation based on diverse taphonomic conditions.  

Thanks to advancements in understanding of DNA yield by skeletal element, 

combined with more efficient DNA extraction techniques, less overall material is needed 

for ancient DNA analyses. As a result, sampling strategies should be developed on a 

case-by-case basis. In situations where crania are intact and preservation is optimal (cold 

climates or cave environments), the CBDM method may offer minimally-invasive but 

high-yield results (Sirak et al. 2017). However, in situations wherein the crania are intact 

but recovered from tropical environments, tooth cementum isolation may offer the best 

option. Ultimately, decisions on sampling must be assessed on a situational basis, taking 

into account the preservation conditions as well as the opinions of archaeologists, 

museum curators, and descendant communities. 
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Conclusion 

 

 

As ancient DNA and forensic genetics studies have reached their third decade, 

methods for sampling and protocols that combine additional digestion steps for greater 

results in endogenous DNA recovery continue to improve. These advancements allow for 

increased DNA recovery with reduced destruction of human remains and museum 

specimens. Starting with decreased amounts of sample inputs, knowledge of optimal 

sample materials and improvements in extraction methods, ancient DNA analysis has 

become less destructive and exponentially more informative. Combined with advances in 

next-generation sequencing and bioinformatic approaches, extensive knowledge can be 

gained from small amounts of input material, methods that can be harnessed by forensic 

genetics researchers.  

In both ancient and forensic contexts, extraction protocols optimized for varying 

sample types and down-stream analysis can be selected for increased DNA yield and data 

returns. Careful consideration of extraction protocols is an essential piece of all degraded 

DNA research. By extension, recently improved ancient DNA extraction methods may 

also be applied to other degraded samples, including skeletal samples in forensic genetics 

laboratories. The increasing use of NGS platforms in forensic DNA research is prompting 

the adoption of extraction protocols geared towards high-throughput sequencing (Jäger et 

al. 2017). This movement toward increased recovery privileges ancient DNA techniques 

for DNA extraction, especially those which are optimized for bone and tooth material and 

those which can be automated (Rohland et al. 2018) for forensic purposes for degraded 

skeletal samples.  



63 

 

Modifications including predigestion steps (Damgaard et al. 2015; Hansen et al. 

2017), demineralization buffers (Loreille et al. 2007), binding buffers (Dabney et al. 

2013; Allentoft et al.  2015), and silica-based columns (Dabney et al. 2013) or magnetic 

beads (Rohland et al. 2018) can all increase yields of DNA that can be exploited through 

NGS approaches. These protocols, all from ancient DNA research with the exception of 

the Loreille et al. (2007) method, can be applied to forensic samples. Combined with 

extraction techniques, library preparation techniques fore degraded samples that have 

been optimized for ancient samples are also transferrable to particularly degraded 

forensic samples where single-stranded libraries may recover more DNA. 

Throughout the last three decades of ancient DNA and forensic genetics research, 

the two fields have influenced one another, trading protocols and techniques for working 

with degraded DNA. Ancient DNA researchers have pioneered the use of NGS for 

degraded samples, selecting prime samples for DNA yield, optimizing extraction 

protocols for short fragment recovery, and using bioinformatics to isolate endogenous 

sequences. These same practices can be applied in forensic genetics, allowing for 

increased DNA recovery, capture of shorter fragments for SNP and STR analysis through 

NGS, and deconvolution of mixed samples. Through increased understanding of 

sampling strategy and extraction components, operating procedures tailored to provide 

optimal results can be designed, reducing overall laboratory costs, time, labor, and, most 

importantly, limiting destruction of human remains and other important materials.  
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BRIDGING STATEMENT 

 

 Chapter 2 provides a comprehensive overview of DNA extraction techniques for 

degraded DNA. Tracing the history of DNA extraction methods in both the fields of 

ancient DNA and forensic genetics research, the chapter offers a look at a variety of 

techniques and protocols as well as sample substrates. Building upon the knowledge base 

established in Chapter 2, the following chapter provides a case study of a specific non-

destructive extraction technique developed by Bolnick and colleagues in 2012.  

The Bolnick non-destructive technique is validated in Chapter 3, highlighting its  

utility in extracting DNA from both ancient and modern (forensic) tooth samples. 

Situated within both fields of degraded DNA analysis, extracts produced using the 

Bolnick protocol were amplified using traditional polymerase chain reaction (PCR) and 

next-generation sequencing (NGS) library preparation. Furthermore, the non-destructive 

nature of the protocol was assessed using traditional metrics, weights, histology, isotopic 

analysis, and scanning electron microscopy (SEM). 

Issues presented within Chapter 2 are of prime importance to the testing of the 

Bolnick protocol in Chapter 3. The reagents used, including ethylenediametetracetic acid 

(EDTA), proteinase K, and guanidine salts, are explained in Chapter 2, allowing for 

understanding of their roles within the extraction protocol used in Chapter 3. The 

practical aspects of challenges associated with degraded samples, including inhibition, 

first presented in Chapter 2, are more fully explored in Chapter 3.  

 



83 

 

CHAPTER 3: VALIDATION AND IMPACT ASSESSMENT OF A 

NON-DESTRUCTIVE DNA EXTRACTION METHOD ON MODERN 

AND ANCIENT TOOTH SAMPLES 
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histological analysis. West and Saul sampled and prepared enamel for isotopic analysis 
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Abstract 

 

AUTHORS: West FL, Algee-Hewitt BFB, Eleazer CB, Hulsey BI, Scopa Kelso R, 

Cabana GS, Auerbach BM, Steadman DW 

 

OBJECTIVES: This research tests the application of the Bolnick et al. (2012) non-

destructive DNA extraction protocol for isolating mitochondrial and nuclear DNA from 

both forensic-age and ancient human teeth. Any macrostructural and microstructural 

changes are assessed through tooth weights and measurements, histological and isotopic 

analyses, and scanning electron microscopy (SEM). 

 

MATERIALS AND METHODS: Twenty modern and four ancient teeth were used to 

validate the Bolnick extraction method. Total extracted DNA was quantified and 

mitochondrial and nuclear DNA PCR primers were used to amplify samples. The Bolnick 

protocol was also tested on an additional sixteen modern and three ancient teeth to 

determine whether the protocol introduces damage to internal tooth microstructure where 

damage was defined as statistically significant differences between treated and untreated 

samples, suggesting microstructural alterations to the tooth. Tooth weights and metrics 

were collected; histology, isotope analysis, and SEM were used to explore the impacts of 

the non-destructive buffer.  

 

RESULTS: Nineteen of the twenty modern samples and all four ancient samples yielded 

mitochondrial DNA. All twenty-four samples were successfully amplified using a short 
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nuclear target. No samples, however, yielded STR profiles using the ForenSeq DNA 

Signature Prep kit when sequenced on the Illumina MiSeq platform. While tooth metrics 

showed no significant impact of exposure to the non-destructive extraction buffer, tooth 

weights indicated microstructural loss. Oxygen and carbon isotopic analysis showed no 

significant difference in treated and untreated samples. Histological analysis revealed 

damage to the tooth root and enamel in samples exposed to the extraction buffer; SEM 

showed slight staining of the enamel surface. 

 

DISCUSSION: We successfully extracted mitochondrial and nuclear DNA from modern 

and ancient tooth samples using the Bolnick protocol. However, the extracted DNA was 

insufficient for use with the next-generation Illumina MiSeq FGx platform. We determine 

that the Bolnick protocol does have a minimally destructive impact on teeth that have 

undergone extraction. While the protocol does yield DNA, its utility may be limited to 

mitochondrial DNA analyses as well as contexts in which some microstructural impact is 

acceptable. 
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Introduction 

 

In the past ten years, two non-destructive DNA extraction protocols have been 

developed specifically for use with bone and tooth material. The first, proposed by 

Rohland, Siedel, and Hofreiter (2004) hereafter the “Rohland protocol”—is based on 

three separate soaking buffers that were later modified (Hofreiter, 2012) and validated for 

chimpanzee museum specimens (Mohandesan et al., 2012) as well as human teeth 

(Gomes et al., 2015).  The second, proposed by Bolnick et al. (2012) — hereafter, the 

“Bolnick protocol”— was for skeletal material using a demineralization soak prior to 

extraction, maintaining the integrity of the physical specimen while recovering 

amplifiable mitochondrial and nuclear DNA. The Bolnick protocol offers a non-toxic 

alternative to the Rohland protocol, which includes a guanidine-thiocyanate based buffer 

that exposes the samples to toxic substances.  

While studies have validated the DNA extraction method of the Rohland protocol 

on archaeological and museum samples, no study to date has validated the Bolnick 

method nor examined the effects of the method on dental structure. In archaeological and 

forensic research, teeth are routinely used in a variety of analyses, including isotopic 

analysis (e.g. Bentley et al., 2018; Whelton et al., 2018), histological analysis (e.g. 

Hollund, Arts, Jans, & Kars, 2015; Eleazer & Jankauskas, 2016), and studies of enamel 

structure (e.g. Smith, 2008; Bocaege et al., 2010). We observe loss of mass in modern 

teeth after exposure to the soaking buffer, which may present a concern for subsequent 

analyses, including isotopic testing and histology.  
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The loss of mass in teeth after exposure to the Bolnick protocol reagents calls for 

further study into any microscopic damage to dentition. We define damages in terms of 

reduction in tooth mass, with statistically significant results indicating damage to the 

tooth microstructure. We presume that mass is lost via the non-destructive soaking buffer, 

which causes internal microscopic damage rather than damage to the dental structure as a 

whole. We examine the effect of the Bolnick protocol on dental microstructure in modern 

teeth and teeth from archaeological contexts. We also validate the Bolnick protocol, 

targeting both mtDNA and nuclear DNA. In addition, we combine a more recent 

extraction protocol designed for increased DNA yield in forensic samples (Kemp et al., 

2012) with the nondestructive buffer (Bolnick et al., 2012) method and tested it here to 

determine whether downstream extraction steps can be modified for optimized DNA 

recovery.  

 

Background 

 

Over the past three decades in forensic genetics as well as ancient DNA research, 

advances in sequencing technology and bioinformatic approaches have expanded the 

potential for working with highly degraded samples and greatly increased the data 

generated per sample (Shapiro & Hofreiter, 2014; Hofreiter et al., 2015; Sarkissian et al., 

2017; Glocke & Mayer, 2017). In addition, improved extraction methods have increased 

the recovery of DNA from skeletal material from increasingly smaller samples, from 

larger starting quantities in excess of 1 gram (g) (Hänni et al., 1994; Yang et al., 1998; 
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Edson, Ross, Coble, Parsons, & Barritt, 2004; Shapiro et al., 2004) to as little as 200-300 

milligrams (mg) (Rohland & Hofreiter, 2007; Dabney et al., 2013; Allentoft et al., 2105; 

Sirak et al., 2017).  

Until quite recently, almost all advanced extraction protocols mandated the 

destruction (i.e., powdering, grinding, or pulverization) of bone or tooth material (Hänni 

et al., 1994; Yang et al., 1998; Rohland and Hofreiter, 2007; Dabney et al., 2013; Kemp 

et al., 2017, Mathieson et al., 2018). Destructive methods on ancient human remains raise 

concerns among descendant communities, museum conservation staff, and any 

researchers requiring the maintenance of physical integrity of remains (Rohland, Siedel, 

& Hofreiter, 2004; Bolnick et al., 2012; Gomes et al., 2015).  

Similarly, forensic analysts may attempt to limit the amount of tissue consumed 

during DNA extraction due to the limited availability of sample material, high failure 

rates for degraded or low-copy-number templates, and return of intact remains to the 

investigative agency or family members of the deceased (Miloš et al., 2007; Mundorff, 

Bartelink, & Mar-Cash, 2009; Hickman et al., 2018). In addition, forensic analysts must 

reserve intact sample for future reanalysis and potentially more complex genotyping 

(Jäger et al., 2017; Parsons, Alonso, Muller, Roewer, & Budowle et al., 2017).  

In DNA analysis of bone and tooth material, there are multiple reasons to limit the 

destruction of sample tissue as part of the DNA extraction process, including ethical 

concerns (Kaestle & Horsbaugh, 2002; Tsosie, 2007), sample availability, the need to 

minimize destruction of rare skeletal remains (Meyer et al., 2012; Brown et al., 2016), 

and the need to keep remains intact.  
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The Rohland and Bolnick protocols are two proposed solutions. Rohland et al. 

(2004) tested three different extraction protocols, with a guanidine thiocyanate (GuSCN)-

silica based method yielding best results over Tris-sodium chloride (NaCl) and sodium 

phosphate buffers, respectively. This approach employed a five-day soak in total of 40 ml 

of GuSCN-based buffer [5 molar (M) GuSCN, 50 millimolar (mM) Tris, pH 8.0, 25 mM 

NaCl, 1.3% Triton X-100, 2.5 mM PTB, 20 mM EDTA] at 40° C. Samples tested were 

chimpanzee bone and tissue between 37 and 164 years old from which the authors 

successfully amplified mitochondrial DNA fragments (Rohland et al. 2004). While it did 

not yield amplifiable nuclear DNA, the authors reported no visible damage to the tooth 

specimens extracted, although this did not rule out potential chemical alterations to the 

samples. (Rohland et al., 2004). Later applications of the protocol indicated recovery of 

nuclear DNA of relatively small (around 250 base pairs (bp) fragment sizes (Asher and 

Hofreiter 2006; Fleischer et al. 2008; Hofreiter 2012).  

Mohandesan et al. (2012) presented a modified version of this protocol using 

silica-based DNA purification was validated via extractions of 86 chimpanzee teeth from 

worldwide museum collections. Mohandesan et al. (2012) used the modified Rohland 

protocol with amplification of mitochondrial hyper-variable region-1 (HVR-1) with two 

overlapping primer sets of 210 bp and 130 bp. This method highlighted some drawbacks, 

only successfully amplifying and sequencing HVR-1 for 65% of samples, with evidence 

of cross-contamination between samples, likely due to surface contamination 

(Mohandesan et al. 2012). With both a lower success rate than Rohland et al. (2004) and 

introduced external contamination, Mohandesan et al. (2012) demonstrated how 
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inconsistency in handling of museum specimens can impact later DNA analyses. These 

studies did not, however, perform a pre-extraction decontamination strategy, other than to 

wipe down samples with HPLC-grade water (Mohandesan et al., 2012). Most ancient 

DNA studies, including the Bolnick protocol, employ sodium hypochlorite to reduce 

exogenous contaminates (Kemp and Smith 2005). 

A subsequent validation of the Rohland et al. (2004) protocol performed on 

ancient human teeth from eight individuals used incubation in the extraction buffer for 48 

hours, modified from the original 5-7 days (Gomes et al., 2015). Samples from eight 

individuals from archaeological sites (Neolithic and Chalcolithic periods) in Spain were 

analyzed, each with one tooth destructively sampled and one tooth non-destructively 

sampled and mitochondrial HVR-1 and HVR-2 amplified (Gomes et al. 2015). Extracts 

from four individuals (eight samples total) were assessed using quantitative PCR (qPCR), 

which determined that the non-destructively isolated extracts performed better half of the 

time than the destructively sampled extracts (Gomes et al., 2015).   

Gomes et al. (2015) did not, however, control for variability of DNA yields 

between different tooth samples, which may an additional factor in DNA yields. 

Variation in DNA yields from teeth has been attributed to age, sex, as well as pathology. 

This presents difficulty in determining whether increased yields are due to improved 

extraction efficiency or more endogenous DNA in tooth samples without the use of large 

sample sizes (Higgins et al., 2011; Higgins 2013).  Gomes et al. (2015) reported damage 

to the samples from the non-destructive treatment, but this was not further explored. 

Damage to the samples is also seen in the macroscopic photographs before and after 
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exposure to the nondestructive buffer, showing high fragmentation of one of the eight 

samples and increased porosity in several others Gomes et al. (2015: Table 2). 

Bolnick and colleagues (2012) proposed an alternative DNA extraction protocol 

for human tooth and bone material using a demineralization soak prior to extraction. Like 

the Rohland method, this approach maintained the integrity of the physical specimen 

while recovering amplifiable mitochondrial and nuclear DNA. In contrast to the Rohland 

protocol, the Bolnick method uses ethylenediaminetetraacetic acid (EDTA), a 

decalcification agent, in combination with proteinase K as an alternative to guanidine 

thiocyanate (GuSCN)-based buffer. GuSCN can be harmful if inhaled or if it contacts 

skin, thus the use of GuSCN without confirmed removal after exposure would cause the 

tooth samples themselves to become hazardous after extraction. Bolnick and colleagues 

combined the alternative EDTA-based buffer with a silica-based extraction developed by 

Rohland and Hofreiter (2007). This extraction method uses a silica-suspension extraction 

which involves exposure to a GuSCN binding buffer after the tooth sample has been 

removed from the non-destructive soaking buffer.  

Additional methods for non-destructive extraction of DNA have focused 

primarily on insect specimens in museum collections and may provide alternatives to 

both the Rohland and Bolnick protocols (Thomsen et al., 2009; Porco et al., 2010; 

Castalanelli et al. 2010). Details of the various non-destructive extraction protocols and 

their buffer compositions are outlined in Table 3: 1. Many of the methods used for insect 

specimens propose alternatives to EDTA-based soaks, including ammonium bicarbonate 

buffer used for collagen analysis (Doorn, Holland, & Collins, 2011), but these methods  
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Table 3: 1: Comparison of non-destructive DNA extraction protocols 

 

Buffer 

Composition 

Target 

Sample 

Soaking 

Volume 

Incubation 

Time & 

Temp. 

Downstream 

Analyses 

Citation 

5 M GuSCN, 50 

mM Tris, pH 

8.0, 25 mM 

NaCl, 1.3% 

Triton X-100, 

2.5 mM PTB 

(10), 20 mM 

EDTA 

Chimpanzee 

Teeth; 

Hyena 

tissue 

40 mL  5-7 days 

at 40°C 

PCR (151-

414 bp) 

Rohland 

et al., 

2004 

3 mM CaCl2, 

2% 

sodium dodecyl 

sulphate (SDS), 

40 mM 

dithiotreitol 

(DTT), 250 

mg/ml 

proteinase K, 

100 mM Tris 

buffer pH 8 and 

100 mM NaCl 

Insect 

Specimens; 

Sediments 

0.5-1.5 

mL 

16-20 

hours at 

55° C 

PCR  Thomsen 

et al., 

2009 

100 mM NaCl, 

50 mM Tris‐HCl 

pH 8.0, 10 mM 

EDTA pH 8.0, 

0.5% SDS (after 

Ivanova et al. 

2006) 

Insect 

Specimens 

50 uL 1, 2, 4, & 

12 hours 

DNA 

barcoding for 

mitochondria

l DNA 

Porco et 

al., 2010 

0.5 M EDTA 

and 0.25 mg/mL 
-1 proteinase K, 

pH 8.0) 

Ancient 

Human 

Bone and 

Teeth 

10 mL Overnight 

at room 

temperatu

re 

PCR for 

mitochondria

l and nuclear 

DNA 

Bolnick 

et al., 

2012 

After Rohland et 

al. 2004 

Protocol 

only 

Extraction 

buffer 

volume 

dependent 

on sample 

size 

5 days in 

the dark 

with slow 

agitation 

Mitochondria

l and nuclear 

DNA 

Hofreiter

, 2012 
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Table 3: 1, continued: Comparison of non-destructive DNA extraction protocols 

 

Buffer 

Composition 

Target 

Sample 

Soaking 

Volume 

Incubation 

Time & 

Temp. 

Downstream 

Analyses 

Citation 

After Rohland et 

al. 2004 

Chimpanzee 

Teeth 

5 mL 5-7 days 

in the dark 

with slow 

agitation 

HVI 

mitochondria

l DNA 

Mohande

san et al., 

2012 

50 g guanidine 

isothiocyanate, 

5.3 ml 

of 1 M Tris-HCl, 

pH 7.5, 5.3 ml 

0.2 M EDTA, 

10.6 ml 20% 

Sarkosyl, 1 ml b-

mercaptoethanol, 

dissolved in 50 

ml water 

 

Insect 

Specimens 

200 uL Overnight 

at 55° C 

NGS, RAD-

tagging 

Tin et 

al., 2014 

After Rohland et 

al. 2004 

Ancient 

Human 

Teeth 

40 mL 48 hours 

at 47° C 

PCR & RT 

PCR 

Gomes 

et al., 

2015 

 

 

have not yet been used for DNA extraction of human skeletal material. The use of EDTA 

in non-destructive protocols may in fact cause damage, due to its characteristic binding 

with calcium ions, resulting in a decalcifying effect (Hofreiter, 2012); both the Rohland 

and Bolnick protocols include EDTA. The alternative buffers used in these approaches 

may provide alternatives to EDTA-based buffers to limit the decalcification of skeletal 

samples.  

The Rohland and Bolnick protocols both use non-destructive buffers in which the 

samples are immersed for 18 hours to five days, exposing the tooth to chemicals meant to 

decalcify (EDTA) the hydroxyapatite matrix and denature proteins (proteinase K), 
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notably the histones around which DNA is tightly wrapped within the cellular matrix. 

While traditional protocols mechanically pulverize the skeletal sample, these protocols 

depend on chemical lysis to release DNA trapped within the hydroxyapatite matrix of the 

tooth.  

Relating to tooth structure, cementum has been shown to be the most DNA-

enriched portion of the tooth (Damgaard et al. 2015). The pulp cavity, which contains 

mostly cellular material and little mineral content, has been targeted as a rich source of 

DNA, albeit with low recovery of nuclear DNA within even a few months after death 

(Higgins, Rohrlach, Kaidonis, Townsend, & Austin, 2015). Enamel and dentine have 

been shown to be poor reservoirs for DNA preservation, with high reliance on cementum 

as the primary source of DNA in tooth material (Higgins, 2013). 

We suggest that the demineralizing effect of the EDTA in these protocols allows 

for some release of DNA from the permeable tooth matrix, but to a lesser extent than 

protocols that utilize mechanical pulverization and complete demineralization. Loreille 

and colleagues (2007) present the effectiveness of EDTA as a demineralization agent in 

full digestion of sample materials before extraction. If exposed to EDTA for a sufficient 

duration of time, the bone powder will completely demineralize into the buffer solution 

(Loreille et al., 2007). 
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Materials and Methods 

 

Materials 

 

A total of 36 teeth modern and seven ancient teeth were used to validate the Bolnick 

protocol and explore the macro- and micro-structural impacts on tooth samples (see Table 

3: 2 for list). Fifteen modern and four ancient teeth were used to test the protocol as 

published. Five teeth were used to determine whether the soaking buffer treatment could 

be combined with an alternative downstream extraction protocol (Kemp 2012).  

To explore the microstructural impacts of the Bolnick protocol on human tooth 

microstructure, we conducted histological, isotopic, and scanning electron microscopy 

analyses of an additional 16 modern teeth and three ancient teeth. The four ancient teeth 

used for the validation study were obtained from the Norris Farms #36 site (excavated in 

1983), which dates to ca. 750 years BP, with permission from the Illinois State Museum. 

An additional three ancient teeth were used in the testing of the protocol on tooth 

microstructure, obtained with permission from the central Cuzco valley of Peru, dating to 

~1000 CE. 
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Table 3: 2: List of Samples and Respective Analyses. 

 

Sample ID Tooth Type Analysis 

Bolnick 1 Maxillary Incisor DNA Extraction Validation - Bolnick 

Bolnick 2 Mandibular 4th Premolar DNA Extraction Validation - Bolnick 

Bolnick 3 Mandibular 1st Molar DNA Extraction Validation - Bolnick 

Bolnick 4 Mandibular 1st Molar DNA Extraction Validation - Bolnick 

Bolnick 5 Mandibular 1st Molar DNA Extraction Validation - Bolnick 

Bolnick 6 Mandibular 3rd Molar DNA Extraction Validation - Bolnick 

Bolnick 7 Mandibular 2nd Molar DNA Extraction Validation - Bolnick 

Bolnick 8 Mandibular 3rd Molar DNA Extraction Validation - Bolnick 

Bolnick 9 Mandibular 3rd Molar DNA Extraction Validation - Bolnick 

Bolnick 10 Maxillary 3rd Molar DNA Extraction Validation - Bolnick 

Bolnick 11 Mandibular 1st Molar DNA Extraction Validation - Bolnick 

Bolnick 12 Mandibular 2nd Molar DNA Extraction Validation - Bolnick 

Bolnick 13 Mandibular 3rd Molar DNA Extraction Validation - Bolnick 

Bolnick 14 Mandibular 3rd Molar DNA Extraction Validation - Bolnick 

Bolnick 15 Maxillary 3rd Molar DNA Extraction Validation - Bolnick 

Bolnick 16 Mandibular 2nd Molar DNA Extraction Validation - Kemp 

Bolnick 17 Mandibular 1st Molar DNA Extraction Validation - Kemp 

Bolnick 18 Mandibular 1st Molar DNA Extraction Validation - Kemp 

Bolnick 19 Maxillary 2nd Molar DNA Extraction Validation - Kemp 

Bolnick 20 Mandibular 3rd Molar DNA Extraction Validation - Kemp 

Bolnick 21 Mandibular 1st Molar Impact Assessment – Isotope 

Bolnick 22 Maxillary 2nd Molar Impact Assessment – Isotope 

Bolnick 23 Mandibular 3rd Molar Impact Assessment – Isotope 

Bolnick 24 Mandibular 3rd Molar Impact Assessment – Isotope 

Bolnick 25 Mandibular 2nd Molar Impact Assessment – Isotope 

Bolnick 26 Mandibular 3rd Molar Impact Assessment – Isotope 

Bolnick 27 Maxillary 2nd Molar Impact Assessment – Histology 

Bolnick 28 Maxillary 2nd Molar Impact Assessment – Histology 

Bolnick 29 Mandibular 3rd Molar Impact Assessment – Histology 

Bolnick 30 Mandibular 2nd Molar Impact Assessment – Histology 

Bolnick 31 Mandibular 2nd Molar Impact Assessment – Histology 

Bolnick 32 Mandibular 2nd Molar Impact Assessment – SEM 

Bolnick 33 Mandibular 2nd Molar Impact Assessment – SEM 

Bolnick 34 Mandibular 2nd Molar Impact Assessment – SEM 

Bolnick 35 Mandibular 3rd Molar Impact Assessment – SEM 

Bolnick 36 Mandibular 3rd Molar Impact Assessment – SEM 

Ancient 1 Mandibular 3rd Molar DNA Extraction Validation - Bolnick 

Ancient 2 Mandibular 3rd Molar DNA Extraction Validation - Bolnick 

Ancient 3 Mandibular 2nd Molar DNA Extraction Validation - Bolnick 

Ancient 4 Mandibular 2nd Molar DNA Extraction Validation - Bolnick 

Ancient 5 Mandibular 3rd Molar Impact Assessment – Histology 

Ancient 6 Mandibular 2nd Molar Impact Assessment – Isotope 

Ancient 7 Mandibular 1st Molar Impact Assessment – Isotope 
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The 36 modern teeth were each extracted from different anonymous individuals, 

procured from a local dentist in East Tennessee with IRB approval through The 

University of Tennessee, Knoxville (UTK). Immediately after dental extraction, the teeth 

were placed in individual DNA-free tubes with molecular-grade water and stored at 4° C. 

The tooth samples were removed from the water and air dried in a biohazard hood for 

four months, with remaining soft tissue removed using decontaminated forceps when 

necessary and extracted as outlined below.  

 

Methods 

 

Teeth were cleaned and prepared for analyses at UTK. All sample preparation for 

the modern samples, extraction, and PCR setup occurred in the Molecular Anthropology 

Laboratories’ (MAL) dedicated Forensic DNA Laboratory which includes a biohazard 

hood for working with degraded samples of a potentially biohazardous nature, including 

teeth with soft tissue present. All ancient samples were extracted and prepared for PCR in 

the MAL’s dedicated Ancient DNA Laboratory. Steps following PCR amplification, 

including gel electrophoresis and quantification were performed in the MAL’s Modern 

DNA Laboratory at the UTK, following best practices for ancient DNA (Cooper & 

Poinar, 2001) separating pre- and post-PCR activities. Next-generation sequencing on the 

Illumina MiSeq FGx platform took place at the Forensic Genetics Laboratory at Western 

Carolina University. 
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After preparation (see below), 19 samples were distributed to three labs for 

histological and isotopic analyses. The samples were prepared for isotopic analysis at the 

MAL and sent to IsoForensics, Inc., Salt Lake City, Utah for analysis. Histological 

samples were prepared in the department of Anthropology histology laboratory at UTK 

and analyzed at the West Virginia School of Osteopathic Medicine. All scanning electron 

microscope work was performed at the Advanced Microscopy and Imaging Center at 

UTK.  

 

Bolnick Protocol DNA Extraction, Quantification, Amplification, and Sequencing 

 

A total of 24 teeth (20 modern, 4 ancient) were decontaminated by soaking in 6% 

sodium hypochlorite for 15 minutes, rinsed with molecular grade water, and air dried 

overnight (Kemp and Smith 2005; Bolnick et al. 2012). The teeth were soaked in non-

destructive soaking buffer (10ml 0.5M EDTA, 0.25 mg/mL -1 proteinase K) overnight at 

room temperature with gentle agitation, following the Bolnick protocol. After the buffer 

solution was poured off and retained for extraction, the teeth were rinsed with molecular 

grade water and air-dried for storage. The soaking buffer solution was extracted 

following the silica-based protocol by Rohland and Hofreiter (2007) as detailed by 

Bolnick and colleagues (2012) for 15 of the modern samples and the four ancient 

samples.  
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Modified Bolnick Protocol 

 

To determine whether the Bolnick soaking method could be used with other 

extraction protocols, 5 modern teeth were treated as outlined above but extracted using a 

protocol designed by Kemp and colleagues integrating the Promega Wizard® PCR Preps 

DNA Purification System designed for forensic samples (Kemp et al., 2012). This 

protocol was optimized to reduce the number of steps during the extraction process to 

minimize overall DNA loss, a consequence of extraction that is especially important 

when dealing with forensic and ancient samples which are often characterized by low 

starting template DNA (Goodwin et al., 2018). Additionally, the binding buffer for the 

Bolnick protocol requires 24.81g of guanidine thiocyanate (GuSCN) for each sample, a 

chemical which can be harmful if inhaled or comes in contact with skin and is expensive, 

with an average cost of $100 per 100 grams. In contrast, the Kemp protocol requires 

much smaller amounts (250 microliters (uL) per sample) of 6 M guanidine HCl 

(Teknova) which can be purchased in solution, reducing the chances of inhalation as well 

as the potential for production of cyanide gas, which can occur when GuSCN contacts 

sodium hypochlorite, a commonly-used lab-based decontaminant (Paik and Wu 2005).  

The set of 24 sample extracts were quantified on the Agilent Bioanalyzer using 

high sensitivity chips to detect fragment size and perform DNA quantification, performed 

at the Molecular Biology Core lab at UTK. Samples were also quantified using AccuBlue 

broad range dye on the NanoDrop 3300 fluorospectrophotometer. All samples underwent 

polymerase chain reaction (PCR), using a short mtDNA primer (113 bp) designed for 
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degraded DNA (Alonso et al. 2004) as well as a slightly larger mitochondrial primer (183 

bp) designed by Kemp (2006) for amplification of ancient DNA. For confirmation of 

nuclear DNA, samples were amplified using a 67 bp target from the c-fms proto-

oncogene for the CSF-1 receptor gene (Swango et al., 2006). All 24 samples were then 

prepared for sequencing on the Illumina MiSeq FGx platform using the ForenSeqTM 

DNA Signature Prep kit with an expanded marker set using DNA Primer Mix B as 

follows. One nanogram (ng) of purified DNA from each sample was amplified using 

Primer Mix B, which includes 59 STRs and 95 identity-informative SNPs, 56 ancestry-

informative SNPs, and 22 phenotypic-informative SNPs. Targets were enriched, purified, 

and normalized. Samples were pooled, denatured, diluted, and loaded into the reagent 

cartridge and sequenced on the MiSeq FGx platform.  

 

Methods: Dental Structural Analysis 

 

To assess the impact of the Bolnick protocol on tooth structure, dental metrics and 

weights were taken on selected samples before and after exposure to the soaking buffer. 

Photographs were taken before and after soaking to capture macroscopic changes in teeth 

due to exposure to the buffer, show in Figure 2. All 20 modern teeth were measured for 

mesio-distal length (MDL) and buccal-lingual width (BLW). All 24 teeth were weighed 

before and after soaking. 

For histological analyses, tooth samples would be seen as affected by the 

treatment buffer through exhibiting more damage on the Oxford Histological Index 



102 

 

(OHI) (Hedges and Millard 1995).  The OHI provides descriptions of damage observed 

histologically in teeth and was used as a guideline for observing damage in this study as 

shown in Table 3: 3. 

Five contemporary tooth samples and one ancient were cut into halves, resulting 

in an untreated and treated sample from the same tooth. The first half of each tooth was 

left untreated. The modern tooth halves and one ancient half were treated with a 

combination of bleach and non-destructive extraction buffer. All samples were embedded 

in Buehler Epo-color resin epoxy with hardener. A vacuum pump and dessicator were 

utilized to stabilize the epoxy matrix and to remove air bubbles and ensure proper 

impregnation of the specimen with epoxy. In some cases, copper wire was required to 

position and stabilize the tooth within the epoxy resin (Marks, 1997). Thin sections were 

cut from the embedded wafers using an Allied low speed diamond blade saw and 

mounted to glass slides. The mounted sections were then ground to a uniform thickness 

of 100-200 micrometers with a Metaserv 2000 Polisher. Scratches produced during the 

grinding process were removed with fine-grained buffing paper. Digital images of the 

histological sections were captured with transmitted light microscopy at 1.25x and 5x 

using a Leica Aperio Versa microscope.  
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Table 3: 3: Descriptions of the Oxford Histological Index as outlined by Hedges and 

Millard, 1995. 

 

Index Value Percentage Intact 

Bone 

Description 

0 <5 No original features identifiable, other than 

Haversian canals 

1 <15 Small areas of well-preserved bone present, or 

some lamellar structure preserved 

by pattern of destructive foci 

2 <33 Clear lamellate structure preserved between 

destructive foci 

3 <67 Clear preservation of some osteocyte lacunae 

4 <85 Only minor amounts of destructive foci, otherwise 

generally well preserved 

5 <95 Very well preserved, virtually indistinguishable 

from fresh bone 

 

 

Measurements were taken with ImageScope software (Leica Biosystems Imaging, 

Inc.). The total area of damaged dental tissue for both the tooth root and enamel was 

measured and divided by the total area occupied by the tooth. The images shown in 

Figure 3 illustrate the damaged areas recorded. This total area of damage does not 

distinguish between areas of the tooth affected by diagenesis (e.g., infiltrations by 

microorganisms from the burial environment) and acid corrosion from the DNA 

extraction process. 

For isotopic analyses, damage to the tooth samples would be indicated by 

statistically significant differences between carbon and oxygen isotopic signatures in the 

treated and untreated samples. Two ancient molar teeth (~1000 years old) were sampled 

in the clean room laboratories at UTK. The top surface of tooth enamel was removed 

using a drill and conical bit and discarded. The conical bit was thoroughly cleaned with 

ethanol and then used to drill approximately 5 mg of pristine enamel powder from one 
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half of each tooth. The enamel powder from each tooth was transferred to a labeled 1.5-

ml micro-centrifuge tube (comprising samples AIT-1 Untreated & AIT-2 Untreated). The 

tooth roots were then removed for future DNA analysis. The tooth crowns (AIT-1 

Treated and AIT-2 Treated) were then soaked in bleach as per Kemp and Smith (2005) 

and in extraction soaking buffer as per Bolnick et al. (2012) to serve as the treated 

sample. A total of 5 mg of enamel was then removed from the treated enamel surface as 

outlined above. Five modern molars were abraded using a conical drill bit to remove 

surface impurities, after which 5 mg of enamel was removed from one half of the tooth 

using a diamond wheel bit and transferred to a 2 ml polypropylene tube (comprising 

samples IT-1 Untreated – IT-5 Untreated). For samples IT-1 Treated – IT-3 Treated, the 

tooth was then soaked in bleach as per Kemp and Smith (2005) and in extraction soaking 

buffer as per Bolnick et al. (2012) to serve as the treated sample. For samples IT-4 

Treated & IT-5 Treated, only the bleach step was performed and then enamel removed as 

with previous samples. 

In preparation for isotope analysis, all samples were treated with 3% hydrogen 

peroxide (H2O2) for 15 minutes. Oxidized samples were rinsed three times with deionized 

water, then treated with 0.1 M acetic acid (CH3COOH) for 15 minutes. Acid-treated 

samples were rinsed three times with deionized water before being dried in an oven at 

60°C overnight.  A total of 2 mg per sample was submitted to IsoForensics, Inc., in Salt 

Lake City, Utah for analysis. 

We examined the effects of the treatment on microwear and dental enamel 

perikymata in six contemporary molars. Perikymata are microscopic grooves found along 
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the tooth’s enamel surface, which can provide information regarding dental growth and 

development (Smith, 2008; Bocaege et al., 2010). Obscuration or destruction of the 

perikymata would indicate that the protocol is microstructurally destructive. The teeth 

acquired from archaeological (ancient) samples had significant enamel damage that 

impeded analysis and were excluded from the study. The six modern teeth were imaged 

before exposure to the non-destructive buffer solution (untreated) and after exposure 

(treated). Dentition was cleaned with HPLC water for pre-treatment tooth imaging, and 

the same protocol was used for application of the extraction solution as other samples in 

post-treatment teeth before imaging using a Zeiss Auriga scanning electron microscope 

(SEM). Samples were oriented visually, with imaging focused on the buccal surface of 

each tooth. A focus on the buccal surface allowed for comparisons of effects on both 

microwear and perikymata.  

Lower magnification images (around 50x) were taken to establish consistent 

orientation between pre- and post-treatment teeth, as well as for finding the same fields of 

view for higher magnification (between 80 and 110x). These resulted in regions of 

interest (ROIs) measuring approximately 2700 micrometer (μm) by 1800 μm. Images 

were taken consistently at an extra high tension (EHT) voltage level of 4kV and beam 

current at 30kV/50pA. Because teeth were remounted for each imaging, working 

distances and magnifications varied slightly between pre- and post-treatment analyses. 
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Statistical Analysis 

 

Paired, or matched sample, t-tests were conducted to assess the before and after 

metrics and weights to determine if significant changes were caused by exposure to the 

non-destructive soaking buffer. Paired t-tests were also used to compare carbon and 

oxygen isotope results between untreated and treated samples. All statistical tests were 

analyzed using R version 3.5. 1. 

 

Results 

 

Validation of DNA Extraction 

 

The majority of samples (19 of 20 modern teeth and 4 out of 4 ancient teeth) were 

successfully amplified using the mtDNA primers designed for degraded DNA of 113 and 

185 bp, respectively (Alonso et al., 2004; Kemp, 2006), with the exception of Sample ID 

- Bolnick 8. All 24 samples were successfully amplified using the short (67 bp) nuclear 

DNA primer (Swango et al., 2006). Sample concentrations were analyzed using the 

Agilent Bioanalyzer to detect fragment size and perform DNA quantification for total 

DNA. The high sensitivity chip, which detects fragments between 35-10,380 bp and 

quantities between 5 picograms/microliter (pg/uL) and 5,000 pg/uL was employed. While 

fragment sizes are presented as an average, most samples included a broad range of 
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fragment sizes from 35 bp and higher, as can be seen in Figure 3: 1, depicting results 

from typical bioanalyzer sample run. Bioanalyzer totals are shown in Table 3: 4.  

Samples extracted using the Bolnick protocol yielded results from 10 pg/uL to 

1353 pg/uL. The samples extracted using the Kemp protocol yielded the highest amounts 

of DNA, with an average of 685 pg/uL, the lowest yield of 120 pg/uL, and the highest at 

1472 pg/uL. The ancient samples yielded between 10 pg/uL and up to 233 pg/uL of 

DNA. For comparison, most library preparation kits, such as the Illumina Nextera XT 

Library Prep kit, require 1 ng of total input DNA. 

 

 

 

 

Figure 3: 1: Bioanalyzer results for sample Kemp 2. The y axis depicts fluorescence units 

and the x axis basepair lengths. Standard ladders of known basepair length and 

fluorescence are used to determine the size and quantity of DNA fragments in each 

sample. Note the range of fragment sizes from 91 bp to 8,075 as shown on the x-axis, 

showing that there are multiple fragment sizes of various concentrations present in this 

sample. 

 



108 

 

Table 3: 4: Bioanalyzer results for samples, including total DNA quantity in pg/uL and 

average fragment size. An. denotes an ancient sample. 

 

Sample ID Total DNA (pg/uL) Average Fragment Size (bp) 

Bolnick 1 115 815 

Bolnick 2 2,900 4,798 

Bolnick 3 135 2,378 

Bolnick 4 7,530 142 

Bolnick 5 1.05 314 

Bolnick 6 6,765 3,485 

Bolnick 7 295 9,346 

Bolnick 8 105 3,915 

Bolnick 9 1,525 7,434 

Bolnick 10 8,755 108 

Bolnick 11 825 157 

Bolnick 12 5,575 166 

Bolnick 13 5,785 358 

Bolnick 14 5,285 143 

Bolnick 15 2,895 4,798 

Bolnick – An. 1 175 9,520 

Bolnick – An. 2 50 274 

Bolnick – An. 3 415 2,072 

Bolnick – An. 4 1,165 231 

Kemp 1 4,780 3,906 

Kemp 2 7,360 3,003 

Kemp 3 2,695 5,001 

Kemp 4 600 136 

Kemp 5 1,635 4,866 
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All 24 samples were run on the Illumina MiSeq platform, along with positive and 

negative controls. None of the samples extracted using the Bolnick protocol yielded 

positive results using the ForenSeq kit, although the positive control and three additional 

low template samples that were run with the Bolnick validation samples produced 

positive results, thus demonstrating that the lack of results was due to problems with the 

samples and not the kit or sequencing run. There are two possibilities for the lack of 

amplification from the Bolnick extraction. The first is that ForenSeq kit targets only 

nuclear DNA. The DNA from the samples may have been too fragmentary, since the 

STRs in the kit range from approximately 80 bp to almost 400 bp. The kit also includes 

forensic single nucleotide polymorphisms (SNPs), many of which are <125 bp in length; 

however, these were not successfully amplified even though some nuclear DNA was 

present in the samples, based on amplification of the 67 bp nuclear target using 

traditional PCR.  

The second possible reason for lack of amplification of the Bolnick samples is 

presence of inhibitors which prevented target amplification; this may be a weakness of 

the ForenSeq kit compared with traditional PCR. For the traditional PCR, platinum taq 

was used in the reactions which may provide more resistance to inhibitors than the 

proprietary polymerase used by the ForenSeq kit. EDTA and silica, both used in the 

Bolnick protocol, are common PCR inhibitors, as is calcium, which is present in teeth. 

Incomplete removal of these substances may have resulted in lack of amplification using 

this next-generation sequencing approach. 
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Macroscopic results  

 

A total of 24 forensic-age teeth were weighed before and after soaking, with 

weights reported in Table 3: 5. Thirteen forensic-age teeth were measured for mesio-

distal length (MDL) and buccal-lingual width (BLW), with measurements reported in 

Table 3: 6. Paired, or matched sample, t-tests were conducted to assess the before and 

after metrics and weights.  

Pre- and post-soak dental measurements and weights were analyzed using paired 

t-tests to determine whether significant differences could be found after samples were 

exposed to the soaking buffer. Measurements of the mesio-distal length and buccal-

lingual width indicated no significant differences before and after soaking. For mesio-

distal (MD) measurements, a paired t-test returned a p-value of 0.2747, α = 0.05, with t = 

1.98 and for buccal-lingual (BL) measurements, a p-value of 0.216, with t = 1.30. Effect 

sizes for MD were calculated using Cohen’s d as 0.23 and for BL as 0.18. These effect 

sizes would be seen as small, indicating that significant results may be seen with a larger 

sample sizes.  

Visual assessment of the tooth samples before and after indicate only minimal 

differences following extraction. As noted by previous studies (Rohland et al. 2004, 

Mohandesan et al. 2012, Bolnick et al. 2012, Gomes et al. 2015), tooth samples extracted 

appear cleaner and lighter in color than their original state after exposure to the soaking 

buffer, as can be observed in Figure 3: 2. This alteration in color is an observed change 

due to buffer treatment. 
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Table 3: 5: Sample weights before and after soaking, with total difference reported. 

 

Sample ID Weight Before 

(grams) 

Weight After 

(grams) 

Total Difference 

1 1.96 1.950 0.010 

2 1.65 1.550 0.100 

3 1.99 1.940 0.050 

4 1.93 1.830 0.100 

5 1.69 1.650 0.040 

6 1.87 1.780 0.090 

7 1.82 1.800 0.020 

8 2.12 2.040 0.080 

9 1.58 1.550 0.030 

10 1.71 1.650 0.060 

11 2.48 2.410 0.070 

12 2.43 2.390 0.040 

13 2.55 2.490 0.060 

14 2.08 1.970 0.110 

15 2.11 2.000 0.110 

16 2.12 2.050 0.070 

17 1.67 1.650 0.020 

18 1.67 1.630 0.040 

19 2.46 2.350 0.110 

20 1.87 1.760 0.110 

21 1.61 1.610 0.000 

22 1.67 1.670 0.000 

23 2.46 2.420 0.040 

24 1.53 1.520 0.010 
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Table 3: 6: Dental metrics, before and after soaking. Measurements are for mesio-distal 

length (MDL) and buccal-lingual width (BLW). 

 

 MDL 

(Before) 

BLW 

(Before) 

MDL 

(After) 

BLW 

(After) 

1 11.01 9.72 10.90 9.78 

2 11.98 10.37 10.58 9.66 

3 11.97 10.16 11.07 10.26 

4 11.44 10.02 11.16 10.07 

5 10.74 10.19 10.80 10.18 

6 11.53 9.75 11.55 9.65 

7 10.54 9.88 10.58 10.02 

8 11.45 11.98 11.70 8.98 

9 12.17 10.75 11.45 10.09 

10 11.37 9.41 11.19 10.57 

11 12.39 9.73 11.30 8.90 

12 11.47 10.07 11.11 9.32 

13 11.43 10.54 11.82 9.46 

14 11.42 10.72 10.27 10.92 
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Sample Before Treatment After Treatment 

1   

2   

3   

4 

 

 

5  

 

 

Figure 3:  2: Photographs of teeth before and after exposure to the Bolnick non-

destructive buffer. 
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Sample Before Treatment After Treatment 

6   

7 

 

 

8   

9   

10   

 

Figure 3: 2, continued: Photographs of teeth before and after exposure to the Bolnick 

non-destructive buffer. 
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In regard to the weights of the teeth before and after soaking, results were 

significant. Damage was defined as a significant reduction in tooth mass suggesting 

microstructural impacts to the teeth. Paired t-tests observed a reduction in tooth weights 

after exposure to the buffer, (p-value <0.0009, t = 4.29). The effect size of 0.12 was also 

calculated using Cohen’s d, showing that even with a small effect size, the impact of the 

soaking buffer produced significant results.  

 

Histology Results 

 

Comparisons of root damage versus enamel damage were used to determine if one 

type of tissue was more affected than the other by the soaking buffer. Damage was 

defined as per the Oxford Histological Index (OHI) (Hedges and Millard 1995) (see 

descriptions in Table 3: 3 as depicted in the original publication).  

Across all samples, the teeth that were treated had a higher percentage of damage, 

including destruction of lamellar structure and osteocyte lacunae. On average, the 

untreated samples displayed 24.33% root damage and 6.58% enamel damage, shown in 

gray in Table 3: 7. The treated samples exhibited 46.59% root damage and 11.38% 

enamel damage. For the ancient tooth, the enamel surface and roots were so damaged 

(OHI index of 0) that the percent damaged could not be calculated before or after 

exposure to the buffer treatment. 
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Table 3: 7: Damage percentages for tooth roots and enamel, untreated and treated 

samples. 

 

Sample ID Root Damage % Enamel Damage % 

MT-1 Untreated 8.91 4.82 

MT-1 Treated 41.25 9.22 

 

MT-2 Untreated 14.73 7.89 

MT-2 Treated 58.40 16.68 

 

MT-3 Untreated 28.26 1.93 

MT-3 Treated 58.04 5.36 

 

MT-4 Untreated 1.79 4.35 

MT-4 Treated 4.83 0.43 

 

MT-5 Untreated 16.63 7.31 

MT-5 Treated 37.01 13.81 

   

AT-1 Untreated 75.66 NA 

AT-1 Treated 80.00 NA 

 

 

These damage assessments do not distinguish between damage due to diagenesis 

and damage caused by exposure to the buffer (see Figure 3: 3 for areas of tooth damage 

outlined). That said, the treated teeth show an increased percentage of both root and 

enamel damage and overall, twice the damage to the root and enamel as in the untreated 

samples, suggesting that the soaking treatment introduces increased damage to both 

regions of the teeth. Thus, the histological assessment indicates that the protocol cannot 

be deemed non-destructive in this respect. 
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Figure 3: 3: Areas of tooth damage shown bordered by green lines. 

 

 

Cutting the tooth prior to exposure to treatment may have an impact on buffer 

exposure as a whole; however, the same tooth was used to control for differential 

diagenesis between tooth samples. Even intact teeth are permeable to water and other 

liquids such as the extraction buffer, as demonstrated by the presence of DNA in dental 

pulp cavities derived from sample washing (Gilbert et al. 2005, Sampietro et al. 2006). 

Thus, it can be concluded that both the surface of the tooth and interior of the root and 

pulp cavity would be exposed to buffer regardless of sectioning. 

Isotopic Analysis Results 

 

Carbon and oxygen stable isotope results from treated and untreated tooth enamel 

samples are reported in Table 3: 8. All samples passed quality control checks in which 

results from replicate samples were compared. Stable isotope contents are expressed in 
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"delta" (δ) notation as values in ‰ (permil), where δ = RA/(RStd − 1) and RA and RStd are 

the ratios of the rare to abundant isotope (e.g., 13C/12C)  in the sample and the standard, 

respectively. 

The average δ13C difference between the non-treated and treated enamel samples 

was 0.01‰, and 0.11‰ for δ18O. Neither δ13C values (p-value = 0.888, paired t-test) nor 

δ18O values (p-value = 0.675, paired t-test) were significantly different between pre-and 

post-treatment groups.  

For the purposes of defining damage, it is important to remember that within 

stable isotope analyses, statistical differences and interpretational differences are not the 

same. Chesson, Berg, Kenyhercz, and Regan (2018) defined real interpretive differences 

(RIDs) for tooth enamel bioapatite carbonate analyses as 0.6‰ for δ13C values and 1.6‰ 

for δ18O values. The greatest differences observed in pre- and post-treatment values 

within the current study were 0.43‰ for δ13C and 1.05‰ for δ18O. These differences are 

not statistically significant and are less than the real interpretive differences defined by 

Chesson and colleagues (2018). Based on these results it is reasonable to infer that 

neither the bleach method nor the combination of bleach and non-destructive buffer 

impacted results obtained during isotopic analysis, therefore the method was non-

destructive in this respect.  

 

 

 

 



119 

 

Table 3: 8:Results of carbon and oxygen isotopic analysis on untreated and treated tooth 

samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample ID δ13C δ18O 

IT-1 Untreated -7.45 -5.79 

IT-1 Treated -7.51 -5.02 

 

IT-2 Untreated -10.89 -5.38 

IT-2 Treated -10.90 -5.39 

 

IT-3 Untreated -9.19 -4.58 

IT-3 Treated -9.37 -4.47 

 

IT-4 Untreated -8.83 -4.55 

IT-4 Treated -9.09 -5.50 

 

IT-5 Untreated -10.77 -5.98 

IT-5 Treated -10.65 -5.92 

 

AIT-1 Untreated -11.92 -8.69 

AIT-2 Treated -11.49 -8.39 

 

AIT-1 Untreated -11.50 -11.10 

AIT-2 Treated -11.63 -12.15 
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Enamel Structure Results 

 

Given the small sample size and the subtle changes observed between pre- and 

post-treatment teeth, we elected to restrict analyses to qualitative comparisons. Damage 

was defined as anything that would prevent the observation of perikymata for future 

analyses. High magnification images of the same region of interest on each tooth were 

compared for pre- and post-treatment. Staining, structure (perikymata) obliteration due to 

chemical exposure, the presence of electron charging, and mechanical damage were 

noted on each image. Approximate areas of staining were measured by superimposing 

ellipses over images in ImageJ 1.8.0 for Windows, measuring the pixel area of these 

ellipses, and calculating them as a percentage of the area of regions of interest, ROIs, 

occupied by enamel. 

Figures 3: 4 and 3: 5 represent the untreated (A) and treated (B) comparisons 

between the same ROIs on two of the modern molars. The green lines in Figure 3: 4 

illustrate the same locations on both SEM images for reference; orientations are identical 

in both figures. Both teeth are representative of the results obtained from all five molars 

examined for effects on microwear and microscopic surface features. In both the 

untreated and treated ROIs, perikymata remain identifiable in most cases, as are major 

features of the dentition, including the cementoenamel junction and micro-cracks.  
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Figure 3:  4: Modern tooth before (A) and after (B) exposure to non-destructive buffer. 

Green lines indicate landmarks for orientation.  

 

 

 

 

 

 

 

Figure 3:  5: Modern tooth before (A) and after (B) exposure to non-destructive buffer; 

image alignment is identical. 
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However, acquired dark areas are present on the buccal surfaces of post-treatment 

molars (outlined in purple in Figures 3: 4B and 3: 5B). This dark coloration appears to be 

due to staining rather than chemical etching or erosion of the enamel surface and does not 

cover the entirety of the treated enamel surface; it ranges from approximately 16% of the 

enamel surface to 50% of the enamel surface. At its most severe, staining obscures 

perikymata and other microscopic features of the enamel. It is worth noting that staining 

is the most visible effect of exposure to the extraction solution. Staining was especially 

evident in regions where there was existing damage including small enamel micro-cracks 

or porosity. Enamel micro-cracks did not propagate or expand due to the treatment. 

Etching and other chemical damage to the enamel was not evident and the electrical 

conductivity of the enamel was unaffected. However, due to the staining and obscuring of 

perikymata, the assessment using SEM shows that the protocol cannot be deemed non-

destructive in this respect. 

Discussion 

 

Here, we validate the use of the Bolnick non-destructive DNA extraction protocol 

for modern and ancient tooth samples. Our findings demonstrate that this current “non-

destructive” DNA technique does in fact result in alterations to the structure of the tooth. 

While the macroscopic integrity was maintained in the samples utilized in this study, it is 

important to note that this technique causes loss and damage at a microstructural level as 

shown through loss of mass and histological analysis as well as staining of the enamel 

surface. The maintenance of macroscopic dimensions may be acceptable for museum 
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collections and forensic applications, however, working with ancient human remains also 

presents special cultural considerations.  

In the case of ancient human individuals from the Americas, cultural 

considerations of the importance of bodily tissues must be considered. Many Native 

groups in North America place great importance on the maintenance of the integrity of 

the body (Tsosie 2007), which may be compromised with even microstructural loss in 

teeth. This loss of integrity would have implications for not only the deceased individual 

but that individual’s descendants and potentially the community as a whole (Tsosie 

2007). In these cases, methods such as the Bolnick protocol may not provide an 

acceptable alternative to traditional destructive methods.  

Our results validate the utility of the Bolnick protocol for successful extraction of 

degraded tooth samples of both mitochondrial and nuclear DNA. Similarly, our research 

demonstrates that other protocols may be modified using the steps of the Bolnick 

protocol including the soaking buffer with intact sample in place of more destructive 

preparations. Protocols such as the Kemp and colleagues’ method may provide results of 

equal quality using a faster and less-toxic extraction process and that adaptations may be 

used with other protocols more specialized for small fragment recovery (Dabney et al. 

2013) or single step modifications including improved binding buffer (Allentoft et al. 

2015, Hansen et al. 2017).  

However, the failure to successfully amplify and sequence samples extracted 

using the non-destructive with the Illumina ForenSeq kit on the MiSeq FGx platform may 

point to limitations in the method as a whole for the purposes of nuclear DNA analysis. 
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The lack of success may indicate presence of inhibitors that prevent successful 

amplification during library preparation and amplification of nuclear targets. Another 

reason for the lack of success could be that the method produces highly fragmented 

nuclear DNA that falls under the threshold of the STRs targeted in the kit but allows for 

amplification of the 67 bp nuclear target. This could represent a trade-off between 

sacrificing the morphological integrity of the sample to produce higher yields with 

potentially larger fragment sizes over maintaining the macroscopic tooth structure with 

more limited yields and perhaps more fragmentary and inhibited DNA. 

These methods offer options which will allow investigators to maintain sample 

integrity while obtaining mitochondrial DNA and short nuclear DNA fragments. 

However, the research presented here indicates that purportedly “non-destructive” 

protocols do in fact impact tooth microstructure and should be thoroughly considered 

before use, based on the needs of the stakeholders involved in the proposed research. By 

assessing the effects of Bolnick et al.’s (2012) extraction method, we demonstrate that the 

protocol cannot be supported as fully non-destructive due to damage to the tooth surface 

microscopically and the internal root structure. Rather, we suggest that the protocol be 

more appropriately deemed minimally destructive. Through documenting the effects of 

the method on dental structure and morphology, we provide a guide for understanding the 

impacts of this option for sensitive samples and collections. Researchers, collection 

curators, and descendant communities must determine whether or not the minimally-

destructive protocol will meet their expectations and needs for extraction of DNA 
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through a macroscopically non-destructive and microscopically minimally destructive 

method.  
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BRIDGING STATEMENT 

 

Chapter 3 represents a validation study of a non-destructive extraction technique 

for ancient and forensic tooth samples. Building on information provided on extraction 

techniques for degraded DNA presented in Chapter 2, Chapter 3 provides a case study 

example of some of the challenges associated with DNA extraction, including inhibition 

and issues with STR typing. 

Chapter 4 draws from Chapter 2 in regard to sample storage conditions and both 

Chapters 2 and 3 in regard to DNA extraction and issues with degraded DNA. Chapter 4 

provides a validation study of the STR-typing capabilities using post-mortem collected 

blood stored on untreated blood cards. Issues associated with the extracts from the blood 

cards include low template samples (discussed in Chapter 2), need for repeated sampling 

(discussed in Chapters 2 and 3), and the presence of PCR inhibitors (discussed in 

Chapters 2 and 3). Chapter 4 further builds upon the information presented in Chapters 2 

and 3 in successful typing of the original set of CODIS short tandem repeat (STR) 

markers. Quality and quantity of DNA extracted from the cadaveric blood samples are 

assessed and predictive models for the impact of sampling time intervals and storage are 

explored. Furthermore, these marker sets are used to validate the use of STRs to predict 

geographic ancestry using the unsupervised clustering program STRUCTURE (Pritchard 

et al. 2000).  
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CHAPTER 4: ASSESSING DNA QUALITY AND QUANTITY FROM 

CADAVERIC BLOOD STORED ON UNTREATED BLOOD CARDS: 

IMPACT ON STR QUALITY AND THE UTILITY OF VARIABLY 

AMPLIFIED MARKERS FOR THE INDIVIDUAL ESTIMATION OF 

TRIHYBRID ANCESTRY AND ADMIXTURE PROPORTIONS 
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Abstract 

 

AUTHORS: West FL, Steadman DW, Algee-Hewitt BFB 

 

OBJECTIVES: Blood cards are widely used for long-term body fluid (e.g. blood, saliva, 

etc.) storage for DNA analysis. They are especially useful for DNA sample collection at 

forensic anthropology research centers, given their straightforward handling and 

sampling protocols, stability in ambient temperatures, small storage footprint, and 

minimal financial investment. Little is known, however, about the long-term value of 

blood cards in forensic anthropological research and forensic genetic casework.  Here, we 

investigate the quantity and quality of DNA extracted from post-mortem blood samples, 

in terms of DNA preservation and typing success. As part of a body donation program, 

these samples were collected upon donor intake and stored on FITZCO untreated (non-

FTA) blood cards. We evaluate these cards in terms of DNA preservation and 

typing success and test the effect of age of the blood card versus their STR yields, the 

gold standard in forensic genetics, are used for forensic identification and as potential 

markers for global ancestry and admixture estimation. Degraded samples, including those 

stored on blood cards, can result in reduced STR markers sets and, in turn, 

compromised analyses. We assess these blood cards, therefore, with special consideration 

given to profile matching for positive identification and ancestry estimation for biological 

profile estimation. 
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METHODS: We quantify the degree of DNA degradation in terms of both the amount 

and fragment sizes of the individual templates, test for disagreement in genetically 

determined and reported sex, and evaluate the forensic genetic typing potential of the 

DNA by evaluating CODIS profiles generated for each case using evidence of allelic 

drop/in out, degradation curves, and relative fluorescent units as assessment criteria for 

20 blood card samples. We analyze the impact of the DNA template on ancestry and 

admixture estimation, offering insights into the impact of degradation on population 

identifiability.  

 

RESULTS: While STR profiles were successfully generated for most samples, our results 

indicate length of storage and time interval between date of death and sample collection 

have an impact on DNA quantity and quality of DNA, in terms of typing success. There 

is a statistically significant decrease in relative fluorescent unit (RFU) values with 

increasing time interval between date of death and collection, indicating degradation in 

the blood card samples related to the post-mortem interval prior to sample collection. The 

STR profiles generated were used to estimate ancestry and admixture using the software 

program STRUCTURE, demonstrating utility of the markers beyond individual 

identification purposes. 
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Introduction 

 

While next generation sequencing (NGS) methods have dramatically altered the 

fields of medical genetics and paleogenomics, short tandem repeats (STRs) identified 

through traditional capillary electrophoresis remain the gold standard for forensic 

identification. Although new technologies integrating NGS approaches hold promise for 

ancestry estimation (Bulbul et al. 2018; King et al. 2018), phenotyping (Walsh et al. 

2017), and fluid identification (Bartling et al. 2014), STRs remain the primary 

genotyping method due to extensive validation as a marker set and the availability of 

large databases of typed individuals. Since the 1990s, forensic analysts have focused 

most attention on a set of core STR loci, composing the Federal Bureau of Investigation’s 

(FBI) Combined DNA Index System (CODIS), consisting of a set of 13 traditional 

markers, plus Amelogenin, and recently enlarged to include seven additional markers 

(Hares 2015). While new approaches apply NGS to STR typing as an alternative to 

traditional capillary electrophoresis (CE) and offer opportunities to expand beyond the 

core markers (Steffen et al. 2017), the set of CODIS loci remain the primary means of 

genetic identification in forensic contexts (Gettings 2018). Moreover, recent work 

demonstrates the utility of this marker set beyond identification for population inference, 

demonstrating a capacity for revealing biogeographic ancestry and patterns of admixture 

(Algee-Hewitt et al. 2016). 

Here, we analyze DNA quantities and STR profile results from post mortem 

blood drawn from 20 body donors and stored between 4 months and 4 years in ambient 
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conditions on FITZCO untreated blood cards. While FTA cards have been validated for 

DNA preservation for a variety of sample materials, including blood (Tredoux et al. 

2015; Rahikainen et al. 2016), tissue (Santos 2018), and saliva (Hall and Roy 2014), the 

quality of DNA extracted from post-mortem blood samples stored on untreated cards is 

unknown. While FTA cards use proprietary technology to protect DNA from further 

degradation after samples are applied to the cards, the FITZCO FP705TM card is untreated 

and, so, does not lyse cells, denature proteins, or prevent microbial activity after sample 

deposition.  

We focus on the quality of DNA from blood cards for long-term storage in 

forensic anthropology centers. Today, there are eight forensic anthropology 

decomposition facilities in the United States. Collection of biological samples from 

donors, including blood and saliva, is common practice for body donation programs. 

Long-term storage solutions are necessary in situations where DNA extraction and typing 

cannot be conducted immediately after sample collection. Here, we test the applicability 

of the FITZCO FP705TM card for long-term storage of blood samples collected post-

mortem.  

STRs, or short-tandem repeats, have been the standard DNA profiling method for 

forensic identification since the 1990s (Butler 2012). STRs lend themselves to 

identification based on the large number of alleles at each locus, high discriminatory 

power provided by the combination of STR loci, suitability for multiplexing, and 

relatively small size (approximately 100-400 base pairs, or bp) which allow for use with 

degraded samples (Butler 2012). The core STR loci which make up the standardized 
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CODIS set were primarily selected for their highly polymorphic qualities, enabling 

discrimination between unrelated individuals, with some overlap with the European 

Standard Set (ESS) (Butler 2012).  

In addition to autosomal STRs, STRs associated with sex chromosomes can also 

reveal important data for forensic identification, familial relationship determination, and 

deconvoluting mixtures. More broadly, preestablished panels of STRs, like those used in 

forensic profile matching, also serve as ideal markers for management of biological 

sample collections. Guidelines have been established by the American National 

Standards Institute for the authentication of human cell lines using STRs (Barallon et al. 

2010). As a marker set, the CODIS set of STRs provides a cost effective and 

straightforward method for matching individual cell lines with their source individuals 

(Nims et al. 2010). This approach could likewise be applied to skeletal collections and 

body donation programs, especially for elements that may become disassociated during 

decomposition and processing. 

 

Limitations of STRs 

 

While STRs are well-suited to identification based on their high heterogeneity 

between individuals and large number of alleles per locus, the large DNA fragments 

required for typing can present issues when dealing with degraded DNA. The set of 

original 13 CODIS core loci range in size between 100-400 bp (Butler et al. 2003). 

Primers must be able to anneal on each side of the target amplicon during polymerase 
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chain reaction (PCR) in order to amplify the target region. If the DNA sample is too 

degraded or if PCR inhibitors are present (including indigo dyes, humic acid from soil, 

heme from blood, to name a few), the reaction can fail to amplify the target loci, creating 

situations in which one allele at the target locus drops out or both alleles, resulting in 

locus drop out (Butler 2012).  

Allele and locus drop out are commonly seen with larger STR loci, resulting in 

electropherogram results that resemble a ski-slope pattern, in which smaller loci amplify 

in contrast to a reduction in amplification in larger loci, common in degraded samples 

(McCord et al. 2011). Alternatives to traditional STR marker kits have been proposed to 

reduce the amplicon length of larger loci, suggesting “mini-STRs” to reduce chances of 

allelic/locus drop out (Butler et al. 2003). While many mini-STRs have been included on 

expanded commercial kits, such as the Applied Biosystems AmpFℓSTR® MiniFiler™ 

PCR Amplification kit, they have not replaced traditional STRs as the typing method of 

choice (Nieuwerburgh et al. 2014). 

The Amelogenin gene is present on both the X and Y chromosomes, with a 

distinguishing 6-bp deletion on the X chromosome not present on the Y chromosome. 

When typing the Amelogenin locus, a female profile will exhibit one large peak, whereas 

the male profile exhibits a separate peak for each chromosome. One of the issues 

complicating analysis of the Amelogenin locus is the phenomenon of Y-allele and X-

allele dropout. In situations with degraded or inhibited DNA, Y-chromosomal specific 

DNA fragments can fail to amplify resulting in allelic drop-out, wherein the signal only  

amplifies the shorter fragment from the X-chromosome, or conversely there is dropout of 
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the X-chromosomal Amelogenin marker. Dropout of the Y-chromosomal marker is much 

more common (Kim et al. 2013). In cases of Y-allele dropout, an incorrect sex estimation 

can be made wherein the profile reads as female, X,X, rather than the true profile of X,Y. 

Various biological sample types, including bone and tooth, blood, buccal 

cells/saliva, hair, and tissue present different challenges in DNA extraction and typing, 

resulting in differential yields and varying levels of potential PCR inhibitors. 

Expectations for DNA yields differ by sample type, with highest yields expected from 

blood (Butler 2012). Bones, teeth, blood, and hair all contain potential inhibitors that 

could interfere with PCR reactions, including calcium, heme, and melanin, respectively. 

Bone and tooth samples require extra demineralization steps to break down the 

hydroxyapatite matrix for DNA extraction (Loreille et al. 2007; Amory et al. 2012; Lee 

and Shewale 2017; Correa et al. 2018). Hair samples also require additional steps using 

DTT to lyse the keratin of the hair shaft (Butler 2012; Grisedale et al. 2018). As a 

substrate for sample storage, FTA (Flinders Technology Agreement) cards are a popular 

option for a variety of sample types, including blood and buccal cells. Extraction from 

FTA cards can be largely automated (Stangegaard et al. 2013) and can be used for direct 

PCR when dealing with robust samples (Hall and Roy 2014).  

In contrast to robust samples, biological samples collected post-mortem may 

present difficulties in extraction and amplification, based on time since death and sample 

type, and are represented in far fewer studies regarding these sample types (Tredoux et al. 

2015; Rahikainen et al. 2016). Tredoux et al. (2015) determine that both post-mortem 

femoral blood and buccal cell samples transferred to FTA paper produce successful 
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profiles at 16 STR loci with the caveat that each produced low-quality DNA when 

evaluated by UV absorbance. Rahikainen et al. (2016) assess DNA quality and quantity 

from blood collected post-mortem from autopsy samples and stored on FTA cards. The 

authors show that post-mortem interval and storage time both have a significant impact 

on DNA quantity and quality as assessed by relative fluorescence units (RFUs). FTA 

cards are a commonly used substrate for long-term sample storage. 

Despite the importance of understanding the constraints placed upon DNA results, 

given the potential for technological and sample issues, no studies have assessed quantity 

and quality of DNA from blood samples stored on untreated blood cards for analyses of 

interest to forensic and anthropological geneticists, especially in the context of pursuing 

research using bio-banked blood samples from deceased individuals. The inability to 

produce complete CODIS profiles places limitations on individual identification and 

increases random match probabilities. When conducting ancestry estimation using STR 

marker sets, a reduced number of markers limits the resolution of ancestry inference as 

shown by Algee-Hewitt et al. (2016). 

In this study, we test 20 untreated blood cards to assess the quality and quantity of 

DNA extracted. DNA quantity and the presence of inhibitors are assessed through qPCR. 

The relationship between time intervals between date of death and sample collection 

(IDDC) and sample collection and STR analysis (CST) and DNA quantity are evaluated. 

DNA quality is measured through a variety of methods, including peak height ratios and 

RFUs. Microvariants and off-ladder alleles are identified for each individual. We also 

assess the utility of these typed loci for generating ancestry and admixture proportions 
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using the unsupervised clustering methods implemented via the program STRUCTURE 

(Pritchard et al. 2000). 

 

Materials and Methods 

 

Here we analyzed DNA quantity and STR quality from blood samples collected post-

mortem and stored on FITZCO FP705TM untreated cards. STR data collected from the 

blood cards were then used to evaluate sample quality and make ancestry estimations 

using STRUCTURE.  

The FITZCO FP705TM blood card used here was originally designed for use by 

the U.S. military, beginning in 1991 (FITZCO). The collection area of the card is made of 

biological grade cotton linter paper which prevents sample diffusion off of the substrate 

surface. The card design consists of four circles with a “fold-over” flap to reduce 

contamination risk following collection. Unlike FTA blood cards which are treated to 

lyse cells, deactivate nucleases, and deter microbial activity (Ahmed et al. 2011), the 

FITZCO FP705TM card is untreated.  

Blood cards (FITZCO FP705TM) were collected, postmortem, from donors of the 

William M. Bass Body Donation Program at the Forensic Anthropology Center (FAC) at 

The University of Tennessee, Knoxville (UTK). Blood was drawn from the aorta or 

subclavian artery of each cadaver using a syringe and placed on blood cards as part of the 

standard intake process, which involves documentation of the individual donor and 

sample (blood, hair, nails) collection for future research. Sample IDs and time interval 
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between date of death (DoD) and sample collection as well as interval between collection 

and DNA analysis are shown in Table 4: 1. Information on individual donor 

demographics, including geographic ancestry, or identity, was collected prior to or during 

the donation process. The blood card donors included individuals designated as pre-

donors, individuals donated by family members, and one individual donated by a medical 

examiner’s office. A total of nine individuals were pre-donors, individuals who planned 

donation and provided self-identified demographic data, including identity. Ten 

individuals were donated by family members and their identities offered by next-of-kin. 

One individual was donated by the office of a medical examiner, thus the identity 

provided was done so based on the assessment of the medical examiner rather than self or 

familial identification.  

The blood cards were stored in a dessicator until sealed in plastic FoodSaver bags 

with a silica-based dessicant. One half-inch circle (outlined by the manufacturer) of the 

blood card was removed using sterilized scissors and placed in a DNA-free 50-mililiter 

(ml) conical tube. All samples were sent to Bode Cellmark Forensics for DNA extraction 

and fragment analysis. 
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Table 4: 1: Demographic data and time interval information for post-mortem blood 

donors. 

 

Sample 

ID 

Sex Age (in 

years) 

Interval 

DoD/Collection 

(in days) - IDDC 

Interval 

Collection/Storage 

Time (in days) - 

CST 

1 M 70 1 1568 

2 F 75 1 1551 

3 M 64 1 1548 

4 F 65 0 1537 

5 M 79 0 1519 

6 M 64 3 1513 

7 F 29 17 1492 

8 M 50 74 1448 

9 F 75 3 1443 

10 F 58 1 1436 

11 F 71 12 911 

12 M 60 2 1206 

13 F 94 1 1184 

14 M 74 16 1181 

15 F 79 3 1180 

16 F 62 3 782 

17 M 58 4 782 

18 M 51 1 154 

19 F 66 0 490 

20 M 81 3 133 
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Sample Treatment 

 

All samples were extracted at Bode Cellmark Forensics laboratories using the 

automated Qiagen EZ-1 Investigator Kit with an initial incubation, storage at 4° C 

overnight and extraction on the following day. Samples were quantified using the 

proprietary BodeQuant quantitative PCR (qPCR) for low-copy number samples. This 

qPCR method includes a nuclear DNA target to assess quantity of nuclear DNA as well 

as an Internal Positive Control (IPC) to assess presence of inhibitors within the sample 

extract.  Following quantification, samples were amplified using the Applied Biosystems 

Identifiler kit. This multiplex PCR kit included the thirteen original CODIS loci plus the 

D2S1338 locus, the D19S433 locus, and Amelogenin. STR typing through kit-based 

approaches, including the Applied Biosystems Identifiler kit, uses fluorescent dyes 

attached to primers for each of the multiplexed loci. Samples were sequenced on the 

Applied Biosystems 3130 capillary electrophoresis machine in which fluorescently 

labeled primer fragments and lengths were detected using a charge-coupled device. The 

3130 detects fluorescence of the labeled fragments and reports this output as relative 

fluorescence units (RFUs) which are used to interpret fragment lengths as well as quality 

thresholds when compared against an allelic ladder with size standard. Positive and 

negative controls were used throughout the entire process.  
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STR Quantity and Quality Assessment 

 

Sample quantities were compared to the IDDC and CST using a linear regression 

model, followed by the Spearman’s ρ (rho) test to assess the relationship between time 

intervals and DNA quantity. We suggest that an increased time interval between donor 

death/sample collection as well as increased time between collection and STR typing will 

result in lower average DNA yield. 

To assess STR quality and impact of time intervals between DoD, collection, and 

extraction, RFUs were averaged across sample and locus size class and compared to 

IDDC and CST using a linear regression model, followed by the Spearman’s ρ test. 

Locus sizes classes were grouped on the basis of size as per Rahikainen et al. (2016) with 

Class 1 (<130bp), Class 2 (130-200 bp), Class 3 (200-300 bp), and Class 4 (>300 bp) as 

seen in Table 4: 4. As with DNA quantity, we suggest that an increased time interval 

between donor death/sample collection as well as increased time since collection/STR 

typing will result in a reduction in DNA quality. Through assessing degradation from a 

decrease in RFUs across locus size, we determined whether patterns of differential 

amplification are present in the profiles generated using the blood cards.  

Peak height ratios were calculated for each individual and locus by dividing the 

lower peak (Peak A) RFU by the higher (Peak B) RFU as outlined by the Scientific 

Working Group on DNA Analysis Methods (SWGDAM) guidelines. Peak height ratios 

of below 70% were designated as severe imbalance, a threshold indicative of multiple 

contributors or other issues (Glider et al. 2009). From single source samples (i.e. not 
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mixtures), peak height ratio imbalance can be attributed to several issues, including low 

starting DNA template, preferential amplification, DNA degradation, the presence of 

inhibitors, or a combination of these factors (Word 2013). Profiles were also checked for 

the presence of stutter and off-ladder alleles.  

 

STR Analysis for Sex Determination 

 

 The Amelogenin marker was typed and compared to self-reported biological sex 

and skeletal estimations. As a smaller marker, we expected that the Amelogenin markers 

would successfully amplify and match recorded biological sex. We also identified off 

ladder alleles, i.e., those not found within the allelic ladder for each STR kit. Off-ladder 

alleles can include full repeats, which are uncommon within known typed populations. 

Microvariants, a form of off-ladder allele with incomplete repeat units, were also noted 

for each individual profile. An example of a microvariant would include a simple 

tetranucleotide (4 bp) locus with 14 repeats, but with the addition of a partial repeat of 2 

bases, making the allele call 14.2. For each microvariant and other off-ladder alleles, the 

frequency relative to the U.S. population was also assessed.  

Population Inference from Amplified STRs  

 

 Trihybrid ancestry estimation was conducted using the unsupervised clustering 

program STRUCTURE, v. 2.3.4 (Pritchard et al. 2000). Thirteen CODIS loci were 
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compiled for 332 individuals from the Human Genome Diversity Panel (HGDP-CEPH) 

H1048 subset (Rosenberg 2006; Algee-Hewitt et al. 2016), including 94 individuals from 

Sub-Saharan Africa, 83 individuals from the Americas, and 155 individuals from Europe, 

who together served as the parental reference sample. An initial STRUCTURE run was 

used to determine the optimal range of K, or number of clusters, with parameters set at 

10,000 for burn-in and 10,000 Markov Chain Monte Carlo (MCMC) repetitions (reps). 

The next run set parameters between 1 and 3 for number of K clusters, limiting the 

analysis to the maximum number of populations under a trihybrid ancestry model, with 

10,000 reps for burn-in and 10,000 MCMC reps with 10 iterations. We used the No 

Admixture model which assumes origin of individuals from only one population and is 

appropriate for discrete populations (Falush 2003). We assumed that allele frequencies 

were independent among populations with parameters of alpha (α) and lambda (λ) set at 

1. Post-processing was performed using Structure Selector (Li and Liu 2018) which 

integrates several approaches for data interpretation, including the Puechmaille (2016) 

method and Clumpak (Kopelman et al. 2015). 

 To evaluate admixture, we performed a second analysis with STRUCTURE. For 

this analysis, a subset of the National Institute of Standards and Technology (NIST) 

dataset (Steffen et al. 2017; Gettings et al. 2018) were used in place of the HGDP-CEPH 

parental populations and included 149 self-identified African Americans, 151 European 

Americans, and 101 Hispanics. We used the Admixture model, operating under the 

assumption that that each of the individuals shares genetic ancestry with one or more of 

the clusters included (Pritchard et al. 2010), and that allele frequencies were independent 
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between populations, with the α and λ set at 1. The Admixture model assumes run 

parameters were set for K between 1 and 3, with 10,000 reps for burn-in and 10,000 

MCMC reps with 10 iterations. 

 

Results 

 

Extraction and Quantification 

 

Of the 20 samples, five had to be re-extracted twice and one sample three times to 

obtain sufficient quantities of DNA to produce a complete STR profile. Quantities ranged 

from 15.72 ng/uL to 153.81 ng/uL (Table 4: 2). Five samples exceeded the average 

internal positive control (IPC) threshold of 20.64 by more than 2 cycles for the standards, 

indicating the presence of inhibitors in those samples.  
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Table 4: 2: DNA quantities, internal positive control cycle threshold (IPC CT), and 

average peak height ratios and RFUs across all loci. Those that exceed the IPC CT and 

indicate the presence of inhibitors are in bold. 

 

Sample ID Sample 

ID 

DNA 

Quantity 

(ng/uL) 

IPC 

CT 

 

Average Peak 

Height Ratios 

Average 

RFUs Across 

all Loci 

UT09-08D 1 33.65 20.77 81% 837 

UT13-08D 2 87.22 22.52 86% 1369 

UT14-08D 3 106.59 22.98 86% 1455 

UT21-08D 4 42.56 20.26 90% 1074 

UT28-08D 5 131.02 23.24 91% 1861 

UT29-08D 6 82.66 20.38 82% 262 

UT33-08D 7 90.91 20.33 79% 409 

UT49-08D 8 69.19 19.91 85% 1896 

UT55-08D 9 84.18 20.70 90% 1087 

UT57-08D 10 96.70 20.22 84% 645 

UT117-09D 11 75.25 19.43 82% 434 

UT17-09D 12 15.72 19.60 85% 1033 

UT23-09D 13 64.56 19.68 82% 359 

UT26-09D 14 153.81 22.77 84% 416 

UT27-09D 15 68.48 19.65 88% 1194 

UT36-09D 16 146.88 22.88 85% 683 

UT37-09D 17 118.96 19.96 83% 597 

UT111-11D 18 62.29 19.47 87% 618 

UT20-11D 19 131.18 20.79 87% 1296 

UT08-12D 20 19.30 19.70 87% 1039 
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 Correlations between DNA quantity in ng/uL and the time interval (in days) 

between a) date of death and collection (IDDC) and b) sample collection and STR testing 

(CST) were assessed using a linear regression model and Spearman’s correlation 

coefficient, ρ. A linear regression model was used to assess whether time intervals were 

significant predictors of DNA quantity. Modeled with IDDC, there was no significance 

detected, with a p-value of 0.2933, F-statistic of 1.176, R2 = 0.065, and 17 degrees of 

freedom. With CST, no significance was detected with a p-value of 0.8505, F-statistic of 

0.0366, R2 = 0.00215, and 17 degrees of freedom.  Non-normal distribution of the 

variables representing IDDC was confirmed by a Shapiro-Wilk normality test, yielding, 

respectively, significant p-values of 1.101e-07 and 0.001574 when α = 0.01 thus the 

Spearman’s ρ statistic.  We find a small positive association with DNA quantity for 

IDDC with DNA quantity for both IDDC (Spearman’s ρ = 0.0823, p-value = 0.7301) and 

a small negative association for CST (ρ = -0.0519, p-value = 0.8279), both associations 

being statistically insignificant. Data visualizations, plotting associations for each 

individual, are provided in Appendix A. These results suggest that time, when measured 

as IDDC and CST intervals, does not have a significant relationship to DNA quantity, 

which was contrary to the original expectations. 

STR Quality Assessment Results 

 

Peak height ratios were averaged across each sample (reported in Table 4: 2) and 

across each locus (reported in Table 4: 3). Several samples did not meet the 70% peak 

height ratio threshold, indicating that those samples were imbalanced, likely due to 
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degradation rather than possibility of a mixture due to lack of more than 2 alleles at 

multiple loci. Peak height imbalance can be attributed to sample degradation as well as 

potential mixed profiles, which include more than one contributor. In the profiles 

generated, only 1-2 alleles were present at each locus across the profile as a whole, 

indicating no sign of a potential second contributor (a major/minor mixture). Rather, the 

imbalance in peak heights can be attributed to increased degradation which is responsible 

for differential amplification of damaged DNA fragments, wherein one allele is replicated 

at a higher number than the other, producing differences in fluorescent units within the 

same locus.  

 

Table 4: 3: STR loci, average peak height ratios per locus, and number of samples below 

peak height ratio of 70%. 

 

STR Locus Average Peak Height Ratio Number of Samples 

Below 70% PHR 

Amelogenin 86% - 

D3S1358 88% - 

D19S433 88% - 

D8S1179 86% - 

D5S818 88% - 

TH01 87% - 

vWA 87% 1 

D21S11 81% 2 

D13S317 85% 3 

TPOX 87% - 

FGA 85% 1 

D7S820 86% 1 

D16S539 89% - 

D18S51 86% - 

CSF1PO 85% 1 

D2S1338 73% 8 
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Average RFUs by locus class are reported in Table 4: 4. Results assessing the 

impact of IDDC and CST on DNA quality as shown through RFUs were conducted using 

a linear regression and the Spearman’s ρ test statistic. A single donor was stored frozen 

after date of death for a total of 74 days, creating an outlier in terms of statistical analysis. 

This outlier was removed prior to statistical testing. Using a linear model to assess 

whether IDDC was a significant predictor, significant results were found in each RFU 

class. For Class 1, the IDDC was a significant predictor of RFU values, with a p-value of 

0.02043, F-statistic of 6.536, R2 = 0.2777, and 17 degrees of freedom. For Class 2, the 

linear regression results indicate a p-value of 0.01407, F-statistic of 7.488, R2 = 0.3058, 

and 17 degrees of freedom. For Class 3, results indicate a p-value of 0.02822, F-statistic 

of 5.752, R2 = 0.2528, and 17 degrees of freedom. For Class 4, results indicate a p-value 

of 0.0418, F-statistic of 4.849, R2 = 0.2219, and 17 degrees of freedom.  

Using Spearman’s ρ, the association between IDDC and RFUs, associations for 

Class 1 (ρ = -0.6519, p-value = 0.0025), Class 2 (ρ = -0.5278, p-value = 0.0201) and 

Class 3 (ρ = -0.6089, p-value = 0.0056) were all significant, while associations for Class 

4 (ρ = -0.4432, p-value = 0.0573) were not. All associations between IDDC and RFUs for 

all class sizes indicate a negative correlation between time and fluorescence, 

demonstrating that as number of days post-mortem before sample collection increase, 

fluorescence values decrease across all class sizes.  
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Table 4: 4: Locus size classes with size range and loci included; average RFUs per locus 

size class across all individuals included. 

 

Class  Locus Size 

Range 

Loci Included Average 

RFU/Class 

1 <130 bp D3S1358, D19S433, D10S1248 1342 

2 130-200 bp vWA, TH01, D5S818 1011 

3 200-300 bp D21S11, D13S317, D7S820, D16S539 805 

4 >300 bp CSF1PO, TPOX, D18S51, FGA, D2S1338 698 

 

 

In assessing the association between CST and RFUs from each size class (1-4) 

using a linear model, no significant relationships were identified (Class 1 - p-value = 

0.1701, F-statistic of 1.053, R2 = 0.1077, and 17 df, Class 2 - p-value = 0.6523, F-statistic 

of 0.2104, R2 = 0.0122, and 17 df, Class 3 - p-value = 0.1701, F-statistic of 1.053, R2 = 

0.1077, and 17 df, and Class 4 - p-value = 0.8766, F-statistic of 0.0249, R2 = 0.0015, and 

17 df.  No significant relationships were identified using Spearman’s ρ (Class 1:  ρ = 

0.4242,  p-value = 0.0623; Class 2: ρ = 0.2399, p-value = 0.3082, Class 3: ρ = 0.2595, p-

value = 0.2692  Class 4: ρ = 0.0684, p-value = 0.7743).  

   

STR Analysis Results  

 

 Comparisons of the Amelogenin marker returned complete agreement between 

the genetic sex markers, self-reported biological sex, and skeletal sex estimations. One 

off-ladder allele was recorded at locus D21S11 as microvariant 29.3 in individual 15 and 

confirmed by a second fragment analysis run. This allele is found at a frequency of 

0.0005 in the combined U.S. population. Other microvariants not considered off-ladder 
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alleles were typed at 3 loci (D19S433, TH01, and D21S11), in three, four, and three 

individuals, respectively. These frequencies are reported in Table 4: 5. 

STRUCTURE analysis for ancestry estimation was conducted using the HDGP-

CEPH populations and the 20 blood card samples; the number of populations, K, was set 

at 3. This was also the optimal number of ancestry clusters identified by computational 

methods. This optimal value of K was determined using STRUCTURE Selector (Li and 

Liu 2018), implementing the MedMeaK, MaxMeaK, MedMedK, MaxMedK methods 

(Puechmaille et al. 2016) for choosing the best among a range of clusters numbers (See 

Appendix Figure 4A: 11). The MedMeaK, MaxMeaK, MedMedK, MaxMedK 

approaches all outperformed traditional deltaK methods for determining the true number 

of clusters in situations with uneven sample sizes (Puechmaille et al. 2016). Each of the 

20 individuals was assigned to one of three population clusters, with membership 

coefficients representing the posterior probability that the individual is from selected 

population (shown in Table 4: 6). Results are visualized in the barplot shown in Figure 4: 

1 generated by Clumpak (Kopelman et al. 2015). 
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Table 4: 5: Frequencies of microvariants found in surveyed STR profiles. * Denotes a 

lack of reported frequencies for a particular allele in the NIST database. 

 

Locus Allele Variant Number of Ind. Frequency in 

U.S. Population 

D19S433 13.2  1 * 

D19S433 15.2 2 0.0569 

TH01 9.3 3 0.2056 

D21S11 24.2 1 0.0005 

D21S11 29.3 1 0.0005 

D21S11 30.2 1 0.0217 

D21S11 31.2 2 0.0772 

D21S11 32.2 4 0.0912 

D21S11 33.2 4 0.0328 

 

 

When adopting a hard classification or single cluster approach to ancestry 

inference (Algee-Hewitt et al. 2016; Algee-Hewitt 2016), the documented identity of 17 

of the 20 individuals matched the continental population cluster to which the individual 

was assigned. In one case, the individual self-identified as White but was assigned a 

membership coefficient of 0.844 for the African cluster and 0.156 for the European 

cluster. Two other individuals were documented, one self-identified and one familial 

identification, as Black but were grouped into the European cluster with membership 

coefficients of 0.906 and 0.950 respectively. The only non-self-identified or non-familial 

identified individual, 14, was identified by the medical examiner’s office as Black and 

was assigned a membership coefficient of 0.965 for the African cluster and 0.014 for the 

European cluster. 
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Table 4: 6: Correspondence between the membership coefficients obtained from the 

trihybrid ancestry analysis using STRUCTURE and documented population identifier. 

Individuals were assigned to the population cluster with the highest degree of 

membership. Reported identity is included, with the source of the identity assignment. 

Abbreviations are S: self-identified, F: familial identification; ME: identity assigned by 

the medical examiner. *Denotes a potential disagreement between genetically inferred 

ancestry and self-reported population identity. 

 

Sample 

ID 

European African Indigenous 

American 

Reported Identity & Source 

1 0.903 0.097 -- White – S 

2 1.000 -- -- White – S  

3 0.998 0.002 -- White – F  

4 1.000 -- -- White – F  

5 1.000 -- -- White – S  

6 0.931 0.069 -- White – S  

7 0.156 0.844 -- White * – S    

8 0.999 0.001 -- White – F  

9 0.691 0.011 0.299 White – F  

10 0.961 0.001 0.035 White – F  

11 0.950 0.050 -- Black * – S  

12 0.906 0.094 -- Black * – F  

13 0.856 0.143 0.001 White – F 

14 0.014 0.965 .021 Black – ME  

15 0.978 0.022 -- White/American Indian – F 

16 0.900 0.092 0.008 White – F 

17 1.000 -- -- White – F 

18 0.988 0.010 0.002 Hispanic – S 

19 0.161 0.839 -- Black – S 

20 0.999 0.001 0.001 White – S  
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Figure 4: 1: STRUCTURE plot depicting K=3 ancestry clusters by population, generated 

in Clumpak (Kopelman et al. 2015). Each individual is represented by a single bar 

partitioned into 3 colored segments, which gives the individual's proportion of 

membership across the 3 clusters. Groups are 1) European, 2) Indigenous American, 3) 

African individuals, with unknown samples shown in group 4. 

 

 

Results from the second STRUCTURE analysis using the Admixture model 

present K=2 clusters when analyzed using STRUCTURE Selector (Li and Liu 2018). 

Using the Puechmaille (2016) method, the MedMeaK, MaxMeaK, MedMedK, 

MaxMedK preferred two distinct clusters using the NIST sub-dataset. Results are 

visualized in the barplot shown in Figure 4: 2 generated by Clumpak (Kopelman et al. 

2015). 

The best fit number of clusters was 2, with the inferred cluster assignments 

between two groups (Table 4: 7). Those identifying as Black had higher correlation 

coefficients with Cluster 1 (Table 4: 8). Those identifying as White had higher correlation 

coefficients on average with Cluster 2. The individual who identified as White/Native 

American and the individual who identified as Hispanic were split between each cluster. 
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Figure 4: 2: STRUCTURE plot depicting admixture results from NIST dataset for K = 2 

cluster solution, generated using Clumpak (Kopelman et al. 2015). Each individual is 

represented by a single bar partitioned into 2 colored segments, which gives the 

individual's proportion of membership across the 2 clusters. Groups are 1) African 

Americans, 2) European Americans, 3) Hispanics, and 4) unknowns from blood cards. 

 

 

Table 4: 7: Correspondence between the membership coefficients obtained from the 

admixture analysis, using STRUCTURE and the NIST reference dataset, and the 

documented population identifier. The optimal K=2 model was identified 

computationally. Individuals were assigned to one of two population clusters with the 

highest degree of membership.  

 

Sample ID Cluster 1 Cluster 2 Reported Identity 

1 0.471 0.529 White 

2 0.251 0.749 White 

3 0.361 0.639 White 

4 0.361 0.681 White 

5 0.249 0.751 White 

6 0.477 0.523 White 

7 0.462 0.538 White  

8 0.391 0.609 White 

9 0.603 0.397 White 

10 0.380 0.620 White 

11 0.567 0.433 Black  

12 0.682 0.318 Black  

13 0.460 0.540 White 

14 0.714 0.286 Black 

15 0.578 0.422 White /American Indian 

16 0.556 0.444 White 

17 0.323 0.677 White 

18 0.401 0.599 Hispanic 

19 0.732 0.268 Black 

20 0.282 0.718 White 

 



161 

 

Table 4: 8: Proportion of membership of each pre-defined NIST population in each of K 

= 2 clusters.  

 

NIST Population Cluster 1 Cluster 2 Number of 

Individuals 

African Americans 0.651 0.349 149 

European 

Americans 

0.382 0.618 151 

Hispanics 0.431 0.569 101 

 

 

Discussion and Conclusion 

 

Here we have evaluated the effectiveness of the FITZCO FP705TM untreated 

blood card as a reliable substrate for long-term storage. Our samples were extracted after 

time intervals between 4 months and 4 years. We address practical laboratory concerns 

for the successful recovery of nuclear DNA after longer periods of time. We find that 

sufficient amounts of nuclear DNA can be recovered from the sampled blood cards to 

amplify the original 13 CODIS core loci, although several samples had to be re-extracted 

due to insufficient DNA recovery during the initial extraction. The 13 CODIS loci were 

adequate for ancestry estimation using the program STRUCTURE, for which 17 of 20 

samples classified into the ancestry group that most likely corresponded with their self-

reported identity. The individuals who self-identified as Hispanic and White/Native 

American were classified, with higher membership coefficients greater than (>0.98) into 

the European cluster under the trihybrid ancestry model. These individuals display 

opposite trends, however, when subjected to the admixture analysis using the NIST 
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population samples as the reference dataset.  Their admixture proportions were 

distributed similarly to the NIST samples across the two inferred clusters. This appears to 

capture White and non-White variation, such that the Hispanic individual carries about 

60% European admixture and the dual-identity individual about 42% European 

admixture. 

 

Implications for Long-term Storage 

 

While full profiles were typed from each of the 20 sampled untreated blood cards, 

several issues emerged during the analysis. The presence of inhibitors in five of the 20 

samples may present a concern for downstream amplification of STRs and other markers. 

One potential source may include heme from red blood cells, a known inhibiting 

substance (Butler 2012). In contrast, Rahikainen et al. (2016) reported no inhibition in 

DNA extracts from FTA cards. We also noted a reduction in RFUs from smaller to larger 

loci, as shown through the decrease in RFUs from Class 1 through Class 4 in the 

untreated blood cards indicating degradation. We also show that a statistically significant 

reduction in RFUs is associated with increased time intervals between donor death and 

sample collection. Increased time intervals between the date of death and collection lower 

the quality of STRs typed. While Rahikainen and colleagues also showed a decrease in 

DNA quantities over time in FTA cards, part of the reduction seen in RFUs may be 

indicative of DNA degradation exacerbated by nuclease activity which was not halted in 

the untreated blood cards. Rahikainen et al. (2016) were able to recover DNA from FTA 
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cards stored up to 16 years, however, this longer time interval may result in increased 

degradation and reduced yields in non-treated cards.  

An additional aspect of the untreated blood cards to consider is the potential for 

pathogen exposure. Since FTA cards lyse the cells upon contact, pathogens are 

inactivated (Serra et al. 2018); however, pathogens can persist in the unlysed cells on the 

untreated substrate. While viruses such as HIV are typically undetectable within a week 

to a month, Hepatitis C has been identified in dried blood spots after 4 weeks and on 

blood in needle syringes for up to 8 months (Thompson et al. 2002). While all potentially 

biohazardous material should be treated with universal precautions, this aspect of blood 

sample storage may be a concern for forensic body donation programs, providing an 

additional reason to consider FTA cards over untreated cards. 

Body donation programs often collect sample material for subsequent genotyping; 

however, DNA typing is often not the main focus of attention for decomposition facilities 

and budgets are limited. Based on our results, we suggest that FTA-based cards may 

provide a more dependable method for long-term storage in spite of the lower cost of 

untreated cards. If typing of large-scale marker sets may be desirable for future 

applications, untreated cards may not produce the high quantities and quality of DNA 

required for expansive SNP panels or typing combinations of multiple marker types 

(STRs, Y-STRs, SNPs). We recommend long-range planning for future genotyping needs 

when selecting sample storage substrates. For short-term preservation, untreated cards 

may be adequate for STR typing but for extended storage duration, FTA cards provide an 
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option that lyses cells, limits nuclease activity, and demonstrates DNA recovery from 

post-mortem collected blood samples after a decade of storage. 

 

CODIS Markers for Ancestry/Admixture Estimation 

 

Trihybrid ancestry analysis in STRUCTURE produced membership coefficients 

for three ancestral groups. Out of 20 samples, 17 individuals were classified into the 

population which matched their reported identity. Two of the individuals, one self-

identified and one familial identified as Black, had membership coefficients more closely 

aligned with the European cluster, whereas one individual who self-identified as White 

had an African membership coefficient of 0.844. Population history in the U.S. reflects 

admixture between groups of different continental ancestries and it has been noted that 

African Americans carry proportions of European ancestry (Tang et al. 2005). In a large-

scale health study on Genetic Epidemiology Research on Adult Health and Aging 

(GERA) of over 100,000 individuals, researchers found that, of those identifying as 

African American, 91% had European ancestry (Banda et al. 2015). From the same study, 

0.4% of self-reported Europeans had African. These discordant results between the 

higher population membership coefficients and reported identities may be a result of 

admixture, reflective of well-documented population history in the Americas.  

Our STRUCTURE analyses of ancestry and admixture of the unknown 

individuals typed from blood cards and known-source database samples produced 

different results, owing to the different number of population clusters, or values of K, 



165 

 

identified computationally. One particular reason for the discrepancy between the model-

based clusters in STRUCTURE can be attributed to the difference in population datasets 

used for each analysis. While the initial No Admixture model for ancestry estimation 

used the HGDP-CEPH populations, the admixture analysis used a subset of the NIST 

population dataset. The HGDP-CEPH populations were sampled from individuals world-

wide and are routinely taken to represent parental populations – in this particular case 

from each of three continental regions of Africa, Europe, and the Americas. In contrast, 

the NIST population subset is composed of individuals from the U.S., specifically those 

self-identifying as African American, European Americans, and Hispanic, collected from 

the Interstate Blood Bank in Memphis, Tennessee or the DNA Diagnostics Center in 

Fairfield, Ohio.  

It has been previously noted that populations in the U.S. reflect varying levels of 

continental admixture based on the complex population history of the country (Bryc et al. 

2015; Montinaro et al. 2015). Considering that the admixture analysis used U.S. 

populations, all of which are known to carry on average some quantities of ancestry from 

each of the three major U.S. source populations (Bryc et al. 2015; Algee-Hewitt 2016; 

Algee-Hewitt et al. 2018), the best number of clusters was estimated at K=2. 

STRUCTURE analysis of African Americans by Lawson and colleagues (2018) 

demonstrated similar clustering of each into two “ancestral” population clusters based on 

recent admixture. Algee-Hewitt has also shown, for both genetic and proxy quantitative 

skeletal traits similar, 2 cluster patterns for Latinos, largely of Mexican descent, and 
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African Americans. The author further reported only trivial levels of admixture for 

European Americans, as also reflected by Banda and colleagues (2015).   

While the CODIS STRs meet the recommended qualities of markers for 

STRUCTURE analysis in that they reflect low mutation rates, are selectively neutral, and 

are in linkage equilibrium (Prichard et al. 2000, Porras-Hurtado et al. 2013), alternative 

sets markers provide more ancestry information. Explorations of sets of forensic STRs, 

with different characteristics or comprising more markers, have demonstrated increased 

recovery of ancestry information and greater differentiation between individuals using 

STRUCTURE (Algee-Hewitt et al. 2016). While these particular 13 CODIS loci provide 

valuable insights into ancestral origin on the continental scale, the limitations must be 

considered when extending this panel of markers beyond its intended scope for individual 

identification to admixture estimation, especially for populations with complex 

population histories and peoples with potentially high levels of admixture.  
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Appendix A 

 

 

 

 

 

 

 

 

Figure 4A: 1: Spearman’s ρ rank-based assessment of the relationship time since death 

and sample collection (IDDC)  and DNA quantity 
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Figure 4A: 2: Spearman’s ρ rank-based assessment of the relationship time since sample 

collection and STR typing (CST)  and DNA quantity 
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Figure 4A: 3: Spearman’s ρ rank-based assessment of the relationship time since death 

and sample collection (IDDC)  and Class 1 RFUs 
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Figure 4A: 4: Spearman’s ρ rank-based assessment of the relationship time since death 

and sample collection (IDDC)  and Class 2 RFUs 
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Figure 4A: 5: Spearman’s ρ rank-based assessment of the relationship time since death 

and sample collection (IDDC)  and Class 3 RFUs 
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Figure 4A: 6: Spearman’s ρ rank-based assessment of the relationship time since death 

and sample collection (IDDC)  and Class 4 RFUs 
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Figure 4A: 7: Spearman’s ρ rank-based assessment of the relationship time since sample 

collection and STR typing (CST)  and Class 1 RFUs 
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Figure 4A: 8: Spearman’s ρ rank-based assessment of the relationship time since sample 

collection and STR typing (CST)  and Class 2 RFUs 
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Figure 4A: 9: Spearman’s ρ rank-based assessment of the relationship time since sample 

collection and STR typing (CST)  and Class 3 RFUs 
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Figure 4A: 10: Spearman’s ρ rank-based assessment of the relationship time since sample 

collection and STR typing (CST)  and Class 4 RFUs 
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Figure 4A: 11: MedMeaK, MaxMeaK, MedMedK, MaxMedK method by Puechmaille 

(2016) in which the best estimate of K clusters is estimated to be 3.  
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K=110/10, Mean(LnProb) = -16608, Mean(similarity score) = 1.000 

 

 
 

K== 210/10, Mean(LnProb) = -16045, Mean(similarity score) = 0.997 

 

 
K=310/10, Mean(LnProb) = -15774 Mean(similarity score) = 0.996 

 

 
 

Figure 4A: 12: Clumpak-generated plots for STRUCTURE analysis using HGDP-CEPH 

populations assuming No Admixture model. 

 

http://clumpak.tau.ac.il/CLUMPAK_results/1540300538/K=1.MajorCluster.png
http://clumpak.tau.ac.il/CLUMPAK_results/1540300538/K=2.MajorCluster.png
http://clumpak.tau.ac.il/CLUMPAK_results/1540300538/K=3.MajorCluster.png
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Figure 4A: 13: MedMeaK, MaxMeaK, MedMedK, MaxMedK method by Puechmaille 

(2016) in which the best estimate of K clusters is estimated as 2. 
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K=110/10, Mean(LnProb) = -19741, Mean(similarity score) = 1.000 

 

 
 

 

K=27/10, Mean(LnProb) = -19740, Mean(similarity score) = 0.99 

 

 
 

 

K=310/10, Mean(LnProb) = -19946, Mean(similarity score) = 0.979 

 

 

 

Figure 4A: 14: Clumpak-generated plots for STRUCTURE analysis using a subset of the 

NIST population database assuming an admixture-based model. 
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BRIDGING STATEMENT 

 

Chapter 4 provides a comprehensive view of a case study in degraded DNA, 

detailing sample collection, storage, DNA extraction, quantification, and short tandem 

repeat (STR) typing. Chapter 4 builds on the methods outlined in Chapters 1-3 and also 

highlights many of the challenges of degraded DNA work that were presented in the 

aforementioned chapters. Drawing from the conclusions of Chapter 4, the role of impact 

of date of death on DNA quality is emphasized, highlighting the need for attention to 

sample collection. Recommendations for storage of cadaveric blood samples are also 

presented. The ancestry prediction model used in Chapter 4 provides an additional 

validation study of the utility of STR data for geographic estimation as shown by Algee-

Hewitt in 2016. 

 Chapter 5 summarizes the research presented in the previous four chapters. The 

chapter reiterates the similarities between the fields of ancient DNA and forensic genetics 

and the implications of these uniting characteristics. Building upon the validation studies 

outlined in Chapters 3 and 4, the shared issues of working with degraded samples are 

emphasized. Faced with the same issues of degradation, contamination risks, and 

inhibition, the prediction of a convergence between methods in ancient DNA research 

and forensic genetics explored in Chapter 2 is further solidified.  
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CHAPTER 5: CONCLUSION 
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 The widespread proliferation of next-generation sequencing (NGS) technologies 

has prompted the critical reevaluation of the prevailing methods used in these fields. 

While forensic geneticists still largely depend on short-tandem repeat (STR) typing for 

individual identifications, NGS approaches are increasing (Butler 2015). In contrast, 

work in ancient DNA analysis today almost exclusively uses NGS approaches, which are 

ideal for the small fragment sizes characteristic of archaeological samples (Shapiro and 

Hofreiter 2014). 

While NGS has replaced traditional Sanger sequencing methods in ancient 

genomics, the implications of this transition to high-throughput platforms reach beyond 

the mere sequencing of genetic material. The move toward NGS platforms has influenced 

aspects of decontamination protocols, extraction methods, amplification processes, and, 

perhaps most significantly, analysis. The emphasis of decontamination protocols has 

expanded the discourse from the now standard concerns over human exogenous 

contamination to the need for also reducing exogenous microbial contamination 

(Korlević et al. 2015). NGS approaches also present the opportunity to remove sequenced 

contaminants bioinformatically (Skoglund et al. 2014) as well as pre-emptively even with 

traditional chemical-based decontamination methods (Kemp and Smith 2005).  

Ancient and forensic DNA analysis depends on successful extraction of DNA. 

Without effective and, at times, optimal recovery of high quantity and quality DNA from 

characteristically difficult sample material, subsequent procedures including 

amplification, traditional Sanger sequencing as well next-generation sequencing cannot 

be fully, if at all, executed.  
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Today, amplification of degraded DNA involves library preparation methods 

being able to harness single-stranded as well as double-stranded DNA within a sample 

and make it available for sequencing on NGS platforms (Glocke and Meyer 2017). 

Prepared libraries can be sequenced directly on NGS platforms through shotgun 

sequencing, a method in which all fragments, both from the sampled individual and from 

microbial DNA, tagged with platform-specific amplicons are sequenced. With NGS kits, 

prepared libraries can then be subjected to targeted capture of thousands to millions of 

fragments, both of STRs and, more commonly, SNPs.  

Analysis methods have co-evolved with new NGS methods. While traditional 

Sanger sequencing and capillary electrophoresis methods produce rather straightforward 

results that can be analyzed using individual electropherograms, NGS approaches 

produce multiple sequences of the same target fragment, for thousands of targets, during 

each run. This expanded data output requires the integration of computational methods 

into the wet lab, including bioinformatic analyses to parse the various sequences 

produced during NGS analyses. These bioinformatic approaches can also be used to 

authenticate ancient DNA (Skoglund et al. 2014) and make genetic sex determinations 

(Skoglund et al. 2013). 

This dissertation has focused on several important issues affecting forensic and 

ancient DNA research, including sample storage, sample preparation, extraction, 

fragment analysis, and data analysis. Extraction techniques for ancient DNA contexts 

were explored in Chapter 2, including some discussion on the implications of their use in 

forensic genetic applications. In Chapter 2, the history of DNA extraction techniques for 
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ancient DNA were outlined, from the earliest methods to modern cutting-edge 

approaches. Beginning with the earliest approaches to DNA isolation, the evolution of 

DNA isolation procedures is explored, including explanations of each step in the process 

as well as an overview of common extraction reagents. Through understanding the 

various approaches to extraction, including phenol-chloroform (Hanni et al. 1994; 

Loreille et al. 2001), silica-based (Yang et al. 1998; Yang et al. 2004; Rohland and 

Hofreiter 2007; Dabney et al. 2013), and magnetic bead-based extraction (Zhao et al 

2018) and the ways each use different reagents and chemistry to isolate DNA, more 

informed selections can be made during the project planning process (Gamba et al. 2016).  

DNA extraction methods are essential to a successful research design, and 

Chapters 3 and 4 provide recommendations for laboratory analysis. Chapter 3 tested non-

destructive DNA extraction methods on modern samples, demonstrating that DNA can be 

recovered from minimally-destructive extraction protocols. Chapter 3 presented a 

successful extraction of DNA using a technique that is minimally destructive but requires 

expensive and dangerous quantities of guanidine thiocyanate that also involves co-

extraction of inhibitors. Chapter 4 characterized the effect of post-mortem interval on 

DNA quality in cadaveric blood cards. The results recommend the use of FTA-based 

blood cards for long-term storage. 

Lastly, Chapter 4 showed that STR typing is possible on untreated cadaveric 

blood samples that had been stored up to four years, despite some signs of DNA 

degradation. The literature review in Chapter 2 provides recommendations for DNA 

storage and extraction strategies. For tooth samples, the survey of extraction techniques 
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in ancient DNA research reveals the best practice is to sample petrous portions or 

cementum, depending on preservation of the respective elements.  

A thorough understanding of the various aspects of extraction and roles of 

chemical reagents is key for making informed decisions regarding extraction method 

choice. Various sample substrates were explored, from skeletal material to calculus, as 

well as more unusual substrates, including parchment and soil. In addition to the 

mechanics of DNA isolation and sample substrate type, the selection of extraction 

techniques relies on a complex set of factors, including sample source (geographic 

location and climate, burial context, archaeological age, individual developmental age, 

and taphonomic factors), downstream analyses, number of samples, research budget, as 

well as the needs and expectations of descendant groups, collections managers, and other 

stakeholders.  

Other special considerations for ancient DNA analysis were also explored, 

including contamination and DNA authentication, both using traditional sequencing 

methods as well as the combination of next-generation methods with bioinformatic 

approaches (Skoglund et al. 2014). Attention is required when selecting skeletal material 

to be sampled for destructive analysis; as recommended in Chapter 2 the current literature 

supports sampling strategies that privilege the petrous bone (Pinhasi et al. 2014) as well 

as tooth cementum (Hansen et al. 2017), both of which yield the highest amounts of DNA 

when compared to all other elements from archaeological contexts. However, the chapter 

highlighted the need for a more systematic sampling of ancient skeletal remains to 

increase understanding of DNA yields, as has been explored previously in forensic 
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genetic approaches (Mundorff and Davoren 2014). Not only should multiple individuals 

be systematically sampled, but studies must also integrate skeletal material from differing 

climates and time periods. The importance of sampling strategies is also addressed in 

regard to destructive and non-destructive methods, to be determined by the needs of the 

descendant communities as well as custodial stakeholders.  

Chapter 3 provided a validation study of a DNA extraction technique developed 

for use in contexts which require maintaining the complete integrity of the sample, a non-

destructive method proposed by Bolnick and colleagues (2012). Here, the Bolnick 

extraction technique was shown to be successful in recovering both mitochondrial and 

nuclear DNA from both ancient samples as well as forensic-age samples. An additional 

extraction method was also validated using the Bolnick and colleagues’ buffer soak, 

demonstrating that aspects of this protocol may be used in combination with other 

protocols (Kemp et al. 2012) that may be more customized to the downstream analyses 

and budgetary considerations of varying research questions.  

Examination of the tooth samples before and after exposure to the soaking buffer 

revealed a lack of significant differences in tooth dimensions but also showed that the 

exposed teeth were reduced in weight after the buffer soak. This finding prompted the 

need for more intensive examination of the microstructural impact of the buffer soak on 

human tooth samples using multiple angles to assess damage.  

Chapter 3 also offers more insight into the impact of the Bolnick non-destructive 

DNA extraction technique on forensically relevant and ancient teeth. Using histology, 

isotope analysis, and scanning electron microscopy (SEM), this research explores the 
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effect of this non-destructive technique to determine the extent of damage to tooth 

microstructure. While isotope analysis shows that there is no significant difference in 

isotope signatures before and after exposure to the Bolnick protocol buffer soak, 

differences are observed through both histological and SEM analysis.  

Using a histological approach, the study demonstrates a difference between 

damaged areas in tooth samples that had been soaked versus not soaked. In total, the 

treated samples exhibit increased root and enamel damage over the untreated samples. 

The histology results reveal distinctive patterns associated with increased damage to 

microstructure by exposure to the soaking buffer and revealed almost twice as much 

damage in the treated teeth. SEM analysis also reveals damage to the surface of the teeth 

exposed to the soaking buffer, most notably staining of the enamel. Staining is especially 

prominent in areas with pre-existing damage and it is uncertain as to whether the staining 

is permanent or temporary. Based on these analyses, we determine that the Bolnick 

protocol should be re-categorized as a “minimally-destructive” protocol and treated 

accordingly. 

The results from this validation research illustrate the possibilities of for non-

destructive DNA extraction protocols in situations where some microstructural damage 

may be acceptable in exchange for genetic information obtained while maintaining 

macroscopic integrity of the tooth sample. While the Bolnick method produces DNA 

yields sufficient for amplifying mitochondrial and nuclear DNA using traditional PCR 

methods, researchers must weigh the costs and benefits of such protocols. Perhaps most 

importantly, consideration for the individuals being sampled and the descendant 
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communities of those individuals must be paramount. Minimally-destructive protocols 

hold promise for a variety of applications and may provide an alternative to destruction of 

human biological materials; however, this research has demonstrated that these 

approaches do introduce damage on a microstructural level. While this may open some 

samples to analysis, this is an informed decision that must be made by collections 

personnel and descendant communities and researchers based on the information 

provided in Chapter 3.  

Similarly, considerations for future genotyping needs must be made when 

selecting long-term sample storage products for biological collections, as shown in 

Chapter 4. Using blood collected from 20 donors, post-mortem, and stored between 4 

months and 4 years on untreated blood cards, this research shows that DNA yields and 

quality are sufficient for generating a full STR profiled using the Applied Biosystems 

Identifiler kit, with lab work performed by Bode Cellmark Forensics. Comparisons of 

relative fluorescent units (RFUs) between STRs separated into groups by size 

demonstrate a decline in fluorescence with increasing fragment length. This decline in 

amplification, as shown through RFUs, is indicative of DNA degradation, as fewer 

fragments of large size were available for amplification during PCR. In contrast to FTA 

(Flinders Technology Agreement) cards which lyse cells and deactivate nucleases upon 

sample deposition, the untreated blood cards used in the study allow nuclease activity to 

continue during storage. This may be the source of some DNA degradation observed in 

this case study.  
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The STR profiles generated on the 20 donors were assessed for trihybrid ancestry 

estimation using unsupervised clustering models in STRUCTURE (Pritchard et al. 2000). 

Known continental ancestry groups from the Human Diversity Genome Project (HDGP-

CEPH) populations were set as parental populations assessed against unknown samples. 

Ancestry results were compared to self-reported ancestry and show agreement in 17 of 20 

individuals. Admixture analysis was also conducted in STRUCTURE using a trihybrid 

subset of the NIST population database, displaying mixed levels of tri-continental 

ancestry, as may be expected in a U.S. population (Bryc et al. 2015). The application of 

ancestry/admixture analysis to the profiles generated in Chapter 4 demonstrate the utility 

of STR markers beyond identification, as demonstrated by Algee-Hewitt and colleagues 

(2016). 

 The selection of DNA storage materials and extraction methods requires 

deliberate deliberation of multiple factors, including sample type, source, research plan, 

budget, and subsequent analyses. Inappropriate selection of these factors can result in low 

extraction yields that produce no results or insufficient results. In these cases, valuable 

research dollars and time are spent to generate inconclusive data and, most significantly, 

waste precious sample material, thus attention to both sample storage substrates and 

extraction techniques should be a research plan and budgetary priority. Perhaps most 

importantly, sample preparation and extraction of DNA necessitates consideration of the 

cultural context of the research in order to meet the needs and expectations of the various 

stakeholders by using the least destructive methods to generate the highest quality data 

possible. Through combining responsible sample selection and processing with a 
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deliberate assessment of current and effective protocols that are most appropriate for 

target samples, researchers can obtain optimal results for downstream analyses, including 

next-generation sequencing. 
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