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ABSTRACT 

Bioenergy crops can provide a reliable and adequate supply of biomass feedstocks to support the 

bioenergy industry. However, commercial scale production of bioenergy crops has not been 

established to meet the increasing energy demand for the bioenergy industry. Thus, there is a 

need to explore the full potential of bioenergy crop production to support energy generation. This 

dissertation examined the feasibility of bioenergy crop production in the southern United States 

with a case study from Kentucky. For the feasibility of bioenergy crop production, I (1) analyzed 

trade-offs among the major components of bioenergy crop production, (2) assessed landowners’ 

willingness to promote bioenergy crops and, (3) evaluated potential bioenergy policies and 

prioritized them based on their effectiveness to support the promotion of sustainable bioenergy 

production. I used multiple approaches including a multi-objective optimization model, a 

questionnaire survey, and an analytic hierarchy process (AHP) model, to examine the feasibility 

of bioenergy production. The trade-off analysis highlighted potential opportunities and risks in 

bioenergy production. Even though there were suitable lands for growing bioenergy crops, the 

production was not economically beneficial. Further, higher bioenergy production generated 

concerns for negative impact on the environment. Thus, results from the trade-off analysis 

showed a need to find the best balance among the trade-offs for better production decisions. The 

landowner survey indicated that they were relatively more willing to grow bioenergy crops 

themselves than rent their land to others. Current land management practices and socio-economic 

and environmental factors affected their land use decisions about bioenergy crop production. 

Finally, my policy analysis highlighted that policies that incorporate environmental conservation 

are key to establishing bioenergy crops. In addition, consideration should also be given to 

efficient technological support while designing specific policy to promote bioenergy production. 

Overall, results from the whole study can be useful to design effective policies, develop outreach 

activities, and support technological investments that would promote bioenergy crop production 

in ways that are economically efficient as well as compatible with social, and environmental 

factors.  
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Renewable energy sources such as energy from biomass (bioenergy) is a key to address concerns 

for energy security and climate change. Even though bioenergy is supported by various policies 

and incentives in the United States (US), commercial scale production of bioenergy has not been 

established to meet the increasing energy demand. There are challenges for bioenergy production 

in terms of various socio-economic and environmental factors that must be addressed before 

bioenergy could be sustainable. Thus, there is a need to explore different aspects of bioenergy 

production to support energy generation. In this dissertation, I assessed the feasibility of 

bioenergy crop production with a case study from Kentucky. This chapter provides a background 

on bioenergy research, including current developments, opportunities and challenges. It 

describes specific research questions for three manuscript chapters and lays out foundation to 

show how the chapters link together. In addition, it also summarizes the potential contributions 

of the study in the context of broader bioenergy research. Finally, this chapter outlines how the 

dissertation is organized into various chapters.  

1.1 Background   

1.1.1 Biomass for energy 

Current energy consumption in the US is dependent on fossil fuels, mainly, coal, petroleum, and 

natural gas. Fossil fuels are non-renewable energy sources which deplete over time. Further, they 

are harmful to the environment as they emit greenhouse gases (GHGs) that contribute to global 

warming and climate change. In addition, fossil fuels currently in operation in the US are not 

enough to meet the increasing energy demand. As a result, there is a huge reliance on petroleum 

fuels from foreign countries, especially from oil producing regions in the Middle East that has 

unstable political regimes causing an unsustainable energy supply and fuel price volatility. 

Diversifying the current energy supply with alternative renewable energy sources is crucial to 

reducing our long-term dependence on fossil fuels and addressing environmental concerns about 

greenhouse gas emissions and global climate change. Wind, solar, hydropower, geothermal, and 

biomass are some of the renewable energy sources that can potentially replace existing fossil 

fuels. However, economic development in the US is primarily dependent on fossil fuels - coal for 

electricity generation that makes the shift to renewable energy costly and time consuming (US 

DOE, 2010). Nevertheless, the US government is committed to promoting renewable, potentially 

carbon neutral energy sources. While renewable energy sources such as solar, wind, and 
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hydropower technologies are evident, biomass has become one of the most promising renewable 

energy sources in the US (Rousseau, 2010). Biomass energy (or bioenergy) simply refers to the 

generation of energy from plants or plant-based materials. Generating energy from biomass has 

been established for centuries (mainly for cooking food and keeping warm) but biomass prices 

have not been competitive with existing fossil fuels. Consequently, energy production from 

biomass has not been adopted on a commercial basis (White, 2010). However, projections of 

future energy demand and climate change legislations suggest an increase in the use of biomass 

for energy generation in the near future. In addition, the demand for bioenergy (biomass energy) 

is likely to increase to achieve emission reduction goals in the energy and transportation sectors 

(IEA 2011, 2012).  

1.1.2 Bioenergy policies and incentives 

Bioenergy has been promoted by various policies over several decades. The Energy Policy Act 

(EPAct) of 1992 aimed at improving energy independence and enhancing environmental quality 

by acknowledging different aspects of energy demand and supply, including alternative 

renewable energy and energy efficiency (EPAct, 1992). The act provided incentives for 

development and commercialization of renewable energy technologies that are clean and cost-

efficient (NRRI, 1993). The Biomass Research and Development Act 2000 identified the need of 

large research driven advancement in technology to support bioenergy industry (BRDA, 2000). 

The act established a Biomass Research and Development Board to coordinate research and 

developments activities between USDA and USDOE with other federal departments and 

agencies to promote the bioenergy industry and maximize the benefits from federal grants and 

assistance (ibid). Farm Bill 2002 supported bioenergy production through various research and 

cooperative extension programs. It provided grants and loans for various research, for risk 

sharing, and promoting the use of renewable energy (Bracmort, 2017). It also provided 

incentives to feedstock producers and education to farmers, local authorities and civil society to 

promote the benefits of bioenergy production and utilization (USDA, 2007). The Energy Policy 

Act of 2005 established Renewable Fuel Standards (RFS). Initially the RFS mandated a 

minimum of 4 billion gallons of renewable fuels to be blended into gasoline in 2006, raising that 

to 7.5 billion gallons by 2012 (Schnept and Yacobucci, 2013). The Energy Independence and 

Security Act of 2007 increased the mandate to 36 billion gallons by 2022 (EPA, 2017). The act 

also encouraged research and development for advanced biofuels including cellulosic fuels and 
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set up cellulosic mandate at 16 billion gallons by 2022 (Bracmort, 2015). Farm Bill 2008 

expanded bioenergy programs, emphasizing mainly those using biomass feedstocks to promote 

renewable energy. It authorized more than $1 billion mandatory funding for energy programs for 

FY2008-2012, $255 million of which was allocated to the Rural Energy for America Program 

(REAP) (Bracmort, 2017). REAP was initiated to assist landowners and rural entrepreneurs to 

conduct feasibility studies for renewable energy projects. In addition, the Biomass Crop 

Assistance Program (BCAP) that supports bioenergy feedstock production, collection, 

harvesting, storage and transportation, was authorized to receive funding under the Farm Bill 

2008 (ibid). They highlighted the need to expand legislative initiatives to address concern for 

energy security and greenhouse gas emissions from fossil fuels. More recently, Farm Bill 2014, 

Title IX has continued to support the production of bioenergy. It extended the Biomass Research 

and Development Initiative (BRDI) with more funding for research within USDA and DOE 

(ibid). Similarly, it has extended the Bioenergy Crop Assistance Program (BCAP). In addition, 

many states have developed bioenergy incentives in the form of tax credits, grants, loan and cost-

share programs.  

1.1.3 Sources of bioenergy 

Bioenergy can be produced from a variety of resources. First-generation sources that include 

food crops such as corn, soybean and sugarcane have not only raised questions about food versus 

fuel debate but also price volatility and adverse environmental impacts (Foley, 2011). On the 

other hand, non-food crops (bioenergy crops), agricultural residues, waste materials, and forest 

biomass have gained considerable attention mainly because they do not displace agriculture 

production or threaten the health of farms and forests. Bioenergy crops stand out as having the 

largest long-term opportunity to promote bioenergy production in the US. Bioenergy crops are 

fast-growing plant species with the ability to produce high yield biomass, they have high energy 

potential (generate energy directly by combustion or gasification and convert to liquid fuels such 

as ethanol) with less CO2 emissions, they can be grown on less fertile soil, and they require less 

fertilizers and pesticides (Lemus and Lal, 2007; MBEP, 2002). Bioenergy crops can be 

herbaceous or woody crops. Herbaceous crops are mostly perennial grasses that can be harvested 

as hay. Switchgrass, miscanthus, and wheatgrass are some of the important crops that can been 

grown mainly to produce energy. Woody crops are mainly tree species with short rotation. Fast 

growing hardwood species such as eastern cottonwood, sweetgum, American sycamore, willow 
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and yellow poplar are potential species as woody crops. Those woody crops are native species 

with wider geographic distribution throughout the US and they can produce economically viable 

biomass feedstocks within short rotations (Rousseau, 2010). Further, the management and 

silvicultural operations for establishing and growing these crops are well understood. When 

compared to biomass supply from other sources such as agricultural residues, waste and forest 

biomass, biomass from energy crops are likely to be significant feedstock source for the 

bioenergy industry. It has been projected that more than 400 million tons of biomass could be 

produced each year by 2030 (UCS, 2012). Further, there are existing coal facilities that provide 

opportunity to co-fire biomass with coal for energy generation without significant capital 

investment for new bioenergy facilities. 

1.1.4 Challenges for promoting bioenergy crop production 

Bioenergy crops are fast growing species that are dedicated to the production of energy (Sartori 

et al., 2006). These crops can generate energy directly by combustion or gasification, and they 

can also be converted to liquid fuels such as ethanol (MBEP, 2002). Even though there is an 

increasing interest in bioenergy crop production throughout the United States (especially, in the 

southern US because of favorable climatic conditions for growing woody bioenergy crops), 

commercial production of bioenergy crops is still in its infancy. Studies have shown that 

sustainable bioenergy production can provide numerous socio-economic and environmental 

benefits (Souza et al., 2017; Hill et al., 2006), but how realistic these opportunities is 

questionable. Increasingly, various concerns have been expressed to promote the bioenergy 

industry. Even though they have been considered to have major environmental benefits such as 

improved soil and water quality, carbon sequestration, and improved biodiversity, the relative 

environmental impacts of land use conversion to bioenergy crops depend on previous land use. If 

bioenergy crops are displacing annual agricultural or marginal land, the ecological implications 

could be positive. When more natural land cover types such as forests are displaced with 

bioenergy crops, however the effects could be negative. In the latter case, land use change can be 

a potential risk exacerbated by bioenergy development. Similarly, the notion of bioenergy as a 

carbon-neutral source of energy is questionable. Even though bioenergy is considered carbon-

neutral, fossil fuels is required for transporting feedstocks to bioenergy facility, processing and 

converting feedstocks to energy, and distributing bioenergy to end users (Hill et al., 2006). In 
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addition, the net carbon balance can greatly vary depending on the type of crop species used as 

feedstock, and on where and how it is grown and used (Bracmort, 2016). 

Bioenergy production also faces competition at various levels. There are competing uses for the 

biomass resource itself (for example, paper and pulp, lumber). There is also competition for 

existing land for food and fuel. Further, in the southern US, there are many factors that restrict 

the production of bioenergy from woody crops, for example, high pulpwood prices, low 

electricity prices, low coal prices and poorly understood environmental benefits of bioenergy 

crops (Badger, 1996). In addition, there is not enough energy production and distribution 

infrastructure for the bioenergy industry and it must rely on existing infrastructure designed for 

fossil fuel industries. Displacing a significant amount of existing use of fossil fuels is a long-term 

process and it will require technological advancement and major changes in economic, technical 

and social processes (NRC, 2011). Currently, technologies are available for bioenergy 

production, but they are not economically beneficial at a commercial scale, even with existing 

production subsidies and mandates (ibid).  

There are also some social barriers to promoting bioenergy production. Biomass feedstocks for 

the bioenergy industry are likely to come from landowners as they own majority of land in the 

south (Leitch et al., 2013). However, whether these landowners are willing to harvest biomass 

feedstocks in their property is poorly understood (Cope et al., 2011). Studies have shown that 

there is a lack of information and awareness among landowners about potential opportunities to 

grow and harvest bioenergy crops. In addition, there is no proper infrastructure developed for 

bioenergy production and an efficient and economical transportation is lacking. Further, cultural 

barriers to converting existing land use practices to bioenergy crop production, insufficient 

economic and policy incentives, and uncertainty around biomass yield and market conditions 

make bioenergy crops less attractive to landowners (NRC, 2011). Although policy incentives 

would benefit landowners’ desire to establish bioenergy crops, biomass market and government 

incentives change over time and it becomes hard to predict what policies would be favorable to 

promote energy crops.  

1.2 Need for research 

Sustainable production of bioenergy must address challenges related to balancing food and 

energy production, environmental sustainability, maintenance of biodiversity and ecosystem 
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services, and various socio-economic factors. Marginal lands, lands with low productivity and 

poorly suited for food crops production, have recently been considered for producing feedstocks 

that could potentially avoid many problems associated with bioenergy production (Lewis and 

Kelly, 2014). Marginal lands are attractive for growing energy crops because they do not 

compete with food production or promote forest conversion or intervene with any existing 

management practices. Further, growing energy crops on marginal land will have positive 

ecological implications such as improved soil and water quality, carbon sequestration, and 

biodiversity. For example, growing bioenergy crops on marginal lands can help rebuild soil 

profile and increase soil organic matter content and increase carbon sequestration in the soil. 

Similarly, establishing bioenergy crops can provide a protective cover, help reduce runoffs and 

loss of sediments, and reduce the risk of water erosion (Blanco-Canqui, 2016). Further, growing 

bioenergy crops can improve biodiversity in terms of faunal diversity and abundance (ibid). 

However, several questions arise about how to grow bioenergy crops on such lands and whether 

these lands can produce abundant biomass feedstocks to support the bioenergy industry while 

providing environmental services (ibid). In addition, questions about economic and social 

implication of bioenergy crop production on marginal lands need careful analysis mainly because 

the production might not be economically beneficial unless a stable biomass market is 

established, and other ecosystem services are valued and incentivized (Blanco-Canqui, 2016; 

Kang et al., 2013). Therefore, it becomes imperative to explore high yielding bioenergy 

feedstock sources and plan a feasible biomass production system on the available marginal lands 

based on the interconnectedness between social, economic and environmental dimensions of 

sustainability. In addition, ensuring the broad potential of bioenergy as a sustainable energy 

source will require participation from landowners for producing bioenergy crops. Even though a 

large amount of marginal lands might be suitable for growing bioenergy crops, previously 

studies have shown that bioenergy crop production is less attractive to landowners and the actual 

land available for bioenergy crops could be significantly less than what is suitable for 

establishing bioenergy crop production (Braham et al., 2016; Skevas et al., 2016). Several 

factors, including marginal returns, familiarity about bioenergy crop production, perception and 

attitude towards bioenergy, environmental concerns, and amenity values (such as aesthetic and 

recreational values) may affect their view toward opportunities and challenges presented by 

bioenergy crop production (Caldes et al., 2014; Leitch et al., 2013; Qualls et al., 2012). It is 
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therefore important to understand if and under what conditions landowners are willing to change 

their land use behavior to promote bioenergy crop production. Understanding people’s view on 

bioenergy and their preferences for their land use decision can help identify whether suitable 

marginal lands are actually available for bioenergy production and what policies, technologies 

and investments they seek to ensure maximum potential of bioenergy crop production on their 

land. Furthermore, there is not a well-developed market for biomass and several uncertainties 

exist about the availability of feedstock sources, technologies to convert biomass to energy, 

political and regulatory environment for promoting bioenergy crop production (Dumortier, 2016; 

NRC, 2011). Thus, it is also important to evaluate what policies would be effective to ensure that 

bioenergy production is promoted in ways that are economically efficient as well as compatible 

with social, political and environmental concerns.  

1.3 Case study: Kentucky 

This research explores the potential of bioenergy crop production in the southern United States 

with a case study from Kentucky. Kentucky is the fifth largest coal producing state in the US and 

coal is the major source of energy in the state, accounting for approximately 79% of electricity 

generation (EIA, 2018). Even though the economy of the state is highly dependent on the coal 

industry, various efforts are underway to diversify away from coal with alternative renewable 

energy sources. Renewable energy sources such as solar, wind and hydropower are not feasible 

in Kentucky because of geographic limitations. However, energy from biomass can be a viable 

source to partially replace coal. Currently, bioenergy accounts for a small fraction of total energy 

produced in the state but efficient policy incentives can promote bioenergy in the long run. An 

energy plan developed by the Governor’s office in 2008 has prioritized bioenergy production to 

meet the energy demand in the state. According to the plan, Kentucky will need to produce 25 

million tons of biomass annually by 2025 to meet the federal and state fuel standards.  

Agriculture and forest resources could contribute to approximately 12 to 15 million tons of 

biomass per year but there will be a need to improve crop productivity, and farmland and forest 

management to meet the energy demand (Governor’s office, 2009; Cowie et al., 2007). In this 

regard, energy crops have been identified as one of the important sources of bioenergy to supply 

adequate feedstock to sustain the bioenergy industry (Staudhammer et al., 2011). Previous 

studies in the state have identified 14 native Kentucky crop species that are suitable for biomass-

based energy production and to make bioenergy production a feasible and clear alternative to 
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fossil fuels (Governor’s Office, 2009). Kentucky is also unique for its geographical location 

bordering northern and southern regions of the US. Further, there is a diverse land use with 

privately owned small parcels of lands. In addition, there are many coal plants in the state that 

provide opportunities to co-fire biomass with coal for energy generation without significant 

capital investment for establishing new bioenergy facilities. Further, co-firing has the potential to 

reduce emissions of GHGs. For example, Mann and Spath (2001) estimated that co-firing rates 

of 5 and 15% would reduce CO2 emissions by 5.4 and 18.2 percent, respectively. Their study 

also showed reductions in the emissions of SO2, NOx and CO. Thus, Kentucky serves as a 

suitable location to analyze the potential of bioenergy crop production. The findings can be 

useful for other states in similar geographic locations where bioenergy crop production has been 

recommended. Bioenergy crop production in the state/region can promote renewable energy and 

diversify current coal-based energy generation. Additionally, it can provide opportunities to 

supply significant portion of the country’s energy needs and achieve energy security, contribute 

to GHG emission reductions and transition to a more clean and sustainable energy. Further, as 

bioenergy production is more labor intensive (it requires site preparation, plantation and 

management, harvesting, storage, and transportation) than other energy resources, bioenergy 

production can provide opportunities for rural jobs and increase farm income of people who 

grow and harvest bioenergy resources. Lastly, this study uses marginal lands (lands with poor 

quality soil that are unfit for agricultural production) in Kentucky as potential sites for growing 

bioenergy crops. Establishing bioenergy crops on marginal lands can help improve 

environmental quality by restoring degraded lands. Growing tress help rebuild soil profile and 

provide a protective cover, thus they help reduce runoffs and reduce the risk of water erosion.  

1.4 Research objectives 

 This study has three specific objectives as show below:  

1. To identify trade-offs between socio-economic and environmental factors for bioenergy 

crop production 

a. Assess social, economic and environmental effects of bioenergy crop production  

b. Identify trade-offs between social, economic and environmental factors in 

bioenergy crop production 
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c. Analyze shift in trade-offs when preferences for different factors change in the 

production decisions  

2. To understand landowners’ perceptions of bioenergy and their willingness to promote 

bioenergy crop production 

a. Understand landowners’ perceptions about bioenergy  

b. Analyze how willing landowners are to supply their land for bioenergy crop 

production 

c. Identify how much of current land landowners are willing to make available for 

bioenergy crop production 

d. Identify factors that affect landowners’ land use decisions for promoting 

bioenergy crop production 

3. To evaluate potential bioenergy policies for promoting sustainable bioenergy crop 

production.  

1.5 Theoretical framework 

This research uses a sustainability concept that ensures simultaneous achievement of economic 

prosperity, a healthy environmental and social equity over the long term (Muralikrishna and 

Manickam, 2017). More recently, sustainable development has emerged as an integrated 

framework to achieve sustainability. Sustainable development has gained considerable attention 

at national and international levels due to challenges faced in the areas of rural development, 

environmental conservation, energy generation and climate change (Olawumi, 2018). The vision 

of sustainable development was first implemented by the Brundtland Commission in 1987 which 

defined sustainable development as “the development that meets the needs of the present 

generation without compromising ability of the future generation to meet their own needs” 

(WCED, 1987). This vision was refined by the UN General Assembly with the adoption of The 

2030 Agenda for Sustainable Development that focused on coupled socio-environmental systems 

where social factors (human population, economies, technologies, intuitions) interact with the 

environment (climate, ecosystem, biochemical cycle) at various temporal and spatial scales 

(Clark et al., 2016; UN, 2015). 

Over the years, several inter-disciplinary theories (with their own set of assumptions) have been 

used to interpret sustainable development and to study relationships between the environment 
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and social factors (for example, landscape ecology, political ecology, political economics, etc.). 

Among them, there are two leading theories on sustainable development that integrate economic, 

social and environmental dimensions of development. These are ecological economics theory 

and environmental economics theory (Beder, 2011; Grainger, 2004; de Wit and Blignaut, 2000). 

Ecological economics theory considers economy as a subset of a global ecosystem. According to 

this theory, the flow of income and materials into the economic system is indeed, a part of 

transformation of energy and materials within the ecosystem (Grainger, 2004). Since the earth is 

finite, there should be limits to the physical growth of economy. Thus, long term economic 

viability is subject to how well we adhere to the rules governing the ecosystem (ibid). 

Environmental economics theory, on the other hand, is the most commonly used theory and it 

incorporates all three dimensions of development (economic, social and environmental 

dimensions) (ibid). Within this theory, the mainstream economic principles are applied to the 

environment (environmental issues) and development is considered as the accumulation of man-

made capital at the expense of natural capital (Harris and Roach, 2018; Grainger, 2004). 

According to this theory, environmental problems arise because there is a lack of a proper 

mechanism to price the environment and, additionally, a lack of incentives to protect it. More 

recently, economists have provided ways to allocate market prices for environmental 

commodities under the demand and supply framework which enter into the market analysis for 

better decisions. Contingent valuation techniques are widely used to allocate prices for 

environmental commodities for which a market does not exist (Mulder and van den Bergh, 

2001).  

These theories have been used to address sustainable development issues. For example, there is a 

controversy between economic growth and environmental conservation. On the one hand, some 

argue that economic growth is a prerequisite to preserve environmental quality, but on the other 

hand, others argue that economic growth will create more pressure on the environment (ibid). 

Studies have suggested that environmental quality may decline in the early stages of economic 

development, but it will subsequently improve in the long-run. Similarly, studies have focused 

on technological improvement as an approach to dissociate economic growth from 

environmental pressure (ibid). In the context of material consumption, changing the current 

consumption pattern to a more sustainable direction would require integration of socio-cultural 

and psychological factors (need, opinion, preferences, lifestyle) into economic and technological 
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solutions. Research has incorporated social and cultural theories into economic theory to 

understand such human behavior. More recently, economic analysis of climate change policies 

under uncertainty has been conducted. In addition, economic analysis has been used to provide 

policy suggestions for sustainable energy generation and to analyze whether policies are 

sensitive to social, economic and environmental changes(ibid). This dissertation adds to the 

existing literature by focusing specifically on bioenergy generation where analyses were 

performed for planning efficient energy production scenarios based on economic analysis and a 

consideration for social and environmental factors. I applied environmental economics theory as 

it focuses on market-based resource use and management and allocates resources more 

efficiently. It considers natural resources as scarce resources and applies the optimal allocation 

theories to those resources (van den Bergh, 2001). Since there is no well-defined market for 

biomass and there are so many uncertainties in the production process, I allocated prices for 

biomass produced in the biomass supply chain with an aim to produce sustainable feedstocks to 

meet the increasing energy demand. Using market-based instruments (biomass prices) also 

incentivized landowners to promote bioenergy. In addition, environmental economics provided a 

way to find the best balance between economic activities and environmental impacts in ways that 

considered all costs and benefits associated with bioenergy production.  

In the context of bioenergy crop production, sustainability focuses on three components: energy 

production, income opportunities and environmental quality. Ensuring sustainable bioenergy 

crop production is a complex and multi-dimensional process that requires a careful assessment of 

various impacts at various temporal and spatial scales (Popp et al., 2014). Promoting bioenergy 

crop production would not only lead to change in physical/natural structure (change in soil and 

water quality, biodiversity, GHG emissions) but this shift would also generate political and 

economic interests, and social values are likely to be intertwined (Calvert et al., 2017). In 

addition, assessing sustainability of bioenergy must be evidence-based that needs to consider 

trade-offs among various production factors, landowners’ opinions on production, and policies to 

support good practices in bioenergy production (FAO, 2018; FAO, 2016). Therefore, it is 

important to develop an integrated approach that addresses all the dimensions of sustainability 

given a set of constraints such as existing land management practices, energy demand, socio-

economic and policy structures. 
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The goal of sustainability has been analyzed by diverse disciplines. Geographical scholars use a 

spatial perspective to understand human interactions with the-environment. Some of the key 

questions they ask about sustainability include the following: How do long-term global trends 

including material consumption and population growth reshape human-environment interactions 

in ways relevant to sustainability? (Parris and Kates, 2003) What determines vulnerability and 

resilience of particular places and people’s livelihood to deal with changing environment? (NRC, 

2010) What incentives can improve society’s ability to guide human-environment interactions 

more sustainable? (Clark, 2007) How can participatory decision making be integrated in the 

planning process for sustainable natural resource management? How can research and 

development (R & D) and technological advancement be more efficiently used to gain 

sustainability goals? (ibid) As a geographer, I mainly focused on place-based energy production 

planning that can contribute to the sustainability studies in various ways. First, as most of the 

interferences on the natural system are primarily human choices (Davis et al., 2014), I used 

modeling tools to represent changes in the environment and to generate knowledge about the 

dynamic interaction between environment and society. This knowledge about human-

environment interaction can support policy-making process for sustainable energy generation. 

Second, I studied how societies react to the opportunities and risks to the changing environment, 

and what incentives they seek to maintain a more sustainable interaction with the environment. 

Lastly, I focused on participatory planning (taking into consideration of various stakeholders in 

the policy process) for sustainable usage of natural resource management. 

Specifically, in the context of sustainable energy generation, geographers have previously 

studied implications of energy transitions from fossil fuels to renewable energy (such as 

bioenergy) (Calvert, 2016). However, they have mainly focused on issues related to land-use 

change and resource management. More recently, scholars have focused on bioenergy research 

to explore potential environmental benefits to reduce GHG emissions (Fast et al., 2011). There is 

a lack of research that addresses issues related to biomass supply chain and bioenergy use in the 

context of existing socio-economic and political structure that could provide an insight into 

potential opportunities and risks for promoting a sustainable bioenergy production. Achieving 

sustainable bioenergy requires meeting the energy demand for an increasing population while 

protecting the natural environment. In this context, it is important to consider all aspects of 

sustainability (economic, social and political) and examine the relationship between them. 
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Drawing on the economics theories of sustainability, this research examined the feasibility of 

sustainable bioenergy crop production taking into consideration of various socio-economic, 

ecological and political factors. Bioenergy production in this study is portrayed as a link between 

human and physical environment fitting firmly within the geography’s human-environment 

theme. 

Assessing sustainability for a bioenergy production system requires careful consideration of 

various socio-economic and environmental impacts. It is a step-wise decision-making process 

where we first set up a goal for production, create scenarios based on available data, identify and 

measure different indicators related to the scenarios, and identify the scenario that provides the 

most efficient solution (Rathore et al., 2017). Some of the most widely used assessment methods 

for bioenergy production include life cycle analysis, environmental impact assessment (EIA), 

and strategic environmental assessment (SEA) (Wu et al., 2018; de Carvalho, 2011; Fernando et 

al., 2010). While these methods are important, they limit environmental performances of 

bioenergy systems and ignore the fact that bioenergy systems consider social and economic 

factors as well. To address this limitation and to incorporate all dimensions of sustainability, 

methods such as multi-criteria decision analysis (MCDA) can be used. MCDA is a decision 

support system that can address multiple and conflicting criteria. For sustainable bioenergy 

production, some of the most common criteria include energy production, investment costs, 

GHG emissions, land use change and social acceptance. Thus, MCDA is an applicable tool to 

address sustainability. MCDA can provide a structured representation of various criteria that are 

relevant to sustainable bioenergy production and identify the most critical criterion for 

sustainability assessment. In addition, MCDA can integrate stakeholders’ participation and 

evidence-based information throughout the entire decision-making process. This cooperation 

ensures all the components of socio-economic and ecological components and their relationships 

are identified and investigated (Haywood et al., 2009). Various MCDA methods have been 

recorded in literature that support decision-making in a more transparent and structured way with 

underlying assumptions of sustainability. For example, in analytic hierarchy process (AHP), the 

decision problem is structured as a simple hierarchy, weights are assigned for each element 

within the hierarchy and pairwise comparisons are performed to evaluate the overall ranking of 

different alternatives. In addition, AHP considers qualitative and quantitative aspects of a 

decision problem and facilitates communication among different stakeholders for better decision 
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making. Even though MCDA is certainly applicable, there has not been substantial use of 

MCDA in bioenergy research especially, on a local or regional scale. This study uses MCDA for 

a comprehensive analysis on the planning of sustainable bioenergy crop production at a regional 

scale.   

1.6 Significance of research  

Renewable energy sources such as energy from biomass will be a key to realize the goal of 

energy independence through domestic energy production. This research assessed the feasibility 

of producing biomass for energy in the southeastern US with a case study from Kentucky. First, 

the study assessed the interconnected/trade-offs between socio-economic and environmental 

aspects of bioenergy crop production on marginal lands. Proper knowledge of the trade-offs 

between various sustainability dimensions can be helpful for effective planning for the 

establishment of bioenergy crops and for assisting in other sustainability goals such an economic 

growth, environmental conservation and rural development. This study also integrated 

knowledge from landowners and examined their preferences for land use decisions. Individual 

landowner’s decision to convert existing land use to bioenergy crops was affected not only by 

biomass markets and policies but also by various socio-cultural factors. This study also provided 

insights into the barriers to landowners’ engagement in the bioenergy production process. This 

information will be useful in understanding the factors affecting the adoption rate and to plan for 

a policy that is effective and acceptable for landowners to encourage bioenergy feedstock 

production. Lastly, this study integrated quantitative and qualitative information to evaluate 

common bioenergy policies to promote a sustainable bioenergy production. Results from the 

study can be used for regional planning of bioenergy crop production, developing outreach 

activities for landowners in the study area (and beyond) and assisting state agencies in selecting 

and implementing suitable bioenergy policies to promote the bioenergy industry.  

Additionally, a major focus of this study was place-based bioenergy production planning with a 

consideration of various dimensions of sustainability into one integrated approach. While it is 

common in bioenergy research that economists, natural resource scientists and social scientists 

work and collect data differently at various spatial scales, there is limited research to combine the 

data and integrate them into one methodological framework. This study used an integrated 

approach that was inclusive to different stakeholders in the production process and the different 
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dimensions of sustainability was preciously included at the same spatial scale. This strengthens 

the idea that during planning for effective policies, bioenergy production should not be viewed in 

an isolated fashion rather a part of integrated system that would require policies that support use 

of bioenergy in the framework of larger land use and market policies. Further, this study 

evaluated the role of bioenergy under different existing and potential policy incentives to scale 

up the bioenergy industry to address the concerns for energy security. Lastly, this study provided 

spatial perspective on bioenergy production at a regional level which can be linked to other 

regions or national system to explore how investment on small-scale bioenergy systems can be 

developed to address increasing energy demands.  

1.7 Organization of the dissertation 

This dissertation is organized in five chapters. Chapter 1 provides a general background and 

impetus for this study. Chapters 2 -4 are prepared as individual manuscripts for submission to 

peer-reviewed journals. These manuscripts address the three objectives of my research. Chapter 

2 focusses on identifying trade-offs between various sustainability dimensions for bioenergy 

crop production. In Chapter 3, I analyzed landowners’ perception on bioenergy and their 

willingness to promote bioenergy crops on their land through a questionnaire survey. For 

Chapter 4, I evaluated potential bioenergy policies for sustainable bioenergy crop production. 

Chapter 5 summarizes the findings of Chapters 2 through 4 and discusses the overall 

implication/contribution of the dissertation and provides suggestions for future research.  
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IDENTIFYING TRADE-OFFS BETWEEN SOCIO-ECONOMIC AND 

ENVIRONMENTAL FACTORS FOR BIOENERGY PRODUCTION: A 

CASE STUDY FROM NORTHERN KENTUCKY 
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This chapter is prepared for journal submission. The use of “we” in this chapter refers to co-

author, Dr. Liem T. Tran, and me. I am the first author, and my contribution to this project 

include model development, data analysis, and writing the manuscript. 

Abstract 

Bioenergy crops can provide a reliable and adequate supply of biomass feedstocks to support the 

bioenergy industry. However, promoting bioenergy crops would require major changes in land 

use and management practices that can have long term socio-economic and environmental 

impacts. Therefore, it is important to have a careful evaluation of potential opportunities and 

challenges presented by bioenergy crop production. We developed a multi-objective 

optimization model to analyze trade-offs among various components of bioenergy crop 

production to help make better production decisions. Our model integrated sustainability 

dimensions including social, economic, and environmental factors for bioenergy crop 

production. As bioenergy crop production may incorporate various objectives, we ran the model 

by optimizing one objective at a time to measure the magnitude of change in one objective with 

respect to change in other objectives given a set of constraints. In addition, our model had the 

ability to assess how trade-offs would be affected by chancing preferences for different factors in 

the production decisions. The model was applied for a four-county study area in northern 

Kentucky and it provided a regional examination for the potential of bioenergy crops for energy 

production. The model can serve as an effective tool for making bioenergy production planning 

and management decisions. 

Key words: bioenergy, trade-offs, optimization, sustainability, decisions, Kentucky 

2.1 Introduction 

The increasing demand for bioenergy in the United States, driven by concerns for energy 

security and climate change, creates both opportunities and risks. Bioenergy development has the 

potential to promote rural economy by improving land productivity, creating employment 

opportunities, and improving access to renewable energy services in rural areas (FAO, 2012). 

However, if poorly managed, bioenergy development can generate serious environmental 

impacts such as excessive pressure on land and water resources, greenhouse gas (GHG) 

emissions, wildlife habitat loss, reduced biodiversity, and soil degradation. For example, growing 

crops for energy puts pressure on land use, exacerbating land use change such as deforestation 
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and driving up the food vs. fuelwood debate. Similarly, when bioenergy crops replace existing 

forests, and when they are grown in monoculture, there could be loss of habitat and biodiversity 

(Bookhout, 2012). In addition, many of the potential bioenergy crops could have relatively 

higher water requirements thus, making water a major limiting factor (Caldwell et al., 2018). 

Developing a sustainable bioenergy sector is therefore a challenge because it must be evaluated 

in terms of both its potential socio-economic and environmental impacts. The result of this 

evaluation is largely dependent on how the interconnectedness between social, economic, and 

environmental dimensions of sustainability are framed (Acosta et al., 2014). Properly 

understanding and assessing the potential trade-offs between socio-economic and environmental 

outcomes is thus crucial for promoting beneficial bioenergy production.   

Planning for sustainable bioenergy production must address multiple, and often conflicting, 

objectives as obtaining a certain outcome for one particular objective can require sacrificing or 

trading-off another objective. For example, ensuring long-term high biomass productivity can 

have negative consequences on environmental conditions such as water and soil quality. 

Therefore, a trade-off analysis is required to analyze the compromises implicit in different 

objectives and identifying an acceptable balance in order to make better decisions (Parnell et al., 

2016). A trade-off analysis can provide a large systemwide view for bioenergy production that 

includes relationships between various socio-economic and environmental factors. When 

potential changes in preferences for these factors are analyzed, the shift in trade-offs provide 

insight into how different outcomes may be sensitive to such changes. Thus, trade-off analysis 

can be useful in identifying problems and/or opportunities and characterizing solutions for a 

holistic decision-making process that considers all factors of the bioenergy production system 

(ibid). If trade-offs are not emphasized during the planning for bioenergy production, conflicts 

among various objectives may arise leading to outcomes that have a lower probability of meeting 

the sustainability goals of bioenergy production (Madni and Ross, 2016).  

Various methods have been used for trade-off analysis. For example, empirical or experimental 

approaches have been used to identify a set of meaningful quantitative relationships among 

different input variables and outcomes based on a dataset generated within a system. By contrast, 

simulation models can explore relationships among input variables and outcomes not generated 

(or observed) within a system (Klapwijk et al., 2013). Optimization approaches, specifically, 
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multi-objective optimization approaches can be used to study trade-offs in biomass supply chains 

(Zhang et al., 2017; Bonsch et al., 2014; Lautenback, 2013). A multi-objective optimization 

approach can incorporate various and often conflicting objectives and when each objective is 

optimized with respect to other objectives, trade-offs among the objectives can provide an 

understanding of how a system works. Trade-off analysis can be the foundation for setting up a 

multi-objective optimization model that searches for a feasible solution to provide the best 

compromise among various conflicting objectives where the values of different objective 

functions are optimized considering the tradeoffs with other objectives (Mousa and Elattar, 2014; 

Ferrucci, 2013). In other words, quantitative assessment of various trade-offs among different 

dimensions of sustainability can affirm that each individual objective is optimized according to 

the overall multi-objective goal in a multi-objective optimization problem.  

Various studies have used a multi-objective approach to include environmental and social 

dimensions in addition to economic criteria to analyze sustainable production of biomass. El-

Halwagi et al. (2013) used a mixed integer linear programming (MILP) model to consider cost 

and safely dimensions of a biomass supply chain and found contradictions between economic 

and safety objectives. You and Wang (2011) developed an optimization model for the design and 

planning of a biomass supply chain in Iowa under economic and environmental criteria. Their 

aim was to minimize total cost of production and GHG emissions. Their model revealed a trade-

off between economic and environmental factors and showed that higher GHG emissions 

occurred with lower cost. You et al. (2012) proposed a similar model in Illinois with an added 

social objective to maximize the potential for employment generation. Their study also found 

that there were tradeoffs between economic and environmental factors of the bioenergy supply 

chain. Similarly, Bernadi et al. (2012) considered multiple objectives when optimizing the 

biomass supply chain and they suggested that net present value (NPV) was positively related to 

both carbon emissions and water consumption. Although the aforementioned studies are helpful 

in understanding the relevance of incorporating different objectives for the planning of bioenergy 

production, there is a lack of comprehensive analyses on biomass supply chains that focus on all 

the key dimensions of a sustainable biomass production including the economic, environmental, 

and social factors specific to the southern US. Further, analysis of potential trade-offs between 

economic, environmental, and social factors for converting specific land use types (such as 
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marginal land) to bioenergy plantations is still lacking in the multi-objective optimization of the 

biomass supply chain literature.  

In this study, we analyzed the trade-offs among the major components of a bioenergy crop 

production system using an optimization approach to make better production decisions at a sub-

regional level (e.g., multiple counties in a state). A mixed-integer linear programming (MILP) 

model was developed that considered the main characteristics of the biomass supply chain, 

including the spatial diversity and availability of biomass feedstock resources, infrastructure 

compatibility, and economic structure. As bioenergy production may incorporate various 

objectives, we ran the model by optimizing one objective at a time to measure the magnitude of a 

change in one objective with respect to changes in other objectives given a set of constraints. The 

model was applied to a four-county study area in northern Kentucky. The model allowed us to 

integrate sustainability dimensions including social, economic, and environmental factors for 

bioenergy production decisions, and to examine trade-offs between these factors for bioenergy 

production in a systematic way for the study area. In addition, the model allowed us to assess 

how bioenergy production decisions could be affected by uncertainties.  

2.2 Methodology 

2.2.1 Model formulation 

For this study, we integrated economic, environmental, and social objectives in the optimization 

of the biomass supply chain for bioenergy production. We used a mixed integer linear program 

(MILP) to model the relationship among various factors in the production system. The 

optimization model in the study had four specific objective functions: 

1. Production Objective: The production objective emphasized maximizing total biomass 

yield from different bioenergy crops (P). 

2. Economic Objective: The economic objective maximized total net revenue from the 

production of bioenergy crops (E). The net revenue accounted for revenues earned from 

the sale of biomass and the costs for production, harvesting, and transportation of 

biomass feedstocks. 

3. Environmental Objective: The environmental objective captured soil quality loss (S) and 

water use efficiency (W) from the production of bioenergy crops. 
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4. Social Objective: The social benefits of bioenergy production were measured in terms of 

potential job creation (J). For this study, we only considered jobs that support biomass 

production. The number of feedstock production jobs created was assumed to be linear 

and depend on the acreage available for establishing bioenergy crops and the potential 

yield from plantations.    

Constraints:  

1. Land constraint: The total amount of land that could be used for bioenergy crop 

production for a crop from a particular site was not allowed to exceed the available land 

in terms of area. The geographic availability and site conditions of different biomass 

feedstocks were considered through different values of the parameters (e.g. yield, costs, 

etc.)  

2. Species constraint: We tested the effectiveness of different species using three bioenergy 

crops that were suited for the study area. The species constraint implied that only one 

species could be grown in each potential site.   

Each individual optimization model for the specific objective functions are presented in the 

equations 2.1 to 2.5.1 in the Appendix of this chapter. We ran the MILP model by optimizing 

each objective at a time. The LPSolve IDE – 5.5.2.5 was used to solve the model. All simulations 

were performed on a desktop computer with an Intel® Core ™ i5 2.71 GHz CPU and 8 GB 

RAM on a windows operating system. 

2.2.2 Uncertainty analysis 

Uncertainty exists in bioenergy production systems. Some of the uncertainties relate to biomass 

production logistics and transportation, bioenergy markets and economic fluctuations, 

governmental and regulatory policies, etc. In addition, uncertainties related to natural conditions 

such as weather and natural disasters are also present. In the optimization model discussed 

above, uncertainty in the parameters was not considered however, large or small variations in 

parameter values is inevitable and such variations could potentially affect the results. For 

example, fluctuation in biomass prices and demand may pose obstacles during the planning 

phase for bioenergy production. Thus, uncertainty (e.g. market uncertainty) should be 

incorporated into the optimization framework for better decision-making. Previous studies have 

also emphasized the need to investigate uncertainty in terms of demand/supply fluctuations, 
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biomass yield, and government incentives (You et al., 2012; You and Wang, 2011). Different 

methods have been used to address uncertainty in wood-based biomass systems. They include 

scenario-based optimization (stochastic programming and robust optimization), simulation, and 

hybrid models (Holm-Nielsen and Ehimen, 2016). Stochastic programming and simulation 

models have been the most widely used tools to address market and yield uncertainties in woody 

biomass systems. A simulation model is based on an existing system and helps evaluate the 

system performance based on various what-if scenarios and allows for system improvements. 

For instance, Mahmaudi et al. (2009) developed a discrete event simulation model to assess the 

logistics of supplying biomass feedstocks to a power plant in British Columbia, Canada. Mobini 

et al. (2011) also used a simulation model to account for variability in forest biomass availability. 

In contrast to simulation models, a stochastic programming model considers the probability of 

occurrence for uncertain parameters. It allows decision makers to build scenarios that can 

provide more accurate representations. You et al. (2012) used a two-stage stochastic 

programming approach to address uncertainty in a biomass supply chain in Illinois. Similarly, 

Gebreslassie et al. (2012) developed a stochastic model to address optimal design of a bio-

refinery supply chain with demand and supply uncertainties. In this study, we used simulation 

models to address uncertainties of different parameter estimates. Data from the existing literature 

was used to run the simulations to develop different scenarios to address uncertainties.   

2.2.3 Setting spatial unit for bioenergy crop production 

Precise spatial information is important in assessing the socio-economic and environmental 

dimensions of a bioenergy supply system (Yu et al., 2014). Production costs of bioenergy 

feedstocks is highly sensitive to spatial diversity of the amount and site-specific conditions of 

available land. In addition, the quality of local transportation networks greatly affects the 

transportation cost and emissions of GHG. Spatial factors such as the conversion of a particular 

land cover type to bioenergy crops can have various implications on the socio-economic and 

environmental performances of the biomass supply chain. As a result, the integration of critical 

spatial information into multi-objective optimization frameworks has recently emerged in the 

bioenergy literature. For instance, You et al. (2012) conducted a county-level multi-objective 

study for a biomass feedstock supply chain for the entire state of Illinois to examine the tradeoffs 

between various economic and environmental factors. Their study considered all of the state’s 

102 counties as potential harvesting sites for bioenergy feedstocks. Another county-level study 
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was conducted for a biomass feedstock supply chain in North Dakota (Osmani and Zhang, 2013). 

This study considered all 53 counties in that state as potential biorefinery locations and biomass 

supply and demand zones. Finally, higher resolution spatial data was used in a study in 

Tennessee to develop a multi-objective optimization model used to examine the tradeoffs 

between GHG emissions and feedstocks costs (Yu et al., 2014). In the study, authors 

decomposed all the land area into five square mile hexagons to define land resource units. They 

assumed that biomass can be transported from each of the land resource units to the nearest 

facility. For the four-county area in this study, we considered soil units (map units) from the 

SSURGO Database within each county as potential land resource units. Each soil unit describes 

various components of soil that have unique characteristics, interpretations, and productivity. 

These soil units are used for planning and management by the counties (www.nrcs.usda.gov) and 

thus were ideal for this study. 

2.2.4 Study area and input data 

Four counties in northern Kentucky (Trimble, Carroll, Gallatin and Boone) were selected as the 

study area to grow bioenergy crops (Figure 2.1). The study area is unique for its geographic 

location bordering the northern and southern regions of the US. Further, there are three coal 

plants within the study area that provide an opportunity to co-fire biomass with coal for energy 

generation without significant capital investment for establishing new energy facilities.  

We selected sweetgum, sycamore and cottonwood as three potential bioenergy crops in the study 

area. These are short rotation crops with a rotation age between 8 to 12 years and are the most 

widely adapted hardwood species that can grow on a variety of soil and site conditions (Nepal et 

al., 2014). Even though perennial grasses such as switchgrass have also been widely used for 

bioenergy production, we focused only on woody crops mainly because they are fast growing 

tree species with a potential for higher yield. In addition, management practices for these crops 

are well understood (Pleguezuelo et al., 2015). Further, they have been recommended as 

potential bioenergy crops for the southeastern US including Kentucky (UK Cooperative 

Extension Service, 2012; Kline and Coleman, 2010). 
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Figure 2.1: Four-county study area with different land cover types 
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Potential yield 

Land cover data for the study area was obtained in a 30-m resolution from the USDA National 

Agricultural Statistics Services (2012). We focused on marginal lands as potential sites for 

promoting bioenergy crops in the study area because they do not compete with food production, 

promote forest conversion, or intervene with any existing management practices. Thus, we 

extracted marginal lands from the land cover data for analysis. Potential yield for each species 

within the marginal lands was estimated based on site conditions obtained from SSURGO soil 

data. Soil conditions were based on site index values that were previously calculated using the 

procedure developed by Baker and Broadfoot (1979). Based on the site index values, we 

categorized existing soil types into suitable and unsuitable. Within the suitable class, we further 

classified the sites into poor, medium and high site conditions. Potential biomass yield within the 

poor, medium and high site conditions were then estimated based on the yield values proposed 

by Kline and Coleman (2010). 

Costs and revenue 

The costs of bioenergy production from the three species included costs of establishment and 

management. We used information obtained from the literature that reported costs based on 

treatments including site preparation, planting, herbicides, pesticides and fertilizers incurred at 

different years throughout the rotation. Harvesting costs and transportation costs were based on a 

previous study conducted on the same study area (Nepal et al., 2014). The revenue from 

bioenergy production is influenced by market conditions and feedstock availability. For this 

study, we assumed a delivered biomass process at the conversion facilities based on price ranges 

reported in the literature (US DOE, 2016; Skog et al., 2012; Kline and Coleman, 2010).  

Soil loss 

The potential soil loss values across the study area was calculated using the Revised Universal 

Soil Loss Equation (RUSLE). The RUSLE uses the expression below: 

A = R * K * LS * C * P 

where, A is the average annual potential soil loss, R is the rainfall-runoff erosivity factor 

(affected by storm intensity, duration, and potential obtained from USDA’s soil erosion dataset 
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for each county using RUSLE software), K is the soil erodibility factor (based on soil texture, 

structure, organic matter, and permeability obtained from SSURGO soil data), LS is the slope 

length and degree factor (based on digital elevation model and slope), C is land-cover 

management factor (the C factor for individual species was based on canopy cover where the leaf 

area index was used as a proxy), and P is conservation factor which was held constant. 

Water use efficiency 

Water use efficiency is the amount of water consumed for growing a particular crop. Water use 

data is hard to gather without field experiments. For this study, we obtained information on 

average annual evapotranspiration (based on leaf area index) and average annual production to 

calculate water use efficiency for the three bioenergy crop species from previous studies (Kline 

and Coleman, 2010; Nagler et al., 2007; Murthy et al., 2005; Wullschleger and Norby, 2001; 

Wittwer and Stringer, 1985).   

Jobs/employment 

Bioenergy production can promote jobs within the bioenergy facility and jobs related to 

feedstock production, collection, handling, and transportation. This study assumed that biomass 

produced in the study area will be co-fired in existing coal plants, we therefore only focused on 

the potential job creation for biomass feedstock production, storage, handling, and transportation. 

We made projections for potential jobs based on previous regional studies conducted on 

bioenergy production (English et al., 2013). The number of feedstock production jobs created 

was assumed to be linear and depend on acreage available for establishing bioenergy crops and 

the potential yield from plantations.    

2.3 Results  

2.3.1 Trade-off analysis 

Table 2.1 shows the results from the optimization model. Each column represents the output 

when individual objective function was optimized. The numbers along the diagonal shows the 

optimal values for individual objective function.  

As expected, the model provided the highest yield when the production function was maximized. 

The model indicated that there was the possibility to provide jobs in this scenario as well. In 

contrast, there was very little or no economic benefit that could be obtained while maximizing 
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Table 2.1: Trade-offs among different objectives 

 Max  

Production  

Max         

Revenue 

Max        

Jobs 

Max       

Water use 

Efficiency 

Min      

Soil Loss 

Yield  

(tons) 

39192.57 16710.77 39174.89 27824.46 3565.718 

Revenue  

($) 

0 8763.36 0 0 2.67 

Jobs  

(#) 

155.546 64.76 155.667 109.81 14.67 

Water use 

Efficiency 

(tons/mm) 

40.49  20.28 35.748 65.688 3.24 

Soil Loss 

(tons) 

2694.50 1148.56 2715.002 2426.92 1148 
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yield (we got 0 rather than negative values for economic returns mainly because of the way we 

set up non-negative constraint in the optimization model). Thus, even though there is a potential 

for high yield bioenergy crop production in the study area, this production would produce 

negligible economic benefits. Poor market conditions with low biomass prices and high costs 

associated with establishment and management, harvesting and transportation of biomass could 

have accounted for the lack of economic benefits in this scenario. The production objective was 

also less favorable for environmental aspects of bioenergy production because the model 

provided less efficient water use (water efficiency reduced by 38%) and more soil loss. Water 

use by bioenergy crops is relatively high (in other words, water could be a limiting factor for 

producing bioenergy crops) indicating a need for irrigation in the study area to achieve higher 

yields. Although, there is a potential for an increase in production; decreasing crop prices, low 

profitability, and potential negative implications on the environment might trigger a decrease in 

the amount of land that is suitable to produce bioenergy crops. 

Similar trends were obtained when we maximized economic benefits. Even though higher 

benefits were expected in this scenario, the solution produced 57% less biomass yield, created 

fewer jobs, and reduced water efficiency by 69%. As mentioned earlier, producing biomass 

requires a substantial capital investment to make available lands more productive. And since the 

biomass market is not well developed, producing bioenergy crops on all available land might not 

generate economic returns. Marginal lands for this study were categorized as poor, medium and 

high-quality sites based on existing soil conditions. Thus, it may be more beneficial to promote 

bioenergy crops only on high quality sites that could potentially provide high yield and generate 

more income. Since job creation is a direct function of how much land is available for 

production, lower acreage and less production in this scenario explains why there was low 

potential for job creation. In addition to fewer jobs, low production accounted for lower soil loss 

in this scenario.  

The maximum social benefit scenario provided results similar the maximum production scenario. 

As mentioned previously, job creation is directly related to amount of land available for 

promoting bioenergy crops. In our model, more land would produce greater yield and support 

more jobs. 

When the focus was on maximizing water efficiency, the model provided a solution that was the 
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most water efficient. This scenario produced 29% less yield and there were no economic 

benefits. Soil quality also degraded with soil loss almost doubling. Introducing water saving 

plants in the future as bioenergy crops could effectively increase water efficiency as recent 

studies have shown that the metabolic mechanisms of such plants conserve more water 

(DOE/ORNL, 2016).  

Minimizing the soil loss objective provided solutions with zero value (indicating that zero soil 

loss could only be attained when leaving the existing land use as it is). However, soil erosion is a 

naturally occurring process and soil loss would still exist in marginal lands that have poor quality 

soil and rough topographic features (Pimentel, 2006). Thus, we chose to reduce soil loss to a 

minimal level and set a constraint on soil loss based on other individual objectives presented 

above. This provided a solution with the least yield, no economic benefits, fewer jobs, and less 

efficient water use.  

These results indicate that a multi-objective optimization model can clearly depict trade-offs 

between production, socio-economic, and environmental factors for bioenergy production. 

Understanding the links among the various factors is very important for planning or designing a 

sustainable bioenergy crop production system that incorporates various stakeholders with diverse 

and often conflicting interests. In addition to the trade-offs analysis, our results were also able to 

show how distribution of suitable areas are dispersed in space when we prioritized different 

objectives in the study area. For instance, maximizing the production objective showed 613 ha of 

marginal lands that were suitable for growing bioenergy crops (Table 2.2). From Figure 2.2, it 

can be seen that almost all the available locations were suitable for sycamore plantations while 

there are only traces of areas where sweetgum was suitable. Cottonwood was not suitable on any 

land.   

When maximizing economic returns, 255.7 ha was available for growing bioenergy crops. 

Similarly, incorporating environmental factors for bioenergy production in terms of maximizing 

water use efficiency and minimizing soil loss resulted in 437.51 ha (436 ha for sycamore and 

1.04 ha for sweetgum) and 55.35 ha being available, respectively. It should be noted that 2.07 ha 

were available for cottonwood plantations when minimizing soil loss was the major focus (Table 

2.2).   

The distribution of areas available for the three species under different objectives reveal that the 
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Table 2.2: Areas of land available under different objectives 

Objectives Cottonwood (ha) Sweetgum (ha) Sycamore (ha) 

Max. Production 0 0.000138 613.17 

Max. Revenue 0 0 255.70 

Max. Jobs 0 0 613.12 

Max. Water use efficiency 0 1.04 436.47 

Min. Soil loss 2.07 2.3 50.98 

 

 

 

 

Figure 2.2: Suitable locations for growing bioenergy crops under production objective 
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choice of species for bioenergy production is sensitive to the objectives that are prioritized. 

When production and socio- economic gain were prioritized, our results showed sycamore was 

the most favorable species, however, when environmental factors were prioritized, sweetgum 

and cottonwood were also favorable. Even though, sycamore may have the potential for higher 

biomass yield with a shorter rotation period, existing site conditions including soil quality and 

water requirements may be favorable for the other two species.  

It is important to highlight that the total amount of land available for bioenergy crops differed 

depending on the objective(s) prioritized. Existing site condition/qualities can have important 

implications for which areas are suitable for growing the three crops used in this study. For this 

study, our biomass yield value was based on site qualities obtained from SSURGO database and 

the potential biomass yield values were based on experts’ opinions as reported by Kline and 

Coleman (2010). Our baseline yield values did not account for possible management changes to 

improve productivity. However, additional management options such as promoting hybrid 

bioenergy species (such as hybrid cottonwood) and GMOs can improve productivity and 

potentially make more lands suitable for plantations. In addition, we focused on hardwood 

species that are common to the study area that have been recommended by previous studies. 

However, species like loblolly pine and perennial grasses such as switchgrass have also been 

identified (and widely grown) as potential species for bioenergy production in the southern US. 

Inclusion of these species could produce different results. In addition, other factors such as 

relatively poor biomass market conditions and uncertainty in other parameter estimates could 

have resulted in less areas suitable for growing bioenergy crops. 

2.3.2 Uncertainty analysis results 

Relationship between parameters and outcomes are not known a priori. We used “lp_solve”, 

specifically the “lpsolveAPI” in the R statistical computing program, to generate simulations to 

address how changes in each of the parameter estimates would affect the trade-offs among 

various objectives. We generated models to reflect different biomass market conditions, biomass 

productivities, different job creation assumptions, water use efficiencies, and soil loss functions 

for the three species under consideration to identify critical input parameters and understand how 

model outputs were sensitive to changing parameter values. 

Figures 2.3 and 2.4 show the distribution of trade-offs among different objectives from the   
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Figure 2.3: Histograms to display trade-offs among various factors for bioenergy production 

(maximizing production, maximizing benefits, and maximizing jobs) 
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Figure 2.4: Histograms to display trade-offs among various factors for bioenergy production 

(maximizing water use efficiency and minimizing soil loss) 
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uncertainty analysis. We ran one objective at a time and generated five histograms for all five 

objectives. In the maximizing production scenario, the simulations with improved productivity 

values for each bioenergy crop showed an increase in total yield for the study area. As expected, 

better market conditions with higher biomass prices provided greater economic benefits from the 

biomass produced. A positive correlation was observed for the two parameters (total yield and 

expected benefits) implying that better market incentives would promote more production and 

generate more benefits. The histogram for total jobs in this scenario showed two distinct peaks. 

With increasing yield, the total number of jobs increased in the beginning however, they declined 

and peaked again. Thus, there is not a strict linear relation between the total number of jobs and 

total yield. Since we made choices among the crop types while designing the optimization 

model, our model switched crop types and the output for total jobs was dependent on the range 

of values provided for different crop types that were the most favorable with the set objectives. 

Figure 2.5 shows the distribution of total number of jobs w.r.t the potential job creation assigned 

in the model for two different crop types. When the potential jobs for both crops were small 

(towards the left), the distributions for total jobs were similar however, as we increase the 

potential job creation for sweetgum (along the x-axis), we observed a higher value of total jobs 

clustered for sweetgum, irrespective of the values for American sycamore. This distribution 

provides a plausible explanation for the shift in the histogram as our model had the ability to 

switch crop types to generate efficient results. The histogram for water use efficiency showed 

similar pattern as the jobs. With increasing yield, the water use efficiency peaked at a lower 

value (which could imply that water is a limiting factor for producing higher yield), declined and 

peaked again. Since water use efficiency is related to the potential production values associated 

with each crop type, we plotted scatter plots for total water use efficiency and potential yield for 

each crop. Figure 2.6 shows two scatter plots for cottonwood and American sycamore. 

Increasing potential yield value for cottonwood did not improve the total water use efficiency 

however, when the potential yield for American sycamore was increased, the water use 

efficiency improved. Thus, productivity/yield and water use efficiency were not correlated in a 

similar way for each of the three species. Providing choices for the crop types for each site 

switched the crop types in the final model resulting in output values that were most efficient. In 

the case of soil loss, histogram showed that increasing productivity was associated with higher 

soil loss. 
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Figure 2.5: Variation of total number jobs with respect to uncertainty in potential job creation of 

two crops, sweetgum and American sycamore 
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Figure 2.6: Scatterplots for total water use efficiency and potential yields for cottonwood and 

American sycamore 
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In the maximizing revenue scenario, the histograms showed similar patterns for yield, revenue, 

and jobs to the maximizing production scenario. This implies that in better biomass market 

conditions, maximum revenue can only be generated when the full potential yield is obtained. As 

job creation was directly related to the amount of land available for growing bioenergy crops and 

the potential yield, more yield would support more jobs. Water use efficiency had a slightly 

negative skew while maximizing the revenue indicating that water could be a limiting factor. In 

the maximizing jobs scenario, the histogram showed two distinct peaks in the distribution of 

yield. Around half of the yield values were centered around 90,000 to 200,000 tons. In addition, 

there was another smaller peak around 1,300,000 tons. Similar patterns were observed for the 

distribution of economic benefits, water use efficiency, and soil loss.  

When jobs were maximized, the lower yield was correlated with negative economic benefits (e.g. 

a higher cost to produce bioenergy crops when compared to potential revenues), lower water use 

efficiency, and higher potential soil loss. One possible explanation for the gaps in the histograms 

is the spatial units considered in the study. The spatial units, in other words, soil map units from 

SSURGO database were non-uniform and they were defined by site qualities (into poor, medium 

and high-quality sites). Biomass production on larger areas would require more labor (with the 

potential for more employment opportunities) but when the larger areas fall within the poor-

quality soil, the total yield from those sites may be less and the production may not be 

economically beneficial because of the high costs of establishment and management. 

Furthermore, since these areas could be environmentally sensitive, production without careful 

planning may lead to more environment degradation instead reclaiming poor quality marginal 

lands from bioenergy crop production. A further look at the histograms under the job 

maximization scenario for example, for total yield, shows a smaller peak after the gap. Since 

total yield obtained was a function of potential yield values associated with each crop, we 

examined if the choice of crop species has any influence in the distribution of yield in the 

simulation results. Figure 2.7 shows the distribution of yield for two crop types. The x and y axes 

represent the increasing values for potential yield for sweetgum and American sycamore, 

respectively. At a lower value of potential yield for the two crop types, the total yield value is 

minimum (which could relate to poor-quality site). Even though American sycamore has higher 

potential yield than sweetgum in general, increasing potential yield for American sycamore did 

not show strong pattern (influence) on the total yield and the distribution was rather random. 
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Figure 2.7: Variation of total yield with respect to uncertainty in potential yield of two crops, 

sweetgum and American sycamore 
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However, a higher value of potential yield for sweetgum, irrespective of the values for American 

sycamore, showed more of a linear relationship with the total yield. Since we had discrete 

choices in the model, our model had the ability to switch crop types to generate efficient results.   

When water use efficiency was maximized, the histograms showed water use efficiency was 

rightly skewed indicating a more water efficient scenario with a mean value around 250. As 

expected, water use efficiency had a strong positive correlation with potential yield (r=0.89). The 

higher yield in the scenario generated economic benefits and provided some opportunities for 

employment (not as strong as in the job maximization scenario) however, higher production was 

associated with higher soil loss as well. Lastly, when minimizing soil loss, the histogram shows a 

small range for potential soil loss. However, this scenario generated the least yield, lowest 

economic benefits, very few jobs, and the least water use efficiency. Thus, the overall simulation 

results indicate that the optimization model developed for this study is robust.  

It is evident from the histograms that the distribution of parameters under different scenarios did 

not behave in a similar pattern. The distribution of the parameters under uncertainty provides 

better information about the system that was modeled. The range of values observed for each 

objective in all the scenarios provided an insight on how strange the system may behave under 

uncertainties. In addition, the choice of different crop types in the optimization model had 

different influence on the outcome and it showed how bioenergy production system could be 

sensitive to the choice of bioenergy crops for production decisions. The range of values obtained 

from the simulation analysis can be the first and the most important step in designing a multi-

objective model just as a goal programming (GP) model where the extreme values can use used 

as aspiration levels or target values. In GP model that considers multiple objectives, instead of 

optimizing all the objectives directly, achievement of the aspiration levels helps measure the 

achievement of objectives. Since decision makers in multi-objective optimization problems must 

chose targets or aspiration levels that are realistic based on proper understanding of how the 

system under study works, our simulation results can be helpful to identify optimal scenarios for 

bioenergy production decisions.   

Even though our uncertainty analysis provided a system overview for bioenergy production, it 

must be noted that we only considered uncertainty of parameters while running the simulations. 

However, in practice there could be uncertainty about the model itself. There could be several 
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other models that might work to understand how a system works. For this study, we used a linear 

programming approach that allowed us to examine the trade-offs among different factors of 

production where relations among all the variables corresponding to bioenergy resources were 

considered linear. 

2.4 Discussion 

Making bioenergy production decisions are difficult as decision-makers have to consider 

multiple and competing objectives (e.g., often there are tradeoffs among different objectives). In 

addition, uncertainty of circumstances (such as substantial production and market uncertainties) 

could impact these tradeoffs. The trade-off analysis in this study provided an integrated approach 

to highlight potential opportunities and risks in bioenergy production. The analysis considered all 

aspects of bioenergy production including socio-economic and environmental factors and 

examined whether bioenergy crops would be feasible in northern Kentucky. By quantifying the 

inter-relationships among the different factors, our analysis revealed that northern Kentucky can 

be a suitable area to promote bioenergy crop production. This production can support the state’s 

energy plan which focuses on developing a sustainable biofuels industry in Kentucky with an 

aim to produce 25 million tons of biomass every year by 2025 to meet the energy demand with 

the potential to contribute $3.4 billion and 10,000 jobs to the state’s economy (Governor, 2009). 

However, our results clearly show that there are trade-offs among various objectives that should 

be considered. 

For instance, maximizing biomass yield provides no economic return, implying that production 

is not economically beneficial. This could result from poor market conditions due to low demand 

of bioenergy, high costs associated with production and management, lack of proper 

infrastructure, and the viability of cost competitive fossil fuels such as coal for electricity 

generation. This trade-off highlights the need for better economic incentives to ensure production 

is economically beneficial. One possible way for the state to do this would be to implement 

policies that focus on incentivizing landowners for growing bioenergy crops. In addition, 

encouraging private sector investment, better infrastructure for energy generation, and creating 

new opportunities for better markets could increase the economic benefit of bioenergy 

production. This trade-off analysis also suggested that higher bioenergy production generates 

concerns for water availability and soil erosion. In other words, higher production may come at 
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the cost of greater environmental degradation. Thus, there is a need to take environmental 

impacts into consideration when promoting bioenergy crop production in the state. In addition, 

the potential yield values across all the objectives varies substantially. The highest yield is 

obtained while maximizing production while the least yield is obtained when minimizing 

potential soil erosion. Since this study mainly focused on marginal lands as potential sites for 

growing bioenergy crops, minimum soil erosion on such lands could only be attained when much 

of the existing land was not brought under production and the bioenergy crop was produced on a 

relatively small amount of the available land. Since higher production resulted in greater 

environmental degradation in terms of soil loss from poor quality marginal lands, this result 

highlights the need to explore other land use types such as land currently in agriculture and 

forests as potential sites for bioenergy production because they are more productive and have 

better site conditions. 

When economic returns were maximized, the potential yield was reduced by 57% which implies 

that generating economic benefits would not require establishing bioenergy crops on all available 

land. The spatial units for this study consisted of soil units that were categorized as poor, 

medium and high quality based on existing site conditions. Establishing bioenergy crops on low 

quality sites could incur higher costs. Thus, to generate higher economic gains in bioenergy 

production, the focus must be on high quality sites. In addition, this scenario also results in less 

soil erosion. Thus, lower production could yield substantially lower soil erosion values. This 

tradeoff also highlights the need to consider high quality sites for bioenergy crops. Thus, again, 

other land use types such as agriculture and forests should be studied in the future.  

Since, there are no existing policies specific to bioenergy crop production in Kentucky, results 

from this study highlight the opportunity to design policies that would generate economic returns 

and promote environmental conservation while establishing bioenergy crops on good quality 

sites by explicitly considering the trade-offs among various objectives. Specifically, policies that 

incentivize landowners to grow bioenergy crops, develop larger markets with higher biomass 

prices, and support infrastructure would likely be effective in promoting bioenergy crop 

production. While our trade-off analysis showed higher production may come at the cost of 

environmental degradation, policy support for improved technologies to promote better soil and 

water management strategies can help reduce some of the negative impacts of bioenergy 
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production on soil and water resources. While marginal lands have been an attractive option to 

promote bioenergy crop production, the results here show that these lands might not be an 

attractive source of biomass because of concerns for the environment such as potential soil 

erosion. Thus, again future studies should also focus on other more productive lands such as 

agricultural lands and forests to explore the full potential of bioenergy crop production in the 

study area. Overall, integrated policies for bioenergy, land use, soil and water management are 

likely required to make bioenergy crops a sustainable feedstock source for the bioenergy 

industry.  

2.5 Conclusions 

Trade-off analysis can be a very effective tool to assess the potential of biomass production from 

a multidimensional perspective. In this study, we presented a multi-objective optimization 

approach to analyze trade-offs between social, economic, and environmental factors for 

bioenergy production. The economic factor incorporated production and management costs and 

revenues generated from the sale of biomass. The environmental factor captured soil quality and 

water loss due to the establishment of bioenergy crops. Lastly, the social factor represented the 

number of potential new jobs created related to biomass feedstock production. The results clearly 

show that there are trade-offs among these factors.  

Results from this analysis showed that forests and agricultural lands in addition to marginal lands 

can be a valuable for establishing bioenergy plantations. However, the choice of energy crops to 

be grown on such lands will substantially depend on regional conditions including site quality, 

water requirements, landcover types and biomass market conditions. The trade-offs among the 

various factors highlight the need for systematic planning to promote bioenergy crop production. 

With effective planning, establishment of bioenergy crops on marginal lands and/or forests and 

agricultural lands can promote biomass for bioenergy and assist in other sustainability goals such 

an economic growth, environmental conservation, and rural development. Finally, this study 

suggests that an integrated approach such as multi-objective optimization with a variety of 

objectives for bioenergy production can reveal important trade-offs and enhance decision making 

for sustainable bioenergy production.  

Although the model used in this study was specifically applied to decision making related to 

bioenergy production in northern Kentucky, it can potentially be applied to a larger or different 
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geographic area where bioenergy plantations have been recommended. All the data used in this 

study were publicly available, thus the results from this study can be easily compared to other 

regions using the same technique. This would be helpful to policy makers or planners in 

designing effective policies to support bioenergy production. 
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Appendix 

Mathematic formulation for optimization models 

 

Model 1: Maximizing economic benefits 

Max E= ∑ ajXj+bjYj+cjZj 

n

j=1

                                                                   (2.1) 

subject to  

Xj + Yj + Zj = 1      ∀ j                                                                         (2.1.1) 

∑ sjKj ≤  Ω                                                                                          (2.1.2)

n

j=1

 

Xj ≥ 0      ∀ j                                                                                          (2.1.3) 

Yj ≥ 0      ∀ j                                                                                          (2.1.4) 

Zj ≥ 0      ∀ j                                                                                           (2.1.5) 

X ∈ {0,1}                                                                                                (2.1.6) 

Y ∈ {0,1}                                                                                                 (2.1.7) 

Z ∈ {0,1}                                                                                                (2.1.8) 

K ∈ {0,1}                                                                                               (2.1.9) 

where, 

aj = f(Pjx, Cjx)     ∀ j                                                                          (2.1.10) 

bj = f(Pjy, Cjy)     ∀ j                                                                          (2.1.11) 

cj = f(Pjz, Cjz)     ∀ j                                                                           (2.1.12) 

 

Model 2: Maximizing total yield 

Max P =  ∑ djxj + ejyj + fjzj

n

j=1

                                                            (2.2) 

subject to equations (1.1) to (1.9) 
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Model 3: Maximizing job creation 

Max J =  ∑ gjxj + hjyj + ijzj

n

j=1

                                                             (2.3) 

subject to equations (1.1) to (1.9) 

 

Model 4: Maximizing water use efficiency 

Max W =  ∑ mjxj + njyj + ojzj

n

j=1

                                                        (2.4) 

subject to equations (1.1) to (1.9) 

 

Model 5: Minimizing soil loss 

Min S =  ∑ pjxj + qjxj + rjxj        

n

j=1

                                                       (2.5) 

subject to equations (1.1) to (1.9) and  

∑ Sj ≥  Ω′                                                                                             (2.5.1)

n

j=1

 

 

Indices 

j=spatial unit (site) 

jx= crop type x grown in site j   

Parameters 

X, Y, Z= three species (cottonwood, sweetgum and American sycamore) considered in the study 

area 

sj = area of site j 

K = binary variable, 1 if site j is selected; 0 otherwise 

Ω = total available area 

Pjx = revenue generated from biomass produced from crop type x in site j  

Cjx = cost of producing x crop in site j 
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Pjy = revenue generated from biomass produced from crop type y in site j  

Cjy = cost of producing y crop in site j 

Pjz = revenue generated from biomass produced from crop type z in site j  

Cjz = cost of producing z crop in site j 

aj = total benefits from producing crop x in site j 

bj = total benefits from producing crop y in site j 

cj = total benefits from producing crop x in site j 

dj = total yield produced from crop type x in site j  

ej = total yield produced from crop type y in site j 

fj = total yield produced from crop type z in site j  

gj = total number of jobs created by producing crop type x in site j  

hj = total number of jobs created by producing crop type y in site j  

ij = total number of jobs created by producing crop type y in site j 

mj = total wateruse efficiency for producing crop type x in site j  

nj = total wateruse efficiency for producing crop type y in site j  

oj = total wateruse efficiency for producing crop type z in site j  

pj = total soil loss by producing crop type x in site j 

qj = total soil loss by producing crop type x in site j 

rj = total soil loss by producing crop type x in site j 

Sj = soil loss in site j 

Ω’ = minimum soil loss value assigned based on previous models 
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CHAPTER 3                                                                                               

DETERMINANTS OF LANDOWNERS’ WILLINGNESS TO PROMOTE 

BIOENERGY CROP PRODUCTION: A CASE STUDY FROM 

NORTHERN KENTUCKY 
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This chapter is in preparation for journal submission. The use of “we” in this chapter refers to co-

authors, Dr. Donald G. Hodges, Dr. Liem T. Tran, and me. I am the first author, and my 

contribution to this project include survey design and administration, data analysis, and writing 

the manuscript. 

Abstract 

There is an increasing interest in bioenergy in the southern US, mainly because of the favorable 

climatic conditions to grow highly productive bioenergy crops. Establishing bioenergy crops in 

this region requires participation from landowners as they own the majority of land. It is crucial 

to understand whether landowners intend to harvest bioenergy feedstocks from their property and 

to explore how they view and react to both the opportunities and challenges presented by 

bioenergy crops. We administered a quantitative survey for landowners in a four-county study 

area in northern Kentucky to evaluate their perception of bioenergy and their willingness to 

promote bioenergy crop production. Results indicated that current land management practices, 

socio-economic, and environmental factors affected the landowners’ land use decisions about 

bioenergy crop production. The study revealed landowners’ intent for bioenergy production, 

which would be helpful for estimating the potential of large-scale bioenergy expansion in the 

study area and beyond. Further, landowners’ opinions on bioenergy and their preferences for 

land use decisions would be helpful to identify barriers to their engagement in the bioenergy 

production process. This information could be useful to plan for policies, and technological 

investments that would be effective for landowners to encourage bioenergy feedstock 

production. Lastly, the results could also be used to develop outreach programs to increase 

adoption of bioenergy crops in the study area. 

Key words: bioenergy, willingness, landowners, land use, decision-making, Kentucky 

3.1 Introduction 

There is a substantial demand for bioenergy in the United States (US) for its potential to displace 

fossil fuels, enhance energy security, promote environmental benefits, and provide opportunities 

for economic development. Bioenergy has been promoted by federal policies, including the most 

recent Energy Independence and Security Act (EISA) of 2007 that set a mandatory Renewable 

Fuel Standard (RFS) requiring energy producers to use at least 36 billion gallons of biofuels in 

2022 (EPA, 2013). Similarly, the Food Conservation and Energy Act has provided various 
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provisions and incentives to promote biomass and bioenergy. Recently, policies have promoted 

improvements in crop productivity as well as farmland, forest, and land management to support 

the bioenergy industry. As a result, establishing bioenergy crops has been identified as a 

significant source of bioenergy with the potential to supply adequate feedstock to sustain the 

bioenergy industry (Staudhammer et al., 2011).  

Interest in bioenergy has increased in the southern US as well, mainly because of a warm and 

wet climate that is conducive to highly productive bioenergy crops (Brosius et al., 2013). 

However, establishing bioenergy crops in this region will require participation from private 

landowners as they own most of the land (Leitch et al., 2013). It is crucial, therefore, to estimate 

the availability of biomass feedstocks from private land by understanding to what extent and 

under which conditions landowners intend to harvest bioenergy feedstocks from their property. 

Even though bioenergy crops can potentially provide a sustainable feedstock to support the 

bioenergy industry, commercial scale production of bioenergy crops (especially short rotation 

woody crops) has not been established yet (Nepal et al., 2015). Further complicating the issue, 

introducing bioenergy crops to conventional farming practices will require major changes in land 

use and management practices, and it is currently restricted by several factors such as uncertain 

economic returns for landowners, inadequate knowledge/awareness about bioenergy and their 

willingness to promote bioenergy crops, and low cost fossil fuels such as natural gas and coal 

(Leitch et al., 2013; Tyndall et al., 2011; Jessup, 2009). Finally, insufficient economic and policy 

incentives along with uncertainty in the biomass market, make bioenergy crops less attractive to 

landowners. Since there is not a well-defined market for biomass, determining landowner 

willingness to produce bioenergy crops is a challenge. 

Basic decision-making models suggest that landowners make land use decisions in relation to 

available human, natural and capital resources, potential opportunities against constraints, and 

careful examination of uncertainty and risk (Caldas et al., 2014). Several studies have been 

conducted in the past to understand factors that affect landowners’ decisions for adopting a 

bioenergy crop production system. Caldas et al. (2014) assessed farmers’ willingness to produce 

biomass feedstocks from crop residues, dedicated annual crops, and perennial crops for three 

regions in Kansas. Their study found that farmers’ lack of familiarity with producing bioenergy 

crops and their perception play a key role in their willingness to plant bioenergy crops. Leitch et 

al. (2013) studied private landowners’ intent to supply forest biomass for energy in Kentucky 



62 
 

based on the theory of planned behavior. Their study highlighted that respondent attitudes, 

perceived subjective norms, and perceived control are significantly related to their intent to 

harvest woody biomass for bioenergy production. In another study in the southeastern US, 

farmers were asked to indicate their willingness to plant switchgrass (Qualls et al., 2012). The 

results showed that many nonfinancial factors such as perceived environmental benefits, reduced 

crop inputs, contribution to national energy security, and diversification of farm incomes 

significantly increase landowner willingness to produce energy crops.   

The aforementioned studies mainly focused on how landowner knowledge and attitudes toward 

bioenergy influence their willingness to promote bioenergy production overall. There is a limited 

research on potential biomass crop production focusing specifically on marginal lands -lands 

with poor quality soil and lower productivity including grasslands, shrubland, fallow cropland, 

and hay/pasture. Marginal lands are attractive options for growing energy crops because they do 

not compete with food production or promote forest conversion and are less likely to intervene 

with existing management practices. Further, growing energy crops on marginal lands can 

provide positive ecological benefits such as improved soil and water quality, carbon 

sequestration, and biodiversity. Finally, previous research also suggests that bioenergy crops 

grown on marginal lands require less fertilizer and are more flood and drought tolerant than 

conventional crops (Blanco-Canqui, 2016; McLaughlin and Walsh, 1998). The few studies on 

marginal lands for bioenergy production mainly focused on suitability analyses without assessing 

the social availability of such lands (Nepal et al., 2015; Nepal et al., 2014). Even though a 

substantial amount of marginal lands may be suitable for growing energy crops, it is important to 

understand if landowners are willing to change their land-use behavior to make those lands 

available for bioenergy crop production.  

This study evaluated landowners’ perceptions of bioenergy and their willingness to utilize 

marginal lands for bioenergy production in northern Kentucky. It collected information on 

landowners’ existing land management practices, knowledge and understanding of bioenergy 

crops, key price variables (biomass prices and rental rates), landowner perceptions of bioenergy, 

and key socio-demographic information (such as age, sex, education, income) to examine if and 

under what conditions landowners would make their land available for growing bioenergy crops. 

The study contributes to the existing literature in several ways. First and foremost, it is one of the 

first studies to investigate the social availability of marginal land for bioenergy production. 
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Second, even though the study is limited to northern Kentucky, landowner intent to harvest 

energy crops or rent their land for bioenergy crop production in this region may also apply to 

private landowners in similar geographic locations where bioenergy crop production has been 

recommended. The results of this study should be useful for policy makers trying to promote 

effective biomass supply chain strategies and future renewable energy production. 

3.2 Methodology 

3.2.1 Methodological approach 

Since there is no existing market for biomass, landowner decisions cannot be observed directly. 

However, it is possible to estimate landowners’ preferences for different bioenergy crops based 

on a contingent valuation survey. Contingent valuation (CV) surveys are often used to estimate 

willingness to pay for environmental goods and services for which a market does not exist. For 

example, the cost people pay for a visit to a national park is the price of access to the park and its 

environmental services. It can be measured in terms of the number of times people visit the park 

at different costs. This gives the economic values of recreation sites, in other words, the value of 

recreational sites is related to the costs people are willing to pay for the use of recreation 

(Pirikiya et al., 2016). Contingent valuation surveys can also be used to estimate willingness to 

accept payments to supply goods and services that are not currently sold in the market (Swinton 

et al., 2007).  

In contingent valuation, all attributes of the environmental resource are first described and then 

survey respondents are asked whether they would pay (or accept) a specific amount to access (or 

provide) the resource. In general, CV generates a scenario like that encountered in typical market 

transactions (Cameron and James, 1987). Respondents are given a hypothetical price (payment) 

for a resource and they decide to accept the price (payment) or not. Generally, they are not 

required to suggest a specific price - that they are willing to accept if they deny the offer (ibid). If 

the attributes of environmental resources are described precisely, CV techniques can provide 

valuable information about the demand and supply of non-marketed resources.  

For this study, we used a contingent valuation survey to assess landowners’ willingness to accept 

a payment for biomass production. Specifically, we assessed their willingness to accept a direct 

payment for producing bioenergy crops on their land, as well as their willingness to accept a 

payment for renting their land to someone for bioenergy crop production. The main reason for 
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assessing the rental payment option was that many rural landowners might not be currently 

engaged in farming activities and they may not have the capabilities and interest in growing 

energy crops on their land. In addition, a rental payment is an easy, certain and secure income 

source for the landowner. Finally, they would be able to avoid some of the risks associated with 

bioenergy crop production. The survey also collected data on landowners’ perceptions of 

bioenergy. Surveys have long been a useful tool to gather information about people’s attitudes 

and opinions regarding certain phenomena (Parfitt, 2005; McLafferty, 2003). 

3.2.2. Study area and data collection 

The study focused on four counties (Trimble, Gallatin, Carroll, and Boone) in northern 

Kentucky. This area is unique for its geographical location bordering northern and southern 

regions of the US. It is also representative of Ohio River basin. There is a diverse land use with 

small, privately-owned, parcels of land. Further, there are three coal plants within the four-

county area that provide opportunities to co-fire biomass with coal for energy generation without 

the need of significant capital investment for establishing new bioenergy facilities (Figure 3.1). 

As discussed previously this study examined only marginal lands. However, identifying the 

subset of landowners who have marginal land and obtaining their information is challenging. 

Many previous studies focused on all or most existing forest or cropland, making identifying 

respondents relatively easier by using existing publicly available information such as county tax 

records or landowner association membership lists. To overcome this difficulty, we used a 

private vendor, listGIANT to identify landowners who have at least 10 acres of marginal land. 

Previous studies have also proposed 10 acres as a minimum viable area for bioenergy production 

due to production logistics such as storage, transportation etc. (Hayden, 2013). listGIANT 

defined 10 acres of marginal lands by aggregated land use identified as fallow cropland, 

shrubland, grassland, hay/pasture and barren land. Other researchers have used listGIANT in 

similar studies (Adjoyi and Ellene, 2017; Khanal and Grebner, 2014). Based on available tax 

records and other information, listGIANT provided information on 1,544 landowners who satisfy 

the requirement for the survey within our study area. Of the 1,544 landowners, 522 had valid 

email addresses.  

Prior to contacting respondents, we conducted a pilot study with local landowners in 
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Figure 3.1: Four-county study area with different land cover types 
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collaboration with University of Tennessee Extension to check the effectiveness of the question 

wording, the flow of questions, and survey length. Based on the input from the pilot survey 

minor changes were made to the survey to improve clarity. After finalizing the questionnaire, 

surveys were sent to 1,544 landowners, 522 via email and the rest through traditional mail. 

The survey was administered between August 2017 to December 2017. Three mailings were 

sent: 1) a first questionnaire mailing accompanied by a cover letter explaining the purpose of the 

survey and a business reply envelop 2) a reminder/thank you post-card was sent one week after 

the first questionnaire mailing to express appreciation for responding as well as a request that if 

not completed, to do so, and 3) a final questionnaire mailing along with an updated cover letter 

and a business reply envelope after four weeks to non-respondents from the first round. 

3.2.3 Survey design 

The survey had several sections. Before asking questions in each section, a brief overview and 

introduction of the section was provided. The first section queried respondents on their current 

land management practices. In the second section, a series of questions asked landowners about 

their knowledge and understanding of bioenergy crops. In the following section, the contingent 

valuation part of the survey, we assessed landowners’ willingness to grow bioenergy crops on 

their land and their willingness to rent their land to others for bioenergy crop production. This 

section also asked landowners about their opinions and attitudes towards bioenergy. Finally, the 

last section of the questionnaire asked general socio-demographic questions such as age, income, 

and education. The questionnaire is provided in the Appendix. 

The questions for the contingent valuation section were separated into two sub-sections. The first 

sub-section assessed landowners’ willingness to supply biomass from their land by growing short 

rotation woody bioenergy crops such as sweetgum, sycamore, and cottonwood. Since 

landowners with marginal lands may have limited information on specific bioenergy crops, 

survey respondents were provided a hypothetical scenario for a bioenergy crop with attributes 

similar to the three bioenergy crops. Information about this hypothetical scenario included 

detailed descriptions of production costs, potential yield, fertilization and irrigation requirements, 

and soil erosion potential. to help the survey respondent make an informed decision. 

Respondents were then asked if they would be willing to grow that crop on their marginal land. 
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If they indicated yes, they were asked how much of their existing marginal land were they 

willing to grow this crop and at what price would they be willing to sell its biomass. 

As mentioned earlier, rural landowners might not be currently engaged in farming activities and 

therefore, they may not have the capabilities and interest in growing energy crops on their land. 

However, they might be willing to accept a rental payment for their land as a secured income 

source without actually engaging in any of the costs or risks associated with bioenergy crop 

production. Therefore, in the second sub-section, landowners were queried about their 

willingness to rent their land for biomass production. Detailed information about renting their 

land was provided to help them make an informed decision. They were then asked if they were 

willing to rent their land for bioenergy production. If they responded yes, they were asked how 

much of their existing marginal land they were willing to rent and at what rate. Finally, 

landowners were also asked about concerns they may have about renting their land for bioenergy 

production. 

3.2.4 Boosted regression tree analysis 

Landowner willingness to supply bioenergy was modeled as a two-step decision process. The 

first decision was whether they would be willing to grow bioenergy crops on their marginal land 

(or rent out their land to grow bioenergy crops) and if yes, the second decision was how much of 

their land they would be willing to put into bioenergy production (or how much to rent out for 

production). Boosted regression tree (BRT) analysis was used to model the two decisions 

separately. 

Boosted regression trees (BRT) incorporate techniques from both statistics and machine learning 

(Elith et al., 2008). It uses two algorithms: decision tree algorithms (classification and regression 

trees) and boosting methods for combining several simple models. Decision trees are non-

parametric supervised learning methods aimed at creating a model that predicts the value of a 

target variable based on the values of several input variables (Geurts et al., 2009). In 

classification trees, the target variable is categorical, and the tree is used to identify the “class” 

within which the target variable would likely fall (e.g., Yes/No, 0/1 etc.). In regression trees, the 

target variable is continuous, and the tree is used to predict its value (Pour et al., 2016). The 

boosting method is used to increase model accuracy based on the idea that final predictions are 

made by combining predictions from several individual models. In other words, boosting is a 
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sequential method where one model is fitted after the other with the later model trying to reduce 

residuals weighted by the previous model’s error (Kanamori, 2002). This technique optimizes 

predictive performance to provide better predictions than traditional regression methods that give 

one single best model (Elith et al., 2008). In addition, BRT identifies relevant variables and 

interactions without the need to explicitly specify them. Further, since boosting uses trees as a 

base learner, it is a better fit for this study which has ordered variables (Schonlau, 2005). BRT 

deals well with ordinal data (e.g., Likert scale values to understand what factors were more 

important in landowners’ decision to promote bioenergy crops and their opinion about bioenergy 

crops), while such variables are often difficult to deal with in regular parametric regression. 

Lastly, this study has many predictor variables with relatively few observations, thus regular 

regression methods are more difficult to use. 

For the first decision, two BRT models were developed to analyze whether landowners were 

willing to participate in bioenergy crop production (equation 3.1). The first model (BRTM 1) 

analyzed whether landowners would participate by growing bioenergy crops on their land. The 

second model (BRTM2) analyzed whether landowners would be willing to rent out their lands to 

others. For the second decision, two additional models were developed to analyze the amount of 

land that landowners were willing to commit to bioenergy crop production (equation 3.2). 

BRTM3 was used to estimate the number of acres landowners were willing to commit to 

growing and producing bioenergy crops themselves and BRTM4 was used to estimate the 

number of acres they were willing to rent out to others. Since some landowners did not specify 

how much they were willing to commit for bioenergy production, though they were willing to 

enter into the biomass production system, some of the observations were omitted. Thus, only 

observations with potential acreage commitment greater than zero were used.  

The dependent variable for the first decision indicated whether a landowner was willing to grow 

or rent out their land. If they were, the variable was set to 1, if not 0. The dependent variable in 

the second part was a continuous variable equal to the number of acres that the landowner was 

willing to grow or rent out.  

The explanatory variables for the models included current land management practices, 

knowledge and understanding of bioenergy crops, perceptions of bioenergy, and various 
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demographic metrics. In addition, concerns about renting out land for bioenergy production were 

included.   

Willingness to grow/rent = f (current land management practices, knowledge and                  (3.1) 

understanding of bioenergy crops, perception of bioenergy, demographics, rental concerns) 

Acreage commitment= f (current land management practices, knowledge and                        (3.2)       

understanding of bioenergy crops, perception of bioenergy, demographics, rental concerns) 

All the models were fitted using the software R Project for Statistical Computing with the gbm 

boosting package version developed by Ridgeway 2006. Since there was not a large amount of 

data, the cross-validation (CV) method was used for model development and identification of 

optimal settings for the models.  

3.3 Results  

Of the 522 email requests, only 17 people responded (3.25% response rate); and of the 1,022 

mailed surveys, 148 were returned (14.48%), 18 were returned as undeliverable. We assumed 

that no significant variation was present in either of the two modes of survey administrations 

(Gigliotti, 2011; Yetter and Capaccioli, 2010; McCabe et al., 2006), implying the absence of bias 

across responses. Thus, we combined the responses for data analysis. After eliminating 

incomplete surveys and those where the respondents did not meet the criteria for participation or 

were simply not interested, 103 observations were used for data analysis. It is important to 

highlight that the response rate for this study was lower than expected, which is usually 20-30% 

for landowners’ survey (Hiesl, 2018; Joshi et al., 2013). However, similar response rates have 

been reported in some other studies (Gowan et al., 2018; Thompson and Hansem, 2012). A lower 

response rate can affect the reliability and validity of the survey findings, but we used boosted 

regression tree (BRT) in this study which is capable of handling low observations. In BRT, we 

split the data into training and test datasets, fit the model to the training dataset, make predictions 

based on it and evaluate the predictions on the test dataset. To avoid overfitting of the model, we 

used cross-validation approach that splits the data into various subsets of training and test data 

(Schonlau, 2005). The model is then repetitively trained and validated on these different subsets.      
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3.3.1 Descriptive statistics 

A majority of respondents (79.01%) were male with an average age of 68.03 years. Most had a 

median annual income between $60,000 to 89,000. Approximately, 75.30 % had at least some 

college education. Out of all respondents, 43.37% indicated they were retired.  

Respondents on average owned 82.74 acres of marginal land, with the majority of the land in one 

county. Only 11% landowners were currently renting their land, with an average rental rate of 

$40.83/acre. Only 7% indicated that they were currently growing commercial crops. The 

majority of marginal lands in the study area was currently used for hay or pasture (59.10 acres 

on average). However, a substantial number of landowners indicated other land cover types such 

as woody and agricultural crops, lake, residential area, yard were present.  

Concerning existing knowledge, 65.43% indicated they had heard about bioenergy, 50 % 

indicated they had knowledge of crops for energy production, and about same proportion of 

landowners (47.56%) indicated that they were aware that bioenergy crops can be grown on 

marginal lands. Even though about 23.75% landowners indicated that they were familiar with 

existing technologies relevant to growing bioenergy crops, only 4.93% of them indicated that 

they were currently growing them.  

With regards to willingness to grow bioenergy crops, 45.23% were willing to produce and 

harvest bioenergy crops on their property if markets existed for biomass. These landowners were 

willing to devote an average of 25.49 acres of land to bioenergy crops. Landowners indicated 

that a steady biomass market and low investment costs were the most important factors for their 

decision to produce and sell bioenergy crops (Figure 3.2).  

On the other hand, lack of interest in bioenergy, time, and lack of knowledge of how to 

effectively harvest bioenergy crops were the major reasons expressed by landowners for their 

reluctance to produce and harvest them (53.08%) (Figure 3.3).  

For landowners who were willing to produce and harvest biomass, we asked them to indicate 

what price they were willing to accept and the number of acres of land they were willing to 

commit. Figure 3.4 shows the percentage of landowners willing to accept five different prices 

and their average acreage commitment. For a biomass price of $40/ton, 28.57% indicated that 

they were willing to produce and the average amount of land available at this price was 19.71  
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Figure 3.2: Factors influencing landowners' decision to produce and harvest bioenergy crops 

(FWH: Factors for willing to produce/harvest) 



72 
 

 

Figure 3.3: Factors influencing landowners' decision to not produce and harvest bioenergy 

crops 

(FNWH: Factors for not willing to produce/harvest) 
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Figure 3.4: Percentage of landowners willing to produce biomass at different biomass prices 

and their acreage commitment 
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acres. When the price was $60/ton, 80.64% were willing to produce/harvest and the average land 

available increased to 27.84 acres.  

Regarding landowners’ willingness to rent, only 28.21 % were willing to rent (71.79% preferred 

not to rent). Landowners indicated that the possible need for insurance, length of contract and 

legal cost of contracting were major impediments to renting (Figure 3.5).  

Of the respondents who indicated no interest in renting, 91 % said they would never rent their 

land for bioenergy production regardless of the rental rate. These respondents indicated that 

privacy, old age, and self-control were the major factors for their decision.  

Landowners who were willing to rent their land for bioenergy production were asked to indicate 

the rental rate they were willing to accept. Figure 3.6 shows the percentage of landowners 

willing to rent and the acres they were willing to commit under four different rental rates. None 

of the respondents indicated that $25/acre was an acceptable rental rate. However, when the 

rental rate increased to $100/acre, 95.23% indicated they were willing to rent an average of 62.22 

acres.  

With regard to landowners’ opinions on bioenergy (Figure 3.7), about 55% agreed that using 

domestic energy sources such as wood will reduce dependence on foreign energy sources. 

Similarly, more than 50% agreed that producing bioenergy crops can provide economic 

opportunities and improve the rural economy. Even though they expressed a concern that 

bioenergy markets are not sufficiently developed they said that the government should not be 

involved in bioenergy development.  

3.3.2 Influence of measured variables on landowners’ willingness to participate in bioenergy 

crop production 

Optimal settings 

Using the cross-validation method optimal settings were generated for all the decision models. 

The optimal number of trees for the four decision models are shown in Figure 3.8. 

Willingness to participate in bioenergy crop production  

Results of the boosted regression models (BRTM1 and BRTM2) are presented in Tables 3.1 and 

3.2. Landowner age had the highest influence on both land use decisions. Younger landowners 

were more willing to participate in bioenergy crop production. In addition, landowners’ positive  
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Figure 3.5: Landowners concerns for renting out their land for bioenergy crop production 

(CRL: Concerns for renting land) 
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Figure 3.6: Percentage of landowners willing to rent their land and their acres commitment 
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Figure 3.7: Landowners' opinions on bioenergy (OP: Opinion) 
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Figure 3.8: Example of cross-validation model fitting with initial number of trees=1000, 

interaction depth=5, shrinkage=0.01, and bag fraction=0.5 for willingness to produce (top left), 

willingness to rent (top right), acreage commitment to produce (bottom left) and acreage 

commitment to rent (bottom right). 
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Table 3.1: Variables and their relative influence on landowners' willingness to produce/harvest 

Variables Relative  

Influence (%) 

Age 26.76 

Positive opinion on creating energy from trees 18.11 

Opinion that bioenergy crops can provide more habitat 9.16 

Acres 5.55 

Opinion that bioenergy crops improves rural economy 5.16 

Opinion that electricity from wood contributes to a healthier planet 4.98 

Opinion that biomass markets are not sufficiently developed 3.99 

Opinion that bioenergy will meet energy demand 3.49 

Opinion that bioenergy production creates more economic opportunities 2.50 

Income 2.42 

Household 2.38 

Knowledge that crops can be growing for bioenergy production 2.35 

Education 1.76 

Opinion that government should be involved in bioenergy development 1.72 

Heard of bioenergy 1.70 

Opinion that energy from wood reduces dependence on foreign energy 

sources 

1.69 

Occupation 1.32 

Opinion that bioenergy crops improves water quality 1.22 

Opinion that diversifying production reduces financial risk on the farm 1.08 

Opinion that bioenergy crops controls soil erosion 0.96 

Gender 0.73 

Opinion that production risk for bioenergy is lower than other crops 0.48 

Opinion that bioenergy is effective to control GHG 0.27 

Knowledge that bioenergy crops can be grown in marginal lands 0.21 
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Table 3.2: Variables and their relative influence on landowners' willingness to rent 

Variables Relative 

Influence (%) 

Age 22.79 

Positive opinion on creating energy from trees  13.95 

Acres 11.65 

Concerned with having other people on the land 5.89 

Income 4.76 

Concerned with the length of contract 4.25 

Concerned with the need for insurance 4.10 

Concerned with the changing landscape 3.78 

Occupation 3.47 

Opinion that electricity from wood contributes to a healthier planet  3.36 

Opinion that bioenergy production creates more economic opportunities  2.81 

Concerned with the potential legal cost of contract 2.67 

Opinion that bioenergy crops controls soil erosion  2.38 

Opinion that energy from wood reduces dependence on foreign energy 

sources  

2.07 

Concerned with the use of pesticides and fertilizers 2.03 

Opinion that biomass markets are not sufficiently developed  1.88 

Opinion that bioenergy will meet energy demand  1.40 

Knowledge that bioenergy crops can be grown in marginal lands  1.32 

Opinion that government should be involved in bioenergy development  1.31 

Opinion that bioenergy crops can provide more habitat  0.99 

Concerned with the disturbance from planting, harvesting, and other 

activities 

0.85 

Opinion that bioenergy crops improves water quality  0.80 

Opinion that bioenergy crops improves rural economy  0.69 

Knowledge that crops can be growing for bioenergy production  0.60 

Education 0.20 
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perceptions about the idea of creating energy from trees on their property had a positive 

influence on their decision to promote bioenergy crop production. Further, the amount of 

existing land acreage also had a substantial influence on landowner willingness to rent their land: 

the more land they had, the more willing they were to rent their land for bioenergy production. 

Additionally, results showed that landowners’ concern of having other people on their land had 

some influence on their willingness to rent out their land. 

Partial dependence plots of the three most influential variables are presented in Figure 3.9. These 

plots show the effect of a variable on the response after accounting for the average effects of all 

other variables in the model. For example, in the willingness to produce model, landowners’ 

production decisions changed with their age, with distinct observation after age 60 when an 

increasing age showed low willingness to produce. 

In addition to the effect of a single variable on the response, the partial dependence plots show 

important interactions between variables. For both the willingness to produce/harvest and 

willingness to rent models, three of the six most important pairwise interactions included the 

most influential predictors, age and a positive perception about the idea of creating energy from 

trees (Figures 3.10 and 3.11). Allowing interactions reinforced the effect that younger 

landowners with a positive perception about generating bioenergy were more willing to 

participate in bioenergy crop production.  

Acreage commitment  

Results of the boosted regression models developed to analyze landowner acreage commitment 

for producing/harvesting bioenergy crops (BRTM3) and renting their lands (BRTM4) are 

presented in Tables 3.3 and 3.4. Results from both models show that total acres of current land 

ownership had the biggest influence on the amount of land landowners were willing to commit 

for bioenergy production. Age was also influential in landowner rental decisions. Many variables 

were omitted from the acreage commitment models because they had no detectable influence on 

the response variable.  

Partial dependence plots of the most influential variable (total acres) along with the interaction 

effects are presented in Figure 3.12.  

Again, in addition to the effect of a single variable on the response, the partial dependence plots 
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Figure 3.9: Partial dependence plots for the three most influential variables for the two models; 

willingness to produce (top) & willingness to rent (bottom) 
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Figure 3.10: Interactions of the variables for the willingness to produce/harvest model 
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Figure 3.11: Interaction of variables for the willingness to rent model 
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Table 3.3: Variables and their relative influence on landowners' acreage commitment to produce 

Variables Relative 

Influence (%) 

Acres 95.39 

Opinion that electricity from wood contributes to a healthier planet  2.97 

Age 1.63 

Opinion that government should be involved in bioenergy development  0.01 

 

 

 

Table 3.4: Variables and their relative influence on landowners' acreage commitment to rent 

Variables Relative 

Influence (%) 

Acres 85.38 

Age 14.34 

Opinion that bioenergy will meet energy demand 0.17 

Household 0.07 

Concerned with the use of pesticides and fertilizers  0.04 
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Figure 3.12: Partial dependence plots for acres for the two models; acres to produce (left) & 

acres to rent (right) 
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show important interactions between the variables. For both acreage commitment models, the 

variable acres was prominently visible in the pairwise interactions reinforcing the acreage 

decisions that landowners with large acres are more willing to commit to bioenergy production 

(Figures 3.13 and 3.14).  

3.4 Discussions 

3.4.1 Overall willingness  

Survey responses aimed at understanding landowner willingness to promote bioenergy crop 

production in a four-county study area in northern Kentucky revealed a low willingness of 

landowners to participate in bioenergy production systems. The results prompt several 

observations. First, rural landowners who were willing to produce/harvest bioenergy crops 

indicated that a high biomass price was required to prompt them to produce bioenergy crops on 

their land. At a typical biomass price ($40/dry ton), the proportion of landowners’ willing to 

produce bioenergy crops fell substantially relative to higher prices. Similar results were obtained 

for landowners’ willingness to rent. Many landowners were simply not interested in renting their 

land regardless of the price offered. Thus, money was not the driving factor for these 

landowners. Loss of privacy, old age, loss of self-control, and potential disturbance from 

producing and harvesting energy crops were major factors in their decisions. In addition, 

previous studies have shown that non-market objectives such as wildlife habitat, aesthetics, and 

recreation could impact landowners’ decision to never rent their land (Barham et al., 2016; 

Swinton et al., 2016; G.C. and Mehmood, 2012). Further, Kentucky is well known for horses. 

Thirteen counties in northern Kentucky (including the four counties considered in this study) 

make up the Bluegrass region that has pasture lands favorable horse farming (Stephanie, 2016). 

The equine industry has an important contribution for the culture and economic structure of the 

state. The direct economic benefits from the industry and other benefits such as recreational, 

environmental and aesthetic have thrived the industry since time immemorial. In this context, 

landowners with existing horse farms (which could be a potential site for growing bioenergy 

crops) may not be interested in converting their land to bioenergy crop production. Therefore, the 

overall availability of rural land for energy crops is likely lower than anticipated, even at 

relatively high biomass prices or rental rates. This could possibly make the feedstock supply 

scarce.  
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Figure 3.13: Interaction of variables for acres commitment model to produce 

 

  

 

 

 

 

 

 

 

 

 

 

   

 

Figure 3.14: Interaction of variables for acres commitment model to rent 
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Recent studies on bioenergy production suggest the use of marginal lands for promoting 

bioenergy crop production. To explore this issue, the focus of this study was restricted to 

marginal lands as well. Since landowners who own marginal lands also own farmland, their 

willingness to participate in bioenergy crop production could have been different if they were 

asked to indicate their preference for different land use types. A recent study by Skevas et al. 

(2016) indicated that when landowners were asked to indicate what land they would be willing to 

rent for bioenergy crops, they were willing to provide more cropland than marginal land for 

bioenergy production. Thus, it is possible that the potential of marginal lands is less than what 

has been projected. Since landowners are reluctant to promote bioenergy crops on marginal 

lands, larger areas of marginal land may be needed to supply bioenergy feedstocks. Marginal 

lands are usually much smaller and spatially dispersed than traditional farmlands and forestlands 

(which are clustered) and supplying biomass feedstocks from these spatially 

dispersed/fragmented areas would likely trigger higher costs of bioenergy production, especially 

the transportation costs to processing facilities. In addition to increasing transportation costs, 

longer hauls of transporting feedstocks may trigger more GHG emissions. 

This study also focused on woody crops as potential bioenergy crops in the study area. Previous 

studies have included other bioenergy feedstock sources such as perennial grasses to understand 

people’s willingness to promote bioenergy production (Skevas et al., 2016; Caldas et al., 2014; 

Timmons, 2014; Qualls et al., 2012). The main advantages of perennial crops are that they re-

grow every year and do not need to be replanted annually. They also require fewer fertilizer and 

water inputs. In addition, they require lower production and management costs, thus, they could 

be attractive options for landowners to promote bioenergy crop production.  

3.4.2 Methods discussion 

An advantage of boosted regression tree (BRT) is that it combines the strength of regression 

trees and boosting methods to improve the predictive performance of a regression procedure. 

BRT boosts the predictive performance by fitting a series of models and then combine them into 

an ensemble to achieve better performance (Shin, 2015). BRT is flexible, it can handle several 

types of predictor variables, fit to non-linear relationships, and identify and handle interactions 

automatically. In our analysis, we had little control compared to a traditionally approach where 

we would be required to know and specifically indicate where interactions should be sorted for. 
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All the variables had a chance to predict the outcome and there was no need of data 

transformation or elimination of any outliers (Elith et al., 2008).  

Boosted regression tree (BRT) builds an ensemble of trees and it is difficult to interpret when 

compared to individual decision trees. However, this often does not matter where improving the 

predictive accuracy is the most important goal (ibid). Another drawback of this method is that 

the output of the model does not generate confidence intervals or p-values to indicate relative 

significance of model coefficients as compared to traditional regression analysis (ibid). This 

makes interpretation of results and understanding of the model even more challenging (Lampa, et 

al., 2014). Partial dependence plots can be one way to visualize the level of dependence (ibid), 

and we were able to generate two-way interactions for important variables in our study.  

3.5 Limitations 

While this study contributes to a greater understanding of landowners’ intent to enter into the 

bioenergy production system, there are a few limitations that should be noted. First, the response 

rate for survey was low. The study area could have been extended to include other adjacent 

counties in northern Kentucky, but due to budget and time constraints this was not possible. 

Second, only existing marginal lands were considered as potential sites for growing energy 

crops. As discussed previously, this might have had an impact on landowners’ intent and 

commitment. It may be useful for future studies to focus on different land use types and/or 

include perennial grasses. 

3.6 Conclusions 

In conclusion, this study provides several insights into landowners’ perceptions of bioenergy and 

their willingness to enter into the bioenergy crop production system. Overall, the results show 

that landowners are relatively more willing to grow bioenergy crops on their land than to rent 

their land to others for the same purpose. However, landowners are concerned about the 

uncertainty of the biomass market and the investment costs incurred in the production process. 

This information could be helpful in designing market protocols and incentive mechanisms to 

promote bioenergy production. In addition, results show that younger landowners, those with 

positive attitude towards bioenergy production, and those with large acres of land are more 

willing to promote bioenergy crop production. With this information, outreach programs focused 
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on enhancing landowner awareness about the beneficial economic and environmental impacts 

could help promote their participation in bioenergy production in the long run. 
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Appendix  

Landowners’ willingness questionnaire survey 

1. Do you own more than 10 acres of rural land, land that is grassland, shrubland, fallow 

cropland (unused cropland), hay/pasture or barren land? 

☐ No         (If you answered NO, please stop filling out the survey and return  

         in the enclosed envelop. Thank You!)          

                         ☐ Yes          

2. Are you the primary decision maker for management for your land? 

☐ No         (If you answered NO, please give this questionnaire to the person   

                 who makes land management decision for your land!)          

                         ☐ Yes    

     Section A: Current Land Management Practices 

3. How many acres of rural land do you own? ____________ acres 

4. Do you own rural land in more than one location? 

☐ Yes   ☐ No 

5. In what county is most of your rural land located? _______________ 

6. Do you currently rent out any of your rural land to others? 

☐ Yes   ☐ No (Skip to Question 9) 

7. If you answered yes to Q6, how many acres of your rural land did you rent out in 2016? 

 __________ acres 

8. What was the most common rental rate for your land? $______/ acre 

9. Not including the land that you have rented out to others, did you grow any commercial 

crops on your rural land in 2016? 

☐ Yes   ☐ No 

Who Should Complete the Survey? 
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10. How would you describe what is on the rural land you own? 

Description Acres 

Fallow cropland (unused cropland)  

Shrubland (land with shrubs, and small trees)  

Grassland  

Hay/pasture  

Barren  

Other (please specify)   

11. How do you and your family members use rural lands you own? Please check all that  

apply. 

 

 

 

 

 

 

 

 

 

 

Section B: Bioenergy and Bioenergy Crops 

Bioenergy is the energy that comes from a biological source, such as crops, grasses, or trees that 

can be burned to generate heat, electricity, and biofuels like ethanol. Fast growing tree species 

such as sycamore, sweetgum, and cottonwood can often be planted in ‘bioenergy plantations’ 

solely for being harvested for energy production. In this section, we would like to know your 

thoughts and perspectives on bioenergy plantation.  

12. Have you heard of bioenergy? 

☐ Yes   ☐ No 

13. Did you know that many crops can be grown for bioenergy production? 

☐ Yes   ☐ No 

Recreational Activities ☐ 

Physical activities (walking, running, or sports) ☐ 

Livestock grazing ☐ 

Wildlife habitat ☐ 

Hunting ☐ 

Commercial crops ☐ 

Conservation Program ☐ 

Others (please specify) ☐ 
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14. Did you know that many bioenergy crops can be grown on less fertile soil such as rural 

land (grassland, shrubland, fallow crop land, hay/pasture and barren land? 

☐ Yes   ☐ No 

15. Are you currently growing bioenergy crops on your land? 

☐ Yes   ☐ No 

16. Are you familiar that existing farming technologies work with bioenergy crops?  

☐ Yes   ☐ No 

17. If a market existed for woody biomass, would you be willing to produce and sell biomass 

from your rural land? 

☐ Yes   ☐ No (Skip to Question 20)   

18. If you answered yes, how much of your existing rural land will you be willing to harvest?  

______________ acres 

19. How important would the following factors be in your decision to produce and harvest 

energy crops for bioenergy production? Choose one option in each row (and their level of 

importance) and Skip to Question 21. 

 

 

 Not 

Important 

Somewhat 

Unimportant 

Neutral Somewhat 

Important 

Very 

Important 

Price of timber ☐ ☐ ☐ ☐ ☐ 

Steady market condition ☐ ☐ ☐ ☐ ☐ 

Low investment cost ☐ ☐ ☐ ☐ ☐ 

Energy security benefits ☐ ☐ ☐ ☐ ☐ 

Environmental benefits ☐ ☐ ☐ ☐ ☐ 

Contribution to climate change 

mitigation 
☐ ☐ ☐ ☐ ☐ 

Contribution to the local economy ☐ ☐ ☐ ☐ ☐ 

Others (please specify) 

 
☐ ☐ ☐ ☐ ☐ 
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20. If you answered no in Question 17, please indicate the importance of the following 

factors in your decision for not producing and harvesting energy crops for bioenergy 

production. 

 

 

 

 

 Not at All 

Important 

Somewhat 

Unimportant 

Neutral Somewhat 

Important 

Very 

Important 

Do not have time ☐ ☐ ☐ ☐ ☐ 

Do not have money and 

resources  
☐ ☐ ☐ ☐ ☐ 

Harvesting is not feasible 

because of small area 
☐ ☐ ☐ ☐ ☐ 

The land is not accessible 

for timber harvest 
☐ ☐ ☐ ☐ ☐ 

Producing bioenergy crops 

would not generate 

adequate income 

☐ ☐ ☐ ☐ ☐ 

Unsure about market 

conditions 
☐ ☐ ☐ ☐ ☐ 

Concerned about the 

environmental impacts of 

producing and harvesting 

timber for energy 

☐ ☐ ☐ ☐ ☐ 

Lack of knowledge to 

effectively harvest energy 

crops for bioenergy 

conversion 

☐ ☐ ☐ ☐ ☐ 

Not interested ☐ ☐ ☐ ☐ ☐ 

Others (please specify) 

 
☐ ☐ ☐ ☐ ☐ 
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Section C: Specific Bioenergy Cropping Systems 

Below is a hypothetical scenario, describing the process of growing a woody bioenergy crop 

such as sycamore, sweetgum, and cottonwood. 

 

21. For each biomass price listed in the table below, please indicate whether you would sell 

the wood. For your reference, the current average biomass delivered price is $40/ dry ton. 

Also, please indicate how much of your rural land you would be willing to harvest at the 

specified biomass price. 

 

 

 

 

 

 

 

 

 

 

Planted: Spring 

Harvested: 8 to 12 years 

Fertilized: Every few years 

Average number of farm visits: 1 per year 

Maximum height: 20 to 30 feet 

Production: Bioenergy 

Average annual production: 2 to 4 dry tons/acre/year 

Establishment and management costs: Average cost of $ 445 - 530/acre 

Soil erosion: Low compared to other bioenergy crops 

Carbon sequestration: Potential increase in carbon sequestration  

Water contaminations: Less compared to other bioenergy crops 
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 Section D: Willingness to Rent Your Land for Bioenergy Production 

Suppose that you have been approached to rent out your rural land to grow bioenergy crops (such 

as sweetgum, sycamore, and cottonwood) for 10 years.  

22. Will you be willing to rent your rural land for a bioenergy plantation in the future? 

☐ Yes  ☐ No   

23. If you said yes, how much of your existing rural land will you be willing to rent out?  

______________ acres 

24. In the following table, each row represents a rental rate for leasing your land for 

bioenergy plantation. For each of these price levels, please indicate your preferences of 

whether you will be willing to rent by checking a box. For your information, the current 

average rental rate is this region is approximately $40 to $50 per acre for pasture and hay. 

Also, please indicate how much of your rural land would you be willing to rent at the 

specified rental rate.  

 

 

 

 

 

 

Price levels for biomass will not sell will sell Acres 

$30/ dry ton ☐ ☐  

$35/ dry ton ☐ ☐  

$40/ dry ton ☐ ☐  

$45/ dry ton ☐ ☐  

$50/ dry ton ☐ ☐  

$55/ dry ton ☐ ☐  

$60/ dry ton ☐ ☐  

Price levels for rental will not rent will rent Acres 

$25/acre ☐ ☐  

$50/acre ☐ ☐  

$75/acre ☐ ☐  

$100/acre ☐ ☐  
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25. If you would not rent your land for bioenergy for any price, please check here ☐ 

 

Explain WHY? __________________________________________________________ 

 

26. Please indicate your level of agreement or disagreement with the following statements 

regarding your concerns for renting out your land. 

 

 

When I think about renting out my 

land for bioenergy crops, I am 

concerned with:  

Strongly 

Agree 
Agree Neutral Disagree 

Strongly 

Disagree 

The length of the contract ☐ ☐ ☐ ☐ ☐ 

Potential legal costs of contracting ☐ ☐ ☐ ☐ ☐ 

The possible need for insurance ☐ ☐ ☐ ☐ ☐ 

Having other people on my land ☐ ☐ ☐ ☐ ☐ 

The changing landscape ☐ ☐ ☐ ☐ ☐ 

The use of pesticides and fertilizers on 

my land 
☐ ☐ ☐ ☐ ☐ 

Potential disturbance from planting, 

harvesting, and other activities 
☐ ☐ ☐ ☐ ☐ 

Others (please specify) 

 
☐ ☐ ☐ ☐ ☐ 

 

 

Section E: Opinions on Bioenergy 

27. Please check the box that best represents your agreement with the following statements 

related to bioenergy.  
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Strongly 

Agree 
Agree Neutral Disagree 

Strongly 

Disagree 

Using domestic energy sources such as 

wood will reduce our dependence on 

foreign energy sources 

☐ ☐ ☐ ☐ ☐ 

Generating energy from wood will meet 

our country’s energy demand 
☐ ☐ ☐ ☐ ☐ 

I feel positive about the idea of creating 

energy from trees growing in my property 
☐ ☐ ☐ ☐ ☐ 

Electricity and fuel made from wood, 

rather than fossil fuels, will contribute to a 

healthier planet 

☐ ☐ ☐ ☐ ☐ 

Producing energy from biomass is an 

effective way to control atmospheric 

greenhouse gas emissions 

☐ ☐ ☐ ☐ ☐ 

Bioenergy crops can help control soil 

erosion on my land 
☐ ☐ ☐ ☐ ☐ 

Growing bioenergy crops can improve 

water quality on my land 
☐ ☐ ☐ ☐ ☐ 

Bioenergy crops can help provide more 

habitat for wildlife species on my land  
☐ ☐ ☐ ☐ ☐ 

Production of bioenergy can create 

economic opportunities for landowners 

like me in Kentucky 

☐ ☐ ☐ ☐ ☐ 

Growing crops for energy is a promising 

local option to improve rural economy 
☐ ☐ ☐ ☐ ☐ 

Diversifying my production will reduce 

financial risk on my farm 
☐ ☐ ☐ ☐ ☐ 

I am concerned that biomass markets are 

not sufficiently developed 
☐ ☐ ☐ ☐ ☐ 
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Strongly 

Agree 
Agree Neutral Disagree 

Strongly 

Disagree 

Production risk for bioenergy is lower than 

other crops 
☐ ☐ ☐ ☐ ☐ 

Government should be involved in 

bioenergy development 
☐ ☐ ☐ ☐ ☐ 

 

28. Please indicate your preferences for each of the following bioenergy policy options to 

your decision to promote bioenergy crop production by giving a score from 1 to 9. For 

your reference, a score of 3 indicates that a policy option is three times more preferred 

than a policy option with a score 1. Start by choosing the least preferred policy option 

among those on the list and give it a score of 1. Then score the remaining policies by 

comparing them one-by-one to the least preferred policy chosen earlier (use any number 

in between 1 to 9 for your scoring). Write the number in each box.  

Policy Options Scoring 

I would prefer direct payments for producing bioenergy crops  

I would need capital support for initial stages of bioenergy crop production  

I would prefer cost share program (such as equipment and transportation) for 

promoting bioenergy crops in my property  

 

Federal and state governments should provide more tax incentives to 

promote investments in, and production of bioenergy crops 

 

I would need technical assistance to grow and harvest bioenergy crops  

I would prefer crop insurance for bioenergy crops   

I would consider signing long-term contracts (lease) to grow bioenergy crops  

The government should allow payments for ecosystem services such as 

carbon sequestration to promote bioenergy feedstock production 

 

The government should allow conservation programs such as Conservation 

Reserve Program (CRP) lands for bioenergy purposes 
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In this section, we would like to learn more about you. We stress that all your answers will 

remain strictly confidential and will only be used for group comparisons. 

29. What is your age? 

____________ Years 

30. What is your gender? 

☐ Male   ☐ Female                ☐ Do not want to disclose  

31. Including yourself, how many members are in your household? 

____________ 

32. What is your current occupation? (Please check one) 

☐ Owner of a business  ☐ Government employee  

☐ Professional/Management ☐ Retired 

☐ Clerical or office worker  ☐ Unemployed 

☐ Farmer    ☐ Seeking employment 

☐ Forestry/Logging/Mining ☐ Homemaker 

☐ Other ____________________  

33. If you checked farmer in Q32 above, what percentage of your total 2016 income was 

from farming? (Please check one) 

☐ None 

☐ Less than 25 percent 

☐ 25 – 49 percent 

☐ 50 – 75 percent 

☐ More than 75 percent 

Section F: Background Information 
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34. What is the highest level of education you have completed? 

☐ Some school 

☐ High school diploma 

☐ Some college 

☐ Bachelor’s degree or equivalent 

☐ Advanced college degree 

35. What was your approximate family income before taxes for 2016? Include net income 

from all sources (salary, wages, social security, rental properties, farming, and investment 

income). (Please check one). 

☐ $30,000 or less   ☐ $120,000 to $149,999 

☐ $30,000 to $59,999  ☐ $150,000 to $179,999 

☐ $60,000 to $89,999  ☐ $180,000 to $199,999 

☐ $90,000 to $119,999  ☐ $200,000 or more 

Thank you for taking time to fill out our survey. Please feel free to write any comments you have 

in the space below.  
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CHAPTER 4                                                                                                                             

USING THE ANALYTIC HIERARCHY PROCESS (AHP) TO EVALUATE 

POTENTIAL BIOENERGY POLICIES FOR PROMOTING 

SUSTAINABLE BIOENERGY CROP PRODUCTION: A CASE STUDY 

FROM KENTUCKY 
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This chapter is in preparation for journal submission. The use of “we” in this chapter refers to co-

author, Dr. Liem T. Tran, and me. I am the first author, and my contribution to this project 

include model development, data collection and analyses, and writing the manuscript. 

Abstract 

Bioenergy crops can provide a reliable and adequate supply of bioenergy feedstock to support 

the bioenergy industry. However, commercial scale production of bioenergy crops has not been 

established to support the increasing energy demand for the bioenergy industry. Even though a 

large amount of lands might be suitable for growing bioenergy crops, the actual lands available 

for bioenergy crops could be significantly less that what is suitable for establishing bioenergy 

crop production. Lack of a well-developed market for biomass, uncertainties about the 

availability of feedstock sources, technologies to convert biomass to bioenergy, and political and 

regulatory environment may hinder bioenergy crop production. Policy support can be crucial to 

address some of these uncertainties and promote bioenergy crop production in ways that are 

economically efficient as well as compatible with social, political and environmental factors. In 

this study, we evaluated bioenergy policies with respect to their effectiveness to support the 

promotion of sustainable bioenergy production. We developed an analytic hierarchy process 

(AHP) model that incorporated all the dimensions of sustainable bioenergy production including 

socio-economic, environmental and policy factors. The model was applied for a case study in 

Kentucky where various initiatives are underway to support bioenergy production. Results from 

the study showed conservation programs and technology support could be the most effective 

policy options to promote bioenergy crop production in the state. This information can help state 

governments to formulate policies that take environmental aspects into consideration and 

promote research and development to support technological advancement to promote a 

sustainable bioenergy production.  

Key words: bioenergy, uncertainties, policy, AHP, Kentucky 

4.1 Introduction 

Bioenergy crops have the potential to supply sustainable feedstocks for the bioenergy industry 

and improve energy security, generate employment, promote local economic development, and 

address environmental issues such as climate change. Previous studies have mainly focused on 

the availability of land for growing bioenergy crops based on physical and socio-economic 
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variables. Some studies have focused on identifying suitable and economically feasible locations 

to grow bioenergy crops while others have analyzed whether the feasible locations are socially 

available to promote bioenergy production (Aragon et al., 2017; KC et al., 2017; Swinton et al., 

2016; Cladas et al., 2014; Nepal et al., 2014; G.C. and Mehmood, 2012; Hinchee et al. 2009). 

Since bioenergy feedstocks are likely to come from privately owned lands, landowners’ 

reluctance to grow bioenergy crops has promoted observations that the actual land available for 

bioenergy crops could be significantly less that what is physically suitable (Skevas et al., 2016; 

Leitch et al., 2013). Thus, there is a clear gap between where we want to be in terms allocating 

lands to bioenergy crops and where we currently are in terms of how much land landowners are 

willing to put into production. Bioenergy policies that are well informed, effective, logical, and 

oriented towards providing socio-economic and environmental gains can bridge this gap and help 

make more physically suitable lands available for bioenergy crop production. 

The federal government has enacted numerous laws and regulations, provided incentives, and 

made funding opportunities available to promote bioenergy production. Federal policies have 

also been essential for boosting state initiatives to develop the bioenergy industry. While there 

has been substantial federal involvement in promoting bioenergy, a national one size fits all 

approach may not work because federal policies cannot reflect state or region-specific conditions 

and circumstances (Patton-Mallory and Aguilar, 2010). Currently, there are various uncertainties 

in developing a sound strategy to promote the bioenergy industry. For instance, the availability 

of biomass feedstock sources is uncertain and the technologies for converting the feedstocks to 

bioenergy remain rudimentary. Further, studies have shown that landowners are in general risk 

averse, making them reluctant to change their current land management practices to bioenergy 

crops and invest in innovative technologies when the market is so uncertain (EESI, 2010). In 

addition, efficient bioenergy facilities are still in the planning and demonstration phase and not 

well established (EERE, 2016). Finally, the federal regulatory and political environment 

frequently changes over the time creating a hurdle for sustainable production of biomass 

feedstocks to meet the increasing demand of the bioenergy industry. Because of these 

technological, economic, political, and regulatory issues, advancing bioenergy production 

remains highly uncertain. Reducing these uncertainties is one of the most critical challenges for 

the bioenergy industry. 
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States can help address many of the uncertainties that the bioenergy industry faces. Many states 

have recognized the importance of bioenergy in their future economic development (EESI, 

2010). Each state has its own unique natural resources, institutional capabilities, and human 

capital that can support the bioenergy industry. State and local governments are often in a better 

position to collaborate with diverse local stakeholders to create a common vision for a 

sustainable bioenergy industry (ibid). Their partnership with local communities, private 

industries, and the federal government in promoting the bioenergy industry can be effective in 

advancing the long-term developmental needs of local communities (ibid). States can also 

establish their own bioenergy industries and adopt their own policies and incentives to promote 

bioenergy production (Ashton et al., 2009). In addition, they can also support research and 

development to be in a better position to inform and restructure federal policies in the future.  

Since existing bioenergy policies at the federal and state levels may not be synchronized with 

regard to incentivizing and regulating the bioenergy industry, it is important to have a 

comprehensive understanding of how these diverse programs may interact in advancing the 

growth of the bioenergy industry (Kaffka and Endres, 2011). In this study, we compared 

common bioenergy policies with respect to their effectiveness to support the promotion of 

sustainable bioenergy production at the state level. We developed an analytic hierarchy process 

(AHP) model that incorporated several important dimensions of sustainable bioenergy crop 

production including socio-economic, environmental, and political factors. The model was 

applied to a case study in Kentucky. The results from this model will help policy makers at the 

state level to design policies that are most likely accepted by the general public, implemented, 

and then evaluated if they attained their intended socio-economic and environmental outcomes. 

Although this study is specific for Kentucky, we developed a multi-criteria decision analysis 

model, AHP, to bring all relevant factors for decision making process for bioenergy crop 

production and ensured that objective decisions were made considering all the aspects (pros and 

cons) of the potential policy options to visualize the best policy for promoting bioenergy crop 

production. Thus, the outcome of the model can be used by other states as a reference in 

designing their own bioenergy policies to promote bioenergy crop production.  
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4.2 Methodology 

Comparing various bioenergy policies and prioritizing them based on their effectiveness to 

promote the bioenergy industry is a multidimensional decision-making problem that requires the 

consideration of the complexity of the economic, environmental, technical, and social factors of 

bioenergy production (Taha and Daim, 2013). Thus, a multi-criteria analysis is a suitable 

approach to analyze the various factors important in evaluating different bioenergy policy 

options. A multi-criteria analysis is a formal approach that considers multiple criteria in helping 

individuals explore decisions that matter (Belton and Steward, 2002). It is considered one of the 

most promising frameworks for evaluation because of its potential to account for conflicting, 

multi-dimensional, incommensurable, and uncertain aspects of decision making (Ananda and 

Herath, 2003). Common multi-criteria analysis methods used in studies on renewable energy 

planning and policies include multi-attribute utility theory (MAUT), outranking, and the analytic 

hierarchy process (AHP) (Taha and Daim, 2013; Pohekar and Ramachandran, 2004). MAUT is 

an expected utility theory approach that determines the best alternative for a given problem by 

assigning a utility to every possible alternative and then calculating the best possible utility 

(Konidari and Mavrakis, 2007). The major strength of MAUT is its ability to take uncertainty 

into account and assign each alternative a utility. However, it requires an interactive decision 

environment to formulate the utility function. A large amount of input is required at each step to 

accurately record decision makers’ preferences for different alternatives. Thus, this method is 

extremely data intensive (Velasquez and Hester, 2013). Outranking approach such as the 

Preference Ranking Organization Method or Enrichment Evaluations (PROMETHEE) uses a 

preference function to capture the differences between two alternatives for each criterion and 

comes up with a preferences index to rank all alternatives with respect to a number of criteria 

(Pohekar and Ramachandran, 2004). However, it does not provide a clear method to assign 

values/weights to each criterion (Murat et al., 2015). In addition to the MAUT and the 

outranking methods, AHP can facilitate multi-criteria decision making. AHP is the most widely 

used method in energy planning and have been applied to numerous (and complex) 

environmental and economic problems (Algarin et al., 2017; Hernandez et al., 2015; Ahmad and 

Tahar 2014; Berrittella et al., 2007). The wide applicability of AHP is mainly due to its ability to 

convert a complex decision problem into a simple hierarchical structure, its flexibility, and its 

ability to mix qualitative and quantitative information in the decision-making process (Wang et 
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al., 2011). Further, it supports group decision making and provides opportunities to share 

information among stakeholders in the decision process. Lastly, AHP is a scientific method that 

has been validated, replicated and proven reliable in decision making (Whitaker, 2007; Saaty, 

2005). As it has been widely applied for measuring preferences in complex, multi-attribute 

problems (Varis, 1989), we used AHP as the decision tool for this study. 

4.2.1 Proposed model 

To compare various bioenergy policies and prioritize the most effective ones to promote 

sustainable bioenergy production, we applied the analytic hierarchy process (AHP), developed 

by Saaty (1980). AHP establishes priorities and preferences in a decision-making process using a 

hierarchy of criteria, sub-criteria, attributes and alternatives. For this study, we applied a four-

level AHP. The top-most level of the hierarchy is the ultimate goal (i.e., to identify the most 

effective bioenergy policy), the intermediate levels correspond to various criteria and sub-criteria 

and the lowest level represent various decision alternatives (Figure 1). We used the following 

criteria and sub-criteria to compare the policies.  

➢ Economic Impact: Energy security, and economic viability (profitability) 

➢ Environmental Impact: GHG emissions, biodiversity, soil quality, and water 

quality/quantity 

➢ Social Impact: Social acceptability, and social wellbeing  

➢ Governance: Legal feasibility, technical feasibility, administrative feasibility, and cost 

effectiveness 

Based on these criteria and sub-criteria, we compared various policy alternatives. Most of the 

existing policies in the southern US focus on regulatory mechanisms, incentive-based policies, 

and support-based programs (SAFER, 2009). Since regulatory mechanisms focus on setting 

goals for renewable energy production or consumption, they might not directly address 

landowners’ interest. Thus, we mainly focused on incentives-based and support-based policy 

alternatives as presented in Table 4.1. 

We identified these policy alternatives based on some of the existing/potential bioenergy policies 

that directly address bioenergy feedstock production. For example, the Bioenergy Crop 

Assistance Program (BCAP) is one of the most popular federal policies to directly address 

landowners. The main goal of the BCAP is to promote cellulosic, non-food, biomass production 
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Table 4.1: Policy alternatives and their description 

Policy Alternatives Description 

P1: Direct Payment Payment to cover the cost of growing, harvesting, storing and 

transporting biomass feedstock 

P2: Capital support for 

start-up 

Payment to support establishment of bioenergy crops, 

including land preparation 

P3: Cost support for 

equipment/transportation 

Payment for harvesting equipment and for transporting 

biomass to the facility 

P4: Tax incentives Property tax exemptions for lands used for bioenergy crop 

production. 

P5: Technology support Technology support to 

• improve production and economic returns 

• promote precise farming techniques for soil and water 

conservation 

• promote R & D for a sustainable and ecologically 

compatible land use change for bioenergy production. 

P6: Crop insurance Premium subsides for landowners who comply with 

conservation provisions on their land 

P7: Farm lease Rental payment for supplying lands for growing bioenergy 

crops 

P8: Payment for ecosystem 

services 

Payment for ecosystem services such as carbon offset 

payments to acquire the value of carbon sequestration on plant 

biomass. 

P9: Conservation programs 

such as CRP, CSP, EQIP, 

WHIP 

Setting aside lands such as CRP land for bioenergy production 

that provide 

• environmental benefits like soil and water quality 

improvement 

• economic benefits in terms of additional farm income 

for landowners and annual rental payment for acreage 

commitment 
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on private lands by providing incentives such as subsidies for the establishment and management 

bioenergy crops and matching payments for collecting and harvesting existing biomass resources 

that currently lack an established market (Barham, et al., 2016). The most recent provision of 

BCAP includes a 50% cost share of establishment cost (not to exceed $500/acre) and an annual 

payment or rental payment for up to 15 years for woody crops paid to landowners who enter into 

contracts to produce bioenergy crops (McMinimy, 2015). The annual payment is on a per-acre 

basis and contingent upon market based rental rates regulated by Farm Service Agency (FSA). 

Similarly, the BCAP has a provision to provide matching funds of $20/dry ton of biomass 

collected, harvested, stored, and transported to the nearest facility. The BCAP is mainly designed 

to provide socio-economic incentives to landowners to promote bioenergy crop production. 

Some other federal policies such as the Conservation Reserve Program (CRP) and 

Environmental Quality Incentives Program (EQIP) address environmental concerns. The CRP 

and EQIP mainly focus on marginal lands by promoting long term production of bioenergy crops 

to improve water quality, control soil erosion, and enhance wildlife habitat. The average CRP 

rental rate in the US in the 2015 was $70/acre (FSA, 2017). In addition to federal policies, 

various states have their own policies to incentivize bioenergy production. Tax credits for 

growing bioenergy crops, grants, loans, and cost-supports are some of the common incentives 

provided by states throughout the US.   

After establishing the structural hierarchy as shown in Figure 4.1, we performed pair-wise 

comparisons of relative importance between each of the elements of each level with respect to a 

specific element in the level immediately above it based on Saaty’s 1-9 scale (Table 4.2). In 

making the comparison between two elements, we specified which of the two elements was more 

important and how much more important. We expressed our intensity of preference on a nine-

point scale as presented in Table 4.2. If two elements were of equal importance, 1 was given in 

the comparison while a 9 would indicate the absolute importance of one criterion over the other. 

After the pair-wise comparisons, a comparison matrix was formed. The comparison matrix was 

used to compute the relate priority/weight attached to each of the elements being compared. 

Numerical priorities of each alternative were then calculated to determine the relative ability of 

the policy alternatives to achieve/support the overall goal. The policy alternative with the highest 

numerical priority was then selected as the most effective policy option to promote bioenergy  
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Figure 4.1: Analytic hierarchy process (AHP) model to evaluate bioenergy policies 
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Table 4.2: Saaty's pairwise comparison scale 

Numerical 

Values 

Verbal Scale Explanation 

1 Equal importance of both elements Two elements contribute equally 

3 Moderate importance of one element 

over another 

Experience and judgement favor one 

element over another 

5 Strong importance of one element 

over another 

An element is strongly favored 

7 Very strong importance of one 

element over another 

An element is very strongly dominant 

9 Extreme importance of one element 

over another 

An element is favored by at least an 

order of magnitude 

2,4,6,8 Intermediate values Used to compromise between two 

judgements 
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production.   

4.2.2 Study area and pairwise comparisons 

Study area 

For this study, we considered the state of Kentucky as a case study to evaluate various bioenergy 

policy options. Kentucky is a coal producing state, with 79% of the electricity generated in the 

state coming from coal (EIA, 2018). Even though the economy of the state is highly dependent 

on the coal industry, various efforts are underway to diversify with renewable energy sources 

such as bioenergy. The energy plan developed by the Governor’s office (2009) requires 25 

million tons of biomass to be produced annually by 2025 to meet federal and state standards. 

Thus, promoting bioenergy crops and the bioenergy industry is an important goal for the state. 

Previous studies in Kentucky have provided information on the availability of land for growing 

bioenergy crops. This study will be helpful by adding information about which policy would best 

promote bioenergy crops to fulfil the state’s energy demands. This study specifically focuses on 

policies to promote bioenergy crops on marginal lands, i.e., low productive lands such as 

grasslands, shrubland, fallow cropland, and hay/pasture. Marginal lands do not compete with 

food production, promote forest conversion, or intervene with any existing management 

practices.   

Pairwise comparisons 

In this study we, as analysts, performed pairwise comparisons between each element at various 

levels based on objective data/information relevant for regional bioenergy production. We 

compared existing bioenergy policies based on economic, environmental, social, and 

governmental criteria using monetary, quantitative, and qualitative measures. We assumed that 

all criteria were equally important for the state government to promote sustainable bioenergy 

production. Thus, at the second level of the hierarchy, we assigned equal weights to each of the 

four criteria. The economic evaluation of the policies was based on regional data on potential 

yield, cost, and expected revenues (Halich, et al., 2018; FSA, 2017; Barham, et al., 2016; US 

DOE, 2016; Nepal et al., 2015; Skog et al., 2012; Kline and Coleman, 2010). For example, under 

the economic viability sub-criteria, net revenues were calculated from available data on costs and 

benefits for each policy option and our pairwise comparisons gave higher priority to policies that 

yielded higher revenues. Similarly, the environmental criterion was evaluated to assess how the 
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policies would impact GHG emissions, biodiversity, and soil/water quality. For the 

environmental criterion, we gave a higher priority for soil quality than other sub-criteria. Even 

though reducing GHG emissions is one of the major focuses for promoting bioenergy, 

sustainable bioenergy production can only be attained when the land used for growing bioenergy 

crops can continuously produce as much biomass as is used for energy. This would require long-

term soil fertility that can assure carbon neutrality from bioenergy production (WGBU, 2009). In 

addition to economic and environmental factors, it is important to evaluate policies based on how 

they can affect communities in which they are implemented because bioenergy production can 

affect agricultural productivity (in terms of the fuel vs. food debate), compete with land use, and 

impact the rural economy. Even though large-scale investment and governmental incentives are 

available, bioenergy production cannot be feasible without people’s participation. Little is known 

about the public acceptance of bioenergy and its view on the opportunities and risks from 

bioenergy crop production. Local people may resist bioenergy crop production because of lack of 

awareness regarding the advantages of bioenergy and/or concerns over the socio-economic and 

environmental impacts of bioenergy crop production. People’s perceptions and their acceptance 

is one of the major components of bioenergy production. Thus, for the social criterion, we 

focused on what policy characteristics people favor (accept) for bioenergy production and how 

bioenergy production can impact people’s social welfare. In other words, what attributes of 

existing policies are most important to peoples’ welfare in terms of bioenergy production. We 

gave the sub-criterion social acceptance more weight than social welfare mainly because 

opposition to certain bioenergy policies from the general public can thwart expansion of 

bioenergy crop production. Since the public does not have the power to make decisions about 

existing policies, information relevant to their policy preferences for promoting bioenergy crop 

production was obtained directly from a previous questionnaire survey that was primarily 

designed to evaluate landowners’ willingness to make their land available for bioenergy crop 

production. In that survey, landowners were asked to rank different bioenergy policies based on 

their preferences. Landowners responses were combined using geometric means and entered 

directly into the AHP model. 

Long term policy support can play a vital role in increasing stability in market conditions and 

reducing risk associated with establishing bioenergy crops (Nepal et al., 2015). For this study, we 

evaluated feasibility of the policy alternatives to determine whether they are viable for promoting 
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bioenergy crop production. Feasibility for implementing policies depends on the availability of 

required resources such as human and capital resources, material resources, and technology. In 

addition, it is also important to understand whether policies conflict with existing legislation. 

Thus, we measured feasibility in terms of legal feasibility, technical feasibility, administrative 

feasibility, and cost effectiveness. For pair wise comparisons, we gave a slightly higher weight to 

cost effectiveness mainly because it explains the suitability of investment for the various policy 

options. In addition, policies that are not cost effective may cause unnecessary loss of economic 

welfare. Further, bioenergy policies that are most cost competitive and tailored to unique socio-

economic, environmental and political circumstances would be most successful in the long-run. 

Thus, cost-effectiveness could be very important for encouraging bioenergy deployment.  

4.3 Results 

4.3.1 Ranking of policies 

Local priorities obtained through pairwise comparisons over various levels of the hierarchy were 

synthesized to arrive at an overall priority for each policy alternative. The overall priority 

considers not only the performance of each policy alternative in terms of each criterion but also 

the different weight of each criterion. Results show that conservation programs, technology 

support, and tax incentives were the top three bioenergy policy alternatives in terms of their 

effectiveness for promoting bioenergy crops (Figure 4.2). Ranked as the most effective policy 

alternative, conservation programs, would be a better choice to promote regional sustainable 

bioenergy production. In addition, technology support and tax incentives were 87.3% and 

69.78% as effective as conservation programs. 

We then used a limiting matrix to display intermediate priorities under each node in the AHP 

model (Table (4.3) and Figure (4.3)). The limiting matrix here is a weighted supermatrix that 

shows how each criterion contributed to the overall effectiveness of each policy alternative. It 

must be noted that tax incentives, technology support, and conservation programs had higher 

priorities in the economic criterion. Similarly, conservation programs had a higher value in the 

environmental criterion. In addition, technology support and direct payments had higher 

priorities for governmental and social criteria respectively. 
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Figure 4.2: A graphical representation of ranking of different bioenergy policies 

 

 

Table 4.3: Priority ratings for four different criteria 

Alternatives Economic Environmental Governmental Social 

 Direct Payments 0.0275 0.0248 0.0537 0.0981 

 Capital Support for start-up 0.0358 0.0251 0.0551 0.0470 

 Cost Support 

(equipment/transportation) 0.0443 0.0258 0.0369 0.0506 

Tax Incentives 0.0875 0.0584 0.0503 0.0657 

Technology Support 0.1089 0.0832 0.0814 0.0542 

 Crop Insurance 0.0456 0.0251 0.0165 0.0379 

 Farm Lease 0.0276 0.0251 0.0721 0.0337 

 Payment for Ecosystem Services 0.0333 0.0615 0.0677 0.0638 

 Conservation Programs 0.0890 0.1711 0.0664 0.0489 
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Figure 4.3: A graphical representation of different criteria for each policy alternative 
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4.3.2 Sensitivity analysis 

The overall priorities for different policy alternatives obtained from the AHP model are highly 

contingent on the weights attached to criteria and sub-criteria. Thus, minor changes in the 

weights can cause major changes in the final rankings (Chang et al., 2007). Our analysis was 

based on objective data/information related to sustainable bioenergy production. However, any 

bioenergy production decision involves different stakeholders and weights attached to the main 

criteria are usually based on highly subjective judgements. Thus, it is important to test the 

stability of the ranking of the policy alternatives under varying criteria weights. To do this, we 

performed a sensitivity analysis to reflect different possible views/preferences of stakeholders on 

the relative importance of different criteria and examined how the overall priorities would 

change. Sensitivity analysis allowed us to examine which criterion/sub-criterion was the most 

critical to the final ranking. In terms of the main criteria the results are sensitive to changing the 

weights given to economic valuation, social impacts, and governmental feasibility in similar 

ways. For economic valuation, conservation programs stood out to be the favorable policy option 

when the weight was changed from 0.1 to 0.55. However, increasing the weight further made 

technology support a better option (Figure 4.4). Similarly, for governmental feasibility and social 

impacts, a weight from 0.6 onwards made technology support and direct payments better options, 

respectively (Figures 4.5 and 4.6). It must be noted that technology support had a higher priority 

for the economic and governmental criteria (Table 4.3), thus increasing the weight of economic 

and governmental criteria influenced the final results favorably for technology support. 

Similarly, the direct payments policy option had a higher priority within the social criterion 

(Table 4.3), undoubtedly favoring it when weight for the social criterion is increased.   

The sub-criteria under the economic criterion (energy security, and economic benefits), 

environmental criterion (GHG, soil quality, water quality/quantity, and biodiversity), and social 

criterion (social acceptability, and social wellbeing) were not critical. However, for the 

governmental criterion with four factors (legal feasibility, technical feasibility, administrative 

feasibility, and cost effectiveness), only cost effectiveness was critical. Only when the weight for 

cost effectiveness was increased above 0.8 did the priorities of the different policy alternatives 

change, with technology support becoming the most preferred policy option to promote 

bioenergy crop production (Figure 4.7). This demonstrates that an increase in the weight for cost 

effectiveness would have to be very high to have an impact on the overall ranking. 
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Figure 4.4: Sensitivity analysis at the second level of hierarchy with different weights for 

economic valuation 

 

 

Figure 4.5: Sensitivity analysis at the second level of hierarchy with different weights for 

governmental feasibility 
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Figure 4.6: Sensitivity analysis at the second level of hierarchy with different weights for social 

factors 

 

 

 

Figure 4.7: Sensitivity analysis at the third level of hierarchy with different weight for cost 

effectiveness 
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Throughout the hierarchy, changing the weights of some of the criteria seemed to be critical. 

However, the overall ranking of the policy options did not change to a great extent. Conservation 

program and technology support were ranked as the top two policy options during the sensitivity 

analysis except when the social criterion was given a weight greater than 0.6 making direct 

payments the top policy option. Thus, the sensitivity analysis validated our results and 

demonstrated the robustness of our model. Since bioenergy production involves multiple 

stakeholders with conflicting objectives, our sensitivity analysis performed by varying the 

weights for the different criteria reflected how preferences of different stakeholders could change 

the outcome. Since the top two policy options remained mostly the same throughout the 

sensitivity analysis, our results should be robust with regards to differing views of various 

stakeholders.  

4.4 Discussion 

Evaluation of different policy alternatives based on socio-economic, environmental, and 

governmental criteria revealed that conservations programs could be the most effective option to 

promote sustainable bioenergy production in Kentucky. Conservation programs such as the 

Conservation Reserve Program (CRP) was started in the US with a goal to protect 

environmentally sensitive land by preventing soil erosion, improving water quality, and 

enhancing biodiversity. Thus, results from this analysis highlight the need to take environmental 

concerns into consideration while designing policy options for promoting bioenergy crops in the 

state. Establishing bioenergy crops within conservation programs could result in an increase in 

biomass price, improve soil and water quality, reduce government spending on other 

conventional farm programs, and promote rural development (Mapemba et al., 2007). In 

addition, establishing bioenergy crops on these lands can help reach bioenergy mandates while 

incentivizing landowners to keep their lands under CRP contracts. However, the government 

may have to increase rental payments to keep the lands in the program because in some cases the 

opportunity cost for the lands may outweigh the rental payments.  

In addition to conservation programs, technology support was also ranked relatively high in this 

study. Technology support can help improve biomass productivity (in terms of using improved 

varieties of crop species, and better planting, maintenance, and harvesting strategies) and provide 

a long-term supply of feedstocks at lower cost. In addition, technology support can help reduce 
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potential negative environmental impacts, promote efficient transportation and storage of 

bioenergy feedstocks, and conversion of feedstocks to bioenergy in bioenergy facilities. 

Although there have been exciting advances in technology, the full extent to which technology 

can contribute to the future of bioenergy production remains uncertain. Therefore, more support 

from state and federal governments for R & D could facilitate bioenergy production in the long 

run. 

It must be highlighted that crop insurance was ranked lowest in our analysis. Even though crop 

insurance can provide a safety net for landowners in case of major disaster, it was the least 

preferred option considering all the socio-economic, environmental and governmental factors. 

The cost of implementing crop insurance could be the biggest hurdle. Costs include subsidies of 

crop insurance premiums, reimbursements to private insurance companies for their 

administrative costs, and the government’s share of participating in underwriting gains/losses 

(Babcock and Hart, 2006). Zulauf (2016) showed that that the cost to the government for its crop 

insurance program increased from $3.3 billion in 2000-2004 to $8.6 billion in 2010-2014. In 

addition to cost, an extensive set of administrative requirements make crop insurance less 

attractive for promoting bioenergy crop production.  

Prioritizing the different policies discussed in this study is arguably important to the state of 

Kentucky where different initiatives are underway to promote bioenergy from woody biomass. 

Since policymakers need to consider many factors in making bioenergy production decisions, the 

results could be used by the state government to help make decisions regarding adopting specific 

policy approaches to promote bioenergy production in the state. The results showed that policies 

that incorporate environmental conservation are key to establishing bioenergy crops in Kentucky. 

However, merely promoting bioenergy crops on conservation lands (such as CRP lands) may not 

be sufficient in formulating effective policy because these lands are relatively vulnerable and 

generally less productive than farmland or forestland. Thus, consideration should also be given 

to efficient technological support to improve productivity on low productive lands at lower cost 

and to ensure environmental sustainability while growing bioenergy crops. Since our model 

incorporated landowners’ perceptions on different policy alternatives, the state government can 

take a proactive policy action to ensure public participation for policy making. In addition, as 

bioenergy production involves multiple stakeholders with diverse interest/objectives (economic, 
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environmental, and social), the state government can use the model developed in this study to 

communicate better with stakeholders and connect shared information (that highlights 

preferences and expectations of each stakeholder) to the policy process. Shared 

knowledge/information among the stakeholders about bioenergy production can be a key to 

overcome some of the production challenges that may arise due to conflicting interests of the 

stakeholders.   

We used AHP as a tool to prioritize policies to promote bioenergy crop production. An 

advantage of AHP is that it is simple and straightforward to understand. It has the ability to 

convert a complex problem into a simple hierarchy of a goal, criteria/sub-criteria, and 

alternatives to facilitate communication of problems and identify solutions. The pair-wise 

comparison is relatively easy, and the use of verbal comparisons is appealing and user-friendly. 

The verification of consistency is another major asset of the AHP (Alessio and Ashraf, 2009). In 

addition, it is possible to combine multiple inputs into one consolidated outcome. For example, 

people’s preferences for different bioenergy policies obtained from a survey was consolidated 

using geometric means and entered directly in the AHP model. Further, AHP is a flexible tool, it 

can incorporate multiple and conflicting objectives/criteria and qualitative and quantitative 

aspects in the decision-making framework. However, building the hierarchy and selecting 

criteria and sub-criteria may involve a certain level of subjective evaluation by decision makers 

(Bernasconi et al., 2010). Possibly, if more people work on similar decision problems, different 

opinions can result in different hierarchies and different weights on criteria/sub-criteria 

consequently, arriving at different solutions for a particular decision problem (Banuelas and 

Antony, 2004). Further, there might be inconsistencies with the 1 to 9 scale for decision makers 

with different capabilities to effectively evaluate the decision problems (Pauer et al., 2016). In 

this study, we performed all the pair-wise comparisons with state government as the primary 

stakeholder as analysts and we were able to check the consistency for all the comparisons. 

Another limitation of AHP is that it requires a large number of paired comparisons by the 

decision maker, especially for a complex decision problem sometimes making it difficult to 

maintain consistency among the responses (Islam and Abdullah, 2005). In this study, we focused 

on only the relatively more important criteria for sustainable bioenergy production to reduce the 

number of paired comparisons. 
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4.5 Conclusions 

In this study, we applied a systematic multi-criteria decision analysis tool, AHP, to a case study 

on bioenergy production in Kentucky. The goal of this study was to evaluate different bioenergy 

policies and prioritize them based on their effectiveness to promote regional bioenergy 

production. The effectiveness was compared based on the different dimension of sustainability. 

This approach is of great relevance since various state and federal initiatives are underway to 

establish and promote bioenergy to improve energy security, generate employment, promote 

local economic development, and address environmental issues such as climate change. Results 

from this study showed that conservation programs are relatively better policy options, 

highlighting the need to take environmental aspects into consideration while designing policies 

for promoting bioenergy crops. In addition, results show that technology support can also be 

effective for promoting bioenergy production. Technology support can play a vital role to 

increase biomass productivity, reduce production cost, and benefit the environment. These 

results imply that state governments should formulate policies that not only focus on generative 

revenues but also provide better environmental incentives and promote research and 

development to support technological advancement to promote sustainable bioenergy production.  
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This chapter provides an overall summary of the research with key findings for each of the 

research questions addressed in the dissertation and shows how they fit in the context of broader 

bioenergy research. In addition, it discusses future research directions to address some of the 

limitations observed in the study.  

5.1 Summary of research 

The impetus for this research was the concern for huge dependence on fossil fuels for energy 

generation. Fossil fuels such as coal are non-renewable energy sources that deplete over time. 

Further, they have negative impacts on the environment as they emit greenhouse gases that 

contribute to global climate change. Thus, there is a need to diversify the current energy supply 

with alternative renewable energy sources. Bioenergy is a renewable energy source that has the 

potential to partially replace fossil fuels and address concerns about greenhouse gas emissions 

However, commercial scale production of bioenergy has not yet been established to meet the 

huge energy demand. Thus, there is a need to explore the full potential of bioenergy production 

to support energy generation. The main purpose of this dissertation was to assess the feasibility 

of growing bioenergy crops for energy. This study used multiple approaches including multi-

objective optimization, quantitative survey, and multi-criteria decision analysis to explore the 

potential of bioenergy crop production for a case study in Kentucky. Results from the study can 

be helpful for regional planning of bioenergy crop production, developing outreach activities and 

assisting state agencies in selecting and implementing policies that support bioenergy industry. 

Key findings for the three major objectives for the research are presented below: 

5.1.1 Objective 1: To identify trade-offs between socio-economic and environmental factors for 

bioenergy production 

Promoting bioenergy production may incorporate various objectives such as improving biomass 

yield, protecting the environment, and providing opportunity for rural development in terms of 

better economic growth and job/employment opportunities. However, obtaining a certain level of 

outcome for a particular objective would require a sacrifice in the outcome of the other 

objectives. Therefore, planning for a sustainable bioenergy production requires an understanding 

of potential trade-offs or interconnectedness between various socio-economic and environmental 

factors. We developed a multi-objective optimization model that had the ability to incorporate 

major components of biomass supply chain. The model depicted trade-offs among several factors 
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in the production decision for bioenergy crops for a case study in northern Kentucky. In addition, 

changing the preferences for those factors also shifted the trade-offs accordingly which implies 

that the magnitude and the extent of the trade-offs in bioenergy crop production strongly depends 

on the development of future bioenergy demand which is subject to biomass market as well as 

land use change. Results from the trade-off analysis showed a need to find the best balance 

among the trade-offs for better production decisions. Large scale bioenergy crop production 

planning that neglects trade-offs and does not account for complementary measures could result 

negative effects on various sustainability indicators such as economic returns, water and soil 

quality. Policies that aim at maximizing bioenergy production are useful to promote bioenergy 

but neglecting the trade-off with economic or land resources may not sustain in the long run and 

may come at the cost of greater environmental degradation. Rather than focusing on maximum 

yield from bioenergy crops, production should therefore be restricted on certain high-quality 

lands that have the potential to generate economic growth and focus on efficient use of land and 

water resources. By considering trade-offs among the various factors in bioenergy crop 

production, results highlighted the opportunity to design integrated policies for bioenergy, land 

use, soil and water management as the key to a sustainable bioenergy crop production. Thus, 

trade-off analysis can be a very useful tool for systematic planning to promote bioenergy crop 

production that can assist in gaining sustainability goals in bioenergy production.  

5.1.2 Objective 2: To understand landowners’ perception about bioenergy and their willingness 

to promote bioenergy crop production 

Expansion of bioenergy crops would require participation from private landowners as they own 

majority of lands. Thus, one of the major focusses of this dissertation was to understand 

landowners’ intent to convert their existing land use to bioenergy crop production. We 

administered a questionnaire survey for a four-county study area in northern Kentucky to collect 

information on landowners’ current land management practices, their knowledge and 

understanding of bioenergy crops, their perceptions of bioenergy and various socio-demographic 

information to examine whether and under what conditions landowners would make their land 

available for bioenergy crops. Results from the study showed that landowners were relatively 

more willing to grow bioenergy crops themselves than rent to others however, a relatively higher 

biomass price was required to engage them in bioenergy crop production. Uncertainty about 

biomass market and biomass productivity in addition to a huge investment cost incurred during 
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the production process promoted a higher biomass price for landowners’ intent to promote 

bioenergy crops. This information would be helpful in designing better market protocols and 

incentive mechanisms that ascertains a reliable source of economic returns for landowners who 

are willing to grow bioenergy crops. Results also showed that many landowners were not 

interested in renting their land regardless of price offered. Loss of privacy, old age, loss of self-

control and potential disturbance from producing and harvesting energy crops were major factors 

for their low willingness to rent their land. In addition, younger landowners with a positive 

attitude towards bioenergy crops and those with large acres of land were more willing to promote 

bioenergy crop production. With this information, outreach activities that focus on enhancing 

landowners’ awareness about beneficial economic and environmental impacts could help 

promote their participation in bioenergy production in the long run. 

5.1.3 Objective 3: To evaluate potential bioenergy policies for promoting sustainable bioenergy 

crop production 

Policy support in terms of bioenergy policies that are well defined, effective, logical and oriented 

towards providing socio-economic and environmental gains is required to promote bioenergy 

crop production. To address this, another major focus of this dissertation was to evaluate 

potential bioenergy policies and prioritize them based on their effectiveness to promote regional 

bioenergy production. We used a multi-criteria decision analysis tool, AHP to a case study on 

potential policies for bioenergy production for Kentucky. The AHP incorporated all dimensions 

of sustainable bioenergy crop production including socio-economic, environmental and policy 

factors. Results showed that conservation programs are relatively better policy options 

highlighting the need to take environmental considerations while designing polices to promote 

bioenergy production. In addition, results revealed that improved technology can also play a vital 

role to expand bioenergy production. Since various state and federal initiatives are underway to 

establish the bioenergy industry, this information can help state government formulate policies 

that not only generate revenues but also provide incentives to promote environmental 

conservation and promote research and development to support technological advancement to 

promote a sustainable bioenergy production. The analysis performed in this study was based on 

objective data/information relative to sustainable bioenergy production. As bioenergy production 

involves stakeholders with different interests and objectives, state agencies can use the model 

developed in this study as a tool to communicate knowledge and information with the 
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stakeholders in the policy making process. Effective communication among different 

stakeholders can be a key to address some of the challenges and reach a policy that is acceptable 

to all.   

5.2 Contribution to geography and bioenergy production planning 

Bioenergy crops can provide a reliable source of feedstock to support the bioenergy industry, 

reduce our dependence on fossil fuels and address concerns related to energy security, economic 

development and environmental issues such as climate change and global warming. However, 

promoting bioenergy crops would require major changes in land use and management practices 

that can have long term impacts on socio-economic and environmental conditions. In addition, 

the impacts from bioenergy crop production can be different based on where and how the 

bioenergy crops are grown. In this research, I mainly focused on the feasibility of bioenergy crop 

production at a regional level. The location of the study area including the physical (site and soil 

conditions) and social (landowners’ land use behavior and their opinion and attitude towards 

bioenergy) environment influenced how systematic planning should be carried out, what 

landowners’ intent was and what incentives they seek for converting their existing land use, and 

what policies would be effective for promoting bioenergy crop production. Thus, this research 

focused on place-based bioenergy crop production planning that was subjected to the context of a 

particular location and feedstock types. This research adds to the human-environmental 

interaction literature by investigating socio-economic and environmental indicators to provide an 

understanding of a bioenergy production system’s sustainability. Most geography research has 

focused on environmental aspects of bioenergy production and highlighted the potential of 

bioenergy crops to reduce GHG. This research investigated all aspects of sustainability, 

examined the relationship among them and considered the preferences of different stakeholders 

in the planning for regional bioenergy crop production. Additionally, this is the first study in 

northern Kentucky that proposed marginal land (low productive lands) as potential sites for 

growing bioenergy crops. Results could provide insights for regional bioenergy planning in 

similar geographic regions where bioenergy crop production has been recommended.  
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5.3 Future work  

Results from the three studies demonstrated the importance of considering all the sustainability 

dimensions and their interconnections to promote sustainable bioenergy production. While this is 

important, I have few recommendations for future research. 

5.3.1 Study area expansion 

Although the extent of the study area was appropriate and unique based on its geographic 

location for analyzing the potential of bioenergy production, a broader spatial extent would be 

better. A major limitation specifically, for understanding landowners’ intent, was low response 

rate. Extending the study area to include adjacent counties may improve survey responses 

however, those counties would still have similar socio-economic and environmental conditions 

which could lead to similar response rates obtained in this study. A better approach would be to 

include another case study from a different geographic region (such as western Tennessee) and 

perform a comparative study to show how the results would be different.   

5.3.2 Land use types 

We focused on marginal lands as potential sites for growing bioenergy crops mainly because 

they do not compete with food production or promote forest conversion or intervene with any 

existing management practices. However, it must be noted that marginal lands are lands with 

lower productivity and less favorable site conditions. As a result, areas feasible for promoting 

bioenergy crops on such lands could have been lesser than on existing cropland or forestland. 

Therefore, future research should include other land use types such as existing croplands and 

forests. In addition, people’s intent for growing bioenergy crops could have been different if they 

were asked their preferences for growing bioenergy crops in different land use types. Further, we 

focused on short rotation woody crops as potential crops in the study area. However, perennial 

grasses such as switchgrass could also be included as potential bioenergy crops. In future 

research, diverse land use types with different species including perennial grasses should be 

used. 

5.3.3 Qualitative data 

Questionnaire surveys used to understand landowners’ willingness mainly focused on gathering 

quantitative information. A major recommendation for future research would be to conduct focus 

group discussions with landowners to acquire qualitative information to supplement information 
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gathered from the questionnaire survey. Focus group discussions allow interaction between 

landowners and provide a platform to bring different viewpoints or concerns landowners may 

have about bioenergy production. Further, focus group discussions can help landowners 

formulate or reconsider their insights on bioenergy production (Cameron, 2010). In addition, 

focal group discussions done prior to sending questionnaire survey may help improve the 

response rate.  

5.3.4 Inclusion of stakeholders for AHP 

We performed the AHP as an analyst and ensured that objective evaluations were made 

considering all aspects of potential policy options to visualize best policy to promote bioenergy 

crop production. However, bioenergy production incorporates different stakeholders with 

different, and often conflicting objectives. Getting inputs from real stakeholders relevant to all 

aspects of bioenergy production not only provide different but also more affirmative decisions 

for promoting bioenergy crop production. Therefore, future studies should incorporate evaluation 

from different stakeholders (policy makers at the state level and stakeholders engaged in 

bioenergy production). Interviews with the stakeholders; policy makers, environmental 

organizations, and the coal industry could be a great way to bring together different views for 

bioenergy planning. Stakeholders’ differences in decision criteria to evaluate policies also 

provide insight into possible gaps and help design better policies that address all stakeholders for 

promoting bioenergy production.   
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