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Abstract

We introduce a new kinetic Monte Carlo (KMC) algorithm for off-lattice simulation. In

off-lattice KMC one needs to calculate the rates for all possible moves from the current state

by searching the energy landscape for index-1 saddle points surrounding the current basin

of attraction. We introduce a rejection scheme where the true rates are replaced by rate

estimates. This is done by first associating each saddle point with a key atom defined to

be the atom that moves the most or that corresponds to the largest energy change if the

transition were to take a place, then constructing an estimate for the total rate associated

with each atom by using a nearest-neighbor bond count. These estimates allow one to select

a set of possible transitions, one of which is accepted or rejected based on a localized saddle

point search focused on a particular atom. In principle, this allows a performance boost that

scales with the number of particles in the system. We test the method on a growing two-

species nanocluster with an emerging core-shell structure bound by Lennard-Jones potential.

In addition to that, we give a detailed review for the dimer method used in this study to

locate index-1 saddle points on the potential energy surface.
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Chapter 1

Introduction

The overarching theme of the work presented here is the development of an enhanced

rejection algorithm for off-lattice kinetic Monte Carlo (OLKMC) simulations. In this chapter,

we breifly review the work that has been done in the area of OLKMC simulation and then

give a detailed algorithm for the method. In chapter 2, we shed light on the dimer method

[10, 13, 15, 34] for searching for index-1 saddle points on potential energy surfaces. In

chapter 3, we introduce our rejection algorithm for OLKMC. In chapter 4, we demonstrate

the validity of the new scheme by simulating the growth of a two-species cluster using the

Lennard Jones potential. Finally, in chapter 5 we provide a discussion on the efficiency of

the scheme and explore the prospects of developing this algorithm further down the line.

One of the essential goals in materials science and theoretical chemistry is to simulate the

dynamical evolution of many systems at the atomic scale and be able to accurately calculate

the time evolution of these dynamics. The interactions between atoms are usually obtained

from solving the Schrödinger equation which describes electrons and nuclei in the system or

from an interatomic potential function that depends on the atom’s positions in space. The

natural way to treat the motion of atoms in the system is to integrate the classical equations

of motion for every atom in the system forward in time. This method is known as molecular

dynamics (MD), a standard simulation technique. Most often, the classical equations of

motion can easily be solved numerically, and therefore, if quantum dynamical effects are
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ignored, the simulation of mechanical evolution is in principle very simple and is an accurate

representation of what is going on in the real physical system. This is the main reason

why the MD method is popular. However, an accurate integration of the classical equations

of motion requires short time steps to account for atomic vibrations that happen at very

high frequencies. For instance, a femtoseconds time step is needed to accurately simulate

a displacement cascade that occurs in the first few picoseconds after a collision. This is

an appropriate time step for atomic systems as it corresponds to the atomic vibrational

frequency in the system. Accordingly, this limits the range of a simulation to nanoseconds,

while important processes that occur after a cascade event often take place on a mesoscopic

timescale.

The kinetic Monte Carlo (KMC) method overcomes this barrier and is often the method

of choice when millisecond to hour time scales need to be accessed. KMC achieves this by

exploiting the fact that the long-time dynamics are diffusive jumps that happen occasionally

from state to state. The system spends most of its time randomly oscillating about a local

minimum of its interatomic potential energy. The system then may surmount an energy

barrier and transition from its current minimum state to another neighboring minimum state

by passing through a saddle point of the potential energy (a transition state) that separates

them (see Figure 1.1.) So, instead of following the systems trajectory, transitions between

neighboring minima are directly performed. Each transition is chosen to be performed

proportional to its transition rate.

KMC methods can be divided into two main categories: Lattice KMC and OLKMC. In

the first category, the method is used to simulate systems with crystalline structures that

assumes all atoms are sitting on a lattice, while OLKMC deals with systems that assume

no restrictions on atom positions. In lattice-based KMC, lattice points and transition rates

are defined at the beginning of the simulation. Then, during the simulation, energy barriers

and diffusion rates are updated before every KMC event based on the local environments

surrounding those atoms of interest. As a result, some important physical effects like lattice

2
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Figure 1.1: This figure is a 2d cartoon that shows two adjacent local minima and a saddle
point that separates them for a system of five particles.

mismatch, which leads to elastic strain and dislocations (see Figure 1.2), are neglected in

this model.

OLKMC, on the other hand, takes into account all these elastic strain effects. Several

schemes have been used in the past to simulate epitaxial growth in 2D and 3D in the presence

of strain. For example, Faux et al. [7, 35], Plotz et al. [28] and Much et al. [24] tried to

simulate the early stages of strained-layer growth by molecular-beam epitaxy in ‘1+1’ and

‘2+1’ dimensions with the use of the Lennard-Jones interatomic potential. In another work

[8], Guo et al. precomputed approximate saddle point locations based on unstrained lattice

structures and used this approach to investigate impurity diffusion in a weakly strained

FCC nanowire. Another approach to incorporating elastic effects into KMC can be found

in [17, 20, 29, 30] where the rigid lattice of traditional KMC is replaced by a network of

linear springs that are allowed to deform so as to minimize the system’s potential energy.

An important technique for accelerating this weakly off-lattice scheme was the development

of a rejection-based algorithm that makes use of rate approximations that are similar to the

models used in lattice-based simulation [31]. These weakly off-lattice approaches have been

used to study the effect of lattice mismatch during heteroepitaxial film growth in [32, 33, 2].

3
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Figure 1.2: Illustration of two crystals A and B with different lattice constants resulting
in elastic strain and dislocations near the interface between the two crystals.

However, this particular approach cannot capture effects due to large displacements, like

the formation of dislocations and other lattice defects, nor effects due to the concerted

movement of multiple atoms. None of the schemes cited above are considered fully off-

lattice because of the restrictions assumed on atomic movement and most of them combine

some aspects of lattice and off-lattice models together. For example, in [24] only a single

atom is moved within the configuration space in order to locate approximate transition states

on the potential energy surface. In [8], the model was restricted to transitions involving a

single impurity atom diffusing in the interstices of a strained lattice.

Fully OLKMC was first proposed by Henkelman and Jónsson in [11]. In this method, the

full list of saddle points surrounding the current basin of attraction must be found, allowing

all atoms to move within the configuration space. These calculations need to be repeated

before every KMC event. In that paper, the authors used the dimer method [10], which will

be discussed in detail in the next chapter, to locate the surrounding saddle points. Fully

general off-lattice simulations make use of either an empirical potential or an even more costly

density functional theory calculation, seeking to exhaustively calculate the transition path

to all of the neighboring states within the multi-particle configuration space. This makes

a fully implemented off-lattice simulation an enormously complex task when compared to

lattice based simulations, where rates can be precomputed and stored. So much so that

4



KMC simulation loses much of its utility and applications of these methods are limited to

systems with only a few hundred atoms, simulated for much shorter times, and at much

greater computational cost.

Several improvements have been proposed. Adaptive kinetic Monte Carlo [42] is a fully

OLKMC method, which is very similar to that in [11], except one may recycle the previous

visited transition states and reuse them. A dynamic stopping criterion is also provided

to decide when enough saddle point searches have completed. Another approach is the so

called off-lattice self-learning KMC [14, 26, 18], where a 2D in [14] and a 3D in [26, 18] off-

lattice pattern-recognition schemes are used to study heteroepitaxial island diffusion. Local

environment KMC [16] is a method for efficiently performing the previously mentioned off-

lattice self-learning KMC. Another method that is mainly used to study defect evolution

and interactions is the self-evolving atomistic KMC [40]. The idea behind this work is to

freeze all atoms outside certain regions and search for saddle points using the dimer method

with only atoms inside the region allowed to move. These are the regions where dynamical

processes of interest may occur, and they are called active volumes. Active volumes are

identified based on the presence of defects in the system. To enhance the efficiency of this

scheme, the authors of [41] suggest using a multi-step procedure that begins with a relatively

small active volume that is used to obtain an initial prediction of the transition states. Then,

the active volume size is gradually increased to obtain more accurate values.

In the next section, we briefly review the components of a fully implemented, rejection-

free OLKMC.

1.1 Off-Lattice Kinetic Monte Carlo

KMC simulation of crystal growth is motivated by observations of molecular dynamics

simulations, relying on the transition state theory (TST) to provide an approximate model

[36, 6, 11, 2]. The essential observation is that the system spends most of its time

randomly oscillating within the Np-particle, dNp-dimensional configuration space about a

5



local minimizer Xi ∈ RdNp of the system’s potential energy, U(X), with rare transitions

between basins of attraction. For the system to move from basin i to basin j, it has to

overcome a minimum energy barrier ∆Uij. The harmonic approximation to TST [37, 38]

estimates the rate Rij at which the transition occurs as

Rij = K exp(−∆Uij/kBT ), (1.1)

where T is the temperature, kB is Boltzmann’s constant and K is defined below.

These observations give rise to an alternative model where the Newtonian dynamics is

replaced by a Markov-chain, with the system making relatively rare, random transitions

between states, represented by the local minima Xi, at rates Rij calculated from Eq. (1.1).

More specifically the energy barrier

∆Uij = U(Xij)− U(Xi), (1.2)

requires locating both the initial local minimum, Xi, and the index-1 saddle point, Xij (where

∇U = 0 and all but one of the principal curvatures are positive), separating the basins of

attraction. Note that these local minima and saddle points are, in principle, determined

by the motion of all of the particles simultaneously within the configuration space. The

prefactor K in the above equation Eq. (1.1) is defined as

K =

∏3Np

n=1

√
λ
(i)
n∏3Np−1

n=1

√
λ
(ij)
n

(1.3)

where
{
λ
(i)
n

}3Np

n=1
and

{
λ
(ij)
n

}3Np−1

n=1
are the eigenvalues of the hessian at Xi, and Xij,

respectively [9]. In our simulations we take K to be a constant scaled to one, a commonly

used approximation.

After enumerating the full set of transition rates and relabeling them using a single index:

{rn ≡ Rn
ij}, a single iteration of an OLKMC simulation is described by:
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Algorithm 1: Rejection-Free OLKMC

1. Calculate rates ri for each transition accessible from the current configuration.

2. Calculate partial sums Pn =
∑n

i=1 ri, n = 1, 2, . . . , N .

3. Generate a uniformly distributed random number r ∈ [0, PN).

4. Locate interval I such that PI−1 ≤ r < PI .

5. Update the physical time t ← t + ∆t with ∆t = − ln r′/PN , where r′ is a uniformly

distributed random number in (0, 1].

6. Move the system to the designated transition state, perturb away from the current

local minimum, and relax to the new configuration.

In Step 5, ∆t = − ln r′/PN is an exponentially distributed random number sampled

from the probability distribution f(t) = PNe
−PN t of the time between successive events (see

Figure 1.3.) The expected value of time between events (the mean time) is ∆t =
∫∞
0
tf(t)dt =

1/PN . Steps 1 and 6 are tremendously costly compared to lattice-based simulations. So much

so that KMC loses much of its utility in that the system’s size and the number of iterations

that can be simulated are greatly reduced. This is particularly so with the first step, as the

number of saddle points grows rapidly with the number of particles in the system. Saddle

point searches are typically done with some sort of eigenvector climbing algorithm, with

a computational cost similar to minimization using nonlinear conjugate gradient. In this

project we implement a version of the Dimer method introduced by Henkelman and Jónsson

[10, 13, 15, 27].

In principle, the model requires locating all saddle points connected to the current basin

of attraction. In practice, there is no way of knowing for certain when this has been achieved.

This error is, in some sense, controllable, in that one can increase the number of attempts

at finding new saddle points until a point of diminishing returns is acheived. Some recent

7



t

f(t)/PN

1

r′

∆t = − ln r′/PN

Figure 1.3: r′ is a uniformly distributed random number generated in the interval (0,1] on
the y-axis. The point on the t-axis that corresponds to r′ is ∆t = − ln r′/PN .

work [23] seeks to make a more exhaustive exploration of the local potential energy surface,

but, as with so much of the work on OLKMC, seems to be limited to very small systems

for the time being. Here, we follow a practice similar to that of Henkelman and Jónsson

[11] and initiate a large number of searches by randomly perturbing the system about the

current state. More specifically, let X = {xi ∈ R3}Np

i=1. For each atom j, we perturb the

entire system with a magnitude that decays with increasing distance from this particular

atom:

xki = xi +
kσ

Ng

n̂k
i exp (−‖xi − xj‖2) for all i = 1, · · · , Np, (1.4)

where Ng is the number of initial guesses, k = 1, · · · , Ng is the guess number, n̂k
i is a

random unit vector in R3 and σ is a length scale parameter that will be discussed later. This

reflects the fact that most configuration changes are localized about a single particle or a

small group of particles.

This procedure will find some saddle points that do not connect to the system’s initial

basin of attraction. Thus, upon finding a saddle point, one must requench the system starting

from the newly found saddle point to ensure that the resulting saddle point is connected. One

must also scan the list of previously acquired connected saddle points to prevent duplicates.

For the final step, we initialize a nonlinear conjugate-gradient minimization scheme near

the chosen saddle point. We perturb this initial condition slightly in the direction away from

8



the initial configuration and monitor the progress with a strict descent requirement and

maximum displacement threshold, with the aim of guiding the system into the neighboring

basin of attraction.

Another difficulty with general OLKMC procedures is what is known as the “small barrier

problem” [22]. Occasionally the system will reside in a basin of attraction with one or more

extremely shallow minima, the crossing of which has little impact on the configuration. The

small barrier means that the rate will be extremely high, and it is highly probable for the

events associated with shallow barriers to be selected. When the reverse process also has a

shallow barrier, this can lead to many wasted iterations as the system makes insignificant

oscillations before a transition that fundamentally changes the configuration finally occurs.

For this reason, we implement our OLKMC with a minimum barrier size chosen to reflect

barriers that are typical for the surface motion of a single, loosely bonded atom, e.g. what

one would refer to as an “adatom” in the context of epitaxial growth.

9



Chapter 2

Dimer Method

2.1 Introduction

In chemistry, critical points play a key role for the characterization of potential energy

surfaces. In most cases, the determination of local minima is considered routine work where

as the determination of saddle points is significantly more complex and is a nontrivial task

even for small systems that consist of few particles. Several saddle point finding methods

have been proposed, and they fall into two main categories: The first requires the knowledge

of both the initial and final states of the system in order to find the connecting saddle point,

and hence, the minimum energy path. The second category requires only the knowledge of

the initial state of the system. For OLKMC, one wants to employ a single-ended method

that starts the search from the current basin of attraction and finds all nearby saddle points.

Examples in the first category are the nudged-elastic band [12] and the string [4]

methods. Examples of single-ended methods include the dimer method, which was presented

by Henkelman and Jónsson in [10], eigenvector-following methods [25, 39], the Lanczos

algorithm of the activation-relaxation technique which is known as “ART nouveau method”

[21], and the biased gradient squared descent method [3]. However, comparisons show that

the dimer method remains competitive especially when the system’s size is larger [27].

10



The dimer method is Hessian-free, and so one only needs to evaluate the potential energy

and its first derivatives. Therefore, the method is suitable for large clusters of particles.

Moreover, the method can be efficiently parallelized to work on several processors. Modified

versions of this method were proposed in [13, 15, 34]. These modifications will be described

in detail in the next sections.

In this study, saddle points of interest are those of 1st order (also called index 1 saddle

points). Such points correspond to short lived transition states at which the system’s

potential energy is minimum in all directions but one. Also in this study, the negative

gradient of the potential energy at a certain point is referred to as force at that point.

These rapid transition events, that happen between two long lived minimum states, play

a fundamental role in understanding the dynamics of many systems in chemistry and physics,

especially when methods like KMC are used to make a coarse description of such dynamics

through certain stochastic simulations. Therefore, locating such states and computing their

rates have attracted scientists’ attention for many years.

2.2 Overview of Dimer Algortihm

Consider a system of Np particles interacting through an empirical potential energy U(X),

where X = {xi ∈ R3}Np

i=1 is a vector in R3Np and xi = (x3i−2, x3i−1, x3i) are the corresponding

Cartesian coordinates of particle i in three-dimensional space. The dimer method mainly

uses finite difference approximations and Newton’s method to move the system from an

initial state on the potential energy surface U uphill toward an index 1 saddle point. The

dimer consists of three points X0, X1 & X2 ∈ R3Np that lay on the same line, where X0

is its center and X1 & X2 are its endpoints. The distance between both X1, X2 and the

dimer’s center is `, a short fixed distance. One can think of the dimer as a stencil in the

sense that information at two points can be used to approximate the potential and gradient

at the third point. Assuming the dimer is oriented in the direction of a unit vector V ∈ R3Np

11



(see Figure 2.1,) then the dimer’s endpoints are given by

X1 = X0 + `V & X2 = X0 − `V . (2.1)

Initially, V and X0 will be chosen randomly, but later on during the search both vectors

are repeatedly updated by performing the following two steps:

i. Dimer Rotation: In this step we search for the lowest curvature direction, V , of the

potential energy surface at X0, which corresponds to the lowest eigenvalue, CV , of the

Hessian matrix H = [∂2U(X)/∂xi∂xj]
3Np

i,j=1 at X0. After rotation, the eigen-pair (V , CV)

satisfies the following equation

H(X0)V = CVV , CV = λ1 ≤ λ2 ≤ · · · ≤ λ3Np , (2.2)

where {λi}3Np

i=1 is the set of eigenvalues ofH(X0). In this step, we fix the dimer’s midpoint

X0 and rotate the dimer’s axis in R3Np in order to find the direction at which the second

derivative of the potential energy along the dimer’s axis is minimized. This rotation will

be in the direction of a net rotational force at one of the dimer’s endpoints.

ii. Dimer Translation: Here the dimer’s midpoint is not fixed anymore, however, its axis

orientation is fixed in the direction of V that was found in the previous step. In this

step, we translate the dimer a certain step length in a direction where the potential

is maximum in the lowest curvature direction V and minimum in all other principal

directions. One possible way is to translate the dimer in the direction of the Householder

reflector of the force at X0.

Rotation and translation steps must be repeated in a certain way until the dimer’s center

X0 reaches an index 1 saddle point.
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Figure 2.1: Definition of the various points of the dimer in the 3Np-dimensional space.

Denote by E0, E1 and E2 the potential energy at X0, X1 and X2, respectively. The

dimer’s energy is defined as

E := E1 + E2. (2.3)

The forces at the dimer’s center and endpoints are F0 = −∇U(X)|X0 , F1 = −∇U(X)|X1

and F2 = −∇U(X)|X2 (see Figure 2.2.) However, in order to minimize the total number of

energy and force evaluations needed for the whole search, one can make some interpolations.

For instance, the force acting on X0 can be approximated as the average of the forces at the

dimer’s endpoints: F0 = (F1 + F2)/2 [10].

This approximation is good for some potential energy surfaces where evaluating the energy

and the gradient can be calculated with high accuracy. But, in some cases such as quantum-

chemical potential energies where evaluating energies and gradients cannot be done efficiently

due to the numerical noise, it is better to evaluate the force at one of the dimer’s endpoints

and at its center then be approximated by a linear interpolation at the other endpoint.

For such potentials, the system is converged to a saddle point within at least 3× 10−4 bohr

(∼ 1.588×10−4 Å ) [13, 27], and therefore, to have this accuracy the force has to be calculated

at the dimer’s midpoint and one of the endpoints then approximated at the other endpoint.

In our study we approximate the force at endpoint 2 and take it to be exact at the midpoint

13



	

Figure 2.2: Definition of the various forces acting on the dimer’s points.

and endpoint 1:

F2 ≈ 2F0 − F1. (2.4)

Taking the dot product with V in Eq. (2.2), we have

CV = VTH(X0)V = D2
VU(X)|X0= −DVF(X)|X0 , (2.5)

where DV and D2
V are the first and second directional derivative of U(X) in the direction of

V . Using the central finite difference formula

DVF(X)|X0 ≈
1

2`
[F(X0 + `V)− F(X0 − `V)] · V

=
1

2`
[F1 − F2] · V , (2.6)

the curvature is approximated as

CV ≈
1

2`
(F2 − F1) · V . (2.7)
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From Eq. (2.5) and the 2nd order central finite difference formula

D2
VU(X)|X0≈

1

`2
[U(X0 + `V)− 2U(X0) + U(X0 − `V)], (2.8)

one can save two energy evaluations and approximate the dimer’s energy as

E ≈ 2E0 + `2CV . (2.9)

The energy at X1 can be approximated as

E1 = U(X0 + `V) ≈ E0 − `F0 · V +
`2

2
CV . (2.10)

2.3 Dimer Rotation

The dimer’s energy in Eq. (2.9) is linearly proportional to the curvature along its axis.

Therefore, minimizing the dimer’s energy is equivalent to minimizing the curvature. This

is done by rotating the dimer around its center until V becomes parallel to the direction

along which CV is minimal. In other words, to find the lowest eigenvalue of the Hessian

matrix and its corresponding eigenvector at X0, the dimer is rotated a certain angle around

its midpoint. In fact, this is a constrained minimization problem that can be formulated as

Find X1 ∈ N such that X1 = arg min
X∈N

[U(X) + U(2X0 −X)], (2.11)

where N (X0, `) ⊂ R3Np is a hemisphere centered at X0 and of radius `. In subsection 2.3.1

we review the work done by Henkelman and Jónsson [10] to minimize the curvature along

the dimer’s axis. In subsection 2.3.2 & subsection 2.3.3 we review the modifications on the

rotation step presented by Heyden and Keil [13] and Kästner and Sherwood [15], respectively.
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2.3.1 Modified Newton Method for Rotation within a Plane

Fixing the midpoint of the dimer while its endpoints are free to move will result in a rotational

force orthogonal to V ,

F⊥ = F⊥1 − F⊥2 , where F⊥i = Fi − F
‖
i and F

‖
i = (Fi · V)V for i = 1, 2, (2.12)

which is the net rotational force acting on one of the endpoint (here we are taking it to be

at endpoint 1.) It is worth mentioning that the components of the forces F1 and F2 that

are parallel to the dimer’s axis have no use in both rotational and translational steps. The

rotational plane where the dimer is rotated is spanned by two orthonormal vectors V and Θ,

where the latter is taken to be a unit vector parallel to the rotational force (see Figure 2.2)

Θ =
F⊥

‖F⊥‖
. (2.13)

We will deal with the magnitude of F⊥ that is defined as

F :=
∥∥F⊥∥∥ = (F⊥1 − F⊥2 ) ·Θ. (2.14)

In the original paper [10], the authors suggest dividing by ` so that the force is independent

of the distance separating the dimer’s points.

In order to minimize its energy, we rotate the dimer by an angle φ̂ that could be

approximated by one Newton’s iteration as

φ̂ ≈ θ0 −
F |at θ0
F ′|at θ0

, (2.15)

where θ0 is an initial guess. If we rotate the dimer in the rotational plane by a small angle

∆θ and let θ0 = 1
2
∆θ and denote by F (0) the scaled rotational force before rotation, F (1

2
∆θ)

and F ′(1
2
∆θ) the scaled rotational force and its derivative after rotation by an angle 1

2
∆θ,
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respectively, then we have the following approximations:

F (∆θ/2) ≈ F (∆θ) + F (0)

2
, (2.16)

and its derivative, using central finite difference,

F ′(∆θ/2) ≈ F (∆θ)− F (0)

∆θ
. (2.17)

Since the dimer is already rotated by ∆θ/2 far from θ0, we only need to rotate it by

φmin = φ̂− ∆θ

2
≈
(

∆θ

2
− ∆θ

2

F (∆θ) + F (0)

F (∆θ)− F (0)

)
− ∆θ

2

= −∆θ

2

F (∆θ) + F (0)

F (∆θ)− F (0)
. (2.18)

Unfortunately, this formula is not accurate and it overestimates the angle φmin [10].

However, expanding the potential energy U in the 2-dimensional plane of rotation to the

second order around the dimer’s midpoint will give a better approximation to φmin. Using

this expansion, we will be able to represent the curvature along the dimer’s axis, CV , as a

function of the rotational angle θ.

To have an analytic form that depends on the angle of rotation, we redefine the

representation for the dimer’s points using a new 2-dimensional coordinate system. This

coordinate system uses two eigenvectors of the Hessian at X0. Define the plane of rotation

as the plane spanned by two eigenvectors of the Hessian at X0. Assuming rotating the

dimer a certain angle in this plane makes it oriented in the lowest curvature direction, then

this direction must be one of the two eigenvectors spanning the plane. Let X and Y be

these two eigenvectors with corresponding eigenvalues CX and CY , and let θ0 be the angle

between X and V(0) as shown in Figure 2.3, where V(0) is the dimer’s axis before rotation,

i.e. when θ = 0. The origin in the new coordinate system is X0, and it is represented by

(0, 0) = 0X + 0Y . For any point X ∈ R3N that lies in the rotational plane, it is represented

17
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Figure 2.3: The 2-dimensional representation of the dimer’s points in the plane of rotation
that is spanned by two orthonormal eigenvectors X and Y of the Hessian matrix at X0.

as (x, y) = xX + yY , where x and y are the projection of the 2-dimensional distance vector

between the origin and X on X and Y , respectively.

Now suppose the dimer’s axis is at an arbitrary angle θ, then the point X1(θ) is

represented by

(x1, y1) = (`V(θ) · X , `V(θ) · Y) = (` cos(θ − θ0), ` sin(θ − θ0)), (2.19)

and similarly X2(θ) by

(x2, y2) = (`[−V(θ)] · X , `[−V(θ)] · Y) = (−` cos(θ − θ0),−` sin(θ − θ0)). (2.20)

Moreover, the Hessian matrix at X0 is represented by

H(0, 0) =

 UXX (0, 0) UXY(0, 0)

UYX (0, 0) UYY(0, 0)

 . (2.21)
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By Taylor’s Theorem, the value of U at a point (x, y) on the dimer’s axis after rotation by

an angle θ is approximated by

U(x, y) ≈ U(0, 0) + UX (0, 0)x+ UY(0, 0)y

+
1

2
(xX + yY)T

 UXX (0, 0) UXY(0, 0)

UYX (0, 0) UYY(0, 0)

 (xX + yY)

= E0 + UX (0, 0)x+ UY(0, 0)y +
1

2
(xX T + yYT )H(0, 0)(xX + yY)

= E0 + UX (0, 0)x+ UY(0, 0)y +
1

2
(CXx

2 + CYy
2). (2.22)

Using the above expansion, Eq. (2.19) and Eq. (2.20), we have

E1 = U(x1, x2) = E0 + `UX (0, 0) cos(θ − θ0) + `UY(0, 0) sin(θ − θ0)

+
`2

2
[CX cos2(θ − θ0) + CY sin2(θ − θ0)],

E2 = U(x2, x2) = E0 − `UX (0, 0) cos(θ − θ0)− `UY(0, 0) sin(θ − θ0)

+
`2

2
[CX cos2(θ − θ0) + CY sin2(θ − θ0)],

and hence

E = E1 + E2 = 2E0 + `2[CX cos2(θ − θ0) + CY sin2(θ − θ0)]

= 2E0 + `2[(CX − CY) cos2(θ − θ0) + CY ]

= 2E0 + `2[(CX − CY){cos 2(θ − θ0) + 1}/2 + CY ]. (2.23)

Comparing Eq. (2.9) with Eq. (2.23), we have

CV(θ) =
(CX − CY)

2
cos 2(θ − θ0) +

CX + CY
2

. (2.24)
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The rotational force is

F (θ) = −dE
dθ

= `2(CX − CY) sin 2(θ − θ0) (2.25)

and the curvature along the dimer’s axis is

F ′(θ) =
d2E

dθ2
= −2`2(CX − CY) cos 2(θ − θ0). (2.26)

We see that E is minimized or maximized when θ = θ0 or θ = θ0 + π
2
, i.e. when the dimer

is oriented in the direction of X or in the direction of Y . If rotating the dimer by θ0 (i.e.

being in the direction of X ) gives negative curvature, then the dimer’s axis must be rotated

by π/2 to be in the direction of Y , instead. To calculate θ0, we rotate the dimer by a small

angle ∆θ, then approximate F and F ′ at 1
2
∆θ. The angle required so that the dimer’s axis

is in the direction of X is θ0. But since the approximation starts at ∆θ/2, the dimer needs

to be rotated from that point by φmin = θ0 −∆θ/2 to get to minimum or maximum. Thus,

at θ = ∆θ/2, we have

F (∆θ/2) = `2(CX − CY) sin(∆θ − 2θ0), and

F ′ (∆θ/2) = 2`2(CX − CY) cos(∆θ − 2θ0)

which implies that

φmin = θ0 −
1

2
∆θ =

(
1

2
∆θ − 1

2
arctan

2F (∆θ/2)

F ′(∆θ/2)

)
− 1

2
∆θ

= −1

2
arctan

2F (∆θ/2)

F ′(∆θ/2)
(2.27)

= −1

2
arctan

[
∆θ

F (∆θ) + F (0)

F (∆θ)− F (0)

]
, (2.28)

where F is as defined in Eq. (2.16).
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2.3.2 First Modification on Dimer Rotation

Let X be a unit vector in the rotational plane. Let φ be the angle between X and the initial

dimer’s direction V (see Figure 2.4.) We can write X as

X (φ) = cosφV + sinφΘ, (2.29)

and thus the dimer’s points as a function of φ are

X1 = X0 + `(cosφV + sinφΘ), and (2.30)

X2 = X0 − `(cosφV + sinφΘ). (2.31)

If X (φ) is the direction of the lowest curvature, then the curvature along it is given by

CX = X TH(X0)X . (2.32)

Let {(λi,Ui)}3NP
i=1 be the set of eigen-pairs for H(X0), where {Ui}3Np

i=1 is an orthonormal set.

Then, X =
∑3Np

i=1 (X · Ui)Ui =
∑3Np

i=1 [cosφ(V · Ui) + sinφ(Θ · Ui)]Ui, and therefore,

CX =

3Np∑
i=1

[cosφ(V · Ui) + sinφ(Θ · Ui)]UiH(X0)

3Np∑
j=1

[cosφ(V · Uj) + sinφ(Θ · Uj)]Uj

=

3Np∑
i=1

λi[cosφ(V · Ui) + sinφ(Θ · Ui)]2

=

(
3Np∑
i=1

λi(V · Ui)2
)

cos2 φ+

(
3Np∑
i=1

λi(V · Ui)(Θ · Ui)

)
sin 2φ

+

(
3Np∑
i=1

λi(Θ · Ui)2
)

sin2 φ.

Using the identities cos2 φ = (cos 2φ + 1)/2 and sin2 φ = (1 − cos 2φ)/2, we can write the

21



	

X"	

X#	

𝒱	
	

𝚯	
	

𝒳	

X'	

Figure 2.4: The rotational plane spanned by V and Θ. X is a vector in the rotational
plane that is an angle φ far from the dimer’s axis.

curvature as a Fourier series

CX (φ) =
a0
2

+ a1 cos 2φ+ b1 sin 2φ, (2.33)

where a0, a1, and b1 are constants that are determined by the eigenvalues and eigenvectors of

the Hessian at X0 as well as the current configuration of the dimer’s points. Notice that this

equation is only valid when X is oriented in the lowest curvature direction. From Eq. (2.9),

the dimer’s energy when the dimer’s axis is oriented in the direction X is

E(φ) ≈ 2E0 + `2
(a0

2
+ a1 cos 2φ+ b1 sin 2φ

)
, (2.34)

and hence the rotational force is

F (φ) = −dE
dφ

=≈ 2`2(a1 sin 2φ− b1 cos 2φ) = −`2dCX
dφ

. (2.35)
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The angle required to minimize the curvature is

φmin =
1

2
arctan

b1
a1
. (2.36)

Notice that

dE

dφ
=
dE1

dX1

· dX1

dφ
+
dE2

dX2

· dX2

dφ

= −F1(φ) · dX1

dφ
− F2(φ) · dX2

dφ

= −F1(φ) · `(− sinφV(0) + cosφΘ(0))− F2(φ) · `(sinφV(0)− cosφΘ(0))

but Θ(φ) = − sinφV(0) + cosφΘ(0), and so

dE

dφ
(φ) = `[F2(φ)− F1(φ)] ·Θ(φ). (2.37)

From Eq. (2.35) and Eq. (2.37), the derivative of the curvature is

dCX
dφ

(φ) =
1

`
[F2(φ)− F1(φ)] ·Θ(φ). (2.38)

Substituting φ = 0 and φ = φ1 (the choice of φ1 will be discussed below) in Eq. (2.33) and

Eq. (2.35) gives

b1 =
1

2

dCX
dφ

(0) (2.39)

a1 =
CX (0)− CX (φ1) + 1

2
dCX
dφ

(0) sin 2φ1

1− cos 2φ1

(2.40)

=

dCX
dφ

(0) cos 2φ1 − dCX
dφ

(φ1)

2 sin 2φ1

(2.41)

a0 = 2(CX (0)− a1). (2.42)
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The curvature at φ = 0 and φ = φ1 is calculated by Eq. (2.7)

CX (φ) ≈
1

2`
[F1(φ)− F2(φ)] · X (φ), (2.43)

or by Eq. (2.10)

CX (φ) ≈
2[E1(φ)− E0 + `F0 · X (φ)]

`2
. (2.44)

The angle φ1 lies between 0 and π/2 and can be approximated using Eq. (2.27) as

φ1 ≈ −
1

2
arctan

2F (0)

F ′(0)
= −1

2
arctan

−2`2 dCX
dφ

(0)

−`2 d2CX
dφ2

(0)
= −1

2
arctan

2dCX
dφ

(0)

d2CX
dφ2

(0)
.

We need to approximate the second derivative of the curvature along direction X at φ = 0.

Using Eq. (2.35), we have

`2
d2CX
dφ2

≈ d2E

dφ2

=
d2E1

dφ2
+
d2E2

dφ2

=
d

dφ

(
dE1

dX1

· dX1

dφ

)
+

d

dφ

(
dE2

dX2

· dX2

dφ

)
=
dX1

dφ

T

H(X1)
dX1

dφ
+
dE1

dX1

· d
2X1

dφ2
+
dX2

dφ

T

H(X2)
dX2

dφ
+
dE2

dX2

· d
2X2

dφ2

= (`Θ(φ)T )H(X1)(`Θ(φ))− F1(φ) · (−`X (φ))

+ (−`Θ(φ)T )H(X2)(−`Θ(φ))− F2(φ) · (`X (φ))

= `2
(
Θ(φ)T [H(X0 + `X (φ)) +H(X0 − `X (φ))]Θ(φ)

+
1

`
[F1(φ)− F2(φ)] · X (φ)

)
= 2`2

(
Θ(φ)TH(X0)Θ(φ)− CX (φ)

)
= 2`2(CΘ(φ) − CX (φ)).
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Consequently,

d2CX
dφ2

(0) ≈ 2(CΘ(0) − CX (0)). (2.45)

In [13], the authors assume d2CX
dφ2

(0) ≈ 4|CX (0)|, and hence,

φ1 ≈ −
1

2
arctan

dCX
dφ

(0)

2|CX (0)|
. (2.46)

If this estimate of the rotational angle φ1 is larger than a specified φtol, one calculates

a0, a1, b1, and the angle φ that is required to minimize the dimer’s energy, otherwise, no

rotation is performed. Several rotations, in different planes, must be performed to accurately

minimize the curvature. In this study, the maximum number of rotaions is taken to be eight.

We continue the rotations of the dimer until either φ1 or φmin less than φtol [15]. Suppose

the current rotational plane is spanned by {V0,Θ0}. Find φ
(0)
min using Eq. (2.36). If |φ1|

or |φ(0)
min| less than φtol or

∥∥∥F (φ
(0)
min)

∥∥∥ less than Ftol, stop rotations, otherwise, find V1 and

Θ1 and repeat. A Conjugate gradient approach is more efficient than the steepest descent

algorithm described above. Let H0 = F⊥0 , G0 = Θ0 and Θ∗0 be the vector resulting from

rotating Θ0 by φ
(0)
min. Calculate the rotational force after rotation and denote it by F⊥∗0 . If

stopping criteria are not met, then the next conjugate direction is G1 = H1/‖H1‖, where

H1 = F⊥1 + β ‖H0‖Θ∗0, and β = F⊥1 · (F⊥1 − F⊥∗0 )/
∥∥F⊥∗0 ∥∥2. Find the angle required for

minimization in the plane spanned by {V1,G1}. Repeat until any of the stopping criteria is

met.

2.3.3 Second Modification on Dimer Rotation

In the previous section, it was mentioned that one rotation may is not enough to orientate

the dimer in the lowest curvature direction. As a result, one needs to calculate the force

at X1 after each rotation to use it as an input for the next one. This could be very costly
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especially when the system’s size is large. In this section we show how Kästner and Sherwood

[15] approximate the force at X1 after each rotation.

Let F′ denote the force at the point X′ that is shown in Figure 2.5, which can be found

by interpolating between X1(0) and X1(φ1) (we do not need to calculate X′ nor F′.) By

linear interpolation between the pairs (X1(0),F1(0)) and (X1(φ1),F1(φ1)), we have

F′ ≈ F1(0)

(
1− ‖X′ −X1(0)‖
‖X1(φ1)−X1(0)‖

)
+ F1(φ1)

‖X′ −X1(0)‖
‖X1(φ1)−X1(0)‖

= F1(0) + [F1(φ1)− F1(0)]
‖X′ −X1(0)‖
‖X1(φ1)−X1(0)‖

.

By linear extrapolation between the pairs (X0,F0) and (X′,F′), we have

F1(φmin) ≈ F0 + [F′ − F0]
‖X1(φmin)−X0‖
‖X′ −X0‖

.

Substituting the formula for F′ in the above expression

F1(φmin) = F0 +
‖X1(φmin)−X0‖
‖X′ −X0‖

[
F1(0) + [F1(φ1)− F1(0)]

‖X′ −X1(0)‖
‖X1(φ1)−X1(0)‖

− F0

]
=

(
1− ‖X1(φmin)−X0‖

‖X′ −X0‖

)
F0 +

‖X1(φmin)−X0‖
‖X′ −X0‖

‖X′ −X1(0)‖
‖X1(φ1)−X1(0)‖

F1(φ1)

+
‖X1(φmin)−X0‖
‖X′ −X0‖

(
1− ‖X′ −X1(0)‖
‖X1(φ1)−X1(0)‖

)
F1(0). (2.47)

From Figure 2.5, we see that

‖X′ −X1(0)‖
sinφmin

=
‖X′ −X0‖

sin θ
=
‖X′ −X1(φ1)‖
sin(φ1 − φmin)

,

‖X1(φ1)−X1(0)‖
sinφ1

=
‖X1(φ1)−X0‖

sin θ
=
‖X1(φmin)−X0‖

sin θ
.

Thus,

‖X′ −X1(0)‖
‖X1(φ1)−X1(0)‖

=
‖X′ −X0‖

‖X1(φmin)−X0‖
sinφmin

sinφ1

,
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Figure 2.5: The dimer’s endpoint X1 before rotation, after rotating by φ1 and after rotating
by φmin.

‖X1(φmin)−X0‖
‖X′ −X0‖

=
‖X1(φ1)−X1(0)‖
‖X′ −X1(φ1)‖

sin(φ1 − φmin)

sinφ1

and

‖X′ −X1(0)‖
‖X′ −X1(φ1)‖

=
sinφmin

sin(φ1 − φmin)
.

Substituting in Eq. (2.47), we have

F1(φmin) ≈
(

1− sin(φmin) + sin(φ1 − φmin)

sinφ1

)
F0 +

sinφmin

sinφ1

F1(φ1)

+
sin(φ1 − φmin)

sinφ1

F1(0)

=

(
1− cosφmin − sin(φmin) tan

(
φ1

2

))
F0 +

sinφmin

sinφ1

F1(φ1)

+
sin(φ1 − φmin)

sinφ1

F1(0). (2.48)

The force at X2 is approximated as in Eq. (2.4). This approximation of the force saves one

gradient calculation per dimer rotation.
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2.4 Dimer Translation

After rotation, the second step in the dimer method is to translate the dimer whilst its

orientation is fixed in a direction that gets the dimer’s midpoint closer to an index 1 saddle

point. The component of the force F0 acting on the dimer’s midpoint in the direction of

V is F‖ = (F0 · V)V . However, since the force F0 is the negative of the energy gradient at

X0, F‖ will pull the dimer in the negative direction of V towards a minimum. Therefore,

we need to modify the force so that F‖ pulls the dimer in the direction of V . We define the

translational force F† as the Householder reflection of F0 (see Figure 2.2) given by

F† = F0 − 2F‖. (2.49)

If the dimer is started from a convex region, which is the neighborhood of a local minimum,

there is a chance that the Householder vector will be along a contour line of the potential

energy. In such case, the translational force will tend to pull the dimer uphill very slowly,

or even possibly the dimer become trapped there forever. This problem will mostly be

encountered at the beginning of a search. Therefore, to escape the convex region faster, the

following translational force is considered

F† =

 −F‖ if CV > 0

F0 − 2F‖ if CV < 0
. (2.50)

The dimer will be moved in the direction of F† a distance S so that the magnitude of the

translational force is smaller, and presumably if we keep doing that after each rotation step,

the translational force will eventually vanish. Let D = F†/
∥∥F†∥∥. If the dimer is in a convex

region, then it is moved a fixed distance ∆max in the direction of D. Otherwise, the dimer

is moved a small fixed distance ∆ along the unit vector D and the translational force is

calculated at X?
0 = X0 + ∆D and denoted by F†?. The magnitude of the translational force
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and the curvature along the direction of D at (X0 + X?
0)/2 are approximated as follows

F =
(F† + F†?) ·D

2
and C =

(F†? − F†) ·D
∆

. (2.51)

Then, the distance is given by

S = min

{
∆

2
− F

C
, ∆max

}
, (2.52)

where ∆max is chosen to prevent the dimer from stepping too far and is usually between 0.05

and 0.2. In the non-convex region, we are trying to find an approximation for one of the

zeros of the function F† ·D using only one Newton step. Since the convergence of Newton’s

method depends on the initial guess, which is here (X0 + X?
0)/2, the method may fail to

converge and as a result the dimer method fails to find a saddle point.

In our study, we do one translation in the direction of D, but if that failed to find a zero

of F† ·D, we try another initial guess for Newton’s method but now with X?
0 = X0−∆D. We

have found that this increases the total number of found saddle points. The dimer method

will converge faster if one moves the dimer in a conjugate direction to the previous direction,

which was found in the translational step before doing the rotations, instead of moving it in

the direction D found in the current step.

Once a saddle point is found, one has to perturb the system in the opposite direction of

V found in the last step and then quench to check if the found saddle point is connected to

the original minimum or not. If the minimization process failed or the minimum found is

not the original minimum, one must perturb in the direction V and try minimizing again.

Due to inaccuracy one could pass the saddle point by a small distance, therefore, V will be

pointing out from an adjacent local minimum to the saddle point with a direction opposite

to what is expected. For minimization, we do few steps of steepest descent method with

small fixed steps, then we use Polak-Ribière conjugate gradient method.
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Chapter 3

Rejection Scheme for Off-Lattice

Kinetic Monte Carlo

3.1 Introduction

The main idea behind the new scheme is to partition the set of all transitions out of the

current state into at most Np categories, where Np is the number of particles in the system,

and to do this in a way that allows the rates to be found using localized searches centered

on a particular particle. This is accomplished by first associating each transition with the

particle that moves the largest distance when the system is moved from the initial state to

the transition state. This retains the essential simplification of lattice-based KMC models

based on single-particle moves while allowing for more complicated, multi-particle moves.

Rate estimates for all moves associated with a given atom are then constructed based on

local environments in a way that also mimics the bond-counting approach in a typical lattice-

based model. These rate estimates reflect the intuition that loosely coordinated atoms are

much more likely to reconfigure than fully coordinated atoms in the interior of a crystal.

Together, the partitioning and rate estimates allow one to select a candidate event without

doing the costly saddle point search for each atom in the system. In principle, this allows

for an O(Np) improvement in performance. In the next section we introduce the rejection

scheme.
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3.2 Rejection Algorithm

In a rejection algorithm, one samples a rate distribution formed from upper bounds on the

actual rates, r̂n ≥ rn, and rejects the selected move with the appropriate frequency so that

a stochastic process with the original rate distribution is formed. The simplest examples of

this use a single global upper bound r̂ ≥ rn,∀n. One can then select a candidate event using

a randomly selected integer 1 ≤ n ≤ N , where N is the total number of events. This avoids

all but one of the rate calculations in Step 1 of Algorithm 1, but at the expense of additional

random number generation when events are rejected.

The overall efficiency of a rejection scheme,

E =
accepted trials

attempts
,

can be very low when the rate distribution has a wide range, as is often the case for KMC

simulations due to the exponential dependence of rates on the energy barrier ∆U . For

lattice-based simulations, rejection-free KMC is therefore often superior because the cost

of random number generation is high compared to calculating rates. The expense of rate

calculations in OLKMC suggests that even an inefficient rejection scheme may be superior to

the rejection-free scheme outlined in Algorithm 1. There is, however, a fundamental difficulty

in implementing rejection for OLKMC in that determining the number and description of the

events to be sampled relies on the same costly saddle-point searches required for the rejection-

free algorithm. Below, we introduce a means of circumventing this need by partitioning the

set of possible transitions so that each transition is associated with a uniquely defined key

atom. In addition to making a rejection scheme viable, we will see that this also makes it

more efficient by tailoring rate estimates to local environments. To this end, we will borrow

the notion of a bond-counting formula from lattice based simulation, with an eye toward using

this as a rate estimate rather than a rate model. This same strategy was used effectively in

the weakly off-lattice models for strain mentioned earlier in chapter 1 [31, 32, 33].
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(a) Local minimum.

	

(b) Connected-key saddle
point.

	

Key atom 

(c) The saddle point and the local
minimum snapshots being merged.

Figure 3.1: Illustration on how connected-key saddles are defined when a local saddle point
search is started from a perturbed configuration with the perturbations being centered on
the key atom.

Unlike lattice-based models with predefined event catalogs, neither the number nor the

nature of transitions at a given time step is known a priori in OLKMC. Acquiring this

information requires an exhaustive saddle point search like that in Step 1 of Algorithm 1, a

calculation that would defeat the purpose of the rejection algorithm. In order to extend the

rejection scheme to OLKMC, we partition the set of connected saddle points into localized

subsets by associating moves with their key atom. We define this as the atom whose position

changes by the greatest magnitude when it is moved from the configuration of the current

local minimum to the saddle point configuration, and refer to the associated set of saddle

points as connected key saddles (see Figure 3.1). For a system with Np particles this has

the effect of partitioning the entire set of transitions into at most Np subsets, each of which

represents all of the moves for which one particular atom is the key atom (see Figure 3.2.)

For moves that are essentially single atom hops, this will correctly associate the event with

the hopping atom, while providing a natural generalization for more complicated, multi-

atom moves. One now needs to over-estimate the sum of the rates for all configuration

changes associated with a given key atom. If this can be done reliably, one can then choose

a candidate event based on the estimated rates. After a candidate is chosen, one then

calculates the total transition rate for that particular atom, accepting or rejecting the move

32



	
	
	
	

Key	Atom	4	

Key	Atom	5	

Key	Atom	6	

Key	Atom	7	

Minimum	
Configuration	

Figure 3.2: In this figure, nine connected saddle points were found surroundings the basin of
the minimum configuration on the very left. The set of connected saddle points is partitioned
into four subsets of connected key saddle points. Translation and rotation were prevented
and that is why we did not find any saddles associated with the first three atoms.
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with probability:

P (acceptance) =
true rate

approximate rate
.

This avoids the tremendously more costly need to calculate all of the rates for the entire

system before selecting a move, and it does so with zero error as long as the estimates are

upper bounds for the true rates.

The rate estimates we use attempt to model a lower bound for the smallest significant

barrier (i.e. attempting to avoid the small barrier problem discussed above) Ǔ and an upper

bound N̂ for the number of transitions that have this energy scale. To allow for greater

flexibility in protecting against the estimate being lower than the true rate, we also include

an additive constant Ĉ in the estimate:

r̂j = KN̂j exp (−Ǔj/kBT ) + Ĉ, j = 1, · · · , Np. (3.1)

The energy barrier bound is based on a generalized notion of a nearest neighbor. For

our off-lattice model, we define a nearest neighbor as an atom lying within a distance, d1,

slightly larger than the lattice spacing of a perfect crystal. Similarly, we define second and

third neighbor distances d2 and d3. We use an estimate where Ǔj is linear in the number of

first, second and third nearest neighbors for each species.

Next, we provide an outline of the rejection algorithm. We assume that the system is

initialized at time t to an arbitrary local minimum.

Algorithm 2: Rejection OLKMC

1. Calculate rate estimates r̂j, j = 1, · · · , Np, using Eq. (3.1).

2. Calculate partial sums Pn =
∑n

j=1 r̂j, n = 1, 2, . . . , Np.

3. Generate a uniformly distributed random number r ∈ [0, PNp).
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4. Locate interval J such that PJ−1 ≤ r < PJ .

5. Update the physical time t ← t + ∆t with ∆t = − ln r′/PNp , where r′ is a uniformly

distributed random number in (0, 1].

6. Perform local saddle point searches centered on atom J as follows:

(a) For k = 1, · · · , Ng initiate dimer searches with initial guesses as in Eq. (1.4).

(b) Sort through the resulting saddle points so that {X1
J ,X

2
J , · · · ,XM

J } is the set of

distinct connected key saddles.

7. Calculate the true rates riJ = K exp (−∆U i
J/kBT ), i = 1, 2, . . . ,M for moves in which

atom J is the key atom.

8. Calculate partial sums pi =
∑i

n=1 r
n
J , i = 1, 2, . . . ,M .

9. If r − PJ−1 > pM , reject the event; set r̂J = pM ; return to Step 2.

10. Otherwise, locate the interval I such that pI−1 ≤ r − PJ−1 < pI .

11. Move the system to saddle-point configuration XI
J , perturb away from the current local

minimum, and relax to the new local minimum.

The success of the method hinges on Steps 1 and 6. If the rate estimates in Step 1

are lower than the actual sum of rates, the algorithm is no longer equivalent to a fully

implemented OLKMC, as the corresponding events will be undersampled. While this is

undesirable, it has an effect similar to other sources of error inherent to OLKMC. This

undersampling error can be monitored and controlled to some extent in that it will be

detected a certain fraction of the time. If R̂E is the sum of the rate estimates for the atoms

with rate estimates that are too small, then the probability that one of these atoms is selected

for a saddle search is R̂E

PNp
. These instances can be counted and used as a metric for upwardly

adjusting rate estimates. Note, however, that the selection of an undersampled event is not
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an error—the error is a failure to select such events sufficiently often. The error can be more

accurately measured by calculating

E =

Np∑
i=1

max(0, ri − r̂i). (3.2)

When events are undersampled we introduce an error with probability E
PNp+E

relative to a

simulation with the minimal correction applied to the errant rates, i.e. r̂i ← ri whenever

r̂i < ri. The error cannot be computed on every iteration without losing the advantages of

the rejection scheme, as one has to loop through the atom list and calculate the true rate

for each atom and its rate estimate. However, it can be monitored for some small fraction of

the time steps. While undersampling can be reduced or even eliminated by using sufficiently

generous rate estimates, this comes at the expense of increased rejection due to oversampling.

Specifically, we will reject an event with probability 1−E = 1−R/PNp , where R is the sum

of the actual rates. In our simulations, we monitor both our undersampling error E and the

efficiency E

E =

Np∑
i=1
r̂i≥ri

ri

/ Np∑
i=1
r̂i≥ri

r̂i. (3.3)

In Step 6, we wish to calculate the sum of all the rates for which atom J is the key atom.

We do this by perturbing the system about atom J as in Eq. (1.4) to create a list of initial

configurations for the dimer search. It is possible that this will miss some moves which will

introduce an error similar to that discussed above in the context of the rejection-free scheme.

This error can be decreased by creating another list of initial configurations by perturbing

the system about a neighboring atom. This will reduce the efficiency: As we make our

search for connected key saddle points more exhaustive, we will produce costly duplicates

and saddles associated with atoms other than the candidate atom.

In Step 9, pM is the sum of the true transition rates for which the candidate atom is the

key atom. When we reject a move where this atom is key we can set the estimated rate r̂J

to this sum, so that transitions associated with this atom will not be rejected on the next
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trial. This normally does not save a significant amount of computation, as it is likely that a

different key atom will be selected on the next iteration, but it will occur more often when

there is a single loosely-bonded atom at the surface. In the cases where the same key atom

is chosen on a subsequent trial, we can also re-use saddle point information obtained for the

rejected trial. Similarly, on any rejected trial, we can retain the information about saddle

points associated with atoms other than the candidate atom, although this will only have a

slight impact on performance.

When parallel resources are available, we suggest performing both the full OLKMC and

the rejection scheme by distributing the Ng dimer searches for each atom over the available

processors, keeping in mind that one has to remove the duplicates before calculating the true

rates. However, the boost in performance will still be O(Np). Suppose the computational

cost to perform the rejection scheme on one processor is O(Ng), then it is O(NpNg) for the

full scheme. When n processors are available, the cost for the rejection scheme is O(Ng/n)

and O(NpNg/n) for the full scheme.
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Chapter 4

Results

In this chapter we demonstrate the new algorithm by simulating the growth and evolution

of a two-species cluster with an emerging core-shell structure. This is a rather challenging

system compared to that typically studied using OLKMC. Indeed, the fully implemented

OLKMC algorithm that is used for comparison purposes has to be abandoned once the

system contains around seventy particles. We use a Lennard-Jones potential, modified for

two interacting species, type A and type B [1, 19]. The total energy of a system of Np

particles interacting by the Lennard-Jones potential is given by

U(X) =

Np∑
i<j

φ(rij), where φ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
,

X ∈ R3Np is the current configuration in three dimensions, rij is the distance between atoms

i and j, φ(rij) is the interaction potential, σij is the distance at which φ(rij) is zero and εij

is the chemical bond energy. We will use the Lorentz-Berthelot mixing rules [19] and take

σij =


σA

σB

1
2
(σA + σB),

εij =


εA if both atoms are type A,

εB if both atoms are type B,

√
εAεB, if the atoms are different.
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We omit any truncation of the potential, but for larger systems we could employ the

standard practice of introducing a cutoff radius that is often chosen to be three or four

times a typical bond-spacing. To remove translational and rotational degrees of freedom,

one particle is constrained to the origin, a second to a line passing through the origin, and

a third to a plane containing this line. This is equivalent to adjusting the frame of reference

to satisfy these constraints.

For a particle of type A or B, we denote its nearest neighbors of species α by n
(α)
k

where k = 1, 2, 3 correspond to the first, second and third nearest neighbors, respectively.

In Eq. (3.1), we take N̂i = 4
∑3

i=1

∑
α∈{A,B} n

(α)
i , Ĉ = 1.955 and the energy barrier bound

Ǔi = −1.2(B1 +B2), where

B1 = εα(λ1n
(α)
1 + λ2n

(α)
2 + λ3n

(α)
3 ),

B2 =
√
εαεβ(λ1n

(β)
1 + λ2n

(β)
2 + λ3n

(β)
3 + λ4),

with α = species(i), β 6= α, λ1 = λ2 = 0.5, λ3 = 0.8 and λ4 = −5.9.

Deposition is modeled by adding an additional rate, rdep, to the rate table in Steps 1

and 2. When a deposition occurs, the species is selected so that the ratio is three A-particles

for every B particle, and the appropriate particle is placed at a randomly selected solid

angle a distance d from the origin. The coordinates of this particle are relaxed toward a

local minimum by steepest descent while constraining the remaining particles. After the

constrained minimum is reached, the full system is relaxed by a conjugate gradient search,

with care taken to monitor for descent or large moves, so that the particle settles into a local

minimum without significantly disturbing the prior configuration.

Figure 4.1 shows nine snapshots of the growth process, with a new snapshot selected

after 12 particles have been added to the system. The larger particles are shown in gold and

tend to evolve toward the outer shell. This tendency is increased if we slow the deposition

rate, allowing more diffusive transitions between deposition events.
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(a) A9B3 (b) A18B6 (c) A27B9 (d) A36B12 (e) A45B15

(f) A54B18 (g) A63B21 (h) A72B24 (i) A75B25

Figure 4.1: Snapshots at different times during the growth of a two species cluster, A75B25,
with random deposition at rate = 0.85. The Lennard-Jones parameters are taken to be
εA = εB = 0.25 and σA = 1.3 & σB = 1. Both the dimer and the conjugate gradient
algorithms are terminated once the L2 norm of the gradient is less than 10−3 or the maximum
number of iterations is achieved. The view in these snapshots is chosen so that B atoms
appear clearly.
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(a) Minimum 1 (b) Saddle Point (c) Minimum 2

Figure 4.2: Example of a concerted move that includes the movement of all atoms except
the constrained atom at the origin.

These simulations represent a significant challenge for OLKMC. When the cluster is

small, moves are highly concerted, with the transitions often resulting in all of the particles

moving a significant distance as shown in Figure 4.2.

In Table 4.1, we record the efficiency E and the error E of Algorithm 2, as defined in

the previous section, for clusters in Figure 4.1, along with the scaled physical time, CPU

time in hours, and the number of hops at which these clusters are obtained. We see that the

efficiency is close to 1/2 for the larger clusters, meaning that, on average, we reject about

every other candidate event. Note that the error, as defined above, is not bounded by 1,

and so the error values in the table do not represent percentages. The error is around 0.04

for the larger clusters. As described earlier, this can be improved upon, but at the cost of

increased rejection, by providing larger rate estimates.
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Table 4.1: The first two columns show the efficiency and error of Algorithm 2 for clusters
in Figure 4.1, calculated via the rate estimate formula in Eq. (3.1) with Ng = 200 per atom.
The last three columns are the scaled physical time, CPU time, and the number of hops at
which these clusters were formed, respectively.

Subfig. Efficiency E Error E Scaled Phys. time CPU time (hrs) No. of hops
(a) 0.065 0.000 9.433 0.0985 139
(b) 0.25 0.007 23.680 2.436 872
(c) 0.32 0.000 42.796 13.812 2073
(d) 0.44 0.016 54.611 25.739 3081
(e) 0.44 0.011 71.050 63.756 4715
(f) 0.40 0.009 82.940 86.683 6153
(g) 0.45 0.028 94.000 142.453 7463
(h) 0.53 0.036 110.726 257.608 9796
(i) 0.54 0.041 114.679 309.312 10359

In Figure 4.3, we plot the number of events executed as a function of the scaled physical

time for three realizations of the full OLKMC and the rejection-based algorithm as a means

of demonstrating their near equivalence. Again, if one could achieve exhaustive saddle-

point searches and strict bounds for the rate estimates, the two algorithms are stochastically

equivalent. In Figure 4.4, we plot the CPU time as a function of the scaled physical time for

this same set of realizations as a way of demonstrating the increased speed of the rejection

scheme. For cluster sizes around fifty-five particles, the rejection algorithm is about ten

times faster, and when they are around sixty-five particles, it is thirty times faster. This

factor will continue to increase with larger cluster sizes, as the local search regions become

a smaller fraction of the entire domain.
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Figure 4.3: As a way of demonstrating the near equivalence of the two algorithms, this
figure shows the number of events executed as a function of scaled physical time for three
realizations of each algorithm. Different colors correspond to different seeds used for the
random number generator.
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Figure 4.4: This graph shows the time needed by one CPU to perform both rejection and
rejection-free (full) OLKMC schemes. The data plotted here is for the same realizations in
Figure 4.3. When the system size is about fifty-five particles, the ratio of the black curve to
the red and green curves is about ten and when it is about sixty-five particles, the ratio is
about thirty.
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Chapter 5

Conclusion

In this study we have demonstrated the viability and potential for using a rejection scheme

to accelerate OLKMC. The main idea is to partition the set of rates that must be found in

a way that allows for a local search procedure. If this can be achieved, one can expect an

O(Np) boost in performance. The partitioning is accomplished by identifying moves with the

atom that moves the furthest in the transition, and rate estimates rely on a notion of bond-

counting similar to what one finds in the lattice-based KMC literature. There remain many

unexplored variations on both of these approaches. For example, one could partition moves

based on energy changes rather than distance moved, and rate estimates could incorporate

prior information similar to the way saddle-point reconvergence/recycling has been used in

other OLKMC work [11, 5, 42], especially when the size of the system is large. We also hope

to come up with a perturbation scheme that will lead to a higher percent of connected key

saddle points found around the basin of attraction.
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Appendix A

Potentials

A Lennard-Jones Potential

U(x) =
∑
i

∑
j>i

φ(rij) =
1

2

∑
i

∑
j 6=i

φ(rij), where φ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
,

x = (x1, · · · ,xN) ∈ R3N where xi = (x1i , x
2
i , x

3
i ) is the position of atom i in R3 and rij =√

(x1i − x1j)2 + (x2i − x2j)2 + (x3i − x3j)2 is the distance between atoms i and j, φ(rij) is the

interaction potential, σij is the finite distance at which the interaction potential is zero and

εij is the chemical bond energy. The bond length is rmij =
6
√

2σij. The first and second

derivatives of the interaction potential with respect to the distance rij are

φ′(rij) = 6ηij

[
1

r7ij
−

2σ6
ij

r13ij

]
and φ′′(rij) = 6ηij

[
26σ6

ij

r14ij
− 7

r8ij

]
,

where ηij = 4εijσ
6
ij. We also have

∂rij
∂xnk

=
(xni − xnj )(δik − δjk)

rij
,
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where δαβ is the Kronecker delta. The gradient vector is denoted by g(x) = (g1, · · · , gN),

where gi = (g1i , g
2
i , g

3
i ). We calculate the first derivative of U as

∂U

∂xnk
=

1

2

∑
i

∑
j 6=i

∂φ(rij)

∂xnk

=
1

2

∑
i

∑
j 6=i

φ′(rij)
(xni − xnj )(δik − δjk)

rij

=
1

2

∑
i

∑
j 6=i

φ′(rij)
(xni − xnj )δik

rij
+

1

2

∑
i

∑
j 6=i

φ′(rij)
(xnj − xni )δjk

rij

=
1

2

∑
j 6=k

φ′(rkj)
(xnk − xnj )

rkj
+

1

2

∑
i 6=k

φ′(rik)
(xnk − xni )

rik

=
∑
j

φ′(rkj)
(xnk − xnj )

rkj
(1− δkj)

= 6
∑
j

ηkj

[
1

r8kj
−

2σ6
kj

r14kj

]
(xnk − xnj )(1− δkj)

Hence, the kth component of the gradient is

gk = ∇xk
U(x1, · · · ,xN) =

3∑
n=1

∂U

∂xnk
ên = 6

N∑
j=1
j 6=k

ηkj

[
1

r8kj
−

2σ6
kj

r14kj

]
(xk − xj). (A.1)

The 3N×3N Hessian matrix H has components of the form Hnm
k` = ∂2U/∂xnk∂x

m
` , where

k, ` = 1, · · · , N and m,n = 1, 2, 3. The second derivative of U is calculated as

∂2U

∂xnk∂x
m
`

= 6
∂

∂xnk

(∑
j

η`j

[
1

r8`j
−

2σ6
`j

r14`j

]
(xm` − xmj )(1− δ`j)

)

= 6
∑
j

η`j

{[
1

r8`j
−

2σ6
`j

r14`j

]
(δk` − δkj)(1− δ`j)δmn+[

28σ6
`j

r15`j
− 8

r9`j

]
(xn` − xnj )(δ`k − δjk)

r`j
(xm` − xmj )(1− δ`j)

}

= 6
∑
j

η`j(1− δ`j)(δk` − δkj)

{[
1

r8`j
−

2σ6
`j

r14`j

]
δmn+
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[
28σ6

`j

r16`j
− 8

r10`j

]
(xn` − xnj )(xm` − xmj )

}

= 6δk`

N∑
j=1
j 6=`

η`j

{[
1

r8`j
−

2σ6
`j

r14`j

]
δmn +

[
28σ6

`j

r16`j
− 8

r10`j

]
(xn` − xnj )(xm` − xmj )

}

− 6(1− δk`)η`k

{[
1

r8`k
− 2σ6

`k

r14`k

]
δmn +

[
28σ6

`k

r16`k
− 8

r10`k

]
(xn` − xnk)(xm` − xmk )

}
(A.2)

The Hessian is a real symmetric matrix that looks like:



H11
11 H12

11 H13
11

H21
11 H22

11 H23
11

H31
11 H32

11 H33
11

H11
12 H12

12 H13
12

H21
12 H22

12 H23
12

H31
12 H32

12 H33
12

· · ·

...

H11
22 H12

22 H13
22

H21
22 H22

22 H23
22

H31
22 H32

22 H33
22

· · ·

...
...

. . .



55



Vita

Hamza Ruzayqat was born and raised in a small town in Hebron city in Palestine. He

attended elementary and high school in his town, Taffouh. After graduating high school,

Hamza enrolled in Birzeit University where he received a bachelors in physics and a minor

in mathematics. It was at Birzeit University that Hamza made the decision to pursue higher

education in America and study towards a PhD in mathematics. He was admitted to the

Math Department at the University of Tennessee, Knoxville where he received teaching and

research assistantships for the duration of his graduate studies. It was at UTK that Hamza

developed a love for research and teaching. Hamza’s research under the supervision of Dr.

Tim Schulze was on the rejection off-lattice kinetic Monte Carlo method. Hamza has a very

diverse teaching experience both as an instructor and a teaching assistant here in the US

and abroad.

56


	Rejection Enhanced Off-Lattice Kinetic Monte Carlo
	Recommended Citation

	tmp.1581698523.pdf.I0WFP

