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Abstract

Poplar species are promising sources of cellulosic biomass for biofuels because of their fast

growth rate, high cellulose content and moderate lignin content. There is an increasing

movement on integrating multiple layers of ’omics data in a systems biology approach

to understand gene-phenotype relationships and assist in plant breeding programs. This

dissertation involves the use of network and signal processing techniques for the combined

analysis of these various data types, for the goals of (1) increasing fundamental knowledge

of P. trichocarpa and (2) facilitating the generation of hypotheses about target genes

and phenotypes of interest. A data integration “Lines of Evidence” method is presented

for the identification and prioritization of target genes involved in functions of interest.

A new post-GWAS method, Pleiotropy Decomposition, is presented, which extracts

pleiotropic relationships between genes and phenotypes from GWAS results, allowing

for identification of genes with signatures favorable to genome editing. Continuous

wavelet transform signal processing analysis is applied in the characterization of genome

distributions of various features (including variant density, gene density, and methylation

profiles) in order to identify chromosome structures such as the centromere. This resulted

in the approximate centromere locations on all P. trichocarpa chromosomes, which had

previously not been adequately reported in the scientific literature. Discrete wavelet

transform signal processing followed by correlation analysis was applied to genomic

features from various data types including transposable element density, methylation

density, SNP density, gene density, centromere position and putative ancestral centromere

position. Subsequent correlation analysis of the resulting wavelet coefficients identified

scale-specific relationships between these genomic features, and provide insights into
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the evolution of the genome structure of P. trichocarpa. These methods have provided

strategies to both increase fundamental knowledge about the P. trichocarpa system, as well

as to identify new target genes related to biofuels targets. We intend that these approaches

will ultimately be used in the designing of better plants for more efficient and sustainable

production of bioenergy.
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3.1 MPA signatures. (a) Type 1 MPA: a gene is associated with more than

one phenotype due to a single variant within the gene associating with

multiple phenotypes. (b) Type 2 MPA: a gene is associated with more than

one phenotype because of alternate SNPs within the gene having different

phenotypic associations. (Figure created from information presented in

Solovieff et al. (2013) [7].) (c) Complex combinations of Type 1 and Type
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Construction of GWAS matrix and calculation of Proportional Similar-
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(C) Association modules constructed as elements of the powerset of

phenotypes observed in the SNP clusters. (D) Module-phenotype network

links phenotypes to modules if phenotype is associated with all SNPs in

module. (E) The gene-module network is constructed by mapping genes

to association modules if the module contains a SNP that resides within

that gene. (F) Signature clustering groups genes with the same module

associations. (G,H) Clustering genes in powerset space results in groups

of genes with the same pattern of MPA signatures with the same set of

phenotypes. Modules exist as a layer between genes and phenotypes. (I)

Example: Both G1 and G2 contain SNP(s) associating with both P1 and
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networks, connecting row objects (genes) with column variables if the
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3.4 Example of SNP-phenotype, gene-phenotype networks and gene-SNP-

phenotype networks. (a) SNP-phenotype bipartite networks simply

connect SNPs to phenotypes with which they have a significant association,
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phenotype networks do not provide information as to which type of
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phenotype networks with the SNPs connected to genes in which they

reside. These networks are more complicated, and MPA signatures can

be deduced from their structure through further analysis, however, the
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3.6 Gene-Phenotype (GP ) Network. (a) The GP network. Green nodes
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(green) nodes in the GP network. (c) Degree distribution of the
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3.7 Gene-Module (GM) Network. (a) The GM network. Green nodes

represent MPA genes and yellow nodes represent association modules. A

gene node is connected to a module node if the module contains a SNP

which resides within that gene. (b) Degree distribution of the module
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Abstract

Populus trichocarpa is an important biofuels feedstock which has been the target of

extensive research, and is emerging as model organism for plants, especially woody

perennials. This research has generated several large ’omics datasets. However, only

few studies in poplar have attempted to integrate various data types. This review will

summarize various ’omics data layers, focusing on their application in poplar species.

Subsequently, network and signal processing techniques for the integration and analysis of

these data types will be discussed, with particular reference to examples in poplar.

1.1 Introduction

Poplar species are promising sources of cellulosic biomass for biofuels because of their fast

growth rate, high cellulose content and moderate lignin content [1]. Ragauskas et. al

[2] outline areas of research needed “to increase the impact, efficiency, and sustainability

of biorefinery facilities” [2], such as research into modifying plants to enhance favorable

traits, including altered cell wall structure leading to increased sugar release, as well as

resilience to biotic and abiotic stresses. One particular research target in poplar is the

decrease/alteration of the lignin content of cell walls.

There is an increasing movement on integrating multiple layers of ’omics data in a systems

biology approach to understand gene-phenotype relationships and assist in plant breeding
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programs (see Ingvarsson et al. (2016) [3], Weckwerth (2011) [4] and Valledor et al.

(2018) [5] for reviews).

This chapter will review different sources of ’omics data layers with particular reference

to P. trichocarpa or other poplar species where studies are available. Subsequently, we

will review network and signal processing approaches to representing, analysing and

integrating multiple ’omics data layers, again providing examples in poplar species were

possible. Lastly we will conclude by forming the aims of this dissertation.

1.2 Sources of ’Omics Data Layers

1.2.1 Genome and Annotation

The genome sequence of Black Cottonwood, Populus trichocarpa (Torr. & Gray) was

released in 2006 [6]. This genome, a single female genome “Nisqually-1”, was the first

tree to have its complete genome sequenced, and it became a model system for studies on

woody perennial plants [7, 8]. The P. trichocarpa genome consists of 19 chromosomes,

with chromosome 19 found to be evolving into a sex chromosome [9]. Analysis of

homologous regions of the genome showed evidence for several genome duplication

events; the most recent being the salicoid duplication event which is contained within

the family Salicaceae, the next termed the Eurosid duplication shared among Eurosids, and

an ancient duplication event [6].

Since initial sequencing, the genome assembly has gone through several revisions and is

now in its 4th version. Furthermore, a genome wide association study (GWAS) population

of ∼1,000 natural accessions from the U.S and Canada were propagated in multiple

common gardens and resequenced, providing a rich resource for studies of the variation

in natural P. trichocarpa populations as well as GWAS studies [10, 11, 12].
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The genome sequence is available on Phytozome [13], and the genome along with gene

and functional annotation such as Gene Ontology (GO) terms and PFams can be viewed

and interacted with using the JBrowse [14] plugin on Phytozome.

1.2.2 Gene Expression (Transcriptomics)

Transcriptomic analysis involves the measuring of the expression levels of transcripts

within a sample. Various study designs have been implemented in P. trichocarpa to

investigate a variety of properties of the cellular system. Several studies have focused

on the response of the poplar transcriptome, or a subset of the transcriptome, to drought

stress. The study by Shuai et al. (2013) used RNA-Seq to identify microRNAs responsive

to drought stress[15], and subsequently Shuai et al. (2014) performed RNA-Seq on

control and drought leaf samples of P. trichocarpa to identify long intergenic non-coding

RNAs (lincRNAs) which were responsive to drought stress [16]. Tang et al. (2015)

used RNA-Seq to identify genes differentially expressed between well-watered and water-

limited samples, and several differentially expressed genes and functions were identified.

Genes related to energy metabolism and growth (cell division and tissue expansion)

were significantly downregulated, and a particular gene previously found to improve

drought and salt tolerance in several plants was significantly upregulated [17]. Another

transcriptomic drought study used Affymetric microarrays for expression measurements of

Populus tremula x Populus alba roots for 6 time points under drought stress. Differential

expression and network analysis identified two interesting genes (PtaJAZ3 and PtaRAP2.6)

which, when overexpressed under drought conditions, increased root growth [18].

Other transcriptomic studies in poplar have focused on variation in gene expression across

tissues or across a population. In the study by Quesada et al. (2008), gene expression

levels in P. trichocarpa were measured across 5 different tissues (roots, young leaves,

mature leaves, nodes and internodes) using NimbleGen microarrays [19]. Genes with

tissue-specific gene expression were identified, with stem samples having the highest

number of tissue-specific genes. GO enrichment was used to determine the enriched
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functions of organ-specific genes. The expression of P. trichocarpa genes across organs was

also compared to the expression of their Arabidopsis thaliana orthologs across equivalent

tissues, and the authors concluded that, while there were some similarities between

expression patterns across these two species, significant diversification in gene expression

regulation has occurred between orthologs. Shi et al. (2009) used quantitative real-

time PCR (qPCR) to determine the expression level of 95 genes in the phenylpropanoid

pathway in xylem, leaf, shoot and phloem tissues, in order to determine the abundance

and tissue specificity of genes potentially involved in monolignol biosyntehsis [20]. Bao

et al. (2013) performed RNA-Seq of xylem tissue from 20 P. trichocarpa individuals from

different populations, identified a set of sets expressed in xylem across all individuals, and

found several instances of alternative splicing, particularly in cell wall-related genes and

that these alternative splicing events differed significantly across individuals [21].

An increasingly common study design is the construction of a gene expression atlas for

a species, which involves determining the expression level of every gene in the genome

in various different tissues and/or conditions. Gene expression atlas studies have been

performed in various plant species (see for example Table 1.1), and several expression

atlas datasets are available on Phytozome.

The P. trichocarpa RNA-Seq gene expression atlas (Sreedasyam et al., unpublished) consists

of genome-wide gene expression measurements across several different samples of tissue

and condition combinations, including root, root tip, stem, node, internode, bud, leaf

and flower tissues. Root and stem tissues included several samples varied by nitrogen

source. Bud, leaf, male and female flowers included several samples of different stages of

maturity. Gene expression values for 40 of these samples are currently publically available

in PhytoMine on the Phytozome web interface [13]. To our knowledge, this is the largest

RNA-Seq expression study performed in poplar.
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Table 1.1: Examples of gene expression atlas studies in plants.

Species Samples Method

Arabidopsis thaliana
[22]

79 samples from various tissues and
developmental stages

Affymetrix
GeneChip

Sorghum bicolor [23] 47 combinations of tissues (roots, leaves,
stems, panicles) and developmental
stages (juvenile, vegetative, reproduc-
tive)

RNASeq

Glycine max [24] 14 tissues from different developmental
stages

RNASeq

Lotus japonicus [25] 237 samples of 8 tissues across various
conditions

Affymetrix
GeneChip

Medicago truncatula
[26]

18 samples from tissues across different
developmental stages

Affymetrix
GeneChip

Barley [27] 15 tissues identified from eight develop-
mental stages

Affymetrix
GeneChip

Rice [28] 31 tissues spanning life cycle of rice
plant for 2 rice varieties, 8 samples from
stages in the tissue culture process

Affymetrix
GeneChip

Panicum virgatum L
(Switchgrass) [29]

Tissues (roots, shoots, and panicle)
and developmental stages (leaf devel-
opment, stem elongation and reproduc-
tion)

ESTs

Vitis vinifera [30] 54 samples from tissues spanning differ-
ent developmental stages

NimbleGen
microarray and
RNASeq
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1.2.3 Metabolomics

Metabolomics studies involve measuring the quantities of metabolites within a sample.

While targeted metabolomics studies aim to only measure and identify a select few

metabolites within a sample (for instance using standards), untargeted metabolomics

involves the measuring as many metabolites as possible within a sample [31].

Identification of metabolites in untargeted metabolomics studies is much harder than that

of targeted metabolomics studies. While the candidate identities of many metabolite peaks

can be determined though database matching or manual inspection of mass spectra with

the necessary expertise, many metabolites will remain unidentified or partially identified.

Several targeted and untargeted metabolomics studies have been performed in poplar. In

a study by Morreel et al (2006), metabolite levels of 15 flavonoids were measured using

high performance liquid chromatography (HPCL), and subsequntly mQTL (metabolite

quantitative trait loci) based on amplified fragment length polymorphisms (AFLPs) was

used to identify potential genes involved in rate limiting steps of flavonoid biosynthesis

[32]. Kaling et al (2015) performed untargetted metabolomics on UV-B treated vs.

control P. alba x P. tremula plants using Fourier transform ion cyclotron resonance mass

spectrometry (FT-ICR-MS). This allowed for the investigation of the effect of UV radiation

on the metabolome[33]. Tuskan et al. (2012) performed gas chromatography-mass

spectrometry (GC-MS) analysis of 16 individual trees in Populus deltoides and Populus

nigra, and showed gender-specific accumulations of metabolites in floral buds [34]. In

Hamanishi et al. (2015), transcriptomic and metabolomic data of six Populus balsamifera

were collected using Affymetrix microarrays and gas chromatography-mass spectrometry

(GC/MS), respectively, to investigate the response of the metabolome and transcriptome

to drought stress [35]. Tschaplinski et al (2014) used GC/MS-based metabolomics on

samples of P. trichocarpa and P. deltoides roots colonized with Laccaria bicolor as well as

control samples to investigate the different metabolic responses to colonization [36]. One

interesting result was that increased levels of defense-related compounds were found in the

incompatible host, P. deltoides, whereas some defense compounds were significantly lower

in the compatible host, P. trichocarpa. An recent study by Veach et al. (2018) investigated
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the effects on the metabolome of P. deltoides when downregulating PdKOR1, a glycosyl

hydrolase gene involved in cellulose biosynthesis [37]. GC/MS analysis of root tissue

from PdKOR1 RNAi lines vs. control lines showed that caffeic acid derivatives, metabolites

involved in fatty acid metabolism as well as salicylates and flavonoids were upregulated in

RNAi lines when compared to control lines [37].

A genome-wide association study using SNPs from 917 P. trichocarpa accessions as well as

GC/MS-based metabolomics and RNA-Seq-based gene expression measurement identified

hydroxycinnamoyl- CoA:shikimate hydroxycinnamoyl transferase 2 (PtHCT2) as a gene

which is significantly associated with the levels of 3-O-caffeoylquinic acid, and also

identified transcription factors which regulate this gene [38].

A comprehensive study of a GWAS analysis of metabolomics phenotypes in a population of

∼1,000 P. trichocarpa genotypes is currently being performed by Timothy Tschaplinski

and his team at the Oak Ridge National Laboratory (Timothy Tschaplinski, personal

communication).

1.2.4 Variant Data

Different individuals in a population can accumulate different kinds of variation in their

genome, such as Single Nucleotide Polymorphisms (SNPs) involving a nucleotide change

at a single position, insertions/deletions of a single nucleotide or larger pieces of DNA,

copy number variations (CNVs) of DNA segments or translocations (the movement of a

section DNA from one location to another) [39].

There are two major approaches to calling SNPs in a given sample in a relatively high-

throughput manner, namely a genotyping SNP array and SNP calling from Next Generation

Sequencing (NGS) data. A genotyping SNP array involves hybridizing extracted DNA to

an array containing probes with known SNPs [40], and is thus limited by the SNPs chosen

to appear on the array. For example, the P. trichocarpa genotyping array is based on

34,131 SNPs located near/within around 3,500 selected candidate genes [41]. SNP calling

through NGS involves whole genome sequencing of all individuals, aligning of all reads to
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a common reference genome, and then calling variants [42] using software such as GATK

[43]. The advantage of SNP calling from NGS data is that one is not limited by the set of

SNPs available on an array. A larger number of SNPs can be detected and the discovery of

new SNPs is possible. SNP genotyping arrays are also not able to detect other classes of

genome variants such as translocations and inversions [40].

A population of 1,100 natural P. trichocarpa accessions have been clonally propagated

in 4 common gardens [10] and resequenced in order to provide NGS data for SNP

calling. Several studies have been published making use of SNPs called across parts of

this population [12, 44, 11].

Slavov et al. (2012) performed a study involving SNPs called from resequenced genomes of

16 of the genotypes within this P. trichocarpa population. PCA analysis of SNP genotypes

revealed clear separation based on the geographic origin of the genotypes, and linkage

disequilibrium was reported to decay to r2 ≤ 0.2 within 3-6kb. It is important to note

that this is based on the resequencing of only 16 genotypes (LD calculations of the whole

population are presented in later chapters, and find that the decay is in fact faster).

A set of ∼28 million bi-allelic SNPs called across 882 genotypes from this population have

been publicly released and are available from online from DOI 10.13139/OLCF/1411410.

1.2.5 Genome Wide Association Studies

Phenotypes are often complex traits, in that they are influenced or controlled by a number

of genes [45]. Genome Wide Association Studies (GWAS) attempt to associate the

presence/absence of SNPs with these complex traits [45, 46]. This involves genotyping

a large sample of individuals of a population, measuring phenotypes across all of these

individuals and statistically determining the association between the presence/absence of

the genotyped markers or SNPs and the phenotypes across the population [47]. A general

concern when conducting GWAS studies is that individuals within a population that are

genetically related can share both causal alleles, which cause the phenotype [46], and

non-causal alleles [47]. These causal and non-causal alleles could be located nearby to
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each other on the chromosome and could thus be in linkage disequilibrium (alleles which

are correlated across a population and thus co-inherited [48]). This linkage disequilibrium

(LD) between causal and non-causal alleles across related individuals could result in non-

causal alleles being correlated with a phenotype when they have no actual effect on the

phenotype.

GWAS analyses generally require that the individuals in the population are unrelated.

However, some level of population structure due to some shared ancestures, which

can cause sperious associations between genotype and phenotype, and accounting for

population structure is this important in order to remove variance that is due solely to

the relatedness of individuals (for a useful review, see Astle and Balding (2009) [49]). It is

thus important to account for population structure in association models. However, there

is the possibility of masking true associations which happen to correlate with population

structure because they are local adaptations of clades to local environments.

EMMAX [50] is one particular GWAS method which attempts to correct for the effect

of individual relatedness within the population. It is a faster version of the EMMA

method [51]. GWAS methods such as EMMAX model the relationship between measured

phenotypes and SNPs as a linear model:

yi = β0 +
M∑

k=1

βkXik + εi (1.1)

where yi is a measured phenotype for individual i, βk is the effect of SNP k on the

phenotype, X is a matrix of fixed effects (SNPs) in which Xik is the minor allele count

of SNP k in individual i, and εi represents environmental variation on the phenotype

yi [50]. The aim is to determine which of the βk are significantly different from zero,

thus identifying which SNPs have a significant effect on the phenotype [50]. EMMAX

accounts for sample structure by calculating a kinship matrix K which contains pairwise

genetic similarities of the of the individuals under consideration. A variance component

model is used, partitioning the phenotypic variance into variance due to environmental
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factors σ2
e , and variance due to the additive effect of genetic factors σ2

a [50]. This variance

component model includes the kinship matrix, modeling the variance-covariance structure

of the phenotype in terms of the genetic similarity of pairs of individuals defined in the

kinship matrix [50]:

Var(Y ) = σ2
aK + σ2

eI (1.2)

where Var(Y ) is the variance-co-variance structure of the phenotype and I is the identity

matrix. The βk are then estimated using Generalized Least Squares and an F-test is used

to determine which of these βk are statistically different from zero [50]. Each SNP

k corresponding with a βk statistically different from zero thus potentially affects the

phenotype. Thus, for a given measured phenotype, EMMAX produces a list of all SNPs

and their respective p-values for their association with the phenotype. A p-value threshold

can then be applied to determine which of the associations are significant.

Performing a GWAS involves testing multiple hypotheses, each asking “is SNP k associated

with the phenotype p?” for each SNP in the dataset. When testing multiple hypotheses,

or a so-called family of m hypotheses, the quantity called the Family-wise Error Rate

(FWER) becomes inflated [52]. The FWER is defined as the probability that at least

one null hypothesis was rejected when it should not have been, or, the probability of

achieving at least one false positive. When a statistical test is performed and a p-value is

generated, the p-value represents the Type-1 error rate (or false-positive rate), which is the

probability that the null hypothesis was incorrectly rejected [52]. Let the p-value threshold

chosen be α. Then, for each true null hypothesis, the probability that it was incorrectly

rejected is α. Given that a null hypothesis is true, the probability it was not rejected is

thus 1 − α. If we assume that all m null hypotheses are true, the probability that all m

null hypotheses were not rejected (i.e. the probability of obtaining no false positives) is

(1−α)m. Therefore, given that all null hypotheses are true, the probability of obtaining at

least one false positive (also known as the FWER) is [52]:
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FWER = 1− (1− α)m (1.3)

As can be seen from Equation 1.3, the FWER increases with the number of hypotheses

tested. The probability of obtaining false positives thus increases with the number of

hypothesis tests performed. Methods for multiple hypothesis correction attempt to control

this FWER.

LetH1, H2...Hm be a family ofm hypotheses and let P1, P2...Pm be their respective p-values.

Bonferonni Correction [53] is a simple method which rejects null hypothesis Hi if [53]:

Pi ≤
α

m
(1.4)

This has been proven to control the FWER, ensuring that FWER ≤ α.

An adaptation to this method known is as Sequential Bonferonni Correction or Holm-

Bonferonni Correction [54]. This method orders the hypotheses such that P1 ≤ P2 ≤ ... ≤

Pm. The index k is then determined such that k is the largest index for which the following

holds [54]:

Pk ≤
α

m+ 1− k
(1.5)

Hypotheses H1, H2...Hk are then rejected and hypotheses Hk+1, Hk+2...Hm are not rejected.

Another type of multiple hypothesis correction attempts to control the False Discovery

Rate (FDR), which is defined as the proportion of rejected null hypotheses which were

incorrectly rejected, or, the proportion of Type-1 errors made [55]. This is performed by
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ordering p-values in a similar fashion to Holm-Bonferonni Correction. The index k is then

determined such that k is the largest index for which the following holds [55]:

Pk ≤
kα

m
(1.6)

Hypotheses H1, H2...Hk are then rejected and hypotheses Hk+1, Hk+2...Hm are not rejected.

This procedure ensures that the FDR is below α.

Several studies involving GWAS analyses in P. trichocarpa have been published. Mcknown

et al. (2014) genotyped 448 individuals from the P. trichocarpa GWAS population using a

SNP array containing∼34,000 SNPs, and performed GWAS on 40 different traits measured

in the population [44]. These traits included biomass phenotypes such as height, volume,

and height:diameter ratio, ecophysiological traits such as leaf shape, chlorophyll content

and carbon:nitrogen ratio ad phenology traits such as bud set, growth period and leaf

drop. A set of 1118 significant GWAS associations were identified involving 410 unique

SNPs, 78% of which occurred in non-coding regions and 28% occurred in coding regions.

This resulted in 275 genes having significant trait associations, many of which were

transcription factors or regulators of some kind. [44]. A subset of 42 of the 275 genes

exhibited multiple GWAS associations with traits in different trait categories, exhibiting

potential pleiotropy.

Evans et al. (2014) performed whole genome sequencing of 544 individuals from the P.

trichocarpa GWAS population [12], and subsequent variant calling identified 17,902,740

SNPs. They found that nucleotide diversity was twice as high in intergenic space than in

genic space, and that diversity was even lower in coding space, and that a large proportion

of the SNPs had a minor allele frequency (MAF) leq 0.01 and were thus considered rare

alleles. Metrics of natural selection such as FST were used to identify candidate regions

under strong selection, and suggest that this could be driven by climate.

Tuskan et al. (2018) tested callus induction in 280 genotypes from within the P. trichocarpa

GWAS population, and performed a GWAS analysis to identify SNPs potentially affecting
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callus formation [56]. Eight genes potentially associated with callus formation were

identified. Combining GWAS results with co-expression information allowed for a putative

regulatory network for callus formation to be constructed [56].

In a recent study by Liu et al. (2018), 64 individuals from a full-sib family from a

cross between Populus deltoides and Populus euramericana, were genotyped using real-time

PCR. Phenotypes used were stem heights and diameters over 24 years. Both a standard

GWAS and distance correlation sure independence screening (DC-SIS) association tests

are performed. DC-SIS is an association method which allows for a multi-dimensional

phenotype (diameter measurements over time) as opposed to a single phenotype

measurement [57].

1.2.6 DNA Methylation

Epigenetics involves the the study of additions of chemical groups to chromatin (either the

DNA or histones) which do not change the underlying DNA sequence. These modifications

consist of histone methylation [58], histone acetylation [59] and DNA methylation [60].

Histone methylation occurs on lysine and argenine residues in histones, and can have a

silencing or activating effect on gene expression, depending on which lysine residue is

methylated [58]. Histone acetylation involes the addition of an acetyl group to the ε

amino group of lysine residues in the N-terminal tails of histones which protrude from the

histone octamer complex [59]. While histones are usually positively charged and DNA is

negatively charged, acetylation can neutralize the positive charge of the histones, resulting

in a weaker association between the DNA and the histone complex. This can allow for

greater access for transcription factors to the DNA, and can thus impact gene expression

[59]. DNA methylation involves the addition of a methyl group to a cytosine residues

[61]. This is known to have a gene-silencing affect. DNA methylation in plants occurs

mostly in repetitive DNA and transposable elements. This is thought to be a protective

mechanism to silence transposons. DNA methylation is also found within the transcribed

regions of genes in plants [62]. This gene body methylation does not have a silencing

14



effect like promotor methylation does, but appears to lead to stable gene expression across

many tissues [62, 63]. Epigenetic modifications can be inherited from parents, or occur as

a result of a stress response [64, 65].

Two major whole genome sequencing-based approaches for determining DNA methylation

across a genome are Methyl-DNA immunoprecipitation (MeDIP) followed by sequencing

(MeDIP-Seq) [66] or treatment of DNA with bisulfite followed by sequencing [67,

68]. MeDIP-Seq involves shearing of DNA into small fragments of 300-600bp and

subsequent immunoprecipitaion of methylated DNA using an antibody raised against 5-

methylcytidine. The resulting immunoprecipitated fragments are sequenced, and mapping

of the reads to the reference genome reveals the regions of the genome which contain

methylated cytosines. It is important to note that the resolution of the methylation results

cannot exceed the fragment size to which the DNA was sheared. In bisulphite sequencing,

DNA is pre-treated with sodium bisulfite which converted un-methylated cytosine residues

to uracil residues, while methylated cytosine residues remain unchanged. Subsequent

sequencing provides single-base resolution of methylated cytosines [67, 68]. See published

papers of Laird et al. (2010) [69] and Bock et al (2012) [70] for useful reviews on DNA

methylation analysis.

Vining et al. (2012) investigated DNA cytosine methylation in seven different tissues in

P. trichocarpa, including bud, male catkin, female catkin, leaf, root, xylem and phloem

[71]. DNA methylation was determined using MeDIP-Seq followed by mapping of reads to

the P. trichocarpa reference genome. Reads mapped most frequently to intergenic regions

and repeat sequences, although promotor methylation and gene body methylation was

observed. Variation in methylation across tissues was observed at certain chromosomal

locations . A surprising result was that when looking at gene expression of methylated

genes, gene body methylation apeared to be a stronger repressor of transcription than

promotor methylation [71]. Slavov et al. (2012) made use of the methylation data

generated by Vining et al. (2012) in investigating the correlates of recombination in the P.

trichocarpa genome, and found that DNA within recombination hotspots was significantly

less methylated than non-hotspots [11].
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A follow-up study by Vining et al. (2013) used MeDIP-Seq to examine methylation levels in

another three tissues, focusing on regeneration and dedifferentiation tissue types, namely

internode stem from propagated explants, callus and internodes from regenerated plants

[72]. The MeDIP-Seq reads for the 10 different P. trichocarpa tissues from these two studies

have been mapped to the version 3 genome assembly and are available on Phytozome [13].

A stress response methylome study was performed in P. trichocarpa in which DNA

methylation was measured in drought stress and control plants using bisulphite sequencing

[73]. The number of methylated cytosines increased significantly under drought stress,

and the genes differentially methylated in drought stress vs control plants were enriched

for regulatory Gene Ontology (GO) terms. This study also performed the first investigation

of alternative splicing in P. trichocarpa and identified multiple forms of alternative splicing.

An interesting finding was also that all fusion genes identified were methylated [73].

Lafon-Placette et al. (2013) investigated the component of the P. trichocarpa methylome

in open chromatin by isolating chromatin sensitive to DNase I, and performing MeDIP-Seq

on the resulting DNA [74]. Extensive gene body methylation was found

The two studies by Vining et al (2012 and 2013) provide the best available methylation

dataset to use as an association network layer as it covers the broadest range of sample

types.

1.2.7 ATAC-Seq

The assay of transposase-accessible chromatin (ATAC-Seq) uses a transposase to insert

sequencing adaptors into accessible regions of chromatin (i.e. the areas in between

nucleosomes) [75, 76]. The resulting fragments are then PCR-amplifed and sequenced.

This results in nucleotide-resolution of open chromatin. There were challenges in applying

this method to plant cells due to contaminating DNA from chloroplasts and mitochondria.

This is because these elements of the genome are very accessible to the transposase and

thus lower the efficiency of the technique. Lu et al. (2016) developed a technique,

fluorescence-activated nuclei sorting (FANS)-ATAC-Seq which involves sorting of nuclei
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using flow cytometry prior to ATAC-Seq analysis [77]. Bajic et al. (2018) describe

protocols for the isolation of plant nuclei from different cell types for further analysis using

ATAC-Seq [78]. A recent study by Maher et al. (2018) applied ATAC-Seq to Arabidopsis

thaliana, Medicago truncatula, Solanum lycopersicum (tomato), and Oryza sativa (rice). An

interesting finding was that in all four species, most open chromatin sites were in non-

transcribed regions [79].

ATAC-Seq is a relatively new technology, and, to date, no study has been published on the

application of ATAC-Seq in P. trichocarpa.

1.2.8 DAP-Seq

DNA affinity purification sequencing (DAP-seq) is a technique used to determine

transcription factor binding sites in DNA developed by O’Malley et al. (2016)[80]. This

technique involves coupling a particular transcription factor of interest to affinity beads.

Fragmented genomic DNA is eluted over the beads, retaining only DNA fragments which

bind to the transcription factor. Subsequently, the retained fragments are sequenced. The

first study describing this technique demonstrated its use in identifying the Arabidopsis

“cistrome” - the binding location/motifs of 1,812 transcription factors [80]. The DAP-seq

protocol was published by Bartlett et al. (2017) [81].

To date, no DAP-seq study has been performed in P. trichocarpa. This would be an

incredibly valuable data layer to investigate the transcription factor regulatory network

of P. trichocarpa.

1.2.9 Transposable Elements and Repeats

Transposable elements (TEs) are segments of DNA which are mobile, in the sense that they

can move from one genomic location to another. Type I elements, or retrotransposons,

require an RNA intermediate, and are then reverse-transcribed into the genome at a

different location [82, 83]. This is thus a “copy and paste” mechanism. Type II TEs
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are called DNA transposons, and involve the excision of the DNA TE and subsequent

integration elsewhere. This can thus be described as a “cut and paste” mechanism [82, 83].

Many TEs are no longer active because mutations have inhibited their ability to transpose.

However, some TEs are silenced by the host. This can include mechanisms such as silencing

by RNAi or though DNA/histone methylation [82].

Different TEs show preference for insertion at different locations in the genome, and thus

exhibit very different distributions across the genome [84]. TEs have large impacts on

genome characteristics and evolution [85]. Firstly, they have a significant impact on

genome size, comprising a large part of many plant genomes [84], ranging from 10%

of the genome of Medicago truncatual, 42% of P. trichocarpa and 80% of Pinus taeda

(loblolly pine) [86]. Unequal homologous recombination can also result from the presence

of multiple TEs of a given family. This can cause various genome rearrangements including

duplications, inversions, deletions and translocations [84, 87]. TEs which insert into gene

regions can cause the gene to become non-functional. In addition, TEs which insert near

genes can impact the expression pattern of the genes, especially since some TEs contain

regulatory sequences [84, 83]. Application of stress to a organism has been shown to

activate TEs, leading to the hypothesis that TEs create variability in the genome which

could be useful under times of stress [88].

Since the genome release, several investigations of repeats and transposable elements have

been performed in P. trichocarpa. Soon after the release of the P. trichocarpa genome,

Zhou et al. (2009) annotated repeat sequences in the genome and made them publically

available in a database called RepPop [89]. Cossu et al. (2012) identified LTR repeats in

P. trichocarpa and investigated their distribution across the genome, finding Gypsy LTRs

to be enriched in putative centromeric regions [90]. Soon after, Natali et al. (2015)

surveyed LTR-retrotransposons in an updated version of the P. trichocarpa genome [91].

Vining et al. (2012) investigated the number of repeats and genes which were methylated

vs non-methylated in P. trichocarpa, and found that methylated retroelements, LTRs, hAT

elemets, Cacta elements and certain LINEs were overrepresented when compared to their

un-methylated versions [71]. It was also found that the methylation patterns of TEs
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differed significantly across tissues [71]. Usai et al. performed an investigation into the

repetitive DNA content of seven different Populus species, including P. deltoides, P. nigra, P.

tremula, P. tremoloides, P. balsamifera, P. simonii and P. trichocarpa [92]. LTR repeats were

the dominant repeat type across all species, although the total repeat content varied from

33.8% in P. nigra to 46.5% in P. tremuloides.

In a recent study by Mascagni et al. (2018), insertion ages of LTR TEs were determined

in P. trichocarpa by comparing the sequences of the 3’ and 5’ ends of LTRs. This provides

an indication of the time since insertion because at the time of insertion, the 3’ and 5’

LTRs are identical, and subsequently accumulate mutations independently after insertion

[93]. Insertion time was also determined by comparing the sequences of paralogous RTs

from the same lineages. The two methods provided conflicting results, with the LTR

comparison method suggesting that Gypsy TEs were older than Copia TEs, whereas the RT

comparison method did not find a significant difference in the age of these classes [93].

Yi et al. (2018) recently published a database (SPTEdb) of transposable elements in P.

trichocarpa, P. euphratica and Salix suchowensis. This database provides TE annotation for

these organisms using multiple TE identification methods and presents these in a database

format as well as a JBrowse interface [94].

1.3 Data Integration

1.3.1 Multi-Omic Studies and Data Integration

The current era has an extensive suite of technologies capable of measuring and

characterizing several aspects of a cellular system, such as next generation sequencing

technologies for genomics, transcriptomics and epigenomics as well as metabolomics and

other phenotypes. An untargeted approach is often favored over a targeted approach as

this attempts to capture information about the entire system and understand the organism

as a whole. In the review by Weckwerth (2011), it is highlighted that the next step

in understanding complex systems will involve the integration of these different data
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layers [4]. An important and challending task which data integration can help solve is

the identification of new candidate genes involved in complex phenotypes[95, 5], which

can then be validated using genetic/molecular biology tools. It is particularly difficult

to generate hypotheses that suggest the mechanism of a gene’s affect on a particular

phenotype. Prioritizing candidate genes and hypothesizing the mechanism of the

effect requires multiple data types, such as gene-phenotype associations, expression/co-

expression information, knowledge from literature, annotation information, protein-

protein/protein-DNA interactions, epigenetic modifications, to name a few [95]. This

presents a challenge because of the heterogenous nature of these data types, and the

fact that they are often distributed across different databases and represented as different

structures [95]. nodes and edges have different types. There is thus an increasing value

in databases which integrate various layers of data from various sources [96], for example

Knetminer [97, 98], and String [99, 100, 101, 102].

Data integration requires that the various data layers be coerced into a uniform data

structure. The data collected from various techniques can each be represented as a

matrix/table of samples and variables, as illustrated in the review by Weckwerth (2011)

[4]. Once represented as a matrix, there are various data structures/analysis approaches

which can be used to integrate and analyze the data. This can range from multivariate

analysis such as Orthogonal Projections to Latent Structures (OPLS) [103], to networks

[95, 104] and signal processing, such as that seen in the study by Spencer et al. (2006)

[105].

This section will describe the theory behind different data structure/approaches such as

networks and signal processing, discuss examples in which these data structures/methods

are used in the analysis of multiple biological data types and show use cases of data

integration using these strategies, focusing on examples in poplar where possible.
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1.3.2 Networks

Network Theory

Networks are useful mathematical structures which represent a system in terms of its

components, and pairwise interactions between the components [106]. The field of

Network Theory has its origins in Graph Theory. Intuitively, a graph (or network) is a

set of objects (nodes) connected by lines (edges) as shown in Figure 1.1A. Mathematically,

a graph G is an ordered pair defined as G = (V,E) where V is a set of nodes and E is a set

of edges [107]. Each edge eij ∈ E is defined as a set of two nodes:

eij = {i, j} (1.7)

where i ∈ V and j ∈ V . In biological network applications, nodes represent a biological

object of interest and edges will represent associations/interactions/similarities between

these biological objects.

A graph can be represented numerically as a matrix, namely an Adjacency Matrix [107].

The Adjacency Matrix A is an n × n matrix where n = |V |, the number of nodes in the

network. Each entry aij in an Adjacency Matrix associated with a graph is defined as [107]:

aij =




1 if {i, j} ∈ E

0 otherwise.
(1.8)

The Adjacency Matrix associated with the small example graph in Figure 1.1A is shown

in Figure 1.1B. Each edge eij in a graph can be assigned a real number weight wij which

represents the strength of the relationship between the two nodes it connects. A weighted

graph can be mathematically represented as a Weighted Adjacency Matrix. This matrix
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Figure 1.1: Example Network. A small network represented (a) set theoretically, (b)
visually and (c) as a matrix.
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is constructed in a similar manner to the normal Adjacency Matrix. Each entry aij of the

Weighted Adjacency Matrix is defined as:

aij =




wij if {i, j} ∈ E

0 otherwise.
(1.9)

where wij is the weight associated with edge eij [107].

A bipartite graph G = (V,E) is a graph in which the nodes of V can be partitioned into

two non-overlapping sets, V1 and V2 and each edge eij ∈ E is defined as:

eij = {vi, vj} (1.10)

where vi ∈ V1 and vj ∈ V2 [108]. Intuitively, this means that a bipartite graph (or a

bipartite network) consists of two classes of nodes in which nodes of one class can only

be connected to nodes of the other class. An example of a bipartite network is shown in

Figure 1.1C, and it’s matrix representation in Figure 1.1D.

Networks are useful tools for modeling and analyzing complex biological systems

by representing biological molecules/components as nodes, (e.g. genes, proteins or

metabolites) and representing the relationships/interactions/similarities between them as

edges [106]. For example, networks can model co-expression relationships between genes,

sequence similarity between genes, physical interactions between proteins or correlations

between metabolites. Networks allow for biological datasets to be visualized in an

intuitive manner and network visualization packages such as Cytoscape [109] provide

an interactive environment for network visualization. However, networks are not simply

useful as a visualization tool. Networks provide a data structure which can be computed

upon, allowing further analysis to be performed on a dataset represented as a network.

Examples of such analysis methods include network-based clustering algorithms such as
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Markov Clustering (MCL) [110] and Weighted Gene Co-expression Network Analysis [111]

which cluster the nodes of a network into groups based on the topology of the underlying

network. Datasets represented as networks are also very easily merged with each other.

This feature makes networks a useful tool for combining information from different data

sources to create a combined and holistic environment for data interpretation.

GWAS Networks

Network approaches have been applied to GWAS analyses in order to interpret or further

analyse the resulting lists of SNPs and p-values. These often involve mapping the resulting

SNPs associated with phenotypes to their respective genes, and then projecting these genes

into protein-protein interaction networks [112] or co-expression networks [113] in order

to identify other putative causal genes, or to form sets or subnetworks of genes putatively

affecting the same phenotype [114].

The results of a GWAS study can be viewed as bipartite networkG = (V,E) where V can be

partitioned into a set of SNPs (V1), and a set of measured phenotypes (V2), and E is a set of

edges connecting SNP nodes to the phenotype nodes they are associated with. SNPs can be

connected to multiple phenotypes, and phenotypes can be connected to multiple SNPs. A

toy example of such a network can be seen in Figure 1.1(a). Pink, diamond shaped nodes

represent measured phenotypes A-D and blue, circular nodes represent SNPs 1-10. Each

edge represents GWAS associations between SNPs and phenotypes. This representation of

GWAS results has been used to estimate pleiotropy within a Human-Phenotype-Network,

calculated as the average degree of the gene nodes within a gene-phenotype bipartite

network [115]. Another example can be seen in a study by Fagny et al. (2017) in which

the results of an expression quantitative trait loci (eQTL) were represented as a bipartite

network, connecting SNPs to genes if the expression level of the gene was significantly

associated with the SNP [116].
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Figure 1.2: Vector Similarity. Gene association network comparison involves construction
of a data matrix of measurements (e.g. gene expression) for all genes in a genome across
various samples. Calculation of the similarity between all pairs of gene vectors results in a
similarity score.

Co-expression, Co-methylation, and Correlation Networks

Several of the ’omics data layers discussed in Section 1.2 can be used to construct gene

networks, such as gene co-expression networks and gene co-methylation networks. These

networks require some quantity, such as gene expression, to be measured for every gene

across multiple samples representing different conditions, tissues or perturbations. A

common way to construct gene association networks is to calculate the similarity between

the profiles of all pairs of genes (Figure 1.2), and then apply a threshold [117, 118]. The

choice of similarity metric can have a large impact on the resulting network topology, as

shown in a study by Weighill and Jacobson (2017) [118].

Co-expression networks have been used for various applications, including gene

function investigations, gene module and regulatory hub gene investigations, as well as

comparative co-expression network analysis across different species [117, 119, 120, 121,

122]. Movahedi et al. (2012) described an approach for incorporating gene homology

information in order to compare gene co-expression modules across plant species to

identify clusters which are conserved across species [123]. The overal functional impact of

modules of sets of co-expressed genes can be investigated using enrichment of functional

ontologies such as Gene Ontology [124] and MapMan [125] (see for example Emamjomeh

et al (2017) [122]).
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Horvath et al. (2008) presented a useful set of network topology measures to characterize

the structure of a co-expression network (or any network) [126]. These measures ranged

from global network measures such as centralization, density and heterogeneity to node-

based metrics such as connectivity and the clustering coefficient. Yip and Horvath (2007)

also developed a new network measure/transformation called Topological overlap, which

calculates the connectedness” of two nodes based on direct connections as well as indirect

connections via their neighbors[127]. This provides an extra transformation which can

be performed on a similarity network, which considers not only the similarity between

expression profiles of two genes in question, but also the expression profiles of their

network neighbours, and thus can help address the problem arbitrary thresholds missing

important edge connections. This Topological Overlap measure is an integral part of a

popular gene co-expression pipeline called Weighted Gene Co-expression Network Analysis

(WGCNA) developed by Langfelder and Horvath (2008) [128]. An extension of the

Topological Overlap measure, called Cross-Network Topological Overlap, was developed

by Weighill et al. (2017), which can be used to compare the similarity in the neighborhoods

of a given node in two distinct networks [118].

Several studies in Populus species have involved co-expression networks, some focusing

on co-expression networks as the main aspect of the investigation, and others using co-

expression networks as a supplementary investigation surrounding the functions of a

specific set of genes. Netotea et al. (2014) investigated differences in the genome-wide

co-expression networks of P. trichocarpa, Oryza sativa and A. thaliana constructed from

publicly availabe expression data [129]. It was found that while individual gene-gene co-

expression relationships were different between the three species, overal neighbourhoods

of genes were significantly conserved across species. Another interesting finding was that

orthologs with the most sequence similarity did not have the most similar expression

pattern (“expressolog” [130]).

An interesting co-expression study by Grönlund et al. (2009) constructed co-expression

networks from 1024 publicly available microarray datasets for P. tremuloides by jack-knife

re-sampling half of the number of samples 100 times, calculating the Pearson correlation
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between all pairs of genes in each jack-knife re-sample, converting the Pearson correlations

to distance metrics, and subsequently constructing 100 minimum spanning trees (MSTs)

and merging the resulting networks [131]. This approach of re-sampling allowed for the

identification of rarer interactions between genes that would not have been identified

through only looking at the dataset as a whole. Another whole genome co-expression

study in poplar was performed by Ogata et al. (2009) in which 95 publicly available P.

trichocarpa microarray expression datasets were used to construct a co-expression network

and extracted co-expression modules, which were released in a publicly availabe database

[132].

Several studies of specific genes in poplar incorporated co-expression elements into their

analysis. Tian et al. (2017) investigated the role of P. trichocarpa Na+/H+ antiporters in

stress responses, as well as potential functional divergences within the family of these NHX

genes [133]. Using a co-expression network from publicly available data on Phytozome,

they showed divergence in the expression pattern of members of this family. Several

studies in poplar performed Weighted Gene Co-expression Network Analysis (WGCNA) of

genes responding to certain stresses/conditions, including control vs drought conditions

[134] in Populus tremula x alba, controls vs Jasmonic acid and Salicylic acid treatments

in a Populus deltoides x P. euramericana hybrid[135], and also a developmental gradient

of stem tissue [136]. In a characterization of DWARF14 genes in P. trichocarpa, co-

expression networks showed divergent expression between the two DWARF14 [137]. In

another recent study by Tuskan et al. (2018), genes having a GWAS association with

callus formation were identified [56], and the co-expression patterns of these genes

were investigated using a co-expression network constructed from the P. trichocarpa gene

expression atlas, and identified interesting clusters of positive and negative co-expression

relationships between these genes, showing a clear regulatory pattern. It is evident that co-

expression networks are a well-developed and widely-used data layer in various organisms

including Populus species.

Co-methylation networks are a newer approach looking at the similarity between the

methylation patterns of genes, and a more limited number of studies using co-methylation
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networks were found. However, they are a valid and useful data layer which carries

information not present in co-expression datasets.

Van Eijk et al. (2012) collected methylation and gene expression data for several human

individuals to investigate the relationship between these two data layers [138]. WGCNA

was used to construct co-expression and co-methylation networks, and subsequently

to identify co-expression and co-methylation modules. In general, co-expression and

co-methylation modules had very few overlapping genes, although both co-expression

and co-methylation modules showed significant functional enrichment for various GO

terms. Linear regression was also used to identify relationships between methylation

and expression across individuals in which both positive and negative relationships were

identified [138]. Various other co-methylation network analyses have been performed in

human cancer investigations [139, 140, 141].

SNP correlation

SNP correlation networks involve calculating the correlation/co-occurrence between SNPs

across a population, and can be converted to gene-gene networks by mapping SNPs to the

genes in which they reside. The Custom Correlation Coefficient (CCC) is an allele-specific

correlation metric proven to be useful in identifying sets of SNPs (“blocs”) which can be

tested against complex phenotypes to uncover combinatorial genetic associations which

affect the phenotype [142, 143]. The edges in the SNP correlation network can also be

interpreted as potential co-evolutionary relationships, particularly when the variants in

question reside on different chromosomes. The CCC is defined for bi-allelic SNPs. For a

given pair of sites i and j, the CCC is calculated 4 times, once for each pair of alleles x and

y between the two sites. The CCC between alleles x and y at positions i and j, respectively,

is defined as:

CCCixjy =
9

2
Rixjy

(
1− 1

fix

)(
1− 1

fjy

)
(1.11)
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where Rixjy represents the relative co-occurrence of x and y at positions i and j, fix

represents the frequency of allele x at position i and fjy represents the frequency of allele

y at position j [142, 143].

CCC has been used to investigate the genetic underpinnings of heart disease [142],

psoriasis [143] and genes implicated in various other diseases [144]. This metric was also

applied in a study by Bryan et al. (2018) in P. trichocarpa [145]. The positioning of the

two DWARF14 paralogs in the P. trichocarpa SNP correlation network were investigated,

indicating that they appeared to have different co-evolution partners, potentially indicating

functional divergence [145]. The CCC metric has been ported to run on graphics

processing units (GPUs) providing a significant increase in speed [146, 147].

Kogelman et al. (2014) constructed SNP correlation modules by calculating the Pearson

correlation between pairs of variants across individuals followed by topological overlap

clustering using WGCNA [148]. This method was termed “WISH” (Weighted Interaction

SNP Hub) and was considered an extension of WGCNA to genotype data. Later, in

2017, the developers of WGCNA published an extension of the method to construct

SNP correlation networks from GWAS associations, termed “WSCNA” (Weighted SNP

Correlation Network Analysis) which involves clustering SNPs based on beta coefficients

from a GWAS analysis [149], and describe the use of these networks in calculating

polygenic risk scores.

Network-based Data Integration

A useful review by Gligorijević et al. (2015) classifies network-based data integration

into two categories, namely homogeneous and heterogeneous integration [150].

Homogeneous integration involves integrating networks with the same type of nodes, but

different edge types, for example, a gene co-expression network and a gene interaction

network. Heterogeneous data integration involves integrating networks with both

different node types and edge types. These strategies for data integration are then sub-

divided into groups based on the stage at which data integration occurs. Early integration
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involves integration of the datasets, and a single model is built on a combined dataset.

This appears similar to the definition of Concatenation-based integration as described by

Ritchie et al (2015) [151]. Late integration involves building separate models from each

individual dataset and subsequently combines the information in the separate models. This

is similar to Model-based integration as described by Ritchie et al. (2015) [151]. A third

integration strategy as described by Ritchie et al. (2015), transformation-based integration,

involves transforming multiple datasets into an intermediate, common structure, such as

a network, which are then merged before the constructing further models [151].

Two of the most exhaustive network-based data integration tools are String (Search Tool

for the Retrieval of Interacting Genes) and KnetMiner, both of which are online, freely

accessible resources.

STRING is an online, publicly available database of protein interactions, incorporating

various data types and data sources, including co-expression, co-occurrence, physical

interactions, sequence homology, and associations from textmining [99, 100, 101]. The

user can search for genes, and resulting network neighborhoods can also be clustered

using K-means clustering and MCL [110]. Protein 3D structure as well as functional

enrichment information is also displayed. The SRING database can also be queried through

the Cytoscape network visualization app [101, 109]. Certain sets of publicly available data

for P. trichocarpa is available in STRING.

KnetMiner is a publicly available tool/database consisting of heterogeneous “knowledge”

networks for 11 species, including P. trichocarpa, and includes layers of information

of different types and sources represented as networks, such as GWAS data, sequence

homology relationships, annotation information, metabolic pathways, protein interactions

and occurence in scientific literature [97, 98]. KnetMiner allows the user to search not

only for genes, but also concepts, phenotypes or pathways. A score (KNETscore) is then

calculated to rank genes based on their relevance of the neighborhood to the search

terms. KnetMiner provides useful network visualizations as well as a chromosomal view

indicating the location on the chromosomes in which the genes occur and an “evidence

30



view” indicating the number of nodes/concepts of different types in the neighborhood of

the genes in question.

The Mergeomics R package and webserver allows one to integrate GWAS summary

statistics with other biological pathways and gene networks, and perform enrichment

analyses as well as Weighted Key Driver Analysis [152]. This involves identifying hub genes

in a selected/uploaded gene network, and subsequently overlaying phenotype-associated

genes from uploaded GWAS analyses, and reports key drivers for each of these genes

[152]. Key drivers and their neighborhoods can then be visualized using Cytoscape Web.

Mizrachi et al. (2017) developed an interesting network-based data integration approach

to combine pathway information from KEGG, eQTL associations and gene expression data

in Eucalyptus[153]. The network-based integration approach involves constructing a gene

interaction network based on information in KEGG as well as eQTL associations with

biomass and wood traits. The adjacency matrix of this network is then multiplied with a

gene expression matrix, which results in a “network-diffused gene expression” matrix. This

adjusts gene expression values based on those of neighboring genes in the gene interaction

network. These new gene expression profiles are then correlated with each trait to identify

genes of relevance to wood properties and biomass[153].

Walley et al. (2016) performed a study which compared the topologies of various

gene association networks in Maize [154]. A gene co-expression network, a protein-

co-expression network and a phosphoprotein co-expression network were constructed

and clustered into modules using WGCNA, and the edge conservation between the

networks were calculated using the Jaccard index, and found that 6.1% of the edges were

shared between the protein co-expression and gene co-expression networks. Functional

enrichment using MapMan [125] terms was performed on modules of co-expressed

genes/proteins from the two networks, and similar enriched functions were found in both

networks.

NetICS (Network-based Integration of Multi-omics Data) is a data integration strategy

based on graph diffusion [155]. This method was developed by Dimitrakopoulos et

al. (2018) in order to prioritize cancer genes. A directed gene interation network was
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constructed from publicly available data which included multiple types of relationships,

including phosphorylation, co-expression, activation and inhibition. Aberrant genes (i.e.

those found to be differentially impacted in a case/control experiment) are marked,

and uses network diffusion to predict “mediator genes” which link upstream “genetically

aberrant” genes to downstream gene expression changes [155]. This approach successfully

identified many known cancer genes.

Gutiérrez et al. (2007) investigated gene expression in A. thaliana under Carbon and

Nitrogen treatments [156]. A separate gene interaction network was constructed using

publicly available protein-protein and protein-DNA interactions, as well as miRNA-RNA

interactions and the Arabidopsis metabolic pathway. A subnetwork consisting of C/N

responsive genes and their neighbours in the multi-network was constructed. Clustering

of this subnetwork revealed interesting regulatory subnetworks.

Bunyavanich et al. (2014) used a multi-omic network-based approach to investigate

allergic rhinitis [157]. GWAS was performed on 5633 genotyped individuals, and gene

expression was measured in 200 of these individuals. Gene co-expression network and

modules were constructed using WGCNA. Co-expression modules that contained genes

which harbored or were near to GWAS associated genes were considered candidate

modules associated with allergic rhinitis. Associations between SNPs and gene expression

was determined (called “eSNPs”) which are SNPs within 1MB of a gene which is also

associated with the expression of the gene. identifying loci associated both with the allergic

rhinitis and the expression of a gene. Modules enriched in eSNPs were also identified,

and it was found that the candidate allergic rhinitis modules were enriched in eSNPs

associated with allergic rhinitis, and mitochondrial pathways were identified as important

components of allergic rhinitis using functional enrichment [157].

Calabrese et al. (2017) integrated GWAS and co-expression data in an investigation into

genes affecting bone mineral density [158]. Genes identified as associated with bone

mineral density in a GWAS analysis were mapped onto a co-expression network, which

was subsequently clustered into modules. Co-expression modules which were enriched for

GWAS hits were then identified [158].
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There have thus been several efforts to integrate various data layers, sometimes for the

goal of prioritizing candidate genes, and others for providing biological context for the

interpretation of GWAS results.

1.3.3 Signal Processing

Data Representation

In the previous section, we discussed the representation of biological data at network

structures, which focuses on relationships between pairs of objects. Here, we discuss the

representation of biological data as “signals”, and subsequent analysis techniques.

A biological signal represents the response of a variable over some range of input values,

which usually have some longitudinal feature, such as a response over increasing time,

or a response over increasing distance. Classic examples of biological signals are feature

density signals across chromosomes, such as SNP density, gene density, recombination

density, GC content, to name a few [159, 105, 23].

These signals have variation at different scales, (i.e. are composed of multiple signals of

different frequencies) and signal processing techniques can be used to extract frequency

information. McCormick et al. (2018) who used the Fourier Transform to identify a

prominent periodicity in SNP density, finding that SNP density peaked with a period of

3 base pairs downstream of coding sequence start sites [23], which was explained by the

positions in the third “wobble” base being under lower selective pressure.

The Fourier Transform represents a signal as a linear combination of sine and cosine waves.

These are infinite waves and thus the Fourier Transform provides no information as to

which frequencies are observed at different locations in the signal. The Wavelet Transform

is a newer signal processing technique which addresses this limitation [160].
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Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) is a signal processing technique which

expresses a signal as a linear combination of special functions called wavelets. These

functions are scaled translations of a mother wavelet function, i.e. different widths

and different x-axis locations of a particular function. A wavelet w is required to have

oscillations and is required to “die out”, i.e. the function limx→∞w(x) = 0. An example of

a wavelet function called the Ricker Wavelet can be seen in Figure 1.3A.

What results from a wavelet transform is a wavelet coefficient W (s, τ) (Equation 5.1), for

every scale s and translation (shift along the x-axis) τ [160].

W (s, τ) =
1√
s

∫
f(t)ψ∗

(
t− τ
s

)
dt (1.12)

This essentially can be interpreted as “sliding” the wavelet of a certain width over the

signal, and at each position calculating the integral of the product of the wavelet and

the signal over the entire x-axis, producing a vector of coefficients. This process is then

repeated for multiple widths of the mother wavelet. An example of the CWT applied to

the SNP density of P. trichocarpa chromosome 1 can be seen in Figure 1.3B. Other visual

examples various mother wavelets and CWT coefficient outputs can be seen in references

[161, 105, 160, 162].

Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is a sampled version of the CWT, and involves

sampling of the x dimention of the signal and scale dimension of the wavelet [160]. This is

a dyadic sampling, which results in low frequency, large scales being sampled sparsely and

high frequency, small scales being sampled densely [163]. The DWT uses discrete wavelet

functions (for example, see Figure 1.3C) and produces a series of sets of coefficients with

one set of coefficients for each scale computed (Figure 1.3D). DWT coefficients for Palmer
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Figure 1.3: Continuous and Discrete Wavelet Transforms. (A) Continuous Ricker
Wavelet, (B), CWT coefficient matrix heatmap, (C) discrete s8 wavelet, (D) DWT
coefficients.
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Drought Severity Index data across time can be seen in the tutorial by Dong et al. (2008)

[161].

1.3.4 Wavelet-Based Analysis and Integration of Biological Data

A useful overview of the wavelet transform and previous biological applications prior to

2003, including sequence analysis, protein structure investigation and expression data

analysis to identify periodicities, can be found in the review by Liò (2003) [164]. More

recent applications of the wavelet transform in biological data analysis is discussed below.

Thurman et al. (2007) performed an investigation to detect “functional domains” of a scale

larger than that of within a gene, in the human genome [165]. The wavelet transform was

used to smooth density signals of various ENCODE data over various scales. This included

transcriptional data, histone acetylation, histone methylation and DNA replication time.

A Hidden Markov Model was then used to segment the genome into one of 2 states,

namely state 0 (“repressed”) and state 1 (“active”), particular signal [165]. This was

performed separately for each data type and also in a combined fashion. Domains with

the state 1 (“active”) classification were enriched in characteristics of “active” chromatin,

for example, transcriptional stop/start sites, mRNAs, CpG islands, among others. However,

domains with the state 0 (“repressed”) classification were significantly enriched in signal

transduction genes as determined using GO enrichment. Transposable elements in general

were evenly distributed across active and repressed domain, however, certain classes of

repeats, such as L1 LINE repeats and LTR elements were enriched in state 0 domains

(“repressed” domains) [165].

Shim et al. (2015) determined variants which are associated with open chromatin

using DNase-seq data from 70 genotyped individuals. Chromatin accessibility vectors are

transformed using the DWT prior to associating them to phenotypes [166]. The advantage

of this method is that it takes into account the read profile, without having to resort to

“artificial” boundaries such as known exon boundaries or sliding windows of a set size

[166].
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Machado performed wavelet analysis of sequence data by transforming DNA sequence

into a vector of numbers, with each base pair mapped to a point on one of the axes of

the complex plane [167]. The wavelet transform is applied to these sequence vectors

and various wavelets are tested. However, no functional interpretations of results were

discussed.

Biological signals can have different relationships with each other depending on the scale

at which one is looking. While two features may be correlated at certain scales, they may

be anti-correlated at others. Keitt et al. (2005) introduced wavelet-coefficient regression,

in which wavelet transforms are applied to dependent and independant variables before

performing regression analysis, allowing for scale-specific inference [168]. Spencer et

al. (2006) used this kind of approach, applying the DWT and linear model analysis to

investigate scale-specific relationships between various genomic features [105]. Genomic

signals of recombination, divergence, diversity, GC content and gene content in 1kb

regions across human chromosome 20. The DWT was performed on each of these

transforms, and calculated the correlation between the wavelet coefficients of features

at each scale to identify scale-specific correlations [105]. Paape et al. (2012) applied

the same approach as Spencer et al. (2006), using the wavelet transform followed by

linear model analysis to identify genomic features which correlate with recombination in

Medicago truncatula [159]. The wavelet correlation results revealed a negative correlation

between recombination and the distance to the centromere, which had not been found in

several other organisms [159].

Very recently, Fernandéz et al. (2018) applied the wavelet transform in an application for

visualizing DNA methylation data at various scales/resolutions [169].

1.4 Concluding Remarks and Aims

In this review, we have discussed large scale omics data types, multi-omics studies, as well

as network based analysis/integration techniques and wavelet-based multi-scale analysis

and comparisons, all with a particular focus on investigations performed in poplar. Table
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1.2 summarizes examples of multi-omic/data integration studies in poplar. While many

such studies have been performed over the last decade, few studies involve the integration

of multiple data types in a combined analysis, as opposed to a sequential analysis.

A vast collection of different data types has been generated for Populus trichocarpa.

As described in this review, the genome has been sequenced and annotated [6], and

the assembly is currently in its fourth version of revision. Approximately ∼1,300 P.

trichocarpa genotypes have been propagated in four different common gardens [10,

11, 12] and have been resequenced. This has provided a large set of ∼ 28,000,000

Single Nucleotide Polymorphisms (SNPs) that have recently been publicly released (DOI

10.13139/OLCF/1411410). Many molecular phenotypes measured through untargetted

metabolomics, RNA-Seq, ionomics, pyMBMS, as well as physical properties [170]

measured in this population have provided an unparalleled resource for Genome Wide

Association Studies (for example, see [44]). DNA methylation data in the form of MeDIP

(Methyl-DNA immunoprecipitation)-seq has been performed on 10 different P. trichocarpa

tissues [71].

The availability of public data as well as access to high performance computing resources

at the Oak Ridge Leadership Computing Facility (OLCF) and The Compute and Data

Environment for Science (CADES) provides an opportunity for the large-scale, concurrent

analysis of all of this data in order to profile and characterize the P. trichocarpa genome.

Gaps in the investigations in poplar include (1), comprehensive extraction and

investigations of pleiotropic signatures, (2) comprehensive analysis of the positions and

signatures of the centromere, and (3) large scale target gene identification from integrated

multi-omics datasets. This dissertation will involve the use of network and signal

processing techniques for the combined analysis of these various data types, for the

goals of (1) increasing fundamental knowledge of P. trichocarpa and (2) facilitating the

generation of hypotheses about target genes and phenotypes of interest. The research in

this dissertation will be divided into four chapters:
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Table 1.2: Examples of multi-omic/data integration studies in poplar species.

Species Data Types/Layers Year [Reference]

P. trichocarpa transcriptomics, metabolomics, biomass/-

sugar release

2019 [171]

P. trichocarpa genomic, transcriptomic, proteomic, flux-

omic, wood chemical property phenotypes

2018 [172]

P. tremula x P. tremu-

loides

transcriptome, proteome, GC-MS

metabolome, LC-MS metabolome,

pyrolysis-GC MS metabolome

2018 [173]

P. trichocarpa transcriptomics, co-expression, genotype,

callus phenotype (GWAS)

2018 [56]

P. trichocarpa metabolomics, genotype, transcriptomics,

GWAS, eQTL, co-expression

2018 [38]

P. deltoides metabolomics, microbiome 2018 [37]

P. trichocarpa co-expression, protein-protein interaction,

population genotype

2017 [133]

P. trichocarpa methylation, transcript expression, miR-

NAs

2016 [174]

P. tremuloides and Lac-

caria

transcriptomics, protein-protein interac-

tions,

2016 [175]

P. balsamifera transcriptomics, metabolomics 2015 [35]

P. trichocarpa andP.

deltoides

metabolomics, transcriptomics 2014 [36]

P. trichocarpa genotype, phenotype (GWAS) 2014 [44]

P. trichocarpa methylome (bisulfite sequencing), tran-

scriptomics

2014 [73]

P. trichocarpa genotype, phenotype (GWAS) 2014 [12]

Continued on next page.
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Table 1.2: (continued)

Species Data Types/Layers Year [Reference]

P. trichocarpa methylome (MeDIP-seq), transcriptomics 2013 [72]

P. trichocarpa open chromatin, methylome 2013 [74]

P. trichocarpa methylome (MeDIP-seq), transcriptomics,

transposable elements,

2012 [71]

P. trichocarpa genotype, repeat elements, methylation,

recombination

2012 [11]

Populus euphratica

and Populus x

canescens

transcriptomics, metabolomics 2010 [176]

P. tremula x P. tremu-

loides

transcriptomics, metabolomics, proteomics 2008 [177]

P. tremula x P. tremu-

loides

transcriptomics, metabolomics 2007 [103]

P. deltoides x P. nigra

and P. deltoides x P.

trichocarpa

genotypes, metabolites (mQTLs) 2006 [32]
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Chapter 2: A data integration “Lines of Evidence” method is presented for the

identification and prioritization of target genes involved in functions of interest.

Chapter 3: A new post-GWAS method, Pleiotropy Decomposition, is presented, which

extracts pleiotropic relationships between genes and phenotypes from GWAS results,

allowing genes to be clustered based on their pleiotropic signatures.

Chapter 4: Continuous wavelet transform signal processing analysis is applied in

the characterization genome distributions of various features (e.g. gene density and

methylation profiles) in order to identify chromosome structures such as the centromere.

Chapter 5: Synteny analysis and discrete wavelet transform signal processing of various

genomic features is performed, followed by correlation analysis, in order to identify scale-

specific relationships between various genomic features.

41



Bibliography

[1] Poulomi Sannigrahi, Arthur J Ragauskas, and Gerald A Tuskan. Poplar as

a feedstock for biofuels: a review of compositional characteristics. Biofuels,

Bioproducts and Biorefining, 4(2):209–226, 2010. 2

[2] Arthur J Ragauskas, Charlotte K Williams, Brian H Davison, George Britovsek, John

Cairney, Charles A Eckert, William J Frederick, Jason P Hallett, David J Leak,

Charles L Liotta, et al. The path forward for biofuels and biomaterials. science,

311(5760):484–489, 2006. 2

[3] Pär K Ingvarsson, Torgeir R Hvidsten, and Nathaniel R Street. Towards integration

of population and comparative genomics in forest trees. New Phytologist,

212(2):338–344, 2016. 3

[4] Wolfram Weckwerth. Green systems biology - from single genomes, proteomes

and metabolomes to ecosystems research and biotechnology. Journal of proteomics,

75(1):284–305, 2011. 3, 20
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Abstract

Biological organisms are complex systems that are composed of functional networks

of interacting molecules and macro-molecules. Complex phenotypes are the result

of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants.

However, the effects of these variants are the result of historic selective pressure and

current environmental and epigenetic signals, and, as such, their co-occurrence can be

seen as genome-wide correlations in a number of different manners. Biomass recalcitrance

(i.e., the resistance of plants to degradation or deconstruction, which ultimately enables

access to a plant’s sugars) is a complex polygenic phenotype of high importance to

biofuels initiatives. This study makes use of data derived from the re-sequenced

genomes from over 800 different Populus trichocarpa genotypes in combination with

metabolomic and pyMBMS data across this population, as well as co-expression and co-

methylation networks in order to better understand the molecular interactions involved

in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation.

A Lines Of Evidence (LOE) scoring system is developed to integrate the information in

the different layers and quantify the number of lines of evidence linking genes to target

functions. This new scoring system was applied to quantify the lines of evidence linking

genes to lignin-related genes and phenotypes across the network layers, and allowed for

the generation of new hypotheses surrounding potential new candidate genes involved

in lignin biosynthesis in P. trichocarpa, including various AGAMOUS-LIKE genes. The

resulting Genome Wide Association Study networks, integrated with Single Nucleotide

Polymorphism (SNP) correlation, co-methylation and co-expression networks through the

LOE scores are proving to be a powerful approach to determine the pleiotropic and

epistatic relationships underlying cellular functions and, as such, the molecular basis for

complex phenotypes, such as recalcitrance.

68



2.1 Introduction

Populus species are promising sources of cellulosic biomass for biofuels because of their

fast growth rate, high cellulose content and moderate lignin content [1]. Ragauskas

et al. (2006) outline areas of research needed “to increase the impact, efficiency, and

sustainability of bio-refinery facilities” [2], such as research into modifying plants to

enhance favorable traits, including altered cell wall structure leading to increased sugar

release, as well as resilience to biotic and abiotic stress. One particular research target in

Populus species is the decrease/alteration of the lignin content of cell walls.

A large collection of different data types has been generated for Populus trichocarpa. The

genome has been sequenced and annotated [3], and the assembly is currently in its third

version of revision. A collection of 1,100 accessions of P. trichocarpa that have been

clonally propagated in four different common gardens [4, 5, 6] have been resequenced,

which has provided a large set of ∼ 28,000,000 Single Nucleotide Polymorphisms (SNPs)

that has recently been publicly released (http://bioenergycenter.org/besc/gwas/).

Many molecular phenotypes, such as untargetted metabolomics and pyMBMS phenotypes,

that have been measured in this population provide an unparalleled resource for Genome

Wide Association Studies (for example, see McKnown et al. (2014) [7]). DNA methylation

data in the form of MeDIP (Methyl-DNA immunoprecipitation)-seq has been performed

on 10 different P. trichocarpa tissues [8], and gene expression has been measured across

various tissues and conditions.

This study involved the development of a method to integrate these various data

types in order to identify new possible candidate genes involved in target functions

of interest. The importance of P. trichocarpa as a bioenergy crop, the availability of

the high density SNP data in a GWAS population, as well as the increasing amount of

genomic/phenotypic data being generated for P. trichocarpa made it an excellent species

in which to demonstrate the method. Integrating Genome Wide Association Study (GWAS)

data with other data types has previously been done to help provide context and identify

relevant subnetworks/modules [9, 10]. Ritchie et al. (2015) reviewed techniques for
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integrating various data types for the aim of investigating gene-phenotype associations

[11]. Integrating multiple lines of evidence is a useful strategy as the more lines of

evidence that connect a gene to a phenotype lowers the chance of false positives. Ritchie

et al. (2015) categorized data integration approaches into two main classes, namely

multi-staged analysis and meta-dimensional analysis [11]. Multi-staged analysis analyses

aims to enrich a biological signal through various steps of analysis. Meta-dimensional

analysis involves the concurrent analysis of various data types, and is divided into three

subcategories [11]: Concatenation-based integration concatenates the data matrices of

different data types into a single matrix on which a model is constructed (for example,

see Fridley et al. (2012) [12]). Model-based integration involves constructing a separate

model for each dataset and then constructing a final model from the results of the separate

models (for example, see Kim et al. (2013) [13]). Transformation-based integration

involves transforming transforming each data type into a common form (e.g. a network)

before combining them (for example, see Kim et al. (2012) [14]).

This study presents a new transformation-based integration technique: the calculation of

Lines Of Evidence (LOE) scores across SNP correlation, GWAS, co-methylation and co-

expression networks for P. trichocarpa. Association networks for the various different

data types were constructed, including a pyMBMS GWAS network, a metabolomics

GWAS network, as well as co-expression, co-methylation and SNP correlation networks,

and subsequently the information in the different networks was integrated through the

calculation of the newly developed Lines Of Evidence (LOE) scores. These scores quantify

the number of lines of evidence connecting each gene to target functions of interest. In this

work, we apply this data integration technique to the wealth of P. trichocarpa data in order

to identify new potential genes involved in lignin biosynthesis/degradation/regulation

in P. trichocarpa. The LOE scores represent the number of lines of evidence that exist

connecting genes to lignin-related genes and phenotypes across the network layers. This

is a novel multi-omic data integration approach which provides easily interpretable scores,

and allows for the identification of new possible candidate genes involved in lignin

biosynthesis/regulation through multiple lines of evidence. This is also the first time all of

these P. trichocarpa datasets have been integrated on a genome-scale in a network-based
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manner, allowing for the easy identification of new target genes through their respective

connections across network layers.

2.2 Methods

2.2.1 Overview

This approach involved combining various data types in order to identify new

possible target genes involved in lignin biosynthesis/degradation/regulation. Figure 2.1

summarizes the overall approach. First, association networks were constructed including

metabolomics and pyMBMS GWAS networks, co-expression, co-methylation and SNP

correlation networks. Known lignin-related genes and phenotypes were then identified,

and used as seeds to select lignin-related subnetworks from these various networks. The

Lines Of Evidence (LOE) scoring technique was developed, and each gene was then scored

based on its Lines Of Evidence linking it to lignin-related genes and phenotypes.

2.2.2 Metabolomics Phenotype Data

The P. trichocarpa leaf samples for 851 unique clones were collected over three consecutive

sunny days in July 2012. For 200 of those clones, a second biological replicate was

also sampled. Typically, leaves (leaf plastocron index 9 plus or minus 1) on a south

facing branch from the upper canopy of each tree were quickly collected, wiped with

a wet tissue to clean both surfaces and the leaf then fast frozen under dry ice. Leaves

were kept on dry ice and shipped back to the lab and stored at -80 until processed

for analyses. Metabolites from leaf samples were lyophilized and then ground in a

micro-Wiley mill (1 mm mesh size). Approximately 25 mg of each sample was twice

extracted in 2.5 mL 80% ethanol (aqueous) for 24 hr with the extracts combined, and

0.5 mL dried in a helium stream. “Sorbitol [(75 µl of a 1 mg/mL aqueous solution)]

was added ... before extraction as an internal standard to correct for differences in
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Figure 2.1: Overview of LOE approach. Overview of pipeline for data layering and score
calcualtion. First, the different network layers are constructed. Networks are layered, and
lignin-related genes and phenotypes (orange) are identified. LOE scores are calculated
for each gene. An example of the LOE score calculation for the red-boxed gene is shown.
Thresholding the LOE scores results in a set of new potential target genes involved in lignin
biosynthesis/degradation/regulation.
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extraction efficiency, subsequent differences in derivatization efficiency and changes in

sample volume during heating” [15]. Metabolites in the dried sample extracts were

converted to their trimethylsilyl (TMS) derivatives, and analyzed by gas chromatography-

mass spectrometry, as described previously [16, 17], and also described by Timm et

al. (2016) [18]: Briefly, dried extracts of metabolites “were dissolved in acetonitrile

followed by the addition of N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) with

1% trimethylchlorosilane (TMCS), and samples then heated for 1 h at 70 to generate

trimethylsilyl (TMS) derivatives [16, 17]. After 2 days, aliquots were injected into an

Agilent 5975C inert XL gas chromatograph-mass spectrometer (GC-MS). The standard

quadrupole GC-MS is operated in the electron impact (70 eV) ionization mode, targeting

2.5 full-spectrum (50-650 Da) scans per second, as described previously [16]. Metabolite

peaks were extracted using a key selected ion, characteristic m/z fragment, rather than

the total ion chromatogram, to minimize integrating co-eluting metabolites” (quotation

from Timm et al. (2016) [18]). As described in Zhao et al. (2015) [15]: “...[The peak

areas were] normalized to the quantity of the internal standard (sorbitol) [injected, and

the] amount of sample extracted... A large user-created database [(>2400 spectra)] of

mass spectral electron impact ionization (EI) fragmentation patterns of TMS-derivatized

metabolites, as well as the Wiley Registry [10th] Edition combined with NIST [2014] mass

spectral database, were used to identify the metabolites of interest to be quantified” [15].

(Brackets indicate deviations from quoted text.)

2.2.3 pyMBMS Phenotype Data

The pyMBMS phenotype data was generated using the method as described in Biswal

et al. (2015) [19]: “A commercially available molecular beam mass spectrometer

(MBMS) designed specifically for biomass analysis was used for pyrolysis vapor analysis

[[20, 21, 22]]. Approximately 4 mg of air dried 20 mesh biomass was introduced into the

quartz pyrolysis reactor via 80 uL deactivated stainless steel Eco-Cups provided with the

autosampler. Mass spectral data from m/z 30-450 were acquired on a Merlin Automation

data system version 3.0 using 17 eV electron impact ionization.”
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The pyMBMS mz peaks were annotated as described by Sykes et al. (2009) [21], as done

previously by Muchero et al. (2015) [23].

2.2.4 Single Nucleotide Polymorphism Data

A dataset consisting of 28,342,758 SNPs called across 882 P. trichocarpa [3] genotypes was

obtained from http://bioenergycenter.org/besc/gwas/. This dataset is derived from

whole genome sequencing of undomesticated P. trichocarpa genotypes collected from the

U.S. and Canada, and clonally replicated in common gardens [4]. Genotypes from this

population have previously been used for population genomics [6] and GWAS studies in P.

trichocarpa [7] as well as for investigating linkage disequilibrium in the population [5].

Whole genome resequencing was carried out on a sample 882 P. trichocarpa natural

individuals to an expected median coverage of 15x using Illumina Genome Analyzer,

HiSeq 2000, and HiSeq 2500 sequencing platforms at the DOE Joint Genome Institute.

Alignments to the P. trichocarpa Nisqually-1 v.3.0 reference genome were performed

using BWA v0.5.9-r16 with default parameters, followed by post-processing with the

picard FixMateInformation and MarkDuplicates tools. Genetic variants were called by

means of the Genome Analysis Toolkit v. 3.5.0 (GATK; Broad Institute, Cambridge, MA,

USA) [24, 25]. Briefly, variants were called independently for each individual using the

concatenation of RealignerTargetCreator, IndelRealigner and HaplotypeCaller tools, and

the whole population was combined using GenotypeGVCFs, obtaining a dataset with all

the variants detected across the sample population. Biallelic SNPs were extracted using the

SelectVariants tool and quality-filtered using the GATK’s machine-learning implementation

Variant Quality Score Recalibration (VQSR). To this end, the tool VariantRecalibrator was

used to create the recalibration file and the sensitivity tranches file. As a “truth” dataset, we

used SNP calls from a population of seven female and seven male P. trichocarpa that had

been crossed in a half diallel design. “True” SNPs were identified by the virtual absence of

segregation distortion and Mendelian violations in the progeny of these 49 crosses (ca. 500

offspring in total). As a “non-true” dataset, we used the SNP calls of seven open-pollinated
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crosses from these 7 females (n = 90), filtered using hard-filtering methods recommended

in the GATK documentation (tool: VariantFiltration; quality thresholds: QD < 1.5, FS

> 75.0, MQ < 35.0, missing alleles < 0.5 and MAF > 0.05). The prior likelihoods for the

true and non-true datasets were Q = 15 and Q = 10, respectively, and the variant quality

annotations to define the variant recalibration space were DP, QD, MQ, MQRankSum,

ReadPosRankSum, FS, SOR and InbreedingCoeff. Finally, we used the ApplyRecalibration

tool on the full GWAS dataset to assign SNPs to tranches representing different levels of

confidence. We selected SNPs in the tranche with true sensitivity < 90, which minimizes

false positives, but at an expected cost of 10% false negatives. The final filtered dataset

had a transition/transversion ratio of 2.07, compared to 1.88 for the unfiltered SNPs. To

further validate the quality of these SNP calls, we compared them to an Illumina Infinium

BeadArray that had been generated from a subset of this population dataset [26]. The

average match rate was 96% (±2% SD) for 641 individuals across 20,723 loci.

SNPs in this dataset were divided into different Tranches, indicating the percentage

of “true” SNPs recovered. For further analysis in this study, we made use of the

PASS SNPs, corresponding to the most stringent Tranche, recovering 90% of the true

SNPs [ see http://gatkforums.broadinstitute.org/gatk/discussion/39/variant-quality-score-

recalibration-vqsr]. VCFtools [27] was used to extract the desired Tranche of SNPs from

the VCF file and reformat it into .tfam and .tped files.

2.2.5 GWAS Network Construction

The metabolomics and pyMBMS data was used as phenotypes in a genome wide

association analysis. The respective phenotype measured over all the genotypes were

analyzed to account for potential outliers. A median absolute deviation (MAD) from

the median [28] cutoff was applied to determine if a particular measurement of a given

phenotype was an outlier with respect to all measurements of that phenotype across the

population. To account for asymmetry, the deviation values were estimated separately for
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values below and above the median, respectively. The distribution of the measured values

together with the distribution of their estimated deviation was analyzed and a cutoff of

5 was determined to identify putative outlier values. Phenotypes that had non-outlier

measurements in at least 20 percent of the population were retained for further analysis,

this was to ensure sufficient signal for the genome wide association model. This resulted

in 1262 pyMBMS derived phenotypes and 818 metabolomics derived phenotypes.

To estimate the statistical significant associations between the respective phenotypes and

the SNPs called across the population, we applied a linear mixed model using EMMAX

[29]. Taking into account population structure estimated from a kinship matrix, we tested

each of the respective 2080 phenotypes against the high-confidence SNPs and corrected

for multiple hypotheses bias using the Benjamini-Hochberg control for false-discovery rate

of 0.1 [30]. This was done in parallel with a python wrapper that utilized the schwimmbad

python package [31].

SNP-Phenotype GWAS networks were then pruned to only include SNPs that resided within

genes, and SNPs were mapped to their respective genes, resulting in a gene-phenotype

network. SNPs were determined to be within genes using the gene boundaries defined

in the Ptrichocarpa_210_v3.0.gene.gff3 from the P. trichocarpa version 3.0 genome

assembly on Phytozome [32].

2.2.6 Gene Expression Data

P. trichocarpa (Nisqually-1) RNA-seq dataset from JGI Plant Gene Atlas project

(Sreedasyam et al., unpublished) was obtained from Phytozome. This dataset consists

of samples for standard tissues (leaf, stem, root and bud tissue) and libraries generated

from nitrogen source study. List of sample descriptions was accessed from: https:

//phytozome.jgi.doe.gov/phytomine/aspect.do?name=Expression.

P. trichocarpa (Nisqually-1) cuttings were potted in 4′′ X 4′′ X 5′′ containers containing

1:1 mix of peat and perlite. Plants were grown under 16-h-light/8-h-dark conditions,

maintained at 20-23 and an average of 235 µmol m−2s−1 to generate tissue for (1)
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standard tissues and (2) nitrogen source study. Plants for standard tissue experiment were

watered with McCown’s woody plant nutrient solution and plants for nitrogen experiment

were supplemented with either 10mM KNO3 (NO3− plants) or 10mM NH4Cl (NH4+

plants) or 10 mM urea (urea plants). Once plants reached leaf plastochron index 15 (LPI-

15), leaf, stem, root and bud tissues were harvested and immediately flash frozen in liquid

nitrogen and stored at -80 until further processing was done. Every harvest involved at

least three independent biological replicates for each condition and a biological replicate

consisted of tissue pooled from 3 plants.

RNA extraction and sequencing was performed as previously described in McCormick

et al. (2018) [33]. Tissue was ground under liquid nitrogen and high quality RNA

was extracted using standard Trizol-reagent based extraction [34]. The integrity and

concentration of the RNA preparations were checked initially using Nano-Drop ND-

1000 (Nano-Drop Technologies) and then by BioAnalyzer (Agilent Technologies). “Plate-

based RNA sample prep was performed on the PerkinElmer Sciclone NGS robotic

liquid handling system using Illumina’s TruSeq Stranded mRNA HT sample prep

kit utilizing poly-A selection of mRNA following the protocol outlined by Illumina

in their user guide: http://support.illumina.com/sequencing/sequencing_kits/

truseq_stranded_mrna_ht_sample_prep_kit.html. The quantified libraries were then

prepared for sequencing on the Illumina HiSeq sequencing platform utilizing a TruSeq

paired-end cluster kit, v4, and Illumina’s cBot instrument to generate a clustered flowcell

for sequencing. Sequencing of the flowcell was performed on the Illumina HiSeq2500

sequencer using HiSeq TruSeq SBS sequencing kits, v4, following a 2x150 indexed run

recipe” [33].

2.2.7 Co-expression Network Construction

Gene expression atlas data for P. trichocarpa consisting of 63 different samples were

used to construct a co-expression network. Reads were trimmed using Skewer [35].

Star [36] was then used to align the reads to the P. trichocarpa reference genome [3]
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obtained from Phytozome [32]. TPM (Transcripts Per Million) expression values [37]

were then calculated for each gene. This resulted in a gene expression matrix E in which

rows represented genes, columns represented samples and each entry ij represented the

expression (TPM) of gene i in sample j. The Spearman correlation coefficient was then

calculated between the expression profiles of all pairs of genes (i.e. all pairs of rows of

the matrix E) using the mcxarray and mcxdump programs from the MCL-edge package

[38, 39] available from http://micans.org/mcl/. This was performed in parallel using

Perl wrappers making use of the Parallel::MPI::Simple Perl module, (Alex Gough, http:

//search.cpan.org/~ajgough/Parallel-MPI-Simple-0.03/Simple.pm) using compute

resources at the Oak Ridge Leadership Computing Facility (OLCF).

Supplementary Figure S2.1A shows the distribution of Spearman correlation values for the

co-expression network. An absolute threshold of 0.85 was applied.

2.2.8 Co-Methylation Network Construction

Methylation data for P. trichocarpa [8] re-aligned to the version 3.0 assembly of P.

trichocarpa was obtained from Phytozome [32]. This data consisted of MeDIP-seq (Methyl-

DNA immunoprecipitation-seq) reads from 10 different P. trichocarpa tissues, including

bud, callus, female catkin, internode explant, leaf, male catkin, phloem, regenerated

internode, root and xylem tissue.

BamTools stats [40] was used to determine basic properties of the reads in each .bam file.

Samtools [41] was then used to extract only mapped reads. The number of reads which

mapped to each gene feature was determined using htseq-count [42]. These read counts

were then converted to TPM values [37], providing a methylation score for each gene in

each tissue. The TPM value for a gene g in a given sample was defined as:

TPMg =

cg
lg
× 106
∑

g
cg
lg

(2.1)
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where cg is the number of reads mapped to gene g and lg is the length of gene g in kb,

calculated by subtracting the gene start position from the gene end position, and dividing

the resulting difference by 1,000. A methylation matrix M was then formed, in which

rows represented genes, columns represented tissues and each entry ij represented the

methylation score (TPM) of gene i in tissue j. A co-methylation network (see Busch et

al. (2016) [43], Akulenko et al. (2013) [44] and Davies et al. (2012) [45]) was then

constructed by calculating the Spearman correlation coefficient between the methylation

profiles of all pairs of genes using mcxarray and mcxdump programs from the MCL-

edge package [38, 39] http://micans.org/mcl/. Supplementary Figure S2.1B shows the

distribution of Spearman Correlation values. An absolute threshold of 0.95 was applied.

Read counting using htseq-count, as well as Spearman correlation calculations were

performed in parallel using Perl wrappers making use of the Parallel::MPI::Simple Perl

module, developed by Alex Gough and available on The Comprehensive Perl Archive

Network (CPAN) at www.cpan.org and used compute resources at the Oak Ridge

Leadership Computing Facility (OLCF).

2.2.9 SNP Correlation Network Construction

The Custom Correlation Coefficient (CCC) [46, 47] was used to calculate the correlation

between the occurrence of pairs of SNPs across the 882 genotypes. The CCC between allele

x at position i and allele y and position j is defined as:

CCCixjy =
9

2
Rixjy

(
1− 1

fix

)(
1− 1

fjy

)
(2.2)

where Rixjy is the relative co-occurrence of allele x at position i and allele y at position j,

fix is the frequency of allele x at position i and fjy is the frequency of allele y at position j.

This was performed in a parallel fashion using similar computational approaches as

described for the co-expression network above. The set of ∼10 million SNPs was divided
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Figure 2.2: Computing SNP correlations. (A) Parallelization strategy for ccc calculation
between all pairs of SNPs. (B) MPI jobs for within and cross-block comparisons.
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into 20 different blocks, and the CCC was calculated for each within-block and cross-

block SNPs in separate jobs, to a total of 210 MPI jobs (Figure 2.2). A threshold

of 0.7 was then applied. The resulting SNP correlation network was pruned to only

include SNPs that resided within genes. Gene boundaries used were defined in the

Ptrichocarpa_210_v3.0.gene.gff3 from the P. trichocarpa version 3.0 genome assembly

on Phytozome [32]. A local LD filter was then set, retaining correlations between SNPs

greater than 10kb apart. The distribution of CCC values can be seen in Supplementary

Figure S2.1C (Supplementary Text S2.1).

2.2.10 Target Lignin Genes/Phenotypes

A scoring system was developed in order to quantify the Lines Of Evidence (LOE) linking

each gene to lignin-related genes/phenotypes. The LOE scores quantify the number of lines

linking each gene to lignin-related genes and phenotypes across the different network data

layers. Thus, the method requires as input a list of known lignin-related genes/phenotypes.

P. trichocarpa gene annotations in the Ptrichocarpa_210_v3.0.annotation_info.txt file

from the version 3.0 genome assembly were used, available on Phytozome [32]. This

included Arabidopsis best hits and corresponding gene descriptions, as well as GO terms

[48, 49] and Pfam domains [50]. Genes were also assigned MapMan annotations using

the Mercator tool [51].

Lignin building blocks (monolignols) are derived from phenylalanine in the phenyl-

propanoid and monolignol pathways, and phenylalanine itself is produced from the

shikimate pathway [52]. To compile a list of P. trichocarpa genes which are related to

the biosynthesis of lignin, P. trichocarpa genes were assigned MapMan annotations using

the Mercator tool [51]. Genes in the Shikimate (MapMan bins 13.1.6.1, 13.1.6.3 and

13.1.6.4), Phenylpropanoid (MapMan bin 16.2) and Lignin/Lignan (MapMan bin 16.2.1)

pathways were then selected. A list of these lignin-related genes and their MapMan

annotations can be seen in Supplementary Table S2.1.
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Lignin-related pyMBMS peaks, as described by Sykes et al. (2009) [21], Davis et al.

(2006) [53] and Muchero et al. (2015) [23] were identified among the pyMBMS

GWAS hits, and are shown in Supplementary Table S2.2. Lignin-related metabolites and

metabolites in the lignin pathway were also identified among the metabolomics GWAS

hits, a list of which can be seen in Supplementary Table S2.3. For partially identified

metabolites, additional RT and mz information can be seen in Supplementary Table S2.3.

2.2.11 Extraction of Lignin-Related Subnetworks

Let LG, LM and LP represent our sets of lignin-related genes, metabolites and pyMBMS

peaks, respectively (Supplementary Tables S2.1, S2.2 and S2.3). A network can be defined

as N = (V,E) where V is the set of nodes and E is the set of edges connecting nodes in

V . In particular, let the co-expression network be represented by Ncoex = (Vcoex, Ecoex), the

co-methylation network by Ncometh = (Vcometh, Ecometh) and the SNP correlation network

by Nsnp = (Vsnp, Esnp). The GWAS networks can be represented as bipartite networks

N = (U, V,E) where U is the set of phenotype nodes, V is the set of gene nodes, and

E is the set of edges, with each edge eij connecting node i ∈ U with node j ∈ V . Let

the metabolomics GWAS network be represented by Nmetab = (Umetab, Vmetab, Emetab) and

the pyMBMS GWAS network by Npymbms = (Upymbms, Vpymbms, Epymbms). We construct the

guilt by association subnetworks of genes connected to lignin-related genes/phenotypes as

follows:

NL
coex is the subnetwork of Ncoex including the lignin related genes l ∈ LG and their direct

neighbors:

NL
coex = (V L

coex, E
L
coex) where (2.3)

V L
coex = {g|g ∈ (LG ∩ Vcoex)} ∪ {g| (g ∈ Vcoex) ∧ (∃l ∈ LG|{l, g} ∈ Ecoex)} (2.4)

EL
coex = {e = {i, j} ∈ Ecoex|i ∈ V L

coex ∧ j ∈ V L
coex} (2.5)
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NL
cometh is the subnetwork of Ncometh including the lignin related genes l ∈ LG and their

direct neighbors:

NL
cometh = (V L

cometh, E
L
cometh) where (2.6)

V L
cometh = {g|g ∈ (LG ∩ Vcometh)} ∪ {g| (g ∈ Vcometh) ∧ (∃l ∈ LG|{l, g} ∈ Ecometh)} (2.7)

EL
cometh = {e = {i, j} ∈ Ecometh|i ∈ V L

cometh ∧ j ∈ V L
cometh} (2.8)

NL
snp is the subnetwork of Nsnp including the lignin related genes l ∈ LG and their direct

neighbors:

NL
snp = (V L

snp, E
L
snp) where (2.9)

V L
snp = {g|g ∈ (LG ∩ Vsnp)} ∪ {g| (g ∈ Vsnp) ∧ (∃l ∈ LG|{l, g} ∈ Esnp)} (2.10)

EL
snp = {e = {i, j} ∈ Esnp|i ∈ V L

snp ∧ j ∈ V L
snp} (2.11)

NL
metab is the subnetwork of Nmetab including the lignin related metabolites m ∈ LM and

their direct neighboring genes:

NL
metab = (UL

metab, V
L
metab, E

L
metab) where (2.12)

UL
metab = {m|m ∈ (LM ∩ Umetab)} (2.13)

V L
metab = {g| (g ∈ Vmetab) ∧ (∃m ∈ LM |(m, g) ∈ Emetab)} (2.14)

EL
metab = {e = (i, j) ∈ Emetab|i ∈ UL

metab ∧ j ∈ V L
metab} (2.15)

NL
pymbms is the subnetwork of Npymbms including the lignin related pyMBMS peaks p ∈ LP

and their direct neighboring genes:

NL
pymbms = (UL

pymbms, V
L
pymbms, E

L
pymbms) where (2.16)

UL
pymbms = {p|p ∈ (LP ∩ Upymbms)} (2.17)
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V L
pymbms = {g| (g ∈ Vpymbms) ∧ (∃p ∈ LP |(p, g) ∈ Epymbms)} (2.18)

EL
pymbms = {e = (i, j) ∈ Epymbms|i ∈ UL

pymbms ∧ j ∈ V L
pymbms} (2.19)

2.2.12 Calculating LOE Scores

For a given gene g, the degree of that gene D(g) indicates the number of connections that

the gene has in a given network. Let Dcoex(g), Dcometh(g), Dsnp(g) , Dmetab(g) , Dpymbms(g)

represent the degrees of gene g in the lignin subnetworks NL
coex, NL

cometh, NL
snp, N

L
metab and

NL
pymbms, respectively. The LOE breadth score LOEbreadth(g) is then defined as

LOEbreadth(g) = bin (Dcoex(g))+bin (Dcometh(g))+bin (Dsnp(g))+bin (Dmetab(g))+bin (Dpymbms(g))

(2.20)

where

bin(x) =




1 if x ≥ 1

0 otherwise
(2.21)

The LOEbreadth(g) score indicates the number of different types of lines of evidence that

exist linking gene g to lignin-related genes/phenotypes.

The LOE depth score LOEdepth(g) represents the total number of lines of evidence exist

linking gene g to lignin-related genes/phenotypes, and is defined as

LOEdepth(g) = Dcoex(g) +Dcometh(g) +Dsnp(g) +Dmetab(g) +Dpymbms(g) (2.22)

The GWAS LOE score LOEgwas(g) indicates the number of lignin-related phenotypes

(metabolomic or pyMBMS) that a gene is connected to, and is defined as:
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LOEgwas(g) = Dmetab(g) +Dpymbms(g) (2.23)

Distributions of the LOE scores can be seen in Supplementary Figure S2.2. Cytoscape

version 3.4.0 [54] was used for network visualization. Expression, methylation, SNP

correlation and GWAS diagrams were created using R [55] and various R libraries

[56, 57, 58, 59, 60]. Data parsing, wrappers and LOE score calculation was performed

using Perl. Diagrams were edited to overlay certain text using Microsoft PowerPoint.

2.3 Results and Discussion

2.3.1 Layered Networks, LOE Scores and New Potential Targets

This study involved the construction of a set of networks providing different layers of

information about the relationships between genes, and between genes and phenotypes,

and the development of a Lines Of Evidence scoring system (LOE scores) which integrate

the information in the different network layers and quantify the number of lines of

evidence connecting genes to lignin-related genes/phenotypes. The GWAS network layers

provide information as to which genes are potentially involved in certain functions because

they contain genomic variants significantly associated with measured phenotypes. The

co-methylation and co-expression networks provide information on different layers of

regulatory mechanisms within the cell. The SNP correlation network provides information

about possible co-evolution relationships between genes, through correlated variants

across a population.

Marking known genes and phenotypes involved in lignin biosynthesis in these networks

allowed for the calculation of a set of LOE (Lines Of Evidence) scores for each gene,

indicating the strength of the evidence linking each gene to lignin-related functions. The

breadth LOE score indicates the number of types of lines of evidence (number of layers)

which connect the gene to lignin-related genes/phenotypes, whereas the depth LOE score
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indicates the total number of lignin-related genes/phenotypes the gene is associated with.

Individual layer LOE scores (e.g. co-expression LOE score or GWAS LOE score) indicate

the number of lignin-related associations the gene has within that layer.

This data layering approach differs from previous data integration methods. Mizrachi

et al. (2017) integrate gene expression data with eQTN data and gene relationships

from KEGG though matrix multiplication, before correlating genes’ NBDI (Network Based

Data Integration)-transformed values with measured traits, allowing the ranking of genes

[61]. The Mergeomics method [62] performs Marker Set Enrichment Analysis, ranking

predefined sets of molecular markers based on their enrichment in a disease phenotype.

Knetminer [63, 64] is a web server which allows the user to search for keywords,

producing lists of genes and the associations they have to annotations, genes, phenotypes,

publications etc. which match the keywords and that are available in public databases.

Knetminer can also produce a network view of the results. While Knetminer is also an

approach which utilizes multiple lines of evidence, the main approach and the scoring

systems differ. LOE requires input lists of genes and phenotypes of interest to the user,

Knetminer uses gene lists and keyword searching. In terms of lines of evidence, Knetminer

counts the number of “concepts” (nodes, including publications, phenotypes, annotations

etc) a gene has linking it to a keyword [63, 64]. However, LOE scores (particularly,

breadth LOE scores) count the number of types of relationships (e.g. GWAS association, co-

expression, co-methylation, variant correlation edges) connecting a gene to specific input

genes and phenotypes related to the user’s function of interest. This is thus a valuable

approach to identify new target genes based on the relationships of a gene to target

genes/phenotypes of interest in custom-made association network layers where publically

available data is not available.

To select the top set of potential new candidate genes involved in lignin biosynthesis, genes

which showed a number of different lines of evidence connecting them to lignin-related

functions were identified by selecting genes with a LOE breadth score >= 3. Since the

GWAS networks provide the highest resolution, most direct connections to lignin-related

functions, it was also required that our potential new targets had a GWAS score >= 1.
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This provides a set of 375 new candidate genes potentially involved in lignin biosynthesis,

identified through multiple lines of evidence (Supplementary Table S2.4). This set of

Potential New Target genes will be referred to as set of PNTs. A selection of these potential

new candidates below and their annotations, derived from their Arabidopsis best hits, will

be discussed below.

2.3.2 Agamous-like Genes

Genes in the AGAMOUS-LIKE gene family are MADS-box transcription factors, many of

which which have been found to play important roles in floral development [65, 66, 67,

68, 69, 70]. Three potential AGAMOUS-LIKE (AGL) genes are found in the set of PNTs,

in particular, a homolog of Arabidopsis AGL8 (AT5G60910, also known as FRUITFUL),

a homolog of Arabidopsis AGL12 (AT1G71692), and a homolog of Arabidopsis AGL24

(AT4G24540) and AGL22 (AT2G22540).

The first potential AGL gene in our set of PNTs is Potri.012G062300, with a breadth score

of 3 and a GWAS score of 2 (Figure 2.3A), whose best Arabidopsis thaliana hit is AGL8

(AT5G60910).

It has GWAS associations with a lignin-related metabolite (quinic acid) and a lignin

pyMBMS peak (syringol) (Figure 2.3C, Table 2.1) and is co-methylated with three lignin-

related genes (Figure 2.3B, Table 2.2). There is thus strong evidence for the involvement

of P. trichocarpa AGL8 in the regulation of lignin-related functions. There is literature

evidence that supports the hypothesis of AGL8’s involvement in the regulation of lignin

biosynthesis. A patent exists for the use of AGL8 expression in reducing the lignin

content of plants [71]. The role of AGL8 (FUL) was described by Ferrandiz et al. (2000)

[72], in which they investigated the differences in lignin deposition in transgenic plants

in which AGL8 is constitutively expressed, loss-of-function AGL8 mutants and wild-type

Arabidopsis plants [72]. In wild-type plants, a single layer of valve cells were lignified.

In loss-of-function AGL8 mutants, all valve mesophyl cell layers were lignified, while in

the transgenic plants, constitutive expression of AGL8 resulted in loss of lignified cells
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Figure 2.3: Lines of Evidence for AGL8. (A) Lines of Evidence for Potri.012G062300
(homolog of Arabidopsis AGL8). (B) Co-methylation of Potri.012G062300 with
three lignin-related genes (Table 2.2) The green line represents potential target
Potri.012G062300 and yellow lines represent lignin-related genes. (C) GWAS associations
of Potri.012G062300 with a lignin-related metabolite and a lignin-related pyMBMS peak
(Table 2.1).
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Table 2.1: GWAS associations for select new potential target genes, indicating the
SNP(s) within the potential new target gene which are associated with the lignin-related
phenotype(s). Additional RT and mz information for partially identified metabolites can
be seen in Supplementary Table S2.3.

Source SNP Source Gene Target Phenotype

GWAS Associations for Potri.012G062300 (AGL8, AT5G60910)

12:6952245 Potri.012G062300 quinic acid

12:6948543 Potri.012G062300 lignin (Syringol)

12:6951532 Potri.012G062300 lignin (Syringol)

GWAS Associations for Potri.013G102600 (AGL12, AT1G71692)

13:11604094 Potri.013G102600 3-O-caffeoyl-quinate

13:11606331 Potri.013G102600 coumaroyl-tremuloidin

13:11600422 Potri.013G102600 coumaroyl-tremuloidin

13:11601236 Potri.013G102600 hydroxyphenyl lignan glycoside

GWAS Associations for Potri.007G115100 (AGL22, AT2G22540/AGL24, AT4G24540)

07:13650194 Potri.007G115100 caffeoyl conjugate

07:13651354 Potri.007G115100 caffeoyl conjugate

07:13642539 Potri.007G115100 caffeoyl conjugate

07:13639923 Potri.007G115100 lignin, syringyl (Syringaldehyde)

GWAS Associations for Potri.009G053900 (MYB46, AT5G12870)

09:5768381 Potri.009G053900 hydroxyphenyl lignan glycoside

GWAS Associations for Potri.010G141000 (MYB111, AT5G49330)

10:15273000 Potri.010G141000 benzoyl-salicylate caffeic acid conjugate

Continued on next page.
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Table 2.1: (continued)

Source SNP Source Gene Target Phenotype

GWAS Associations for Potri.006G170800 (MYB36, AT5G57620)

06:17847162 Potri.006G170800 mz 297, RT 17.14

GWAS Associations for Potri.016G078600 (CPSRP54, AT5G03940)

16:5995136 Potri.016G078600 caffeoyl conjugate

16:5995136 Potri.016G078600 feruloyl conjugate

16:5996083 Potri.016G078600 salicyl-coumaroyl-glucoside

16:5999408 Potri.016G078600 salicyl-coumaroyl-glucoside

16:5999474 Potri.016G078600 salicyl-coumaroyl-glucoside

16:6000236 Potri.016G078600 salicyl-coumaroyl-glucoside
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Table 2.2: Co-methylation associations for select new potential target genes. Annotations
are derived from best Arabidopsis hit descriptions and GO terms and in some cases MapMan
annotations.

Target Gene Target

Arabidopsis

best hit

Annotation

Co-methylation Associations for Potri.012G062300 (AGL8, AT5G60910)

Potri.001G036900 AT3G21240 4-coumarate:CoA ligase 2

Potri.008G120200 AT1G68540 Cinnamoyl CoA reductase-like 6

Potri.004G105000 AT5G14700 (NAD(P)-binding Rossmann-fold superfamily

protein, cinnamoyl-CoA reductase

activity/CCR1

Co-methylation Associations for Potri.013G102600 (AGL12, AT1G71692)

Potri.001G334400 AT5G63380 4-coumarate-CoA ligase activity /4CL

Potri.001G365300 AT3G26300 cytochrome P450, family 71, subfamily B,

polypeptide 34/F5H

Potri.006G265500 AT5G10820 Major facilitator superfamily protein/Phenyl-

propanoid pathway

Potri.006G165200 AT2G19070 spermidine hydroxycinnamoyl transferase

Co-methylation Associations for Potri.009G053900 (MYB46, AT5G12870)

Potri.008G196100 AT3G06350 bi-functional dehydroquinate-shikimate dehy-

drogenase enzyme

Potri.002G018300 AT4G39330 cinnamyl alcohol dehydrogenase 9

Potri.004G102000 AT4G05160 4-coumarate-CoA ligase activity/4CL)

Potri.008G136600 AT1G67980 caffeoyl-CoA 3-O-methyltransferase

Continued on next page.
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Table 2.2: (continued)

Target Gene Target

Arabidopsis

best hit

Annotation

Co-methylation Associations for Potri.010G141000 (MYB111, AT5G49330)

Potri.008G196100 AT3G06350 bi-functional dehydroquinate-shikimate dehy-

drogenase enzyme

Potri.004G102000 AT4G05160 4-coumarate-CoA ligase activity/4CL

Potri.008G074500 AT5G34930 arogenate dehydrogenase

Potri.005G028000 AT5G48930 hydroxycinnamoyl-CoA shikimate/quinate hy-

droxycinnamoyl transferase

Potri.018G100500 AT2G23910 NAD(P)-binding Rossmann-fold superfamily

protein, cinnamoyl-CoA reductase

activity/CCR1

Potri.010G230200 AT1G20510 OPC-8:0 CoA ligase1, 4-coumarate-CoA ligase

activity/4CL

Co-methylation Associations for Potri.006G170800 (MYB36, AT5G57620)

Potri.016G093700 AT4G05160 AMP-dependent synthetase and ligase family, 4-

coumarate-CoA ligase activity/4CL

Co-methylation Associations for Potri.016G078600 (CPSRP54, AT5G03940)

Potri.014G135500 AT3G06350 bi-functional dehydroquinate-shikimate dehy-

drogenase enzyme
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[72]. This study thus showed the involvement of AGL8 in fruit lignification during fruit

development.

There is evidence of other AGAMOUS-LIKE genes affecting lignin content. A study by

Gimenez et al. (2010) investigated TALG1, an AGAMOUS-LIKE gene in tomato, and found

that TAGL1 RNAi-silenced fruits showed increased lignin content, and increased expression

levels of lignin biosynthesis genes [73]. A recent study by Cosio et al. (2017) showed that

AGL15 in Arabidopsis is also involved in regulating lignin-related functions, in that AGL15

binds to the promotor of peroxidase PRX17, and regulates its expression [74]. In addition,

PRX17 loss of function mutants had reduced lignin content [74].

There is thus compelling evidence that various AGAMOUS-LIKE genes are involved in

regulating lignin biosynthesis/deposition in plants. Two other AGAMOUS-like genes are

seen in the set of PNTs, namely a homolog of Arabidopsis AGL12 (Potri.013G102600) and

a homolog of Arabidopsis AGL22/AGL24 (Potri.007G115100). Potri.013G102600 (AGL12)

has GWAS associations with three lignin-related metabolites, namely hydroxyphenyl lignan

glycoside, coumaroyl-tremuloidin and 3-O-caffeoyl-quinate (Figure 2.4A, Figure 2.4B,

Table 2.1). It is co-expressed with four lignin-related genes including two caffeoyl

coenzyme A O-methyltransferases, a caffeate O-methyltransferase and a ferulic acid 5-

hydroxylase (Figure 2.4A, Figure 2.4C, Table 2.3) and it is co-methylated with four

other lignin-related genes (Figure 2.4A, Figure 2.4D, Table 2.2). Potri.007G115100

(AGL22/AGL24) has GWAS associations with the syringaldehyde pyMBMS phenotype and

a caffeoyl conjugate metabolite (Figure 2.5A, Figure 2.5B, Table 2.1). It also has SNP

correlations with a laccase and a nicotinamidase (Figure 2.5A, Figure 2.5C, Figure 2.5D,

Table 2.4, Supplementary Table S2.5). The combination of the multiple lines of multi-

omic evidence thus suggest the involvement of P. trichocarpa homologs of A. thaliana

AGL22/AGL24 and AGL12 in regulating lignin biosynthesis.
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Figure 2.4: Lines of Evidence for AGL12. (A) Lines of Evidence for Potri.013G102600
(homolog of Arabidopsis AGL12). (B) GWAS associations of Potri.013G102600 with three
lignin-related metabolites (Table 2.1). (C) Co-expression of Potri.013G102600 with three
lignin-related genes (Table 2.3). (D) Co-methylation of Potri.013G102600 with four
lignin-related genes (Table 2.2). In line plots, the green lines represent potential target
Potri.013G102600 and yellow lines represent lignin-related genes.
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Figure 2.5: Lines of Evidence for AGL22/24. (A) Lines of Evidence for Potri.007G115100
( homolog of Arabidopsis AGL22/24). (B) GWAS associations of Potri.007G115100
with a lignin-related metabolite and a lignin-related pyMBMS peak (Table 2.1). (C,D)
Correlations of SNPs in Potri.007G115100 with SNPs in two lignin-related genes (Table
2.4, Supplementary Table S2.5).
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Table 2.3: Co-expression associations for select new potential target genes. Annotations
are derived from best Arabidopsis hit descriptions and GO terms and in some cases MapMan
annotations.

Target Gene Target

Arabidopsis

best hit

Annotation

Co-expression Associations for Potri.013G102600 (AGL12, AT1G71692)

Potri.001G304800 AT4G34050 Caffeoyl Coenzyme A O-Methyltransferase 1

Potri.009G099800 AT4G34050 Caffeoyl Coenzyme A O-Methyltransferase 1

Potri.012G006400 AT5G54160 Caffeate O-Methyltransferase 1

Potri.007G016400 AT4G36220 Ferulic acid 5-hydroxylase 1

Co-expression Associations for Potri.009G053900 (MYB46, AT5G12870)

Potri.003G100200 AT1G32100 pinoresinol reductase 1

Potri.012G006400 AT5G54160 Caffeate O-Methyltransferase 1

Co-expression Associations for Potri.010G141000 (MYB111, AT5G49330)

Potri.007G030300 AT3G50740 UDP-glucosyl transferase 72E1

Co-expression Associations for Potri.006G170800 (MYB36, AT5G57620)

Potri.001G362800 AT3G26300 cytochrome P450, family 71, subfamily B,

polypeptide 34/F5H

Potri.016G106100 AT3G09220 laccase 7

Potri.013G120900 AT4G35160 N-acetylserotonin O-methyltransferase

Co-expression Associations for Potri.016G078600 (CPSRP54, AT5G03940)

Potri.003G096600 AT2G35500 shikimate kinase like 2

Potri.017G062800 AT3G26900 shikimate kinase like 1
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Table 2.4: SNP correlation associations for select new potential target genes. Annotations
are derived from best Arabidopsis hit descriptions and GO terms and in some cases MapMan
annotations.

Target gene Target

Arabidopsis

best hit

Annotation

SNP Correlations for Potri.007G115100 (AGL22, AT2G22540/AGL24, AT4G24540)

Potri.007G116100 AT2G22570 nicotinamidase 1

Potri.016G107900 AT3G09220 laccase 7

SNP Correlations for Potri.016G078600 (CPSRP54, AT5G03940)

Potri.016G078300 AT4G37970 cinnamyl alcohol dehydrogenase 6

2.3.3 MYB Transcription Factors

MYB proteins contain the conserved MYB DNA-binding domain, and usually function

as transcription factors. R2R3-MYBs have been found to regulate various functions,

including flavonol biosynthesis, anthocyanin biosynthesis, lignin biosynthesis, cell fate and

developmental functions [75]. The set of PNTs contains several genes which are homologs

of Arabidopsis MYB transcription factors, including homologs of Arabidopsis MYB66/MYB3,

MYB46, MYB36 and MYB111.

There is already existing literature evidence for how some of these MYBs affect lignin

biosynthesis. Liu et al. (2015) [76] review the involvement of MYB transcription factors in

the regulation of phenylpropanoid metabolism. MYB3 in Arabidopsis is known to repress

phenylpropanoid biosynthesis [77], and a P. trichocarpa homolog of MYB3 is found in our

set of potential new targets. Another potential new target is the P. trichocarpa homolog

of Arabidopsis MYB36 (Potri.006G170800) which is connected to lignin-related functions

through multiple lines of evidence (Figure 2.6). In Arabidopsis, MYB36 has been found

to regulate the local deposition of lignin during casparian strip formation, and myb36

mutants exhibit incorrectly localized lignin deposition [78].
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Figure 2.6: Lines of Evidence for MYB36. (A) Lines of Evidence for Potri.006G170800
(homolog of Arabidopsis MYB36). (B) GWAS associations of Potri.006G170800 with
a lignin-related metabolite (Table 2.1). (C) Co-expression of Potri.006G170800 with
three lignin-related genes (Table 2.3). (D) Co-methylation of Potri.006G170800 with a
lignin-related gene (Table 2.2). In line plots, the green lines represent potential target
Potri.006G170800 and yellow lines represent lignin-related genes.
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MYB46 is known to be a regulator of secondary cell wall formation [79]. Overexpression

of MYB46 in Arabidopsis activates lignin, cellulose and xylan biosynthesis pathways

[79]. The MYB46 homolog in P. trichocarpa, Potri.009G053900, is connected to lignin-

related functions through multiple lines of evidence (Figure 2.7A), including a GWAS

association with a hydroxyphenyl lignan glycoside (Figure 2.7E, Table 2.1), co-expression

with pinoresinol reductase 1 and caffeate O-methyltransferase 1 (Figure 2.7F, Table

2.3) and co-methylation with dehydroquinate-shikimate dehydrogenase enzyme, cinnamyl

alcohol dehydrogenase 9, 4-coumarate-CoA ligase activity/4CL) and caffeoyl-CoA 3-O-

methyltransferase (Figure 2.7G, Table 2.2).

A MYB transcription factor in the set of PNTs which has, to our knowledge, not yet been

directly associated with lignin biosynthesis is MYB111 (Figure 2.7A-D). However, with

existing literature evidence, one can hypothesize that MYB111 can alter lignin content by

redirecting carbon flux from flavonoids to monolignols. There is evidence that MYB111 is

involved in crosstalk between lignin and flavonoid pathways. Monolignols and flavonoids

are both derived from phenylalanine through the phenylpropanoid pathway [76]. There

is crosstalk between the signalling pathways of ultraviolet-B (UV-B) stress and biotic stress

pathways [80]. In the study by Schenke et al. (2011), it was shown that under UV-B light

stress, Arabidopsis plants produce flavonols as a UV protectant [80]. Also, simultaniously

applying the bacterial elicitor flg22, which simulates biotic stress, repressed flavonol

biosynthesis genes and induced production of defense compounds including camalexin and

scopoletin, as well as lignin, which provides a physical barrier preventing pathogens’ entry

[80]. This crosstalk involved regulation by MYB12 and MYB4 [80]. This study by Schenke

et al. (2011) was performed using cell cultures. A second study by Zhou et al. (2017)

used Arabidopsis seedlings, and found that MYB111 may be involved in the crosstalk

in planta [81]. The multiple lines of evidence connecting the P. trichocarpa homolog

of Arabidopsis MYB111 (Potri.010G141000) to lignin related functions, in combination

with the above literature evidence suggests the involvement this gene in the regulation

of lignin biosynthesis by redirecting carbon flux from flavonol biosynthesis to monolignol

biosynthesis, as part of the crosstalk between UV-B protection and biotic stress signalling

pathways.
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Figure 2.7: Lines of Evidence for MYB46 and MYB111. (A) Lines of Evidence for
Potri.009G053900 (homolog of Arabidopsis MYB46) and Potri.010G141000 (homolog of
Arabidopsis MYB111). (B) GWAS associations of Potri.010G141000 with a lignin-related
metabolite (Table 2.1). (C) Co-expression of Potri.010G141000 with a lignin-related gene
(Table 2.3). (D) Co-methylation of Potri.010G141000 with six lignin-related genes (Table
2.2). (E) GWAS associations of Potri.009G053900 with a lignin-related metabolite (Table
2.1). (F) Co-expression of Potri.009G053900 with two lignin-related genes (Table 2.3).
(G) Co-methylation of Potri.009G053900 with four lignin-related genes (Table 2.2). In
line plots, the green lines represent potential targets Potri.009G053900/Potri.010G141000
and yellow lines represent lignin-related genes.
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2.3.4 Chloroplast Signal Recognition Particle

Potri.016G078600, a homolog of the Arabidopsis chloropast signal recognition particle

cpSRP54 occurs in the set of PNTs (Figure 2.8). It has a GWAS LOE score of 3, through

GWAS associations with salicyl-coumaroyl-glucoside, a caffeoyl conjugate and a feruloyl

conjugate (Figure 2.8B, Table 2.1, Supplementary Table S2.4). It also has a breadth score

of 4, indicating that it is linked to lignin-related genes/phenotypes though 4 different

types of associations (Figure 2.8). CpSRP54 gene has been found to regulate carotenoid

accumulation in Arabidopsis [82]. CpSRP54 and cpSRP43 form a “transit complex”

along with a light-harvesting chlorophyll a/b-binding protein (LHCP) family member to

transport it to the thylakoid membrane [83, 84]. A study in Arabidopsis found that

cpSRP43 mutants had reduced lignin content [85]. Since CpSRP54 regulates carotenoid

accumulation, and cpSRP43 appears to affect lignin content, it is possible that chloroplast

signal recognition particles affect lignin and carotenoid content through flux through the

phenylpropanoid pathway, the common origin of both of these compounds. In fact, a

gene mutation cue1 which causes LHCP underexpression also results in reduced aromatic

amino acid biosynthesis [86]. These multiple lines of evidence, combined with the above

cited literature suggests that chloroplast signal recognition particles in P. trichocarpa could

potentially influence lignin content.

2.3.5 Practical Implications

The LOE method of data integration provides a useful way for biologists to identify new

target genes. Any genes and phenotypes of interest that are present in the networks can

be used as input to the method, and thus, the results can be tailored to the particular

function of interest of the biologist. The collection of LOE scores will allow the user to rank

genes in the genome based on the particular lines of evidence most appropriate to function

under investigation, and in so doing, provides a shortlist of genes as targets for genetic

modification (knockout/knockdown/overexpression) in order to alter the phenotype of

interest. For example, AGL genes, MYB transcription factors and CpSRP genes discussed
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Figure 2.8: Lines of Evidence for cpSRP54. (A) Lines of Evidence for Potri.016G078600
(homolog of Arabidopsis cpSRP54). (B) GWAS associations of Potri.016G078600
with three lignin-related metabolite (Table 2.1). (C) Correlations of SNPs within
Potri.016G078600 with SNPs in a lignin-related gene (Table 2.4). (D) Co-expression
of Potri.016G078600 with two lignin-related genes (Table 2.3). (E) Co-methylation of
Potri.016G078600 with a lignin-related gene (Table 2.2). In line plots, the green lines
represent potential target Potri.016G078600 and yellow lines represent lignin-related
genes.
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above could be seen as potential new targets for knockout/knockdown/overexpression in

order to alter the lignin content of P. trichocarpa.

The LOE scoring method can be applied to any species for which there is multiple data

types that can be represented as association networks which the scientist wishes to

integrate in order to identify new candidate genes involved in a particular function. This

method will be particularly useful for the analysis of new, unpublished datasets where

publically available datasets/web servers would not necessarily be able to be used.

2.3.6 Concluding Remarks

This study made use of high-resolution GWAS data, combined with co-expression, co-

methylation and SNP correlation networks in a multi-omic, data layering approach

which has allowed the identification of new potential target genes involved in lignin

biosynthesis/regulation. Various literature evidence supports the involvement of many

of these new target genes in lignin biosynthesis/regulation, and these are suggested for

future validation for involvement in the regulation of lignin biosynthesis. The data layering

technique and LOE scoring system developed can be applied to other omic data types to

assist in the generation of new hypotheses surrounding various functions of interest.
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2.5 Supplementary Material

2.5.1 Text S2.1: Constructing Samples CCC Distribution

Printing out the complete result set of all possible pairwise comparisons of ∼10,000,000

SNPs would require more disk space than was possibly available. In order to construct an

approximate distribution of the CCC values, we selected a random subset of 100,000 SNPs

and calculated the CCC correlation between all pairs of these SNPs, storing all correlation

values. This sampled set of correlations was used to compute the CCC distribution.

Thereafter, the CCC was calculated between all pairs of all ∼10,000,000 SNPs. Only

correlations meeting a threshold of 0.7 were stored.
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2.5.2 Supplementary Figures
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Figure S2.1: Edge weight distributions. (A) Distribution of Spearman Correlation values
in the co-expression network. (B) Distribution of Spearman Correlation values in the co-
methylation network. (C) Sampled distribution of the CCC SNP correlation network. See
Supplementary Text S2.1 for details on the construction of the sampled distribution.
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Figure S2.2: Score distributions. Distributions of the various categories of Lines Of
Evidence (LOE) score.
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2.5.3 Supplementary Tables

Table S2.1: MapMan annotations of lignin genes.

Gene Mapman Name

Potri.001G133200.v3.0 secondary metabolism.flavonoids.isoflavones.isoflavone

reductase : secondary metabolism.phenylpropanoids

Potri.003G196700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.012G094900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.001G372400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.006G097500.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.flavonoids.anthocyanins

Potri.T178300.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.unspecified

Potri.001G304800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCoAOMT

Potri.001G045000.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.001G045100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.001G268600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.004G230900.v3.0 secondary metabolism.phenylpropanoids

Potri.007G029800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis : misc.UDP glucosyl and glucoronyl transferases

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.003G183900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.005G243700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.002G025700.v3.0 misc.cytochrome P450 : secondary

metabolism.phenylpropanoids.lignin biosynthesis.C3H

Potri.007G083000.v3.0 misc.cytochrome P450 : secondary

metabolism.phenylpropanoids.lignin

biosynthesis.F5H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase

Potri.003G096600.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.shikimate kinase

Potri.017G033600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.013G029800.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Potri.011G148100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.016G107900.v3.0 secondary metabolism.simple phenols : secondary

metabolism.phenylpropanoids

Potri.019G078100.v3.0 secondary metabolism.flavonoids.isoflavones.isoflavone

reductase : secondary metabolism.phenylpropanoids

Potri.007G030300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis : misc.UDP glucosyl and glucoronyl transferases

Potri.002G003200.v3.0 secondary metabolism.phenylpropanoids

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.010G224100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.PAL

Potri.009G062800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.014G025500.v3.0 secondary metabolism.unspecified : secondary

metabolism.phenylpropanoids

Potri.004G188100.v3.0 amino acid metabolism.synthesis.aromatic

aa.phenylalanine.arogenate dehydratase / prephenate

dehydratase

Potri.001G045800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.006G199100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.001G046400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.007G083500.v3.0 misc.cytochrome P450 : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

Potri.014G041900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis : secondary metabolism.flavonoids.dihydroflavonols :

misc.UDP glucosyl and glucoronyl transferases

Potri.003G057000.v3.0 secondary metabolism.phenylpropanoids

Potri.008G038200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.PAL

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.010G019000.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Potri.001G307200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.016G065300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.018G100500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1 : secondary metabolism.phenylpropanoids

Potri.008G040700.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.chorismate synthase

Potri.007G003800.v3.0 secondary metabolism.phenylpropanoids

Potri.001G045900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.004G053500.v3.0 secondary metabolism.phenylpropanoids

Potri.005G248500.v3.0 secondary metabolism.phenylpropanoids

Potri.010G020600.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Potri.013G157900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.C4H

Potri.002G004100.v3.0 secondary metabolism.phenylpropanoids

Potri.014G124100.v3.0 secondary metabolism.phenylpropanoids

Potri.008G195500.v3.0 amino acid metabolism.synthesis.aromatic

aa.phenylalanine.arogenate dehydratase / prephenate

dehydratase

Potri.017G035100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL : secondary metabolism.phenylpropanoids

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.017G112800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.002G012800.v3.0 secondary metabolism.phenylpropanoids

Potri.016G091100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.PAL

Potri.007G116100.v3.0 secondary metabolism.phenylpropanoids

Potri.001G036900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.T107000.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Potri.007G085000.v3.0 misc.cytochrome P450 : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

Potri.007G083200.v3.0 secondary metabolism.phenylpropanoids.lignin

biosynthesis.F5H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase : misc.cytochrome P450

Potri.006G265500.v3.0 secondary metabolism.phenylpropanoids

Potri.003G030600.v3.0 amino acid metabolism.synthesis.aromatic

aa.tyrosine.prephenate dehydrogenase : amino acid

metabolism.synthesis.aromatic aa.tyrosine.arogenate

dehydrogenase & prephenate dehydrogenase

Potri.009G063300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.016G112400.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.flavonoids.anthocyanins

Potri.014G068300.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.5-enolpyruvylshikimate-3-phosphate

synthase

Potri.013G120900.v3.0 secondary metabolism.phenylpropanoids

Potri.015G127000.v3.0 secondary metabolism.phenylpropanoids

Potri.005G028400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.007G083300.v3.0 misc.cytochrome P450 : secondary

metabolism.phenylpropanoids.lignin

biosynthesis.F5H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase

Potri.007G084700.v3.0 secondary metabolism.phenylpropanoids.lignin

biosynthesis.F5H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase : misc.cytochrome P450

Potri.005G110900.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.3-dehydroquinate synthase

Potri.004G102000.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.006G048200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis : misc.UDP glucosyl and glucoronyl transferases

Potri.014G135500.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.010G230200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL : secondary metabolism.phenylpropanoids

Potri.007G030200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis : secondary metabolism.flavonoids.dihydroflavonols :

misc.UDP glucosyl and glucoronyl transferases

Potri.008G136600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCoAOMT

Potri.016G031100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.C3H

Potri.004G105000.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.002G061100.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.shikimate kinase

Potri.007G084800.v3.0 misc.cytochrome P450 : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

Potri.005G028200.v3.0 secondary metabolism.phenylpropanoids

Potri.007G049200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.001G451100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.COMT : misc.O-methyl transferases

Potri.007G082900.v3.0 misc.cytochrome P450 : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.003G003300.v3.0 secondary metabolism.phenylpropanoids

Potri.005G162800.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.3-deoxy-D-arabino-heptulosonate 7-

phosphate synthase

Potri.015G003100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.COMT

Potri.018G104700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.005G043400.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Potri.001G140700.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.phenylpropanoids.lignin biosynthesis.CCR1

Potri.008G196100.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Potri.002G018300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.016G101500.v3.0 secondary metabolism.phenylpropanoids

Potri.002G076800.v3.0 misc.O-methyl transferases : secondary

metabolism.phenylpropanoids.lignin biosynthesis.COMT

Potri.001G334400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.003G093700.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.phenylpropanoids.lignin biosynthesis.CCR1

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.001G167800.v3.0 secondary metabolism.phenylpropanoids.lignin

biosynthesis.C3H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase : misc.cytochrome P450

Potri.012G095000.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.005G175400.v3.0 secondary metabolism.phenylpropanoids

Potri.001G300000.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.T134100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.016G057300.v3.0 misc.UDP glucosyl and glucoronyl transferases :

secondary metabolism.flavonoids.flavonols.flavonol

3-O-glycosyltransferase : stress.biotic : secondary

metabolism.phenylpropanoids.lignin biosynthesis

Potri.007G095700.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.3-deoxy-D-arabino-heptulosonate 7-

phosphate synthase

Potri.010G104400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCoAOMT

Potri.006G169700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.006G094100.v3.0 secondary metabolism.simple phenols : secondary

metabolism.phenylpropanoids

Potri.007G081000.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.shikimate kinase

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.016G023300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.001G032800.v3.0 hormone metabolism.brassinosteroid.synthesis-

degradation.BRs.metabolic regulation

: misc.cytochrome P450 : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H :

secondary metabolism.isoprenoids.carotenoids.carotenoid

epsilon ring hydroxylase

Potri.009G099800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCoAOMT

Potri.011G004700.v3.0 amino acid metabolism.synthesis.aromatic

aa.phenylalanine.arogenate dehydratase / prephenate

dehydratase

Potri.008G074500.v3.0 amino acid metabolism.synthesis.aromatic

aa.tyrosine.prephenate dehydrogenase : amino acid

metabolism.synthesis.aromatic aa.tyrosine.arogenate

dehydrogenase & prephenate dehydrogenase

Potri.005G084600.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.shikimate kinase

Potri.006G024400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.006G169600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.003G099700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.T161300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.012G006400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.COMT

Potri.001G128100.v3.0 secondary metabolism.phenylpropanoids

Potri.013G079500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1 : secondary metabolism.phenylpropanoids

Potri.016G106100.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.simple phenols

Potri.010G125400.v3.0 secondary metabolism.phenylpropanoids

Potri.015G092300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.T149600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.005G043300.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Potri.018G017400.v3.0 secondary metabolism.phenylpropanoids

Potri.009G148800.v3.0 amino acid metabolism.synthesis.aromatic

aa.phenylalanine.arogenate dehydratase / prephenate

dehydratase

Potri.006G165200.v3.0 secondary metabolism.phenylpropanoids

Potri.T071600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.004G161600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.F5H

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.001G133300.v3.0 secondary metabolism.flavonoids.isoflavones.isoflavone

reductase : secondary metabolism.phenylpropanoids

Potri.006G062600.v3.0 amino acid metabolism.synthesis.aromatic

aa.tyrosine.arogenate dehydrogenase & prephenate

dehydrogenase

Potri.002G146400.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.5-enolpyruvylshikimate-3-phosphate

synthase

Potri.016G106300.v3.0 secondary metabolism.simple phenols : secondary

metabolism.phenylpropanoids

Potri.005G147400.v3.0 secondary metabolism.phenylpropanoids

Potri.010G221600.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.chorismate synthase

Potri.018G104800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.001G042900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.005G028000.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.004G017900.v3.0 secondary metabolism.phenylpropanoids

Potri.005G028100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.008G120200.v3.0 secondary metabolism.phenylpropanoids

Potri.010G186300.v3.0 secondary metabolism.phenylpropanoids

Potri.018G109900.v3.0 secondary metabolism.phenylpropanoids

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.010G224200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.PAL

Potri.007G016400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.F5H

Potri.001G362800.v3.0 misc.cytochrome P450 : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

Potri.006G126800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.PAL

Potri.008G082300.v3.0 secondary metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

: misc.cytochrome P450

Potri.T149400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.010G054200.v3.0 secondary metabolism.phenylpropanoids

Potri.002G004500.v3.0 secondary metabolism.phenylpropanoids

Potri.001G150500.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.3-deoxy-D-arabino-heptulosonate 7-

phosphate synthase

Potri.004G013400.v3.0 amino acid metabolism.synthesis.aromatic

aa.phenylalanine.arogenate dehydratase / prephenate

dehydratase

Potri.016G093700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.009G095800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.009G063400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.003G100200.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.flavonoids.isoflavones.isoflavone reductase

Potri.018G021200.v3.0 secondary metabolism.phenylpropanoids

Potri.018G105400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.002G183600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCoAOMT

Potri.007G083700.v3.0 secondary metabolism.phenylpropanoids.lignin

biosynthesis.F5H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase : misc.cytochrome P450

Potri.009G062900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.018G146100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.C4H

Potri.001G045300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.018G094200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.017G034900.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL : secondary metabolism.phenylpropanoids

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.019G048200.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.shikimate kinase

Potri.005G257700.v3.0 secondary metabolism.phenylpropanoids

Potri.018G070300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCoAOMT

Potri.002G086000.v3.0 secondary metabolism.phenylpropanoids

Potri.008G031500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL : secondary metabolism.phenylpropanoids

Potri.001G201100.v3.0 amino acid metabolism.synthesis.aromatic

aa.tyrosine.prephenate dehydrogenase

Potri.007G083600.v3.0 secondary metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

: misc.cytochrome P450

Potri.012G094800.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.016G078300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.007G030400.v3.0 misc.UDP glucosyl and glucoronyl transferases : secondary

metabolism.phenylpropanoids.lignin biosynthesis

Potri.003G057200.v3.0 secondary metabolism.phenylpropanoids

Potri.008G071200.v3.0 secondary metabolism.phenylpropanoids

Potri.016G031000.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.C3H

Potri.003G188500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.008G136700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCoAOMT

Potri.001G045500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.006G141400.v3.0 secondary metabolism.phenylpropanoids.lignin

biosynthesis.F5H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase : misc.cytochrome P450

Potri.005G073300.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.3-deoxy-D-arabino-heptulosonate 7-

phosphate synthase

Potri.003G181400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.014G106600.v3.0 misc.O-methyl transferases : secondary

metabolism.phenylpropanoids.lignin biosynthesis.COMT

Potri.002G026000.v3.0 misc.cytochrome P450 : secondary

metabolism.phenylpropanoids.lignin

biosynthesis.C3H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase

Potri.019G126400.v3.0 polyamine metabolism : secondary

metabolism.phenylpropanoids

Potri.006G033300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.C3H

Potri.017G062800.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.shikimate kinase

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.018G105500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.HCT

Potri.001G363900.v3.0 misc.cytochrome P450 : secondary

metabolism.phenylpropanoids.lignin

biosynthesis.F5H : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid 3-

monooxygenase

Potri.007G084400.v3.0 secondary metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

: misc.cytochrome P450

Potri.T149300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.006G078100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.C4H

Potri.001G365300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.F5H : misc.cytochrome P450

Potri.019G130700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.C4H

Potri.008G024800.v3.0 secondary metabolism.flavonoids.dihydroflavonols

: misc.UDP glucosyl and glucoronyl transferases

: secondary metabolism.phenylpropanoids.lignin

biosynthesis : hormone metabolism.salicylic

acid.synthesis-degradation : secondary

metabolism.flavonoids.anthocyanins.anthocyanidin 3-

O-glucosyltransferase

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.009G076300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.019G049500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.005G175600.v3.0 secondary metabolism.phenylpropanoids

Potri.003G210700.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.phenylpropanoids.lignin biosynthesis.4CL

Potri.014G025600.v3.0 secondary metabolism.phenylpropanoids : secondary

metabolism.unspecified

Potri.009G123600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.F5H

Potri.001G045700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.001G046100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.003G057100.v3.0 secondary metabolism.phenylpropanoids

Potri.003G210600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL : secondary metabolism.phenylpropanoids : lipid

metabolism.FA synthesis and FA elongation.acyl coa ligase

Potri.001G045600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.006G178700.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1 : secondary metabolism.phenylpropanoids

Potri.005G117500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.F5H

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.006G024300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Potri.001G365100.v3.0 misc.cytochrome P450 : secondary

metabolism.flavonoids.dihydroflavonols.flavonoid

3-monooxygenase : secondary

metabolism.phenylpropanoids.lignin biosynthesis.F5H

Potri.010G057000.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.4CL

Potri.001G045400.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.007G030500.v3.0 misc.UDP glucosyl and glucoronyl transferases : sec-

ondary metabolism.flavonoids.dihydroflavonols : sec-

ondary metabolism.phenylpropanoids.lignin biosynthesis

Potri.013G029900.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.dehydroquinate/shikimate dehydrogenase

Potri.017G110500.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.002G099200.v3.0 amino acid metabolism.synthesis.aromatic

aa.chorismate.3-deoxy-D-arabino-heptulosonate 7-

phosphate synthase

Potri.001G055700.v3.0 secondary metabolism.phenylpropanoids

Potri.019G084300.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.COMT

Potri.011G148200.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD

Continued on next page.
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Table S2.1: (continued)

Gene Mapman Name

Potri.001G349600.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CCR1

Potri.009G063100.v3.0 secondary metabolism.phenylpropanoids.lignin biosynthe-

sis.CAD
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Table S2.2: Mass/Charge (mz) ratio for Lignin pyMBMS Peaks.

mz Annotation [21]

120 lignin (vinylphenol)

124 lignin, guaiacyl

137 lignin,guaiacyl (Ethylguaiacol, homovanillin,coniferyl al-

cohol)

138 lignin,guaiacyl (Methylguaiacol)

150 lignin,guaiacyl (Vinylguaiacol)

152 lignin

154 lignin,syringyl (Syringol)

168 syringyl (4-Methyl-2,6-dimethoxyphenol)

180 lignin (Coniferyl alcohol, syringylethene)

182 lignin,syringyl (Syringaldehyde)

210 lignin,syringyl (Sinapylalcohol)
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Table S2.3: Lignin-related metabololites from the metabolomics analysis. For partially
identified metabolites, additional RT and mz information is provided.

See attached excel file.

Table S2.4: LOE Scores, Arabidopsis best hits and MapMan annotations of genes for which
LOEbreadth(g) ≥ 3 and LOEgwas(g) ≥ 1.

See attached excel file.
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Table S2.5: Positions of SNPs involved in SNP correlations in select portential new target
genes.

Source Target

SNP Correlations between Potri.007G115100 (AGL22) and Potri.016G107900

(laccase 7)

SNP 07:13647758 SNP 16:11083690

SNP 07:13647758 SNP 16:11083708

SNP 07:13647758 SNP 16:11083712

SNP 07:13647758 SNP 16:11083737

SNP 07:13647978 SNP 16:11083690

SNP 07:13647978 SNP 16:11083708

SNP 07:13647978 SNP 16:11083712

SNP 07:13647978 SNP 16:11083737

SNP 07:13648235 SNP 16:11083690

SNP 07:13648235 SNP 16:11083708

SNP 07:13648235 SNP 16:11083712

SNP 07:13648235 SNP 16:11083737

SNP 07:13648488 SNP 16:11083690

SNP 07:13648488 SNP 16:11083708

SNP 07:13648488 SNP 16:11083712

SNP 07:13648488 SNP 16:11083737

SNP Correlations between Potri.007G115100 (AGL22) and Potri.007G116100

(nicotinamidase 1)

SNP 07:13647645 SNP 07:13706654

SNP 07:13647645 SNP 07:13706699

SNP 07:13647645 SNP 07:13706834

SNP 07:13647758 SNP 07:13706654

Continued on next page.
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Table S2.5: (continued)

Source Target

SNP 07:13647758 SNP 07:13706699

SNP 07:13647978 SNP 07:13706654

SNP 07:13647978 SNP 07:13706699

SNP 07:13647978 SNP 07:13706834
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Jianming Li, Dusty Post-Beittenmiller, Werner M Kaiser, Kevin A Pyke, Ulf-Ingo
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Abstract

Various patterns of multi-phenotype associations (MPAs) exist in the results of Genome

Wide Association Studies (GWAS) involving different topologies of single nucleotide

polymorphism (SNP)-phenotype associations. These can provide interesting information

about the different impacts of a gene on closely related phenotypes or disparate

phenotypes (pleiotropy). In this work we present MPA Decomposition, a new network-

based approach which decomposes the results of a multi-phenotype GWAS study into three

bipartite networks, which, when used together, unravel the multi-phenotype signatures
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of genes on a genome-wide scale. The decomposition involves the construction of

a phenotype powerset space, and subsequent mapping of genes into this new space.

Clustering of genes in this powerset space groups genes based on their detailed MPA

signatures. We show that this method allows us to find multiple different MPA and

pleiotropic signatures within individual genes and to classify and cluster genes based on

these SNP-phenotype association topologies. We demonstrate the use of this approach on a

GWAS analysis of a large population of 882 Populus trichocarpa genotypes using untargeted

metabolomics phenotypes. This method should prove invaluable in the interpretation

of large GWAS datasets and aid in future synthetic biology efforts designed to optimize

phenotypes of interest.

3.1 Introduction

Unravelling the complex genetic patterns underlying complex phenotypes has previously

been challenging. While individual Genome-Wide Association Studies (GWAS) can provide

insight into the genetic underpinnings of measured phenotypes, they typically involved

associations of genetic variants with only one or a few phenotypes. The field of phenomics

involves the collection of high-dimensional phenotype data of an organism, with the aim

of capturing the overall, comprehensive phenotype (the “Phenome”) of the organism

[1]. Association studies involving many measured phenotypes, for example, Phenome-

Wide Association Studies (PheWAS) present many advantages, in that they allow for the

complex interconnected networks between phenotypes and their genetic underpinnings to

be elucidated, and also allow for the detection of pleiotropy [2, 3, 4, 5].

Pleiotropy is the phenomenon in which a gene affects multiple phenotypes [6]. One

can also have a locus-centric view of pleiotropy involving a single SNP affecting

multiple phenotypes [7]. While pleiotropy used to be considered an exception to

the rules of Mendelian genetics, it has since been proposed to be a common, central

property inherent to biological systems [6]. Multi-phenotype associations (MPAs) can

be detected in the results of Genome Wide Association Studies (GWASs) as Single
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Nucleotide Polymorphisms (SNPs) within genes/functional regions having multiple

significant phenotype associations. This can be considered to be a pleiotropic pattern

when the two phenotypes are seemingly unrelated. Two main MPA patterns exist within

GWAS results. Type 1 MPAs occur when a single SNP within a functional region (such as

a gene) is associated with more than one phenotype, whereas Type 2 MPAs occur when

two different SNPs within a single functional region have different phenotype associations

[7, 8] (Figure 3.1A and 3.1B).

Multivariate analysis of the results of GWAS studies across many phenotypes have

allowed for the investigation of complex relationships between genes and phenotypes,

including pleiotropic relationships and the clustering of variants based on their phenotype

associations. Many of these studies have involved the analysis of SNP associations with

complex human disease traits. Some studies have considered pleiotropy as genes and

SNPs associated with more than one phenotype, and found that pleiotropic genes tended

to be longer, and that SNPs within pleiotropic genes were more likely to be exonic

[9]. Levine et al. (2017) extended Weighted Gene Co-expression Network Analysis

(WGCNA) to cluster SNPs based on their phenotype associations using a matrix of beta

coefficients, followed by hierarchical clustering of the Topological Overlap Matrix [10],

and show how the resulting clusters can be used to produce polygenic scores. Gupta

et al. (2011) introduced a biclustering algorithm, simultaneously clustering SNPs and

phenotypes in a matrix of regression coefficients [11]. Network-based approaches have

been developed which construct bipartite networks of gene-disease phenotype associations

from GWAS, and constructed network projections of this bipartite network resulting in

disease similarity and gene-similarity networks [12]. Though these studies provide a

baseline of the use of multivariate and network approaches for the analysis of GWAS

results, there is, to our knowledge, no method which characterizes detailed MPA signatures

of genes and no method which clusters genes based on these detailed signatures. Simply

clustering genes based on their phenotype associations will not capture the vast amount

of combinatorial possibilities of type 1 and type 2 signatures any given gene can harbor

(Figure 3.1C), especially when the multi-phenotype GWAS study involves millions of

variants and hundreds of phenotypes.
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Type	1	 Type	2	

Phenotype	 Variant	

Gene	
Type	1/Type	2	Combina0ons	

A	

C	

B	

Figure 3.1: MPA signatures. (a) Type 1 MPA: a gene is associated with more than one
phenotype due to a single variant within the gene associating with multiple phenotypes.
(b) Type 2 MPA: a gene is associated with more than one phenotype because of alternate
SNPs within the gene having different phenotypic associations. (Figure created from
information presented in Solovieff et al. (2013) [7].) (c) Complex combinations of Type 1
and Type 2 signatures.
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Methods for multi-trait GWAS have also been developed, associating variants to groups

of phenotypes (see, for example Porter et al. (2017) [13], Thoen et al. (2017) [14],

Furlotte et al. (2015) [15] and Stephens et al. (2013) [16]). Though these methods have

value in their own right for identifying variants which affect a group of traits, they do not

address the question of the architecture of variant-phenotype associations within a region,

such as a gene, nor do they automatically allow for the clustering of regions based on

the architecture of the variant-phenotype associations (MPA/pleiotropic signatures) they

harbor.

To this end, we present MPA Decomposition and Signature Clustering, a network-

based approach involving a constructed powerset space, in which clustering distinguishes

between genes based on the detailed topology of their unique MPA signature. MPA

decomposition provides a framework allowing the precise mathematical representation

of the architecture of variant-phenotype associations within regions (MPA/pleiotropic

signatures), and thus allows these regions (such as genes) to be clustered based on these

complex signatures.

3.2 Methods and Materials

3.2.1 Overview

MPA decomposition involves the mathematical characterization of each gene’s MPA

signature in a network-based context. This process begins in phenotype space. In this

multi-dimensional space, each axis represents a phenotype and genes are represented as

points, with points close together representing genes with similar phenotype associations

and points far apart representing genes with very different phenotype associations. This

phenotype space provides no information on the topology of associations within each

gene. MPA decomposition maps genes to a newly constructed powerset space, which is

constructed though clustering of SNP association vectors (Figure 3.2A-E). This clustering

produces discrete sets of SNPs/overlapping sets of phenotypes called association modules

148



which form the axes of powerset space, which provides the detailed structure of phenotype

associations within a gene. The second stage - signature clustering - groups genes based

on their detailed MPA signature (Figure 3.2F). Clustering of genes in this space results

in groups of genes with identical MPA signatures (Figure 3.2G-I). These genes grouped

by MPA signatures provide a useful tool for the researcher planning genetic modification

experiments, easily highlighting groups of genes with favorable signatures for modification

to influence a particular phenotype.

The approach of MPA decomposition and its application are described below. We apply and

demonstrate this method on GWAS results from a densely genotyped Populus trichocarpa

GWAS population involving approximately 10 million SNPs and over 400 untargetted

metabolomics phenotypes measured across the population.

3.2.2 Populus trichocarpa SNPs

P. trichocarpa [17] SNP data (DOI 10.13139/OLCF/1411410) obtained from [https:

//doi.ccs.ornl.gov/ui/doi/55] was derived from the whole genome resequencing of

a Genome Wide Association Study (GWAS) population clonally replicated in common

gardens [18]. This dataset consists of 28,342,758 SNPs called across 882 P. trichocarpa

genotypes. Details on the generation of this SNP dataset can be found in [19]. VCFtools

[20] was used to extract the most reliable set of SNPs corresponding to the 90% tranche,

resulting in a set of 10,438,861 bi-allelic SNPs.

3.2.3 Metabolomics

Untargetted metabolomics was conducted on P. trichocarpa genotypes using GC-MS. The

metabolite analysis used is described in Tschaplinski et al. (2014) [21]. Briefly, samples

were freeze dried for 48 h and then ground with a microWiley mill with a 20 mesh screen,

with samples then twice extracted in 80% ethanol (aqueous) and the extracts combined

before an aliquot was dried under nitrogen. Dried extracts were dissolved in acetonitrile
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Figure 3.2: Overview of MPA Decomposition and Signature Clustering. (A)
Construction of GWAS matrix and calculation of Proportional Similarity between all pairs
of SNPs. (B) Clustering of the SNP association similarity network into groups of SNPs
identical phenotype associations. (C) Association modules constructed as elements of the
powerset of phenotypes observed in the SNP clusters. (D) Module-phenotype network
links phenotypes to modules if phenotype is associated with all SNPs in module. (E)
The gene-module network is constructed by mapping genes to association modules if the
module contains a SNP that resides within that gene. (F) Signature clustering groups genes
with the same module associations. (G,H) Clustering genes in powerset space results in
groups of genes with the same pattern of MPA signatures with the same set of phenotypes.
Modules exist as a layer between genes and phenotypes. (I) Example: Both G1 and G2
contain SNP(s) associating with both P1 and P2, as well as a SNP associating with only P3.
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followed by the addition

N-methyl-N-trimethylsilyltrifluoroacetamide with 1% trimethylchlorosilane. Samples were

heated for 1 hour at 70 to generate trimethylsilyl (TMS) derivatives. Samples were injected

in an inert XL gas chromatograph-mass spectrometer (Agilent Technologies Inc., Santa

Clara, CA, U.S.A.), fitted with an Rtx-5MS with Integra-Guard (5% diphenyl/95% dimethyl

polysiloxane) capillary column (30 m by 250 µm by 0.25 µm film thickness) (Restek,

Bellefonte, PA, U.S.A.). A standard quadrupole GC-MS was operated in the electron impact

(70 eV) ionization mode, targeting 2.5 full-spectrum (50-650 Da) scans per second, as

described previously [22]. A large user-created database (>2400 spectra) of mass spectral

electron impact ionization fragmentation patterns of TMS-derivatized compounds, as well

as the Wiley Registry 10th Edition with the NIST 2014 mass spectral database, were

used to identify the metabolites of interest. Metabolites were quantified by extracting

a key, characteristic mass-to-charge (m/z) for each known and unidentified metabolite

using an automated data extraction program. Preprocessing of the resulting raw GC-MS

data included alignment using XCMS [23] and normalization for amount of leaf sample

analyzed, fraction of extracted sample analyzed, and internal standard recovered.

3.2.4 Outlier Analysis

We performed outlier detection on each of the respective phenotypes, to account for

measurement variability and technical/experimental error, using R [24]. This determines

which, if any, metabolite intensities, for a given genotype, are very different from those

observed for other genotypes. We applied a variant of the method discussed in Leys et al.

(2013) [25], using the median absolute deviation (MAD) from the median. Our approach

differs in that it takes into account the asymmetry of the distribution of intensity values, as

lower intensities are more frequent. We thus calculated the MAD for the upper and lower

tails of the distribution separately. By investigating the distribution of intensities and the

MAD distance from the median, for a random sample of metabolites, we determined that

a MAD distance of 5 is appropriate for outlier detection, this was done using the ggplot2

package in R [26]. Any intensity value of a metabolite for a given genotype that was more
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than 5 MADs from the median was removed from the analysis. Also, to mitigate potential

biases from under-represented metabolites, we excluded any metabolite that had less than

100 non-zero, non-outlier values.

3.2.5 GWAS

The EMMAX software [27] was used to statistically associate measured phenotypes

with SNPs in Populus trichocarpa. Covariates were included to account for population

structure by estimating a kinship matrix using the default parameters for Balding-Nichols

method implemented in the emmax-kin program [28]. This was run in a parallel

fashion using a customized Python script which made use of the NumPy [29], SciPY

(http://www.scipy.org/) [30], pandas [31] and mpi4py [32, 33, 34] modules. The

Benjamini-Hochberg stepwise procedure [35] was used to control the false discovery rate

(FDR), and associations passing a FDR of 0.1 were considered significant associations. A

total of 413 phenotypes had at least one significant SNP association, and 131,282 SNPs

had at least one significant phenotype association.

3.2.6 Profile Matrix Construction

A GWAS profile matrix M was constructed in which each row represented a SNP that

resides within a gene region, each column represented a phenotype and each entry Mij

was defined as:

Mij =




1 if SNP i is associated with phenotype j

0 otherwise
(3.1)

Each row of the matrix M represents the GWAS profile of a particular SNP. SNPs were

mapped to their respective genes using the P. trichocarpa version 3 genome annotation

[17] available on Phytozome [36] through the genome portal of the Department of Energy
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Joint Genome Institute [37, 38]. A gene was considered to consist of its coding sequences

as well as regulatory elements such as 5’ and 3’ UTRs.

3.2.7 Gene-Phenotype (GP ) Matrix Construction

The gene-phenotype matrix GP was constructed from the GWAS results by mapping the

SNPs in the GWAS profile matrix to genes. This would result in a matrix in which entry ij

would be defined as 1 if gene i contained a SNP significantly associated with phenotype j,

and zero otherwise, and then pruning the resulting matrix to include only genes with more

than one phenotype association. Equivalently, this can be seen as constructing a network

by creating an edge between a gene and phenotype if that particular gene contained a SNP

significantly associated with that phenotype.

3.2.8 Association Module Construction

The procedure for the construction of association modules is shown in Figure 3.2, steps

A though C. The GWAS profiles of all pairs of SNPs in the GWAS profile matrix M were

compared by calculating the Proportional Similarity Index between all pairs of rows of M .

The Proportional Similarity Index between two vectors X and Y is defined as [39]:

PS(X, Y ) =
2
∑

i min(xi, yi)∑
i(xi + yi)

(3.2)

whereX and Y are the GWAS profiles of two SNPs (i.e. two rows of the matrixM), xi is the

ith entry in row X and yi is the ith entry in row Y . This was performed in parallel using a

customized Perl script which made use of the Parallel::MPI::Simple Perl module, developed

by Alex Gough and available on The Comprehensive Perl Archive Network (CPAN) at

www.cpan.org. This all-vs-all comparison results in a complete, unpruned SNP association

network in which nodes represent SNPs and edges represent the similarity between the

phenotype associations of SNPs.
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We extracted association modules from the SNP association network as follows: First

we identify SNPs that reside within genes with multiple phenotype associations (MPA

genes). We extracted SNPs within MPA genes and the edges between these SNPs, and then

pruned the network to only include edges between SNPs which have identical phenotype

associations. This was achieved by applying a Proportional Similarity threshold of 1

(Supplementary Text S3.1, S3.2, S3.3, Figure S3.1). Nodes of the resulting subnetwork

were then clustered into groups using MCL [40, 41] available from http://micans.

org/mcl/. Each resulting cluster represents a group of SNPs with the same phenotype

associations, i.e. a group of SNPs driven together by a particular set of phenotypes, or, an

element of the powerset of phenotypes. These modules of phenotypes form the axes of the

powerset space.

3.2.9 Decomposition Matrix Construction

The procedure for decomposition matrix construction is shown in Figure 3.2, steps D and

E. The GM matrix was constructed by mapping modules to genes which contained SNPs

within that module. Thus, the GM matrix was constructed such that each entry ij was

defined as 1 if module j contained a SNP that resides within gene i, and zero otherwise.

This can also be seen as constructing a network by connecting gene nodes to module nodes

which contain SNPs that reside within that gene region.

The MP matrix was constructed by mapping modules to phenotypes which drive the

association between SNPs within the module. Thus, the MP matrix was constructed such

that each entry ij was defined as 1 if phenotype j had a significant GWAS association with

all SNPs in module i. This could alternatively be seen as creating a network by connecting

phenotype nodes to module nodes if that phenotype has a GWAS association with all SNPs

in that module.

TheGP , MP andGM matrices represent MPA matrices, and theGM andMP matrices are

referred to as the decomposition matrices (Supplementary Text S3.4, S3.5, Figure S3.2).
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These matrices were visualized as bipartite networks in Cytoscape [42] using an Allegro

layout.

3.2.10 Signature Clustering

Signature clustering was performed by calculating the similarity between all pairs of rows

(genes) of the GM matrix using the proportional similarity metric (described above),

applying a threshold of 1, and clustering the resulting similarity network using MCL

[40, 41].

3.2.11 Annotation and Functional Enrichment

P. trichocarpa gene boundaries as defined in the Ptrichocarpa 210 v3.0.gene.gff3

annotation file obtained from version 3 genome annotation [17] available on Phytozome

was used. Functional annotations of P. trichocarpa genes were obtained from version 3

genome annotation [17] available on Phytozome [36] through the genome portal of the

Department of Energy Joint Genome Institute [37, 38].

Mapman annotations of P. trichocarpa were obtained by splitting the protein translations

of P. trichocarpa genes into three sets and using the Meractor tool [43] to assign Mapman

terms to each gene. The BINGO Cytoscape plugin [44] was used to determine enriched

Gene Ontology (GO) terms in the set of type 1 and type 2 MPA genes.

3.2.12 Co-expression Network

A P. trichocarpa gene co-expression network was constructed as described in Weighill et

al. (2018) [19] making use of the P. trichocarpa (Nisqually-1) RNA-seq data derived from

JGI Plant Gene Atlas project (Sreedasyam et al., unpublished), consisting of samples for

various tissues (leaf, stem, root and bud tissue) and libraries generated from nitrogen
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source study. A list of sample descriptions was accessed from Phytozome at https://

phytozome.jgi.doe.gov/phytomine/aspect.do?name=Expression.

3.3 Results and Discussion

3.3.1 MPA Decomposition: Construction of a New Space

Genotyping of 882 P. trichocarpa genotypes and metabolic profiling of 585 of these

genotypes, followed by GWAS analysis provided a network of associations between SNPs

and metabolic phenotypes (see Methods and Materials). Mapping of these SNPs to the

genes in which they reside resulted in gene-to-phenotype associations. These gene-

phenotype associations can be represented as multiple different data structures. Genes can

be represented as points in multi-dimensional phenotype space, indicating their respective

phenotype associations (Figure 3.3). The closer genes are to each other in phenotype

space, the more shared phenotype associations they have. Alternatively, these associations

can be represented as a bipartite network, linking a gene gi to phenotype pk if gi contained

a SNP significantly associated with pk (Figure 3.3). Bipartite networks are useful for

the visualization and investigation of points in high dimensional space, as well as for

the representation of complex relationships between multiple objects. Thus, bipartite

networks were used throughout MPA decomposition as the mathematical foundation as

well as a visualization tool.

GWAS results represented as a bipartite network of SNPs connected to their associated

phenotypes (Figure 3.4a) do not give any indication of MPA signatures as there is no

obvious information about which SNPs belong to which genes. Thus, bipartite SNP-

phenotype networks give no indication of how many phenotype associations a given

gene has. GWAS results represented as a bipartite network of genes connected to their

associated phenotypes (Figure 3.4b) can give an indication as to whether or not a gene

has multiple phenotype associations in that it is associated with more than one phenotype,

but cannot give any indication as to the type of MPA signature (type 1 or type 2) exhibited
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Figure 3.3: Representation of matrices as spaces and bipartite networks. Matrices
of GWAS results can easily be represented as points in high dimensional space, with
rows representing points and columns representing variables/axes. Equivalently, matrices
can be represented as bipartite networks, connecting row objects (genes) with column
variables if the corresponding entry is non-zero. This provides a useful way to visualize
high dimensional spaces as bipartite networks.
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by the gene. Mapping the SNPs in the SNP-phenotype network to the genes in which they

are present results in a gene-SNP-phenotype network (Figure 3.4c). From this network,

it is possible to deduce the type of MPA signature exhibited by a gene through some

amount of visual inspection, for example, looking at the SNPs within a gene and what

their associated phenotypes are. However, the structure of this network does not allow

the MPA signature of a gene to be readily extracted using simple node properties such as

degree. For example, one cannot simply calculate the connectivity (degree) of each gene

node in Figure 3.4c in order to determine the type of MPA signature exhibited, since one

can have multiple SNPs within the same gene associating with the same set of phenotypes.

In addition, it is not easy to determine which genes exhibit the same MPA signatures. The

process of MPA decomposition allows one to maintain the topology of SNP associations

within a gene while still being able to determine the type of MPA signature using simple

network measures such as degree.

The first phase of MPA decomposition involved the construction of the powerset space,

a new multi-dimensional space in which each dimension/axis represents a particular

subset of phenotypes. Construction of this space is described in Methods and Materials.

Briefly, we calculated the similarity between all pairs of SNP vectors, based on their

phenotype associations. Applying a threshold and clustering the resulting SNP associations

resulted in modules of SNPs with the same phenotype associations (Figure 3.2A-C). While

representing non-overlapping sets of SNPs, these modules also represented overlapping

sets of phenotypes. In particular, each module represented the set of phenotypes which

were associated with all SNPs within the module. Thus, each module also represented

an element of the powerset of phenotypes P (P ) observed in the SNP-phenotype GWAS

associations. These observed elements of the powerset were used to construct the powerset

space, with each element/module representing a different dimension of this space (Figures

3.2C, 3.2D). Genes were subsequently mapped from phenotype space into powerset space

(Figure 3.2E). Thus, SNP elements were used to generate the modules of powerset space,

but genes where the elements mapped in the powerset space. Represented as bipartite

networks, the module-phenotype bipartite network defined the axes of powerset space,

and the gene-module bipartite network mapped the genes into powerset space. While
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Figure 3.4: Example of SNP-phenotype, gene-phenotype networks and gene-SNP-
phenotype networks. (a) SNP-phenotype bipartite networks simply connect SNPs
to phenotypes with which they have a significant association, and do not provide
information regarding MPA signatures within genes. (b) Gene-phenotype networks contain
connections between genes and phenotypes. An edge will be drawn between a gene and
a phenotype if that gene contains a SNP associated with that phenotype. Gene-phenotype
networks do not provide information as to which type of MPA signature is exhibited. (c)
Gene-SNP-phenotype networks are SNP-phenotype networks with the SNPs connected to
genes in which they reside. These networks are more complicated, and MPA signatures can
be deduced from their structure through further analysis, however, the network is not in
a form in which MPA signatures can be extracted easily using standard network topology
measures such as degree.
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phenotype space provided information as to the individual phenotype associations of

genes, powerset space indicated a gene’s associations with sets of phenotypes at the

SNP level, providing a detailed MPA signature. The mapping from phenotype space to

powerset space was defined in terms of three bipartite networks, linked by a decomposition

relationship (Figure 3.5, Supplementary Text S3.6), namely a gene-phenotype (GP ),

a gene-module (GM) and a module-phenotype (MP ) network. In the GP network

(Figure 3.6), nodes represented either genes or phenotypes, and an edge was defined

between gene Gi and phenotype Pj if gene Gi contained a SNP which was statistically

associated with phenotype Pj in the GWAS analysis. Nodes in the GM network (Figure

3.7) represented either genes or modules, and an edge was defined between gene Gi

and module Mj if Mj contained a SNP that resided within gene Gi. Nodes in the MP

network (Figure 3.8) represented either association modules or phenotypes, and an edge

was defined between module Mi and phenotype Pj if the correlation of SNPs within Mi is

driven by phenotype Pj.

3.3.2 Powerset Space Unravels Multi-Phenotype Association Signa-

tures

The GP network (Figure 3.6) represents genes in phenotype space, and provides

information regarding which genes are associated with which phenotypes, and can

thus indicate which genes are have multiple phenotype associations and are potentially

pleiotropic. Of the 41,335 genes in P. trichocarpa, 2,964 genes had GWAS hits with more

than 1 metabolite phenotype each, and are thus considered MPA genes with respect to the

metabolic phenotypes.

The GM network (Figure 3.7) represents genes in powerset space, which in turn is defined

by the MP network (Figure 3.8). The GM network unravels the MPA signatures of genes,

representing their associations with sets of phenotypes. Genes that are connected to one

module exhibit a Type 1 MPA signature because they contain SNPs which are associating

with the same set of phenotypes, whereas genes connected to more than one module
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Figure 3.5: MPA Decomposition. The gene-phenotype matrix is decomposed into
two matrices, a gene-module (GM) matrix and a module-phenotype (MP ) matrix
(Supplementary Text S3.4 and S3.5). The GM matrix represents genes in powerset space.
Association modules (elements of the powerset of phenotypes) form the basic units of MPAs
and are considered latent variables. Signature clustering is performed on genes in module
space (GM matrix).
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Figure 3.6: Gene-Phenotype (GP ) Network. (a) TheGP network. Green nodes represent
MPA genes, pink diamonds represent metabolites (phenotypes). An edge connects a gene
to a phenotype if that gene contains a SNP associated with that phenotype. (b) Degree
distribution of the gene (green) nodes in the GP network. (c) Degree distribution of the
phenotype (pink) nodes in the GP network.
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Figure 3.7: Gene-Module (GM) Network. (a) The GM network. Green nodes represent
MPA genes and yellow nodes represent association modules. A gene node is connected to
a module node if the module contains a SNP which resides within that gene. (b) Degree
distribution of the module (yellow) nodes in the GM network. (c) Degree distribution of
the gene (green) nodes in the GM network.
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Figure 3.8: Module-Phenotype (MP ) Network. (a) The MP network. Yellow nodes
represent association modules and pink nodes represent phenotypes. A module node is
connected to a phenotype node if the phenotype is associated with all SNPs within the
module and is thus considered a driving phenotype of the module. (b) Degree distribution
of the phenotype (pink) nodes in the MP network. (c) Degree distribution of the module
(yellow) nodes in the MP network.
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exhibit a Type 2 MPA signature because they contain SNPs which associate with different

sets of phenotypes. Mapping of genes to module space thus reveals the Type 1 and Type 2

MPA patterns, as well as complex combinations of Type 1/Type 2 patterns that exist within

genes (Figure 3.9). Phenotype associations of genes cannot be distinguished as Type 1

or Type 2 in phenotype space, whereas module space clearly indicates the MPA signature

exhibited by a gene, revealing precisely which sets of phenotypes each individual SNP

in a gene is associated with (Figure 3.9). Module space also goes beyond classifying

genes as exhibiting Type 1 or Type 2 MPA signatures, but characterizes each unique

topology of variant-phenotype associations within a gene separately. The high density

of SNPs in this population and the rapid decay of LD allows for the high resolution of MPA

signatures. Figure S3.3A shows the variation in LD in the region including 5kb upstream

and downstream of Potri.001G419800, the type 2 MPA gene in Figure 3.9F. One can see

that both associating variants in this gene are in a region of low LD. Figure S3.3B shows a

pairwise LD heatmap of 100 variants in this region including the two associating variants

in Potri.001G419800. One can see that these two associating variants exist within two

separate LD blocks.

The beta value derived from each SNP-phenotype association gives an indication of the

effect that the SNP has on the value of the phenotype. One can look at the beta values

from the GWAS analysis to see if the minor allele of a given SNP has statistically a positive

or negative affect on the phenotype value. This will inform the researcher of the potential

functional affect of each SNP. Overall, positive and negative beta values are present in

associations in the set of type 1 MPA genes, type 2 MPA genes and single phenotype

association (SPA) genes, although negative beta values are far more prevalent across all

categories (Figure S4S3.4 indicating that most minor alleles have negative effects on the

phenotype (metabolite) values.

Of the 10,566 genes that had at least one phenotype hit, 2,964 exhibited a MPA signature

by associating with more than one phenotype (Figure S3.5A). Of those MPA genes,

type 2 MPA signatures were far more abundant, with 2,468 genes exhibiting a type

2 MPA signature and 496 genes exhibiting a type 1 MPA signature (Supplementary
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Figure 3.9: Signature Decomposition Example. Two genes, Potri.013G092400 (A) and
Potri.001G419800 (B) have the same surrounding network topology in the GP network
in that they are both connected to two phenotypes. Projecting the genes into powerset
space though MPA decomposition of the GP network indicates that they exhibit different
MPA signatures in that Potri.013G092400 exhibits a type 1 MPA signature (C), containing
a SNP associating with two phenotypes (E) and Potri.001G419800 exhibits a type 2 MPA
signature. (D) containing two SNPs, each with a different phenotype association (F).
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Table S3.1, Figure S3.5B). MPA genes represented a broad range of functions (Figure

S3.6). No functional enrichment was found in the set of type 1 MPA genes. However,

various GO terms were found to be enriched in the set of type 2 MPA genes, including

developmental functions such as root development, shoot development, leaf development,

fruit development, symbiosis, encompassing mutualism through parasitism, various

regulatory functions such as RNA gene silencing function and response to stress and

DNA repair (see Supplementary Figures S3.7, S3.8, S3.9, Supplementary Table S3.2,

Supplementary File S3.1 for complete enrichment results).

Chaperones are classic examples of pleiotropic genes, assisting in the folding of various

proteins [45, 46, 47]. Querying the MPA networks for potential pleiotropic chaperones,

we uncovered 14 potential chaperones based on there best Arabidopsis hit annotation,

that contain MPA signatures (Supplementary Table S3.1), 12 of which contain type 2 MPA

signatures. It is encouraging to see these classic pleiotropic genes appearing in the MPA

networks, and interesting that they mostly exhibit type 2 MPA signatures.

3.3.3 Signature Clustering in Powerset Space

Clustering of genes in phenotype space produces groups of genes with the same overall

set of phenotype associations. However, it does not provide any information as to the

topology of Type 1/Type 2 associations of SNPs within the gene. Powerset space is defined

by sets of phenotypes, and thus, clustering genes in this space groups genes based on the

topology of Type 1/Type 2 associations of SNPs within the gene. After mapping genes to

the newly constructed powerset space, genes were clustered (Figure 3.2F, Methods and

Materials) resulting in groups of genes containing the same MPA signature. Members of

a given cluster represented genes harboring identical MPA signatures. This means that

genes within the same signature cluster have associations with the same modules. For

example, the signature cluster driven by two modules, one involving associations with cis-

3-O-caffeoyl-quinate and the other involving associations with gentisic acid-2-O-glucoside

contains two genes, Potri.016G125500.v3.0 (homolog of Arabidopsis thaliana TRICHOME
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Table 3.1: IDs, Arabidopsis thaliana best hits and corresponding descriptions of genes in
the gentisic acid/cis-3-caffeoyl-quinate signature cluster (Figure 3.10).

Gene ID A. thaliana Best Hit Description

Potri.012G132600 AT2G45650 AGAMOUS-like 6
Potri.016G125500 AT2G38320 TRICHOME BIREFRINGENCE-LIKE

34

BIREFRINGENCE-LIKE 34) and Potri.012G132600.v3.0 (homolog of Arabidopsis thaliana

AGAMOUS-like 6). These genes have associations with both cis-3-O-caffeoyl-quinate

and gentisic acid-2-O-glucoside, however a given SNP within these genes is associated

with either caffeoyl-quinate or gentisic acid-2-O-glucoside, but not both (Figure 3.10).

This exemplifies what MPA decomposition and signature clustering accomplishes - the

extraction of detailed multi-phenotype association signatures within genes, and the

grouping of genes based on these detailed MPA signatures.

MPA signature clusters varied in size and complexity, ranging from large sets of genes

having simple MPA signatures (Figures 3.11A, 3.11B) to single gene clusters harboring

very complex MPA signatures (Figures 3.11C, 3.11D). An inverse relationship existed

between the cluster size, and the number of associated phenotypes, with a minimum

gene cluster size of one and a maximum gene cluster size of 42 (Figure S3.10). Complex

MPA signatures are possible in this population partly because of the rapid rate with which

Linkage Disequilibrium (LD) decays, dropping below 0.2 within 100bp (Figure S3.11).

These signature clusters are easily combined with other data types in a “lines of evidence”

fashion, as introduced in Weighill et al. (2018) [19]. Signature clusters such as those

in Figure 3.10 can be merged with their neighbors in a co-expression network, providing

additional insights into the functioning of these genes. Potri.016G125500 (TBL34) and

Potri.012G132600 (AGL6) appeared in the same signature cluster, and are associated with

many cell-wall related genes/phenotypes. TBL34 and AGL6 both associated with gentisic

acid-2-O-glucoside and cis-3-O-caffeoyl-quinate, and both co-expressed with the same two

transcription factors (Figure 3.12). An interesting regulatory circuit is potentially revealed,

in that AGL6 potentially activates two transcription factors (positive co-expression edges)
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Figure 3.10: Type 2 Signature Cluster. (A) Signature cluster defined by a Type 2
association with gentisic acid-2-O-glucoside and cis-3-O-caffeoyl-quinate. (B) Associating
SNP positions within genes in this signature cluster. These SNP associations have negative
effect sizes (beta values) on the phenotype values. See Table 3.1 for gene information.
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Potri.005G208600	

(i)	 (ii)	 (iii)	 (iv)	 (v)	 (vi)	 (vii)	 (viii)	 (ix)	

(i)	coumaroyl	tremuloidin	

(ii)	phenethyl-tremuloidin	

(iii)	mz	294	RT	14.9	

(iv)	benzoyl-HCH	
conjugate	

(v)	mz	290	
RT	9.75	

(vi)	feruloyl	
conjugate	

(vii)	mz	174	RT	10.62	

(viii)	mz	246	RT	9.49	

(ix)	mz	461	RT	12.51	

Potri.005G208600	

C	

D	

Potri.003G122900

●●

octadecanol heptadecanoic acid

Potri.003G122900	Potri.006G188500

●●

octadecanol heptadecanoic acid
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Figure 3.11: Simple and Complex MPA Signatures. (A) Signature cluster defined by a
type one SNP association with octadecanol and heptadecanoic acid. See Table 3.2 for gene
information. (B) Associating SNP positions within a selection of the genes in this signature
cluster. These SNP associations have negative effect sizes (beta values) on the phenotype
values. (C) Single-gene cluster of Potri.005G208600, bearing a unique, complex MPA
signature consisting of 7 modules and 9 phenotypes. (D) Associating SNP positions of
Potri.005G208600. These SNP associations have negative effect sizes (beta values) on the
phenotype values.
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Table 3.2: IDs, Arabidopsis thaliana best hits and corresponding descriptions of genes in
the fatty acid signature cluster (Figure 3.11).

Gene ID A. thaliana Best Hit Description

Potri.003G122900 AT1G63120 RHOMBOID-like 2
Potri.006G188500 AT4G31985 Ribosomal protein L39 family

protein
Potri.008G179800 AT3G26000 Ribonuclease inhibitor
Potri.014G117800 AT2G47230 DOMAIN OF UNKNOWN

FUNCTION 724 6
Potri.019G074600 AT4G10030 alpha/beta-Hydrolases superfamily

protein
Potri.019G074700 AT1G71490 Tetratricopeptide repeat (TPR)-like

superfamily protein
Potri.019G075000 AT3G44540 fatty acid reductase 4
Potri.019G075200 AT3G44540 fatty acid reductase 4
Potri.019G075300 AT4G33790,

AT3G44540
fatty acid reductase 4, Jojoba acyl
CoA reductase-related male sterility
protein

Potri.019G075400 AT1G71460 Pentatricopeptide repeat (PPR-like)
superfamily protein

Potri.019G087100 AT4G12600 Ribosomal protein
L7Ae/L30e/S12e/Gadd45 family
protein
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TRICHOME 
BIREFRINGENCE-
LIKE 34 

AGAMOUS-like 6 

cis-3-O-caffeoyl-
quinate 

gentisic acid-2-
O-glucoside 

Same signature cluster 

Positive co-expression 

Negative co-expression 

Co-expressed gene 

Module 

Phenotype 

Target gene 

Includes	12	genes	involved	in	lignin	and	cell	wall	
func3ons	

YABBY	and	MYB	
transcrip3on	factors	

Figure 3.12: Co-expression lines of evidence. Co-expression relationships of the
signature cluster consisting of TBL34 and AGL6 from Figure 3.10.

which, in turn potentially repress TBL34 (negative co-expression edges). TBL34 is

also positively co-expressed with 12 genes involved in cell wall and lignin biosynthesis

functions (Figure 3.12). TBL genes are known to o-acetylate xylose [48], a function which

has been found to be essential for resistance to certain pathogens [49]. Gentisic acid and

its conjugate is a pathogen-induced signalling molecule [50] which itself has been found to

induce pathogen resistance in plants [51] and induce expression of pathogenesis-related

proteins [50]. Various AGL genes are also cell-wall related in that they impact lignin

content [52, 53, 54]. This could be a regulatory circuit of biotic-stress-related cell wall

remodeling, in which AGL6 potentially regulates xylose o-acetylation via TBL34.

3.3.4 Extensions to Pleiotropy

Several definitions of pleiotropy involve a gene associating with multiple, apparently

disparate, unrelated phenotypes (see for example Stearns et al. (2010) [55]), and not
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all MPAs can be interpreted as pleiotropic signatures. However, if the two phenotypes are

disparate enough, one can start to hypothesize about potential pleiotropic functioning of

the gene in question. In this particular study, we demonstrated our method on a collection

of molecular phenotypes of metabolite concentrations. If two metabolites in a MPA exist

within separate pathways, one could consider it a potentially pleiotropic interaction.

A particular example of this phenomenon found in our analysis is Potri.002G178400.

This gene has a type 2 MPA association with shikimic acid and raffinose (Figure 3.13).

Based on existing knowledge found in PlantCyc on the Plant Metabolic Network (PMN)

online resource [56], these two metabolites are found in different pathways. Shikimic

acid is involved in reactions in pathways “chlorogenic acid biosynthesis I”, “chlorogenic

acid biosynthesis II”, “phaselate biosynthesis”, “phenylpropanoid biosynthesis”, “simple

coumarins biosynthesis”, and “chorismate biosynthesis from 3-dehydroquinate” whereas

raffinose is involved in reactions in pathways “lychnose and isolychnose biosynthesis”,

“stellariose and mediose biosynthesis”, “ajugose biosynthesis II (galactinol-independent)”,

“stachyose degradation” and“stachyose biosynthesis”. Supplementary File S3.2 contains

a high resolution PDF showing the positions of raffinose (red boxes) and shikimic acid

(blue box) in the P. trichocarpa Cellular Overview metabolic map generated on the Plant

Metabolic Network online resource. Potri.002G178400 contains two Pfam domains,

namely pfam01565 (FAD binding domain) and pfam04030 (D-arabinono-1,4-lactone

oxidase). This is an interesting example of a potentially pleiotropic gene, which affects

two different metabolic phenotypes. A possible explanation for the mechanism of this

pleiotropic interaction is through competition for carbon, with shikimic acid committing

carbon to secondary metabolism and raffinose being the product of storage for primary

carbon metabolism.

3.3.5 Future Prospects and Implications

P. trichocarpa was an ideal species for the demonstration of the MPA decomposition

for several reasons. Firstly, a large collection of 1,100 P. trichocarpa accessions have
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Figure 3.13: Pleiotropic Signature. (A) An example of a potentially pleiotropic signature
of Potri.002G178400, involving a type 2 MPA with two metabolites in different pathways.
(B) Associating SNP positions within Potri.002G178400.

174



been clonally propagated in common gardens, resequenced and genotyped, [17, 57,

58] providing a dense set of ∼28 million variants which are publicly available (DOI

10.13139/OLCF/1411410). Secondly, linkage disequilibrium (LD) decays very rapidly

within this population of P. trichocarpa (Figure S3.11). This, in combination with the dense

SNP genotyping, allowed for very fine-scale MPA signatures to be resolved. Thirdly, many

other different ’omics datasets exist for P. trichocarpa including genome scale methylation

data across 10 different tissues [59] as well as a gene expression atlas are available on

Phytozome [36]. This provides extra data layers which can be integrated with the MPA

networks in order to provide further interpretation and context to the GWAS associations

seen in the MPA signatures, in a Lines of Evidence approach [19]. Lastly, Poplar is

an important bioenergy crop [60] and is the target of extensive research. Thus, this

method should be highly valuable to researchers aiming to attempt to genetically modify

P. trichocarpa in order to impact phenotypes important to bioenergy.

The ease with which these MPA networks can be integrated with other network layers

such as co-expression, co-methylation and SNP co-evolution networks provides a powerful

strategy for furthering understanding and knowledge about the components of the system,

which could aid in the annotation of genes/metabolites of previously unknown function.

MPA decomposition produces signature clusters from GWAS results which can easily be

merged with other data types for further interpretation. It is intended that this method

will be a valuable tool in the planning of future genetic modification experiments. The

resolution of the MPA signatures revealed by this method provides a useful tool to use

alongside new CRISPR-based gene editing technologies to achieve high precision genome

editing. This method thus provides an informed strategy for increasing the precision of

future synthetic biology efforts. Researchers aiming to modify a specific gene in order to

impact a particular phenotype can select genes from the signature cluster best suited to

the functions they want to modify. The module decomposition also provides information

as to which variants/parts of genes are associating with one phenotype or more than one

phenotype, and thus can inform the researcher whether the modification of a particular

location within a gene will affect more than one phenotype.
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MPA decomposition will also be particularly useful in the processing and interpretation

of large GWAS datasets such as eQTN studies, involving associations between millions

of variants and tens of thousands of phenotypes. Future application of this method

to the expanding pool of phenotypic data available will allow for the generation of

comprehensive signature clusters representing the global pleiotropic potential of a given

organism, and inform the planning and precision of future synthetic biology efforts to

impact a wide variety and scale of phenotypes. As such, this approach should have broad

impacts by developing high resolution models of MPA/pleiotropy prediction that will form

the foundation of future bioengineering design efforts.
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3.5 Supplementary Material

3.5.1 Text S3.1: Proportional Similarity Threshold

A proportional similarity threshold of 1 was chosen when calculating the similarity

between the SNP vectors in phenotype space. While this might seem overly stringent, we
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particularly want to extract groups of SNPs with identical phenotype associations in order

to form the modules. This is what allows us to easily define modules as equivalence classes.

Otherwise, our modules would not represent elements of the powerset of phenotypes

observed in SNP-phenotype associations. These modules (elements of the powerset of

phenotypes) allow us to rigorously and precisely characterize the MPA signature of genes,

which subsequently allows us to cluster genes based on their MPA signatures. For other

purposes, for example, if one wants to simply cluster SNPs/genes to obtain groups of

genes with similar phenotype associations for functional analysis, one could adjust this

threshold. However, for our purposes, in order to characterize exact MPA signatures to aid

in the planning of genetic modification experiments, we chose a threshold of 1.

3.5.2 Text S3.2: Proportional Similarity Distributions

The Proportional Similarity was calculated between all pairs of SNP GWAS profile vectors

(see Methods and Materials). The distribution of Proportional Similarity values can be seen

in Figure S3.1A. Of the pairs of SNPs which have non-zero Proportional Similarity values

(i.e. those pairs of SNPs which shared at least one phenotype association), many had a

proportional similarity value of 1. This is explained by the degree distributions of the SNPs

in the original SNP-phenotype GWAS network (Figure S3.1B). The degree distribution of

a network indicates the probability (or, in this case, frequency) at which a node can be

found to have a certain number of edges connected to it [61]. Therefore, the distribution

in Figure S3.1B indicates that, of the SNPs which had significant phenotype associations,

most of them had precisely one phenotype association. This could skew the Proportional

Similarity distribution since any pairs of these “1-phenotype-hit” SNPs which are associated

with the same phenotype will have a Proportional Similarity index of 1. However, it is

important to keep in mind that these “1-phenotype-hit” SNPs can still contribute to MPA

signatures within genes, as two “1-phenotype-hit” SNPs within the same gene that have

different associations is precisely what we define as Type 2 MPA signatures.
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3.5.3 Text S3.3: Formal Definition of Association Modules

Let the SNP-phenotype GWAS network G be defined as G = (U, V,E), where U is the

set of all SNPs within genes with at least two phenotype associations, V is the set of all

phenotypes with at least one SNP association and E is the set of edges defined as:

E = {{u, v}|u ∈ U ∧ v ∈ V ∧ u is significantly associated with v} (3.3)

We will define association modules as equivalence classes of U under the relation R.

Notation as in [62] will be used.

First we define the binary relation R for any x, y ∈ U as:

xRy ⇐⇒ PS(x, y) = 1 (3.4)

where PS(x, y) is the Proportional Similarity between x and y (see Methods and Materials).

Since it is true that:

PS(x, x) = 1 (3.5)

PS(x, y) = PS(y, x) (3.6)

PS(x, y) = 1 ∧ PS(y, z) = 1 =⇒ PS(x, z) = 1 (3.7)

we have that reflexivity, symmetry and transitivity hold:

xRx is true (3.8)

xRy ⇐⇒ yRx (3.9)

xRy ∧ yRz =⇒ xRz (3.10)
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Thus we have that R is an equivalence relation. We define the equivalence class of any

element x ∈ U as:

PRx = {y|y ∈ U ∧ yRx} (3.11)

Each association module Mi is defined as an equivalence class of U under the relation R.

3.5.4 Text S3.4: Formal Definitions of MPA Matrices

Below we provide mathematical definitions for the construction of the MPA matrices.

Recall that the SNP-phenotype network G is defined as G = (U, V,E), where U is

the set of all SNPs with at least one phenotype hit, V is the set of all phenotypes with at

least one SNP hit and E is the set of edges defined as:

E = {{u, v}|u ∈ U ∧ v ∈ V ∧ u is significantly associated with v} (3.12)

We define SGi
to represent the set of SNPs which reside within gene Gi. The gene-

phenotype matrix GP is constructed such that each row Gi ∈ {G1...Gm} represents a

gene, and each column Pi ∈ {P1...Pl} represents a phenotype. We define each entry GPij

of the gene-phenotype matrix as:

GPij =




1 if ∃s ∈ U |s ∈ SGi

∧ {s, Pj} ∈ E

0 otherwise
(3.13)

Intuitively, this means that entry GPij will be 1 if there exists a SNP within a MPA gene Gi

that is associated with phenotype Pj, and 0 otherwise.

The gene-module matrix GM is constructed such that each row Gi ∈ {G1...Gm}
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represents a gene and each column Mi ∈ {M1...Mn} represents a association module.

Each entry GMij is then defined as:

GMij =




1 if ∃s ∈ U |s ∈ SGi

∧ s ∈Mj

0 otherwise
(3.14)

Intuitively, this means that entry GMij will be a 1 if module Mj contains a SNP that resides

within gene Gi, and zero otherwise.

The module-phenotype matrix MP was constructed such that each row Mi ∈ {M1...Mn}

represents a association module, and each column Pi ∈ {P1...Pl} represents a phenotype.

We define QMi
to be the set of phenotypes driving the correlation between the SNPs within

module Mi, i.e:

QMi
= {Pi ∈ V |∀s ∈Mi, {s, Pi} ∈ E} (3.15)

We then define each entry of the module-phenotype matrix MPij to be:

MPij =




1 if Pj ∈ QMi

0 otherwise
(3.16)

We refer to the gene-module and module-phenotype matrices as the decomposition

matrices, and refer collectively to the set of all three matrices (gene-phenotype GP , gene-

module GM and module-phenotype MP matrices) as the MPA matrices.

3.5.5 Text S3.5: MPA Cube

The three MPA matrices can be seen as different sides of a MPA cube C as shown in Figure

S3.2A. We define the first dimension of the cube to be genes, the second dimension to be

181



association modules, and the third dimension to be phenotypes. We define each entry Cijk

to be:

Cijk =




1 if (∃s ∈Mj|s ∈ SGi

) ∧ (∀s ∈Mj : {s, Pk} ∈ E)

0 otherwise
(3.17)

One can retrieve the individual MPA matrices from the MPA cube simply by “viewing” the

cube from different angles, as illustrated in Figure S3.1B. Imagine a transparent box in the

dimensions of the MPA cube being filled by 1×1×1 small cubes. Each small cube is colored

black if the corresponding entry in the MPA cube is 1, and transparent if the corresponding

entry in the MPA cube is 0. Viewing the transparent box from different sides will reveal a

pattern of black and transparent squares, representing the binary values in one of the three

MPA matrices, depending on which side you are viewing the cube from. For example, in

Figure S3.1B, viewing the cube from the top will reveal the MP matrix, while viewing the

cube from the front will reveal the GP matrix and viewing the cube’s right side will reveal

the GM matrix.

3.5.6 Text S3.6: Composition and Decomposition Relationships

The three MPA matrices satisfy the following equation:

GP = bin(GM ·MP ) (3.18)

where bin() is a binarizing function, setting all entries in a matrix which are greater than

one to the value one, and · is normal matrix multiplication. This is a decomposition-like

relationship, in that the GP matrix is, with the exception of the binarizing function,

decomposed (or factorized) into matrices with an intervening latent variable, namely the

association module variable.

The bipartite MPA networks can be seen to have a composition relationship as outlined
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in Figure 3.5 in the main text. If a gene Gi and a module Mj are connected in the GM

network, and that module Mj is connected to phenotype Pk in the MP network, then

gene Gi will be connected to phenotype Pk in the GP network.

3.5.7 Supplementary Files

File S3.1. Cytoscape session: Cytoscape session containing interactive networks and

p-values for the BINGO [44] results for Type 2 MPA genes.

File S3.2. Metabolic pathway: Positions of raffinose (red) and shikimate (blue) in the

PlantCyc metabolic pathway map for P. trichocarpa on the Plant Metabolic Network (PMN)

online resource [56].

3.5.8 Supplementary Tables

See attached excel files.

Table S3.1: Gene IDs, SNP IDs, beta values and annotation information for MPA genes.
Annotation information was derived from the version 3 genome annotation on Phytozome
[36].

Table S3.2: GO-terms and their associated adjusted p-values from the GO enrichment
analysis, sorted by adjusted p-value. Interactive networks of the GO enrichment analysis
per GO hierarchy (Biological Process, Molecular Function and Cellular Component) as
well as the associated p-values can be found in the Cytoscape session in Supplementary
File S3.1.

Table S3.3: Annotation information for the primary transcripts of the 14 chaperone-related
genes identified as MPA genes. Functional information shown was obtained from the
version 3.0 gene annotation of P. trichocarpa on Phytozome [36] and includes PFAM
domains, as well as the ID, name and description of the best Arabidopsis thaliana hit.
The type of MPA signature exhibited (type 1 or type 2) is also shown.
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3.5.9 Supplementary Figures
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Figure S3.1: Distributions: (A) Distribution of the Proportional Similarity edge weights in
the SNP association network. (B) Degree distribution of SNP nodes in the SNP-phenotype
GWAS bipartite network.

184



C = Cijk =

8
>>><
>>>:

1 if a SNP in module Mj resides
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Figure S3.2: MPA Cube. (a) Definition of the MPA cube. (b) Projection onto a particular
side of the cube results in one of the MPA matrices.
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Figure S3.3: Local LD example. (A) Variation in LD in the region including 5kb upstream
and downstream of Potri.001G419800. The green bar denotes the gene region, and then
red bars hhighlight the overlapping bins containing the associating variants within the
gene. LD r2 values were calculated for pairs SNPs within 200bp windows across this
region, overlapping by 100bp using PLINK [63]. (B) Pairwise LD heatmap of 100 variants
in this region shown in (A) including the two associating variants in Potri.001G419800.
LD values were calculated using PLINK [63] and plotted using LDheatmap [64].
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Figure S3.6: Functional Annotations. Number of genes annotated with different high-
level MapMan categories for (A) non-MPA genes, (B) all MPA genes, (C) type 1 MPA genes
and (D) type 2 MPA genes.

188



cellular processchromosome 
organization 

interspecies 
interaction 
between 

organisms 

multi-organism 
process 

cellular 
component 
organization 

symbiosis, 
encompassing 

mutualism 
through 

parasitism 

interaction with 
host 

organelle 
organization 

chromosome 
segregation 

biological_process 

stem cell 
differentiation 

cell 
differentiation 

cellular 
developmental 

process 

rhythmic 
process circadian rhythm

anatomical 
structure 

development 

shoot system 
development 

shoot 
development 

system 
development 

root system 
development 

organ 
development 

root 
development 

phyllome 
development 

vegetative to 
reproductive 

phase transition 
of meristem 

reproductive 
process 

post-embryonic 
development 

seed 
development 

reproductive 
developmental 

process 

developmental 
process 

multicellular 
organismal 

process 

reproduction

reproductive 
structure 

development 

fruit 
development 

multicellular 
organismal 

development 

anatomical 
structure 

morphogenesis 

leaf 
morphogenesis 

leaf 
development 

shoot 
morphogenesis 

organ 
morphogenesis 

establishment 
of localization 

localization

protein 
localization 

macromolecule 
localization 

establishment 
of protein 

localization 

cellular 
macromolecule 

localization 

cellular 
localization 

cellular protein 
localization 

cellular 
response to 

stress 
DNA 

recombination response to 
abiotic stimulus 

reciprocal 
meiotic 

recombination 

macromolecule 
modification 

cellular 
response to 

chemical 
stimulus 

response to 
chemical 
stimulus 

response to 
ionizing 
radiation 

DNA alkylation
response to 

organic 
substance 

cellular 
response to 

organic 
substance 

response to 
radiation 

meiosis I
macromolecule 

methylation 
response to 
DNA damage 

stimulus 

DNA metabolic 
process 

RNA processing

gene expression

DNA ligation

DNA repair

DNA 
modification 

RNA metabolic 
process 

DNA ligation 
involved in DNA 

repair 

meiosis

M phase

cell cycle phaseM phase of 
meiotic cell 

cycle 

meiotic cell 
cycle

biological
regulation 

cellular 
macromolecule 

metabolic 
process 

DNA-dependent 
DNA replication 

methylation
cellular 

response to 
stimulus 

cell cycle 
process 

response to 
stress 

DNA replicationresponse to 
stimulus 

nucleic acid 
metabolic 
process 

nucleic acid 
phosphodiester 
bond hydrolysis 

actin filament 
organization 

actin 
cytoskeleton 
organization 

cytoskeleton 
organization 

actin 
filament-based 

process 

cell cycle

chromatin 
silencing 

posttranscriptional 
gene silencing 

regulation of 
gene 

expression, 
epigenetic 

gene silencing

posttranscriptional 
regulation of 

gene 
expression 

negative 
regulation of 

gene 
expression, 
epigenetic

regulation of 
chromatin 
silencing 

regulation of 
transcription, 

DNA-dependent 

regulation of 
primary 

metabolic 
process 

regulation of 
biosynthetic 

process 

regulation of 
RNA metabolic 

process regulation of 
macromolecule 

biosynthetic 
process 

regulation of 
transcription 

regulation of 
nucleobase, 
nucleoside, 

nucleotide and 
nucleic acid 
metabolic 
process 

negative 
regulation of 
transcription 

negative 
regulation of 

RNA metabolic 
process 

negative 
regulation of 

gene 
expression 

negative 
regulation of 
transcription, 

DNA-dependent 

negative 
regulation of 

macromolecule 
metabolic 
process 

regulation of 
gene 

expression regulation of 
cellular 

metabolic 
process 

regulation of 
metabolic 
process 

negative 
regulation of 
biosynthetic 

process 

regulation of 
nitrogen 

compound 
metabolic 
process 

negative 
regulation of 

macromolecule 
biosynthetic 

process 

regulation of 
cellular 

biosynthetic 
process regulation of 

gene silencing 

negative 
regulation of 

nitrogen 
compound 
metabolic 
process 

regulation of 
macromolecule 

metabolic 
process 

negative 
regulation of 
nucleobase, 
nucleoside, 

nucleotide and 
nucleic acid 
metabolic 
process 

regulation of 
signaling 
pathway 

regulation of 
biological 
process 

regulation of 
signaling 
process 

regulation of 
Ras protein 

signal 
transduction 

regulation of 
small GTPase 

mediated signal 
transduction 

regulation of 
signal 

transduction 

response to 
dsRNA cellular 

response to 
dsRNA 

dsRNA 
fragmentation 

DNA methylation

DNA 
methylation on 

cytosine 

negative 
regulation of 

biological 
process 

regulation of 
cellular process 

negative 
regulation of 

cellular process 

negative 
regulation of 

metabolic 
process 

negative 
regulation of 

cellular 
metabolic 
process 

regulation of 
cell 

communication 
negative 

regulation of 
cellular 

biosynthetic 
process 

gene silencing 
by RNA 

chromatin 
silencing by 
small RNA 

production of 
small RNA 

involved in gene 
silencing by 

RNA 

posttranscriptional 
gene silencing 

by RNA 

RNA 
interference 

production of 
siRNA involved 
in chromatin 
silencing by 
small RNA 

production of 
siRNA involved 

in RNA 
interference 

purine 
nucleotide 
transport 

purine 
ribonucleotide 

transport 

ADP transport

adenine 
nucleotide 
transport 

ATP transport

nucleotide 
transport 

nitrogen 
compound 
metabolic 
process 

one-carbon 
metabolic 
process 

metabolic 
process 

cofactor 
metabolic 
process 

macromolecule 
metabolic 
process 

cellular 
metabolic 
process 

primary 
metabolic 
process 

small molecule 
metabolic 
process 

biosynthetic 
process 

nucleobase, 
nucleoside, 

nucleotide and 
nucleic acid 
metabolic 
process 

acetyl-CoA 
metabolic 
process 

cellular 
macromolecule 

biosynthetic 
process 

coenzyme 
metabolic 
process 

cellular nitrogen 
compound 
metabolic 
process 

macromolecule 
biosynthetic 

process 

protein 
metabolic 
process 

cellular 
biosynthetic 

process 

establishment 
of localization in 

cell 

transport

vesicle-mediated 
transport 

nucleobase, 
nucleoside, 

nucleotide and 
nucleic acid 
transport 

Golgi vesicle 
transport 

intracellular 
transport 

protein transport

intracellular 
protein 

transport 

protein targeting

Figure S3.7: Biological Process Enrichment. Biological process GO terms enriched in the
set of type 2 MPA genes. Enrichment was calculated using the BINGO Cytoscape plugin
[44]. Yellow/orange nodes represent significantly over-represented GO terms. The more
intense the orange color, the more significant the p-value. White nodes represent GO terms
that are not significantly over-represented, but are parents of over-represented terms in the
GO hierarchy. Node size corresponds to the number of genes in that particular category
in the set tested for enrichment. Interactive networks can be seen and zoomed in the
Cytoscape [42] session in Supplementary File S3.1.
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Figure S3.8: Molecular Function Enrichment. Molecular function GO terms enriched
in the set of type 2 MPA genes. Enrichment was calculated using the BINGO Cytoscape
plugin [44]. Yellow/orange nodes represent significantly over-represented GO terms. The
more intense the orange color, the more significant the p-value. White nodes represent
GO terms that are not significantly over-represented, but are parents of over-represented
terms in the GO hierarchy. Node size corresponds to the number of genes in that particular
category in the set tested for enrichment. Interactive networks can be seen and zoomed in
the Cytoscape [42] session in Supplementary File S3.1.
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Figure S3.9: Cellular Component Enrichment. Cellular component GO terms enriched
in the set of type 2 MPA genes. Enrichment was calculated using the BINGO Cytoscape
plugin [44]. Yellow/orange nodes represent significantly over-represented GO terms. The
more intense the orange color, the more significant the p-value. White nodes represent
GO terms that are not significantly over-represented, but are parents of over-represented
terms in the GO hierarchy. Node size corresponds to the number of genes in that particular
category in the set tested for enrichment. Interactive networks can be seen and zoomed in
the Cytoscape [42] session in Supplementary File S3.1.
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Figure S3.10: Signature Clusters in Powerset Space. (A) Cluster size distribution for
signature clusters containing ≥ 2 genes. (B) Heatmap showing cluster size (green),
average number of modules associated with genes of a given cluster size (yellow) and
average number of phenotypes associated with genes in clusters of a given size (pink).
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Figure S3.11: Decay of Linkage Disequilibrium. The decay of LD r2 values plotted as
the average r2 value (y-axis) for SNPs within a given distance from each other (x-axis),
for a length of (A) 20kb in 1kb windows and (B) 1kb in 50bp windows. LD values were
calculated using PLINK [63].
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[50] José Maŕıa Bellés, Rafael Garro, Joaqúın Fayos, Pilar Navarro, Jaime Primo, and

Vicente Conejero. Gentisic acid as a pathogen-inducible signal, additional to salicylic

acid for activation of plant defenses in tomato. Molecular plant-microbe interactions,

12(3):227–235, 1999. 172

[51] Laura Campos, Pablo Granell, Susana Tárraga, Pilar López-Gresa, Vicente Conejero,
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Abstract

Various ‘omics data types have been generated for Populus trichocarpa, each providing a

layer of information which can be represented as a density signal across a chromosome.

We make use of genome sequence data, variants data across a population as well

as methylation data across 10 different tissues, combined with wavelet-based signal

processing to perform a comprehensive analysis of the signature of the centromere in

these different data signals, and successfully identify putative centromeric regions in P.

trichocarpa from these signals. Furthermore, using SNP (single nucleotide polymorphism)

correlations across a natural population of P. trichocarpa, we find evidence for the co-

evolution of the centromeric histone CENH3 with the sequence of the newly identified

centromeric regions, and identify a new CENH3 candidate in P. trichocarpa.
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4.1 Introduction

Integrating data from multiple different sources is a task which is becoming more prevalent

with the increased availability of systems biology data from high-throughput ‘omics

technologies and phenotyping strategies [1]. Developing statistical and mathematical

approaches to integrate this data in order to provide an increased understanding of

the biological system is thus an important endeavor. For the bioenergy feedstock crop

Populus trichocarpa, several heterogenous datasets have been generated. The full genome

sequence is available and is currently in its third version [2]. A large collection of ∼

28,000,000 Single Nucleotide Polymorphisms (SNPs) called across 882 genotypes are

publicly available [https://doi.ccs.ornl.434gov/ui/doi/55], which were derived from

the resequenced genomes of ∼1,000 P. trichocarpa genotypes propagated in common

gardens [3, 4, 5]. Methyl-DNA immunoprecipitation (MEDIP)-seq DNA methylation data

is also available for 10 different P. trichocarpa tissues [6]. A gene expression atlas for P.

trichocarpa is also available on Phytozome [7].

Integration of multiple heterogeneous data types requires coercing them into mathematical

structures that allow them to be compared/merged/layered. For example, each of the

data types mentioned above provides feature(s) which can be represented as vectors

of numbers, with each vector representing a signal which varies across a chromosome,

for example, the gene density across a chromosome, or the methylation profile of a

chromosome. Once represented as a signal, these data types are amenable to signal

processing techniques. This study aims to make use of signal processing techniques of

these multiple data types in order to attempt to identify chromosome structural features

in P. trichocarpa.

The centromere is an important chromosomal structure which controls the segregation of

chromosomes during cell division, and is the location for the assembly for the kinetochore

protein complex [8, 9]. Centromeric chromatin contains a histone H3 variant specific to

the centromere (CENH3), which has been found in many organsisms, including plants
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[10]. Studies by [11, 12] have suggested that CENH3 is co-evolving with the sequence of

the centromere.

Centromeric regions can vary in size, and can be small regions consisting of only one

nucleosome such as in Saccharomyces cerevisiae [13, 9], while plant centromeric regions

are large (Mb scale), and consist of repetitive sequences [14, 9]. Centromeres also have

epigenetic characteristics in that plant centromeric regions have been found to be relatively

highly methylated [15, 6].

Previously, putative centromere positions were identified in P. trichocarpa as chromosomal

regions of low gene density and high methylation, presented visually, but coordinates

were not reported [6]. Putative centromere positions have also been identified based

on recombination rates along chromosomes through visual inspection of profiles of 4Nec

[4]. [16] identified putative centromeric repeats of P. trichocarpa which identified putative

centromere positions on some of the P. trichocarpa chromosomes in a previous assembly of

the genome. In [17], putative centromeres were identified as regions as the 250kb window

on each chromosome with the lowest gene density. However, to our knowledge, there has

not been a comprehensive study of P. trichocarpa centromeres integrating various available

data types and multiple lines of evidence.

The large collection of data available for P. trichocarpa provides a source of multiple

features which can be represented as density signals across each chromosome. Certain

features, such as gene density and SNP density, can be readily constructed from the data

available. Other lines of evidence, such as SNP correlation/co-segregation need to be

calculated from the data before the chromosome signals can be constructed.

Such chromosome signals contain variation on multiple scales, including high frequency

(narrow) peaks and low-frequency (broad) peaks. These different scales of peaks contain

different information. Thus, techniques to analyse these signals at different scales are

valuable (see [18, 19]). The Wavelet Transform, a signal processing technique, can be used

to unpack the information in different scales of a signal, such as a density profile across

a chromosome [18]. In general, the wavelet transform involves expressing a function

(signal) as a linear combination of functions called wavelets. These functions are scaled
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Figure 4.1: Ricker Wavelet. The Ricker wavelet shown for different values of scale s and
translation τ in Equation 5.1 [21, 20].

translations of a mother wavelet, such as the Ricker Wavelet (Figure 4.1). What results

from a wavelet transform is a wavelet coefficient W (s, τ) (Equation 5.1), for every scale s

and translation (shift along the x-axis) τ [20].

W (s, τ) =
1√
s

∫
f(t)ψ∗

(
t− τ
s

)
dt (4.1)

Given the peak-like shape of the wavelet, a wavelet coefficient will indicate “how much

of a peak” is present at a particular scale and at a particular position of the signal. Thus,

the wavelet transform allows us to investigate the peaks of a signal at different scales and

locations.

This study makes use of the Continuous Wavelet Transform (CWT) in characterizing

chromosomal gene density, SNP density and methylation density signals in P. trichocarpa.

We use the resulting CWT coefficient landscapes to identify the putative centromere

locations and illustrate the wavelet signature of a centromere. We also investigate potential
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co-evolution signatures between the centromeric histone CENH3 and the newly identified

centromeric regions through the calculation of SNP correlations across the population,

and find evidence supporting the hypothesis of the co-evolution of putative P. trichocarpa

CENH3 genes with the centromere sequences in P. trichocarpa. While wavelets have

previously been used in chromosome classification [22], and the the discrete wavelet

transform has been used in the analysis of feature profiles across a chromosome in human

[18], to our knowledge this work presents the first use of the continuous wavelet transform

in the identification of centromere positions from SNP and methylation density profiles.

This study provides an example of how signal processing of multiple data types can be

used to generate hypotheses surrounding the structure of chromosomes.

4.2 Methods and Materials

4.2.1 Variant Data and SNP Correlations

P. trichocarpa [2] variant data (DOI 10.13139/OLCF/1411410) was obtained from https:

//doi.ccs.ornl.434gov/ui/doi/55. This dataset consists of SNP 28,342,758 SNPs called

across 882 P. trichocarpa genotypes and is derived the whole genome resequencing of

a Genome Wide Association Study (GWAS) population clonally replicated in common

gardens [3].

The most reliable SNPs within the dataset were selected, consisting of the 90% tranche (the

tranche recovering 90% of the “true” SNPs). VCFtools [23] was used to extract the desired

Tranche of SNPs from the VCF file and reformat it into .tfam and .tped files. Plink ([24],

http://pngu.mgh.harvard.edu/purcell/plink/) was used to determine the minor allele

frequency (MAF) and the call rate (fraction alleles observed) for each SNP, and removed

all SNPs with MAF ≤ 0.01 and call rate ≤ 0.5.

Correlations between all pairs of SNPs were calculated using the Custom Correlation

Coefficient (CCC) [25, 26]. This was performed on both the filtered set of SNPs as well

as the entire 90% tranche, using a new, GPU implementation of the CCC metric for the
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calculation of SNP correlations [27] as well as the original software[25, 26], respectively.

Calculation of the CCC between all pairs of SNPs using the original software was performed

in parallel, as described in [28]. Briefly, the CCC between allele x at location i and allele y

and location j is defined as:

CCCixjy =
9

2
Rixjy

(
1− 1

fix

)(
1− 1

fjy

)
(4.2)

where Rixjy is the relative co-occurrence of allele x at location i and allele y at location j,

fix is the frequency of allele x at location i and fjy is the frequency of allele y at location j.

This was performed in a parallel fashion by constructing a Perl wrapper around the ccc

binary, making use of the Parallel::MPI::Simple Perl module, developed by Alex Gough

and available on The Comprehensive Perl Archive Network (CPAN) at www.cpan.org. “The

set of ∼10 million SNPs was divided into 20 different blocks, and the CCC was calculated

for each within-block and cross-block comparison in separate jobs, to a total of 210 MPI

jobs ... A threshold of 0.7 was then applied.” (Quotation from [28].)

4.2.2 Chromosome Feature Profile Construction

SNP Density Profiles

A SNP density profile was created for each chromosome using the filtered set of SNPs

by counting the number of these SNPs in non-overlapping 10kb windows across the

chromosome.

Methylation Profiles

Methylation (MeDIP-seq) data from 10 P. trichocarpa tissues generated from the study by

[6] re-aligned to the version 3 assembly of P. trichocarpa was downloaded from Phytozome

[7]. This data consists of MeDIP-seq reads from tissues including bud, callus, female
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catkin, internode explant, leaf, make catkin, phloem, regenerated internode, root and

xylem tissue.

Samtools [29] was used to view the data and BamTools stats [30] was used to investigate

statistics of the reads in the bam files. BEDTools [31] was used to count the number

of reads mapped to 10kb windows across the genome. This will allow us to construct a

“mappped read density” distribution for each tissue and each chromosome, showing the

number of reads which mapped to different regions of the genome, and thus indicating

methylation hotsplots. The BEDOPs [32] software was used to convert .gtf files of the

10kb windows per chromosome into .bed files. GNU-Parallel [33] was used to run the

BEDTools jobs in parallel.

Gene Density Profiles

Gene density profiles were constructed for each chromosome. Gene density for

a given window was defined as the number of nucleotide positions within that

window that reside within genes. Gene boundaries were determined from the

Ptrichocarpa 210 v3.0.gene.gff3 annotation file obtained from the P. trichocarpa version

3 genome annotation [2] available on Phytozome [7] through the genome portal of the

Department of Energy Joint Genome Institute [34, 35].

Genome Gap Density Profiles

Genome gap density profiles were constructed for each chromosome, similar to the

approach for constructing SNP density profiles. For each non-overlapping 10kb window

on a chromosome, the number of “N” positions were counted in the genome assembly file

ptrichocarpa 210 v3.0.fa obtained from the version 3 genome assembly [2] available on

Phytozome [7].
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4.2.3 Continuous Wavelet Transform of Chromosome Feature Profiles

The CWT was performed on chromosome feature density profiles using the wmtsa R

wavelet package [36, 37], the R programming language [38], RStudio [39] and various R

packages and resources [40]. The CWT results in sets of wavelet coefficients at different

scales. These were plotted as a heatmap/coefficient landscape, showing the numerical

values of the different wavelet coefficients across the signal, at different scales. Plots were

generated using custom R scripts and R packages [38, 41].

4.2.4 Centromere Position Identification

Putative centromeres were located for each chromosome by computationally identifying

the “tooth-X-ray” signature in the wavelet landscapes. Let the matrix M represent the

methylation wavelet landscape and let S represent the SNP wavelet landscape for a

given chromosome. We identified the maximum wavelet coefficient in the upper third

of the methylation wavelet landscape (internode explant tissue), and identified the scale

p (row of M) at which this maximum coefficient was found. This identified the general

pericentromeric scale. The borders of the approximate pericentromeric regions b1 and

b2 were identified as the zeroes of the methylation wavelet coefficient vector at scale p

(Supplementary Text S4.1, Figure S4.1). The minimum wavelet coefficient in the lower

two thirds of S between the borders b1 and b2 was then identified, and the scale c (row of

S) at which this minimum occurs was considered the centromeric scale. The methylation

pericentromeric scale vector Mp (row p in matrix M) and the SNP centromeric scale vector

Sc (row c of matrix S) were extracted, and scaled to have mean 0 and standard deviation

1. The approximate centromere locations were then identified as the position x at which

the maximum

max(M∗
p,x − S∗c,x) (4.3)

is obtained, where M∗
p,x and S∗c,x represent the xth entry in the scaled vectors of Mp and

Sc, respectively.
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See Supplementary Text S4.1 and Figure S4.1 for further details.

4.2.5 Centromere Repeat Sequence Profiles

Plant centromere repeat sequences were downloaded from the PGSB Repeat Database

[42] at http://pgsb.helmholtz-muenchen.de/plant/recat/index.jsp. The repeat

sequences were then BLASTed [43] against the P. trichocarpa version 3 genome on

Phytozome [7], using an E-value threshold of 10−5 and other default parameters. A density

profile of BLAST hits was then constructed for each chromosome. The BLAST hit density

for a given 10kb window was defined as the number of positions within the window that

lay within a BLAST hit (E-value ≤ 10−5) with a plant centromeric repeat sequence. We

obtained putative P. trichocarpa centromeric repeat sequences from [16], and constructed

a BLAST hit density profile for these repeat sequences in a similar manner. These

centromere repeat density profiles were visualized alongside of the predicted putative

centromere positions.

4.2.6 Co-expression Network

Gene co-expression relationships were queried on PhytoMine though Phytozome [7, 44].

A custom co-expression network was also created as described in [28] using the P.

trichocarpa (Nisqually-1) RNA-seq dataset from JGI Plant Gene Atlas project (Sreedasyam

et al., unpublished). This dataset consists of samples for standard tissues (leaf, stem,

root and bud tissue) and libraries generated from nitrogen source study. A list of

sample descriptions was accessed from Phytozome at https://phytozome.jgi.doe.gov/

phytomine/aspect.do?name=Expression. Networks were visualized in Cytoscape [45].
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4.2.7 Co-Evolution of putative CENH3 genes

The genomic sequence of the Arabidopsis thaliana CENH3 gene (AT1G01370) was obtained

from Phytozome [7] and BLASTed against the P. trichocarpa version 3 genome [2] on

Phytozome using default parameters. Two BLAST hits were obtained, one gene on

chromosome 14 (Potri.014G096400) and one on chromosome 2 (Potri.002G169000).

While Potri.014G096400 contains functional annotations on Phytozome, including Panther

PTHR11426:SF46 (“Histone H3-like centromeric protein A) and Pfam PF00125 (“Core

histone H2A/H2B/H3/H4SNPs”), Potri.002G169000 contains no functional annotations,

likely because of sequencing/assembly issues. There are various exons predicted in the

gene which are not considered to be translated. However, when searching for domains in

the genome sequence of Potri.002G169000 using CD-search at NCBI [46, 47, 48], Pfam

PF00125 (“Core histone H2A/H2B/H3/H4SNPs”) is identified in the sequence. Thus, we

have two valid CENH3 candidates. SNPs which correlated with SNPs within these genes

(CCC ≥ 0.7) were extracted from the SNP correlations. Density profiles of these SNPs were

then constructed for all chromosomes in non-overlapping 10kb bins, similar to the profile

construction described above.

4.3 Results and Discussion

4.3.1 Chromosome Feature Profiles and CWT Coefficient Landscapes

Chromosomal features including SNPs, genes, genome gaps and DNA methylation plotted

as density signals across a chromosome result in signals that vary along the length of the

chromosome (Figures 4.2, S4.2-S4.20). These profiles show the frequency of a particular

feature in 10kb bins across each chromosome. These profiles vary on different scales,

in that they contain peaks and valleys of different frequencies/broadness. Each of these

signals has fine variation in the form of narrow, high frequency peaks, as well as broad,

low-frequency peaks, as illustrated in the feature density profiles of chromosome 2 (Figure

213



Figure 4.2: Chromosome 2 feature density signals. Feature density signals for SNP,
gene, MeDIP read (internode explant tissue) and genome gap density in 10kb windows
across P. trichocarpa chromosome 2.

4.2). The highlighted region in Figure 4.2 indicates the most prominent broad-scale

feature, consisting of a large-scale valley in the SNP and gene density profiles, and a large-

scale peak in the methylation (MeDIP-Seq read density) profile.

These large-scale peak-valley combinations of SNP, gene and methylation density profiles

are observed easily on all chromosomes (Figure 4.3). One can see a large-scale peak in

the methylation profile coinciding with valleys in the gene density and SNP density signals

on each chromosome. The locations of these large-scale peak-valley combinations seem to

agree with the putative P. trichocarpa centromere positions proposed by [6] on the basis

of high methylation read coverage, high repeat-to-gene ratios and recombination valleys,

and also agrees with some of the putative centromere positions identified through repeat

elements [16].

The wavelet transform was used to characterize these signals at different scales, identifying

peaks of different sizes. Applying the continuous wavelet transform (CWT) to such density

signals results in a coefficient landscape for each signal, represented as a heatmap [18]

(Figure 4.4). The x-axis of a coefficient landscape represents the position along the

chromosome signal and the y-axis represents the scale, with small scales (high frequency
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Figure 4.3: Methylation, SNP and Gene Density. SNP, gene and methylation (internode
explant tissue) density profiles for all chromosomes of P. trichocarpa.
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peaks) at the bottom and large scales (low frequency peaks) at the top. A wavelet

coefficient is calculated for each signal position and each scale, thus resulting in a

landscape. The wavelet coefficient landscapes clearly illustrate the detection of the large

scale peaks (blue regions) and large scale valleys (red regions) in the upper half of the

landscapes, corresponding to the visible large peaks and valleys of the signals. Plotting

the wavelet coefficients at a particular scale shows the smoothed peaks and troughs of the

signal at that scale (Figure 4.5A).

4.3.2 Wavelet Coefficient Landscape Signature of the Centromere

Identification of approximate centromere locations from gene density, SNP density and

methylation wavelet landscapes requires knowledge of what patterns to look for. From

the literature, we know that studies in Arabidopsis have found high methylation in

the centromeric/pericentromeric regions [15], and found centromeric regions to be

gene-sparse [49]. Similar conditions were found in P. trichocarpa [6, 50]. Though

centromeric/pericentromeric regions as a whole are highly methylated, it has been found

in Maize that the active centromere consists of repeats associated with CENH3 (the

modified histone found in the active centromere) and is usually less methylated when

compared to the pericentromeric regions [51]. A similar pattern can be observed in

Arabidopsis [15]. Figure 4.6 shows the methylation CWT coefficient landscapes for

each chromosome in internode explant tissue. One can clearly see the large-scale

peaks in each chromosome indicated by the blue regions near the top of each profile,

which correspond to the broad centromeric/pericentromeric regions. In 15 of the 19

chromosomes (chromosomes 1, 2, 4, 5, 6, 7, 8, 9, 10, 13, 14, 16, 17, 18, 19) we see

evidence for the lowered methylation in the actual centromere when compared to the

pericentromeric regions. In the coefficient landscapes, this is indicated by a medium-scale

valley (red area) within and below the center of the large-scale peak, creating a “tooth-X-

ray” like pattern (Figure 4.7). These centromeric wavelet coefficient signatures can also

be seen in the methylation profiles of callus, female catkin, male catkin, leaf, phloem,
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Figure 4.4: Chromosome 2 CWT Landscapes. CWT Coefficient landscapes of
chromosome 2 for (A) SNP density, (B) gene density, (C) methylation (MeDIP-Seq read
density, internode explant tissue) and (D) genome gap density. X-axes represent the bp
dimension of the signals, Y-axes represent scales (s in Equation 5.1). Blue regions indicate
positive coefficients and red regions indicate negative coefficients.
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Figure 4.5: CWT and Smooth Peaks. CWT landscape of the gene density profile of
chromosome 14. (B) is the original gene density signal, (C) is the CWT coefficient
landscape of the signal and (A) shows the vector of wavelet coefficients of the scale
corresponding to the large scale valley, as shown by the arrow in C.
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regenerated internode, root and xylem tissues (Supplementary Figures S4.26-S4.34), but

are mostly not visible in bud tissue (Supplementary Figure S4.25).

SNP density has been found to be higher in the pericentromere in Arabidopsis [52] and

lower SNP density has been found in centromere regions in sorghum [53]. The SNP

wavelet landscapes for all chromosomes all contain the “tooth-X-ray” like shape, indicating

a medium-scale valley in SNP density within a large-scale peak (Figure S4.23). The

location of this signature coincides with the large-scale peak in methylation (Figures S4.26-

S4.34) and valley in gene density (Figure S4.22), known to be characteristic of centromeric

locations. As with the methylation density, this “tooth-X-ray” shape could be indicating the

pericentromeric and centromeric regions of the chromosome.

It is important to consider gaps in the assembled genome when interpreting chromosome

density signals, because valleys in a density signal, such as SNP density, could be a

meaningful biological signature (such as the centromere), or could be an artifact arising

from a gap in the genome. Observing the density signals for all chromosomes (Figures

S4.2-S4.20) and their wavelet landscapes (Figures S4.22-S4.34) one can see that in a

few chromosomes, (for example, chromosome 18) the largest genome gap co-locates with

the largest valley in SNP density. However, this is not true for all chromosomes. The

locations of highest genome gap density do not always coincide with the largest valley

in SNP density, for example, in chromosome 12 (Figure S4.21), and the largest genome

gaps do not always correspond to approximate centromere locations. Thus, the tooth-X-

ray shape cannot be purely driven by genome gaps, and, as such, does not appear to be an

artifact.

4.3.3 Prediction of Centromere Position from Wavelet Coefficients

Based on the knowledge of centromere signatures in the literature, and the CWT

landscapes of gene, SNP and methylation profiles, we attempted to locate the position

of the centromere on each P. trichocarpa chromosome by computationally identifying the

characteristic tooth-X-ray shape in the CWT landscapes. Briefly, for each chromosome, we
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Figure 4.6: Methylation (Internode Explant) CWT. Methylation (internode explant
tissue) CWT landscapes of each P. trichocarpa chromosome. For each heatmap, the x-axis
represents position along the chromosome density signal (τ), the y-axis represents scale
(s) and each entry represents the wavelet coefficient W (s, τ). Positive coefficients are
colored blue and indicate peaks, negative coefficients are colored red and indicate valleys.
The “tooth-x-ray” centromeric signature is evident in many chromosomes, consisting of a
broad-scale peak encompassing the centromeric/pericentromeric regions, and the lower
scale valley within the large peak indicating the centromeric region.
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Figure 4.7: Methylation Wavelet Signature of Centromere. “Tooth-x-ray” centromeric
signature for (A) SNP density and (B) methylation density, consisting of a broad-scale peak
encompassing the centromeric/pericentromeric regions, and the lower scale valley within
the large peak indicating the centromeric region.

calculate the CWT of the scaled SNP density and methylation profiles, resulting in two

coefficient landscapes. We identify the pericentromeric scale as the scale at which we

find the maximum wavelet coefficient in the upper third of the methylation landscape,

and identify the borders of the pericentromeric region as the zeroes of the wavelet

vector on either side of the maximum coefficient. We then identify the centromeric

scale as the minimum wavelet coefficient in the SNP wavelet landscape within the

borders of the pericentromeric region, and then consider the approximate center of the

centromere location to be the point of maximum difference between the methylation

wavelet coefficients at the pericentromere scale and SNP wavelet coefficients at the

centromere scale (Figures 4.8, Figure S4.1, Supplementary Text S4.1), and the general

centromeric region borders as the points of intersection between the these two vectors on

either side of the center (Table S4.1, yellow bars in Figure 4.8).

Mapping centromere repeats from various plants from the PGSB Repeat Element Catalog

[42] as well as repeat sequences which were found to identify centromeres on certain P.

trichocarpa chromosomes in a previous assembly [16] using BLAST were consistent with

the locations of centromeres identified using wavelet coefficients. Predicted centromere

positions aligned well with the density profiles of repeat sequence BLAST hits, indicating
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Figure 4.8: Centromere Positions. Line plots for each chromosome of methylation
wavelet coefficients (internode explant tissue) at pericentromeric scale (purple lines) and
SNP density wavelet coefficients at centromeric scale (green lines). Yellow diamonds
represent the putative centromeric location, calculated as the point of maximum difference
between the wavelet coefficients at these two scales. Yellow bars indicate the general
centromeric region as the points of intersection between the two curves on either side of
the centromeric region. See methods for further details.
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that our centromere prediction strategy is likely identifying valid centromere positions

(Figure 4.9). The wavelet-based centromere identification through the use of multiple

lines of evidence allows us to be more certain of centromeric regions, and also allows more

specific locations to be identified than can be done by simply looking at repeat density,

which map to broad regions of the genome. Layering multiple data types allows for the

identification of putative centromere positions based on multiple lines of evidence, and

thus, allows one to be more certain of their location.

P. trichocarpa chromosomes contain homologous genome blocks, presumed to be derived

from the salicoid genome duplication [2]. Looking at the positions of predicted

centromeres in Figures 4.8 and 4.9, some paralogous chromosomes (see [2]) appear

to have similar centromeric positions (for example, chromosomes 8 and 10, and

chromosomes 12 and 15). This suggests that the current centromere positions potentially

predate the salicoid duplication event.

4.3.4 Co-evolution of Putative CENH3 with Centromeric Sequences

The histone CENH3 epigenetically defines centromere position, and replaces normal

histone H3 in the nucleosomes at the centromere [54]. Silencing of this gene in Arabidopsis

has been found to cause dwarfism, reduced mitotic divisions and sterility [55]. CENH3 has

been found to be adaptively evolving in Arabidopsis [10]. Analysis of CENH3 in various

Brassicaceae showed that it is evolving adaptively at various sites which are potentially in

contact with the centromeric DNA [11]. There is thus the hypothesis that CENH3 is co-

evolving with the sequence of the centromere [11, 12]. In a study involving a A. thaliana

CENH3-null mutant expressing a Zea mays CENH3, it was found that while the Zea mays

CENH3 localized to the same locations as endogenous A. thaliana CENH3, the Z. mays

CENH3 centromeres were weaker, and resulted in genome elimination in crosses with

wild-type A. thaliana [56]. Thus, the sequence of CENH3 could potentially have an impact

on the strength of the centromere.
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Figure 4.9: Centromere positions and Centromere repeats. Putative centromere
positions (yellow diamonds) identified as in Figure 4.8 using methylation and SNP wavelet
coefficients, as well as the density of BLAST matches of plant centromere repeat sequences
(navy bars) and putative P. trichocarpa centromere repeat sequences [16] (red bars).
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If the hypothesis of co-evolution between the CENH3 and centromeric sequences is

true, one would expect to see correlations between Single Nucleotide Polymorphisms

(SNPs) in P. trichocarpa CENH3 and P. trichocarpa centromeric regions. CENH3 is

mostly a single copy in diploids such as Arabidopsis [54] but there are some species

that contain more than one copy. Wheat has two distinct copies of CENH3, and

they seem to be evolutionarily divergent. They have different expression patterns,

and one of them shows positive selection [57]. We identified two putative CENH3

genes in P. trichocarpa (Potri.014G096400 on chromosome 14 and Potri.002G169000

on chromosome 2) as BLAST [43] matches of A. thaliana CENH3 (AT1G01370). It is

interesting to note that chromosomes 2 and 14 are salicoid duplication paralogs. Of

these two genes, Potri.014G096400 was annotated as being similar to a CENH3 gene,

whereas Potri.002G169000 had no functional annotations. RNA-seq and EST information

on Phytozome [7] confirmed that both of these genes are expressed (Figure S4.35).

Expression information of these genes in the P. trichocarpa gene atlas on PhytoMine

[44, 7] showed that the expression of these two genes varies across tissues, however,

they are not co-expressed with one another (Figure 4.10). Both Potri.014G096400 and

Potri.002G169000 genome sequences had multiple hits with CENH3 genes when BLASTed

on NCBI.

We determined correlations between all pairs of ∼10,000,000 high confidence SNPs in

a population of 882 P. trichocarpa genotypes using the CCC metric [25, 26, 27] and

extracted SNPs within Potri.014G096400 and Potri.002G169000 that had correlations with

SNPs elsewhere in the genome. When using a call rate constraint minimum of a 100

called alleles (∼ 5%), a minimum overlap of 100 non-missing alleles in SNP correlations

and requiring a minor allele frequency (MAF) ≥ 0.01, we find concentrations of SNPs

in the centromeric region of various chromosomes which are correlated with SNPs in

Potri.002G169000 (Figure 4.11, Figure S4.37). We thus find strong evidence for the co-

evolution for CENH3 with the centromeric sequences.
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Figure 4.10: CENH3 expression. Expression levels of putative P. trichocarpa CENH3
genes, Potri.002G169000 and Potri.014G096400. Expression data obtained from
PhytoMine on Phytozome [7].

In particular, it appears that Potri.002G169000 seems to have a co-evolution signature with

the centromere, much more so than Potri.014G096400, in that Potri.002G169000 con-

tained SNPs correlating with 13 out of 19 centromeric regions, whereas Potri.014G096400

contained SNPs correlating with 5 out of 19 centromeric regions (centromeric regions

in Table S4.1). While both Potri.002G169000 and Potri.014G096400 on average have

more mutations than other P. trichocarpa histones (an expected phenomemon as CENH3

histones accumulate mutations faster than normal histones, as mentioned in [58]),

Potri.002G169000 contains more mutations than Potri.014G096400 (Figure S4.36, Table

S4.2). Potri.014G096400 is also co-expressed with various other non-CENH3 histones, as

well as a histone deacetylase and a histone methyltransferase on PhytoMine [44, 7] (Table

S4.3), and the correlation neighbourhood of Potri.002G169000 and Potri.014G096400 do

not overlap at all (Figure 4.12).

This seems to suggest that these two genes are functionally divergent. Given the facts that

Potri.002G169000 has strong co-evolution signatures with the centromere (Figure 4.11)

and Potri.014G096400 is co-expressing with non-CENH3 histones, one could hypothesize
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Figure 4.11: CENH3 co-evolution. SNP density profiles across a selection of chromosomes
involving SNPs which correlate with SNPs in putative CENH3 genes, Potri.002G169000
and Potri.014G096400 across a population of P. trichocarpa genotypes. One can clearly
see the clusters of SNPs in the centromeric regions which are correlating with SNPs within
these CENH3 genes.
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Figure 4.12: CENH3 gene correlations. Correlations of P. trichocarpa CENH3 genes
(green circles) with other genes (aqua circles), including positive co-expression (blue),
negative co-expression (red) and SNP correlations (yellow).
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Figure 4.13: CENH3 mutations. SNPs in putative P. trichocarpa CENH3 genes (A)
Potri.002G169000 and (B) Potri.014G096400. Exons (blue boxes) for Potri.014G096400
were determined from the v3.0 genome annotation on Phytozome [7], and from mapped
ESTs on Phytozome JBrowse [59, 7] for Potri.002G169000. Grey circles represent SNPs,
red circles represent SNPs that correlate with SNPs in centromeric regions. Orange
rectangles indicate the location of the histone domain as determined using NCBI CDScan.

that Potri.002G169000 (a previously unannotated gene) is the primary functioning CENH3

in P. trichocarpa while Potri.014G096400 could be functioning more like a normal histone.

If one looks at the position of SNPs within Potri.002G169000 and Potri.014G096400, it is

evident that Potri.002G169000 contains more SNPs in transcribed regions of the gene that

correlate with centromeric regions (Figure 4.13). In addition, Potri.002G169000 contains

more SNPs in/near the histone domain that correlate with the centromere, when compared

to Potri.014G096400. Potri.002G169000 also has more of the expected structure for a

CENH3 gene, containing the histone domain in the C terminal, and having a variable N

terminal domain [54].

Based on these various lines of evidence, we suggest that the previously unnannotated

Potri.002G169000 is the primary functioning CENH3 gene in P. trichocarpa.

4.3.5 Concluding Remarks

In this study we performed wavelet-based signal processing of multiple, heterogeneous

data types to identify centromere positions and properties in P. trichocarpa. We found

centromeres to be in gene-sparse regions, and found centromeric/pericentromeric regions
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to hypermethylated relative to the rest of the chromosomes, and found centromeric DNA

to be hypomethylated relative to pericentromeric regions in many chromosomes across

various tissues. The “tooth-X-ray” wavelet signature was identified as a characteristic

signature of the centromere in the wavelet landscapes of SNP density profiles.

The use of wavelet coefficients allowed us to identify the approximate centromeric

locations. These locations were supported by mapping of repeat sequences, and

could be further validated through experimental techniques such as ChIP (chromatin

immunoprecipitation)-Seq. We also found evidence for the co-evolution of the sequence

of the centromere-specific histone CENH3 with the sequences of the centromere

on many chromosomes. In particular, we found that the previously unannotated

gene Potri.002G169000 is the most likely candidate for an active, centromere-co-

evolving CENH3 gene in P. trichocarpa and not the currently annotated CENH3 gene,

Potri.014G096400.

This study illustrated the utility of wavelet-based signal processing of genomic signals

to identify structural characteristics of chromosomes. While this study made primary

use of the larger-scale wavelet coefficients, we would recommend the use of the smaller

scale wavelet coefficients to investigate smaller-scale structural characteristics, such as

nucleosome occupancy.
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4.4 Supplementary Material

4.4.1 Text S4.1: Wavelet-based Centromere Identification

For the demonstrated centromere identification, we used the methylation density signal

from internode explant tissue. Centromere identification was performed independently

for each chromosome. SNP density and methylation density signals were mean centered

(mean = 0) scaled to have standard deviation = 1. The continuous wavelet transform

(CWT) was then performed on the scaled signal vectors. The methylation wavelet
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landscape was then used to identify the “general” centromeric/pericentromeric region

of the chromosome. This gives us a general region of the chromosome to start looking

for the “tooth-X-ray” shape, since identifying the centromere “valley” in the SNP wavelet

landscapes by looking for minimum wavelet coefficients could instead identify valleys in

other parts of the chromosome (see for example in chromosome 1, Figure S4.23, the

minimum wavelet coefficient does not appear in the middle of the “tooth-X-ray” shape.)

The procedure for identifying centromere positions is as follows:

1. Identify the position of the maximum wavelet coefficient in the upper third of

the methylation landscape. We call the scale at which this maximum occurs the

“pericentromere scale”.

2. Find the putative pericentromere borders as the zeros on their side of this maximum.

If the centromere is near the end of the chromosome, the one “pericentromere

border” might be the edge of the chromosome.

3. Identify the the minimum coefficient in the lower two thirds of the SNP wavelet

landscape, between the approximate pericentromere borders. We call the scale at

which this minimum occurs the “centromere scale”.

4. Extract the SNP wavelet coefficient vector at centromere scale and the methylation

wavelet coefficient vector at pericentromere scale.

5. Mean center (mean = 0) and scale these vectors to have standard deviation 1, and

find the approximate centromere location as the position of maximum difference

between these two vectors.
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4.4.2 Supplementary Figures

Figure S4.1: Centromere identification. Approach for identifying centromere positions
from wavelet coefficient landscapes.

233



SNP Density

N
um

be
r 

of
 S

N
P

s

0
30

0
70

0

Genome Gap Density

N
um

be
r 

of
 u

nk
no

w
n 

nu
cl

eo
tid

es

0
40

00
10

00
0

Gene Density

N
um

be
r 

of
 p

os
iti

on
s 

w
ith

in
 g

en
es

0
40

00
10

00
0

MeDIP Read Density

N
um

be
r 

of
 M

eD
IP

 R
ea

ds

0
30

00

Chromosome 1

Figure S4.2: Density profiles for chromosome 1. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 1.
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Chromosome 2

Figure S4.3: Density profiles for chromosome 2. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 2.
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Chromosome 3

Figure S4.4: Density profiles for chromosome 3. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 3.
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Figure S4.5: Density profiles for chromosome 4. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 4.
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Chromosome 5

Figure S4.6: Density profiles for chromosome 5. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 5.
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Figure S4.7: Density profiles for chromosome 6. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 6.
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Figure S4.8: Density profiles for chromosome 7. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 7.
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Chromosome 8

Figure S4.9: Density profiles for chromosome 8. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 8.
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Chromosome 9

Figure S4.10: Density profiles for chromosome 9. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 9.
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Figure S4.11: Density profiles for chromosome 10. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 10.
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Figure S4.12: Density profiles for chromosome 11. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 11.
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Figure S4.13: Density profiles for chromosome 12. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 12.
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Figure S4.14: Density profiles for chromosome 13. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 13.
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Figure S4.15: Density profiles for chromosome 14. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 14.
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Figure S4.16: Density profiles for chromosome 15. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 15.
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Figure S4.17: Density profiles for chromosome 16. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 16.
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Figure S4.18: Density profiles for chromosome 17. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 17.
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Figure S4.19: Density profiles for chromosome 18. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 18.
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Figure S4.20: Density profiles for chromosome 19. Profile of SNP positions, genome
gap positions, gene positions and MeDIP read positions in 10kb bins across P. trichocarpa
chromosome 19.
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Figure S4.21: CWT Coefficient landscapes of chromosome 12. Coefficient landscapes
for (A) SNP density, (B) gene density, (C) methylation (MeDIP-Seq read density, internode
explant tissue) and (D) genome gap density on chromosome 12.
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Figure S4.22: Gene CWT. Wavelet coefficient landscape for gene density.
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Figure S4.23: SNP CWT. Wavelet coefficient landscape for SNP density.
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Figure S4.24: Genome gap CWT. Wavelet coefficient landscape for genome gap density.
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Figure S4.25: Bud methylation CWT. Wavelet coefficient methylation landscape for bud
tissue.
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Figure S4.26: Callus methylation CWT. Wavelet coefficient methylation landscape for
callus tissue.
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Figure S4.27: Female catkin methylation CWT. Wavelet coefficient methylation
landscape for female catkin tissue.
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Figure S4.28: internode explant methylation CWT. Wavelet coefficient methylation
landscape for internode explant tissue.

251



Figure S4.29: Leaf methylation CWT. Wavelet coefficient methylation landscape for leaf
tissue.
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Figure S4.30: Male catkin methylation CWT. Wavelet coefficient methylation landscape
for male catkin tissue.
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Figure S4.31: Phloem methylation CWT. Wavelet coefficient methylation landscape for
phloem tissue.
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Figure S4.32: Regenerated internode methylation CWT. Wavelet coefficient methylation
landscape for regenerated internode tissue.
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Figure S4.33: Root methylation CWT. Wavelet coefficient methylation landscape for root
tissue.
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Figure S4.34: Xylem methylation CWT. Wavelet coefficient methylation landscape for
xylem tissue.
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A	

B	

Figure S4.35: CENH3 candidate genes expression evidence. Two CENH3 candidates
in P. trichocarpa (A) Potri.014G096400 and (B) Potri.002G169000 both show evidence of
expression in the RNA-seq and EST coverage. Figure obtained using the Jbrowse plugin
[59] on Phytozome [7].
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Figure S4.36: SNPs in P. trichocarpa histones. Boxplot showing the number of SNPs in
the two candidate CENH3 histones versus other histones in P. trichocarpa.
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Figure S4.37: CENH3 gene correlations. Centromere positions (yellow diamonds)
determined from wavelet coefficients and the density of SNPs correlating with SNPs
in P. trichocarpa CENH3 genes. Red tracks are SNPs which correlate with SNPs
in Potri.014G096400, and purple tracks are SNPs which correlate with SNPs in
Potri.002G169000.
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4.4.3 Supplementary Tables

Table S4.1: Positions in density signals of the approximate centromere locations, as well
as the left and right borders indicated in Figure 8. Bp ranges indicate the borders of the
particular bin in the density signal.

Chrom Left border bin (bp) Center bin (bp) Right border bin (bp)

1 12,550,001-12,560,000 18,640,001-18,650,000 24,930,001-24,940,000

2 16,680,001-16,690,000 18,690,001-18,700,000 21,170,001-21,180,000

3 4,380,001-4,390,000 6,720,001-6,730,000 7,300,001-7,310,000

4 11,770,001-11,780,000 13,270,001-13,280,000 14,710,001-14,720,000

5 12,960,001-12,970,000 14,530,001-14,540,000 16,230,001-16,240,000

6 12,510,001-12,520,000 15,930,001-15,940,000 19,270,001-19,280,000

7 5,620,001-5,630,000 7,160,001-7,170,000 8,620,001-8,630,000

8 14,670,001-14,680,000 15,670,001-15,680,000 16,790,001-16,800,000

9 1-10,000 250,001-260,000 1,610,001-1,620,000

10 4,220,001-4,230,000 5,180,001-5,190,000 6,220,001-6,230,000

11 8,390,001-8,400,000 9,210,001-9,220,000 10,770,001-10,780,000

12 6,370,001-6,380,000 7,720,001-7,730,000 9,320,001-9,330,000

13 8,400,001-8,410,000 8,910,001-8,920,000 9,500,001-9,510,000

14 14,290,001-14,300,000 16,960,001-16,970,000 18,920,001-18,930,000

15 4,480,001-4,490,000 6,260,001-6,270,000 7,980,001-7,990,000

16 7,470,001-7,480,000 8,540,001-8,550,000 9,470,001-9,480,000

17 5,700,001-5,710,000 7,070,001-7,080,000 8,980,001-8,990,000

18 6,130,001-6,140,000 7,070,001-7,080,000 8,110,001-8,120,000

19 4,970,001-4,980,000 6,320,001-6,330,000 10,440,001-10,450,000

Table S4.2: Number of SNPs in P. trichocarpa histone genes.

See attached excel sheet
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Table S4.3: Genes co-expressing with Potri.014G096400 on PhytoMine [44] from
Phytozome [7]. Blue highlighted genes are histone-related.

See attached excel sheet
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Chapter 5

Synteny, Ancestral Centromeres and

Repeats: Further Insights into Genome

Organization and Evolutionary History
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Abstract

The Populus trichocarpa genome has an interesting and complex evolutionary history which

involves several genome duplication events and rearrangements. The genome also consists

of various genomic/epigenomic elements, including single nucleotide polymorphisms

(SNPs), DNA methylation, transposable elements (TEs) and repeat sequences. We

constructed density profiles of syntenic blocks, centromere positions, different classes of

TEs, SNPs, genes and methylation across the genome, and make use of the discrete wavelet

transform to to unpack the information in different scales of these signals. Correlation

analysis identified various scale-specific relationships between genomic features, and

provided resources for a method useful for the interrogation and comparison of multiple

data types in P. trichocarpa.
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5.1 Introduction

The Populus trichocarpa genome has an interesting and complex evolutionary history

which involves several genome duplication events and rearrangements [1]. As reported

by Tuskan et al. (2006), the structure of the current P. trichocarpa genome contains

large homologous chromosome blocks, or syntenic blocks. These originated from a

whole genome duplication event called the Salicoid duplication, and subsequent genome

rearrangement [1].

In the previous chapter, we investigated chromosomal structure and centromere positions

in P. trichocarpa though signal processing of genomic features such as SNP density, gene

density and methylation density. In this chapter, we include two new genomic features

in order to investigate the evolutionary history leading up to the current P. trichocarpa

genome. We wish to repeat similar analyses as performed by [1] in order to determine

which of the hypotheses are still valid in the new, improved genome assembly, version

3.0. We also include a new data type, repeat sequences and transposable elements (TEs),

which were masked from the original genome analysis.

TEs are mobile DNA elements falling into two main classes. Class I TEs (retroelements)

duplicate via an RNA intermediate in a “copy-and-paste” type mechanism, whereas Class

II TEs move via a “cut and paste” mechanism where the DNA element is excised and

integrated elsewhere in the genome [2, 3]. Different TEs have very different distributions

throughout the genome, and are known to have a significant impact on various aspects of

the genome including genome size, genome arrangement and centromere function.

We wish to interrogate the similarities and differences between the distributions of syntenic

blocks, centromere positions, different classes of TEs, SNPs, genes and methylation across

the genome, in order to generate hypotheses surrounding the evolutionary history of the

structure of the genome. Such comparisons between signals requires them to be compared

at multiple scales, as different driving forces can operate at different scales. For this reason,

we make use of the wavelet transform, a signal processing technique which can be used

to unpack the information in different scales of a signal, such as a density profile across a
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chromosome [4]. In general, the continuous wavelet transform (CWT) involves expressing

a function (signal) as a linear combination of basis functions called wavelets. These basis

functions are scaled translations of a mother wavelet, such as the Ricker Wavelet. What

results from a wavelet transform is a set of wavelet coefficients W (s, τ) (Equation 5.1), a

coefficient for every scale s and translation τ [5].

W (s, τ) =
1√
s

∫
f(t)ψ∗

(
t− τ
s

)
dt (5.1)

The Discrete Wavelet Transform (DWT) is a sampled version of the CWT, and involves

sampling of the bp and scale dimensions [5]. The DWT produces a series of sets of

coefficients with one set of coefficients for each scale computed (Figure 5.1).

While the CWT is ideal when one wants to view the entire coefficient landscape as we did in

the previous chapter, it does contain redundant information. When one wants to calculate

the correlation between two features at different scales, one does not need every scale. A

sampling of the scales is more convenient. Thus, the DWT is ideal for this application.

The study by Slavov et al. (2012) [6] involved correlating various chromosome features

such as recombination rate and methylation across chromosomes, and the study by

McCormick et. al (2017) [7] involved analyzing chromosome features at different scales

using the Fourier transform. Spencer et. al (2006) [4] introduced using the DWT

to calculate the correlations between various genomic signals at different scales, and

performed this analysis on human chromosome 20. However, the use of the DWT to

analyze such signals at different scales is novel in the large scale, extensive P. trichocarpa

dataset.
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Figure 5.1: Discrete Wavelet Transform (DWT). Example of wavelet coefficients
produced from applying the DWT to the gene density signal of P. trichocarpa chromosome
2. The x-axis represents position along the signal, and each line (d1 through d11) plots
the wavelet coefficients of that particular scale across the signal, with d1 representing the
smallest scale and d11 representing the largest scale.
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5.2 Methods

5.2.1 Syntenic Block Construction

Syntenic blocks within the P. trichocarpa version 3.0 genome were constructed using CoGe

SynMap [8, 9]. Syntenic segments were computed based on gene order, within a maximum

of 10 non-matching genes between matching genes, and a minimum of 5 aligned genes

per segment, similar to the parameters used in the syntenic block analysis of the original

genome [1]. Synonymous substitution rates (Ks) were also calculated. All settings used

can be seen in Supplementary Figure S5.1. Syntenic blocks were visualized using Circos

[10].

5.2.2 Putative Ancestral Centromeres

For each chromosome, syntenic blocks which overlapped with putative centromere

locations (Table S4.1 in Chapter 4) on a chromosome were extracted. The wavelet

transform was used to smooth over smaller syntenic blocks that were close together

in order to identify putative ancestral centromere boundaries. For each pair of

chromosomes (i, j), nucleotide positions within syntenic blocks on chromosome i that

overlapped with centromeric regions on chromosome j were extracted. These represented

nucleotide positions potentially within ancestral centromeric regions. These positions

were transformed into a density profile, counting the number of such positions in

10kb bins across chromosome i. These density profiles were constructed for each

pair of chromosomes. Peaks in these density profiles indicate potential ancestral

centromere locations (Figure 5.2B). The Continuous Wavelet Transform (CWT) was used

to smooth over these density profiles to get ancestral centromere boundaries from ancestral

centromeres potentially made up of many smaller syntenic blocks (Figure 5.2A, B and C).

The CWT was calculated for each density profile using the wmtsa R package [11, 12] using

the “gaussian2” wavelet (Ricker wavelet) and a variance of 1. The scale s and position p
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at which the maximum wavelet coefficient was obtained were identified, and the vector

of coefficients at scale s was extracted. Syntenic block boundaries were identified as the

x-intercepts on either side of the maximum peak.

5.2.3 Density Distribution Construction

Density profiles of various features across each chromosome were constructed. The

construction of some of these density profiles was described in detail in Chapter 4 and

are thus described briefly below.

SNP Density

Variant data used in the previous chapter, consisting of ∼10 million SNPs across 882

P. trichocarpa individuals corresponding to the 90% “PASS” tranche of the full set of

28,342,758 SNPs (DOI 10.13139/OLCF/1411410) were used. A density profile was

calculated for each chromosome, counting the number of SNPs residing in non-overlapping

10kb bins across each chromosome.

Gene Density

Gene density profiles were constructed for each chromosome by counting the number of

nucleotide positions within non-overlapping 10kb windows that reside within genes. Gene

boundaries were determined from the annotation file obtained from the P. trichocarpa

version 3 genome annotation available on Phytozome [13].

Methylation Density

Methylation (MeDIP-seq) reads from ten P. trichocarpa tissues (bud, callus, female catkin,

internode explant, leaf, make catkin, phloem, regenerated internode, root and xylem) [14]
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Figure 5.2: Determining ancestral centromere boundaries. For a given chromosome,
the density profile of syntenic blocks which originate from a centromeric region on another
chromosome was constructed (B). The continuous wavelet transform was calculated for
this signal resulting in a coefficient landscape (C). The x-axis of a coefficient landscape
represents the position along the chromosome, and the y-axis represents the scale, with
small scales (high frequency peaks) at the bottom of the heatmap and large scales (low
frequency peaks) at the top. A wavelet coefficient is calculated for each signal position
and each scale, thus resulting in a landscape. The scale at which the maximum coefficient
occurs was identified, and the wavelet coefficient vector at that scale was extracted (A).
X-axis intercepts of this vector were considered putative ancestral centromere boundaries.
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re-aligned to the version 3 assembly of P. trichocarpa were downloaded from Phytozome

[13].

BEDTools [15] and GNU-Parallel [16] were used to count the number of reads mapped

to 10kb windows across the genome, and a “mapped read density” distribution was

constructed for each tissue and each chromosome, showing the number of reads which

mapped to different regions of the genome, and thus indicating methylation hot spots.

Repeat Element Density

RepeatMasker (Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0. 2013-

2015 [http://www.repeatmasker.org]) was used to identify repeat elements in the

chromosomes of P. trichocarpa version 3. A density profile for each different family of

repeats was constructed for each chromosome by counting the number of nucleotide

positions that resided within an instance of that family of repeats in non-overlapping

10kb bins across the genome. These repeat densities were visualized using the IdeoViz

R package [17].

Syntenic Block Boundary Density

A density vector was constructed for each chromosome indicating the number of syntenic

block boundaries in non-overlapping 10kb bins across the genome.

Centromere/Ancestral Centromere Vectors

A centromere “density” vector was constructed for each chromosome using the same 10kb

bins described in the density distributions above. Each element of the centromere vector

was assigned the value “1” if the 10kb bin overlapped with the centromeric region and

“0” otherwise. This was performed in a similar manner for ancestral centromeres. These

were constructed to allow the locations of the centromere/ancestral centromeres to be

correlated with other features such as gene density/TE density.
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5.2.4 Discrete Wavelet Transform and Correlations

For each feature in Table 5.1, the Discrete Wavelet Transform (DWT) was calculated,

producing a series of sets of coefficients with one set of coefficients for each scale

computed. This was performed separately for each chromosome using the wmtsa R package

[11, 12, 18, 19]. For each chromosome, the Spearman correlation between the wavelet

coefficients of each level was calculated for each pair of features, as well as the associated

p-value using the R cor.test function. A significance threshold of 0.05 was set. Significant

correlations were visualized in Cytoscape [20].

5.3 Results and Discussion

5.3.1 Syntenic Blocks, Historic Genome Duplication Events and

Ancestral Centromeres

Syntenic blocks within the P. trichocarpa genome as well as synonymous substitution

rates (Ks) for homologous segements were constructed using CoGe [8]. A dotplot of the

homologous chromosome regions can be seen in Figure 5.3A and a distribution of the Ks

values in Figure 5.3B. A first look at the dotplot reveals some long regions of homologous

segments, and some smaller, sparse regions. The Ks distribution (Figure 5.3B) as three

major peaks. It is interesting to note that the long homologous chromosomal regions

tend to fall within the blue peak, whereas the smaller, sparse homologous regions tend

to fall within the green and orange peaks (Figures 5.3C and 5.3D). This distribution

of Ks values as well as the major syntenic blocks on the dotplot agree with findings in

the original genome study for P. trichocarpa [1], in which Tuskan et al. describe three

genome duplications in the history of Populus, namely, the Salicoid duplication, the Eurosid

duplication and an Ancient duplication. The major syntenic blocks presented by Tuskan

et al. (2006) are thought to have arisen from genome rearrangements following the most

recent whole-genome duplication event, the Salicoid duplication. Our distribution of Ks
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Table 5.1: Genomic Features for which density profiles were constructed. “Feature name”
shows the full name of the feature, “Source” shows the method/data where the feature
arose from and “Code” shows a shortened name for the feature used in the networks
(Figure 5.9).

Feature name Source Code

LTR/Caulimovirus density RepeatMasker Caulimovirus

LTR/Copia density RepeatMasker Copia

LTR/Gypsy density RepeatMasker Gypsy

DNA/hAT-Ac density RepeatMasker hAT-Ac

snRNA density RepeatMasker snRNA

rRNA density RepeatMasker rRNA

DNA/PIF-Harbinger

density

RepeatMasker PIF-Harbinger

tRNA density RepeatMasker tRNA

LINE/L1 density RepeatMasker LINE

DNA/CMC-EnSpm density RepeatMasker CMC-EnSpm

Low complexity repeat

density

RepeatMasker Low complexity

Simple repeat density RepeatMasker Simple repeat

Satellite density RepeatMasker Satellite

DNA/hAT-Tag1 density RepeatMasker hAT-Tag1

RC/Helitron density RepeatMasker Helitron

DNA/hAT-Tip100 density RepeatMasker hAT-Tip100

Gene density version 3.0 gene annotation Gene

SNP density PASS tranche of P. trichocarpa variants

(DOI 10.13139/OLCF/1411410)

SNP

Callus methylation density MeDIP-Seq reads from callus tissue

[14]

callus

Continued on next page.
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Table 5.1: (continued)

Feature name Source Code

Root methylation density MeDIP-Seq reads from root tissue [14] root

Leaf methylation density MeDIP-Seq reads from leaf tissue [14] leaf

Xylem methylation density MeDIP-Seq reads from xylem tissue

[14]

xylem

Bud methylation density MeDIP-Seq reads from bud tissue [14] bud

Female catkin methylation

density

MeDIP-Seq reads from female catkin

tissue [14]

female catkin

Male catkin methylation

density

MeDIP-Seq reads from male catkin

tissue [14]

male catkin

Internode explant methy-

lation density

MeDIP-Seq reads from internode ex-

plant tissue [14]

internode explant

Phloem methylation den-

sity

MeDIP-Seq reads from phloem tissue

[14]

phloem

Regenerated internode

methylation density

MeDIP-Seq reads from regenerated

internode tissue [14]

regenerated internode

Centromere centromere positions determined in

Chapter 4

cen

Ancestral centromere Ancestral centromere positions de-

termined from wavelet transform of

syntenic blocks

ancestral centromere
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Table 5.2: Syntenic blocks recovered in this analysis of P. trichocarpa version 3.0 compared
to that of the original genome study [1]. Columns 1 and 2 show the source and target
chromosomes of syntenic blocks identified in the original genome study. Column 3
indicates which of those syntenic blocks were not identified in the current analysis.

Source
Chromosome

Syntenic blocks with Source Chromosome
in [1]

Missing in this
analysis

1 3, 9, 11, 17
2 4, 5, 14 4
3 1, 5 5
4 2, 9, 11, 17 2
5 2, 3, 7 3
6 16, 18
7 5, 14, 17
8 10
9 1, 4
10 8
11 1, 4, 13
12 15
13 11, 19
14 2
15 12
16 6
17 1, 4, 7
18 6
19 13

values (as an estimate of divergence/evolutionary age) recovers the three peaks mostly

likely representing the three duplication events described previously. Given that the blue

peak seems to represent the longer syntenic blocks which match those found in the original

genome study, we can tentatively conclude that these are the same syntenic blocks arising

from the Salicoid duplication, represented by the blue peak (Figure 5.3C and 5.3D).

Table 5.2 shows the pairs of homologous chromosome regions found in Tuskan et al.

(2006), as well as those which were not found in this analysis. It is expected that

there might be some differences, primarily because the genome assembly has changed

significantly since the genome’s first release. However, the fact that all but two syntenic

blocks were recovered indicates that the large scale structure of the genome has not

changed much between version 1 and version 3.
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Figure 5.3: Synonymous substitution rates. (A) Syntenic dot plot and (B) Distribution
of -log10 Ks values for P. trichocarpa, generated using CoGe [8, 9] (C) Syntenic blocks with
ks values in the range of the selected blue peak in (D).
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Table 5.3: Putative ancestral centromeres identified from syntenic blocks and centromere
locations.

Ancestral centromere on From chromosome

1 17
2 5
2 14
4 9
5 7
6 18
6 16
14 2

Figure S5.2 shows circos plots of all the syntenic blocks/homologous chromosome regions,

centered around each chromosome separately, with each circos plot representing the

syntenic blocks involving a particular chromosome. Centromeric regions predicted in

Chapter 4 are shown as highlights on the chromosome ideogram. The homologous

chromosome pairs are clearly visible, as well as the chromosome rearrangements

which occurred. Visualizing only the syntenic blocks which overlap with centromeric

regions provides information on the fate of active centromeres/centromeric DNA post

rearrangement. One can also see evidence for cases where the active centromere of a

given chromosome segment was maintained after the chromosome rearrangement. For

example, one can see from Figure 5.4A that chromosome 1 and chromosome 3 share a

very large syntenic block which Ks values suggests is from the salicoid duplication event.

Figure 5.4B shows the syntenic blocks on chromosome 1 originating from centromeric

regions, and indicates that the active centromere of the chromosome 1-3 duplication was

possibly maintained post rearrangement. It also points to a section of DNA on chromosome

1 that originated from the centromeric region of chromosome 17, and is thus a potential

ancestral centromere. More examples of putative ancestral centromeres can be found in

Table 5.3.

Chromosome 11 is an interesting example which potentially could have acquired a new

centromere post-rearrangement (Figure 5.4C). Chromosome 11 appears to be composed

of segments of chromosome 1 and chromosome 4, however neither of those segments
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Figure 5.4: Syntenic blocks and centromeres. (A) Syntenic blocks on chromosome
1. (B) Syntenic blocks on chromosome 1 that originate in centromeric regions on other
chromosomes. (C) Syntenic blocks for chromosome 11.
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contained an active centromere. One can hypothesize that Chromosome 11 formed a new

centromere post rearrangement.

5.3.2 Repeat and Transposable Element Density

Active plant centromeres are defined as DNA regions binding to the centromere-specific

histone, CENH3 [21]. Centromeric DNA tends to consist of repeat sequences. While

retrotransposons in general occur less frequently in active centromere regions [22, 23],

certain retroelement groups are enriched in centromeric regions, such as gypsy repeats

[22].

Various repeat sequences and retroelements/TEs were identified in the P. trichocarpa

genome. These repeats belonged to many different families (Table 5.1) and had very

different distributions across the genome. Three classes of repeats showed particular

enrichment in the centromeric regions, including gypsy repeats derived from gypsy group

retrotransposon, satellite repeats and Long Interspersed Nuclear Elements (LINE) repeats

(Figures 5.5, 5.6 and 5.7). Gypsy repeats are known to be found in centromeric regions

[24, 25, 26, 27]. We also see some putative peaks in the gypsy repeat density in some

of the putative ancestral centromeric regions. It is expected that we see enrichments of

satellite repeats in the centromeric regions as these are known components of centromeric

DNA [28, 22, 26]. It is interesting that we also see satellite repeats in some of the potential

ancestral centromeric regions. LINE transposable elements are known to be found in the

pericentromeric regions [29], and there is some new evidence of LINE repeats occuring in

active centromeres in sunflowers and bats [30, 31].

5.3.3 Discrete Wavelet Transform and Scale-Specific Correlation

Biological signals, such as the density profiles in Table 5.1, can have different relationships

with each other depending on the scale at which one is looking [4]. While two features

my be correlated at certain scales, they may be anti-correlated at others. Correlating
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Figure 5.5: Gypsy TEs. Density of Gypsy TE repeats across all chromosomes in P.
trichocarpa.
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Figure 5.6: Satellite repeats. Density of Satellite repeats across all chromosomes in P.
trichocarpa.
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Figure 5.7: LINE TEs. Density of LINE TE repeats across all chromosomes in P. trichocarpa.
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between the coefficients of matching scales of the features.

raw signals does not allow one to analyze these features at different scales. The Discrete

Wavelet Transform (DWT) is a sampled version of the CWT, and involves the sampling

of the base pair (x-axis) and scale (y-axis) dimensions [5] and produces a series of

sets of coefficients, with one set of coefficients for each scale computed. Calculating

regression or correlation between wavelet coefficients of two different signals allows for

scale-specific inferences to be determined [32]. The Spearman correlation coefficient was

calculated between the wavelet coefficients of each scale for each pair of features and

each chromosome (Figure 5.8). Significant (p < 0.05) correlations were represented as

networks and investigated for interesting scale-specific relationships.

Figure 5.9 shows the significant (p < 0.05) correlation between features at different

scales/levels for chromosome 13, represented as networks. Each network (A-H) in Figure

5.9 represents the correlations of a particular scale, with Level 1 representing small

scale features and Level 8 representing large-scale features. Therefore, the network in

Figure 5.9A represents the significant Spearman correlations between the level 1 wavelet

coefficients of features, thus representing correlations between fine-scale features of the

signals, whereas Figure 5.9H represents the significant Spearman correlations between the
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level 8 wavelet coefficients of features, thus representing correlations between large-scale

features of the signals. An explanatory example of scale-specific correlations can be seen

when looking at the relationship between SNP density (blue nodes in Figure 5.9) and gene

density (green nodes in Figure 5.9). At small scales (Level 1, Level 2, Level 3) one can

see that SNP density and gene density are significantly negatively correlated. This small

scale feature can be interpreted as the fact that SNPs tend to occur in intergenic space as

opposed to within genes. However, at medium-large scales (Level 6) SNP density and gene

density are positively correlated, likely driven by the low density of genes and SNPs found

in centromeric regions. Similar patterns are seen on other chromosomes (see Figures S5.4

- S5.21 for DWT correlation networks on the other 18 chromosomes.)

This relationship between SNP density and gene density for a given chromosome can also

be visualized as line plot of wavelet coefficient correlations (Figure 5.10). The x-axis

represents the scale (level), and the y-axis represents the Spearman correlation coefficient

between wavelet coefficients of the at a particular scale. Red points represent negative

correlations, blue points represent positive correlations, solid circles represent significant

(p ≤ 0.05) correlations and empty circles represent non-significant correlations. One

can see that the correlation between SNP density and gene density starts as negative at

small scales, and becomes positive at larger scales, and the correlation drops off at the

extremely large scales. This general pattern can be seen across all chromosomes (Figure

5.11). A hypothesis as to why the correlation drops off at very high scales is related to the

difference in densities between gene and SNP density in the pericentromere. Gene density

drops off at the pericentromeres and is at its lowest in the centromeric regions, whereas

SNP density peaks in the pericentromeric regions and drops off rapidly in the centromeric

regions (Figure 4.3 Chapter 4).

SNP density appears to be correlated with methylation density across small-medium scales,

indicating that areas of high mutation tend to be highly methylated. A possible cause of

this correlation is the fact that increased mutation rates are seen in methylated cytosines,

in that they are easily deaminated to thymine [33, 34, 35]. One can see that in many cases,

features correlate very differently at large scales than at small scales. These are details that
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Figure 5.9: DWT correlation networks for chromosome 13. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 13. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale. Different types of features are indicated by different
colors. Up to ten different methylation nodes exist at each scale, one for each tissue type
methylation data was derived from (Table 5.1)
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Figure 5.10: SNP-gene DWT coefficient correlation for chromosome 13. Each point
represents the Spearman correlation coefficients between SNP density and gene density on
chromosome 13 at a particular scale. The x-axis represents the scale, the y-axis represents
the correlation coefficient value, solid circles represent significant correlations, empty
circles represent non-significant correlations, blue circles represent positive correlations
and red circles represent negative correlations. One can see that at small scales, SNP
density and gene density are negatively correlated, whereas at medium-large scales they
are positively correlated.
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Figure 5.11: SNP-gene DWT coefficient correlation for all chromosomes. Similar to
Figure 5.10, Spearman correlation coefficients between SNP density and gene density are
plotted as a line plot across scales. A separate plot is shown for each chromosome. For each
plot, the x-axis represents the scale, the y-axis represents the correlation coefficient value,
solid circles represent significant correlations, empty circles represent non-significant
correlations, blue circles represent positive correlations and red circles represent negative
correlations.
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Figure 5.12: DWT correlation between repeats and methylation. Spearman correlation
coefficients between different repeat class density and leaf tissue methylation density on
chromosome 1 are plotted as a line plot across scales. For each plot, the x-axis represents
the scale, the y-axis represents the correlation coefficient value, solid circles represent
significant correlations, empty circles represent non-significant correlations, blue circles
represent positive correlations and red circles represent negative correlations.

would be missed by analyzing the signal as a whole. Thus, the use of the wavelet transform

to unravel the different scales of features can provide insights into chromosome structure

and association between features, and suggest where multiple forces may be at work.

5.3.4 Correlates of Repeats and TEs

Many transposable element and repeat sequences are correlated with DNA methylation

across various scales in various tissues (Figure 5.9). These include satellite repeats as

well as copia, gypsy and LINE TEs. DNA methylation is known to be a defense mechanism

against TEs as a silencing mechanism [28, 2, 36] and it has been noted that repetitive DNA

sequences in plants are methylated in all (or most) tissues [37]. One can see in Figure

5.12 that Gypsy, LINE, Copia and Satellite repeats are significantly positively correlated

with methylation in leaf tissue at several scales.
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Interestingly, low complexity repeat sequences are significantly negatively correlated with

methylation across several scales, especially low scales. This suggests that low complexity

repeat sequences are generally not methylated. These correlation patterns are generally

observable across most chromosomes. No significant correlations were found between hAT-

Ac transposable elements and methylation at any scale on chromosome 1. This is true for

most chromosomes, and there is no easily discernible pattern of the correlation coefficients.

This indicates that there is no specific relationship between hAT-Ac transposable elements

and methylation. One can see the expected correlation between the densities of satellite

repeats and gypsy TEs with the position of the centromere (Figure 5.9C-G).

Transposable elements and repeat sequences are thought to contribute to genome

instability in various ways. Inverted repeats can cause hairpin bends which can contribute

to double strand breaks in the DNA [28]. Simple repeats (microsatellites) are difficult

to replicate because of a process known as slippage [38]. DNA strands can dissociate

during replication and then mis-align because because of the repeated sequence [38].

Repeat sequences can also cause unequal homologous recombination which can result in

chromosome rearrangement and DNA loss [3, 39, 28]. The syntenic blocks and syntenic

block boundaries provide a representation of the chromosome rearrangements which have

happened in the evolutionary history of the P. trichocarpa genome. Investigating the

correlations between the density of syntenic block boundaries and the density of repeat

sequences at different scales revealed that syntenic block boundaries are significantly

correlated with simple repeat sequences across multiple scales and multiple chromosomes

(Table 5.4).

This provides a hypothesis as to the cause of the chromosomal rearrangements that

occurred in the P. trichocarpa genome.
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Table 5.4: Correlation of syntenic block boundary density with simple repeats.

Chromosome Scale Spearman correlation p-value

1 2 -0.0578312274425647 0.0399643752344869
3 4 0.184028260110646 0.0319798347524092
5 4 0.171515348694062 0.0295944897603272
7 7 0.578950932303566 0.0485584019884882
8 2 0.128312766893837 0.00460927612992136
8 3 0.138092860354941 0.031407192590853
11 6 0.453705145990907 0.0153086010055195
11 7 0.546256831729449 0.0432786009618237
12 3 0.157904734168371 0.026683532852477
13 1 0.0986868825001212 0.00477802485347983
13 3 0.154932652102235 0.0269210183189224
13 6 0.413837837184921 0.0397351917575558
17 4 0.264324775120754 0.00787328447282763
17 6 0.412042857690601 0.0406893321529381

5.4 Conclusions and Future Directions

This study made use of multiple data types and wavelet-based signal processing to

investigate the evolutionary history of the structure of the P. trichocarpa genome. The

major syntenic blocks found in the original genome paper [1] were recovered in the new

version 3.0 assembly, as well as the evidence for the Salicoid duplication event, the Eurosid

duplication event and the ancient dupication event, in the form of the Ks distribution.

Expected distributions of TEs and repeat sequences were found, and these provide an

opportunity to refine the centromere locations identified in Chapter 4. DWT-correlation

analysis revealed that many TEs are likely methylated in P. trichocarpa, potentially a

genome defense mechanism. In addition, correlation between the locations of syntenic

block boundaries and simple repeat sequences suggest a hypotheses as to the reason for

the exact rearrangement points in the genome.

This work has provided resources for a method useful for the interrogation and comparison

of multiple data types in P. trichocarpa. Future work should dig deeper into the correlations

found in the discrete wavelet transform. Correlations such as those between syntenic block

boundaries and simple repeats should be investigated at the single base pair level. The
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distance and length of simple repeat sequences from every syntenic block boundary should

be determined. This could provide more detailed evidence to support the hypothesis that

the genome rearrangements were driven by repeat sequences. This should be similarly

applied for every family of TEs and repeats.

The use of different similarity metrics should also be explored in the DWT-based scale-

specific correlation. Different similarity metrics could extract different patterns and

relationships between the wavelet coefficients of signals and provide different perspectives.

The DUO metric will be a particularly interesting addition. The structure of the DUO

similarity metric is similar to the SNP (Single Nucleotide Polymorphism) correlation

metric, CCC, also developed by Sharlee Climer et. al [40, 41]. It categorizes values in

a matrix into high, medium and low values, and then for each pair of rows, it calculates a

scaled co-occurrence of all 4 possible combinations of high values and low values. Thus it

will be particularly interesting in investigating if/how it isolates and compares the peaks

in a wavelet coefficient vector.

In addition, network topology comparisons should be performed across DWT correlation

networks from different scales and chromosomes, in order to determine which patterns

are constant across the genome and which are chromosome specific. Topology comparison

methods such as those discussed by Weighill et al. (2016) [42] can be used to perform

such comparisons.

The correlation between different families of TEs and different gene functions should also

be investigated. This can be achieved by performing similar DWT-correlation analysis,

but this time separating the gene density signal into different components, with each

component representing a different overall gene function (e.g. “kinase” or “glycosyl

transferase”).

The rich datasets of P. trichocarpa combined with the power of scale-specific correlation

analysis should prove incredibly useful in investigating the structure and evolutionary

history of the P. trichocarpa genome.
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5.5 Supplementary Material

5.5.1 Supplementary Figures
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Figure S5.1: Settings for Coge. Options used for running CoGe to generate syntenic
blocks.
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Figure S5.2: Syntenic blocks. Syntenic blocks for each chromosome.
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Figure S5.3: Syntenic blocks overlapping centromeric regions. Syntenic blocks for each
chromosome that arise from a centromeric region on the source chromosome.
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Figure S5.4: DWT correlation networks for chromosome 1. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 1. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.
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Figure S5.5: DWT correlation networks for chromosome 2. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 2. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.
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Figure S5.6: DWT correlation networks for chromosome 3. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 3. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.
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Figure S5.7: DWT correlation networks for chromosome 4. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 4. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.
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Figure S5.8: DWT correlation networks for chromosome 5. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 5. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.

309



Simple_repeat

Low_complexity

Gypsy
LINE

Satellite

ancen

Satellite

Caulimovirus

Copia

Gypsy

gene

Low_complexity

rRNA

tRNA

gene
CMC-EnSpm

hAT-Tag1

hAT-Ac

hAT-Tip100

Copia

tRNA

snp

Helitron

PIF-Harbinger

LINE

hAT-Ac

Satellite

Caulimovirus

Helitron

snp

cen

Copia

cen

hAT-Tag1

hAT-Tip100

hAT-Ac

gene
Gypsy

Satellite

Gypsy

Simple_repeat

PIF-Harbinger

hAT-Tip100hAT-Tag1

snp

PIF-Harbinger

CMC-EnSpm

LINE

Satellite

Simple_repeat

Copia

tRNA

Low_complexity

Caulimovirus

Simple_repeat

Gypsy

cen

ancen

gene

PIF-Harbinger

Low_complexity

Gypsy

snp

hAT-Tag1

gene

ancen

Helitron

hAT-Tip100
PIF-Harbinger

hAT-Ac

cen
rRNA

Caulimovirus

tRNA

hAT-Tip100

Copia

LINE

rRNA

Satellite

snp

Helitron

CMC-EnSpm

LINE

hAT-Tag1
hAT-Acancen

hAT-Tip100

rRNA

Gypsy

PIF-Harbinger
CMC-EnSpm

Low_complexity

Helitron

Satellite

tRNA

Copia
Simple_repeat

gene

snp

Simple_repeat

PIF-Harbinger

hAT-Tag1

snp

Helitron

CMC-EnSpm

snp

Caulimovirus

rRNA

Caulimovirus

PIF-Harbinger

Simple_repeat

snp

rRNA

Copia

hAT-Tip100

Helitron
Simple_repeat

Copia

Caulimovirus

CMC-EnSpm

hAT-Ac

Gypsy

hAT-Tag1
Low_complexity

LINE

tRNA

Satellite

gene

cen

CMC-EnSpm

tRNA

gene

Gypsy hAT-Ac

hAT-Tag1

cen
Low_complexity

Satellite

hAT-Tip100

rRNA
Simple_repeat tRNA

Low_complexity

Helitron

Repeat element density

Methylation density

SNP density

Gene density

Centromere

Ancestral centromere

Negative Spearman correlation

Positive Spearman correlation

Level 1
Level 2 Level 3

Level 4 Level 5

Level 6 Level 7

Level 8 Level 9

Figure S5.9: DWT correlation networks for chromosome 6. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 6. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.
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Figure S5.10: DWT correlation networks for chromosome 7. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 7. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.
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Figure S5.11: DWT correlation networks for chromosome 8. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 8. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.
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Figure S5.12: DWT correlation networks for chromosome 9. Discrete wavelet transform
correlation networks representing the significant (p < 0.05) Spearman correlations
between wavelet coefficients of different features, at each scale on chromosome 9. Each
of (A) through (F) represents correlations of a specific scale, with (A) representing the
smallest scale and (H) representing the largest scale. Each node represents a genomic
feature, and each edge represents a significant Spearman correlation between two genomic
features at a particular scale.
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Figure S5.13: DWT correlation networks for chromosome 10. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 10. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.
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Figure S5.14: DWT correlation networks for chromosome 11. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 11. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.
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Figure S5.15: DWT correlation networks for chromosome 12. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 12. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.

316



PIF-Harbinger

snp

tRNA

Simple_repeat

hAT-Tag1

Copia

PIF-Harbinger

Satellite

gene

Helitron

hAT-Ac

CMC-EnSpm

gene

Caulimovirus

tRNAHelitron

Satellite

gene
Gypsy

hAT-Tag1

LINE

Copia

Gypsy

snp Gypsy

hAT-Tip100

Satellite

hAT-Tag1

LINE

Low_complexity

Simple_repeat

rRNA

Caulimovirus

hAT-Tag1

CMC-EnSpm

Low_complexity
hAT-Tip100

Caulimovirus

hAT-Ac

PIF-Harbinger

Helitron
hAT-Ac

PIF-Harbinger

Copia

tRNA

gene

Low_complexity

LINE

hAT-Ac

Helitron

Simple_repeat

tRNA

LINE Low_complexity

snp

PIF-Harbinger

CMC-EnSpm

CMC-EnSpm

snp

rRNA

Satellite
Copia

Gypsy

Simple_repeat

hAT-Tip100

Caulimovirus

tRNA

hAT-Tip100 Low_complexity

cen

Gypsy
LINE

gene
CMC-EnSpm

CMC-EnSpm

Copia

Simple_repeathAT-Tip100

gene

Gypsy
LINE

rRNA

hAT-Ac

Helitron

PIF-Harbinger

Simple_repeat

Satellite

snp

rRNA

tRNA

cen

Caulimovirus
Satellite

snp

hAT-Tag1

hAT-Ac
cen

Satellite

Simple_repeat

rRNA

Helitron

Low_complexity

LINE

LINE

Caulimovirus

Satellite

hAT-Tip100

Simple_repeat
CMC-EnSpm

Copia

PIF-Harbinger

Gypsy

tRNA

CMC-EnSpm

Copia
hAT-Tip100

Gypsy

gene
PIF-Harbinger

hAT-Tag1

snp

gene

Repeat element density

Methylation density

SNP density

Gene density

Centromere

Ancestral centromere

Negative Spearman correlation

Positive Spearman correlation

Level 1

Level 2
Level 3

Level 4
Level 5

Level 6

Level 7

Level 8

Figure S5.16: DWT correlation networks for chromosome 14. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 14. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.
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Figure S5.17: DWT correlation networks for chromosome 15. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 15. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.
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Figure S5.18: DWT correlation networks for chromosome 16. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 16. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.
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Figure S5.19: DWT correlation networks for chromosome 17. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 17. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.
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Figure S5.20: DWT correlation networks for chromosome 18. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 18. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.
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Figure S5.21: DWT correlation networks for chromosome 19. Discrete wavelet
transform correlation networks representing the significant (p < 0.05) Spearman
correlations between wavelet coefficients of different features, at each scale on
chromosome 19. Each of (A) through (F) represents correlations of a specific scale, with
(A) representing the smallest scale and (H) representing the largest scale. Each node
represents a genomic feature, and each edge represents a significant Spearman correlation
between two genomic features at a particular scale.
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Conclusion
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6.1 Concluding Remarks and Future Work

The work presented in this dissertation has made substantial contributions to data analysis

capabilities in biofuels research. Techniques were developed for the integration of different

multiple data types, combining the information in multiple large ’omics datasets. The

methods developed and applied have provided strategies to gain insight into fundamental

knowledge about the relationships between different data types in P. trichocarpa, as well

as strategies to combine the information in these different data types to identify target

genes involved in bioenergy-related phenotypes.

The Pleiotropy Decomposition technique presented in Chapter 2 describes a post-GWAS

method which characterizes the pleiotropic signatures of genes using data from a multi-

phenotype GWAS analysis. The representation of pleiotropic signatures as combinations of

“pleiotropy modules” allows genes to be clustered not only by the phenotypes which they

are associated with, but also the topology of SNP-phenotype associations within genes.

This detailed characterization and clustering will allow for candidate genes to be identified

which have pleiotropic signatures which are theoretically favorable for modification to

impact certain phenotypes. This method will be applied to more phenotypes as they

become available, including gene expression phenotypes. This will ultimately provide a

global view of the pleiotropic interactions in P. trichocarpa.

The Lines of Evidence “LOE” data layering method presented in Chapter 3 provides an

approach to integrate multiple ’omics datasets to identify novel candidate genes involved

in biofuels-related phenotypes. Association network layers are constructed for each data

type, and subsequently, LOE scores are calculated for each gene in the genome based

on their connectivity to nodes already known to be involved in a particular function of

interest. This method produces a useful ranking of genes, allowing for an evidence-based

selection of candidate genes for testing. The network representation also provides useful

context for the interpretation of the position of candidate genes in the entire system, and

allows for hypotheses generation surrounding the mechanism of a gene’s involvement in
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the target function of interest. Future work will involve investigating optimal weights for

different data layers in LOE scores by using a cross-validation analysis.

The pleiotropic signature clusters in Chapter 3 are easily integrated with LOE networks

in Chapter 2, and a combined pleiotropy decomposition/LOE approach could also yield

information on interesting gene regulatory circuits of genes which have similar pleiotropic

signatures.

The wavelet-based signal processing in Chapter 4 allowed for the identification of the

approximate centromere positions in P. trichocarpa. These positions had not been

adequately reported in previous scientific literature. The wavelet analysis also provided a

method to investigate scale-specific relationships between the different ’omics data layers,

providing insights into the evolution of the P. trichocarpa genome, as well as potential

driving forces of genome structure at different scales, as detailed in Chapter 5. This work

provides a foundation for future scale-specific analysis. In particular, future work could

include investigating scale-specific relationships between various genomic elements and

measured phenotypes.

The collection of methods and approaches presented in this dissertation provide tools to

aid in the design of plants optimized for biofuels production. The LOE methods will allow

one to construct layered networks involving GWAS networks of relevant phenotypes, and

the resulting scores will inform the researcher about new candidate genes involved in

a particular biofuels-related phenotype of interest. These candidate genes can then be

considered as targets for genetic modification or to potentially inform genomic selection

procedures. Pleiotropy decomposition of the GWAS networks in the LOE analysis will

unravel the multi-phenotype associations of genes, allowing for the investigation of

the pleiotropic signatures of new candidate genes. This will assist in determining if

modification of these candidate genes will cause unintended consequences by affecting

other phenotypes. Signature clustering will allow the identification of genes with similar

pleiotropic signatures as candidate genes, potentially identifying regulatory circuits or

genes of shared function. The wavelet transform analysis presented provides a first step

in attempting to identify scale-specific associations between genomic/epigenomic features
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and biofuels phenotypes, which could lead to new insights into scale-specific impacts on

phenotype.

In summary, this dissertation has provided useful approaches for data integration and

target gene identification, and provided strategies for the investigation of fundamental

structural and functional genomic information about P. trichocarpa.
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