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Abstract

This dissertation presents advances in continuum-robotic mathematical-modeling techniques.

Specifically, problems of statics, dynamics, and stability are studied for robots with slender

elastic links. The general procedure within each topic is to develop a continuous theory

describing robot behavior, develop a discretization strategy to enable simulation and control,

and to validate simulation predictions against experimental results.

Chapter 1 introduces the basic concept of continuum robotics and reviews progress in

the field. It also introduces the mathematical modeling used to describe continuum robots

and explains some notation used throughout the dissertation.

The derivation of Cosserat rod statics, the coupling of rods to form a parallel continuum

robot (PCR), and solution of the kinematics problem are reviewed in Chapter 2. With this

foundation, soft real-time teleoperation of a PCR is demonstrated and a miniature prototype

robot with a grasper is controlled.

Chapter 3 reviews the derivation of Cosserat rod dynamics and presents a discretization

strategy having several desirable features, such as generality, accuracy, and potential for

good computational efficiency. The discretized rod model is validated experimentally using

high speed camera footage of a cantilevered rod. The discretization strategy is then applied

to simulate continuum robot dynamics for several classes of robot, including PCRs, tendon-

driven robots, fluidic actuators, and concentric tube robots.

In Chapter 4, the stability of a PCR is analyzed using optimal control theory. Conditions

of stability are gradually developed starting from a single planar rod and finally arriving at a

stability test for parallel continuum robots. The approach is experimentally validated using

a camera tracking system.

Chapter 5 provides closing discussion and proposes potential future work.
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Chapter 1

Introduction

1.1 Continuum Robots

“Continuum” robotics is a subfield distinct from conventional rigid-link robotics because

elastic links are used to achieve movement through controlled deformation. Figure 1.1

illustrates several representative designs of continuum robots. Various advantages to

continuum robots have been highlighted, such as flexibility, light weight, inherent safety,

scalability, and potential for low-cost parts. Relevant applications have been researched,

such as material handling, exploration, and minimally invasive surgery [90, 121, 117, 17].

There is particular interest in continuum robots for minimally-invasive surgical applica-

tions owing to their flexibility. Compliant manipulators such as colonoscopes and catheters

have become cornerstones of surgery, and researchers aspire to develop continuum devices

with even greater reach and articulation. One of the most researched designs is the concentric

tube robot, which is composed of concentrically aligned pre-curved tubes [118, 27, 32]. The

tubes may be pre-curved by plastic deformation, by thermal “shape setting” [33], or even 3D

printing [68]. When inserted concentrically, the collection of tubes will take some shape to

reconcile opposing pre-curvatures. In this way translating or rotating the base of a tube will

result in a change to the entire robot shape, and 6-DOF control of the tip is possible for a

three-tube robot. The pre-curved tube shapes may be chosen to optimize the robot behavior

for specific tasks [5, 43, 16, 38]. Another popular design is tendon-driven manipulators,
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Figure 1.1: A sample of continuum robot designs is shown to illustrate the diverse
design space. From left to right then top to bottom, these designs are: tendon-driven
robots [97], the Festo bionic handling assistant [61], parallel continuum robots [77], Hansen
Medical’s Magellan robotic catheter, the OctArm [65], concentric notched-tube robots [72],
and concentric tube robots [32].

which like colonoscopes and many catheters, rely on cables routed along the robot at an

offset from the centerline to generate bending motion [18, 97]. Although tendons are often

routed at a constant offset from the backbone, the path of the tendon routing channel may

be chosen to alter the end-effector kinematic mapping [97] and stiffness to applied loads [73].

Continuum robots may also be used to supplement existing medical tools, such as increasing

the articulation of tools deployed through a colonoscope using concentric tubes [81, 80] or

concentric notched-tube arms [72].

Although many continuum robots have a serial design with a shape described by a central

curve, often referred to as the “backbone”, parallel designs have also been investigated.

Parallel continuum robots use multiple elastic members connected in a parallel arrangement,

which can provide increased precision and stiffness compared to slenderer, single-member

continuum robots [13, 9, 8]. These designs not only have potential for large-scale compliant

interaction with humans, but also small-scale surgical tasks because their scalability enables

operation with many articulated DOF in short, confined spaces [78, 77]. Examples of parallel

continuum robot architectures include the multi-backbone snake-like robots of Simaan et al.

[25, 103], the Festo bionic tripod manipulator, soft parallel robots [88, 47], and continuum

Stewart-Gough designs [13, 9, 76].
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Outside of medical robotics, the compliant grasping and inherent safety of continuum

robots has also resulted in applications of pneumatic robots for general manipulation tasks.

The pneumatically actuated arm “OctArm” was an influential project in which robot motion

was achieved by McKibben muscles, which shorten their length under internal pressure

[36, 65]. Tubes were aligned in parallel against a flexible backbone to create a multi-section

arm. This arm was attached to a mobile platform and the research team demonstrated the

robot’s ability to manipulate objects.

In addition to truly continuous robots, hyper-redundant robots having many discrete

links are also commonly studied and regarded as continuum robots. Some would pinpoint

the origin of continuum robotics to 1967 when Anderson and Horn published a journal

article on the hyper-redundant discrete-link “Tensor Arm” [1], which was comprised of a

series of stacked plates which could be rotated by pulling on tendons. Another notable

hyper-redundant robot is the CardioARM [23], a highly redundant snake-like arm intended

for cardiac ablation, where portions of the heart wall are cauterized to achieve insulation

against irregular electrical rhythms.

There have been applications of continuum robots in industry. Hyper-redundant

snake robots are marketed by OC Robotics [14] for industrial inspection and exploration.

Medrobotics targets transoral surgery with the FLEX snake robot [89], which uses a

backbone with adjustable stiffness so that the surgeon can make the main section rigid

while manipulating instruments at the tip. Robotic catheter systems are sold by Hansen

Medical and Stereotaxis. German industrial control and automation company Festo has

created several novel continuum robots such as the bionic tripod and bionic handling assistant

[61]. Olympus has researched and designed the “EndoSAMURAI” robotic colonoscope [99].

Samsung has developed a single-port access surgical robot [57] with a guide tube comprised

of discrete disks with routing holes for tendons similar to the original tensor arm. NASA

has researched tendon-driven continuum robots [66] such as the “tendril” robot, a tendon-

actuated arm designed for “minimally invasive inspection” situations such as exploring

crevices.
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1.2 Elastic Rod Modeling

Generally continuum robots use slender elastic elements which may be idealized as one-

dimensional objects. Slender elastic objects exhibiting large deflections are becoming

increasingly prevalent not only in continuum robotics, but also for other applications such

as soft robotics [98] and in interactions with objects such as ropes, sutures, needles, and

catheters [104]. Flexible robot dynamics have been researched for decades with applications

to spacecraft arms, energy-saving lightweight robots, and collaborative robots [3]. While

tractable solutions can often be found with Euler-Bernoulli beam theory, this relies on the

assumption of small deflections. In applications with large deflections, classical rod theories

in nonlinear elasticity are needed.

Many models assume a continuum arm is comprised of sections having constant

curvature1 [121], which results in relatively simple mathematical models. This is particularly

appealing since the resulting transformations can be represented by the Denavit-Hartenberg

parameters which are used to describe rigid robots [121, 117, 41]. This idea facilitated the

growth of continuum robotics, but the approach is fundamentally limited. Even the subset

of robots that have a constant curvature shape in an unstressed resting configuration2 will

have variable curvature when the robot experiences loading or inertial dynamics. The ability

to deform is, after all, a main feature of continuum robotics.

The approximate nature of constant curvature representations prompted the use of

generalized elastic models such as planar Bernoulli-Euler elastica theory [35] and spatial

Cosserat rod theory [115, 94, 97, 27, 85]. These theories describe the equations of motions of

a rod, and are derived from first principles under mild assumptions such as idealizing the rod

as a slender object as reviewed in Chapters 2.1.1 and 3.1.1. Although the Cosserat brothers

derived their theory of elasticity at the turn of the 1900s [2], there has been recent interest in

applying the equations to describe continuum robots, and in finding discretization schemes

for simulation. The modeling efforts of this dissertation are mainly focused on these goals.

1“Constant curvature” is a phrase understood to mean a curvature which is constant with respect to a
curve’s arc length, although the curvature may be non-constant in time.

2e.g. the Bionic Handling Assistant and OctArm in Figure 1.1.
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Many continuum robots may be modeled as one or more elastic rods subject to constraints

arising from the robot design. The constraints may be discrete, as is the case with parallel

continuum robots [13, 8, 9] and some rod manipulation tasks such as two grippers handling

a rod [12]. Other scenarios impose continuous constraints on elastic rods, for example

concentric tubes [94], tendon robots [97], soft robots [84, 83], and rod manipulation in a

confined environment [108]. Imposing continuous constraints tends to give rise to differential

algebraic equations (DAEs) describing the robot statics, and a main success of past works

has been solving for an explicit form of the static ODEs. An overview of the Cosserat rod

equations and their application to tendon and concentric-tube robots is provided in [93].

Generally there are not known analytical solutions to the equations of motion, or

even the ODEs describing robot statics. Regarding numerical solutions, finite-element

models (FEM) for large-deformation 3D nonlinear elasticity usually entail unnecessary

computational expense when describing long, slender objects like rods and rod-based robots

because general deformations of the rod cross sections are included. Classical Cosserat rod

models assume no cross-section deformation and gain a great amount of efficiency due to this

simplification (e.g. two orders of magnitude in [116] for an extended Cosserat model with

cross-section inflation). Methods for simulating rod deformation range from non-physical

techniques that achieve an aesthetic goal to accurate mechanics-based models [30]. Accurate

models can be based on finite element methods [104, 26], finite differences [55, 86, 97],

and differential algebraic equation solvers [40]. Many rod dynamics implementations first

discretize the rod geometry in the spatial dimension and then derive equations of motion

defining the accelerations of the generalized coordinates, which are typically integrated

numerically with an explicit time-marching method. Obtaining the solution involves

enforcing inextensibility and unshearability constraints (via minimal coordinates [7, 91],

projection [6], or Lagrange multipliers with post-stabilization [106]), or explicitly modeling

the stiff dynamics of shear and extension [97, 85] (equivalent to enforcement via a penalty

method [107, 104]). Many explicit methods exhibit good computational efficiency and can

run in real time. However, they require work-intensive derivations dependent on particular

choices of model effects/assumptions and spatial discretization, which has a cost in terms

of implementation effort and modularity. Furthermore, for all methods using explicit time
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integration, the maximum time step is limited by stability conditions, which is especially

limiting if the shear and extension are modeled or enforced via a penalty method.

Some desirable characteristics of a modeling and computational approach for the

dynamics of slender elastic objects undergoing large deflections are as follows:

� Numerical consistency with the continuous theory

� Real-time computation for simulation and control

� Good scalability with respect to spatial resolution

� Stability under large time steps

� High order of accuracy in steady-state / static cases

� Low numerical damping

The method presented in Chapter 3 satisfies the above criteria. The approach directly

solves the nonlinear, hyperbolic, partial-differential equations (PDE) for 3D, large-deflection

elastic rods using implicit discretization of time derivatives and a shooting method in the

spatial dimension. For the simpler problem of robot statics, the time semi-discretization is

unnecessary and the spatial discretization is the same, so the description of static problems in

Chapter 2 provides a good lead-in to dynamics. A shooting-method approach to solving the

statics BVP or semi-discretized dynamics BVP is attractive because the size of the nonlinear

system to be solved always remains the same, even as the spatial resolution increases. One

argument against shooting methods is that the shooting Jacobian is prone to ill-conditioning.

This is indeed a potential issue, but shooting methods can be quite reliable depending on the

underlying problem being solved, particularly when the initial guess is close to the solution,

which is often the case for successive iterations in a simulation.

The time semi-discretization in Chapter 3 is inspired by a relatively unexplored method

suggested by [29] for modeling the planar motion of fly-fishing lines, and subsequently

developed further by Lan and Lee in [53, 54] for planar compliant mechanisms. Starting

with the continuous PDE, the time derivatives are discretized using a chosen implicit

differentiation formula. This creates a continuous ordinary boundary value problem in the

spatial dimension that can be solved to obtain the rod state at each time step. This implicit

temporal-discretization approach provides consistency, stability under large time steps, and
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the potential for high-order accuracy, scalability, and efficiency. Any shear and extension

behavior (including inextensibility) is automatically satisfied by the spatial integration of the

strains. Current efforts using this type of approach have been limited to planar dynamics,

and computation of solutions at interactive rates has not been demonstrated. In this

dissertation the approach is extended to the 3D spatial case, applied with higher-order

numerical schemes in both the space and time dimensions, and demonstrated to achieve soft

real-time performance.

A principle advantage of this method is that only simple changes are required to explore

various model assumptions (neglecting shear, viscosity, etc.), external force terms such as

tendon actuation [97], and discretization schemes in space or time, in contrast to methods

which symbolically solve for acceleration terms. We believe that this modularity is worth

the slight increase in run time, especially given the potential for greater accuracy by using

high-order schemes.

Implementing a continuum robot simulation at interactive rates can be difficult due to

the computational burden and inherent complexity of Cosserat rod models, but there is

precedent. The concentric tube model introduced in [94] represents each robot section as a

nonlinear system of ordinary differential equations (ODEs) which includes computationally

expensive trigonometric functions arising from the relative rotation between tubes. Despite

this complexity, it was shown in [15] that the model can be solved in software at rates

enabling teleoperation (the robot Jacobian can be calculated at a rate of at least 200Hz on a

modest 2.5GHz processor). One of the main factors in increasing the model’s computational

efficiency was exploiting mathematical relationships between the forward kinematics shooting

problem and the robot’s Jacobian [95]. Higher bandwidths may be achieved with model

simplifications, e.g. linearization of the ODEs [123] or approximation based on precomputed

solutions [27]. The efforts required in these works illustrate that solving systems of interacting

Cosserat rods is a non-trivial task for current computing platforms to perform fast enough

for control or rapid simulation. Results from C++ implementations of the models in this

dissertation reflect favorably on the chosen discretization strategies.
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1.3 Elastic Stability

As continuum robots store elastic energy, there is a potential for an elastic instability

resulting in buckling or snapping behavior of the robot. Maintaining elastic stability has

been recognized as a concern for many continuum robots, and prior research has investigated

stability questions related to design and control. For cable-driven continuum robots, Li

and Rahn [58] demonstrated buckling of the central backbone between two cable supports.

Concentric tubes of sufficient curvature may exhibit a bifurcation due to relative rotation

of the tubes. The elastic stability of concentric-tube robots been studied extensively with

analyses based on energy [120, 119, 96], monotonicity and slope of an input-output “S-curve”

mapping [27, 4, 5, 38], variational calculus [43, 31], and optimal control [39]. Aside from

robotics applications, the stability of elastic rods is important in fields such as DNA modeling

[114, 44] and computer graphics simulation [104]. Many rod stability problems have been

studied in the continuum mechanics literature. Approaches include the use of variational

calculus [60, 105], dynamic lumped parameter models [42], and finite element methods [56].

This field has also included studies of special cases such as branched rods [75] and rods with

intrinsic curvature [63].

Although instability is generally regarded as unwanted behavior, Riojas et al have recently

shown that concentric tube snapping may be useful to accomplish tasks such as propelling

a suture through tissue [87], and Mochiyama et al considered the potential of snap-through

plate buckling to generate a jumping motion [67]. However, there has been little research

to model dynamic continuum robot behavior resulting from instability; previous work has

mainly focused on detecting when an instability occurs. In Chapter 3 the dynamics of parallel

continuum robot snapping [109] and concentric tube snapping [111] are simulated.

Chapter 4 presents a way to determine if a parallel continuum robot static solution

(given by a numerical solution to our mechanics model) is elastically stable and thus

physically realizable. This can be used to assess stability in a real-time simulation in order

to avoid actuator commands that would cause unstable dynamic transitions during robot

teleoperation. Stability assessment can also be used as a criteria in offline motion planning

and simulation-based design optimization.
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The recent concentric-tube work of Ha et al. [39] is similar to the efforts here in that it

applies established results in optimal control to formulate a numerical test for the stability

of a concentric-tube robot model solution. Bretl, et al. have also recently studied stability

for robotic manipulation of a single elastic Kirchhoff rod (a special case of Cosserat rods

with no transverse shear or axial strain) [64, 11, 12, 10]. Their approach rigorously uses

geometric optimal control theory for problems defined on manifolds (since the state variable

is a member of the group SE(3)) and considers the case of a fully constrained terminal state

(pose) with no external loading. They have shown all static equilibrium configurations form

a path-connected smooth manifold with a global chart.

The optimal control approach is elegant, rigorous, and is minimally affected by

discretization issues, in contrast to the lumped-parameter and finite element approaches.

Thus Chapter 4 constructs an approach based on optimal control which builds on the

work above and provides some distinct contributions. First, in contrast to prior work, the

general problem of one or more elastic rods under loading and subject to arbitrary terminal

constraints is considered. Whereas [39] considers no terminal constraints (a free end), and

[12] considers a fully constrained terminal pose (a fixed end), the approach here can be

used to assess the stability of elastic rods with partial constraints (e.g. constraints made

by pinned joints, sliding joints, etc.), or a geometric coupling to another elastic system (as

in the case of parallel continuum robots). The stability of planar, tree-like rod structures

studied in [75] is a related problem, but the connectivity graph of a parallel continuum

robot can contain a closed cycle, which requires general terminal conditions not considered

in [75]. Second, the approach here examines the full Cosserat rod model in addition to

the more restricted Kirchhoff model (no shear or axial strains) studied in [39, 12]. While

the differences are largely negligible for slender rods, removing the Kirchhoff restrictions

expands the generality of the approach, making it suitable for soft parallel robots with

non-negligible shear and extension strains, such as [88, 47], and in general for rods with a

low slenderness ratio. Third, the approach here provides a unique way of dealing with the

spatial case (where the rod state variable is an element of the Euclidean group SE(3)) by

using Euler-Poincaré reduction following Holm’s treatment in [45], resulting in a minimal set

of Lagrange multipliers, which simplifies the conditions for equilibrium and stability. This
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approach is perhaps more accessible than the geometric optimal control formalism in [12]

while still obtaining a minimal model representation that takes advantage of group symmetry.

Contrasted against achievements of prior literature, the main contribution of this work is

the consideration of general boundary conditions rather than a fixed end or a free end with

an applied force. Although used here to couple rods, such a derivation would be useful in

various scenarios such as touching a surface that applies a normal reaction force.

1.4 Notation and Conventions

To make reading equations easier, any vector and matrix variables will be typed in bold

and scalar quantities will not. When taking a partial derivative with respect to a vector,

numerator layout notation is used, meaning a matrix of partial derivatives J = ∂y/∂x has

elements Ji,j = ∂yi/∂xj. For example a 2x2 system has the form

J =


∂y1

∂x1

∂y1

∂x2

∂y2

∂x1

∂y2

∂x2

 .

A shorthand for partial derivatives is used when convenient so that a subscripted variable

denotes a partial derivative with respect to that variable, for example ∂p/∂s is equivalent

to ps.

For the purposes of model derivation, orientation is generally represented as a rotation

matrix R ∈ SO(3) (although model implementations may use a different representation,

e.g. quaternions as in Chapter 2.1.3). Some variables are defined in the global frame, but

may be expressed in the local frame as denoted by an upper-right subscript, for example

global-frame internal force n and body-frame internal force nb so that nb := R>n. As in
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[69], the ̂ symbol denotes a mapping from R3 to so(3) as follows,

â :=


0 −a3 a2

a3 0 −a1
−a2 a1 0

 , (1.1)

and ∨ denotes the inverse mapping of ̂, i.e. (â)∨ = a. For a matrix b ∈ so(3), this has the

effect

b∨ :=
[
b3,2 b1,3 b2,1

]>
. (1.2)

We will often need to find an error between two rotation matrices, which requires some

function E : SO(3) × SO(3) → R3. There are multiple functions which can fulfill this

requirement, but the metric defined in [62] is especially straightforward. This is given by

E(R1,R2) :=
(
R>1R2 −R1R

>
2

)∨
. (1.3)

This metric has the limitation that it only has a local minimum when the two rotations are

the same, as demonstrated by E(I,Rz(π)) = 0, where Rz(x) is a rotation about the z-axis

by an angle x. Thus for solvers using convex optimization routines it is important for the

initial error to be in the correct basin of attraction. If this is of concern, then one may select

an error metric as in [13] which uses the matrix logarithm:

E(R1,R2) := log(R>1R2)
∨.

As described in [19], the matrix logarithm is given by

logR =
θ

2 sin θ
(R> −R), where θ = arccos(

trace(R)− 1

2
).

This metric is undefined for some inputs but has a non-zero limit, e.g.

lim
x→π

E(I,Rz(x)) =
[
0 0 π

]>
.
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Chapter 2

Statics

Often the assumption of quasi-static motion is adequate to describe and control continuum

robots. This chapter begins by reviewing the development of the static Cosserat rod

equations, a set of nonlinear ordinary differential equations based on idealizing an elastic

rod as a one-dimensional object, then considers the coupling of rods to form a parallel

continuum robot and issues related to efficient model implementation for teleoperation.

2.1 Individual Rod

2.1.1 Derivation of Static Cosserat Rod Equations

The derivation of rod statics here follows that of Antman [2], although there are differences

in notation. For the purposes of mechanics modeling, a slender rod can be reasonably

approximated as a one-dimensional object. The single dimension is the arclength, which

is denoted by s. Typically the arclength will vary from zero at the base of the rod to the

rod length L, that is s ∈ [0 L] ⊂ R. The rod has the ability to elongate, so we make

the distinction that s and L are both defined in a stress-free configuration. Position and

orientation of a rod are shown in Figure 2.1. The rod’s Cartesian centerline position is

described by a function p(s) ∈ R3. The centerline defines a tangent direction of the rod, but

the rod is capable of building up torque about this centerline so that the twist angle is also
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p(s)

R(0)

R(L)

R(L/4)
R(3L/4)

Figure 2.1: The rod is represented by a continuous centerline function p(s) and orientation
so that each point along the rod has a six-DOF pose. The orientation will typically be
implemented in rotation matrix form as R(s).

relevant. Thus the rod state includes 3 DOF orientation, which will typically be represented

with a rotation matrix R(s) ∈ SO(3).

A variable v is introduced as the first derivative of position in the local frame, that

is v := R>ps. Another variable u is introduced as curvature in the local frame, that is

u :=
(
R>Rs

)∨
. It may be helpful to realize this is analogous to body-frame angular velocity

ω :=
(
R>Rt

)∨
.

The internal force of the rod is described by n(s) and the internal moment by m(s).

The sign convention is chosen so that the force n(s) is the force which the material at s+ δ

exerts on the material at s − δ for some infinitesimal δ, and likewise for the moment sign

convention. Any distributed forces acting on the rod are integrated over the cross-section to

describe the action on the rod centerline, which gives rise to a one-dimensional distributed

force f(s) and distributed moment l(s) as shown in Figure 2.2.

A differential equation for ns := ∂n/∂s can be derived by considering the force balance

on some infinitesimal slice of the rod from s to s+ δ, as illustrated in Figure 2.3. Recalling
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r
θ

f(s,θ)

f(s)

l(s)

f(s) =     f(s,θ) dθ ∫
0

2π

l(s) =     f(s,θ) × R(s)r          dθ ∫
0

2π
T cos θ 

sin θ 
0 [ [

Figure 2.2: The rod has some force profile over its surface f̄(s, θ) which is idealized as
one-dimensional distributed force f(s) and moment l(s) functions.

-n(s)

n(s+δ)

f(σ)

Figure 2.3: The force balance of an infinitesimal section of a rod is considered. The balance
equation n(s+ δ)− n(s) +

∫ s+δ
s

f(σ)dσ = 0 is differentiated to obtain ns = −f .

the sign convention, the static force balance equation is

n(s+ δ)− n(s) +

∫ s+δ

s

f(σ)dσ = 0.

The equation is differentiated to obtain

ns = −f .

Finding a differential equation for ms is similar, but requires a few more steps. Taking the

moment balance of an infinitesimal section yields

m(s+ δ)−m(s) + p(s+ δ)× n(s+ δ)− p(s)× n(s) +

∫ s+δ

s

[l(σ) + p(σ)× f(σ)] dσ = 0.

This is differentiated to obtain

ms = −l− p× f − ∂

∂s
(p× n) .
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Differentiating the term on the right-hand side reveals a cancellation by

ms = −l− p× f − ps × n− p× ns

= −l− p× f − ps × n+ p× f

= −l− ps × n.

Thus the set of differential equations describing the statics of an elastic rod is

ps = Rv

Rs = Rû

ns = −f

ms = −ps × n− l.

(2.1)

Some constitutive equation relating internal loading to strains must be specified to fully

constrain the ODE system. Frequently a linear elastic relation is used:

n = RKse(v − v∗)

m = RKbt(u− u∗)
(2.2)

The variables v∗ and u∗ indicate the shape of the rod in a stress-free situation. A typical rod

which assumes a straight shape absent loading has v∗ = e3 and u∗ = 0, although in some

cases it is useful for rods to have a curved stress-free shape. The “se” and “bt” subscripts

of the stiffness matrices denote shear, extension, bending, and torsion. Typically the rod

material is homogenous so that the stiffness matrices are

Kse =


GA 0 0

0 GA 0

0 0 EA

 , Kbt =


EIxx 0 0

0 EIyy 0

0 0 GIzz

 (2.3)

where Ixx = Iyy = πr4/4 and Izz = Ixx + Iyy for a circular rod.
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The system formed by (2.1) and (2.2) is a set of nonlinear ODEs in the arclength

dimension.

v = v∗ +K−1se R
>n

u = u∗ +K−1bt R
>m

ps = Rv

Rs = Rû

ns = −f

ms = −ps × n− l,

(2.4)

2.1.2 Examples

With (2.4) the development has finally arrived at a complete system of ODEs which is fully

constrained given some initial values. For example, consider a steel rod (E = 207GPa and

G = 80GPa) with a radius of 1mm and a combination 6-DOF force sensor at the base to

measure n(0) and m(0) arising from some unknown point wrench at the distal end. The

coordinate frame is arbitrarily assigned so that p(0) = 0 and R(0) = I. Distributed weight

is considered so that f = ρAg, where ρ is the material density (around 8000kg/m3 for steel),

A the cross-sectional area πr2, and g the gravitational acceleration vector. The ODE system

can be numerically solved to find the rod shape as a function of the measured 6-DOF force.

The results of numerical solving the ODE with n(0) = [0 1 0]> and m(0) = 0 are shown in

Figure 2.4, and MATLAB code to numerical solve the IVP is in Appendix A.

In practice it is rare to have an initial value problem, and the situation usually includes

unknown boundary conditions at both ends. For instance, the rod may be handled by robotic

grippers at either end so that p(0), R(0), p(L), and R(L) are controlled. This problem can

be solved with a shooting method where n(0) and m(0) are iteratively guessed and the rod

is numerically integrated to evaluate the error between integrated and constrained values of

p(L) andR(L). Figure 2.5 shows a solution when p(L) =
[
0 −0.1L 0.8L

]>
andR(L) = I.
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Figure 2.4: A rod IVP centerline solution is visualized for n(0) = [0 1 0]> and m(0) = 0.
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Figure 2.5: A rod BVP solution is visualized for p(L) = [0 − 0.1L 0.8]> and R(L) = I.
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The code to solve the BVP scenario is shown in Appendix B. This specific boundary value

problem is studied in greater detail by Bretl and McCarthy [12].

2.1.3 Orientation Represented by Quaternion

Truncation error from numerically integrating R(s) = R(0) +
∫ s
0
Rs(σ)dσ results in

degeneracy so that R(s) /∈ SO(3). As discussed in [92], orientation may be represented

using a quaternion h = h1 + h2i+ h3j + h4k which has a differential equation

hs =
1

2


0 −u1 −u2 −u3
u1 0 u3 −u2
u2 −u3 0 u1

u3 u2 −u1 0




h1

h2

h3

h4

 . (2.5)

The other equations involving R are unchanged; R(h) is found by

R(h) = I +
2

h>h


−h23 − h24 h2h3 − h4h1 h2h4 + h3h1

h2h3 + h4h1 −h22 − h24 h3h4 − h2h1
h2h4 − h3h1 h3h4 + h2h1 −h22 − h23

 .

Integrating hs ensures that R(h) conforms to SO(3). However, it is often the case that with

a high-order integration method, the matrix R(L) = R(0) +
∫ L
0
Rs(s)ds is sufficiently near

orthonormal. For example, the case in Appendix A with ODE integration using MATLAB’s

“ode45” implemented with a fourth-order Dormance-Prince scheme [100] has

R(L)>R(L)− I =


−0.47 3.92 4.23

3.92 6.19 −0.06

4.23 −0.06 5.40

× 10−9,

which is an acceptable deviation for many applications. The quaternion substitution has a

tendency to further obfuscate the already complicated model, so the development here will

typically rely on the rotation matrix differential equation while bearing in mind its potential
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drawbacks, particularly if low-order integration methods are used. A MATLAB example of

rod dynamics with orientation represented as a quaternion is shown in [109].

2.1.4 Local Frame Formulation

The rod ODEs (2.4) are often written with internal loading expressed in the local frame. To

derive this system, local frame expressions of the internal loading are defined as nb := R>n

and mb := R>m. Recalling that skew-symmetric matrices satisfy û> = −û, the partial

derivatives of the local-frame variables are obtained by

(nb)s =
∂

∂s
(R>n)

= R>s n+R>ns

= (Rû)>n−R>f

= û>R>n−R>f

= −ûnb −R>f

and

(mb)s =
∂

∂s
(R>m)

= R>sm+R>ms

= (Rû)>m−R>(ps × n+ l)

= û>R>m−R>ps ×R>n−R>l

= −ûmb − v × nb −R>l.
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Thus the rod ODEs with internal loading in the local frame are

v = v∗ +K−1se n
b

u = u∗ +K−1bt m
b

ps = Rv

Rs = Rû

(nb)s = −ûnb −R>f

(mb)s = −ûmb − v̂nb −R>l.

(2.6)

2.1.5 Effect of Shear and Extension

For slender rods, the shear and extensions strains are negligible. This results in v = e3,

and of course it is no longer necessary to use a constitutive equation to describe v. Such

a rod is known as a “Kirchhoff rod” because Gustav Kirchhoff formulated rod equations

with these assumptions. For the spring steel rods described in this chapter, the difference

between Cosserat and Kirchhoff rod solutions is slight, although the Cosserat model is used

for generality.

2.2 Continuum Stewart-Gough Robot

The work presented in this section paraphrases the author’s paper on the topic of continuum

Stewart-Gough teleoperation [110] and summarizes subsequent developments to teleoperate

a miniature robot [78, 77] and formulate a kinematic scheme which estimates an applied tip

load using force measurements at the actuators [9]. Additional detail is provided along with

new insights. Work prior to the author’s involvement introduced the continuum Stewart-

Gough (CSG) robot and formulated a kinematic model which treats the CSG as a set of

multiple Cosserat rods with coupled boundary conditions [13]. The initial implementations

of the model in [13] required several seconds to solve the forward or inverse kinematics with

a shooting method. Given that the frequency range of voluntary hand motion in skilled
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activities is roughly 4-7 hertz [28], inverse kinematics computation rates greater than a

few hundred hertz should provide sufficient temporal resolution for human teleoperation.

However, 1 kilohertz is a typical servo-loop rate for medical robots [52]. This section

reviews the boundary value problem presented in [13] and details methods for the efficient

numerical solution of this model at rates that enable real-time interactive simulation, motion

planning, design optimization, and control. This fast implementation is used to teleoperate a

prototype robot using real-time inverse kinematics solutions, and simulation tests show that

inverse kinematics solutions are consistently computed at rates of several kilohertz using

standard desktop computing hardware. The teleoperation scheme is subsequently applied to

a miniature manipulator with a grasper.

2.2.1 Prototype Robot Design

To provide further context for the discussion of modeling and computational approaches, Fig.

2.6 shows a teleoperated parallel continuum robot system. The manipulator consists of six

flexible rods (made of spring steel ASTM A228) connected in a parallel pattern similar to a

traditional Stewart-Gough platform. The base frame is constructed from extruded aluminum

beams (80/20r Inc.) and laser-cut acrylic plates. Linear actuators with potentiometer

feedback (Firgelli Technologies Inc.) are attached to the aluminum beams and translate the

base end of the legs such that their length between the platforms changes as each leg is

extended or retracted through guide holes in the base platform. The actuators are attached

to the rod bases with a shaft-collar connection that spins freely and cannot support torsion.

The linear actuators are controlled by a custom PI control algorithm implemented on an

Arduino Mega 2560 board which receives desired positions from a desktop computer through

serial communication.

2.2.2 Boundary Conditions for Inverse Kinematics

The CSG is illustrated in Figure 2.7. Rods pass through holes in a base plate and join at an

end effector. The rod variables are given a subscript i numbered from 1 to 6. The arclength
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Figure 2.6: (a) A 400 mm tall benchtop prototype demonstrates 6 DOF motion.
This system was used for model validation [13] and to implement the inverse kinematics
algorithm for soft-real-time teleoperation [110]. (b) These small prototypes (10mm and 5mm
diameter) show that parallel continuum manipulators can be scaled to sizes appropriate for
manipulating endoscopic surgical tools. (c) These gripper designs for the smaller prototypes
incorporate two tendon-driven jaws. The tendons are routed through hollow channels in the
legs and are pulled by actuators outside the body of the robot.

of a rod from the base plate to the end effector is denoted by Li. The portion of rod below

the base plate is straight (absent buckling), and any elongation of rods below the base plate

is neglected. Let L∗i be the arclength Li when the actuator is at its minimum stroke length

qi = 0, then Li is found by

Li = L∗i + qi. (2.7)

Note that for the inverse kinematics problem, Li is solved as part of the BVP then the motor

displacement qi = Li − L∗i is calculated to control the motors.

The center of the base plate is arbitrarily assigned as the origin, and the lab-frame z-axis

is normal to the base plate. The baseplate holes are specified in polar coordinates with a

uniform radius R from the center. The hexagonal Stewart-Gough pattern is described by a

independent major angle α1 and a minor angle α2 = 120◦−α1, so that the polar coordinate
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Geometric Constraint Equations

Rigid Body Equilibrium Equations

Rod ODEs

Boundary Conditions
Imposed by Baseplate

Linear Actuator

α1

α2

α2
α2 α1

α1

Figure 2.7: The continuum Stewart-Gough robot is shown with annotations indicating
the boundary conditions. Each rod is modeled by the Cosserat rod equations with a linear-
elastic constitutive equation (2.4). The end-effector joins the six rods resulting in attachment
constraints (2.9) and (2.10), and static equilibrium equations (2.11). The hole pattern of the
base plate imposes known pose boundary conditions (2.8) and unknown point loads on each
rod. The length of a rod above the base plate is related to the linear actuator displacement
(2.7), although only one actuator is illustrated here.
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angles θBi describing the location of holes in the baseplate are

θBi =


−α2/2, i = 1

θBi−1 + α2, i ∈ {2, 4, 6}

θBi−1 + α1, i ∈ {3, 5}

.

This can be equivalently described by

θBi = −α2/2 +
i− i%2

2
α2 +

(i− 1)− (i− 1)%2

2
α1, (2.8)

where % is the modulus operator. Figure 2.7 illustrates the base plate hole pattern with

angles α1 and α2. The hole locations in Cartesian coordinates are

pi(0) = R
[
cos θBi sin θBi 0

]>
.

The prototype has R = 0.087m and α1 = 100◦. The end-effector has a similar attachment

pattern, but the major and minor angle are switched, that is

θEi = −α1/2 +
i− i%2

2
α1 +

(i− 1)− (i− 1)%2

2
α2.

This defines a constant vector in the local end-effector frame from the platform centroid to

a rod attachment point,

ri := R
[
cos θEi sin θEi 0

]>
.

Thus given the end-effector centroid in global coordinates pe and the rotation Re, there are

position constraint equations

pi(Li) = pe +Reri. (2.9)

For the prototype robot, the rod ends are constrained via shaft collars which allow rotation

about the tangent axis, so the orientations are constrained by

Ri(Li)e3 = Ree3. (2.10)
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In addition to the geometric constraints, the end-effector is subject to rigid-body static

equilibrium equations, which are given by

F −
6∑
i=1

ni(Li) = 0

M −
6∑
i=1

[mi(Li) +R>e ri × ni(Li)] = 0,

(2.11)

where F and M are external force and moment vectors applied at the platform centroid.

The weight of the platform can be accounted for by F = mg, but for the prototype robot

the platform mass is negligible. The shaft collar attachments do not exert torque, that is

mb
i,z(0) = mb

i,z(Li) = 0.

2.2.3 Solution with Shooting Method

The inverse kinematics problem has a known desired pose pe andRe and unknown arc lengths

Li which must be solved. Due to the geometric and equilibrium constraints imposed on the

system, the inverse kinematics is a boundary value problem. It is possible to formulate a

shooting method to solve the inverse kinematics BVP. There is not a unique choice of guessed

variables and residual equations, but one sensible approach is to define the guess as the 30

unknown forces at the base and the 6 unknown arc lengths. The guess is expressed as a

vector

G := [n>1 (0) m>1xy(0) n>2 (0) m>2xy(0) ... n>6 (0) m>6xy(0) L1 L2 ... L6]
>. (2.12)

The objective function error is

E(G) = [(Ep
1)
> (ER

1 )> (Ep
2)
> (ER

2 )> ... (Ep
6)
> (ER

6 )> (EF )> (EM)>]>,
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where error terms are defined based on (2.9), (2.10), and (2.11) so that the equations

Ep
i = pe +Reri − pi(Li)

ER
i =

[
e1 e2

]> [
R>e Ri(Li)−ReR

>
i (Li)

]∨
EF = F e −

6∑
i=1

ni(Li)

EM = M e −
6∑
i=1

[mi(Li) +Reri × ni(Li)]

(2.13)

provide contributions to the total error vector.

Thus a shooting method evaluation function taking 36 guesses and returning 36 errors

has been formulated. An example MATLAB implementation of this shooting method is

presented in Appendix C, which is used to find the inverse kinematics solution for a robot

bending about the y-axis as shown in Figure 2.8.
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Figure 2.8: The solution of a boundary value problem for the continuum Stewart-Gough
robot is visualized. The MATLAB code to create this plot is included in Appendix C.
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2.2.4 Mathematical Considerations for Efficient Implementation

MATLAB is good for writing concise code because of its dynamic type system and monolithic

design, but the MATLAB inverse kinematics function requires a few seconds to execute

on current hardware. For teleoperation applications the model must be solved iteratively

at a fast rate. There are three thrusts to reformulate the shooting method for real-time

control. The example codes have relied on MATLAB functions for numerical integration

using “ode45” and optimization with “fsolve”, but the code should be rewritten in a compiled

language1. Thus the first thrust is to decide how to implement the shooting method apart

from the MATLAB interpreter. Next, a large part of the computational effort is spent on

numerically integrating the rod equations. Thus the second thrust is to decrease the number

of times a rod is numerically integrated, and the third is to decrease the computational effort

of an individual rod integration.

Numerical Methods for the Shooting Problem

The high level logic of the shooting method is illustrated by Figure 2.9. Calculating the error

evaluation function E(G) requires the integration of all rods from base to tip. The Cosserat

rod equations are smooth ODEs, so it is appropriate to use a fixed-step high-order method,

specifically the standard fourth-order-accurate Runge-Kutta scheme is chosen.

There is a significant implementation decision regarding how to calculate the shooting

problem Jacobian J = ∂E/∂G. An initial implementation can rely on a näıve Jacobian

calculation via first-order finite differences, that is

Jei =
E(G+ ei∆)−E(G)

∆
+O(∆) for i = 1...36.

This approach is not optimally efficient, but it is a simple starting point. The nonlinear

optimization routine is implemented by the Trust-Region-Dogleg algorithm [71], for which

the Hessian is approximated by B = J>J .

1MATLAB currently has limited support for compiling, but is mainly interpreted.
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Figure 2.9: A shooting method is employed to solve the boundary value problem for the
inverse kinematics. For teleoperation, the desired end-effector pose changes incrementally,
so a good initial guess of the unknowns is available from the previous solution.
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Decreasing Number of Rod Integrations

Exploitation of the model structure enables a significant reduction in the number of rod

integrations required to evaluate the shooting method Jacobian. While the boundary

conditions (and thus the eventual solutions) of the individual rod models are coupled

through the static equilibrium condition in (2.11), changing a guessed variable in a rod

i will not effect the behavior of a rod j for the shooting method. Variables are defined

for the guessed proximal wrench of a rod wi := [n>i (0) m>ixy(0)]>, the geometric error

EG
i := [(Ep

i )
> (ER

i )>]>, and the equilibrium error Eeq := [(EF )> (EM)>]>. The Jacobian

has the following form:

J =



∂EG1
∂w1

0 0
∂EG1
∂L1

0 0

0
∂EG2
∂w2

0 0
∂EG2
∂L2

0

0 0
. . . 0 0 0

. . . 0

0 0
∂EG6
∂w6

0 0
∂EG6
∂L6

∂Eeq

∂w1

∂Eeq

∂w2
... ∂Eeq

∂w6

∂Eeq

∂L1

∂Eeq

∂L2
... ∂Eeq

∂L6


(2.14)

For the purposes of the objective function, a change to the guessed variables pertaining to a

rod i impact only the distal states of the rod i. Thus only five integrations of rod 1 are needed

to find columns 1-5, five integrations of rod 2 for columns 6-10, and so forth to column 30.

The partial derivatives with respect to arc length in columns 31-36 may be solved without

additional integrations by referring to the rod ODEs. For example, the partial derivative of

a position error is

∂Ep
1

∂L1

=
∂

∂L1

[pe +Rer1 − p1(L1)] = −ps,1(L1) = −R1(L1)v1(L1).

The numerically integrated values of R1(L1) and v1(L1) are calculated while evaluating

E(G) prior to the Jacobian calculation. The entire Jacobian then requires only 30 rod

integrations. This is in contrast with the näıve approach which required 218 integrations (36

evaluations of E(G) with 6 rod integrations each).
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In addition to improving the Jacobian calculation, seeding the shooting method initial

guess with a previous solution means that the first evaluation of E(G) does not require any

rod integrations. Changes in pe and Re between model solutions will lead to a change in E,

but re-integrating the rods is only necessary when G changes, assuming the distal rod states

are persistently stored. The number of rod integrations can also be reduced by improving

the solver convergence rate. This is the main motivation for using the Trust-Region-Dogleg

algorithm here, whereas the original conference paper [110] used a Levenberg-Marquardt

method. Of course multithreading the rod integrations will also improve the solution speed

by decreasing the number of rod integrations per processor core, but from a mathematical

standpoint this is rather straightforward as the integrations are embarrassingly parallel.

Improving Speed of Rod Integrations

It can be shown that the robot design results in an absence of torsion throughout each rod,

which results in mathematical simplifications to the rod ODEs. The rods are straight absent

applied loads so that v∗ = e3 and u∗ = 0. The constitutive equation is reduced to

v = K−1se n
b + e3

u = K−1bt m
b.

There is no distributed moment, l = 0, so the differential equation for moment is given by

(mb)s = −ûmb − v̂nb.

The first term is expanded by

−ûmb =


mb

2m
b
3 (GIzz − EIyy)−1

mb
1m

b
3 (EIxx −GIzz)−1

mb
1m

b
2 (EIyy − EIxx)−1

 =


−mb

2 (EIxx −GIzz)−1mb
3

mb
1 (EIxx −GIzz)−1mb

3

0


|Ixx=Iyy

.
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The third component is zero since the rods are circular with homogenous material properties.

For the second term, v is split into its components by the constitutive equation,

−v × nb = −(K−1se n
b)× nb − e3 × nb,

then expand so that

−v × nb =


nb2 (EA−GA)−1 nb3

−nb1 (EA−GA)−1 nb3

0

+


nb2

−nb1
0

 .

Thus the partial derivative of torsion is zero, and since the shaft collars do not support

torsion, there is no torsion along the whole rod, that is mb
3(s) = 0 and also u3(s) = 0 ∀s.

The reduced system without torsion is

v = K−1se n
b + e3

uxy = mb
xy/(EI)

ps = Rv

Rs =
[
−Re3u2 Re3u1 Re1u2 −Re2u1

]
(nb)s =

[
−u2nb3 u1n

b
3 u2n

b
1 − u1nb2

]>
−R>ρAg

(mb
xy)s = [1 + (EA−GA)−1nb3]

[
nb2 −nb1

]>
.

(2.15)

This statement of the ODEs requires fewer operations and less memory.

If the weight is neglected, there is actually a known analytical solution to the ODE

involving elliptic integrals [101], and this solution is significantly simpler when combined

with the assumption of negligible shear and extension strains [102, 70]. Here weight is

considered and the ODE system (2.15) is used to model the rods.
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2.2.5 Implementation of Teleoperable System

The prototype robot was successfully teleoperated as captured on video, a still shot of which

is shown in Figure 2.10. The model prediction qualitatively matches the prototype robot

shape, although we note that a more rigorous validation of model accuracy is presented later

in Section 2.2.8.

The initial shooting method implementation in MATLAB (Appendix C) typically solves

the model in about five seconds using the “ode45” and “fsolve” functions and the näıve

Jacobian computation. For teleoperation the shooting method was implemented in C++

using the Eigen matrix library [37]. A rod integration routine solves (2.15) as an initial

value problem using RK4. The Trust-Region-Dogleg routine relies heavily on Eigen for

matrix multiplications and decompositions. Although the Jacobian has many zero elements,

its dimensions are small compared to typical sparse problems, and J>J is dense, so the

matrix data structures are dense.

A MATLAB teleoperation loop calls the C++ shooting method code. This MATLAB

script also performs serial communication to command the motors, reads input from an

Xbox 360 controller, and visualizes the model solution for comparison to the actual robot.

If the joint commands are within an achievable range, MATLAB sends the commands

to an Arduino MEGA 2560 which performs low-level PI control of linear actuators using

potentiometer feedback. With this system users are able to manipulate the end effector to

a desired pose effectively.

2.2.6 Real-Time Modeling Results

In order to evaluate the run-time efficiency of the model, there were two sets of simulations

which measured the computation time required to obtain inverse kinematics solutions.

These time trials are not “hardware-in-the-loop” simulations; they are intended to assess

the shooting method’s efficiency. The design parameters of the simulated robot match the

prototype. The first simulation investigates the model’s ability to solve at real-time rates

for teleoperation, where the changes in position and orientation of the end effector will be
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Figure 2.10: A visualization of the numerical solution is shown on the left and the physical
manipulator on the right. The input device in the middle gives the user 6 DOF control of
the manipulator in real-time.

small between solutions and the previous solution can be used as the initial guess for the

unknown parameters. The second simulation set measures the time required for the model

to solve when the initial guess is far from the actual solution. This task may be necessary

for motion planning and design optimization. In both simulations, the rods were integrated

using forty steps, and the run-time for a single inverse kinematics solution was calculated as

the average time over the course of many runs.

Solution Speed for Teleoperation

In the case of teleoperation, the preceding pose of the end effector is close to the current

pose. Our simulation mimics this with a simple translation movement of the desired pose in

y and z directions. The end-effector begins at [0 0.02 0.48] m, moves to [0 0.12 0.58] m over

the course of 100 solves, and returns to [0 0.02 0.48] m in 100 solves, thus moving 1.4 mm

between solves. The cycle continues until one million solves are reached. The termination

criteria for the Trust-Region-Dogleg scheme was that the error sum of squares ‖E‖2 be less

than 1e-6. The resulting timing statistics for this simulation set are presented in Figure 2.11.
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Simulation Results with Intel Core i7-4790K CPU at 4.00GHz
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Figure 2.11: The solution speeds for the teleoperation and arbitrary-pose scenarios are
shown. Because a single model solution is a short-lived process, each boxplot data point is
the average solution frequency of 1000 solves, and each boxplot has 1000 data points, a total
of one million solves per simulation.

Solution Speed for an Arbitrary Pose

In the case of an arbitrary desired pose of the end effector, the model solved for a position and

orientation chosen randomly from a uniform distribution within the manipulator’s workspace.

The desired position was limited to a cylindrical volume around the nominal end effector

position with 20 mm radius and a height of 200 mm. For the desired orientation, ZYZ Euler

angles were sampled randomly from−10◦ to 10◦. These random numbers were obtained using

the standard C++ “rand()” function. One-thousand average timing results were measured,

each one averaged over one-thousand model solutions. Results are presented in Figure 2.11.

Discussion

The results demonstrate that the shooting method is an effective discretization strategy,

particularly when attention is paid to the implementation details. The ability to solve

the inverse kinematics BVP efficiently enables model-based control. Contrasting the

teleoperation simulation to the arbitrary-pose simulation, there is a significant difference

in the effort required to reach a solution for these different tasks, which indicates that the
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performance depends on the nearness of the initial guess to the actual solution. Although

there are immediately diminishing returns from multithreading, the benefit from adding a

thread is significant.

Continuum robot kinematics have typically been solved on desktop machines, but the

approach here is amenable to smaller form factors. The single-threaded teleoperation

simulation also solved at a rate of about 350Hz on a Raspberry Pi 3B, a credit-card sized

single-board computer with a mass of just 42 grams and cost of $30.

2.2.7 Forward Kinematics and Force Sensing Models2

The forward kinematics problem differs from the inverse kinematics because the leg lengths

Li are known and the end-effector pose variables pe and Re are unknown. The shooting

method in [13] defines a guess

G = [n>1 (0) m>1xy(0) n>2 (0) m>2xy(0) ... n>6 (0) m>6xy(0)]>,

with an error

E(G) = [(Ep
2)
> (ER

2 )> ... (Ep
6)
> (ER

6 )> (EF )> (EM)>]>,

where the subterms were defined in (2.13). The geometric constraints on the first rod are

not part of the error, but rather are embedded into the objective function by specifying the

end-effector pose, that is

pe = p1(L1)−Rer1

Re = R1(L1).

This results in a square 30x30 optimization problem. One can also include the end-effector

pose in the guess and include the first rod’s geometric constraints in the error as in [9] for a

2Caroline B. Black is lead author of related publications. The author of this dissertation was a supporting
author.
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36x36 optimization problem with a sparser Jacobian, but in either case J can be obtained

by finite differences with 30 rod integrations.

If the linear actuators are equipped with axial force sensors, it is possible to determine

unknown end-effector loads [122, 9]. The axial forces ni,z(0) are measured so that the shooting

method guess only contains transverse forces, that is

G = [n>1,xy(0) m>1,xy(0) n>2,xy(0) m>2,xy(0) ... n>6,xy(0) m>6,xy(0)]>.

The error is then

E(G) = [(Ep
2)
> (ER

2 )> ... (Ep
6)
> (ER

6 )>]>,

where the equilibrium constraintsEF andEM are no longer included because the end-effector

loads are solved by

F e =
6∑
i=1

ni(Li)

M e =
6∑
i=1

mi(Li) +Reri × ni(Li).

Such force sensing schemes have been experimentally validated for continuum robots [122].

Force sensing specifically for CSGs was considered in [9].

2.2.8 Miniature Manipulator and Accuracy Validation3

The real-time kinematics implementation facilitated teleoperation and experimental model

validation of a surgical-scale prototype robot with a grasper [78, 77]. The robot system is

shown in Figure 2.12. Rods were attached by epoxy rather than torsion shafts so that the

joints support torsion, which is trivial to account for in the shooting method by guessing

the proximal torques mi,z(0) and including the full orientation error for each rod ER
i =[

R>e Ri(Li)−ReR
>
i (Li)

]∨
. The rod material was Nitinol, a nickel-titanium alloy commonly

3Andrew Orekhov is lead author of related publications. The author of this dissertation was a supporting
author.
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Figure 2.12: A webcam feed was used during the pick-and-place task to simulate a teleoperated
training procedure.

used in medical applications due to its biocompability. The stress-strain relationship for

Nitinol is nonlinear and involves hysteresis [125], but is often approximated by a linear

elastic relation [94], which was the approach used for the model analysis here.

The accuracy validation used a “MicronTracker H3-60” stereoscopic camera system to

measure the end-effector pose. The model-predicted position was compared to the measured

position by the metric

%Error =
‖pmodel − pmeasured‖

42mm
× 100%,

where 42mm is the length of the robot in the home configuration. The average position

error was 2.83% over 37 tested poses, with a maximum error of 7.26% and a minimum

of 0.31% [77]. This indicates that the model prediction is acceptably close to the actual

robot behavior. Factors affecting the model accuracy include construction tolerances and

model approximation errors. There are two sources of approximation error from the shooting

method– the O(ds4) global error of a 4th-order Runge-Kutta routine and the error allowed

37



from the optimization routine’s cutoff tolerance. Other model approximations include the

linear-elastic constitutive equation and the one-dimensional idealization of the rods. Overall

the results are reasonable and demonstrate that Cosserat rod theory provides a fitting

description of parallel continuum robots.

2.3 Conclusions

This chapter derived the static Cosserat rod equations and extensively considered their

application to continuum Stewart-Gough robots. Although the CSG BVP is complicated, it

can be efficiently solved by the shooting method with standard desktop computing hardware.

The developed CSG model was applied to teleoperate two prototype robots and to generate

simulation results.

The teleoperated robots moved reasonably quickly without violating the assumption of

quasi-static motion. There are important scenarios where the quasi-static assumption is

invalid, for example if there were significant inertia at the CSG end-effector. In the next

chapter, the statement of Cosserat rod equations is extended to include dynamic effects.
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Chapter 3

Dynamics

The equations of motion for continuum robots are useful to simulate dynamic behavior, which

allows one to verify the suitability of quasi-static control schemes, and is a prerequisite

for dynamic control. In this chapter we review the derivation of the dynamic Cosserat

rod partial differential equations, present discretization strategies, and simulate various

continuum robots, including continuum Stewart Gough robots, tendon-driven robots, fluidic

actuators, and concentric tubes.

The developments in Sections 3.1.2 - 3.4 are based on a conference paper describing

an implicit time semi-discretization for elastic rod dynamics [112] and an accepted paper

describing continuum robot dynamics with co-author Vince Aloi [109]. The tendon-robot

boundary conditions presented in Section 3.3.2 include results from Kaitlin Oliver-Butler’s

paper describing the effect of tendon routing paths on robot tip stiffness [73], of which the

author of this dissertation was a supporting author. The model of concentric tube dynamics

in Section 3.5 is based on a submitted paper [111] in collaboration with Katy Riojas and

Bob Webster of Vanderbilt University.
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3.1 Individual Rod

3.1.1 Derivation of Dynamic Cosserat Rod Equations

Whereas variables were previously functions of arc length only, we now recognize dependence

on time. For example, the centerline is described by p(t, s) as shown in Figure 3.1. We set

out to derive the dynamic equations of motion. As in the static case, a similar derivation

can be found in Antman [2]. We define variables for the local-frame velocity and angular

velocity

q(t, s) := R>pt

ω(t, s) :=
(
R>Rt

)∨
,

Figure 3.1: The dynamic rod description includes dimensions for time and arclength so that
the centerline is a function p(t, s), as illustrated by this time-lapse photo in which removing
a tip weight results in dynamic motion.
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which is analogous to how v and u were defined as

v(t, s) := R>ps

u(t, s) :=
(
R>Rs

)∨
.

As in [97], we derive a compatibility equation for qs by taking the partial derivative

qs = R>s pt +R>pts

and obtain pts by taking the partial derivative of ps = Rv, that is

pts = Rtv +Rvt.

We substitute this expression for pts, then also substitute for pt = Rq, Rt = Rω̂, and

Rs = Rû to find

qs = R>s pt +R> (Rtv +Rvt)

= (Rû)>Rq +R> (Rω̂v +Rvt)

= −ûq + ω̂v + vt.

Solving for ωs requires a similar process where we take the partial derivative of angular

velocity. We work with the skew-symmetric representation to simplify the solution process

so that

ω̂s =
∂

∂s
R>Rt

= R>s Rt +R>Rts,

then solve the mixed partial derivative term by differentiating Rs = Rû to obtain

Rts = Rtû+Rût.
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We obtain a reduced expression for ω̂s by substituting and simplifying:

ω̂s = R>s Rt +R> (Rtû+Rût)

= (Rû)>Rω̂ +R> (Rω̂û+Rût)

= −ûω̂ + ω̂û+ ût.

It can be verified that (−ûω̂ + ω̂û)∨ = −ûω, so we finally obtain

ωs = −ûω + ut.

Now we need to revisit the equilibrium equations we derived in Section 2.1.1 to include

dynamic terms. The dynamic force balance for a slice of rod is

n(s+ δ)− n(s) +

∫ s+δ

s

f(σ)dσ =

∫ s+δ

s

ρApttdσ,

where every variable in the kernel on the right-hand side is a function of σ and dependence

on t has been omitted for clarity. We differentiate to obtain

ns = ρAptt − f .

Now consider the dynamic moment balance equation for a section of rod. The rate of change

of angular momentum is ∂
∂t

(RρJω), so that the moment balance equation is

m(s+ δ)−m(s) + p(s+ δ)× n(s+ δ)− p(s)× n(s) +

∫ s+δ

s

[l(σ) + p(σ)× f(σ)] dσ

=

∫ s+δ

s

∂

∂t
(RρJω) dσ,

once again omitting the σ argument. Differentiating and canceling terms as in Section 2.1.1

leads to an equation for ms, that is

ms =
∂

∂t
(RρJω)− p̂sn− l.
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Finally we have derived all the terms of the dynamic Cosserat rod equations. The whole

system of PDEs is

ps = Rv

Rs = Rû

ns = ρAR (ω̂q + qt)− f

ms = ρR (ω̂Jω + Jωt)− p̂sn− l

qs = vt − ûq + ω̂v

ωs = ut − ûω,

(3.1)

where we have written the acceleration ptt in terms of the local frame velocity q so that

ptt =
∂

∂t
(Rq) = Rtq +Rqt = R (ω̂q + qt)

and we have assumed that cross-sectional properties ρ and J do not vary with time so that

the rate of change of angular momentum is

∂

∂t
(RρJω) = RtρJω +RρJωt = ρR (ω̂Jω + Jωt) .

An appropriate material constitutive equation must be chosen to relate m to u and n

to v. Here we use a linear elastic relation with material damping

n = R[Kse(v − v∗) +Bsevt]

m = R[Kbt(u− u∗) +Bbtut].
(3.2)

This equation includes Kelvin-Voigt type viscous damping as described in [59]. Note that

these are differential equations, so we cannot explicitly solve for v and u prior to discretizing

time.

We may define the distributed force term f to explicitly consider terms for weight and

square law drag air resistance so that

f := −RCq � |q|+ ρAg, (3.3)
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where the Hadamard product � performs element-wise multiplication so that q � |q| =[
q21 sgn (q1) q22 sgn (q2) q23 sgn (q3)

]>
.

3.1.2 Semi-discretization in Time

For a PDE with one spatial dimension and a time dimension, an ODE can be obtained by

discretizing the time partial derivatives. Many implicit finite difference schemes fit the form

yt(ti) ≈ c0y(ti) +
∞∑
j=1

cjy(ti−j) + djyt(ti−j).

For example, backward Euler has c0 = dt−1, c1 = −dt−1, cj = 0 ∀j > 1, and dj = 0 ∀j.

We can abstract the details of the specific scheme by using a single variable to represent all

history dependent terms, that is

yt(ti) ≈ c0y(ti) +
h

y(ti). (3.4)

Thus the only term of yt(ti) corresponding to time ti is c0y(ti), and
h

y(ti) is defined as the

sum of all remaining terms which rely on the past history of y. In general we will use this

notation for the history-dependent part of a variable’s derivative approximation. Lumping

all the history-dependent terms together is useful because: 1) the separate terms for current

and previous state allow one to decouple the details of the implicit time discretization from

the ODEs, and 2) each step in an iterative solver has a new value for the current state y,

but the history term
h

y is common for all steps taken at a single t value.

To implement the method in simulation, we will use the BDF-α method [20], which is

O(δt2) accurate. This is described by

yt(ti) = c0y(ti) + c1y(ti−1) + c2y(ti−2) + d1yt(ti−1)

:= c0y(ti) +
h

y(ti)
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where

c0 = (1.5 + α)/[δt(1 + α)]

c1 = −2/δt

c2 = (0.5 + α)/[δt(1 + α)]

d1 = α/(1 + α).

The variable α is an independent parameter in the range −0.5 ≤ α ≤ 0. The trapezoidal

method is obtained for α = −0.5 and the second-order backward differentiation formula

BDF2 is obtained for α = 0. Using this approximation, the solution to the ODE in s at ti

is dependent on the solutions to previous ODEs at times ti−1 and ti−2.

With the time discretized, the strains v and u can be solved as a function of the internal

forces n and m. Recall from (3.2) that the internal force is described by

n = R [Kse(v − v∗) +Bsevt] .

We express the internal force in the local frame and apply the time discretization vt ≈ c0v+
h

v

so that

nb = Kse(v − v∗) +Bse(c0v +
h

v).

We solve for v to find

v = (Kse + c0Bse)
−1
(
nb +Ksev

∗ −Bse
h

v
)
,

and by an identical process we obtain u as

u = (Kbt + c0Bbt)
−1
(
mb +Kbtu

∗ −Bbt
h

u
)
.

Finally, combining this result with the Cosserat rod PDE (3.1), the definition of distributed

force (3.3), and the time discretization (3.4), we have arrived at an ODE system. The final
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dynamic ODE system is:

v = (Kse + c0Bse)
−1
(
R>n+Ksev

∗ −Bse
h

v
)

u = (Kbt + c0Bbt)
−1
(
R>m+Kbtu

∗ −Bbt
h

u
)

vt = c0v +
h

v

ut = c0u+
h

u

qt = c0q +
h

q

ωt = c0ω +
h

ω

f = −RCq � |q|+ ρAg

ps = Rv

Rs = Rû

ns = ρAR (ω̂q + qt)− f

ms = ρR (ω̂Jω + Jωt)− p̂sn− l

qs = vt − ûq + ω̂v

ωs = ut − ûω

(3.5)

Implicit Midpoint Time Discretization

Although the above approach is amenable to many discretizations, the implicit midpoint

method does not fit the form of (3.4). This method has the benefit that it is energy

conservative and stable, whereas the trapezoidal method borders on unstable. For a problem

with yt = g(t,y), the implicit midpoint method is given by

y(ti) ≈ y(ti−1) + δt g(
ti + ti−1

2
,
y(ti) + y(ti−1)

2
).

This is an implicit approach, but for a PDE system with ys = f(t,y,yt) and yt = g(t,y,ys)

it can be solved explicitly for ys. The PDEs may also have an explicit dependence on s, but
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it is omitted for brevity. The implicit midpoint method is

y(ti)− y(ti−1)

δt
= g(

ti + ti−1
2

,
y(ti) + y(ti−1)

2
,
ys(ti) + ys(ti−1)

2
),

which implies that the equation for f must also hold:

ys(ti) + ys(ti−1)

2
= f(

ti + ti−1
2

,
y(ti) + y(ti−1)

2
,
y(ti)− y(ti−1)

δt
).

This can be solved for

ys(ti) = −ys(ti−1) + 2f(
ti + ti−1

2
,
y(ti) + y(ti−1)

2
,
y(ti)− y(ti−1)

δt
). (3.6)

Now the PDE is semi-discretized as ys(ti) defines an ODE which depends on the solution to

an ODE at the previous time step.

This approach becomes more complicated when there are some variables having a partial

derivative in time but not in arc length, which is the case for v and u. Let there be functions

ys = f(t,y,yt, z, zt) and yt = g(t,y,ys, z, zt). Then

ys(ti) = −ys(ti−1)

+ 2f(
ti + ti−1

2
,
y(ti) + y(ti−1)

2
,
y(ti)− y(ti−1)

δt
,
z(ti) + z(ti−1)

2
,
z(ti)− z(ti−1)

δt
).

(3.7)

Once again, the discretized form of the constitutive equation with material damping (3.2)

can be solved explicitly. The discretized equation is

n̄ = R̄

[
Kse(

v(ti) + v(ti−1)

2
− v∗) +Bse

v(ti)− v(ti−1)

δt

]

where we have defined

n̄ :=
n(ti) + n(ti−1)

2
, R̄ :=

R(ti) +R(ti−1)

2
.
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This is solved as

v(ti) = (
Kse

2
+
Bse

δt
)−1
[
(−Kse

2
+
Bse

δt
)v(ti−1) + R̄

>
n̄+Ksev

∗
]
, (3.8)

and likewise

u(ti) = (
Kbt

2
+
Bbt

δt
)−1
[
(−Kbt

2
+
Bbt

δt
)u(ti−1) + R̄

>
m̄+Kbtu

∗
]
.

With these terms solved, the ODE ys may be evaluated to solve a BVP in arc length.

3.1.3 Spatial Discretization

Shooting Method

With the problem semi-discretized in time, we must now discretize the arc length dimension.

We will once again use the shooting method as one approach. Multistage ODE integrators

require some interpolation to estimate history dependent terms since they lie between the

grid points of previous ODE solutions. For example, the RK4 scheme requires a midpoint

value for
h

y(sj+0.5). We use linear interpolation.

Although arbitrarily large time steps are possible by using an asymptotically-stable finite

difference scheme, poor conditioning is encountered at small time steps. The rod state is

continuous almost everywhere in both time and space so that

lim
δt→0

y(t+ δt)− y(t) = 0.

Thus, performing the calculation y(t+δt)−y(t) at small time steps results in a “catastrophic

cancellation,” where subtracting two nearly equal numbers causes a loss of significant digits

[34]. This is an inherent property of the implicit time-discretization, and this effect seems

to be exacerbated by the numerical integration of shooting. While the breakdown of the

time-discretized scheme is inevitable with decreasing time steps, the simulations of a small

steel rod described later are able to run with a time step as small as 2-5ms using just a

simple shooting method. There are also modifications of the shooting method that can
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improve convergence, such as the modified simple shooting method [46]. Thus shooting is

often effective, and has the benefit of good computational efficiency.

Finite Difference System

To study particularly stiff dynamics such as concentric tube snapping, it may be necessary

to use a small time step beyond what is feasible with shooting. In this case we can solve the

ODE using a finite difference system.

Consider a general state variable ȳ(s) ∈ RM with an ODE ȳs = f(s, ȳ). Let the domain

be discretized into N grid points s1 through sN , and let the approximate state at these points

be denoted by yi := y(si). Using the midpoint rule one can write a finite difference equation

yi+1 − yi
si+1 − si

≈ f(
si + si+1

2
,
yi + yi+1

2
)

Let the states over the whole grid be joined in a state vector Y :=
[
y>1 y>2 ... y>N

]>
, then

a vector containing the residual errors of the differential equations may be expressed as

E(Y ) =



y2−y1
s2−s1 − f( s1+s2

2
, y1+y2

2
)

y3−y2
s3−s2 − f( s2+s3

2
, y2+y3

2
)

...

yN−yN−1

sN−sN−1
− f( sN−1+sN

2
,
yN−1+yN

2
)

 . (3.9)

The boundary conditions are strongly satisfied so that some elements of y are specified. The

unknown elements are constructed from a guess vector G so that Y = Y (G). For a square

system E and G both have (N − 1) ×M elements where M is the number of elements in

the state vector ȳ(s), and G may be solved so that E = 0 by iterative methods.

This approach discretizes one system of ODEs. Several problems we will consider have

coupled PDE systems, such as a rod with a discontinuous internal force due to an applied

impulse, or a concentric tube robot. Extending the above approach to account for coupled

systems is tedious, but relatively straightforward.
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3.1.4 Examples

A cantilevered steel rod has length L = 0.4m, radius r = 1.2mm, and negligible damping

coefficients. The world frame is arbitrarily assigned so that p(t, 0) = 0 and R(t, 0) = I. The

nature of the cantilever attachment requires q(t, 0) = ω(t, 0) = 0. The scenario starts at

static equilibrium with a 0.2kg mass tied to the tip so that the distal boundary conditions

are

n(0, L) = 0.2kg ∗ g, m(0, L) = 0,

where gravity acts in the negative x-direction so that g = −9.81e1m/s2. The string holding

the mass is suddenly cut so that there are no forces at the free end, that is

n(t, L) = m(t, L) = 0

for all t > 0.

This could be treated as a planar problem, but we are developing a method for the general

spatial case, so we will guess the entire proximal wrench and have an error for the entire

distal wrench. Thus the shooting method is defined by

G =
[
n>(0) m>(0)

]>
, E(G) =

[
n>(L) m>(L)

]>
.

A MATLAB code implementing this solution with the BDF-α time discretization and

shooting arc length discretization is included in Appendix D. The first few frames of the

simulation are shown in Figure 3.2.

This problem is also solved by discretizing time with the implicit midpoint method and

shooting in space in Appendix E, and by using the BDF-α method in time with a finite

difference system in space in Appendix F. The MATLAB example of the finite difference

system is overly slow since it builds a dense Jacobian for a sparse problem, but it nonetheless

illustrates the nature of the objective function. A separate MATLAB example of rod

dynamics with orientation represented as a quaternion is shown in [109].
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Figure 3.2: In an example problem, a cantilever rod with an applied tip force is released to
spring upward. The different lines correspond to timesteps of the simulation. The simulation
is implemented in MATLAB as shown in Appendix D using the BDF-α method for the time
semi-discretization, and a shooting method to solve the spatial BVP.
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3.1.5 Experimental Validation of a Cantilevered Case

The rod model was experimentally validated by comparing simulation results to high-speed

footage of a cantilevered rod clamped to a table as described in [112, 109]. The simulations

implement a full 3-dimensional model, but the experimental data was taken from planar cases

to simplify the process of reconstructing the scene and evaluating the results. The model is

validated using both the Cosserat equations and Kirchhoff equations (see Chapter 2.1.5 for

a description). The rod was spring steel with a 1.42mm diameter. There were two scenarios.

First, a 20g weight was hung by a string at the tip of a rod with a cantilevered length of

0.408m, and after equilibrium was reached, the string was cut. Second, the cantilevered

length was increased to 0.517m to obtain larger vibrations, and the rod was hit with a rigid

object near its base to excite high-frequency vibration modes. The BDF-α coefficient was

α = −0.4 for all simulations, which is close to the trapezoidal method and thus exhibits very

little numerical damping.

The camera was placed about three meters from the rod with the viewing plane parallel

to the rod’s plane of motion. The camera recorded a frame every millisecond. The rod was

darker than the background so that the experimental rod position could be easily extracted

by comparing pixel brightness values, as shown in Figure 3.3.

Figure 3.3: The experimental rod shape was quantified by obtaining binary data based on
the aggregate brightness value for a 3x3 neighborhood around a pixel. The rightmost pixel
is taken as the tip, specifically the top rightmost pixel when multiple rightmost pixels exist.
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Weight Release

The weight release trial was used to calibrate the rod parameters EI, ρ, and C.

This calibration is implemented in MATLAB using “fsolve” to minimize error between

experimental data and model prediction. The weight release response is very nearly a

decaying sine wave, as shown in Figure 3.4. The calibration objective function was evaluated

by running the simulation for a set of parameters and evaluating the characteristics of the

simulated response versus the experimental data. The magnitude of the first peak, magnitude

of the first valley, magnitude of the final peak, and frequency are compared and combined

to form the objective function residual. MATLAB’s “findpeaks” command can easily detect

peaks in the smooth simulation data. The experimental data has some noise, but since

the experimental response only needs to be analyzed once, this was done manually. The

calibrated values are shown in Table 3.1. For steel, ρ is typically around 7800 kg/m3. With

an assumed Young’s modulus of 200GPa, the 1.42mm diameter rod would have a bending

stiffness EI of 0.03992 Nm2. Thus, the calibrated values are within reason.

Impulse Near Base

After calibration of the model parameters using the weight release dataset, we evaluated

the model prediction versus data taken from the impulse response experiment. The impulse

Table 3.1: Calibrated Parameters

Cosserat Kirchhoff
Parameter Euler, N=400 RK4, N=100 Euler, N=400 RK4, N=100
EI (Nm2) 0.0380 0.0380 0.0380 0.0380
ρ (kg/m3) 7602 7602 7602 7603
C (g/m2) 2.09 2.12 2.08 2.12
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Figure 3.4: A weight was attached to the free end of a cantilevered rod by a string. After
the weighted rod reached equilibrium, the string was cut. This scenario was simulated, and
the simulation parameters were calibrated so that the simulation response visibly matches
the experimental response. These calibrated values were used while validating the other
impulse experiment.
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point force was modeled as a hat function in time with

F (t) =


M t

0.5d
, t < 0.5d

M(2− t
0.5d

), 0.5d ≤ t ≤ d

0, t > d.

Appropriate values for the impulse’s peak magnitude and duration were found: M = 5N and

d = 0.016s. The impulse point force is included in the simulation by performing piecewise

integration of the ODEs in space and applying the point force at the transition. A still

frame of the experimental footage is shown in Figure 3.5. The impulse response is shown in

Figure 3.6. The simulation responses are similar for the Cosserat and Kirchhoff models, so

we conclude that the shear and extension strains are indeed negligible for the experimental

rod.

Real-Time Performance

To evaluate computational speed, we ran many simulations of both the weight release and

impulse response scenarios using increasing values of δt (logarithmically spaced). Results are

shown in the log-log plots of Figure 3.7. The real-time performance ratio is the amount of

Figure 3.5: An impulse point force is applied near the base of a cantilevered rod, resulting
in a variety of vibration modes. The model simulation is visualized with Blender.

55



0.1 0.2 0.3 0.4 0.5 0.6

0

0.01

0.02

0.03

0.04

x 
(m

)

Closeup - First Two Cycles

3.3 3.4 3.5 3.6 3.7 3.8

0.005

0.01

0.015

0.02

0.025

0.03

0.035

x 
(m

)

Closeup - Last Two Cycles

0 0.5 1 1.5 2 2.5 3 3.5

t (s)

-0.01

0

0.01

0.02

0.03

0.04

0.05

x 
(m

)

Impulse Tip Response

Experiment

Cosserat,  Euler w/ N=400

Cosserat,   RK4 w/ N=200

Kirchhoff,  Euler w/ N=400

Kirchhoff,   RK4 w/ N=200

Figure 3.6: An impulse was applied near the base of a cantilevered rod. The experimental
impulse response is compared to model predictions with both Cosserat and Kirchhoff rod
theories. The simulated behavior matches experimental behavior closely.
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Figure 3.7: This plot shows the real-time performance ratio versus the time step on a log-
log scale for various simulation datasets. The real-time performance ratio is the amount of
time simulated divided by the wall-clock time spent running the simulation. A ratio greater
than or equal to one indicates soft real-time performance, as shown by the green regions. The
weight release scenario requires significantly less effort to solve than the impulse scenario.
For the difficult impulse scenario, the simulation can run in soft real-time with δt = 4ms.
The smallest time step for the impulse simulations is 2ms because of convergence issues with
small time steps.
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time simulated divided by the wall-clock time spent running the simulation, and the green

regions indicate real-time performance. The plot confirms that most of the simulations ran

in real-time. At higher time steps, the dependence of the run time on the time step is nearly

linear. The run time also appears linear in the number of spatial steps, again confirming

O(N) computation time as we showed in the previous section.

Not surprisingly, the impulse response case requires higher computational times due to

the increased presence of faster dynamic modes that require more solver iterations per time

step. A time step of 2 milliseconds captured the high-frequency dynamics very accurately,

but this simulation required more computation time than it simulated, and the speed is

further reduced when the solver begins to encounter numerical ill-conditioning at smaller

time steps.

3.2 Continuum Stewart-Gough Robot

Parallel continuum robot dynamics can be significant, especially for larger scale applications

with potential human interaction. A particular feature that we would like our model to

capture is the dynamic transition from one stable static state to another when the robot

configuration becomes unstable due to actuation or external loading. In this section, we

outline the equations necessary to solve this problem and demonstrate real-time simulation

of a six-DOF parallel Stewart-Gough platform undergoing a dynamic stability transition.

The geometric constraints on the CSG are the same as those given in (2.9) and (2.10),

except the states are now parameterized by time so that

pe(t) +Re(t)ri = pi(t, Li) for i = 1...6, (3.10)

and instead of shaft collars connecting the rods to the end effector, we consider a fully rigid

connection so that orientation is constrained by

Re(t) = Ri(t, Li) for i = 1...6. (3.11)
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The rigid body equilibrium constraints originally given by (2.11) are updated to include

inertial terms. The sum of forces has contributions from the rod attachments, gravity, and

external loads as described by

F e(t) +meg −
6∑
i=1

ni(t, Li) = meae(t), (3.12)

where me is the end-effector mass, ae is the end-effector acceleration in the global frame,

and F e is an external force acting on the end-effector center of mass. The moment balance

equation, with end-effector angular velocity ωe defined in the global frame, is

M e(t)−
6∑
i=1

mi(t, Li) + [Re(t)ri]× ni(t, Li) =

Re(t)J eR
>
e (t)ωte(t) + ω̂e(t)Re(t)J eR

>
e (t)ωe(t).

(3.13)

The constraint equations (3.10), (3.11), (3.12), and (3.13) define a boundary value problem

subject to the integrated rod distal conditions.

Formulating a scheme to solve the forward dynamics BVP is an interesting subproblem,

but in this case we arbitrarily rely on the shooting method with a guess

G = [n>1 (t, 0) m>1 (t, 0) n>2 (t, 0) m>2 (t, 0) ... n>6 (t, 0) m>6 (t, 0) p>e k>]>,

where k is a 3x1 vector used to generate the end-effector rotation by

Re(k) =

 I + sin ‖k‖ k̂
‖k‖ + (1− cos ‖k‖) k̂

2

‖k‖2 , ‖k‖ > 0

I, ‖k‖ = 0
.
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The dynamic terms for the end effector are found by

ve = c0pe +
h

pe

ae = c0ve +
h

ve

Re,t = c0Re +
h

Re

ωe =
(
R>e Re,t

)∨
ωe,t = c0ωe +

h

ωe,

then errors may be defined by

EF = F e +me(g − ae)−
6∑
i=1

ni

EM = M e −Re (Jωe,t + ω̂eJωe)−
6∑
i=1

(mi +Reri × ni)

Ep
i = pe +Reri − pi

ER
i =

(
R>e Ri −ReR

>
i

)∨
so that the total error is

E(G) = [(Ep
1)
> (ER

1 )> (Ep
2)
> (ER

2 )> ... (Ep
6)
> (ER

6 )> (EF )> (EM)>]>.

The guessed set G and residual E(G) form a square 42x42 system of nonlinear equations.

There is some interesting flexibility in forming the sets G and E, but we have found this

particular choice to be concise and simple to understand.

There is a potential for instability of parallel continuum robots that we have observed

experimentally, and we have established a method based on optimal control theory to assess

the stability of any solution to the static model equations as described in Chapter 4. However,

this method does not provide information about how the robot dynamically transitions to

a new stable equilibrium elsewhere in the workspace. We demonstrate the ability of our

dynamic modeling framework to capture this behavior by simulating the forward dynamics

of a robot which is actuated to a statically unstable configuration. The robot is shown in
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Figure 3.8 and the dynamic trajectory of the end effector is plotted in Figure 3.9. In this

scenario, slow changes in the actuator positions translate the end effector in a straight line,

until eventually there is a bifurcation leading to dynamic end-effector behavior.

This simulation had a real-time ratio of about 7-8 using three threads working in parallel

for the integration of (3.5). The rods had identical parameters of E = 207GPa, r = 1mm,

and ρ = 8000kg/m3. The Stewart-Gough leg-spacing pattern used a major angle of 100◦

and a radius of 87mm. The end effector was modeled as a short acrylic (ρ = 1180kg/m3)

cylinder with 3mm depth and radius of 91mm, which results in a mass of 92.1g and a mass

moment of inertia J = diag(1.91, 1.91, 3.81) × 10−4 kg-m2. The damping parameters were

all zero. The discretization parameters were δt = 1/120s, α = −0.2, and 200 points per rod

with Euler’s method. The shooting method solver was the Trust-Region-Dogleg scheme. We

handle the insertion of rods through the baseplate by discretizing the portion of a rod above

the baseplate into a constant number of points. We assume quasi-static insertion speed, that

is ∂ds/∂t ≈ 0, and the initial velocity qi,z(t, 0) is the same as the actuator velocity (which

assumes negligible extension below the base).

Figure 3.8: As the continuum Stewart-Gough robot is translated along a path which
satisfies the equilibrium equations, the robot encounters a bifurcation. A moment prior to
instability is shown on the left. On the right, the end-effector bends to an angle and begins
to sway dynamically.
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Figure 3.9: As the CSG is actuated past a bifurfaction, the end-effector sways back and
forth dynamically as illustrated by the trajectory plot.

3.3 Tendon-driven Robot

A tendon-driven robot is shown in Figure 3.10. The statics and dynamics of these robots and

steerable catheters were derived from the Cosserat rod framework in [97]. This prior work

simulated the robot dynamics with an explicit Lax-Wendroff finite-difference scheme which

was severely limited by the Courant-Friedrichs-Lewy numerical stability condition, even for

a model with less than ten spatial segments. In this section, we review and extend the model

of [97], adding internal damping and drag terms and demonstrating how to use our implicit

approach to achieve efficient real-time simulation of the dynamics.

3.3.1 Differential Equations

We assume the robot consists of an elastic backbone member modeled as a Cosserat rod with

continuous channels for actuation cables which apply shape-dependent forces and moments

to the backbone when tensioned. This basic design describes many tools and is a reasonable

continuous approximation in cases with discrete routing holes created by spacer disks. There

are n cables, and each cable experiences a tension τi and is offset from the cross-section center

of mass by a vector ri(s) in the local cross-sectional plane, such that each tendon’s position
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Figure 3.10: A tendon-driven continuum robot with a helical tendon is actuated to a
variable-curvature shape with significant inertial dynamics.

in the global frame is

pi = p+Rri

The cables cause distributed forces and moments on the rod which are derived under the

assumption of negligible tendon friction and inertia as

f c = −
n∑
i=1

τi
p̂2si
‖psi‖

pssi

lc = −
n∑
i=1

(p̂i − p̂) τi
p̂2si
‖psi‖

pssi

These can be rewritten in terms of the backbone’s kinematic variables as

f c = R (a+Avs +Gus)

lc = R
(
b+G>vs +Hus

)
.
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where expressions needed to calculate a, b, A, G, and H are defined below:

(psi)
b = ûri + rsi + v

Ai = −τi
(
((psi)

b)∧
)2

‖(psi)b‖
3

Gi = −Air̂i

ai = Ai

[
û
(
(psi)

b + rsi
)

+ rssi
]

bi = r̂iai

a =
n∑
i=1

ai, b =
n∑
i=1

bi, A =
n∑
i=1

Ai,

G =
n∑
i=1

Gi, H =
n∑
i=1

r̂iGi.

The differential equations for internal loading are then

ns = −R (a+Avs +Gus)− f̄

ms = −R
(
b+G>vs +Hus

)
+ ∂t(RρJω)− p̂sn− l̄,

where f̄ and l̄ represent any distributed loading components not caused by the tendons.

These equations are implicit, that is vs = vs(ns) and us = us(ms) because differentiating

the constitutive equation (3.2) leads to

ns = Rs[Kse(v − v∗) +Bsevt] +R[Ksse(v − v∗) +Kse(vs − v∗s) +Bssevt +Bsevst]

ms = Rs[Kbt(u− u∗) +Bbtut] +R[Ksbt(u− u∗) +Kbt(us − u∗s) +Bsbtut +Bbtust].

We face a choice to solve for the strain equations vs and us or the force equations ns and

ms. Convenience motivates us to choose v and u as state variables because the resulting

equations are simpler than those for m and n. We apply the time discretization, rotate

the equations, and introduce intermediate variables so that the internal loading differential
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equations are described by

R>ns = −Avs −Gus + Λn

R>ms = −G>vs −Hus + Λm,

and the constitutive equation by

R>ns = (Kse + c0Bse)vs + Γv

R>ms = (Kbt + c0Bbt)us + Γu,

where

Λn = −a+ ρA(ω̂q + qt) +Cq � |q| −R>(ρAg + f̄)

Λm = −b+ ρ (ω̂Jω + Jωt)− v̂nb −R>l̄

Γv = ûnb +Ksse(v − v∗)−Ksev
∗
s +Bssevt +Bse

h

vs

Γu = ûmb +Ksbt(u− u∗)−Kbtu
∗
s +Bsbtut +Bbt

h

us.

Note that the internal loads are calculated by

nb = Kse(v − v∗) +Bsevt

mb = Kbt(u− u∗) +Bbtut.
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With the four coupled equations above, we may solve a linear system for vs and us. The

resulting set of ODEs for the tendon robot is

ps = Rv

Rs = Rûvs
us

 = Φ−1

−Γv + Λn

−Γu + Λm


qs = vt − ûq + ω̂v

ωs = ut − ûω,

(3.14)

where

Φ =

(Kse + c0Bse +A) G

G> (Kbt + c0Bbt +H)

 .
Obtaining the steady-state ODE is straightforward. Regarding the practical implementation

of this system, a matrix decomposition may take advantage of the symmetry of the 6x6

inverted matrix.

We note that depending on the scenario and the value of Bse, stiff shear and extension

dynamics can cause convergence issues for the tendon system. In many situations it is

appropriate to neglect the shear and extension strains. If shear and extension are neglected,

only us is directly dependent on solving a linear system so that

us = (Kbt + c0Bbt +H)−1
[
−Γu − b+ ρ (ω̂Jω + Jωt)− ê3nb −R>l̄

]
ns = R [−Gus − a+ ρA (ω̂q + qt) +Cq � |q| ]− ρAg − f̄ .

The state equation for vs is replaced by ns. The other equations are unaffected, except

of course that v = e3 and vt = 0. Shear and extension are included in the model

implementations here for the sake of generality.
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3.3.2 Boundary Conditions

Aside from the ODE describing the continuous behavior of the backbone and tendons, the

boundary conditions must account for the final rigid attachment of a tendon to the backbone

which causes step changes in the backbone internal loading as described in [97]. The point

loads are

F b
i = −τi

pbsi(s
−)∥∥pbsi(s−)
∥∥ and Lbi = r̂iF

b
i

which causes a step change in the internal loading by

nb(s+) = nb(s−)− F b
i and mb(s+) = mb(s−)−Lbi .

Any rigid-body dynamics of the end effector are coupled to the robot system through the

distal boundary conditions by

F e(t) +meg − n(t, L+) = meae(t)

M e(t)−m(t, L+) = Re(t)J eR
>
e (t)ωte(t) + ω̂e(t)Re(t)J eR

>
e (t)ωe(t).

The control input varies depending on whether one has control of the tendon tensions τi

or the tendon displacements. If the tensions are controlled, then the shooting problem is the

same as the cantilever rod, that is

G =
[
n(t, 0)> m(t, 0)>

]>
E(G) =

[
(EF )> (EM)>

]>
.

The case of tendon displacement control is more complicated and is described in [73]. The

tendon has an unstretched length l∗i and compliance ci so that the stretched length is

li = (1 + ciτi)l
∗
i .
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Let the displacement input lqi be the distance from the base plate to the actuator where the

tendon is attached, and lBi be the length of tendon found by integrating the backbone. Then

the total length is the sum of tendon segments along the backbone and behind the baseplate,

li = lqi + lBi .

Assuming the tendons do not become slack, we may guess τi so that

G =
[
n(t, 0)> m(t, 0)> τ1(t) ... τn(t)

]>
and calculate a residual

E(G) =
[
(EF )> (EM)> El

1 ... El
n

]>
,

where

El
i = (1 + ciτi)l

∗
i − l

q
i − lBi .

However, when implementing displacement-controlled actuation, development of slack in one

or more tendons is possible, and when a tendon goes slack the integrated path arc length

lqi + lBi will be less than the actual tendon length l∗i . We can account for this by introducing

an unknown variable βi for the amount of slack. The length constraint is then

(1 + ciτi)l
∗
i = lqi + lBi + βi. (3.15)

This introduces n additional unknown variables, but we can reduce the number of unknowns

back to again have a square system by recognizing that tendon tension and slack are mutually

exclusive and restricted to be positive semidefinite; that is, βi > 0 =⇒ τi = 0 and
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τi > 0 =⇒ βi = 0. Thus, we can represent both effects with a single unknown variable γi:

τi =

γ
2
i , γi ≥ 0

0, γi < 0

, and βi =

0, γi ≥ 0

γ2i , γi < 0

. (3.16)

Parameterizing tension and slack with a single, continuous variable eliminates the need to

explicitly identify the changing slack state and the appropriate constraints during model

solves. The squaring of γi is a choice made so that τi and βi have continuous first derivatives

with respect to γi. We want to model the slack constraint, but implementing the slack error

in an optimization routine as

El
i = (1 + ciτi)l

∗
i − l

q
i − lBi − βi

is ineffective because the shooting method Jacobian will include a partial derivative

∂El
i

∂τi
= cil

∗
i − ∂lBi /∂τi,

which is nearly zero for the common case of negligible tendon compliance. The lack of a

slope leads optimization routines to stall. Instead, one can implement an error

El′

i = (1 + τi)E
l
i.

This seems to result in an acceptable gradient, and we note that the (1 + τi) term will not

nullify El
i because τi is positive semi-definite.

3.3.3 Simulation

We applied this dynamic tendon robot model to simulate a tendon robot performing an

object transfer task as shown in Figure 3.11. Depending on the design and scale of a tendon

robot, the inertial dynamics can give rise to significant vibrations even with slow actuator

movements. After the simulated tendon robot picks up the object, its movement is highly

influenced by the inertial dynamics from the added tip mass. In this simulation, the actuation
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Figure 3.11: To demonstrate dynamic tendon-robot motion, a robot with four tendons and
a “vacuum gripper” removes a weighted object from a table and drops it into a bin. On the
left, the robot moves the object towards the bin, and on the right the arm swings upward
after releasing the object. This scenario is shown in a video attachment.

to reach the object as well as the loading and unloading associated with picking it up and

dropping it all involve underactuated robot dynamics captured by our model in real time.

The simulated robot contains four tendons offset from the backbone by 9.5mm with

an angular separation of 90◦ about the backbone. The backbone length was 0.24m. The

backbone had Young’s modulus E = 207GPa, r = 0.4mm, and ρ = 1.6×104 kg/m3, which is

about twice as heavy as steel to account for both the backbone and the support disks. There

is some damping with C = I ∗ 0.03 kg/m2 and Bbt = I × 10−6 Nm2s. The object had a

mass of 1g. The ODE integration was performed with Euler’s method using 200 points. The

time discretization used the BDF-α method with δt = 1/60s and α = −0.03. The simulation

achieved a real-time speed ratio greater than 3.5.

3.3.4 Experimental Comparison

To evaluate the tendon robot model, a robot was constructed from a spring steel backbone

with acrylic spacer disks and a single Kevlar tendon. The tendon displacement is controlled

by a geared servo motor (Dynamixel MX-28-AT), which is a prescribed-displacement input

as studied in [73]. A step input is applied to pull the robot upward, then after steady state

is reached, another step input returns to the original displacement as shown in Figure 3.12.
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Friction between the robot and the tendons is more significant in bent configurations due

to higher normal forces on the tendons. To approximate the effect of tendon friction, we

define a simple distributed damping force and moment applied to the backbone. If the tendon

is routed in a straight path parallel to the backbone, the damping force is approximately

proportional to the tension τ (still assumed constant), magnitude of the backbone curvature

||u||, and relative tangential velocity νi between the tendon and its channel as follows:

f f,i = −βτ ‖u‖ νiRe3 and lf,i = ri × f f,i,

where β is a damping coefficient and νi is computed from past time steps.

The backbone has a length of 0.7144m and diameter of 0.00135m. The tendon is at a

constant offset of 0.0151m from the backbone and there is a distance of 0.0518m from the

baseplate to the motor. The frame convention defines r = 0.0151e1m and g = −9.81e1 m/s2.

The whole arm was weighed to be 0.034kg. The initial displacement holds the tip tangent

to the z-axis. The tip position and motor response were measured by a stereoscopic camera

system (MicronTracker H3-60, Claron Technology Inc.). The tendon is retracted 0.01619m,

and the motor response to the commanded step was nearly a linear ramp occurring over 0.31s

for both upward and downward motions. The tendon compliance was calibrated to a value

of 1.6× 10−3 m/m. The simulation used BDF2 implicit time discretization with δt = 0.05s

and Euler’s method spatial integration with N = 200 points. The friction coefficients are

C = I × 10−4 kg/m2, Bbt = I × 5× 10−4 Nm2s, and β = 5 s/m.

The model response roughly lines up with observed behavior. The friction model is

simplified since it does not include static friction effects, but does result in greater damping

for the retracted motor input. The magnitudes and steady state behavior are reasonable.
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Figure 3.12: The dynamic model is validated against this tendon robot. The attached
markers allow the tip position to be measured by a stereoscopic camera system. The
composite image shows the steady state configurations before and after the step input. A
pair of step inputs is applied to the tendon displacement, resulting in dynamic tip motion.
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3.4 Fluidic Soft Robot

3.4.1 Differential Equations

We consider a soft robot with one or more hollow actuation chambers offset from the neutral

axis. There is a vector ri from the cross-section center of mass to the center of the ith

chamber, which is similar to the tendon robot variable ri. We restrict our attention to cases

with rsi = 0 so that the channel has a constant offset from the cross-section centroid. Fluid

pressure is applied in the chamber, which results in a bending motion of the robot. We

assume quasi-static fluid dynamics in the chamber so that there is a single uniform pressure

Pi(t). The situation is illustrated in Figure 3.13.

r

P

f(s), l(s)

n(L)

m(L)

Figure 3.13: A soft elastic rod has a hollow chamber offset from the central axis which
is subject to some quasi-static and uniform pressure P (t). The chamber is offset from the
central axis by a vector r(s) in the local frame. The pressure results in a force at the cap
of the chamber, which also generates a moment due to the offset. The outer curve of the
chamber has more surface area than the inner curve, resulting in a net distributed force and
moment.
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The distributed loading and point wrenches caused by pressurizing the chamber are

similar to the effects of a tendon robot, but the two are not quite equivalent because tendon

forces are transmitted along the tendon tangent line, while pressure forces act normal to a

cross-sectional plane. We assume all chambers extend to the distal end of the robot, with

flat chamber caps of area Ai so that the magnitude of the force on the cap is PiAi. The force

and moment vectors applied to the end of the elastic member are then

F b
i = PiAie3

Lbi = r̂iF
b
i .

The wrenches at the chamber ends cause a point change in the internal loading by

nb(L) = nb(L−)−
n∑
i=1

F b
i

mb(L) = mb(L−)−
n∑
i=1

Lbi .

To obtain an expression for the distributed loading, we will consider the force and moment

balance for a cut section of the soft robot as shown in Figure 3.14.

PA *R(s)e3c f (σ), l (σ)e e

n(s) m(s)

PA *-R(c)e3c

-n(c)

-m(c)

p(σ) + R(σ)r(σ)

p(σ)

Figure 3.14: The forces and moments acting on a segment of the robot are shown for
cuts at s and c with s > c. The segment is subject to internal forces and moments at the
centerline of the cuts, forces maintaining the pressure where the chamber is cut, and external
distributed loading.
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We write the acceleration ptt in terms of the local frame velocity q so that

ptt ≡ R (ω̂q + qt) .

The dynamic force balance on the section is given by

∫ s

c

f e(σ)dσ + n(s)− n(c)−
n∑
i=1

PiAi [R(s)−R(c)] e3 =

∫ s

c

ρAR (ω̂q + qt) dσ,

This can be differentiated and simplified to obtain

ns = −f e + ρAR (ω̂q + qt) +
n∑
i=1

PiAiRse3.

Similarly, we consider the moment balance

m(s)−m(c) + p(s)× n(s)− p(c)× n(c) +

∫ s

c

[le(σ) + p(σ)× f e(σ)] dσ

−
n∑
i=1

[p(s) +R(s)ri]× PiAiR(s)e3 − [p(c) +R(c)ri]× PiAiR(c)e3

=

∫ s

c

∂t (RρJω) dσ,

which is differentiated to find

ms = −le − (p× n)s − p× f e + ∂t (RρJω) +
n∑
i=1

PiAi
∂

∂s
[(p+Rri)×Re3] .

We note that additional terms are present if Ai varies as a function of arc length. Expanding

and canceling terms leads to

ms = −le − ps × n+ ∂t (RρJω) +
n∑
i=1

PiAiR [(v + ûri)× e3 + ri × ûe3] .
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To more clearly indicate the distributed loads caused by the pressure, we define intermediate

variables

fP := −
n∑
i=1

PiAiRse3

lP := −
n∑
i=1

PiAiR [(v + ûri)× e3 + ri × ûe3]
(3.17)

so that the differential equations are

ns = ρAR (ω̂q + qt)− f e − fP

ms = ∂t (RρJω)− ps × n− le − lP .

With the differential equations formulated, we may consider how the fluid properties

influence the boundary conditions. The robot configuration defines the fluid chamber volume

by integrating

V I
i =

∫ L

0

Ai

∥∥∥∥ ∂∂s (p+ ri)

∥∥∥∥ ds,
where ∥∥∥∥ ∂∂s (p+ ri)

∥∥∥∥ = ‖ûri + v‖ .

Note in this preliminary derivation we consider the cross-sectional geometry constant in time,

but future work could consider the dependence of Ai on robot shape and chamber pressure.

The fluid volume is coupled to pressure, temperature, and molar quantity. Modeling

approaches vary; it can be adequate to assume direct input control of fluid pressure, but

in some cases the fluid response is sufficiently slow that it is more appropriate to use

sophisticated fluid dynamics models [79]. We assume uniform fluid pressure subject to

the ideal gas law, which has precedent [48, 74]. Although pump dynamics are potentially

significant [51], actuation problems are often idealized as independent from the robot system,

and we neglect pump dynamics here so that the system input is the mass of fluid in the

chamber. We consider two cases: 1) incompressible fluid as in a hydraulic robot, so that
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fluid volume is effectively controlled, and 2) compressible fluid as in a pneumatic robot, so

that molar quantity of fluid is the input to the system.

3.4.2 Incompressible Working Fluid

In the case of an incompressible working fluid, the volume of fluid inside a chamber could be

directly controlled by a positive-displacement pump. We denote the controlled volume by

V C
i . For the shooting problem, we may guess the chamber pressures Pi and obtain a residual

comparing the controlled volume to the integrated chamber volume V I
i . The error in volume

may be poorly scaled since it has units of distance cubed. Our simulation code addresses

this by normalizing the error by the volume in the straight configuration so that the error is

EV
i = (V I

i − V C
i )/(AiL). The full shooting method residual function has guessed values

G =
{
n(t, 0) m(t, 0) P1(t) ... Pn(t)

}
,

and the residual terms include the force and moment balance at the tip

E(G) =
{
EF EM EV

1 ... EV
n

}
.

3.4.3 Compressible Working Fluid

For compressible working fluids, the boundary conditions must account for a gas law relating

the mass of fluid to the pressure. We consider the ideal gas law

(Pi + Patm)V G
i = niRiTi,

where ni is the moles of gas in the chamber, Ri is the gas constant, and Ti the temperature

of the fluid. One may form a shooting method by guessing the pressures Pi and comparing

the resulting gas law volume V G
i = niRiTi/(Pi + Patm) to the integrated volume V I

i . The

compressible and incompressible working fluid models differ in that the compressible model

compares V I
i to the volume according to the gas law V G

i (ni) involving the controlled mass of

fluid, whereas the incompressible model simply compares V I
i to the controlled volume V C

i .
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3.4.4 Simulated Comparison

We simulate the change in natural frequency associated with compressibility of the working

fluid. We compare two sets of fluid parameters, the first has a controlled amount of air

governed by the ideal gas law, and the second has an incompressible fluid of controlled

volume. The air has R = 8.314 J/(mol K), Patm = 101325Pa, and T = 20◦C = 293.15K.

There are no parameters for the incompressible fluid. Besides the fluids, the robots have

identical parameters L = 0.1m, E = 20MPa, radius = 0.015m, and ρ = 300kg/m3. There

is a single fluid chamber with a radius of 2.5mm and a constant offset from the center of

0.01m in the −x direction, which leads to an offset r1 ≈ −0.0103e1m from the neutral axis.

Numerical parameters were δt = 0.01s, α = −0.3, and N = 50 for the spatial resolution.

The robots began in the straight configuration. The first simulation linearly increases

n to 2 × 10−4mol, and the second simulation increases the volume of the chamber linearly

to 2.65 × 10−6m3. These two final configurations are equivalent at steady state. For both

simulations the changes occur over a period of two seconds, and the dynamic response without

any additional actuation is simulated for another two and half seconds. Simulation renders

are shown in Figure 3.15. The real-time ratio was in the range of 26-32 for the incompressible

fluid and about 28 with air as the fluid. The transverse tip response is shown in Figure 3.16.

The limit cycle amplitude is roughly twice as large for the compressible air compared to an

incompressible fluid. This indicates that choosing a fluid with greater compressibility results

in larger vibrations. The shear and extension strains are significant for this robot; at the

final steady-state solution the elongation strain average over arclength is 0.12.

Figure 3.15: Still frames convey the simulated soft robot motion. Starting from zero gauge
pressure, additional fluid is added to the chamber, resulting in a bending motion.

78



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t (s)

0

0.05

0.1

p
x
 (

m
)

Soft Robot Transverse Displacement

Quasi-static

Air

Incompressible

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t (s)

0.08

0.085

p
x
 (

m
)

Closeup of Limit Cycle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t (s)

0

5

10

P
 (

N
/m

2
)

*104 Pressure vs. Time

Figure 3.16: The dynamic responses for soft robots with compressible and incompressible
fluids are compared. The robot with incompressible fluid experiences less vibration when
the fluid quantity is held constant at t = 2s. The two fluids have similar fluctuations in
pressure.
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3.5 Concentric Tube Robot

This section paraphrases the dynamic concentric tube robot model of [111] and offers some

additional details. The model is capable of resolving the high-frequency torsional dynamics

that occur during unstable “snapping” motions [87] and provides a simulation tool that can

track the true robot configuration through such transitions. Experimental verification of the

model shows that the torsional oscillations during snapping are captured accurately.

3.5.1 Derivation of Concentric Tube PDEs

We set about to derive the dynamic equations of motion for concentric tubes by starting

from the dynamics of a single rod (3.1) with the Kirchhoff inextensibility constraint that

v = e3 and applying the kinematic constraints that enforce multiple tubes to be concentric.

Arc-Length Kinematics

Let there be N inextensible tubes. As shown in Figure 3.17, the arc length parameter s is

defined so that pi(t, 0) = 0 is the fixed location of a constraining baseplate hole through

which all tubes pass. An actuator translation βi is defined so that the global position of the

ith tube base is [0 0 βi(t)]
>. Note that βi will be a negative number since the actuators are

behind the baseplate. Each tube has a total length of li.

Note that our convention of prescribing s = 0 at the baseplate means that a particular

value of the parameter s will describe different material tube points over time since the tubes

can slide in and out of the base plate as they are actuated. This choice departs slightly from

a conventional Cosserat rod framework where s would correspond to a material point, but it

is consistent with prior concentric-tube robot models and is more convenient for formulating

the kinematics. To reduce the complexity of the derivation, we assume the insertion speed

of the motors is slow so that βi,t ≈ 0. This quasi-static insertion speed allows us to ignore

some terms arising from the chain rule and is reasonable given that typical actuator insertion

motions are many orders of magnitude slower than the inertial dynamics our model describes.

80



Tube
Termination
Boundary
s=β  + l2 2

Distal
Boundary
s=β  + l1 1

Single-Rod
PDEs

Concentric-Tube
PDEs

Baseplate
Boundary

s=0

Actuator 2
Boundary

s=β2

Actuator 1
Boundary

s=β1 Torsional Dynamics
PDEs

Torsional Dynamics
PDEsα1

α2

Figure 3.17: A concentric tube robot sketch is annotated to describe the PDE boundary
value problem. The equations of motion for a concentric tube collection are given by (3.28),
and a simplified set of PDEs (3.31) is obtained under the assumption that tubes are held
straight below the base.

The tube indices are ordered so that a larger index corresponds to a larger cross section,

i.e. tube 1 is the innermost tube and tube 2 is the second innermost tube. We restrict our

attention to configurations where βi < βj and βi + li > βj + lj for i < j so that transition

points are always caused by the termination of the outermost tube. The concentric constraint

is that all tubes have the same centerline, which is expressed by the equation

pi(t, s) = p1(t, s) ∀s ∈ [βi βi + li]. (3.18)

This equation may be differentiated with respect to arc length (s) to obtain the constraint

that the tube tangents must be aligned

Rie3 = R1e3. (3.19)

This implies that the tube rotation matrices only differ by a rotation about their common

z-axes. Thus we define an angle θi such that

Ri = R1Rz(θi)
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where

Rz(θi) =


cos θi − sin θi 0

sin θi cos θi 0

0 0 1

 .

and θ1 = 0 by definition. Substituting this relationship into the definition of the curvature

of the ith tube results in

ui =
(
R>i Ri,s

)∨
= R>z (θi)u1 + θi,se3 (3.20)

The third component of the above equation defines the arc length derivative of θi as the

difference between the tube torsional strains:

θi,s = ui,z − u1,z. (3.21)

where the subscript z denotes the third (z-axis) component of a vector expressed in the body

frame throughout the paper. The above description of the arc-length kinematics is common

to the prior static models of concentric tube robots, and more detail can be found in [94].

Relative Angular Velocities

The concentric constraint (3.18) implies that all tubes have the same global linear velocity

pi,t and acceleration pi,tt. Analogous to (3.20), since the tube rotation matrices share the

same z-axis, the body-frame angular velocities are related by

ωi =
(
R>i Ri,t

)∨
= R>z (θi)ω1 + θi,te3 (3.22)

the third component of which is

θi,t = ωi,z − ω1,z.

For convenience, and to eventually arrive at a first-order system of PDEs, we define a new

state variable γi := θi,t representing the difference between the z-axis angular velocities of
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tube i and tube 1 such that

ωi = R>z (θi)ω1 + γie3 (3.23)

To get the arc-length derivative of γi, we differentiate (3.21) with respect to time:

γi,s = ui,z,t − u1,z,t. (3.24)

Forces and Inertial Dynamics

Next, we consider the dynamic equilibrium of internal forces and moments carried by the

tubes. We introduce a variable for the concentric tube robot’s total internal force, which is

the sum of the global-frame internal force vectors ni carried by each tube:

n :=
N∑
i=1

ni.

This is differentiated and the value of ni,s from (3.1) is substituted to obtain

ns =
N∑
i=1

ρiAipi,tt − f i.

The concentric constraint with the assumption of quasi-static actuator motion implies that

pi,tt = p1,tt (all tubes share the same linear acceleration in the global frame), and we can

differentiate the kinematics to find p1,tt = R1

(
ω̂1q1 + q1,t

)
(which is also stated in (3.1).

Thus we can write

ns = −f +R1

(
ω̂1q1 + q1,t

)
(ρA), (3.25)

where (ρA) :=
∑N

i=1 ρiAi and f :=
∑N

i=1 f i is the total external distributed load applied to

the robot.

Turning now to moments, we seek a differential equation governing the axial (body-

frame z) component of each tube’s moment vector (the torsional moment) and an additional

equation governing the transverse (body-frame xy) component of the total moment carried
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by the robot. Defining mb
i as the internal moment of tube i expressed in the in the body-

frame of tube i we have

mb
i = R>i mi and mb

i,s = −ûimb
i +R>i mi,s

since R>i,s = −ûiR>i . Now substituting in mi,s from (3.1), selecting only the third (z-axis)

component of mb
i,s, and neglecting any external distributed moments li, we write

∂mi,z

∂s
= −e>3 ûimb

i + ρie
>
3 (ω̂iJ iωi + J iωi,t)

where we have used the properties a>â = 0 and (Ra)∧ = RâR> for a ∈ R3 and R ∈ SO(3)

from [69] to reveal that e>3R
>
i p̂i,sni = 0. Additional simplifications are gained by recognizing

that J i is the second moment of area tensor of the ith tube cross section expressed in the

body-frame:

J i =


Ixx,i 0 0

0 Iyy,i 0

0 0 Izz,i


The terms in J i can be calculated for a circular tube with inner diameter IDi and outer

diameter ODi as

Ixx,i = Iyy,i =
1

2
Izz,i = Ii = π(OD4

i − ID4
i )/64.

This then implies ρie
>
3 ω̂iJ iωi = 0 so that using (3.23) we can write

∂mi,z

∂s
=− e>3 ûimb

i + ρiIzz,iωi,z,t

=− e>3 ûimb
i + 2ρiIi (ω1,z,t + γi,t)

(3.26)

Finally, to derive equations for the transverse components of the total moment, we first

define the concentic tube robot’s total internal moment, which is the sum of the global frame

internal force vectors mi carried by each tube:

m :=
N∑
i=1

mi.
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Substituting the arc length derivative of a dynamic moment balance on each tube, and again

neglecting li we have

ms =
N∑
i=1

ρiRi (ω̂iJ iωi + J iωi,t)− p̂i,sni

Now define mb as the total internal moment written in the body frame of tube 1 (the

innermost tube) so that

mb = R>1m and mb
s = −û1m

b +R>1ms.

Now rewriting p̂i,s using the concentric constraint (3.19) we have

p̂i,sni = (Rie3)
∧ni = (R1e3)

∧ni = R1ê3R
>
1 ni.

Using this we rewrite mb
s as

mb
s =− û1m

b − ê3R>1 n+
N∑
i=1

ρiRz(θi) [ω̂iJ iωi + J iωi,t] .

The terms in the summation are simplified again because the structure of J i for circular

tubes implies Rz(θi)J i = J iRz(θi), and the product product ω̂iJ iωi simplifies to

ω̂iρi


Ii 0 0

0 Ii 0

0 0 2Ii

ωi = ρiIiωi,z


ωi,y

−ωi,x
0


After a few more algebraic steps, we can finally extract the x and y components of mb

s as

∂mb
xy

∂s
=
{
−û1m

b − ê3R>1 n+ (ρI)ω1,t

}
xy

+

 ω1,y

−ω1,x

 N∑
i=1

ρiIi(ω1,z + γi) (3.27)

where (ρI) =
∑N

i=1 ρiIi.
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Summary of Concentric-Tube PDEs

Pulling together all the results in this section, we can succinctly state the set of PDEs for a

concentric-tube system in the form of a first-order vector system

ys = f (y,yt)

where the state vector y contains state variables p, R, q, ω, n, mb
xy, m

b
1,z, and mb

i,z, θi, and

γi for i ∈ [2 N ]. The full system can be summarized:

ps = R1e3

R1,s = R1û1,

q1,s = − û1q1 + ω̂1e3

ω1,s = u1,t − û1ω1

ns = − f +R1

(
ω̂1q1 + q1,t

)
(ρA)

∂mb
xy

∂s
=
{
−û1m

b − ê3R>1 n+ (ρI)ω1,t

}
xy

+

 ω1,y

−ω1,x

 ((ρI)ω1,z +
N∑
i=2

ρiIiγi)

∂mb
i,z

∂s
=− e>3 ûimb

i + 2ρiIi (ω1,z,t + γi,t)

θi,s = ui,z − u1,z

γi,s = ui,z,t − u1,z,t

(3.28)

This system is analogous to the classical PDEs for a single-rod in (3.1), but it accounts

for multiple concentric tubes. As in (3.1), in order to solve the system, we will need to

implement a specific constitutive stress-strain relation, as well as a strategy for numerical

discretization and solution of the resulting discretized equations. These two additions are

developed together in the next section.

3.5.2 Numerical Solution of Concentric-Tube PDEs

In this section we discuss the details of numerical solution of the concentric-tube PDEs stated

in (3.28) subject to a specific constitutive equation.
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Constitutive Equation

To obtain a complete set of equations for the dynamics of a concentric-tube system, we

must postulate a material constitutive equation that relates the kinematic variables ui to

the body-frame internal moments mi. We adopt a linear visco-elastic equation with material

damping [59] given earlier by (3.2). The total internal moment in the tube 1 body frame is

mb =
N∑
i=1

Rz(θi) [Ki(ui − u∗i ) +Biui,t] .

Note that this is a differential equation in ui, which was not originally included as a state

variable. However, the time discretization strategy in the next section converts this visco-

elastic constitutive equation into an algebraic equation which allows us to compute ui from

existing state variables.

Implicit Time Discretization

Applying the implicit time discretization (3.4) to the differential equation defined by the

constitutive equation allows one to solve for each tube’s independent ui,z in terms of its

torsional moment mi,z so that

ui,z =
mb
i,z +GiJiu

∗
i,z −Bi,z

h

ui,z

GiJi + c0Bi,z

. (3.29)

Applying the discretization to the total internal moment yields

mb =
N∑
i=1

Rz(θi)
[
Ki(ui − u∗i ) +Bi(c0ui +

h

ui)
]
.

We can then apply (3.20) and solve for u1,xy as

u1,xy =
mb

xy −Bxy
h

u1,xy +
∑N

i=1Rz(θi)EiIiu
∗
i,xy∑N

i=1EiIi + c0Bi,xy

(3.30)
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where Bxy :=
∑N

i=1Bi,xy and we have overloaded the symbol Rz(θi) to include its 2 × 2

version, understood by context.

All terms on the right hand side of (3.28) can now be computed from existing state

variables through the algebraic equations (3.29), (3.30), (3.20), and (3.2).

Boundary Conditions

The inputs to the robot are the actuator positions βi(t) and angles αi. Below the base

we assume the tubes are held straight, which results in simplifications to the equations of

motion. We use an absolute angle ψi to describe the rotation of each tube below the base.

The PDE system describing angular rotation and torque is

ψi,s = ui,z

ψi,ts = ui,z,t

mb
i,z,s = (ρIzz)iψi,tt,

(3.31)

where ui,z is calculated as previously described. There is an unknown reaction torque on each

actuator mi,z(t, βi). At the base, there is an unknown reaction force n(t, 0) and transverse

moment mxy(t, 0). The baseplate is stationary and arbitrarily defined at the origin so that

p(t, 0) = q(t, 0) = 0. While we have neglected insertion speed, we still account for the axial

angular velocity of the tube bases so that only the transverse angular velocities are zero at

the base, ω1,xy(t, 0) = 0. The main system is coupled to the system below the base so that

R1(t, 0) = Rz[ψ1(t, 0)]

ω1,z(t, 0) = ψ1,t(t, 0)

θi(t, 0) = ψi(t, 0)− ψ1(t, 0)

γi(t, 0) = ψi,t(t, 0)− ψ1,t(t, 0).

(3.32)

At distal tube ends, we can use boundary conditions to prescribe external point forces

and moments as well as coupling to the rigid body dynamics of external objects the robot

is manipulating. For example, suppose that at the end of tube i there are an external force

F and moment M and a coupled rigid body with mass mi and mass moment of inertia H
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symmetric about the tube axis:

H =


HT 0 0

0 HT 0

0 0 HA

 .

A force and moment balance on the attached rigid body in the body frame of tube 1 yields

F (t, s) + n(t, s+)− n(t, s−) = miptt

M b
xy(s) +mb

xy(s
+)−mb

xy(s
−) =

(
H iω̄i,t + ̂̄ωiH iω̄i,

)
xy

Mz(t)−mb
i,z(t, βi + li) = Hi,Aωi,z,t,

(3.33)

where for convenience we have defined ω̄i := R>z (θi)ωi. The termination of the final tube

requires the entire distal wrench be balanced, that is

F (t)− n(t, β1 + l1) = m1ptt

M b(t)−mb(t, β1 + l1) = H1ωt + ω̂H1ω.
(3.34)

Orientation as Quaternions

We have used rotation matrices in our model development, but in our numerical imple-

mentation, we represent orientation using non-unit quaternions as presented in [92] and

paraphrased in (2.5) to avoid degradation of orthogonality in the rotation matrices due to

numerical approximation. The orientation at the base is then given by

h(t, 0) =
[
cos
(
1
2
ψ1(t, 0)

)
0 0 sin

(
1
2
ψ1(t, 0)

)]>
.

Spatial BVP Solution

The fast torsional dynamics of the snap-through motion occur over an interval of about

1ms [87], making it necessary to simulate using time steps on the order of microseconds.

Although past work found success using shooting methods to solve concentric tube kinematics

89



efficiently [15], for our implicit time discretization scheme shooting methods can become ill-

conditioned at extremely small time-steps [112]. Instead we use an iterative solution of a

finite difference system as described in Section 3.1.3.

Note that the the concentric tube problem involves the coupling of systems (3.1), (3.28),

and (3.31) as shown in Figure 3.17. We use a Levenberg-Marquardt algorithm to solve the

coupled nonlinear system so that ‖E‖2 < 10−9 using standard SI units for all variables.

The time difference is implemented using BDF2 [24], which in the context of (3.4) has non-

zero coefficients c0 = 3/(2∆t), c1 = −2/∆t, and c2 = 1/(2∆t) The Jacobian of the above

system is sparse, so we use sparse matrix data structures and sparse linear solving routines

implemented in C++ using the matrix library Eigen [37]. The Jacobian is calculated by first

order finite differences with appropriately chosen increments for the magnitudes the variables.

Note that the accuracy of this Jacobian approximation does not affect the accuracy of the

model, only the convergence of the iterative solution.

3.5.3 Simulation and Experimental Verification

Our experimental setup (Figure 3.18) consists of a two-tube robot with the outer tube rigidly

attached to the baseplate as shown in Figure 3.19. A Vision Research Phantom® v310 high-

speed camera was used to study the robot as it was actuated through an elastic instability,

followed by oscillations. The high-speed camera collected data at 50,000FPS (∆t = 20 µs)

with a resolution of 256x128 pixels. Disk-shaped markers were affixed to each tube at its

tip, so that the relative angle θf between the tubes can be easily reconstructed from video

data. The marker features are colored lighter than the other objects in the video. We use

MATLAB’s “regionprops” function to find the marker centroids, and subsequently calculate

the relative tip angle θf based on the marker pixel locations. We assume roll and pitch of

the tip are negligible so that θf is calculated assuming the markers are parallel to the camera

plane, which is a reasonable assumption based on the model solution for tip orientation.
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Figure 3.18: The experimental setup is shown. The snapping bifurcation was captured on
a high-speed camera. Tube markers were affixed to the tip of each tube allowing the relative
angle θ to be visually reconstructed.

s = β1

α1

Base Plate with Outer 
Tube Rigid Attachment

s = 0

Outer Tube 
Terminates
s = β2+ ℓ2

Outer Tube Precurved 
Region

Ltip
Inner Tube 
Terminates
s = β1+ ℓ1

Figure 3.19: The validation was performed using a two-tube robot as in [87]. The outer
tube was rigidly attached to the baseplate, and the inner tube was rotated at a distance
from the baseplate β1 which is constant for any given trial, and varied between trials.
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Measured and Approximate Parameters

The CTR tubes used in these experiments are shown in Figure 3.20. The inner tube was

made from Nitinol and the outer from stainless steel. The tubes have precurved sections of

constant curvature. The precurved section of the outer tube extends all the way to its tip,

while the inner tube has a short 15.0 mm straight segment at the tip after the precurved

section. The precurvature functions were fit from images of the tubes with the results

u∗1,x(s) =


0m−1, s < L1 − 0.044m

46.9m−1, L1 − 0.044m ≤ s ≤ L1 − 0.015m

0m−1, s > L1 − 0.015m

u∗2,x(s) =

0m−1, s < L2 − 0.0399m

8.72m−1, s ≥ L2 − 0.0399m

(3.35)

where the tube tip locations Li = li + βi have been defined for convenience.

A description of parameters and their measured, calibrated, or known values is given in

Table 3.2. Because the inner tube properties can have a significant effect on the dynamic

response, the Young’s modulus was experimentally calibrated in a separate static cantilever

Figure 3.20: Component tubes used for two tube robot in validation study before assembly.
(a) outer stainless steel tube. (b) inner Nitinol tube (which is a solid circular rod).
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Table 3.2: Concentric Tube Model Parameters

 

NAME DESCRIPTION METHOD VALUE 

𝒓𝒊,𝟏 Inner radius Data Sheet 0m 

𝒓𝒐,𝟏 Outer radius Data Sheet 0.000508m 

𝑬𝟏 Young's modulus Deflection test 81.97GPa 

𝒖𝟏,𝒙
∗ (𝒔) Precurvature Fit from image Given in text 

𝝆𝟏 Density Mass/Volume 6493 kg/m3 

𝑳𝒕𝒊𝒑 Tip extension Measured 0.002m 

𝒓𝒊,𝟐 Inner radius Data Sheet 0.00062m 

𝒓𝒐,𝟐 Outer radius Data Sheet 0.001055m 

𝑬𝟐 Young's modulus Data Sheet 210GPa 

𝒖𝟐,𝒙
∗ (𝒔) Precurvature Fit from image Given in text 

𝝆𝟐 Density Data Sheet 8000 kg/m3 

𝒍𝟐 Length of outer tube Measured 0.0531m 

𝒎𝟏 Marker 1 Mass Measured 0.0278g 

𝒓𝑴,𝟏 Marker 1 Radius Measured 0.00273m 

𝒕𝑴,𝟏 Marker 1 Thickness Measured 0.00113m 

𝒎𝟐 Marker 2 Mass Measured 0.0714g 

𝒓𝑴,𝟐 Marker 2 Radius Measured 0.00446m 

𝒕𝑴,𝟐 Marker 2 Thickness Measured 0.00109m 

𝒎𝑮 Glue mass Measured 0.02 g 

𝒍𝟏 Exp. 1 inner tube length Measured 0.1671m 

𝒍𝟐 Exp. 2 inner tube length Measured 0.2179m 

𝒍𝟑 Exp. 3 inner tube length Measured 0.2687m 

𝑩∗ All mat. damping coeffs Calibrated 5.91×10-8 Nm2s 
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deflection test. The density was determined by dividing the measured tube mass by the

volume calculated from the tube dimensions.

Preliminary simulation results showed that the inertia of the tracking markers attached

to the tube tips was not negligible, so we modeled the markers by implementing the rigid

body coupling boundary conditions described in our model equations above. The markers

were circular disks with holes to fit around the tubes, so that the inertia components are

given by

Hi,xy = mi(3(r2M,i + r2o,i) + tM,i)/12

Hi,z = mi(r
2
M,i + r2o,i)/2,

where rM,i is the marker outer radius, ro,i is the tube outer radius which is also the marker

inner radius, and tM,i is the marker thickness. Super glue was used to attach the markers to

the tubes. Weighing a single drop to be 0.02g, we added this amount to each marker mass.

Simulation

The simulation uses N1 = 15 grid points for the dynamics of the inner tube below the

baseplate, modeled by (3.31), N2 = 60 grid points for the concentric tube PDEs, modeled

by (3.28), and N3 = 4 grid points for the slight extension of the inner tube beyond the tip of

the outer tube, modeled by (3.1). The time step is ∆t =10µs. While our overall approach

is capable of running stably at large time steps and capturing slower bending dynamics at

real-time rates [112], the small time steps required to resolve the detailed torsional elastic

instability dynamics.

Building a grid of states for each section based on the solver guess and the boundary

conditions is a fairly complicated process. The mapping of elements from the guess vector

to the grid point values is shown in Table 3.3, as well as the grid point values which are

found by strongly enforcing the boundary conditions. Gray cells represent strongly enforced

values from boundary conditions, and white cells indicate the corresponding indices of the

guess vector using MATLAB notation. A minus superscript indicates that a value comes

from the previous section. The first grid is the section below the base described by (3.31),
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Table 3.3: Grid Layout for Three Section Concentric Tube Robot

 Col 1 (Actuator) Col 2 : Col 𝑁1 − 1 Col 𝑁1 (Baseplate) 

𝛼1 Input 

2 ∶ 3𝑁1 − 5 

3𝑁1 − 4 

𝛼1,𝑡 Input derivative 3𝑁1 − 3 

𝑚𝑧,1
𝑏  1 3𝑁1 − 2 

 
 Col 1 (Baseplate) Col 2 : Col 𝑁2 − 1 Col 𝑁2 (Outer tube ends) 

𝒑 𝟎 

3𝑁1 + 5 
: 

3𝑁1 + 22𝑁2 − 40 

3𝑁1 + 22𝑁2 − 39 ∶  3𝑁1 + 22𝑁2 − 37  
𝒉 [cos(𝛼1/2) 0 0 sin(𝛼1/2)]𝑇 3𝑁1 + 22𝑁2 − 36 ∶  3𝑁1 + 22𝑁2 − 33  
𝒒 𝟎 3𝑁1 + 22𝑁2 − 32 ∶  3𝑁1 + 22𝑁2 − 30  
𝝎 [0 0 𝛼1,𝑡]𝑇 3𝑁1 + 22𝑁2 − 29 ∶  3𝑁1 + 22𝑁2 − 27  
𝒏 3𝑁1 − 1 ∶  3𝑁1 + 1 3𝑁1 + 22𝑁2 − 26 ∶  3𝑁1 + 22𝑁2 − 24  

𝒎𝑥𝑦
𝑏  3𝑁1 + 2 ∶  3𝑁1 + 3 3𝑁1 + 22𝑁2 − 23 ∶  3𝑁1 + 22𝑁2 − 22  

𝑚𝑧,1
𝑏  𝑚𝑧,1

𝑏− 3𝑁1 + 22𝑁2 − 21 

𝑚𝑧,2
𝑏  3𝑁1 + 4 −𝐻2,𝐴𝜔2,𝑧,𝑡 

𝜃 −𝛼1 3𝑁1 + 22𝑁2 − 20 
𝛾 −𝛼1,𝑡 3𝑁1 + 22𝑁2 − 19 

 
 Col 1 (Outer tube ends) Col 2 : Col 𝑁3 − 1 Col 𝑁3 (Inner tube ends) 

𝒑 𝒑− 

3𝑁1 + 22𝑁2 − 18 
: 

3𝑁1 + 22𝑁2 + 19𝑁3 − 57 

3𝑁1 + 22𝑁2 + 19𝑁3 − 56 ∶  3𝑁1 + 22𝑁2 + 19𝑁3 − 54 
𝒉 𝒉− 3𝑁1 + 22𝑁2 + 19𝑁3 − 53 ∶  3𝑁1 + 22𝑁2 + 19𝑁3 − 50 
𝒒 𝒒− 3𝑁1 + 22𝑁2 + 19𝑁3 − 49 ∶  3𝑁1 + 22𝑁2 + 19𝑁3 − 47 
𝝎 𝝎− 3𝑁1 + 22𝑁2 + 19𝑁3 − 46 ∶  3𝑁1 + 22𝑁2 + 19𝑁3 − 44 
𝒏 𝒏− + 𝑚2(𝑹(𝒒𝑡 + �̂�𝒒) − 𝒈) 𝑚1(𝒈 − 𝑹(𝒒𝑡 + �̂�𝒒)) 

𝒎𝑏 
[
𝒎𝑥𝑦

𝑏− + (𝑯2�̅�𝟐,𝒕 + �̂̅�𝟐𝑯2�̅�𝟐)
𝑥𝑦

𝑚𝑧,1
𝑏−

] −𝑯1𝝎𝑡 − �̂�𝑯1𝝎 

 

the second grid is the concentric tube section described by (3.28), and the third grid is the

extension of the inner tube beyond the outer tube as described by (3.1). The total number

of guessed variables is 3(N1 − 1) + 22(N2 − 1) + 19(N3 − 1), which matches the number of

internal residual terms from the midpoint method.

Experimental Protocol

Experimental validation of this simulation consisted of actuating a concentric-tube robot

through an elastic instability transition for three different inner tube transmission lengths

β1 from the base plate to the inner tube’s actuator. Increasing this transmission length

also increases the potential of the robot to store elastic energy, resulting in a more forceful

bifurcation [87]. The total inner tube lengths for the three experimental configurations can

be viewed in Table 3.2. In each configuration, the inner tube tip was extended 2mm out of the

outer tube. The rotary dial was slowly rotated by hand to induce an elastic instability and

video was collected at 50,000 frames per second. To verify repeatability of the data with this

95



procedure, we conducted 4 trials for each transmission length configuration. A comparison

of every outcome is overlaid in Figure 3.21, illustrating that the dynamics introduced by this

procedure are highly repeatable.

Calibration and Results

We first verify the static robot parameters by comparing the experimental snap angles to the

well-known CTR “S-curve” which uses the static model solution to express the relationship

between the relative base angle θb and the tip angle θf between the tubes [27]. The S-curves

for the three experimental cases are plotted and compared with the experimental steady-state

experimental behavior as shown in Figure 3.22.

While the majority of the model parameters were either read from datasheets, measured

directly, or determined from a separate experiment, the material damping parameters

(especially those associated with torsion) are more difficult to directly measure, and we wish

to investigate whether frictional energy dissipation could potentially be accounted for by

Figure 3.21: Each transmission length was tested in four trials to ensure that the robot
motion was repeatable. Any differences between trials are minor and consistent behavior is
observed.
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Figure 3.22: The base actuation angle was recorded for each trial, and the steady-state
tip angles before and after snapping are extracted from the data. Simulated “S-curves” are
compared with the experimental behavior. The S-curves pass to the left of the observed
initial snapping angles, which is likely due to friction.

lumping its effects into the material damping term. Therefore, using the three experimental

datasets, we calibrated a single material damping parameter used for BB,1, BT,1, BB,2, and

BT,2 by a least squares fit of peak heights. The calibrated damping parameter is listed in

Table 3.2, and the resulting model solution for θf is compared to the experimental datasets

in Figure 3.23. Note that we synchronized camera time with simulation time by setting the

time datum t = 0 at the location of the first peak. The results show that the dynamic model

predicts the main features of the experimental dataset reasonably well, especially the rise

curve when the tube is transitioning through the snap. The overshoot behavior, period of

vibration, and subsequent peak heights are also captured well, although an unknown effect

around 1 ms creates a phase shift in the experimental data that persists as the oscillations

decay. A render of the simulation is shown in Figure 3.24.

The model is able to capture dynamic transition behavior during an elastic instability

and the associated release of stored elastic energy. The fading oscillations after the instability

are not perfectly described by the model, and future work could attempt to improve model

accuracy by incorporating additional terms such as clearance between tubes and dynamic

or static friction terms. Still, the current numerical model solution provides an excellent

prediction of the rapid tip angle transition at elastic instability, the overshoot, and the

initial oscillation decay.
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Figure 3.23: The model-predicted tip angle is compared with the experimentally observed
tip angle using a calibrated damping constant of 5.91× 10−8Nm2/s.
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Figure 3.24: A rendering of our model solution showing the concentric tube robot
undergoing an elastic instability.
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3.6 Discussion

We have presented a numerical framework for solving Cosserat-rod based dynamic models

of soft and continuum robots. The stability provided by the implicit time discretization

often enables one to solve robot dynamics problems at real-time rates. Experimental trials

demonstrated the accuracy of the proposed model. The framework is adaptable to various

designs of continuum robots with different operating principles as shown by the examples

considered here. We anticipate that our approach can be widely applied across the spectrum

of continuum robot designs.
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Chapter 4

Stability

The ODE systems derived in Chapter 2 satisfy the first-order conditions necessary for static

equilibrium but do not provide any information about the elastic stability of the solution.

This chapter includes results from the author’s journal paper [113] to adapt results from

optimal control to determine the stability of Kirchhoff rods and Cosserat rods subject to

general terminal constraints, including the multi-rod coupled models that describe parallel

continuum robots. We formulate a sufficient condition for the stability of a solution, a

numerical test for evaluating this condition, and a heuristic stability metric. It is verified

that the numerical stability test agrees with the classical results for the buckling of single

columns with various terminal constraints and for multi-column frames. We then validate

our approach experimentally on a six degree-of-freedom parallel continuum robot.

We begin by considering simple problems and gradually increase in complexity. In Section

4.1, we describe our approach in the context of a classical optimal control problem for a

control u(s) ∈ Rm and a state x(s) ∈ Rn. Section 4.2 applies this framework to derive

the first- and second-order conditions for a stable planar rod subject to various end-point

constraints. Section 4.3 considers the joining of multiple planar rods to create a planar

parallel continuum robot, which is validated in several special cases by comparison to the

classical Euler buckling formulas for columns and multi-column sway frames. In Section 4.4,

we derive the stability conditions for a single spatial rod by considering the optimal control

framework for a problem with a control u(s) ∈ Rm and a state x(s) ∈ SE(3). Section 4.5

extends this result to coupled spatial rods (i.e. parallel continuum robots), and Section 4.6
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validates the resulting stability test experimentally using a prototype parallel continuum

robot, while providing insight into issues involved in the application to stability detection

and avoidance.

4.1 Bolza Problem

4.1.1 General Problem Statement

Planar rod problems fit the form of a fixed-time, Bolza problem in optimal control. The

Bolza problem statement is

minimize
u

J(u) = φ(xL) +

∫ L

0

L(s,x(s),u(s))ds

subject to xs = f(s,x(s),u(s))

x(0) = x0, β(xL) = 0,

(4.1)

where x(s) ∈ Rn is the state vector, u(s) ∈ Rm is the “control”, β : Rn → Rp are general

terminal constraints, φ : Rn → R is the terminal cost, L : R×Rn×Rm → R is the Lagrangian

(the cost-density), and f : R× Rn × Rm → Rn is the state derivative.

4.1.2 First-Order Necessary Conditions

The derivation of minimal conditions is kept brief as it follows that of Hull [49], but we take

the additional step of eliminating the terminal Lagrange multipliers from the problem and

formulating a reduced set of terminal boundary conditions, and we also use the opposite

sign for Lagrange multipliers in the Hamiltonian as this eventually yields a cleaner result for

the rod problems. We form an augmented cost function J ′ with Lagrange multiplier vectors

λ(s) ∈ Rn and ν ∈ Rp to enforce the differential and terminal constraints:

J ′(u,λ,ν) = G+

∫ L

0

(
H + λ>xs

)
ds,
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where H is the Hamiltonian

H(s,x,u,λ) := L(s,x,u)− λ>f(s,x,u)

and G is the augmented terminal cost function

G(xL,ν) := φ(xL) + ν>β(xL).

Taking the first variation of J ′, canceling terms where appropriate, and integrating by

parts so that
∫ L
0
λ>δxsds = λ>LδxL −

∫ L
0
λ>s δxds yields

dJ ′ = GxLδxL + λ>LδxL +

∫ L

0

[(
Hx − λ>s

)
δx+Huδu

]
ds.

Choosing Lagrange multipliers λs = H>x and λL = −G>xL is convenient because the first

differential reduces to dJ ′ =
∫ L
0
Huδuds. As demonstrated in Chapter 9.3.2 in Hull [49], it

can be shown that Hu = 0 is a necessary condition for the first differential to vanish.

We may avoid solving for ν by premultiplying both sides of λL = −G>xL by a matrix

P>, where the columns of P form an orthonormal basis for the nullspace of βxL ∈ Rp×n.

P can be calculated from a singular value decomposition βxL = UΣV > by selecting the

n−p columns of V that correspond to the n−p singular values that equal zero. MATLAB’s

null() function conveniently obtains P as P = null(βxL). In the problems here β(xL) is

linear in xL so that P is constant. Thus we obtain a reduced set of n− p co-state boundary

conditions

P>λL = −P>
(
φxL + ν>βxL

)>
= −P>φ>xL .

These are the so-called “natural” boundary conditions, which are often equivalent to

equations that could be obtained from a Newtonian approach. We combine the state and

103



co-state constraints into a single terminal constraint function

E(xL,λL) =

 β(xL)(
P>λL + P>φ>xL

)
 = 0, (4.2)

where E : Rn × Rn → Rn.

Summarizing the development, our use of Lagrange multipliers has led us to the first-order

necessary conditions:

xs = f

λs = H>x

Hu = 0

E = 0.

(4.3)

Thus there is a BVP which may be solved to find a candidate control trajectory. However,

further analysis is necessary to determine if a control satisfying these conditions minimizes

the cost function.

4.1.3 Second-Order Sufficient Conditions

As detailed in [50, 49, 82], whether an optimal solution is a local minimum is partially

determined by the presence of admissible comparison paths. The existence of another optimal

path which satisfies the constraints is equivalent to the existence of a so-called conjugate point

scp ∈ [0 L). The nonexistence of conjugate points is the classical Jacobi condition, which is

a known sufficient condition for weak local optimality if the first-order necessary conditions

and the strong Legendre-Clebsch condition (Huu positive definite) are already satisfied. The

existence of a conjugate point in scp ∈ (0 L) is sufficient to conclude that the optimal path is

not a minimum, and scp /∈ [0 L) is sufficient to conclude that the optimal path is a minimum

[49] (given the first-order and strong Legendre-Clebsch conditions are met). In the case of

scp = 0, there exists an admissible comparison path for which the second differential vanishes,

so the third and fourth differentials would need to be considered to investigate stability. For

our application, we make the assumption that a conjugate point scp = 0 is unsafe.
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The existence of conjugate points can be determined by examining the “sweep method”

matrix S̄, which is defined by

δλ(s) = S̄(s)δx(s),

as given in [49], where δλ(s) is the associated small change in λ at s that would be required

in order to continue satisfying the terminal boundary conditions. scp is a conjugate point if

and only if the matrix S̄(s) becomes infinite at s = scp.

We can formulate S̄ by recognizing that E(xL,λL) is implicitly a function of x(s) and

λ(s) through its arguments, that is

E(xL,λL) = E
(
x0 +

∫ L
0
xsds,λ0 +

∫ L
0
λsds

)
.

Thus we may take the variation of E:

δE = Ex(s)δx(s) +Eλ(s)δλ(s) = 0.

Recalling that E ∈ Rn and λ ∈ Rn, the above can be solved for

δλ = −
[
Eλ(s)

]−1
Ex(s)δx(s).

This shows that

S̄(s) = −
[
Eλ(s)

]−1
Ex(s).

Assuming that Ex(s) is finite (which is true under the mild and verifiable assumption that

ExL and EλL are finite), then scp is a conjugate point only if the matrix Eλ(scp) is singular.
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4.1.4 Numerical Test

To test for conjugate points on [0 L), Eλ(s) can be calculated by first obtaining the transition

matrix Φ(s) which maps small changes in xL and λL to small changes in x(s) and λ(s):

Φ(s) :=

∂x(s)/∂xL ∂x(s)/∂λL

∂λ(s)/∂xL ∂λ(s)/∂λL

 .
Then, Eλ(s) can be expressed as

Eλ(s) =
∂E

∂xL

∂xL
∂λ(s)

+
∂E

∂λL

∂λL
∂λ(s)

=
∂E

∂xL

(
Φ−1

)
12

+
∂E

∂λL

(
Φ−1

)
22
, (4.4)

where
(
Φ−1

)
12

and
(
Φ−1

)
22

denote the upper right and lower right n× n blocks of Φ−1(s),

respectively. Note that Φ(s) ∈ R2n×2n is always invertible because it is the transition matrix

for a linearized system of differential equations. We note that Φ(s) can be obtained by

differentiating the model equations to obtain the following differential equations for Φ.

Φs =


∂2x

∂s∂xL

∂2x

∂s∂λL

∂2λ

∂s∂xL

∂2λ

∂s∂λL

Φ.

These can be integrated backward from Φ(L) = I. The use of the transition matrix in

continuum robotics is explored in more detail in [95].

4.1.5 Heuristic Metric

Note that Eλ(L) is singular if any terminal state constraints β(xL) exist, but the sufficient

conditions for optimality only require nonsingularity of Eλ(s) for all s ∈ [0 L). Also, the

values of various elements inEλ(s) may depend on choices of problem units. For these reasons,

metrics for the closeness of bλ(s) to singularity over [0 L) (such as minimum determinant or

condition number) cannot meaningfully indicate closeness to instability in general. Instead,

we suggest a potentially useful heuristic based on integration length. If the path is determined

to be optimal (no conjugate points on [0 L)), but there exists a conjugate point scp < 0
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(determined by checking det
(
Eλ(s)

)
for s < 0, which is accomplished by continuing to

integrate the solution backwards past 0), the distance d = −tcp can be regarded as a heuristic

metric for the relative distance to non-optimality: d is the amount that the integration length

would need to be increased in order for a conjugate point to appear on the interval assuming

all other conditions in the problem remain constant. However, this heuristic should still be

used with caution as the sensitivity of conjugate point location to small changes in other

problem parameters (other than arc length) could be high, and conjugate point locations

may not be continuous in all problem parameters. The sensitivity issue is explored further

in simulation in Section 4.6.

4.2 Single Planar Rod

Kirchoff Rod Conditions

Many elastostatic mechanics problems can be naturally cast as optimal control problems via

the principle of minimal total potential energy. The main restriction to doing so is that the

external loading mechanism must be conservative (i.e. path independent, able to be written

as the gradient of some global potential function). In this context, a configuration of an

elastostatic system is considered stable if and only if it is a local minimizer of total potential

energy. Consider a single planar rod subject to various possible boundary conditions and

loadings as shown in Figure 4.1. The rod state vector can be defined as

x(s) =
[
px(s) py(s) θ(s)

]>
,

where px(s), py(s), and θ(s) are scalar functions that describe the planar position and tangent

angle of the rod along the length as depicted in Figure 4.1. The state vector derivative for

a Kirchhoff rod (no shear or extension effects) is

xs = f(s,x, u) =
[
cos θ sin θ u

]>
,
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Figure 4.1: Various end constraints are illustrated. In the special case where the rod is
initially straight and there is only a force in the x-direction, the buckling loads found with
optimal control can be compared to the Euler critical buckling loads.

where u(s) is the rod curvature and corresponds to the “control” in the optimal control

framework. We assume there is a general applied wrench, W =
[
Fx Fy Mz

]>
, acting at

s = L and a distributed wrench w(s) =
[
fx(s) fy(s) lz(s)

]>
along the length such that

the potential energy of the applied loads is given by

V = −W>xL −
∫ L

0

w(s)>x(s)ds,

where w(s) has here been defined as a known function of s.

As shown in Figure 4.1, we also consider terminal constraints on the rod state of the

general form β(xL) = 0. Assuming a linear constitutive material equation leads to a strain

energy density of the form U(s) = 1
2
EIu2. This means that the total potential energy is

given by

J = φ(xL) +

∫ L

0

(
1

2
EIu2 −w>x

)
ds,
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where φ(xL) = −W>xL is the terminal cost (energy). Thus, our mechanics problem takes

the form of a Bolza problem with a Hamiltonian

H =
1

2
EIu2 −w>x− λ>

[
cos θ sin θ u

]
.

Applying the constraint Hu = EIu − λ3 = 0 leads to u = λ3/EI. The evolution of the

co-state λs = H>x is given by

λs = −w + (λ1 sin θ − λ2 cos θ) e3.

The reduced set of terminal boundary conditions E(xL,λL) are obtained as described by

(4.2) and are given for the various cases in Table 4.1. The physical meaning of λ can be seen

by examining the standard governing equations of Kirchhoff rod theory [2]:

(nb)s =
[
−f bx −f by

]>
(mb

z)s = −lbz + nbx sin θ − nby cos θ,

which reveals that λ1−2 ≡ nbxy and λ3 ≡ mb
z. Note that Huu = EI, so the strong Legendre-

Clebsch condition is satisfied over the whole interval. This is also the case for the more

complex problems we consider in the following sections.

In the specific case of an initially straight Kirchhoff rod with a uniform cross-section and

homogenous material properties, the stability when subjected to an axially applied force can

Table 4.1: Terminal Boundary Conditions E(xL,λL) = 0

Free Pinned Sliding Fixed-Rotation

λL +W


py(L)− pyL
λ1L + Fx

λ3L +Mz



py(L)− pyL
θ(L)− θL
λ1L + Fx



θ(L)− θL
λ1L + Fx

λ2L + Fy
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be predicted using the classical Euler buckling formula

Fcrit =
EIπ2

(KL)2
, (4.5)

where K is a length factor corresponding to certain types of end constraints.

We considered the four specific cases listed in Table 4.1 and shown in Figure 4.1, with

pyL = 0 in the pinned case, pyL = θL = 0 in the fixed case, and θL = 0 in the fixed-rotation

case. E, I, and L were arbitrarily set to unity. Φ was numerically integrated and det(Eλ(s))

was checked for a change in signs indicating singularity over n points on the interval [0 L).

We used a bisection method to iteratively converge on the minimum load for which our

sufficient stability test fails. We then verified that these numerically predicted loads agree

with the known Euler critical loads for straight columns.

We also illustrate this agreement in Figure 4.2, where we plot det(Eλ(s)) versus arc length

s for the same four cases with L = 1 and Fx = −π2. This is the critical load given by (4.5) for

the fixed-rotation case, which has a known length factor of K = 1. The plot illustrates that

our approach agrees with the Euler theory as evidenced by the purple line intercepting (0,0).

In the free-end, pinned, and fixed cases, the Euler length factors are K = 2, K ≈ .699, and

K = 0.5, respectively, which all agree with the locations of the zero crossings for det(Eλ(s))

in those cases, i.e. K = 1
1−scp in each case. In this special circumstance, the stability

heuristic exactly corresponds to the length of a column for which the applied force is the

critical buckling load.
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Figure 4.2: The plot shows det(Eλ(s)) vs. arc length s for a straight rod under the four
boundary condition sets with Fx = −π2. The conjugate points are shown as the zero crossings
of det(Eλ(s)) in each case. The corresponding equivalent Euler length factor K is shown to
be in agreement with the location of each conjugate point. Note that det(Eλ(s)) contains
various combinations of mixed units across the different cases, so its value is not physically
meaningful. It has also been scaled for better visibility of the plots, but this does not affect
the location of conjugate points.
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Cosserat Rod Conditions

The planar Kirchhoff rod model presented above (also known as the planar “elastica”) is

a special case of the more general Cosserat rod model [2]. The Cosserat model includes

the effect of transverse shear strain and axial strain (elongation/compression), which are

assumed to be zero in Kirchhoff models. Using the full Cosserat framework, we have the

same rod state vector

x(s) =
[
px(s) py(s) θ(s)

]>
,

but the state derivatives are functions of the control vector u =
[
u1 u2 u3

]>
as follows:

xs = f(s,x,u) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




1 + u1

u2

u3

 , (4.6)

where u1 is the axial extension strain, u2 is the transverse shear strain, and u3 is the rod

curvature (corresponding to u in the Kirchhoff model).

Assuming a linear constitutive equation then gives a strain energy density of the quadratic

form U(s) = 1
2
u>(s)K(s)u(s). K(s) = diag {E(s)A(s), G(s)A(s), E(s)I(s)} where E(s) is

Young’s modulus, G(s) is the shear modulus, A(s) is the rod’s cross-sectional area, and I(s)

is the second area moment of inertia of the rod cross section about its centroidal axis. The

potential energy of the loading is the same as in the Kirchhoff case above, which leads to

the following energy functional:

J = φ(xL) +

∫ L

0

(
1

2
u>Ku−w>x

)
ds.

The boundary-value problem resulting from the first-order necessary conditions is then

exactly the same as the Kirchhoff case (4.2), except for the state derivatives and the
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calculation of u, which are given by (4.6) and

u = K−1


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

λ.

In predicting deformation, it is important to consider the full Cosserat rod model instead

of the Kirchhoff approximation in cases where the elastic member has a low slenderness

ratio or a low axial or shear stiffness relative to the bending stiffness (e.g. a compression

spring). In some cases, this difference can also affect stability behavior and the results

of our stability assessment. Figure 4.3 illustrates the ratio of the critical buckling loads

obtained with each model as a function of the slenderness ratio for a pinned steel tube.

As the slenderness ratio decreases below 10, the results diverge, indicating that shear and

axial stiffness can significantly affect the critical buckling load. While the rods in our

experimental prototype have high axial stiffness and L/r ≈ 400, soft elastomer parallel

robots such as those studied in [88, 47] often have L/r < 15, and spring-backbone robots

such as [124] have lower axial stiffness relative to bending stiffness. Additionally, when

Slenderness Ratio ( L / r )

4 6 8 10 12 14 16 18 20

Fcr,Cosserat

 Fcr,Kirchhoff

0.8

0.85

0.9

0.95

1

Figure 4.3: This plot illustrates the ratio of the critical buckling loads obtained using the
Cosserat and Kirchhoff models as a function of slenderness ratio (total length over outer
radius) for a steel tube with a wall thickness equal to 10% of the outer radius in the pinned
case.
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assessing stability, the Kirchhoff incompressibility constraint gives rise to an indeterminate

special case (an “abnormal extremal”) in the case of a straight rod with two completely fixed

ends, as discussed in [12], while the Cosserat model avoids this complication by allowing axial

compression. All of these factors motivate our study of the full Cosserat model in order for

the approach and results to apply as generally as possible.

4.3 Coupled Planar Rods

Consider multiple planar Cosserat rods with their ends fixed to a rigid body as shown in

Figure 4.4. The ith rod has length Li and is described by a state vector xi = [pi θi]
> =

[pxi pyi θi]
> with state derivatives (with respect to arc length si) given by

∂xi
∂si

= f(si,xi,ui) (4.7)

and known initial state xi(0), where f(si,xi,ui) has the form given in (4.6). We assume

there is a globally defined wrench W applied at some reference point on the end-effector,

the location of which is constant in each of the reference frames defined by the terminal rod

poses, given by a known vector ri =
[
rix riy

]>
, so that the global location of the reference

x (0)i

px

py
pxe

pye

riW We

x (l )i i

w (t )i i

Figure 4.4: Multiple planar rods are constrained at their tips by a rigid body. The stability
of the structure depends on the coupled behavior of the rods.
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point pr is

pr = piL +Rz(θiL)ri,

where Rz(θi) denotes the standard two-dimensional rotation matrix associated with θi. For

simplicity, we restrict the rods to attach to the rigid body with the same angle, so that

θiL = θjL. The state is defined as x :=
[
x>1 ... x>n

]>
, and the terminal constraints are

written as a single function so that

β(xL) =
[
β>1 (x1L ,x2L) ... β>n−1(xn−1L ,xnL)

]>
= 0,

where

βi(xiL ,x(i+1)L) = xiL +


cos θiL − sin θiL

sin θiL cos θiL

0 0

 (ri − ri+1)− x(i+1)L .

The potential energy of the point-wrench W applied to the end effector is given by

φ(x1L) = −W>

x1L +


cos θ1L − sin θ1L

sin θ1L cos θ1L

0 0

 r1
 .

Note that the choice to use the first rod to locate the end-effector reference point was

arbitrary. The total potential energy of the system is then given by

J = φ(x1L) +
n∑
i=1

∫ Li

0

1

2

(
u>i Kiui −w>i xi

)
dsi.

We can rewrite this expression by expressing each integral in terms of a common integration

variable σ, where si = σLi and dsi = Lidσ:

J = φ(xL) +

∫ 1

0

n∑
i=1

1

2

(
u>i Kiui −w>i xi

)
Lidσ.
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The final step in reformulating this problem to fit the optimal control framework is to rewrite

the state derivatives with respect to σ as

xσ =


L1f 1 (s1(σ),x1,u1)

...

Lnfn (sn(σ),xn,un)


The minimization problem now fits the Bolza form.

4.3.1 First-Order Necessary Conditions

Applying the first-order conditions of a Bolza problem (4.3) then results in the boundary

value problem:

xiσ = Li


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




1 + ui1

ui2

ui3



λiσ = Li


−fix
−fiy

λi1 sin θi − λi2 cos θi − liz

 ,

where

ui = K−1i


cos θi sin θi 0

− sin θi cos θi 0

0 0 1

λi
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subject to

x(0) = x0

βi(xL) = 0

−Fx +
n∑
i=1

λi1L = 0

−Fy +
n∑
i=1

λi2L = 0

−Mz +
n∑
i=1

λi3L +
[
−λi2L λi1L

]
Rz(θiL)ri = 0.

We note that an equivalent formulation could be obtained in terms of derivatives with respect

to si as ∂xi/∂si = (∂xi/∂σ)/Li and ∂λi/∂si = (∂λi/∂σ)/Li, subject to the same boundary

conditions above.

4.3.2 Second-Order Sufficient Conditions and Validation

To apply our test for stability, we need to calculate the 3n × 3n matrix Eλ(σ) at all points

σ ∈ [0 1). By definition, Eλ(σ) can be written in block form as

Eλ(σ) =
[
Eλ1(σ) ... Eλn(σ)

]
,

where Eλi(σ) is a 3n× 3 matrix that can be calculated using the 6× 6 transition matrix of

the ith rod Φi:

Eλi(σ) =
∂E

∂xiL
(Φ−1i )12 +

∂E

∂λiL
(Φ−1i )22.

This formulation is efficient and modular; ∂E/∂xiL and ∂E/∂λiL are computed once for all

σ. Then, following (4.4), only the individual rod transition matrices are needed to compute

the full Eλ(σ) since each set of rod differential equations is decoupled from the others (the

coupling only happens through the boundary conditions).
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We can also compare the predictions of our approach to known results in the stability of

frame and truss structures. We consider the special case of straight, parallel rods of equal

length coupled by a rigid member at their distal ends, which is illustrated in Figure 4.5.

This coupled structure is known as a sway frame. For a sway frame with n parallel columns

of length L and bending stiffness EI, where the column pattern is symmetrical about the

center and the frame is subjected to a downward vertical load applied at the center of the

top, the in-plane critical buckling load is given by the analytical formula [21]

Pcr = n
EIπ2

L2
.

For 3 cylindrical columns with L = 1, E = 207 GPa, and a radius of 0.001 m, the critical

load is Pcr = 4.814N.

After applying our numerical approach to this same stability problem, we used a bisection

method to iteratively find the smallest load for which our stability test fails, and obtained

4.814N, agreeing with the known analytical result to four digits. Note that we do not

expect exact agreement in this case because we used axially compressible, shearable Cosserat

rod models in this section, and the analytical formula assumes an Euler elastica with no

axial compression or shear strain. However, due to the long, slender rod geometry chosen

P

P  = 3cr

2EIπ
2  L

Figure 4.5: In the case of initially straight rods, the optimal control approach can be
compared with analytical formulations for sway frames. The two methods are in agreement.
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for this particular example, bending dominates the behavior, and the effects of shear and

extension/compression are minimized, resulting in close agreement between our approach

and the analytical formula.

4.4 Extension to Spatial Rods

4.4.1 First-Order Necessary Conditions

We here provide a short derivation of the first-order necessary conditions for a spatial

Cosserat rod with general end constraints and conservative applied loads. The derivation

follows the same pattern as Section 4.1, with the addition of Euler-Poincaré reduction

following [45] because the rod state variable is not an element of a vector space as in the

planar case, but is rather a member of the Lie group SE(3). The Cosserat rod state variable

is a homogeneous transformation matrix T (s) ∈ SE(3), which has the form

T (s) =

R(s) p(s)

0 1

 .
The state differential equation is

T s = T ξ̂,

where ξ =
[
v> ω>

]>
is the body-frame twist associated with the arc length derivative of

T , composed of linear and angular components v and ω [69]. These are analogous to linear

and angular velocity, with derivatives with respect to arc-length instead of time. The ̂
symbol is overloaded to denote the standard isomorphic mapping from R6 to se(3) and ∨ is
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similarly overloaded as defined in [69], that is

ŷ =


0 −y6 y5 y1

y6 0 −y4 y2

−y5 y4 0 y3

0 0 0 0

 for y ∈ R6.

Assuming a linear constitutive equation, the energy density per unit length stored in the

rod’s deformation then has the form

U =
1

2
u>Ku,

where u(s) ∈ Rm is any set of kinematic strain variables that we wish to consider and

K(s) is the stiffness matrix associated with those strains. The twist ξ is a function of

u, and this framework naturally accounts for both the full Cosserat model (in which u =

ξ − [0 0 1 0 0 0]> for an initially straight rod with the z-axis of R pointing along the rod

axis andK = diag {GA,GA,EA,EIxx, EIyy, GIzz}) and the shearless inextensible Kirchhoff

model (in which v = [0 0 1]>, ω = u and K = diag {EIxx, EIyy, GIzz}).

The potential energy of a distributed force f(t) and point force F applied at t = tL is

V = −F>pL −
∫ L

0

f>p ds.

In contrast to our planar formulation, we here neglect any applied moments because constant

applied moments (defined in either body-frame or global frame) are known to be non-

conservative in the spatial case [126]. Stability analysis with non-conservative loadings

requires a different framework and definition of stability in terms of dynamics. There

are certain types of “rotation-dependent” moments that are conservative, but we will not

consider them here, and we note that many moment loadings can be closely approximated

by a suitably chosen distributed force. We can now state the optimal control problem for a
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spatial rod as

minimize J = φ(T L) +

∫ L

0

L(s,T ,u)ds

subject to
(
T−1T s

)∨
= ξ(u)

T (0) = T 0, β(T L) = 0

where

φ(T L) = −F>pL

L(s,T ,u) =
1

2
u>Ku− f>p,

and we assume that β(T L) contains p ≤ 6 independent constraints that can be satisfied

by some T L ∈ SE(3). For example, a full rotation constraint RL = I can be expressed

minimally by β(T L) = (log (RL))∨ = 0, for which p = 3.

One main difference between the problem statement above and that in (4.1) is that the

state differential equations are written in their reduced form on the vector space R6 rather

than on SE(3). As discussed by Holm in [45], this allows us to employ a reduced Lagrange

multiplier vector λ ∈ R6 to enforce the differential constraints and leads to the correct first-

order conditions on the manifold. In [22], Chirkjian arrives at the same final equations (The

Euler-Poincaré equations) by equivalently using the unreduced equations and the appropriate

group law to formulate the variations. The augmented cost function is then

J ′ = G+

∫ L

0

[
H + λ>

(
T−1T s

)∨]
ds,

where the Hamiltonian is

H(s,T ,u,λ) = L(s,T ,u)− λ>ξ(u)

and the augmented terminal cost function is

G(T L,ν) = φ(T L) + ν>β(T L).
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Now the first variation of J ′ can be written as

δJ ′ =tr (GTLδT L) + β>(T L)δν∫ L

0

(
Huδu+

(
Hλ −

(
T−1Ṫ

)∨T)
δλ

+ tr (HT δT ) + λ>δ
(
T−1Ṫ

)∨ )
ds,

where tr denotes the matrix trace operator, and the partial derivative of a scalar with respect

to a matrix is defined as

HT =
∂H

∂T
=

[
∂H

∂T i,j

]>
,

using consistent numerator layout. As discussed in [45] Chapter 7, this trace pairing between

a matrix partial derivative and the matrix variation provides the correct expression for

the resulting scalar variation. As also detailed in [45] (Equation 7.34), δ
(
T−1Ṫ

)∨
can be

expressed as

δ
(
T−1Ṫ

)∨
= ˙δΣ +

(
ξ̂δ̂Σ− δ̂Σξ̂

)∨
= ˙δΣ + adξδΣ,

where δΣ =
(
T−1δT

)∨
and

adξ =

ω̂ v̂

0 ω̂

 .
Thus, δT is completely captured by the reduced variation δΣ ∈ R6 as δT = T δ̂Σ, so we can

write

tr (HT δT ) =tr
(
HTT δ̂Σ

)
= −

[
(f>R) 0

]
δΣ

tr (GTLδT L) =tr
(
GTLT Lδ̂ΣL

)
= C(T L,ν)δΣL,

where

C(T L,ν) =
[
GpLRL

(
R>G>RL −GRLR

)∨T]
.
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The above expression for C(T L,ν) is consistent with the same calculation performed in [45]

section 7.2, though notational choices make this unapparent at first ([45] uses denominator

layout for matrix partial derivatives and defines the “breve” map as 1
2

of the hat map).

Subbing these results in and integrating by parts, we get

δJ ′ =
(
C(T L,ν) + λ>f

)
δΣf + β(T L)>δν∫ L

0

(
Huδu+

(
Hλ −

(
T−1Ṫ

)∨T)
δλ(

−
[
f>R 0

]
− λ̇> + λ>adξ

)
δΣ
)
ds,

where we have used λ>0 δΣ0 = 0. A necessary condition for local optimality is that δJ ′ = 0

for any δu, δλ, δT and dν. Thus, we choose Lagrange multipliers so that

Ṫ = T ξ̂(u)

λ̇ = ad>ξ(u)λ−

R>f
0


u = K−1ξ>uλ

T (0) = T 0

β(T L) = 0

λL = −C>(T L,ν).

The second differential equation above is equivalent to the classical equilibrium differential

equations describing internal force and moment (in body-frame coordinates) in Cosserat rod

theory, as follows:

(nb)s = −ω̂nb −R>f

(mb)s = −ω̂mb − v̂nb.

Thus, the internal force vector nb is equivalent to λ1−3 and the internal moment vector mb

is equivalent to λ4−6.
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As described in Section 4.1, we can pre-multiply both sides of λL = −C> by P> where

P is a matrix whose columns form an orthonormal basis for the nullspace of Cν = ∂C
∂ν

. This

eliminates ν from the equations and provides a reduced set of 6− p boundary conditions for

λL. This results in a general set of terminal boundary conditions of the form

E(T L,λL) =

 β(T L)(
P>λL + P>C>

)
 = 0,

where E : SE(3)× R6 → R6.

4.4.2 Second-Order Sufficient Conditions

The second-order conditions can be obtained by restricting all admissible comparison paths

to SE(3) and determining whether any are neighboring optimal paths. This requires only

a slight modification to the calculation of det
(
Eλ(s)

)
, which we will subsequently check for

zeros on the interval [0 L). Recognizing that δT = T δ̂Σ, we define a reduced transition

matrix Φ(s, L) as δΣ(s)

δλ(s)

 = Φ(s, L)

δΣL

δλL

 . (4.8)

Φ(s, L) can be obtained by integrating the following differential equation from L to s, starting

at Φ(L,L) = I:

Φ̇ =

−adξ ξuK
−1ξ>u

0 ad>ξ + cdλξuK
−1ξ>u

Φ +M ,

where cdλ is defined as

cdλ =

 0 λ̂1−3

λ̂1−3 λ̂4−6
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such that cdxy = ad>yx for all x,y ∈ se(3), and

M=


06×12

(RΦ4−6,1)
∧ f . . . (RΦ4−6,12)

∧ f

03×12

 .

The above formulation is valid for both the Cosserat and Kirchhoff models.

δEi can be expressed as

δEi =tr

(
∂Ei
∂T L

δT L

)
+
∂Ei
∂λL

δλL

=tr

(
∂Ei
∂T L

T Lδ̂ΣL

)
+
∂Ei
∂λL

δλL

=diδΣL +
∂Ei
∂λL

δλL,

where

di =

[
∂Ei
∂pL
RL

(
R>

(
∂Ei
∂RL

)>
− ∂Ei

∂RL
RL

)∨T]

is a row vector. Thus, Eλ(s) is given by

Eλ(s) =D
∂ΣL

∂λ(s)
+

∂b

∂λL

∂λL
∂λ(s)

=D
(
Φ−1

)
12

+
∂b

∂λL

(
Φ−1

)
22
,

(4.9)

where the ith row of matrix D is di, and
(
Φ−1

)
12

and
(
Φ−1

)
22

denote the upper right and

lower right 6× 6 blocks of Φ−1(s, L), respectively, with Φ(s, L) as defined in (4.8). ∂E
∂λL

and

each row of D can be easily obtained analytically by direct differentiation of E(T L,λL) or

approximated by finite differences.

An alternative way to compute Φ(s, L) is to approximate it numerically by a finite

difference procedure. We can increment a final variable by a numerically small amount ∆,

integrate the model equations backwards to get the associated changes at t, and divide by

the increment to obtain a column of Φ(s, L), with the following two modifications:
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� For the columns of Φ(s, L) corresponding to δΣL, the increment in T L is generated by

choosing a ∆ΣL and calculating ∆T L = T L∆̂ΣL.

� For the rows of Φ(s, L) associated with δΣ(s), the change in Σ(s) is calculated as

∆Σ(s) =
(
T−1(s)∆T (s)

)∨
.

4.5 Parallel Continuum Robots

Following our development of the coupled planar rods case in Section 4.3, we now extend

that approach to the spatial case to formulate the first-order necessary conditions for spatial

parallel continuum robots and apply our stability test. We consider multiple Cosserat rods

with their terminal ends attached to a rigid body, again representing a spatial parallel

continuum robot with an end-effector as shown in Figure 4.6.

pz

px
py

F

f (t)i

Figure 4.6: Spatial rods are constrained by a rigid body to form a single structure. The
rods have rigid attachments to the ground and the body. There is some point force on the
rigid body, and the rods are subject to distributed forces.
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The ith rod has length li and is described by a state variable T i =

Ri pi

0 1

 ∈ SE(3)

with state derivatives (with respect to arc length si) given by

dT i

dsi
= T iξ̂i(ui) (4.10)

and known initial state T i(0) = T i0. Our full state variable is then the set x =
{
T>1 ... T>n

}>
with derivatives given by (4.10). Defining ri as the fixed location of the ith terminal rod end

with respect to the end-effector frame T e =

Re pe

0 1

 ∈ SE(3), the global positions of

the rod ends would be

piL = pe +Reri.

We also consider that each terminal rod orientation RiL is constrained to equal to the end-

effector orientation as

(
log
(
R>e RiL

))∨
= 0.

Since the end effector frame is not known a priori, we must eliminate pe and Re from the

relations above to obtain 5n constraint equations:

βi(T L) =

piL − p1L −R1L (ri − r1)(
log
(
R>1LRiL

))∨
 = 0

for i = 2 : n.

We assume there is a globally defined force F applied at the origin of the end-effector

frame. The potential energy of this loading is then

φ(T L) = −F>pe = −F> (p1L −R1Lr1) .
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The total potential energy of the system is then given by

J = φ(xL) +
n∑
i=1

∫ Li

0

1

2

(
u>i Kiui − f>i pi

)
dsi,

where f i ∈ R3 is the global distributed force on rod i. Similar to the planar case, we rewrite

this expression by expressing each integral in terms of a common integration variable σ,

where si = σLi and dsi = Lidσ,

J = φ(xL) +

∫ 1

0

n∑
i=1

1

2

(
u>i Kiui − f>i pi

)
Lidσ

and rewrite the state derivatives with respect to σ as

xσ =


L1T 1ξ̂1(u1)

...

LnT nξ̂n(un)

 .

Following the development in Section 4.4, the first-order necessary conditions are then

T iσ = LiT iξ̂i(ui)

λiσ = Li

ad>ξi(ui)λi −

R>i f i
0


ui = K−1i

∂ξi
∂ui

>
λi

T i(0) = T i0

β(T L) = 0

0 = −F +
n∑
i=1

RiLλi1−3L

0 = −
n∑
i=1

[λi4−6L + ri × λi1−3L] .

Except for the rigid rod attachments as opposed to shaft collars, this is the same as the

system derived in Chapter 2.2.
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4.5.1 Second-Order Sufficient Conditions

The stability test for coupled spatial rods parallels our development of the coupled planar

rods case in Section 4.3.2. We need to calculate the 6n × 6n matrix bλ(σ) at all points

σ ∈ [0 1). Again, Eλ(σ) can be written in block form as

Eλ(σ) =
[
Eλ1(σ) ... Eλn(σ)

]
,

where Eλi(σ) is a 6n× 6 matrix which can be calculated using the 6× 6 transition matrix of

the ith rod Φi as follows:

Eλi(σ) = Di(Φ
−1
i )12 +

∂E

∂λiL
(Φ−1i )22,

where Di is the D matrix for rod i as in (4.9).

Thus, after finding a solution for the first-order conditions, the conjugate point test is

performed by solving for the transition matrices of each individual rod Φi(σ), computing

Di and EλL,i from the BVP, calculating Eλ(σ), and checking for singularities in Eλ(σ) at

a large number of discrete points over 0 ≤ σ < 1.

4.6 Validation and Application

We implemented a C++ algorithm that solves the first-order optimality conditions for a

parallel continuum robot and subsequently performs our second-order Jacobi conjugate-point

test. We used a shooting method comprised of classical 4th-order Runge-Kutta integration

of the first-order necessary conditions of a single rod and Levenberg-Marquardt optimization

for the coupled boundary-value constraints as described in [13, 110]. Figure 4.7 shows the

physical robot, the model solution, and the Jacobi conjugate-point test for an example

configuration. The conjugate point test is performed as described in Section VI. The test

computation time is about 2 milliseconds for a model with 40 fourth-order Runge-Kutta

steps per rod on an Intel i7-4770 processor. Figure 4.7 shows a translation movement of
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Stable Model
Solution

Unstable Model
Solution

ActualActual

Conjugate-Point Test Conjugate-Point Test

σ σ

|bλ| |bλ|
Conj. Pt.

Figure 4.7: On the left, a model solution of the first-order necessary conditions represents
a stable configuration as evidenced by the absence of any conjugate points on the interval.
The physical robot configuration is stable and corresponds to the stable model solution. On
the right, a model solution to the first-order necessary equations is shown to be unstable
and thus not physically achievable (not a local energy minimizer) as evidenced by the first
conjugate point on the interval (indicated by the circle). The physical robot (under the
same actuation conditions) is of course at a stable configuration, but it arrived there after
an unstable transition.
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the robot during which our test predicts instability at the same moment when the physical

robot shape diverges from the model solution. The accompanying video shows a detailed

time-lapse breakdown of this case.

4.6.1 Calibration and Measurement

We performed a simple calibration procedure with a cantilevered spring steel (ASTM A228)

rod to determine the equivalent Young’s modulus of the rods in our prototype robot as shown

in Figure 4.8. Taking the length, radius, and tip load as known constants, we measured the

vertical tip deflection with calipers and used the bisection method to determine the correct

Young’s modulus which causes the model to predict the measured displacement of 52.27mm.

This turned out to be E = 183.41 GPa. We assumed a Poisson’s ratio of 0.3, which results

in a shear modulus of 70.54 GPa.

Tracking marker rigid transformations were calibrated by comparing the model-based

simulated end-effector pose with the true end-effector pose as determined by a MicronTracker

3 stereoscopic camera model XB3-BW-H360 from Claron Technology, Inc. Tracking markers

147.15mm

52.27mm

Ø1.40mm

m = 0.2kg

Length dimensions measured with calipers,
mass dimension subject to ANSI/ASTM Class 7 tolerances

Figure 4.8: Two rods with diameter 1.40mm were clamped to form cantilevers of equal
length 147.15mm. A mass of 0.2kg was attached at the distal end of a rod and the vertical
displacement was 52.27mm. The mass was known within ANSI/ASTM Class 7 tolerances
and lengths were measured with calipers. The resulting Young’s modulus was 183.41 GPa.
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were placed at the base and end effector so that the relative transformation between the two

could be measured. The position offsets from robot frames to tracker marker frames were

measured with calipers, while the rotation offsets were optimized to minimize the rotation

error described by (4.11).

4.6.2 Experimental Validation

We performed experiments in which we commanded the robot to move from a stable

configuration along several precomputed paths in actuation space that produced an unstable

model configuration during quasistatic simulation. The weight of the rods, platform, and

markers was considered negligible during the precomputation stage when the motion paths

were generated.

Six motions were performed– pure translation in the x and y directions, pure rotation

about the x, y, and z axes, and translation in the x-axis with simultaneous rotation about

the y-axis (a bending motion). This set of motions was repeated at three different heights:

pz = 0.2m, 0.25m, 0.3m. Each trial at a specific height was repeated five times to evaluate

repeatability. The results of these trials are shown in Figure 4.9. The errors are calculated

by:

Position Error = ‖psim − pmeas‖

Rotation Error =
∥∥∥[log

(
RsimR

>
meas

)]∨∥∥∥ . (4.11)

As the reader may infer from the graphs in Figure 4.9, large-scale pose transitions are

observed for pure translations in the x and y directions and pure rotation about the z-axis.

The numerical conjugate-point test triggered in close proximity to these buckling events.

The accompanying video shows a detailed breakdown for the experimental translation in the

x translation case.

The experiments were also informative in the other three cases where large-scale unstable

pose transitions were not observed. In the lower three tests of Figure 4.9, the errors remain

low despite the appearance of conjugate points (except for X-Rotation, in which no conjugate

points appeared). This discrepancy could be due to small construction and assembly
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Figure 4.9: The robot was either translated or rotated toward a conjugate point, and in the
lower right case, there was a simultaneous translation and rotation such that the rotation in
radians was 5.4 times the translation in meters. The model pose was compared against the
actual robot pose as measured by a stereoscopic camera. The six motions were performed at
three different heights pz. For each motion at a specific height, the motion was repeated five
times, and the mean error is shown with the standard deviation. In every case where the two
metrics suddenly diverged, this corresponded to the presence of a conjugate point. Thus,
the conjugate point test is effective for assessing stability. However, the conjugate point test
is conservative in that it can detect instability even when large-scale pose transitions do not
occur, as seen in the bottom three cases.
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tolerances because the stability boundary could be sensitive to small changes in these

parameters, as discussed in the next section. Note also that instability does not necessarily

imply a large dynamic pose divergence. The experiment is limited to measurements in

the finite-dimensional space SE(3), but an unstable transition can be subtle and primarily

affecting a rod’s continuous path as opposed to being manifested at the end effector where

the pose is measured.

In addition to quantifiable data, observations of the robot may yield insight. The three

cases with large errors exhibited a steady increase in the error rather than a sudden one.

For the three cases where the error did not drastically increase, there was also no significant

deviation between the model configuration and the physical robot, although perturbing the

robot in these configurations resulted in large vibrations of the system with very long settling

times, indicating a system on the verge of stability.

4.6.3 Sensitivity to Parameters

In practice, we may be concerned about the behavior of the conjugate-point test with

respect to changes in joint variables (studied above) and also changes in external loading

and other problem parameters such as Young’s Modulus. Even in classical column buckling

problems, the practical buckling limit is significantly lower than the theoretical buckling

limit when minor load eccentricities are considered. We demonstrate sensitivity of robot

stability to end-effector loads in the three directions in Figure 4.10 by plotting a region of

the stability boundary (as computed by a brute-force simulation using our numerical test)

for our continuum Stewart-Gough robot in a configuration with equal leg lengths. The figure

shows that for approximately vertical loads, small changes in load direction can greatly affect

the magnitude of the critical load, as is the case for classic straight column buckling.

Avoiding instability in the presence of such parameter sensitivity is a difficult problem.

One potential solution is to simulate a small change in every parameter affecting the robot

(e.g. actuator positions, external loads, elastic moduli, etc.) to determine if small errors or

movements in these values would result in instability. Such a discretized test would probably

result in safer operation, but it could still fail to rigorously guarantee detection of impending
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Region of the Stability Boundary
(Left: Scaled, Right: Equal Axes)

Fz (N)

Fx (N)Fy (N)

Figure 4.10: A region of the stability boundary with respect to 3D end-effector forces
was generated for a continuum Stewart-Gough robot having equal leg lengths using a brute-
force search. The stability boundary has an elongated, conical shape, indicating that for
approximately vertical loads, small changes in load direction can greatly affect the magnitude
of the critical load.
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instabilities, and it still would not contain any information about how “far” the system is

from instability.

We also investigated the sensitivity of conjugate point location to variations in Young’s

modulus. This was explored in simulation, as shown in Figure 4.11. Two configurations were

considered– the nominal configuration where all legs have equal arc length of 0.3m and a bent

configuration where the legs were given arc lengths of L =
[
0.32 0.32 0.30 0.29 0.29 0.30

]
m. The derivative of the conjugate point location with respect to Young’s modulus dσc/dE,

with units of GPa−1, was found for various compressive loads by a first order finite difference

of σc(E,Fz). The results show that the derivative has a small magnitude and near-linear

behavior and that the sensitivity to Young’s modulus is zero when the load is zero. This

is intuitive because changing Young’s modulus merely scales the energy functional in the

unloaded case.

0 1 2 3 4 5 6 7 8 9
Compressive Load (N)

-3

-2.5

-2

-1.5

-1
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0

d
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dE
  (

G
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a-1
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10-4 Stability Sensitivity to Young`s Modulus vs. Applied Force

Nominal
Bent

Figure 4.11: The sensitivity of conjugate point location with respect to stiffness was studied
in simulation for two configurations under varying compressive load. The magnitude of
dσc/dE is relatively small, indicating that measurement errors in the stiffness calculation
would have a minor impact.
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4.6.4 Use of a Stability Heuristic

In addition to detecting if a conjugate point falls inside the integration interval, it can be

helpful to consider the location σcp where a conjugate point occurs, even if σcp falls outside

the interval [0 1) (σcp < 0). In this case, the value d = −σcp indicates nearness to a critically

stable system state with respect to changes in integration length. Using d as a heuristic

stability metric, one could numerically compute the sensitivity (gradient) of d to changes

in any problem parameters (e.g. actuator positions, external loads, elastic moduli, etc.)

via finite difference approximations using the same sampling technique described above.

Combined with knowledge of parameter uncertainty, this sensitivity vector could be used to

obtain an estimation of how much change in each parameter (and in what direction) can be

tolerated before the system becomes unstable. However, we note again that this heuristic

should be used with caution because we have not proven that conjugate point location is

continuous in every possible problem parameter. We leave further exploration of this topic

to future work.

4.7 Conclusion

Starting from a rich literature on optimal control and stability assessment, we have derived a

sufficient numerical test for the stability of Cosserat rods with arbitrary terminal constraints,

including the multi-rod structures of parallel continuum robots. We validated the approach

in simulation by comparing our results to classical results in the special cases of straight

column buckling and sway frame buckling. We have further implemented the test to assess

stability of a 6 DOF prototype parallel continuum robot, and the experimental data supports

the effectiveness of the test.

Parallel continuum robot research and applications were previously hindered by the

inability to recognize unstable model solutions. Our test provides this capability, which

will enable robust model-based design, motion planning, and control in future work toward

applications in robotic surgery and human-robot interaction. We also hope that other

applications in robotics and elsewhere will benefit from our simple and general derivation
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of the first- and second-order conditions for spatial elastic rods with arbitrary terminal

constraints. For example, our approach could be adapted to assess the stability of other

continuum robots and long, elastic objects in cases whenever partial end-pose constraints

or coupling occur, such as contact with rigid fixtures or two robots manipulating the same

object.
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Chapter 5

Conclusions

Mathematical models of continuum robots may be used to predict and control robot motions.

Dynamic behaviors can be accurately simulated at interactive rates with an appropriate

discretization strategy and a careful implementation. The scheme employed here of implicit

time semi-discretization and spatial shooting is accurate, efficient, and generalizes well to

various classes of continuum robot. The approach to static and dynamic problems is unified

since solving for a static robot state utilizes the same process as solving a single time-step of

the dynamics problem. The elastic stability of robots may be studied by dynamic simulation

or variational approaches.

5.1 Potential Future Work

While the topic of forward dynamic simulation has been addressed, dynamic control is a

subject for future work. With dynamic control schemes one could accomplish manipulation

tasks faster than quasi-static control schemes allow, and possibly provide stabilizing control

inputs to unstable robots. However, it should be noted that boundary control of nonlinear

PDE systems is nontrivial.

In general the issue of environmental and self-contact constraints has been ignored in this

dissertation. For some tasks this omission is acceptable since contact is not likely to occur,

e.g. parallel continuum robot teleoperation. However, contact is of theoretical interest and

practically relevant for many tasks. The shooting approach may be fundamentally poorly
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suited to model contacts at arbitrary locations since the robot connectivity graph is unknown

for such problems. Investigation of arbitrary continuous-contact models and discretizations

would likely be an appropriate topic for future works.

Much of the effort required to implement a continuum robot simulation comes from

the tedium of implementing a discretized model in an imperative programming language.

The differential equations and boundary conditions describing a continuum robot are terse

compared to the hundreds or thousands of lines of code which ultimately define an imperative

program to simulate a robot. A mathematical declarative-programming paradigm has the

potential to close this gap, simultaneously reducing implementation effort and allowing a

greater focus on the mathematical principles which are the core of the robot model.
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Dynamic Characterization and Simulation of Two-link Soft Robot Arm with Pneumatic

Muscles. Mechanism and Machine Theory, 103:98–116. 76

[49] Hull, D. G. (2003). Optimal Control Theory for Applications. Mechanical Engineering

Series. Springer New York, New York, NY. 102, 103, 104, 105

[50] Jo, J.-W. and Prussing, J. E. (2000). Procedure for Applying Second-Order Conditions

in Optimal Control Problems. Journal of Guidance, Control, and Dynamics, 23(2):241–

250. 104

[51] Katzschmann, R. K., de Maille, A., Dorhout, D. L., and Rus, D. (2016). Cyclic

Hydraulic Actuation for Soft Robotic Devices. In 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 3048–3055. IEEE. 76

[52] Kazanzides, P., Chen, Z., Deguet, A., Fischer, G. S., Taylor, R. H., and DiMaio, S. P.

(2014). An Open-source Research Kit for the da Vinci® Surgical System. In 2014 IEEE

International Conference on Robotics and Automation (ICRA), pages 6434–6439. IEEE.

146



21

[53] Lan, C.-C. and Lee, K.-M. (2006). Generalized Shooting Method for Analysing

Compliant Mechanisms with Curved Members. Journal of Mechanical Design, 128(July

2006):765–775. 6

[54] Lan, C. C., Lee, K. M., and Liou, J. H. (2009). Dynamics of Highly Elastic Mechanisms

Using the Generalized Multiple Shooting Method: Simulations and Experiments.

Mechanism and Machine Theory, 44(12):2164–2178. 6

[55] Lang, H., Linn, J., and Arnold, M. (2011). Multi-body Dynamics Simulation of

Geometrically Exact Cosserat Rods. Multibody System Dynamics, 25(3):285–312. 5

[56] Lazarus, A., Miller, J., and Reis, P. (2013). Continuation of Equilibria and Stability of

Slender Elastic Rods Using an Asymptotic Numerical Method. Journal of the Mechanics

and Physics of Solids, 61(8):1712–1736. 8

[57] Lee, J., Kim, J., Lee, K.-K., Hyung, S., Kim, Y.-J., Kwon, W., Roh, K., and Choi,

J.-Y. (2014). Modeling and Control of Robotic Surgical Platform for Single-port Access

Surgery. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 3489–3495. IEEE. 3

[58] Li, C. and Rahn, C. D. (2002). Design of Continuous Backbone, Cable-Driven Robots.

Journal of Mechanical Design, 124(2):265. 8

[59] Linn, J., Lang, H., and Tuganov, A. (2012). Geometrically Exact Cosserat Rods with

Kelvin-Voigt Type Viscous Damping. Mechanical Sciences, 4(1):79–96. 43, 87

[60] Maddocks, J. (1984). Stability of Nonlinearly Elastic Rods. Archive for Rational

Mechanics and Analysis, 85(4):311–354. 8

[61] Mahl, T., Hildebrandt, A., and Sawodny, O. (2014). A Variable Curvature Continuum

Kinematics for Kinematic Control of the Bionic Handling Assistant. IEEE Transactions

on Robotics, 30(4):935–949. ix, 2, 3

[62] Mahony, R., Kumar, V., and Corke, P. (2012). Multirotor Aerial Vehicles: Modeling,

Estimation, and Control of Quadrotor. IEEE Robotics & Automation Magazine, 19(3):20–

32. 11

147



[63] Majidi, C., O’Reilly, O. M., and Williams, J. A. (2013). Bifurcations and Instability in

the Adhesion of Intrinsically Curved Rods. Mechanics Research Communications, 49:13–

16. 8

[64] Matthews, D. and Bretl, T. (2012). Experiments in Quasi-static Manipulation of a

Planar Elastic Rod. In 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 5420–5427. IEEE. 9

[65] McMahan, W., Chitrakaran, V., Csencsits, M., Dawson, D., Walker, I., Jones, B., Pritts,

M., Dienno, D., Grissom, M., and Rahn, C. (2006). Field Trials and Testing of the OctArm

Continuum Manipulator. In Proceedings 2006 IEEE International Conference on Robotics

and Automation, 2006. ICRA 2006., pages 2336–2341. IEEE. ix, 2, 3

[66] Mehling, J., Diftler, M., Chu, M., and Valvo, M. (2006). A Minimally Invasive Tendril

Robot for In-Space Inspection. In The First IEEE/RAS-EMBS International Conference

on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006., pages 690–695. IEEE.

3

[67] Mochiyama, H., Kinoshita, A., and Takasu, R. (2013). Impulse Force Generator Based

on Snap-through Buckling of Robotic Closed Elastica: Analysis by Quasi-Static Shape

Transition Simulation. In 2013 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 4583–4589. IEEE. 8

[68] Morimoto, T. K. and Okamura, A. M. (2016). Design of 3-D Printed Concentric Tube

Robots. IEEE Transactions on Robotics, 32(6):1419–1430. 1

[69] Murray, R. M., Li, Z., and Sastry, S. (1994). A Mathematical Introduction to Robotic

Manipulation. CRC Press. 11, 84, 119, 120

[70] Nizette, M. and Goriely, A. (1999). Towards a Classification of Euler-Kirchhoff

Filaments. Journal of Mathematical Physics, 40(6):2830–2866. 31

[71] Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer. 27

[72] Oliver-Butler, K., Epps, Z. H., and Rucker, D. C. (2017). Concentric Agonist-Antagonist

Robots for Minimally Invasive Surgeries. In Webster, R. J. and Fei, B., editors, Proc.

SPIE 10135, Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and

Modeling, volume 10135, page 1013511. International Society for Optics and Photonics.

148



ix, 2

[73] Oliver-Butler, K., Till, J., and Rucker, C. (2019). Continuum Robot Stiffness Under

External Loads and Prescribed Tendon Displacements. IEEE Transactions on Robotics,

In Press:1–17. 2, 39, 67, 70

[74] Onal, C. D., Chen, X., Whitesides, G. M., and Rus, D. (2017). Soft Mobile Robots with

On-Board Chemical Pressure Generation. In Robotics Research, pages 525–540. Springer,

Cham. 76

[75] O’Reilly, O. M. and Peters, D. M. (2011). Nonlinear Stability Criteria for Tree-like

Structures Composed of Branched Elastic Rods. Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, 468(2137). 8, 9

[76] Orekhov, A. L., Aloi, V. A., and Rucker, D. C. (2017). Modeling Parallel Continuum

Robots with General Intermediate Constraints. In 2017 IEEE International Conference

on Robotics and Automation (ICRA), pages 6142–6149. IEEE. 2

[77] Orekhov, A. L., Black, C. B., Till, J., Chung, S., and Rucker, D. C. (2016). Analysis

and Validation of a Teleoperated Surgical Parallel Continuum Manipulator. IEEE Robotics

and Automation Letters, 1(2):828–835. ix, 2, 20, 36, 37

[78] Orekhov, A. L., Bryson, C. E., Till, J., Chung, S., and Rucker, D. C. (2015). A

Surgical Parallel Continuum Manipulator with a Cable-driven Grasper. In 2015 37th

Annual International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pages 5264–5267. IEEE. 2, 20, 36

[79] Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K.,

Cianchetti, M., Tolley, M. T., and Shepherd, R. F. (2017). Soft Robotics: Review of Fluid-

Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in

Human-Robot Interaction. Advanced Engineering Materials, 19(12). 76

[80] Ponten, R. (2017). Design of a Robotic Instrument Manipulator for Endoscopic

Deployment. PhD thesis, University of Tennessee, Knoxville. 2

[81] Ponten, R., Black, C. B., Russ, A. J., and Rucker, D. C. (2017). Analysis of a Concentric-

Tube Robot Design and Feasibility for Endoscopic Deployment. In Webster, R. J. and

Fei, B., editors, Proc. SPIE 10135, Medical Imaging 2017: Image-Guided Procedures,

149



Robotic Interventions, and Modeling., volume 10135, page 1013514. International Society

for Optics and Photonics. 2

[82] Prussing, J. E. and Sandrik, S. L. (2005). Second-Order Necessary Conditions and

Sufficient Conditions Applied to Continuous-Thrust Trajectories. Journal of Guidance,

Control, and Dynamics, 28(4):812–816. 104

[83] Renda, F., Boyer, F., Dias, J., and Seneviratne, L. (2017). Discrete Cosserat Approach

for Multi-Section Soft Robots Dynamics. arXiv:1702.03660. 5

[84] Renda, F., Cacucciolo, V., Dias, J., and Seneviratne, L. (2016). Discrete Cosserat

Approach for Soft Robot Dynamics: A New Piece-wise Constant Strain Model with

Torsion and Shears. In 2016 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 5495–5502. IEEE. 5

[85] Renda, F., Cianchetti, M., Giorelli, M., Arienti, A., and Laschi, C. (2012). A 3D Steady-

State Model of a Tendon-Driven Continuum Soft Manipulator Inspired by the Octopus

Arm. Bioinspiration & Biomimetics, 7(2):025006. 4, 5

[86] Renda, F., Giorelli, M., Calisti, M., Cianchetti, M., and Laschi, C. (2014). Dynamic

Model of a Multibending Soft Robot Arm Driven by Cables. IEEE Transactions on

Robotics, 30(5):1109–1122. 5

[87] Riojas, K. E., Hendrick, R. J., and Webster, R. J. (2018). Can Elastic Instability Be

Beneficial in Concentric Tube Robots? IEEE Robotics and Automation Letters, 3(3):1624–

1630. xiii, 8, 80, 89, 91, 95

[88] Rivera, J. A. and Kim, C. J. (2014). Spatial Parallel Soft Robotic Architectures. In 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 548–553.

IEEE. 2, 9, 113

[89] Rivera-Serrano, C. M., Johnson, P., Zubiate, B., Kuenzler, R., Choset, H., Zenati, M.,

Tully, S., and Duvvuri, U. (2012). A Transoral Highly Flexible Robot. The Laryngoscope,

122(5):1067–1071. 3

[90] Robinson, G. and Davies, J. (1999). Continuum Robots - A State of the Art. In

Proceedings 1999 IEEE International Conference on Robotics and Automation, volume 4,

pages 2849–2854. IEEE. 1

150



[91] Rone, W. S. and Ben-Tzvi, P. (2014). Continuum Robot Dynamics Utilizing the

Principle of Virtual Power. IEEE Transactions on Robotics, 30(1):275–287. 5

[92] Rucker, C. (2018). Integrating Rotations using Non-Unit Quaternions. IEEE Robotics

and Automation Letters, 3(4):2979–2986. 18, 89

[93] Rucker, D. C. (2011). The Mechanics of Continuum Robots: Model-based Sensing and

Control. PhD thesis, Vanderbilt University. ii, 5

[94] Rucker, D. C., Jones, B. A., and Webster III, R. J. (2010a). A Geometrically Exact

Model for Externally Loaded Concentric-Tube Continuum Robots. IEEE Transactions on

Robotics, 26(5):769–780. 4, 5, 7, 37, 82

[95] Rucker, D. C. and Webster, R. J. (2011). Computing Jacobians and Compliance

Matrices for Externally Loaded Continuum Robots. In 2011 IEEE International

Conference on Robotics and Automation, pages 945–950. IEEE. 7, 106

[96] Rucker, D. C., Webster, R. J., Chirikjian, G. S., Cowan, N. J., and Cowan, N. J. (2010b).

Equilibrium Conformations of Concentric-tube Continuum Robots. The International

Journal of Robotics Research, 29(10):1263–1280. 8

[97] Rucker, D. C. and Webster III, R. J. (2011). Statics and Dynamics of Continuum Robots

With General Tendon Routing and External Loading. IEEE Transactions on Robotics,

27(6):1033–1044. ix, 2, 4, 5, 7, 41, 62, 67

[98] Rus, D. and Tolley, M. T. (2015). Design, Fabrication and Control of Soft Robots.

Nature, 521(7553):467–475. 4

[99] Shaikh, S. N. and Thompson, C. C. (2010). Natural Orifice Translumenal Surgery:

Flexible Platform Review. World Journal of Gastrointestinal Surgery, 2(6):210–6. 3

[100] Shampine, L. F. and Reichelt, M. W. (1997). The MATLAB ODE Suite. SIAM Journal

on Scientific Computing, 18(1):1–22. 18

[101] Shi, Y., Borovik, A. E., and Hearst, J. E. (1995). Elastic Rod Model Incorporating

Shear and Extension, Generalized Nonlinear Schrödinger Equations, and Novel Closed-

form Solutions for Supercoiled DNA. The Journal of Chemical Physics, 103(8):3166–3183.

31

151



[102] Shi, Y. and Hearst, J. E. (1994). The Kirchhoff Elastic Rod, the Nonlinear Schrödinger

Equation, and DNA Supercoiling. The Journal of Chemical Physics, 101(6):5186–5200.

31

[103] Simaan, N., Xu, K., Kapoor, A., Wei, W., Kazanzides, P., Flint, P., and Taylor, R.

(2009). Design and Integration of a Telerobotic System for Minimally Invasive Surgery of

the Throat. The International Journal of Robotics Research, 28(9):1134–1153. 2

[104] Spillmann, J. and Teschner, M. (2007). CORDE: Cosserat Rod Elements for the

Dynamic Simulation of One-Dimensional Elastic Objects. In Eurographics/SIGGRAPH

Symposium on Computer Animation. 4, 5, 8

[105] Steigmann, D. J. and Faulkner, M. G. (1993). Variational Theory for Spatial Rods.

Journal of Elasticity, 33(1):1–26. 8

[106] Sueda, S., Jones, G. L., Levin, D. I. W., and Pai, D. K. (2011). Large-scale Dynamic

Simulation of Highly Constrained Strands. ACM Transactions on Graphics, 30(4):1. 5

[107] Tang, W., Lagadec, P., Gould, D., Wan, T. R., Zhai, J., and How, T. (2010). A Realistic

Elastic Rod Model for Real-time Simulation of Minimally Invasive Vascular Interventions.

Visual Computer, 26(9):1157–1165. 5

[108] Tang, W., Wan, T. R., Gould, D. A., How, T., and Nigel, J. W. (2012). A Stable and

Real-Time Nonlinear Elastic Approach to Simulating Guidewire and Catheter Insertions

Based on Cosserat Rod. IEEE Transactions on Biomedical Engineering, 59(8):2211–2218.

5

[109] Till, J., Aloi, V., and Rucker, C. (2019a). Real-Time Dynamics of Soft and Continuum

Robots based on Cosserat-Rod Models. International Journal of Robotics Research, In

Press. 8, 19, 39, 50, 52

[110] Till, J., Bryson, C. E., Chung, S., Orekhov, A., and Rucker, D. C. (2015). Efficient

Computation of Multiple Coupled Cosserat Rod Models for Real-Time Simulation and

Control of Parallel Continuum Manipulators. In Proc. IEEE Conference on Robotics and

Automation, pages 5067–5074, Seattle, Washington. x, 20, 22, 30, 129

[111] Till, J., Riojas, K. E., Webster, R. J., and Rucker, C. (2019b). A Dynamic Model for

Concentric Tube Robots. IEEE Transactions on Robotics, Submitted. 8, 39, 80

152



[112] Till, J. and Rucker, D. C. (2017a). Elastic Rod Dynamics: Validation of a Real-Time

Implicit Approach. In 2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 3013–3019, Vancouver, Canada. IEEE. 39, 52, 90, 94

[113] Till, J. and Rucker, D. C. (2017b). Elastic Stability of Cosserat Rods and Parallel

Continuum Robots. IEEE Transactions on Robotics, 33(3):718–733. 101

[114] Tobias, I., Swigon, D., and Coleman, B. D. (2000). Elastic Stability of DNA

Configurations. I. General Theory. Physical Review E, 61(1):747–58. 8

[115] Trivedi, D., Lotfi, A., and Rahn, C. (2008). Geometrically Exact Models for Soft

Robotic Manipulators. IEEE Transactions on Robotics, 24(4):773–780. 4

[116] Tunay, I. (2013). Spatial Continuum Models of Rods Undergoing Large Deformation

and Inflation. IEEE Transactions on Robotics, 29(2):297–307. 5

[117] Walker, I. D. (2013). Continuous Backbone “Continuum” Robot Manipulators. ISRN

Robotics, 2013. 1, 4

[118] Webster, R., Okamura, A., and Cowan, N. (2006). Toward Active Cannulas: Miniature

Snake-Like Surgical Robots. In 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2857–2863. IEEE. 1

[119] Webster, R., Romano, J., and Cowan, N. (2009). Mechanics of Precurved-Tube

Continuum Robots. IEEE Transactions on Robotics, 25(1):67–78. 8

[120] Webster, R. J. (2007). Design and Mechanics of Continuum Robots for Surgery.

Dissertation, The Johns Hopkins University. 8

[121] Webster, R. J. and Jones, B. A. (2010). Design and Kinematic Modeling of Constant

Curvature Continuum Robots: A Review. The International Journal of Robotics Research,

29(13):1661–1683. 1, 4

[122] Xu, K. and Simaan, N. (2008). An Investigation of the Intrinsic Force Sensing

Capabilities of Continuum Robots. IEEE Transactions on Robotics, 24(3):576–587. 36

[123] Xu, R., Asadian, A., Naidu, A. S., and Patel, R. V. (2013). Position Control of

Concentric-Tube Continuum Robots Using a Modified Jacobian-Based Approach. In 2013

IEEE International Conference on Robotics and Automation, pages 5813–5818. IEEE. 7

153



[124] Yoon, H.-S. and Yi, B.-J. (2009). A 4-DOF Flexible Continuum Robot Using a Spring

Backbone. In 2009 International Conference on Mechatronics and Automation, pages

1249–1254. IEEE. 113

[125] Zadnq, G. (2001). Linear and Non-Linear Superelasticity in NiTi. MRS Shape Memory

Materials, 683(9):201–209. 37

[126] Ziegler, H. (1977). Principles of Structural Stability. Birkhäuser Basel, Basel. 120
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A Static Rod IVP Solution in MATLAB
1 function RodIVP %Section 2.1.2
2 %Independent Parameters
3 E = 200e9; %Young 's modulus
4 G = 80e9; %Shear modulus
5 r = 0.001; %Cross -sectional radius
6 rho = 8000; %Density
7 g = [9.81; 0; 0]; %Gravitational acceleration
8 L = 0.5; %Length (before strain)
9

10 %Dependent Parameters
11 A = pi*r^2; %Cross -sectional area
12 I = pi*r^4/4; %Area moment of inertia
13 J = 2*I; %Polar moment of inertia
14

15 Kse = diag([G*A, G*A, E*A]); %Stiffness matrices , Equation (2.3)
16 Kbt = diag([E*I, E*I, G*J]);
17

18 %Measured base force and moment
19 n0 = [0; 1; 0];
20 m0 = [0; 0; 0];
21

22 %Arbitrary base frame assignment
23 p0 = [0;0;0];
24 R0 = eye(3);
25

26 %Numerical Integration
27 y0 = [p0; reshape(R0 ,9,1); n0; m0]; %Combine states into single state vector
28 [s,y] = ode45(@RodODE ,[0 L],y0); %Solve IVP with numerical integration
29

30 %Visualization
31 plot3( y(:,1), y(:,2), y(:,3) )
32 axis([-L/2 L/2 -L/2 L/2 0 L])
33 daspect ([1 1 1])
34 grid on
35 title('Rod IVP Solution ')
36 xlabel('x (m)')
37 ylabel('y (m)')
38 zlabel('z (m)')
39

40 %Subfunctions
41 function ys = RodODE(s,y) %Equation (2.4)
42 %Unpack state vector
43 R = reshape(y(4:12) ,3,3);
44 n = y(13:15);
45 m = y(16:18);
46

47 %Constitutive equation
48 v = Kse^-1*R.'*n + [0;0;1];
49 u = Kbt^-1*R.'*m;
50

51 %Static Cosserat rod equations - system of nonlinear ODEs
52 ps = R*v;
53 Rs = R*hat(u);
54 ns = -rho*A*g;
55 ms = -hat(ps)*n;
56

57 %Pack state vector derivative
58 ys = [ps; reshape(Rs ,9,1); ns; ms];
59 end
60

61 function skew_symmetric_matrix = hat(y) %Equation (1.1)
62 skew_symmetric_matrix = [ 0 -y(3) y(2) ;
63 y(3) 0 -y(1) ;
64 -y(2) y(1) 0 ];
65 end
66 end

156



B Static Rod BVP Solution in MATLAB
1 function RodBVP %Section 2.1.2
2 %Parameters
3 E = 200e9;
4 G = 80e9;
5 r = 0.001;
6 rho = 8000;
7 g = [9.81; 0; 0];
8 L = 0.5;
9 A = pi*r^2;

10 I = pi*r^4/4;
11 J = 2*I;
12 Kse = diag([G*A, G*A, E*A]);
13 Kbt = diag([E*I, E*I, G*J]);
14

15 %Boundary Conditions
16 p0 = [0;0;0];
17 R0 = eye(3);
18 pL = [0; -0.1*L; 0.8*L];
19 RL = eye(3);
20

21 %Main Simulation
22 init_guess = zeros (6,1);
23 global y; %Forward declaration for future scoping rule changes
24 fsolve(@RodShootingMethod , init_guess); %Use convex optimization to solve ICs
25

26 %Visualization
27 plot3(y(:,1),y(:,2),y(:,3)); title('Rod BVP Solution '); axis([-L/2 L/2 -L/2 L/2 0 L])
28 grid on; daspect ([1 1 1]); xlabel('x (m)'); ylabel('y (m)'); zlabel('z (m)');
29

30 %Subfunctions
31 function residual = RodShootingMethod(guess) %Optimization objective function
32 n0 = guess (1:3); %Update guessed initial conditions
33 m0 = guess (4:6);
34 y0 = [p0; reshape(R0 ,9,1); n0; m0];
35

36 [s,y] = ode45(@RodODE ,[0 L],y0); %Numerically solve the resulting IVP
37

38 pL_shot = y(end ,1:3) '; %Calculate distal constraint violation
39 RL_shot = reshape(y(end ,4:12) ,3,3);
40 position_error = pL_shot - pL;
41 rotation_error = inv_hat( RL_shot '*RL - RL_shot*RL ' ); %Equation (1.3)
42 residual = [position_error; rotation_error ];
43 end
44

45 function ys = RodODE(s,y) %Equation (2.4)
46 R = reshape(y(4:12) ,3,3);
47 n = y(13:15);
48 m = y(16:18);
49

50 v = Kse^-1*R.'*n + [0;0;1];
51 u = Kbt^-1*R.'*m;
52

53 ps = R*v;
54 Rs = R*hat(u);
55 ns = -rho*A*g;
56 ms = -hat(ps)*n;
57

58 ys = [ps; reshape(Rs ,9,1); ns; ms];
59 end
60

61 function skew_symmetric_matrix = hat(y) %Equation (1.1)
62 skew_symmetric_matrix = [ 0 -y(3) y(2) ;
63 y(3) 0 -y(1) ;
64 -y(2) y(1) 0 ];
65 end
66

67 function R3 = inv_hat(skew) %Equation (1.2)
68 R3 = [skew (3,2); skew (1,3); skew (2,1)];
69 end
70 end
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C CSG Static BVP Solution in MATLAB
1 function ContinuumStewartGoughStaticBVP %Section 2.2.3
2 %Properties
3 E=200e9; G=80e9; rad =0.001; rho =8000; g=[0;0; -9.81]; ee_mass =0.1; R0=eye(3);
4 A=pi*rad^2; I=pi*rad ^4/4; J=2*I; Kse=diag([G*A,G*A,E*A]); Kbt=diag([E*I,E*I,G*J]);
5

6 %Given End Effector Pose and Wrench
7 F = ee_mass*g; M = [0;0;0];
8 pE = [0; 0; 0.4]; bend = 10*pi /180; RE = [ cos(bend) 0 sin(bend) ;
9 0 1 0 ;

10 -sin(bend) 0 cos(bend)];
11 %Hole Pattern (vector operations)
12 scrib_R = 0.087; alpha1 = 100*pi/180; alpha2 = 120*pi/180 - alpha1; i = 1:6;
13 theta_B = (-alpha2 + (i-mod(i,2))*alpha2 + (i-1-mod(i-1,2))*alpha1)/2; %Equation (2.8)
14 theta_E = (-alpha1 + (i-mod(i,2))*alpha1 + (i-1-mod(i-1,2))*alpha2)/2;
15 p0 = scrib_R *[cos(theta_B); sin(theta_B); zeros (1,6)];
16 r = scrib_R *[cos(theta_E); sin(theta_E); zeros (1,6)];
17

18 %Equations (1.1) and (1.2) (Written as anonymous functions for brevity)
19 hat=@(y)[0,-y(3),y(2);y(3) ,0,-y(1);-y(2),y(1) ,0]; inv_hat_xy=@(y)[y(3,2);y(1,3)];
20

21 %Main Simulation
22 init_guess = [zeros (30,1); pE(3)*ones (6,1)]; %Initial guess; the form is given by (2.12)
23 global p
24 fsolve(@CSG_BVP_Function , init_guess); %Solve CSG BVP with shooting method
25

26 %Visualization
27 plot3( p{1}(1 ,:), p{1}(2 ,:), p{1}(3 ,:), 'b' ); hold on;
28 plot3([p{6}(1 ,end) p{1}(1 ,end)],[p{6}(2 ,end) p{1}(2 ,end)],[p{6}(3 ,end) p{1}(3, end)],'r')
29 for i = 2 : 6
30 plot3(p{i}(1 ,:),p{i}(2,:),p{i}(3,:),'b'); ee_line = [p{i-1}(: ,end), p{i}(:,end)];
31 plot3(ee_line (1,:),ee_line (2,:),ee_line (3,:),'r')
32 end
33 hold off; axis ([ -0.25 0.25 -0.25 0.25 0 0.5]); daspect ([1 1 1]);
34 title('CSG BVP Solution '); grid on; xlabel('x (m)'); ylabel('y (m)'); zlabel('z (m)');
35

36 %Subfunctions
37 function E = CSG_BVP_Function(G) %Equation (2.13)
38 EF = F; EM = M; %Begin summing forces
39

40 for i = 1 : 6 %Loop over each compliant robot link
41 n0_range = 1+5*(i-1) : 3+5*(i-1); m0_range = 4+5*(i-1) : 5*i;
42 n0 = G(n0_range); m0 = [G(m0_range); 0]; L = G(30+i);
43 y0 = [p0(:,i); reshape(R0 ,9,1); n0; m0];
44

45 [~,y] = ode45(@RodODE ,[0 L],y0); %Numerically integrate this rod
46 p{i} = y(: ,1:3) '; %Store centerlines in cells for plotting
47

48 pL_shot = y(end ,1:3) ';
49 RL_shot = reshape(y(end ,4:12) ,3,3);
50 nL = y(end ,13:15) ';
51 mL = y(end ,16:18) ';
52

53 Ep = pL_shot - (pE + RE*r(:,i)); %Calculate geometric error
54 ER = inv_hat_xy( RL_shot '*RE - RL_shot*RE ' ); %Equation (1.3)
55 geometric_error_range = 1+5*(i-1) : 5*i;
56 E(geometric_error_range) = [Ep; ER];
57

58 EF = EF - nL; EM = EM - mL - cross( RE*r(:,i), nL ); %Continue summing forces
59 end
60

61 E(31:33) = EF; E(34:36) = EM; %Force and moment summation are complete
62 end
63

64 function ys = RodODE(s,y) %Equation (2.4)
65 R = reshape(y(4:12) ,3,3); n = y(13:15); m = y(16:18);
66 v = Kse^-1*R.'*n + [0;0;1]; u = Kbt^-1*R.'*m;
67 ps = R*v; Rs = R*hat(u); ns = -rho*A*g; ms = -hat(ps)*n;
68 ys = [ps; reshape(Rs ,9,1); ns; ms];
69 end
70 end
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D Cantilever PDE: BDF-α and Shooting
1 function CantileverRod %Section 3.1.4
2 hat=@(y)[0,-y(3),y(2);y(3) ,0,-y(1);-y(2),y(1) ,0];
3 global p R j n m v u q w vt ut qt wt vh uh qh wh %Make vars available in whole program
4 %Parameters
5 L = 0.4; %Length (before strain)
6 N = 40; %Spatial resolution
7 E = 207e9; %Young 's modulus
8 r = 0.0012; %Cross -section radius
9 rho = 8000; %Density

10 g = [ -9.81;0;0]; %Gravity
11 Bse = zeros (3); %Material damping coefficients - shear and extension
12 Bbt = zeros (3); %Material damping coefficients - bending and torsion
13 C = zeros (3); %Square -law -drag damping coefficients
14 dt = 0.002; %Time step
15 alpha = -0.48; %BDF -alpha parameter
16 STEPS = 50; %Number of timesteps to completion
17 vstar = @(s)[0;0;1]; %Value of v when static and absent loading
18 ustar = @(s)[0;0;0]; %Precurvature
19 %Boundary Conditions
20 for i = 1 : STEPS
21 p{i,1} = [0;0;0]; %Clamped base
22 R{i,1} = eye (3);
23 q{i,1} = [0;0;0];
24 w{i,1} = [0;0;0];
25 end
26 nL = 0.2*g; %Start with a weight hung at the tip
27 mL = [0;0;0];
28

29 %Dependent Parameter Calculations
30 A = pi*r^2; %Cross -sectional area
31 J = diag([pi*r^4/4 pi*r^4/4 pi*r^4/2]); %Inertia
32 G = E/( 2*(1+0.3) ); %Shear modulus
33 Kse = diag([G*A, G*A, E*A]); %Stiffness matrix - shear and extension
34 Kbt = diag([E*J(1,1), E*J(2,2), G*J(3,3)]); %Stiffness matrix - bending and torsion
35 ds = L/(N-1); %Grid distance (before strain)
36 c0 = (1.5 + alpha) / ( dt*(1+ alpha) ); %BDF -α coefficients
37 c1 = -2/dt;
38 c2 = (0.5 + alpha) / ( dt*(1+ alpha) );
39 d1 = alpha / (1+ alpha);
40

41 %Main Simulation
42 i = 1;
43 fsolve(@staticIVP , zeros (6,1)); %Solve static BVP w/ shooting method
44 applyStaticBDFalpha ();
45 visualize ();
46 nL = [0;0;0]; %Tip weight is released
47

48 for i = 2 : STEPS
49 fsolve(@dynamicIVP , [n{i-1,1}; m{i-1 ,1}]); %Solve semi -discretized PDE w/ shooting
50 applyDynamicBDFalpha ();
51 visualize ();
52 end
53

54 %Function Definitions
55 function applyStaticBDFalpha () %Equation (3.4) for system at steady state
56 for j = 1 : N-1
57 vh{i+1,j} = (c1+c2)*v{i,j};
58 uh{i+1,j} = (c1+c2)*u{i,j};
59 qh{i+1,j} = [0;0;0];
60 wh{i+1,j} = [0;0;0];
61 q{i,j} = [0;0;0];
62 w{i,j} = [0;0;0];
63 end
64 end
65

66 function applyDynamicBDFalpha () %Equation (3.4)
67 for j = 1 : N-1
68 vh{i+1,j} = c1*v{i,j} + c2*v{i-1,j} + d1*vt{i,j};
69 uh{i+1,j} = c1*u{i,j} + c2*u{i-1,j} + d1*ut{i,j};
70 qh{i+1,j} = c1*q{i,j} + c2*q{i-1,j} + d1*qt{i,j};
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71 wh{i+1,j} = c1*w{i,j} + c2*w{i-1,j} + d1*wt{i,j};
72 end
73 end
74

75 function E = staticIVP(G)
76 n{i,1} = G(1:3);
77 m{i,1} = G(4:6);
78

79 %Euler 's method
80 for j = 1 : N-1
81 [ps , Rs , ns, ms, v{i,j}, u{i,j}] = staticODE(p{i,j},R{i,j},n{i,j},m{i,j});
82 p{i,j+1} = p{i,j} + ds*ps;
83 R{i,j+1} = R{i,j} + ds*Rs;
84 n{i,j+1} = n{i,j} + ds*ns;
85 m{i,j+1} = m{i,j} + ds*ms;
86 end
87 E = [ n{i,N} - nL; m{i,N} - mL ];
88 end
89

90 function E = dynamicIVP(G)
91 n{i,1} = G(1:3);
92 m{i,1} = G(4:6);
93

94 %Euler 's method
95 for j = 1 : N-1
96 [ps , Rs , ns, ms, qs, ws, v{i,j}, u{i,j}, ...
97 vt{i,j}, ut{i,j}, qt{i,j}, wt{i,j}] = ...
98 dynamicODE(p{i,j},R{i,j},n{i,j},m{i,j},q{i,j},w{i,j});
99 p{i,j+1} = p{i,j} + ds*ps;

100 R{i,j+1} = R{i,j} + ds*Rs;
101 n{i,j+1} = n{i,j} + ds*ns;
102 m{i,j+1} = m{i,j} + ds*ms;
103 q{i,j+1} = q{i,j} + ds*qs;
104 w{i,j+1} = w{i,j} + ds*ws;
105 end
106 E = [n{i,N} - nL; m{i,N} - mL];
107 end
108

109 function [ps , Rs , ns, ms, v, u] = staticODE(p,R,n,m) %Equation (2.4)
110 v = Kse\R'*n + vstar(ds*(j-1));
111 u = Kbt\R'*m + ustar(ds*(j-1));
112

113 ps = R*v;
114 Rs = R*hat(u);
115 ns = -rho*A*g;
116 ms = -hat(ps)*n;
117 end
118

119 function [ps ,Rs,ns,ms,qs,ws , v,u,vt ,ut,qt,wt] = dynamicODE(p,R,n,m,q,w) %Equation (3.5)
120 v = (Kse + c0*Bse)\(R'*n + Kse*vstar(ds*(j-1)) - Bse*vh{i,j});
121 u = (Kbt + c0*Bbt)\(R'*m + Kbt*ustar(ds*(j-1)) - Bbt*uh{i,j});
122 vt = c0*v + vh{i,j};
123 ut = c0*u + uh{i,j};
124 qt = c0*q + qh{i,j};
125 wt = c0*w + wh{i,j};
126 f = -R*C*q.*abs(q) + rho*A*g;
127

128 ps = R*v;
129 Rs = R*hat(u);
130 ns = rho*A*R*(hat(w)*q + qt) - f;
131 ms = rho*R*(hat(w)*J*w + J*wt) - hat(ps)*n;
132 qs = vt - hat(u)*q + hat(w)*v;
133 ws = ut - hat(u)*w;
134 end
135

136 function visualize ()
137 for j = 1 : N, x(j) = p{i,j}(1); z(j) = p{i,j}(3); end
138 plot(z,x); axis ([0 1.1*L -0.55*L 0.55*L]); daspect ([1 1 1]);
139 title('Cantilever Rod'); xlabel('z (m)'); ylabel('x (m)');
140 grid on; drawnow; pause (0.05);
141 end
142 end
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E Cantilever PDE: Implicit Midpoint and Shooting
1 function CantileverRod %Section 3.1.4
2 hat=@(y)[0,-y(3),y(2);y(3) ,0,-y(1);-y(2),y(1) ,0]; global y z
3 %Parameters
4 L = 0.4; E = 207e9; r = 0.0012; rho = 8000; g = [ -9.81;0;0];
5 Bse = zeros (3); Bbt = zeros (3); C = zeros (3); vstar = [0;0;1];
6 N = 40; dt = 0.002; STEPS = 50; M_tip = [0;0;0]; F_tip = 0.2*g; %Start with tip load
7 %Boundary Conditions
8 p0 = [0;0;0]; R0 = eye (3); q0 = [0;0;0]; w0 = [0;0;0];
9 %Dependent Parameter Calculations

10 A = pi*r^2; G = E/( 2*(1+0.3) ); ds = L/(N-1);
11 Ixx = pi*r^4/4; Iyy = Ixx; Izz = 2*Ixx; J = diag([Ixx Iyy Izz]);
12 Kse = diag([G*A, G*A, E*A]); Kbt = diag([E*Ixx , E*Iyy , G*Izz]);
13 %Main Simulation
14 i = 1; G = fsolve(@getResidual , zeros (6,1)); %Solve static BVP
15 z(:,N) = solveStaticConstitutiveLaw(y(:,N));
16 ys(:,N) = f(y(:,end),zeros (24 ,1),z(:,end),zeros (6,1)); %Distal ys needed
17 F_tip = [0;0;0]; %Tip weight is released
18 for i = 2 : STEPS
19 y_old = y; ys_old = ys; z_old = z; visualize ();
20 G = fsolve(@getResidual , G); %Solve semi -discretized BVP
21 ys(:,N) = implicitMidptODE(y(:,end),y_old(:,end),ys_old(:,end),z_old(:,end));
22 end
23 %Function Definitions
24 function visualize ()
25 plot(y(3,:),y(1,:)); title('Cantilever Rod'); xlabel('z (m)'); ylabel('x (m)');
26 axis ([0 1.1*L -0.55*L 0.55*L]); grid on; daspect ([1 1 1]); drawnow;
27 end
28 function E = getResidual(G)
29 n0 = G(1:3); m0 = G(4:6); %Reaction force and moment are guessed
30 y(:,1) = [p0; reshape(R0 ,9,1); n0; m0; q0; w0];
31 for j = 1 : N-1 %Euler Integration
32 if i == 1 %First time step is static
33 z(:,j) = solveStaticConstitutiveLaw(y(:,j));
34 ys(:,j) = f(y(:,j),zeros (24,1),z(:,j),zeros (6,1));
35 else %Next time steps use PDE semi -discretization
36 [ys(:,j),z(:,j)]= implicitMidptODE(y(:,j),y_old(:,j),ys_old(:,j),z_old(:,j));
37 end
38 y(:,j+1) = y(:,j) + ds*ys(:,j); %Euler 's Method
39 end
40 nL = y(13:15 ,N); mL = y(16:18 ,N); E = [F_tip -nL; M_tip -mL];
41 end
42 function [ys ,z] = implicitMidptODE(y,y_old ,ys_old ,z_old) %Equation (3.7)
43 z = solveDynamicConstitutiveLaw(y,y_old ,z_old);
44 ys = -ys_old + 2*f( (y+y_old)/2, (y-y_old)/dt , (z+z_old)/2, (z-z_old)/dt );
45 end
46 function z = solveStaticConstitutiveLaw(y)
47 R = reshape(y(4:12) ,3,3); n = y(13:15); m = y(16:18);
48 v = Kse\R'*n + vstar; u = Kbt\R'*m; z = [v;u];
49 end
50 function z = solveDynamicConstitutiveLaw(y,y_old ,z_old) %Equation (3.8)
51 Rbar = (reshape(y(4:12) ,3,3) + reshape(y_old (4:12) ,3,3))/2;
52 nbar = (y(13:15) + y_old (13:15))/2; mbar = (y(16:18) + y_old (16:18))/2;
53 v_prev = z_old (1:3); u_prev = z_old (4:6);
54 v = (Kse/2+ Bse/dt) \ ((-Kse /2+Bse/dt)*v_prev + Rbar '*nbar + Kse*vstar);
55 u = (Kbt/2+ Bbt/dt) \ ((-Kbt /2+Bbt/dt)*u_prev + Rbar '*mbar);
56 z = [v;u];
57 end
58 function ys = f(y,yt,z,zt) %Equation (3.5)
59 R = reshape(y(4:12) ,3,3); n = y(13:15); m = y(16:18);
60 q = y(19:21); w = y(22:24); qt = yt (19:21); wt = yt (22:24);
61 v = z(1:3); u = z(4:6); vt = zt (1:3); ut = zt(4:6);
62 ps = R*v;
63 Rs = R*hat(u);
64 ns = R*(rho*A*(hat(w)*q + qt) + C*q.*abs(q)) - rho*A*g;
65 ms = rho*R*(hat(w)*J*w + J*wt) - hat(ps)*n;
66 qs = vt - hat(u)*q + hat(w)*v;
67 ws = ut - hat(u)*w;
68 ys = [ps; reshape(Rs ,9,1); ns; ms; qs; ws];
69 end
70 end
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F Cantilever PDE: BDF-α and Midpoint Differences
1 function CantileverFiniteDifferenceSystem %Section 3.1.4
2 hat=@(y)[0,-y(3),y(2);y(3) ,0,-y(1);-y(2),y(1) ,0]; M = 24; global Yt
3 %Parameters
4 L = 0.4; E = 207e9; r = 0.0012; rho = 8000;
5 g = [ -9.81;0;0]; C = zeros (3); vstar = [0;0;1];
6 M_tip = [0;0;0]; F_tip = 0.2*g; %Start with tip load
7 N = 40; dt = 0.002; alpha = -0.48; STEPS = 50;
8 %Boundary Conditions
9 p0 = [0;0;0]; R0 = eye (3); q0 = [0;0;0]; w0 = [0;0;0];

10 %Dependent Parameter Calculations
11 A = pi*r^2; G = E/( 2*(1+0.3) ); ds = L/(N-1);
12 Ixx = pi*r^4/4; Iyy = Ixx; Izz = 2*Ixx; J = diag([Ixx Iyy Izz]);
13 Kse = diag([G*A, G*A, E*A]); Kbt = diag([E*Ixx , E*Iyy , G*Izz]);
14 ds = L/(N-1); %Distance between grid points
15 c0 = (1.5 + alpha) / ( dt*(1+ alpha) ); c1 = -2/dt;
16 c2 = (0.5 + alpha) / ( dt*(1+ alpha) ); d1 = alpha / (1+ alpha);
17

18 %Main simulation
19 i = 1; Y = zeros(M*N,1); G = zeros(M*(N-1) ,1); %Guess the states which are not enforced
20 G = fsolve(@finiteDifferenceResidual , G); %Solve static BVP
21 Y_old = Y; Y_older = Y;
22 F_tip = [0;0;0]; %Tip weight is released
23 for i = 2 : STEPS
24 Yt_old = Yt; Y_older = Y_old; Y_old = Y;
25 visualize ();
26 G = fsolve(@finiteDifferenceResidual , G); %Solve semi -discretized BVP
27 %Note that dense Jacobian scales poorly , but OK for example.
28 end
29

30 %Subfunctions
31 function E = finiteDifferenceResidual(G) %Equation (3.9)
32 Y(1:12) = [p0; reshape(R0 ,9,1)]; %Strongly enforced initial pose
33 Y(13:18) = G(1:6); %Guessed initial wrench
34 Y(19:24) = [q0; w0]; %Strongly enforced initial twist
35 Y(M+1:M*(N-1)) = G(7:6+M*(N-2)); %Guessed middle states
36 Y(M*N-23 : M*N-12) = G(7+M*(N-2) : 18+M*(N-2)); %Guessed distal pose
37 Y(M*N-11 : M*N-9) = F_tip; %Strongly enforced distal internal force
38 Y(M*N-8 : M*N-6) = M_tip; %Strongly enforced distal internal moment
39 Y(M*N-5 : M*N) = G(19+M*(N-2) : M*(N-1)); %Guessed distal twist
40 if i == 1, Yt = zeros(M*N,1);
41 else , Yt = c0*Y + c1*Y_old + c2*Y_older + d1*Yt_old; end
42 E = zeros(M*(N-1) ,1);
43 for j = 1 : N-1 %Find the M*(N-1) finite difference errors
44 left = 1 + (j-1)*M : j*M; right = left+M;
45 E(left) = f( 0.5*(Y(left)+Y(right)), 0.5*(Yt(left)+Yt(right)) ) ...
46 - (Y(right) - Y(left)) / ds;
47 end
48 end
49 function ys = f(y,yt)
50 R = reshape(y(4:12) ,3,3); n = y(13:15); m = y(16:18);
51 q = y(19:21); w = y(22:24);
52 Rt = reshape(yt (4:12) ,3,3); nt = yt (13:15); mt = yt (16:18);
53 qt = yt (19:21); wt = yt (22:24);
54 %Constitutive equation - material damping omitted for brevity
55 v = Kse\R'*n+vstar; u = Kbt\R'*m;
56 vt = Kse\(Rt.'*n + R.'*nt); ut = Kbt\(Rt.'*m + R.'*mt);
57 %Rod State Derivatives
58 ps = R*v;
59 Rs = R*hat(u);
60 ns = R*(rho*A*(hat(w)*q + qt) + C*q.*abs(q)) - rho*A*g;
61 ms = rho*R*(hat(w)*J*w + J*wt) - hat(ps)*n;
62 qs = vt - hat(u)*q + hat(w)*v;
63 ws = ut - hat(u)*w;
64 ys = [ps; reshape(Rs ,9,1); ns; ms; qs; ws];
65 end
66 function visualize ()
67 plot(Y(3:M:end),Y(1:M:end)); title('Cantilever Rod'); xlabel('z (m)');
68 ylabel('x (m)'); axis ([0 1.1*L -0.55*L 0.55*L]); grid on; daspect ([1 1 1]); drawnow
69 end
70 end
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