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Abstract 

 

Recent publications have shown that the load bearing capability of resistance 

spot welds (RSW) made from dual-phase (DP) and martensitic (MS) Advanced 

High Strength Steels (AHSS) does not scale linearly with the tensile strength of 

their base metals. Although this degradation of welds strength has been linked by 

researchers to a phenomenon known as heat affected zone (HAZ) softening, the 

individual role of HAZ softening in different grades of AHSS has not yet fully 

understood. This work attempts to explain the above nonlinearity in spot welds 

performance by using a local to global approach to understand the role of HAZ 

softening on the strength of DP and MS spot welded samples. Material 

heterogeneity in Tension-Shear (TS) and Cross-Tension (CT) samples made 

from six grades of AHSS is studied by using microhardness measurements on 

spot welds and mechanical testing and digital image correlation (DIC) on 

thermally simulated samples in Gleeble machine. Results showed that the HAZ 

softening occurs in both subcritical and intercritical HAZ and the lowest yield 

stress exists in the ICHAZ making this region a candidate for plastic strain 

concentrating and failure initiation site. 

Results from FE simulations showed that both the spot weld’s nugget diameter 

and the HAZ softening play role in the performance of TS and CT samples. 

Nugget diameter showed to have a dominant effect on the strength of spot welds, 

and it is shown that the nonlinearity between the strength of spot welds and base 

metal tensile strength is related to the change in failure type in sample, as the 

nugget diameter increases. Results also showed that the HAZ softening have a 

complex and different role in performance of the welds. While it reduced the peak 

load and extension at peak load in DP spot welds, it played an opposite role and 

improved the same metrics in MS spot welds. The results also suggest that the 

lower strength (peak load) of MS spot welds compared to DP steels, is related to 



vi 

 

the intrinsic brittle behavior of their base metal as the HAZ softening showed to 

increase the peak load in MS spot welds.  
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1 Introduction 

1.1 Background 

Advanced High Strength Steels (AHSS) are a new generation of high-strength 

steels produced with carefully selected chemical composition and precisely 

controlled heating and cooling process parameters. Their typical tensile strength 

ranges from 550 MPa and exceeds 2000 MPa in their third generation. Having a 

complex microstructure, they achieve a combination of strength, ductility, 

formability, and fatigue properties making them suitable for applications in 

automotive and transportation industries to improve the fuel economy, safety, 

and, and performance of the cars, while reducing the emission [1, 2]. 

Based on the final microstructure and thermomechanical processing AHSS are 

divided into several grades; Dual-Phase (DP), Complex-Phase (CP), 

Transformation-Induced Plasticity (TRIP), Ferritic-Bainitic (FB), and Martensitic 

(MS) are of the most widely used members of AHSS family. Figure 1-1: A 

comparison between the mechanical properties of several grades of Advanced 

Hight Strength Steels [6]. compares different type of AHSS by their elongation 

and tensile strength.  

The automotive industry has been interested to apply these new AHSS steels in 

the modern designs and adopted the Resistance Spot Welding (RSW) as the 

predominant technique for joining the steel sheets. Since these steels are 

relatively new to the automotive industry and new generations of AHSS grades 

are emerging to the users, appropriate welding techniques, parameters, and 

standards need to be provided. The behavior of these and emerging steels 

during the spot welding and final mechanical properties need to be fully 

investigated and necessary information regarding specific manufacturing 

techniques leading to quality joint need to be provided to the industrial users. 
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The users of these steels also have experienced a phenomenon known as the 

HAZ softening that occur during resistance spot welding process. This 

phenomenon is ascribed to the effects of the thermal cycles experienced by the 

local material in spot welds during welding, causing the welds to show TS and 

CT strength below the expected strength. The magnitude of this strength 

reduction is tentatively attributed to the magnitude of the HAZ softening [3-5]. 

Results from the spot welds made from DP and MS AHSS with base metal 

tensile strengths in range of 300 to 1800 MPa demonstrated in Figure 1-2 show 

that there is a nonlinear relationship between TS and CT strength with the base 

metal tensile strength [5]. As this figure shows, this nonlinearity happens for 

those steels that have base metal tensile strengths above 1000 MPa. Therefore, 

the objective of this study is to rationalize the deformation behavior and failure of 

above steels with a focus on the nonlinearity in performance of the spot welds 

shown as shown in Figure 1-2 by means of experimental and computational 

techniques.  

1.2 Specific aims 

This dissertation aims to address the following scientific questions, which will 

eventually provide fundamental knowledge in the field of deformation behavior of 

AHSS spot welds used in parts made for industrial applications especially 

automotive industry where spot welding is the main technique to join body and 

chassis parts together: 

• To reveal the effect of thermal cycles due to RSW process on local 

microstructure and mechanical properties in different regions of HAZ 

• To investigate the softening and hardening extents in the HAZ of DP and 

MS steels and find their correlation to the steels initial microstructure and 

chemical composition 



3 

 

 

Figure 1-1: A comparison between the mechanical properties of several 
grades of Advanced Hight Strength Steels [6]. 

 

    

Figure 1-2: Summary of the results from Tension-Shear (left) and Cross-
Tension (right) tests as a function of base metal strength performed on DP 
and MS AHSS with nugget diameters in range of 6 to 9 mm [5]. 
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• To investigate if the softening in AHSS related to the martensite tempering 

in the SCHAZ or the formation of ferrite from reheated martensite in 

ICHAZ 

• To reveal the influence of softening and hardening phenomena on the 

mechanical performance of AHSS spot welds based on the chemistry and 

initial microstructure, and welding parameters. 

• To provide an computational model that integrates the material model and 

weld geometry and predicts the deformation behavior and failure for AHSS 

TS and CT samples and explains the nonlinearity seen in Figure 1-2. 

1.3   Dissertation outline 

The content of this dissertation has been divided into seven chapters as follows. 

In Chapter 1 a brief introduction to the background, problem statement, and aims 

of the research work are presented. Chapter 2 includes a literature review 

followed by Chapter 3 that presents the results from FE simulation of TS samples 

with material properties obtained from hardness scaling method. Chapter 4 

includes the results from the microstructural and mechanical evaluations of the 

Gleeble thermally simulated HAZ samples and discusses the constitutive 

properties and plastic instabilities in the HAZ of AHSS spot welds. The effects of 

discontinuous yielding in form of yield point phenomena are investigated in 

Chapter 5 by using experimental methods and FE simulations. Chapter 6 

presents the results from FE simulations and experiments on TS and CT 

samples and investigates the role of geometry of the spot weld and 

heterogeneous constitutive properties in the HAZ on the deformation behavior 

and failure of AHSS spot welds. The underlying reasons for the nonlinearity in 

the strength of the AHSS spot welds are also explains in this chapter. Finally, the 

general conclusions and recommendations for the future work are brought in 

Chapter 7. 
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2 Literature Review 

 
As the application of Advanced High Strength Steel (AHSS) is thriving in the 

automotive industry, resistance spot welding of these steel sheets becomes 

highly significant since the number of applications of these steels is increasing in 

auto body structure with replacing those made with conventional and mild steels 

[2, 7, 8]. Several grades of AHSS are being developed with different phases 

included depending on the application and required performance. Among various 

grades of AHSS, the DP and MS AHSS that include ferritic and martensitic 

micro-constituents in their microstructure are widely used in the automotive 

industry. The main process for manufacturing these steels is the continuous 

annealing process followed by a cold rolling step, as shown schematically in 

Figure 2-1. The amount of martensite in the final microstructure of these steels is 

controlled by controlling the peak temperature and holding time at this  

 

 

Figure 2-1: Schematic showing the typical thermal cycles used in 
manufacturing of DP and MS AHSS. 
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temperature to transforms a desired volume fraction of initial ferrite into austenite 

that will be transformed to martensite upon quenching to room temperature. For 

a fully martensitic steel, the entire ferrite is usually transformed to austenite and 

then quenched to room temperature. 

Several studies have shown that the mechanical properties of the final product 

from above process strongly depends on the volume fraction of the martensite 

and its strength [9-14]. While ferrite is the soft and ductile phase with hardness 

values around 90 HV, martensite acts as the secondary hardening phase with 

hardness value as high as 700 HV and tensile strength as high as 2600 MPa for 

high carbon (around 0.8 wt. %) martensite. The strength and hardness of 

martensite strongly relies on its carbon content as shown by several researchers 

[10, 11] . Therefore, a good combination of these two micro-constituents can 

results in a good combination of ductility and strength for specific application [15]. 

Figure 2-2 (a) and (b) show the effect of carbon content on the strength of the  

 

 

Figure 2-2: (a) Effect of carbon content on the tensile strength of martensite 
for steels that were super-critically annealed and quenched by water, and 
(b) tensile strength of DP steels as a function of martensite fraction [16]. 

 



7 

 

martensite and the effect of martensite volume fraction of the tensile strength of 

the DP AHSS, respectively. Figure 2- 3 shows several grades of DP AHSS with 

their mechanical properties including the tensile strength and elongation. 

While AHSS possess a good combination of strength and ductility due to their 

complex microstructure, the existence of metastable micro-constituents (here 

martensite) can make them sensitive to the thermal gradients that can be 

experience by steel during manufacturing processes such as the resistance spot 

welding process. This can result in metallurgical changes and degradation in 

mechanical properties as reported in several studies [3, 4, 13, 16-19]. For several 

grades of AHSS, a phenomenon known as HAZ softening has been reported by 

many researchers [3, 4, 9, 12, 13, 20, 21]. To investigate the softening kinetics 

occurring in heat affected zone of DP spot welds, Biro et al. [12] measured the 

heat input due to welding by using the methodology introduced by Xia et al. [18] 

in which the distance from the weld centerline to the fusion zone and inter-critical 

 

 

Figure 2- 3: Typical engineering stress vs. strain curves of different grades 
of DP steels [17]. The martensite volume fraction increases in higher 
grades from DP590 to DP780 and DP980. 
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HAZ for DP600 and DP780 were used in Rosenthal’s two-dimensional equation. 

Their work revealed that during the welding, martensite in base metal 

decomposes into cementite and ferrite resulting in a reduction in the hardness of 

the HAZ in the subcritical HAZ. Their results did not show the formation of 

epsilon carbides which is consistent with the work done by Wang et al. [22]. They 

also described martensite decomposition ratio by using the Avrami equation from 

the hardness values measured on weld and base metal. Figure 2-4 shows a 

schematic of different regions of the HAZ and the equilibrium phase 

transformation temperatures for a steel with 0.15 wt.% carbon. In all the studies 

by several researchers the HAZ softening has been shown to occur in the 

SCHAZ of the steel where the experienced peak temperature is below the Ae1 

phase transformation temperature and softening is not reported in other regions. 

In another effort, Biro et al. [23] investigated the transient HAZ softening in their 

investigations in spot welds made from dual phase and martensitic AHSS. They 

 

 

Figure 2-4: A schematic diagram of the various regions of the heat affected 
zone and equilibrium phase transformation temperatures for a 0.15 wt.% 
carbon steel [89]. 
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suggested a technique to measure the softening kinetics of above steels by using 

rapid isothermal tempering by using Johnson-Mehl-Avrami-Kolmogorov (JMAK) 

equation to calculate the fraction of the completed softening reaction concerning 

the time of transformation. In their work and other similar ones [12-14] it was 

shown that the tempering temperature has a reverse relationship with the 

magnitude of hardness in SCHAZ. Xia et al. [18] used laser welding to study the 

effects of heat input and martensite on softening of HAZ in dual phase steel 

sheets. They normalized the heat input by using Rosenthal’s equation and found 

that the extent of HAZ softening is a function of martensite content and heat 

input. It was shown that the minimum hardness in the HAZ reduces as the 

tempering time increases meaning a higher portion of martensite decompose into 

cementite and ferrite. Figure 2-5 shows micrographs obtained from the scanning 

electron microscopy for a tempered martensite with carbide precipitates in a 

ferritic matric. The effect of base metal martensite content on HAZ softening has 

been investigated by researchers like Xia et al. [18] who showed that in laser 

welding of three dual sheets of steel with the same welding parameters, 

softening increased with increasing base metal ultimate tensile strength. His 

team also showed that there is a linear relationship between magnitudes of the 

HAZ softening and martensite volume fraction in base metal, and therefore 

concluded that the correlation between softening and base metal tensile strength 

is indeed due to the linear increase of tensile strength and also the martensite 

volume fraction [18, 24].  

The extraction of local mechanical properties by using sharp instrumentation 

techniques has been also studied using nanoindentation technique [13]. The 

grain-scale hardness and elastic modulus were measured using this technique 

and results on DP spot welds showed that the softening in HAZ is related to the 

martensite islands, and ferrite phase hardness does not change [13]. Since HAZ 

softening occurs due to the thermal gradients generated by welding thermal 
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cycles, many studies were performed to understand the mechanism of this 

martensite tempering [12, 14, 18, 25, 26] and it was found that martensite 

tempering is a diffusion driven process [26, 27] and hence its progress strongly 

depends on the tempering time and temperature. It has been reported [28] that 

the maximum softening occurs in the region close to the isotherm line, Ae1, with 

the temperature at the highest point but not in austenitization region and thus 

without any transformation into austenite, martensite tempered and decompose 

into other microstructure. The effects of cooling rate of martensite tempering 

kinetics as also been studied [29] and it has been shown that the higher peak 

temperature in spot welds corresponds to lower cooling rate, higher tempering 

time, and higher magnitude of softening, and vice versa. Looking into the 

literature provides three methods used by researchers to model the 

microstructure and mechanical property evolutions during the tempering process. 

Christian et al. [31] modeled the nucleation and growth of carbides emerging  

 

 

Figure 2-5: Micrographs from scanning electron microscopy showing 
decomposed martensite in the SCHAZ of a DP AHSS. A combination of 
ferrite and tempered martensite in (a) and magnified view of tempered 
martensite island with carbide precipitates on a ferrite matrix in (b) from the 
work by Saha et al. [30]. 

 



11 

 

from the tempering. Grange et al. [10] used the mechanical properties of welded 

joints to model the tempering by curve fitting the resultant changes. The other 

approach was a semi-empirical approach discussed in [16]  to predict the HAZ 

softening in carbon steels by uniting tempering time and temperature into a 

single tempering parameter and plotting it versus hardness of tempered material. 

However, the most widely used approach was developed independently by 

Johnson and Mehl, Avrami, and Kolmogorov [32-34] who generate a time-

dependent equation, called JMAK equation, relating volume fraction of daughter 

phase from its parents in a nucleation and growth process. They proposed that 

there are three distinct steps during the phase transformations and proposed an 

equation that describes the kinetics of phase transformations. This equation is 

used by many researchers to depict the advancement of tempering process [9, 

35-37]. From mentioned approaches, Biro et al. [16] proposed that the JMAK 

equation may be used with some modifications for modeling the tempering 

phenomena and to be used in Integrated Computational Material Engineering 

(ICME) models for prediction of AHSS spot welds performance. Tomita studied 

the effect of second phase martensite morphology (shape, size, and distribution) 

on the tensile strength by using different heat treatments on dual-phase steels 

[15]. His results show that the peak temperature, holding time, and cooling rate 

can influence the morphology of the martensite leading to the different amount of 

tensile strength and ductility for material. His results from fractography by SEM 

also depict that the ductility of these steels can vary with microcrack initiation in 

ferrite or martensite sites. The mechanism of secondary hardening in the 

tempering of dual phase steels was studied by Saha et al. [30] who performed 

rapid isothermal tempering of DP780 with ferritic-martensitic-bainitic 

microstructure using the Gleeble thermomechanical simulator. Laser welding was 

used in his study to generate a non-isothermal tempering on steels. The 

importance of time and temperature were explicitly explained in their work. 

Mechanical properties and fracture of spot welds made from AHSS have been 
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also studied by many researchers. Numerical and computational tools were used 

to analyze the failure mechanisms and modes of spot welds during Tension-

Shear and Cross-Tension mechanical tests. Chao et al. [38, 39] formulated the 

stress distribution around weld nugget and showed that the failure load is 

proportional to the thickness of the steel sheet and the weld nugget diameter. By 

running tensile tests, he concluded that the failure mechanism of the Tension-

Shear sample at the material level is tensile while for cross tension test is a shear 

fracture. Khan et al. [20] investigated the mechanical properties and 

microstructure of AHSS spot welds and developed a relationship between 

chemistry and fusion zone hardness. They showed that fusion zone has a fully 

martensitic microstructure with the highest hardness compared with other regions 

of the weld. Their work showed that fusion zone hardness increased as the 

carbon equivalent of base metal increases and stated that alloying elements 

could affect the formation of martensite by retarding the kinetics of ferrite and 

bainite formation. Dancette et al. [40, 41] investigated the damage in AHSS spot 

welds by using a coupled micro tomography, metallography and fractography 

and identified the main failure mechanisms as strain localization in base metal or 

heat affected zone, ductile shear around the weld, and semi-brittle fracture in the 

weld nugget. They also developed a finite element model to show how the failure 

mechanisms are leading to macroscopic failure types in the weld. In another 

work [42] the same method was used for homogeneous and heterogeneous 

configurations for weld regions of the TRIP780 spot weld, and the crack initiation 

and propagation up to the failure of the weld were predicted as a function of the 

geometrical features of the weld. Resistance spot welding in an electrical-

thermal-mechanical-metallurgical process and combining all these physics in a 

single integrated computational model is a significant challenge. Many efforts 

have been done to develop an ICME model to predict the mechanical properties 

of the part made with spot welding. For example Yang et al. [43] developed an 

integrated computational model to predict the load response function of spot weld 
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under static and dynamic loading for DP590 steel. In their integrated model, 

making a spot weld was divided into three steps, and a model was developed for 

each one. The framework of their integrated model can be seen in Figure 2-6. in 

this model, experiments provide microstructure properties and the validation of 

the integrated model. Spot welding parameters, geometry, and material for steel 

sheets are inputs into the spot weld process model. The outputs are the residual 

stresses and effective plastic strains in the weld. These data in addition to the 

microstructure properties from experiments then were mapped into the local 

mechanical model. In the local mechanical model, the weld is constructed from 

three different regions including base metal, heat affected zone, and fusion zone 

or nugget. For each region, material properties were given based on their 

hardness converted to tensile strength. It was also suggested that these data 

could be alternatively derived from the Gleeble thermomechanical simulation for 

each region; however, the hardness conversion method was selected as a 

simplified approach. Tension-Shear and Cross-Tension models then generated 

 

 

Figure 2-6: Integrated process modeling framework for predicting load 
response function of spot welds [43]. 
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to predict the response function of the weld. However, this model did not 

consider steels with tensile strengths greater than 1000 MPa and experimental 

data from DP590 steels did not show any HAZ softening (see Figure 2-7). In 

addition, mechanical heterogeneity model needs to be improved by modeling the 

microstructure of the material in grain scale as a composite of different phases. 

Using advanced characterization techniques researchers have been able to 

measure the mechanical properties for different phases in the material 

microstructure of the weld by using in-situ nanoindentation with scanning electron 

microscopy and micro pillar compression test to generate a more accurate 

heterogeneous model of the material [13, 44, 45]. The data collected for the 

microstructural analysis of the base metal and weld, including the existing 

phases, their portions and distribution can be extracted and mapped into a model 

for load response model. These methods can be used to develop the current 

 

 

Figure 2-7: Hardness measurements for DP590 and local hardness ratios 
were used to scale the base metal stress-strain curves in work by Yang et 
al. [43]. The HAZ softening was not observed in the DP590 steel. 
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available computational models including the one done with Yang et al. [43]. The 

fracture analysis can also be added to the load response function in this model. 

Failure type and mechanisms in the AHSS has also been of great interest of 

researchers to understand the local and global loading response, fracture 

initiation, and failure in TS and CT samples made from these steels [38-42, 46, 

47]. In the works by Dancette et al. [40-42] macroscopic failure types and 

mechanisms were used to categorize the failure in spot welds in following 

groups: (i) strain localization in regions below Ae1 where necking and failure in 

the thickness of sheet was observed in zone 1 of Figure 2-8 and corresponds to 

Button Pullout (BP) failure type, (ii) shear fracture that may take place in the spot 

weld notch and growth towards the regions corresponding to peak temperatures 

above Ae3 and below melting temperature where a fully martensitic 

microstructure (zone 2 in Figure 2-8), with BP failure type, and (iii) semi-brittle 

fracture that passes throughout the faying surface of spot weld with fully 

interfacial fracture (FIF) and partial interfacial fracture (PIF) types. 

 

 

Figure 2-8: Spot weld cross section and potential failure zones for Tension-
Shear and Cross-Tension samples. Adopted from the work by Dancette et 
al. [40]. 
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3 Prediction of Local Elastic-Plastic Properties in AHSS 
Spot Welds Using Hardness Scaling Method 

 

3.1 Introduction 

Advanced High Strength Steels (AHSS) are among the new generation of steels 

that are being developed to satisfy recent global standards for vehicle safety, fuel 

economy, and emission requirements. With precisely selected chemical 

composition and controlled manufacturing process, AHSS possess a 

combination of strength, ductility, toughness, and fatigue properties due to their 

complex microstructure consisting ferrite, martensite, bainite, and austenite [1, 

48]. Dual-phase (DP) AHSS steels consist of a soft ferrite matrix and hard 

second phase martensite islands for which increase in steel’s ultimate strength is 

achieved by increasing martensite volume fraction (MVF). For martensitic steels, 

the entire austenite formed during annealing or hot-rolling transforms entirely to 

martensite during the quenching process on the run-out table. DP and 

martensitic steels are AHSS grades that are being widely used in the automotive 

industry for fabricating auto parts using resistance spot welding technique [1, 49]. 

Despite having desirable as-received mechanical properties, the existence of 

metastable phases, particularly martensite, can make AHSS sensitive to higher 

ranges of temperatures that occur during RSW. Previous researches [14, 16] 

have shown that in a process, known as martensite tempering, in temperatures 

between 100 °C and Ae1 line of steel, i.e., in SCHAZ, carbon atoms in carbon-

supersaturated martensite microstructure get activated, start diffusing into 

interlath spacing and dislocations and form clusters, and finally form cementite, 

e.g. Fe3C, and coarsen. The final product of this process is tempered martensite 

consisting ferrite matrix and cementite precipitates, with lower strength, higher 
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ductility, and reduced hardness. This hardness drop is mainly due to martensite 

tempering, and change in ferrite hardness has been shown to be slight [13]. It 

has been shown that time and temperature can affect the extent of softening in 

AHSS containing martensite [13, 14, 16, 23]. In these studies, it was shown that 

increasing the tempering temperatures to regions close to and below Ae1 line or 

increasing the tempering time can result in an increase in the extent of softening 

in SCHAZ. The strength and failure behavior of spot welded joints under specific 

combined loading conditions, mainly Tension-Shear (TS) and Cross-Tension 

(CT) loading, have been investigated in several studies, and failure modes were 

categorized as full and partial interfacial failures (FIF and PIF), round button 

(RB), and round button in SCHAZ (RBH) failure modes [38, 46, 47]. Finite 

element method has been used as the main computational tool to understand the 

mechanical behavior of spot welds with particular attention to local deformation 

and failure characteristics as well as the weld geometry on weld’s strength [40, 

42, 43]. In this work, we initially present the results of hardness measurements 

performed on spot welds made from different grades of AHSS with different MVF. 

Hardness drop in each region of the weld is then correlated to the steel’s MVF 

and it carbon concentration. Hardness maps and microstructural analysis are 

then used to build the geometry of spot weld for FE simulations. The FE models 

are then partitioned into sections with constitutive behavior obtained by scaling 

the base metal’s true stress-strain curve using the average hardness ratio in the 

corresponding section. Results from FE simulations are finally compared with 

those from Tension-Shear testing for the same steels and effectiveness of the FE 

model with the hardness scaled local stress-strain curves are then discussed. 

3.2 Experimental Approach 

DP and martensitic AHSS sheet steels with a thickness of 1.6 mm and MVF of 

16%, 59%, and 100% were selected to study the extent of softening in SCHAZ 
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and its effects on global loading response in Tension-Shear specimens. Steel 

sheets from similar grades were spot welded together with welding parameters 

resulting nugget diameters of 6 and 8 mm. The welding procedure, specimens’ 

geometry, and testing conditions were chosen in concert with AWS D8.9 [50]. 

Some of these weld specimens were cross sectioned in rolling direction and 

prepared for microstructure analysis and hardness measurements, according to 

ASTM E3 [51]. Microhardness measurements were performed on the cross 

section of spot welds with 300 gr load and 15 seconds dwell time.  

The local hardness drop for each grade, if any, was calculated using the (HBM-

HLocal)/HBM where HBM and HLocal are HBM and local hardness. Hardness drop was 

used later to correlate the extent of softening to steel’s chemistry and initial 

microstructure. The correlations between the extent of softening with steel’s 

carbon content and martensite carbon content (MCC), were then investigated to 

find which the better representation of softening is. Microhardness maps were 

also used along with SEM observation to recognize the weld zones and extract 

weld zones geometry for FE modeling of Tension-Shear testing. BM stress-strain 

relationship was obtained from uniaxial tensile testing. Local hardness ratio was 

used to scale the BM stress-strain curve to predict the local constitutive behavior, 

a required input for computational modeling of Tension-Shear testing. 

3.3 Computational Approach 

Based on the symmetry of the Tension-Shear sample and to minimize the 

computational time, only one half of the Tension-Shear specimen was modeled 

in Abaqus commercial FE package. For geometry and boundary conditions for 

this quasi-static testing, AWS D8.9 standard was used. Using hardness maps 

and microstructural analysis, spot weld in this three-dimensional model was 

partitioned into five cells for SCHAZ to allow for assigning loading response of 

the material in the form of true stress-strain curves by scaling the BM curves with 
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cell’s averaged hardness ratio. For fusion zone (FZ), upper-critical (UCHAZ), and 

inter-critical (ICHAZ) one cell was created.  

For DP590, since ICHAZ was wider than the other two steel grades and 

hardness variation was larger, two cells were used to allow for a smoother 

transition in material properties. It was assumed that this method of partitioning 

results in more realistic results for global loading response in comparison with 

using a single partition for HAZ regions.  

Typical meshing based on tetrahedron elements with proper refinement was 

performed to ensure solution converges. In this work, FE models with softening 

and without softening in SCHAZ were used to understand how HAZ softening 

impact spot weld strength. 

3.4 Results and Discussion 

3.4.1 Softening extent in SCHAZ of spot welds 

Results from hardness measurements from FZ, SCHAZ, and BM are brought in 

Figure 3-1 (a) for comparisons. From these results, it was observed that BM 

hardness increases proportionally as the MFV increases. It was also observed 

that when MFV in BM decreases from 100% to 59% and 16%, for M1700, 

DP980LC, and DP590, respectively, the hardness ratio of FZ increases 

significantly. This indicated the effect of base metal MFV on the hardness of the 

FZ. Comparing the results for the SCHAZ, as shown in Figure 3-1 (b), shows that 

as the MVF increases the hardness drop in this region increases. For DP590, 

DP980LC, and M1700 with 16%, 59%, and 100% martensite in the initial BM 

microstructure, the hardness drop was measured to be 6%, 18%, and 42%, 

respectively. This indicated that a direct correlation could be made between the 

MVF and hardness drop as illustrated in Figure 3-1 (b). For DP590 the softening 

is very low due to the small amount of martensite phase in the microstructure. 
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The severe softening in M1700 is clear and a result of higher MVF in this fully 

martensitic steel. Trends of plots in Figure 3-1 (b) show that the softening extent 

can be predicted more accurately by using both MVF and MCC. Here and for 

example, we multiplied MVF by MCC and added results to Figure 3-1 (b). This 

new plot suggests that a better correlation can be made by combining both these 

two parameters, i.e., MVF and MCC, for the prediction of softening extent. 

However, more investigations are needed to understand this relationship with 

more details. Results from micro-hardness mapping were also used to build the 

spot weld geometry in computational models. These results and partitions 

created for spot weld zones along with the mesh on the cross section for DP590 

and M1700 spot welds were presented in Figure 3-2, for comparisons. As 

explained previously, the local constitutive behavior for each region of the weld 

was obtained by scaling the true stress-true strain curve of BM by the average 

hardness ratio of that region. 

 

 

Figure 3-1: Hardness values in three regions of spot weld for steels used in 
this study (a), Correlation between hardness drop and MVF and carbon 
content (b). 
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Figure 3-2: Hardness map, partitioned HAZ with local hardness ratio plot, 
and mesh design shown on the cross section of DP9650 (a and b) and 
M1700 (c and d) Tension-Shear samples. 
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3.4.2 Effects of SCHAZ softening on Tension-Shear global response 

Finite element simulations were run for Tension-Shear models built for DP590, 

DP980LC, and M1700 spot welds with nugget diameter (ND) of 6 mm for models 

with and without softening in HAZ and results are presented in Figure 3-3 (a). 

One observation from these results is that the maximum load at failure point 

increases as the MVF increased in both experimental and computational work. 

From this result, it is observed that the max load at failure has 5%, 17%, and 

34% error, for DP590, DP980LC, and M1700, respectively. This increase in error 

can be explained by the extent of softening meaning that as the extent of 

softening increases, the error in results from computational modeling increases 

as well. This hardness ratio was used to scale the BM properties and also the 

weld zones were partitioned into a discrete number of the zone. In addition to 

these, hardness ratio was averaged through each partition. 

In contrast with the FE model, real weld has material changes smoothly through 

and between zones. Therefore, these errors can be acceptable with 

simplifications that have been used in this study. Another observation from 

Figure 3-3 (a) can be the difference between load from weld with softening and 

that from weld without softening. As it can be seen, as the extent of softening 

increases, this difference increases as well. This implies that when the base 

metal has higher MVF, the impact of the maximum load for the welded joint 

reduces more when compared with simulations without SCHAZ softening. This, 

of course, is valid for this specific ND.  

From FE simulations, the difference between load at experiments failure for a 

model with, and the one without HAZ softening is 0%, 3%, and 7% for steels with 

6%, 18%, and 42% hardness drop in SCAHZ. For AHSS with BM strength above 

1000 MPa, this difference is considerable, and therefore accurate measurements 

of local constitutive properties especially for SCHAZ become more critical.  



23 

 

In another attempt to study how the softened-SCHAZ and ND can affect the weld 

strength, the model for M1700 spot weld was calibrated by using hardness ratios 

less than measurements, for SCHAZ cells and modified stress-strain curves for 

these cells were assigned to the FE model and simulations were run for welds 

with softening in SCHAZ. 

The results from recent simulations are plotted in Figure 3-3 (b) along with those 

from experiments. FE simulations show that after calibrating the model for M1700 

spot weld with ND of 6 mm, model is able to predict the load-extension curve for 

the weld with 8 mm ND better but not overlapping with experiment.  

Above shows that if the representative local properties are available, the model 

can predict the loading response for both nugget diameters and failure modes 

more accurately. 

To understand the role of ND and softened SCHAZ on failure mode of the spot 

weld, the equivalent plastic strain (PEEQ) at the notch and SCHAZ inner edge for 

M1700 spot welds with 6- and 8-mm ND are plotted in Figure 3-4 (a).  

Results from experiments showed that failure mode for weld with ND of 6 and 8 

mm are FIF and RBH, respectively. Comparing PEEQ at notch and SCHAZ in 

Figure 3-4 (a) shows that PEEQ at SCHAZ for ND of 6 mm is similar to the notch. 

Considering PEEQ as a parameter that can be used to evaluate the failure mode, 

this indicates that for the 6 mm, material in notch will reach the failure criterion 

that can cause crack initiation, growth and finally failure in FIF mode.  

Using the same approach for weld with 8 mm ND, it can be seen that the PEEQ 

in SCHAZ is significantly higher than that in notch indicating that material in this 

region meets the plastic failure strain before notch leading to necking in sheet 

thickness and finally failure in RBH mode.  
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 Figure 3-3: Results from FE simulation and experiments for DP590, 
DP980LC, and M1700 ND of 6 mm (a) and M1700 with ND of 6 and 8 mm (b). 
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Figure 3-4: Equivalent plastic strain as a function of applied load at the 
notch tip and SCHAZ of M1700 Tension-Shear sample with nugget 
diameters of 6 and 8 mm. 

 

 

Figure 3-5: In-plane shear stress at the center of nugget on the cross 
section of M1700 Tensile-Shear samples with nugget diameters of 6 and 8 
mm as a function of global extension.  
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Another observation from FE simulations was made based on the in-plane shear 

stress in the center of FZ for welds with 6 and 8 mm ND. Results are presented 

in Figure 3-5. As it can be seen, for weld with ND of 6 mm, shear stress 

increases significantly as the extension increases while for that with ND of 8 mm 

this curve is smoother with a lower magnitude. It was also observed that for weld 

with ND of 6 mm that failed with FIF mode, the in-plane shear stress is 

significantly higher than that for ND of 8 mm where failure happens at SCHAZ. 

3.5 Summary 

Based on the data from microhardness measurements, softening was identified 

in SCHAZ. The hardness drops with the magnitude of 6%, 18%, and 42% was 

observed in steels with 16%, 59% and 100% of martensite, respectively. The 

hardness ratio evaluated and used to represent as the extent of softening. 

The maximum hardness drop was observed in SCHAZ close to the Ae1 line. 

Hardness drop increases as steel’s carbon content, MVF, and MCC increase; 

however, it was found that a combination of MVF and MPC could be used to 

predict better the hardness drop or extent of softening in SCHAZ. 

FE model for the Tension-Shear test with partitioned and calibrated weld zones is 

able to predict the global deformation behavior of specimens when the extent of 

softening in SCHAZ is negligible, for instance, in spot weld made from DP590. In 

steels with greater extent of HAZ softening, e.g., DP980LC and M1700, the 

contribution of SCHAZ and its local constitutive behavior increases in the 

prediction of deformation response. 
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4 Constitutive Properties and Plastic Instabilities in the 
Heat Affected Zones of Advanced High Strength Steel 

Spot Welds 

 

4.1 Introduction 

Advanced High Strength Steels (AHSS) are produced with carefully selected 

chemical composition and precisely controlled thermomechanical processing. 

Their ultimate tensile strength ranges from 550 MPa and reaches up to 2000 

MPa and is related to underlying microstructures with different fractions of ferrite, 

martensite and austenite. These properties lead to improved safety, robust 

performance, and most importantly reducing the weight and achieving higher fuel 

economy, hence emissions reduction [1, 2] in the transportation industries. In the 

vehicle manufacturing process, Resistance Spot Welding (RSW) is the most 

commonly used joining method to assemble stamped components to form the 

body structure. Thus, from a steel grade design perspective it is very important to 

ensure that the designed product has a good combination of strength, ductility 

and spot weldability. Steel manufacturers put considerable effort in the design 

and processing of new steels to ensure satisfactory weldability in addition to 

meeting the requirements for basic mechanical properties and surface 

characteristics. 

For several grades of AHSS, heat affected zone (HAZ) softening has been 

reported by many researchers [3, 4, 9, 12, 13, 20, 21]. Biro et al. [12] investigated 

the softening kinetics of the HAZ regions of Dual Phase (DP) steels through 

thermal simulation of base metal samples. In their research, thermal cycles at 

different locations were described by Biro et al. [7], using the methodology 

introduced by Xia et al. [18]. The methodology developed by Xia et al. [10] is 
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based on Rosenthal’s heat transfer equations for two-dimensional cross-

sections. Biro’s research on DP600 and DP780 steels revealed that during the 

welding, martensite decomposes into ferrite and cementite when subjected to 

thermal cycles typical to that of subcritical HAZ (i.e., peak temperatures below 

Ae1). The extent of HAZ softening was confirmed with microhardness 

measurements. The effect of martensite fraction in the base metal on HAZ 

softening has been investigated by researchers like Xia et al. [18]. Their research 

showed that extent of HAZ softening increased with higher base metal ultimate 

tensile strengths, in three different DP steels during laser welding with similar 

process parameters. The results suggest a linear relationship between the extent 

of HAZ softening and base metal martensite volume fraction [18, 24]. The above 

phenomenon was also validated by other researchers with nanoindentor 

measurements: a reduction in hardness was observed in regions containing 

martensite, while no change was observed in ferrite grains [13]. The extent of 

softening has been shown to be strongly related to the tempering temperature 

and increases with volume fraction of martensite in base metal (BM) [13, 17, 18]. 

It is not surprising, because the tempering has little impact on the hardness of 

ferrite phase and the softening is more pronounced in the martensite [8]. 

Isothermal tempering kinetics of martensite is a well-known phenomenon 

discussed in the text books. However, the extension of these mechanisms to 

non-isothermal weld thermal cycles requires more attention [12, 14, 18, 26, 52] 

due to changes in the driving force for nucleation of carbides and also diffusivity 

of carbon in the matrix [26, 27] and therefore depends on the time spent at 

different temperatures. It has been reported [28] that the maximum softening 

occurs in the region close to, Ae1, i.e., the temperature at which the incipient 

formation of new austenite is expected [29]. Low temperature tempering and its 

effects on kinetics of phase transformation has been studies by several 

researchers [24, 53-57]. Similarly, and as a part of steel production, all DP and 
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martensitic AHSS undergo a low-temperature tempering treatment with typical 

peak temperature of about 200 °C for a period of 90 seconds. During these 

conditions, clustering of carbon atoms to octahedral lattice sites and dislocations 

and the onset of transient carbides (ɛ-carbides) are expected. Therefore, any 

further tempering from welding thermal cycle may induce the formation of 

cementite (M3C) [55-58]. The observation of carbides in the nugget region is 

often attributed to auto tempering during the cool down cycle of the welding due 

to recalescence effects [24, 56, 57]. Many of the above published works show 

that higher heat input leads to lower cooling rate, higher peak temperature, 

longer time for tempering, henceforth higher magnitude of HAZ softening. The 

role of softening on the elastic-plastic deformation of steels has also been 

studied in the literature, for example, the strain localization and premature failure 

of the welded structure have been attributed to the softening of material in HAZ 

[19] of press hardened steel.  

Recent researches on the new generation of AHSS [4, 5] have revealed an 

unexpected nonlinear relationship between the base metal tensile strength and 

that of the spot welded samples when base metal tensile strength exceeds 1000 

MPa. These experimental results are extracted from literature and are replotted 

in Figure 4-1 and illustrates the nonlinearity of Tension-Shear performance above 

1000 MPa. This behavior of traditional RSW joints in higher strength AHSS with 

more complicated microstructures could be an obstacle in using the new 

generation of AHSS. In our earlier attempts to rationalize the above phenomena 

through finite element method, the constitutive properties of different HAZ 

regions were scaled based on local hardness ratio [17, 59]. Using the extent of 

softening or hardening in the measured hardness values from the HAZ, the base 

material flow (stress-strain) behavior was scaled linearly. This scaling factor was 

assumed to be relevant to all characteristics including yield point, strain 

hardening exponent and ultimate tensile strength. However, our sensitivity 
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analyses of FEA simulations showed that such an assumption might lead to 

considerable uncertainty in the predicted performance of spot welded structures. 

The goal of this research is to understand the effects of spot-welding process on 

the local deformation behavior of AHSS spot welded samples. To answer this 

question, we investigated the local plastic flow of the simulated HAZ samples of a 

wide range of DP and martensitic AHSS steels using integrated tensile testing 

and digital image correlation technique. There is an emphasis on the instability 

behavior commonly known as discontinuous yielding before the onset of 

homogeneous plastic flow in the material and not on the instability following 

diffuse necking prior to fracture. The results will provide guidance to 

computational modeling of spot welded performance in the future and bridges the 

path from local microstructural evolutions to global deformation and fracture 

behavior for these welds. 

 

 

Figure 4-1: Comparison of measured Tension-Shear performance from spot 
welds made with DP and martensitic AHSS has shown a nonlinear 
relationship between the spot weld strength and base metal strength. 
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4.2 Experimental procedure 

4.2.1 Materials 

Six grades of AHSS including four DP steels (DP590, DP980LC, and DP980MC, 

DP1180) and two martensitic steels (M1300, and M1700) were selected to 

represent a wide range of chemical composition, initial microstructure, and base 

metal tensile strength (see Table 4-1 and Table 4-2). The yield and tensile 

strength are based on the results from ASTM E8 standard for the sub-size 

specimen with a gauge length of 25 mm, as shown in Figure 4-2. All the steels 

used in this study were secured from routine production coils that were tandem 

reduced and then processed on a water-quenched continuous anneal line. It is 

noteworthy that all the steels were subjected to a low-temperature tempering 

treatment with a peak temperature of about 200 °C for a period of 90 seconds 

during production. The martensite volume fraction (fM) and its carbon content 

(CM) in the dual phase steels were estimated based on image processing and the 

rule of mixtures. In these calculations, to estimate the martensite carbon 

concentration, the ferrite carbon content was assumed to be 0.02 wt.%. The 

equilibrium Ae1 and Ae3 phase transformation temperatures for each steel grade 

is calculated using JMatPro® and is summarized in Table 4-1. 

4.2.2 Spot welding equipment and parameters 

One set of spot welded samples was prepared for each grade by welding sheets 

from the same grade and thickness (total of 6 samples for 6 grades of AHSS 

steels used in this study). Welding parameters were the same for all welds. A 

Taylor-Winfield 75-85 kVA, 60 HZ single phase, AC resistance spot welding 

machine was used. Type A 16 mm ISO 6.0 mm EFD electrodes were used with a 

water-cooling system and 6 litter/min water flow. Welding procedure sequence 

was as follows: squeeze (70 cycles); weld time (two pulses of 12 cycle with 

cooling of 2 cycles between cycles); and hold time (10 cycles). A constant  
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Table 4-1: Chemical composition, martensite fraction, and phase 
transformation temperature of the investigated steels. 

Steel 
Alloying elements (Wt. %) CM 

(Wt. %) 
fM  

(Vol. %) 

Transformation 
Temperature (°C) 

C Mn Si Ae1 Ae3 

DP590 0.09 0.99 0.284 0.441 16 705 862 

DP980LC 0.10 2.19 0.65 0.154 59 682 829 

DP980MC 0.15 1.50 0.28 0.327 42 699 827 

DP1180 0.14 2.07 0.64 0.17 81 691 822 

M1300 0.19 0.39 0.15 0.19 100 723 844 

M1700 0.31 0.47 0.19 0.31 100 725 812 

 

Table 4-2: Tensile properties and hardness of the as-received AHSS used in 
this study. 

Steel Thickness (mm) YS (MPa) UTS (MPa) Total Elongation (%) 

DP590 1.5 390 636 23 

DP980LC 1.4 710 1056 13 

DP980MC 1.6 624 1025 13 

DP1180 1.6 956 1266 11 

M1300 1.4 1154 1386 6 

M1700 1.6 1706 1876 5 
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electrode load of 5kN was used for all welds. The welding procedure, samples’ 

geometry, and testing conditions were selected according to AWS D8.9 

standards [50]. 

4.2.3 Prediction of thermal cycles and Gleeble thermal simulations 

Because of the difficulties in direct measurement of temperature during spot 

welding, finite element (FE) method was used to obtain the local thermal cycles 

by simulating the spot-welding process. In this work, results from previous FE 

simulations by Ghassemi-Armaki et al. [19] were used to interpret the spot weld 

microstructures. These FE simulations were performed using SORPAS (by 

SWANTEC) on the same steel grades and sheet thickness. Six locations were 

selected within the HAZ region of the spot weld corresponding to peak 

temperatures of 350, 500, and 650 °C [i.e. sub-critical HAZ (SCHAZ) below the 

Ae1 temperature], 760 °C [i.e., inter-critical HAZ (ICHAZ), between Ae1 and Ae3] 

and two peak temperatures in upper-critical HAZ (UCHAZ); 950 °C 

corresponding to fine-grained HAZ (FGHAZ) and 1250 °C corresponding to 

coarse-grained HAZ (CGHAZ). The extracted thermal cycles were used in a 

Gleeble-3800 thermomechanical simulator. Thermal histories for Gleeble 

simulations are presented in Figure 4-3. For the Gleeble simulations, 126 

samples (6 steel grades × 3 repeats × 7 peak temperatures) were prepared from 

AHSS sheets. Tensile tests were performed on specimens with dimensions 

according to ASTM E8 standard with 25-mm gauge length and dimensions 

shown in Figure 4-2.  

The Gleeble samples were designed such that a uniform temperature is achieved 

in the middle of samples with dimensions equal to or larger than needed for 

tensile testing and correspond to the conditions typical to that of HAZ regions 

from a spot weld. This methodology involved two steps: (1) During Gleeble 

simulations; four thermocouples were used to measure the temperature gradient 

in rolling and transverse directions (as shown in Figure 2). The largest drop in  
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Figure 4-2: Dimensions for the samples used in Gleeble simulations with 
the outline for the sample used in tensile testing. Tensile sample 
dimensions are according to ASTM E8 sub-size standard specimen. 

 

 

Figure 4-3: Overview of the programmed and measured thermal cycles 
used for simulating different regions of heat affected zone in Gleeble® 
thermo-mechanical simulator. The dashed lines show the programmed 
thermal cycles and the solid lines show the measured ones from 
thermocouples. Note that we are not able to achieve rapid cooling rate in 
the experimental sample due to inherent thermal mass in the system. 
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peak temperature was measured to be 23 °C in rolling direction and place 

close to the grips. In transverse direction, temperature drop was negligible. 

(2) The hardness measurements were performed on the cross section of 

samples cut from Gleeble samples. 

4.2.4 Microstructural characterization and hardness measurements  

Microstructure of the Gleeble and spot welded samples were characterized 

using standard characterization techniques [60]. Microhardness 

measurements were performed by using a hardness tester with 300 grams 

of load and 15 second dwell time on the cross-section of both the spot 

welds and Gleeble simulated HAZ samples in the rolling direction, as per 

the ASTM E92 standard.  

The indent spacing was kept at 250 µm for all measurements, unless 

otherwise specified. Hardness measurements were used for following 

purposes: (1) to evaluate the local hardness and reveal the hardness 

heterogeneity throughout the spot weld regions, (2) to distinguish different 

regions of spot welded samples by comparing the hardness values and 

transitions, and (3) to calibrate the thermal cycles for the Gleeble thermal 

simulation as explained later in this section. 

4.2.5 Calibration of Gleeble thermal cycles using hardness values 

The calibration of thermal cycles for Gleeble simulations were performed by 

using hardness measurements. This ensured that the final microstructure is 

similar to that of the spot weld for the corresponding peak temperature. 

Results from this step are shown in Figure 17 for peak temperature of 650 

°C. Microhardness measurements were also used check the uniformity of 

material in the gauge length of tensile samples.  

Typical results are presented for M1700 samples subjected to two  
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Figure 4-4: Comparison between hardness values from Gleeble thermal 
simulation for 650 °C peak temperature (as an instance) and softest region 
of HAZ in all the steels show only slight differences that are within the 
uncertainty of indenter locations (±200 µm) and hardness measurements 
(±10 HV). 

  

 

Figure 4-5: Measured hardness distribution in M1700 sample subjected to 
thermal simulation with 350°C and 650 °C peak temperature along two 
different directions confirm the validity of our approach to use Gleeble 
samples as a surrogate to extract constitutive properties of HAZ regions. 
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tempering temperature of 350 and 650 °C presented in Figure 18, illustrate a 

uniform distribution of hardness in both rolling and transverse directions. 

These results proved the validity of our approach to using Gleeble® simulated 

samples to extract the stress-strain behavior of spot weld HAZ regions. 

4.2.6 Tensile testing and digital image correlation technique 

The MTS Criterion® C45 universal tensile testing frame was used to perform 

uniaxial tensile and Tension-Shear testing. The loading condition was set at a 

displacement rate of 2 mm/min for both type of tests. The tensile testing 

samples, extracted from the Gleeble samples, follow the ASTM E8 standard.  

For spatially resolved measurement of deformation and strain fields within the 

gauge length, a DIC system (manufactured by Correlation Solutions) was 

used. Following the procedures suggested by the manufacturer, the surface of 

samples was coated with prime white and dark speckle patterns on the 

surface.  

VIC-2D image analysis software (Correlation Solutions) was used for post-

processing the DIC data. A sampling rate of 10 Hz was used. A virtual 

extensometer with a length of 25 mm in gauge (along the sheet rolling 

direction) was used within the VIC-2D software to calculate the overall strains. 

With these measurements, the engineering and true stress-strain curves were 

described for different HAZ regions of all the steels.  

Tension-shear testing was also used to capture the typical deformation 

behavior in DP and martensitic steels. DP590 and M1700 spot welded 

samples were made in concert with AWS D8.9 standard with nugget diameter 

of 8 mm for both samples. After loading and failure, these samples were cut in 

the loading direction to reveal the deformation behavior in different regions of 

welded samples with more details. 
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4.3 Experimental results 

4.3.1 Plastic flows 

The methodology for extracting these curves from tensile testing and DIC raw 

data is explained in Section 2. These results are presented in following in Figure 

19, in the form of engineering stress-strain curves and for the readers’ review. 

4.3.2 Results from Tension-Shear testing 

Results from the Tension-Shear tests on DP590 and M1700 spot welded 

samples are presented in Figure 4a. In both samples the failure locations are 

identified as the regions that have been heated below Ae3 phase transformation 

temperatue of each steel. This identification was based on locally experienced 

peak temperatures predicted by finite element models, as well as, the measured 

hardness values and their gradients from spot welded samples. The nugget 

rotation and extent of deformations were significantly different in these two 

samples. DP590 spot weld shows larger rotation in nugget. In addition, in this 

sample the plastic deformation in regions close to failure were more pronounced 

in comparison to that in M1700. Although it is tempting to correlate the failures in 

M1700 to brittle failures expected in martensitic steels, careful analyses of the 

failed region showed localized deformation (see Figure 4-7 (b) and (c)). The 

above results confirm the need for correlation of local microstructural gradients in 

spot welds (see Fig. 4d) and its response to localized and global plastic 

deformations, as investigated in the following sections. 

4.3.3 Typical local microstructure of spot welds 

To understand the localized plastic deformation in M1700 spot welds, high-

magnification images of microstructural heterogeneity before mechanical testing 

is presented in Figure 5. In the as-received base metal of M1700 steel, a 

martensitic lath microstructure with fine carbides (bright imaging) was observed.  
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Figure 4-6: Engineering stress-strain curves obtained from tensile testing 
of base metal and Gleeble simulated HAZ samples for all six grades of DP 
and martensitic AHSS used in this study. 
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Figure 4-7: (a) Global deformation behaviors and failure in DP590 and 
M1700 Tension-Shear samples. Different extents of nugget rotation and 
global deformation can be observed (a). Localized plastic deformation in 
M1700 steels are marked in locations and are shown in high-magnifications 
(b) and (c). Failures in both steels are correlated to regions with peak 
temperature below Ae3 based on comparing the location of failures with 
predicted thermal distributions from the FE simulations and hardness 
measurements and are schematically illustrated in (d). 

  



41 

 

 

Figure 4-8: Overview of microstructural heterogeneity within the spot 
welded sample made from M1700 AHSS steel obtained using scanning 
electron microscopy. The annotations are explained as following: M-
Martensite; F-Ferrite; and TM-Tempered Martensite. Note that the 
identification of carbides is based on the contrast observed in the SEM 
images. 
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This is indeed expected since the base metal undergoes a low temperature 

tempering step during production. Results for the nugget of spot weld similarly 

showed a martensitic microstructure with fine carbides. The existence of fine 

carbide in this region can be attributed to auto tempering due to recalescence 

effect (release of enthalpy of fusion) during weld cooling [24, 56, 57, 61]. The 

upper-critical HAZ (UCHAZ), including regions corresponding to peak 

temperatures of 950 °C (FGHAZ) and 1250 °C (CGHAZ), also contained 

martensite with some brightly imaging fine carbides. Perhaps the most interesting 

observation from the microstructural analysis is for ICHAZ. In this region, an 

aggregate of ferrite and martensite phases was observed with the amount of the 

latter increasing as we move towards the fusion line. Although, we cannot 

accurately assign the peak temperatures to different locations within the HAZ of 

spot welds, our interpretation of interpretations of different regions are based on 

the etching response, high-magnification observation of microstructure and also 

the measured hardness gradients (see Figure 4-9).  

The widths of ICHAZ varied from 0.1 to 0.3 mm, depending on the chemistry and 

phase transformation temperatures of each steel. In the SCHAZ of dual phase 

steels, we observed ferrite and tempered martensite. In the case of martensitic 

steels, only tempered martensite was observed. In SCHAZ corresponding to 

lower peak temperatures (BM and lightly etching regions) cementite particles are 

finer and more dispersed while in regions experiencing higher peak temperatures 

(darkly etching), the cementite particles are sparse and coarsened in martensite 

substructures and along the prior austenite grain boundaries. 

Based on the iso-surface temperature contours from FE analyses, the lightly 

etching regions should have experienced a peak temperature below 350°C and 

the darkly etching regions should have experienced peak temperatures ranging 

from 500 to 650°C. Above identifications are phenomenological and must not be 

considered as fact due to our inability to extract thermal signatures during 
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welding. Therefore, we have used FE simulation results, hardness 

measurements, and microstructural features to correlate the local plastic 

deformation and failure to microstructures in the SCHAZ or ICHAZ regions. It is 

noteworthy that these observations are not new and have been reported 

extensively in the literature [9, 12-14, 57, 62-65].  

4.3.4 Microhardness examination of spot welded samples 

Results from microhardness measurements performed on the cross section of 

spot welded samples are presented in Figure 4-9. These results illustrate the 

existence of softening and hardening in the HAZ of all steels, however with 

different extents. The softening is observed in two regions of spot welded 

samples: (1) In the SCHAZ of all steels with DP590 and M1700 possessing the 

minimum and maximum hardness ratios of 94% and 58%, respectively; (2) In the 

ICHAZ regions wherein minimum hardness was similar to that of SCHAZ and 

experience peak temperatures close to Ae1. In ICHAZ an increase in hardness 

with an increase in the freshly formed martensite is observed.  

Interestingly, the above data also correlated with microhardness data measured 

from samples (to be described later) subjected to Gleeble thermal simulations. 

For example, the maximum hardness values were observed in the samples with 

two peak temperatures used in Gleeble simulations; 950 °C and 1250 °C 

corresponding to FGHAZ and CGHAZ, correlates with martensite microstructure 

that forms within fine and coarse-grained austenite grains in the spot welds, 

respectively. 

4.3.5 Comparison of YS, UTS and strain hardening exponent of Gleeble 
simulated HAZ samples 

Raw data from all tensile tests performed on Gleeble thermally simulated 

specimens are presented earlier in this chapter. For comparative purposes, here 

we use the YS and UTS ratios and measure strain hardening exponents as 
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shown in Figure 7 (a) and (b) and Figure 8. Results presented in Figure 7 (a) 

show an increase in YS ratio for samples with Tpeak = 350 °C, followed by a 

continuous decrease as TPeak approaches the 650 °C, for DP steels. The trend is 

different for the fully martensitic steels (M1300 and M1700) in which a continuous 

reduction of YS ratio is observed. Interestingly, for both the DP and martensitic 

steels, the reduction in YS ratio continues to ICHAZ regions, where the TPeak was 

760 °C with values lower than that of SCHAZ regions for all steels. The DP590 

and M1700, possess the minimum YS to be 1.02 and 0.38, respectively, in the 

entire HAZ. By increasing the TPeak and eventually going above the Ae3, the YS 

increases in all steels. The maximum YS ratio was observed in UCHAZ with a 

peak temperature of 950°C wherein the FGHAZ microstructure was observed 

from the microstructural analysis. The minimum and maximum YS ratios were 

observed at TPeak of 950 °C for DP590 and M1700 to be 2.34 and 1, respectively. 

Similar analyses were performed using the UTS ratios for all steels. Results 

shown in Figure 7 (b) confirm that the tensile strength in SCHAZ decreases with 

an increase in peak temperature and minimum UTS for all steels observed in 

SCHAZ at TPeak of 650°C. The minimum and maximum UTS ratio observed for 

DP590 and M1700 to be 0.96 and 0.54, respectively. The maximum UTS 

observed for all steels with a peak temperature of 950°C in the region where the 

fine grain martensitic microstructure was observed from SEM analysis. The UTS 

ratio slightly decreases by moving from 950 °C towards 1250°C peak 

temperature. The change in strain hardening exponent (n term in the flow curve 

equation s =ken) for steels subjected to different thermal cycles are summarized 

in Figure 8. Interestingly, the “n” values decreased to a minimum value of 0.04 for 

the all the samples subjected to thermal cycling at a peak temperature of 500°C 

which corresponds to semi-perfect plastic behavior. The two fully martensitic 

steels (M1300 and M1700) show the largest drop in strain hardening despite the 

high strain hardening values in base metal before thermal cycling. With the 
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Figure 4-9: Hardness ratios along the diagonal line across spot welds 
showing the hardness heterogeneity. Results show softening in SCHAZ 
and ICHAZ regions and hardening in UCHAZ and nugget. The base metal 
hardness for each steel is measured as: DP590: 199, DP980LC: 324, 
DP980MC: 311, M1300: 452, and M1700: 585 Vickers. Dash lines show the 
approximate boundaries between regions of the spot welds. 
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increase in peak temperature from 500 °C to 650 °C, the hardening exponent 

increases up to 760°C corresponding to the ICHAZ, where at the highest value 

were observed for all steels. The strain hardening shows a slight decrease with 

increase in peak temperature and by moving from the ICHAZ towards UCHAZ. 

4.3.6 Observation of yield point phenomena  

Discontinuous yielding in the form of yield point phenomena (YPP) with 

corresponding Lüders band was observed in thermally simulated samples for 

peak temperatures below Ae1 (i.e., SCHAZ) in all the steels. The YPP is 

characterized by upper yield stress (UYS), lower yield stress (LYS), and Lüders 

strain (𝜀/), as shown schematically in Figure 9 (a). The interpretation of stress-

strain curves with YPP is schematically illustrated in Figure 9 (b) with the spatial 

strain field calculated from DIC analysis of DP1180 steel subjected to thermal 

cycles with a peak temperature of 650°C, as an instance.  

Figure 9 (b), shows the Lüders strain initiation and propagation in the gauge 

length of the sample at different stages marked as (1), (2) and (3). With 

continued straining above the YPP, the strain hardening sets in and eventually 

leads to failure (Figure 9 (b, 3-6)). 

4.4 Discussion 

The primary focus of this chapter is to investigate the effect of thermal cycles with 

different peak temperatures, similar to those in spot welding process, on the local 

constitutive properties of DP and martensitic advanced high strength steels. In 

the previous section, the variation of plastic flow properties in terms of YS, UTS, 

and strain hardening exponents are summarized.  

The re-emergence of YPP and corresponding Lüders strain are also shown. 

Although, previous researches are focused on the elastic-plastic properties of 

tempered DP and martensitic steels, all of them ignore the local mechanical  
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Figure 4-10: Variation of yield stress and ultimate tensile stress as a 
function of peak temperature obtained from Gleeble thermally simulated 
HAZ samples. 

 

 

Figure 4-11: Variation of strain hardening exponent as a function of peak 
temperature obtained from Gleeble thermally simulated samples. 
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Figure 4-12: Schematic representation of stress-strain curve for material 
with discontinuous yielding (a) and DIC images from Lüders band initiation 
and propagation in the gauge length and strain along the path in the 
loading direction for DP1180 Gleeble simulated HAZ sample tempered to 
650 °C (b). 
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heterogeneities in scales smaller than gauge length and the associated plastic 

instability. Therefore, in the following discussions, we initially discuss the material 

heterogeneity and then evaluate the details of plastic instability. Finally, these 

characteristics will be correlated to the underlying microstructures. 

4.4.1 Heterogeneous plastic flow properties  

Results presented in section 3 show that thermal cycles with different peak 

temperatures could lead to significant changes in local constitutive properties 

(YS, UTS, and hardening exponent) for thermally simulated samples that are 

simulative of local regions of spot welds. As these local microstructures influence 

deformation behavior and failure of AHSS spot welds the heterogeneity of 

elastic-plastic properties needs detailed analyses. Since the lowest values for YS 

and UTS ratios were measured from samples with peak temperatures of 760 and 

650 °C for all steels, these regions can experience strain localization leading to 

lower strength and/or change in failure mode that is described in Figure 4-1. 

Therefore, the discussions in this section will be primarily focused on samples 

heated to these two peak temperatures. Figure 10 shows the YS and UTS ratios 

for different steels used in this study. As it can be seen, for all these steels 

(except DP590) and at these peak temperatures, the YS and UTS ratios are 

below one (except DP590 and DP980LC). This implies that the mechanical 

heterogeneities increase in higher grades of these steels. Another interesting 

observation is that the YS ratio in ICHAZ (at 760 °C) is lower than that in SCHAZ 

(at 650 °C) in all the steels. This result suggests that this region may be the initial 

site for the strain localization in spot welds. It is noteworthy that we have used 

only one peak temperature (760 °C) for reproduction of ICHAZ material and 

therefore we do not know whether this result is generic and applicable to other 

peak temperatures with different fractions of fresh martensite. At other 

temperatures, substantially above Ae1 and reaching Ae3, the extent of the newly 

formed austenite is expected to increase by replacing the initial microstructure of 
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the base metal. These continually varying fractions of ferrite (low carbon 

supersaturation with no carbides), tempered martensite (partial carbon 

supersaturation with carbides) and fresh martensite that forms from the austenite 

fromed during reheating are bound to influence the overall strain partitioning 

between these constitutent phases. Implictions of these heterogeneous plastic 

properties will be explained later in this section, after detailed analyses of the 

spatial and temporal plastic instabilities observed in DIC. 

4.4.2 Spatial and Temporal Variations of Plastic instabilities  

An important outcome of our experimental work is the observation of plastic 

instability, in the form of yield point phenomena, in samples with peak 

temperatures corresponding to SCHAZ regions (< Ae1). As presented in Section 

3, the YPP and corresponding Lüders strain were mainly observed in samples 

with peak temperatures corresponding to 500 and 650 °C, and was negligible in 

samples with peak temperature of 350 °C. Figure 11 summarizes the effect of 

peak temperature on Lüders strain: the measured Lüders strain increases with 

the peak temperature and reaches the maximum in samples heated to a peak 

temperature of 650 °C for all the steels.  

The only exception to this observation is from DP980MC because there was no 

momentous change in Lüders strain from samples heated to 350 to 500 °C. In 

contrast, DP1180 and DP980MC steels showed the largest and smallest Lüders 

strain at 650 °C, respectively. The Lüders strain can be correlated to the carbon 

content in the ferrite (BCC) or partially tempered martensite (BCC/BCT) lattice 

structures. This hypothesis was confirmed by correlations shown in Figure 12, 

i.e., the Lüders strain of SCHAZ samples decreases with carbon concentration of 

martensite. The observation of YPP and Lüders strain and association only with 

samples of certain thermal cycles needs to be rationalized and will be the focus 

of the next section. 
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Results shown in Figures 11 and 12 are based on DIC measurements from a 25-

mm gauge length on the surface of tensile samples. Therefore, these values are 

average of the overall response of aggregated plastic flow that are happening at 

different rates across the whole gauge length. It is quite possible that the plastic 

flow properties at local levels can be different in regions containing varying 

mixtures of original ferrite, partially or fully tempered martensite, newly formed 

martensite that have been produced during thermal cycling. By post-processing 

the DIC data and plotting the Lüders band velocity, we can get insight into the 

dynamics of nucleation and growth of plastic instabilities in gauge length of 

samples. Results from such analyses (strain value of 0.1) was performed for 

DP590, DP980LC, and M1700 steel samples subjected to thermal cycles with a 

peak temperature of 650 °C are shown in Figure 13. The results from Lüders 

velocity contours show different behavior. As it can be seen in M1700 sample, 

the number of Lüders band nucleation sites are significantly higher than that in  

 

 

Figure 4-13: Plastic flow heterogeneity in HAZ of AHSS spot welds based 
on results from tensile testing on thermally simulated samples. This 
heterogeneity increases in higher grades of these steels.  
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DP980LC and then DP590. The Lüders velocity is also different with higher 

values belonging to M1700 and then DP980LC. This result confirms that 

the Lüders strain has different orientations with reference to loading axis, 

potentially due to spatial variation of the texture. Currently, such small-

scale effects cannot be modeled using the finite element models and may 

require microstructure-based crystal plasticity models. 

4.4.3 Overview of Microstructural Changes and Rationalization of 
Plastic Instabilities 

The kinetics of phase transformations of DP and martensitic steels during 

isothermal and non-isothermal thermal conditions, as well as their 

correlations to stress-strain behaviors has been extensively studied in the 

literature [4, 9, 11-14, 18, 20-22, 24, 25, 35, 55-57, 61, 63, 66-84]. Based 

on the comprehensive review of the literature and computational models, 

we provide a schematic illustration of the microstructure evolution in six 

grades of steels during thermal cycling. The diagram is based on 

microstructure evolution in dual phase steels (see Figure 14). Similar 

evolutions are expected for the fully martensitic steels by considering only 

the martensite phase. 

UCHAZ region: In this region, the steel is heated to single phase austenite 

region and cooled rapidly to room temperature. This leads to the formation 

of fresh martensite from both fine- and coarse- austenite grains. These 

regions which are known as FGHAZ and CGHAZ have been studied 

extensively in the welding literature. Since the plastic instabilities were not 

observed in this region, rest of the discussions will focus only on the 

SCHAZ and ICHAZ regions. 

SCHAZ region: In this region, the only microstructural change (see Figure 

14b) is related to continued tempering of the pre-existing martensite. It is  
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Figure 4-14: Lüders strain measured from Gleeble simulated SCHAZ 
samples. In all steels Lüders strain in SCHAZ increased with the thermal 
cycle peak temperature. 

 

 

Figure 4-15: Lüders strain as a function of martensite carbon content and 
peak temperature in SCHAZ. Lüders strain showed an inverse correlation 
with martensite carbon content and increased with thermal cycle peak 
temperature.  
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well known that this tempering reaction is accompanied by carbon 

clustering within the lattice or to the dislocations, growth of pre-existing 

carbides, nucleation and growth of new carbides. Furthermore, a reduction 

of dislocation densities, that formed during the original martensitic reaction 

before thermal cycling, is also expected. The extent of these reactions is 

dictated by thermal signatures that control the time spent at different 

temperatures below Ae1. 

ICHAZ region: In the ICHAZ, previously tempered martensite in the base 

metal transforms partially into austenite (see Figure 14c) on heating above 

Ae1. Due to rapid heating, short isothermal heating, and cooling cycles, the 

carbides in original tempered martensite are partially dissolved. On cooling 

down, this austenite transforms to fresh martensite.  

Due to the inherent difference in thermal expansion coefficient between 

ferrite and austenite, during the cooling and transformation of the austenite 

to martensite, stresses will be generated in the original tempered 

martensite or ferrite. This boundary conditions may induce the 

geometrically necessary dislocations in the boundaries of original BM 

microstructure and freshly formed martensite. Similar to the other regions 

of HAZ, the extent of fresh martensite will be dictated by thermal signature, 

i.e., peak temperature and time spent above the Ae1 temperature. 

Rationalization of Yield Point Phenomenon: Emergence of yield point 

phenomenon is related to Cottrell atmosphere brought about by 

segregation of carbon and/or nitrogen to dislocations which pins the mobile 

dislocations and the onset of Lüders strain [85-91]. While the upper yield 

stress is related to the static pinning of dislocation by Cottrell atmosphere 

[85, 86], however, the rapid dislocation multiplication has been known to 

play a significant role in the Lüders band propagation and strain [87, 92, 

93].  
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Both phenomena are strongly related to the carbon content and dislocation 

density of steels. The formation of Cottrell atmosphere has been shown to 

be strongly related to the amount of free carbon and mobile dislocation 

density in the microstructure and the interaction between these two [86, 88-

91]. The observation of YPP in SCHAZ of fully martensitic steels of this study 

indicates that this phenomenon can happen in tempered martensite. Several 

studies have also shown that tempering supersaturated ferrite can also lead 

to the formation of Cottrell atmosphere and hence occurrence of YPP [87].  

The carbon content of bcc iron can change as the peak temperature 

changes. This is shown in Figure 15 based on thermodynamics calculation 

using JMatPro® software, for equilibrium condition. Interestingly, the ferrite 

carbon content increases significantly, i.e., about ten times as the tempering 

temperature increases from 350 to 650 °C. This carbon remains in the bcc 

lattice upon rapid cooling cycles and can have pinning effects on the 

dislocations [86, 89]. Therefore, both the temper-aged ferrite and tempered 

martensite are responsible for the YPP in DP and martensitic steels.  

With significant microstructural changes in SCHAZ (YPP was only observed 

in this region), the effect of tempering on both the ferrite (temper-aging) and 

martensite (tempering) and the amount of free carbon and mobile dislocation 

density have to be considered in a unified fashion. Phenomenological 

models for the YPP can be used to study the variation of dislocation density 

in the microstructure. The model introduced by Hahn [92], as shown with its 

parameters in Figure 16, is one model that uses the dislocation density as 

the main parameter for generating stress-strain curves with YPP. We used 

this model to generate the stress-strain curves corresponding to those 

obtained from tensile testing experiments.  

The corresponding curves for the tensile testing samples with the lowest and 

the highest YS are plotted in Figure 16 along with curves for SCHAZ  
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Figure 4-16: Contour of localized strain trajectories for DP590, DP980LC, 
and M1700 samples, subjected to thermal cycles with a peak temperature 
of 650 °C, at strain of 0.01 and as a function of time. The Lüders band 
motion and numbers of initiation sites increase from DP590 to M1700. The 
rapid motion, multiple Lüders band initiation sites, and cross-width band 
motion are remarkably higher in M1700. Frames correspond to time 
intervals of 0.1 second. 

 

 

Figure 4-17: Schematic illustration of microstructural evolutions occurring 
during thermal cycles of spot welding of DP AHSS steels with peak 
temperatures of 650 and 760 °C, corresponding to SCHAZ and ICHAZ, 
respectively. For the fully martensitic steels, events in martensite phase 
can be adopted and therefore, no separate schematics are needed.  
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samples. The dislocation density for these two curves is also shown and 

indicating that the dislocation density in the steel’s microstructure changes 

due to the thermal cycles with different peak temperatures. Although these 

types of models formed based on fitting of experimental data can be used 

for other materials however due to numerous variables, there is no unique 

solution. Thus, this type of models cannot effectively represent the YPP for 

different size-scales. The above sensitivity analyses show that these two 

parameters (carbon and dislocation density) can vary remarkably in 

different peak temperatures and reflect on the plastic instabilities seen in 

the thermally simulated samples subjected to peak temperatures belonging 

to SCHAZ of DP and martensitic AHSS. The appearance of plastic 

instabilities and Lüders band in the mechanical behavior of the SCHAZ and 

ICHAZ regions may lead to high degree of uncertainties and plastic 

instabilities in the behavior of the AHSS spot welds. 

 

 

Figure 4-18: The amount of carbon that can dissolve in ferrite in equilibrium 
as a function of peak temperatures. Carbon solubility in ferrite increases 
with an increase in peak temperatures. Slight reduction above a maximum 
value at high temperatures above 700°C is indeed expected due to the on-
set of the austenite formation. 
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Figure 4-19: Variation of dislocation density based on fitting a 
phenomenological model proposed by Hahn [92]. In this model: 𝝈 is the 
plastic stress, 𝒒 is the macroscopic work hardening coefficient, 𝝉𝒐 is the 
resolved shear stress, 𝒃 is the burger’s vector, �̇� is the strain rate, 𝝆𝒐 is the 
initial mobile dislocation density, 𝒇 is the fraction of initially mobile 
dislocations, 𝜺𝒑 is the plastic strain, and 𝒂, 𝑪 and 𝒏 are dislocation density 

parameters from experiments. A wide range of mobile dislocation density 
was used in the fittings.  
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4.5 Summary 

The effect of thermal cycles with different peak temperatures due to spot welding 

process on the local constitutive properties and plastic instabilities of several DP 

and martensitic AHSS were investigated. Following conclusions can be made 

based on the results and analyses:  

Significant softening, in terms of hardness change, was observed in both SCHAZ 

and ICHAZ regions of spot welded samples. The extent of softening was similar 

in these regions in areas close to Ae1 phase transformation temperature of each 

steel. The lowest and highest extents of softening were observed in DP590 and 

M1700, with hardness ratios of 0.94 and 0.58, respectively.  

Interestingly, the minimum yield stress ratio (YSLocal /YSBM) was observed in the 

ICHAZ regions heated to a peak temperature between Ae1 and Ae3 in all steels 

which may be the location for strain localization in some loading modes. This 

result is in contrast with existing understanding that the SCHAZ might be the site 

of strain localization.  

Yield stress and tensile stress heterogeneities were observed in all steels with 

degradation of these properties in the softened HAZ (both SCHAZ and ICHAZ). 

The heterogeneity in these softened regions increased in higher strength steels 

with a higher fraction of martensite in their microstructure. 

Discontinuous yielding in the form of yield point phenomena with corresponding 

Lüders band was observed in SCHAZ of all steels. The Lüders strain in each 

steel increased with the peak temperature and was related to the carbon content 

of the tempered martensite. The magnitude of the Lüders strain was shown to be 

inversely related to the carbon content of martensite. 

The formation of Lüders band and its propagation was different in different steels. 

In higher strength steels, more initiation sites and cross-width propagation were 

observed.  
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5 Uncertainties in Finite Element Simulation of Yield 
Point Phenomena in Advanced High Strength Steel 

Spot Weld 

 

5.1 Introduction 

Results from tensile testing of dual-phase (DP) and martensitic advanced high 

strength steel (AHSS) samples subjected to heat-affected-zone (HAZ) thermal 

cycles below the Ae1 temperature, presented in Chapter 4, revealed the 

existence of discontinuous yielding in the form of yield point phenomena (YPP). 

These samples were subjected to typical HAZ thermal cycles with peak 

temperatures ranging from 500 to 650 °C. The formation of YPP and its 

corresponding yield plateau and Lüders strain have been studied by many 

researchers [85, 89, 91, 94-96] and it has been shown that the Lüders strain is 

sensitive to concentration of carbon, ferrite volume fraction and grain size, 

temperature, and strain rate. It is indeed well known that the YPP behavior is 

manifested in steels due to the reduction in dislocation motion with the presence 

of Cottrell atmosphere, i.e., segregation of carbon atoms in dislocations [85, 86, 

91, 97, 98]. It is interesting to note that the FE simulations of spot welds until now 

has not considered the YPP behavior in the HAZ regions and forms the 

motivation of the study presented in this chapter. 

The first step towards addressing this gap is to implement material constitutive 

model capable of describing YPP. Literature review indicates that there are many 

approaches to capture the YPP behaviors in FE simulations. The first approach 

is based on phenomenological models that is based on carbon concentration, 

dislocation density, multiplication, and velocity parameters [92, 99-102]. The 

second indirect method is based on developing a calibrated material model that 
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faithfully reproduces the tensile testing result with yield point phenomena. This 

methodology relies on modifying constitutive properties (i.e. stress-strain 

relations) of the FE elements to be represented by Upper Yield Stress (UYS), 

Lower Yield Stress (LYS) and strain hardening rate [99, 101]. Interestingly, 

Schwab and Ruff [99] calibrated the UYS and LYS based on the measured angle 

of Lüders’ band with reference to loading axis using digital image correlations 

(DIC) and the onset of yield point (from measured stress-strain curve). After this 

calibration, it is assumed that this elemental material model would be able to 

exhibit a yield plateau for any other testing conditions or complex geometries. 

The effect of YPP on deformation behavior of steel tubes was studies by Hallai et 

al. [103, 104]. This is perhaps the most complex geometry for which material 

model with YPP included is used up to date. In this work, they used a rate 

dependent material model with YPP with UYS and LYS at the onset of Lüders 

strain and the initiation of strain hardening part of the stress-strain curve, 

respectively, obtained from the uniaxial tensile testing.  

The application of the above material models with YPP included has not been 

extended to complex parts with heterogeneous material distributions and 

geometrical nonlinearities as that of. In addition, the effect of the YPP on the 

local and global plastic instabilities has not yet been studied, to the knowledge of 

author of the student. With the observation of the YPP in the HAZ of DP and 

martensitic AHSS spot welds, this becomes important to include such 

complicated material model in FE simulations with the aim to investigate possible 

impacts on loading response and instabilities, in both the local and global 

aspects. Therefore, the motivation of this work is to investigate the effect of this 

phenomena and its corresponding Lüders strain on the mechanical performance 

of spot welded samples made from DP and martensitic advanced high strength 

steels. With the difficulties in experimentally investigating the local and global 

effects of the YPP on mechanical performance of spot welded samples, the 
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numerical analysis using finite element method (FEM) become the candidate for 

this study. This chapter is structured as follows. The first section is dedicated to 

the FEA simulation methodology and materials constitutive models. In the next 

section, an overview of the published experimental data from TS samples are 

presented that are relevant for validation of FE simulations. Next, results from FE 

simulations and sensitivity analyses on material model, fracture criteria, and 

mesh design are presented and compared with experimental results. Finally, the 

implications of the simulations and the role of YPP on the overall performance of 

the spot welds are discussed. 

5.2 Simulation Methodology and Validation Experiments 

5.2.1 Development of Local Constitutive Material Models 

Data Generation: The M1700 fully martensitic steel with 0.31 wt.% carbon, 0.47 

wt.% manganese, and 0.19 wt.% silicon was used in this study. Results shown in 

previous chapters showed that this steel experiences significant microstructural 

changes during spot welding process depending on the local peak temperature. 

Results showed the onset of yield point phenomena in samples subjected to 

SCHAZ conditions with peak temperatures of 500 °C and 650 ºC. In this work 

results obtained from tensile testing on Gleeble simulated HAZ samples were 

used as material model input for FE simulations. Details for the Gleeble 

simulations and tensile testing can be seen in Chapter 4. To extract element 

scale constitutive properties for different regions of spot weld, a virtual 

extensometer with 1-mm length was used in post-processing of DIC data. The 

results from these measurements in the form of true stress-strain curves are 

shown in Figure 5-1. Each curve was then assigned to corresponding section of 

the HAZ of spot weld in FE models for TS and CT sample. 

Generation of Material Model with Yield Point Phenomena: In this work we 

adopted the method introduced by Schwab and Ruff [99] for generating the 
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element-scale material models with YPP included. This method uses the 

observed yield stress and Lüders angle in tensile testing of samples in the DIC 

measurements to calculate the UYS and LYS to describe the element-scale 

material behavior for FE simulations. Details for this model can be found in Ref. 

[99]. The UYS and LYS are then calibrated until the stress-strain curve from FE 

simulation of UT sample matches with experimental observations. Typical values 

for these two parameters for SCHAZ regions are summarized in Figure 5-2. 

Results from our DIC measurements showed that the Lüders band front angle 

may change during propagation in the gauge length resulting in changes in 

calculated UYS and LYS. For example, for sample subjected a peak temperature 

of 650 °C this variation was measured to be around 10 degrees. These results 

show that by changing the Lüders angle from 50 to 60 degrees, the LYS and 

UYS change by -23% and +18%, respectively.  

In our calibrated YPP model (CYPP), a Lüders angle of 56 degrees was used. To  

 

 

Figure 5-1: Local elastic-plastic properties obtained from thermally 
simulated samples representing the local properties of M1700 spot weld 
used in FE simulation of uniaxial tensile testing and TS and CT tests. 
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investigate the sensitivity of this parameter, we choose an upper limit of 60 

degrees. The calculated UYS and LYS were found to be 1112 and 904 MPa, 

respectively. Similar calibration was performed for the tensile data from samples 

subjected to a peak temperature of 500 °C. The UYS and LYS were calculated to 

be 1425 and 712 MPa, respectively. For material at 500 °C, the UYS and LYS 

were calculated to be 1723 and 1090 MPa, and 1918 and 959 MPa, for CYPP 

and EYPP, respectively.  

With above sensitivity to the Lüders band front angle, three different material 

models, including: (1) model without YPP (NYPP), (2) model with calibrated YPP 

(CYPP), and (3) model with exaggerated YPP (EYPP) were considered as a part 

of sensitivity analysis for the SCHAZ region of weld in FE simulations of TS 

sample. 

Damage Model: A strain-based stress-state and strain-rate independent  

 

   

Figure 5-2: Three element-scale material models including NYPP, CYPP, 
and EYPP for M1700 at 500 °C ( and 650 °C peak temperatures obtained 
from the method introduced by Schwab and Ruff [99]. Material models for 
CYPP and EYPP were calculated based on observed YS and variation of the 
Lüders angle in gauge length of UT sample. 
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constant fracture criterion was initially used in this study. Due to the complexity 

ofthe strain and stress fields and as explained later in this chapter, a stress-

based damage model based on the tensile failure at integration point of the 

elements was used in conjunction to the strain-based model. The equivalent 

fracture strain at failure for each peak temperature was derived from post-

processing of DIC data during tensile testing and used in FE simulation of TS 

sample as the damage model. For all regions but the SCHAZ with peak 

temperatures of 500 and 650 °C, a stress-based failure criterial was used in 

conjunction with the strain-based model. This, as explained later in this chapter, 

was to account for the conditions in which the UYS in SCHAZ at 500 and 650 °C 

reaches values above the tensile strength of the adjacent regions. 

5.2.2 Finite Element Analysis 

FE models: Three-dimensional FE models for the UT and TS (with 4- and 8-mm 

nugget diameter) tests were generated in Abaqus commercial FE package. The 

geometry and boundary conditions were in concert with the requirements 

suggested by ASTM E8 [105] and AWS D8.9 standards [50]. These models are 

shown in Figure 5-3. For the UT sample, the entire geometry was modeled, 

however for the TS sample, only one half of geometry was modeled, due to the 

symmetry. The FE model for UT was mainly to calibrate the material models for 

different peak temperature, particularly for material at 500 and 650 °C with YPP. 

These calibrated material models as mentioned above were used as element 

scale material inputs for different regions of spot welds during the simulation of 

TS sample. 

Mesh design: The meshing was performed by using eight-node linear brick 

elements. The element size for UT model was the average of that used in 

SCHAZ at 500 and 650°C and comparable to the length of virtual extensometer 

(1 mm) used to extract the strain history from DIC data. The element sizes 
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Figure 5-3: Three-dimensional FE models prepared in Abaqus for uniaxial 
tensile (a) and Tension-Shear (b) samples. The TS sample was partitioned 
into sections representing different regions of the spot welded sample. A 
closer look at partitioning, mesh, and material assignment can be seen in 
Figure 5-4. 
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ranged from 30 µm in SCHAZ to 3 mm in regions close to the two ends of TS 

model.  

Special attention was paid to the mesh design for the complex geometry of spot 

weld such that enough number of elements are assigned to each region of weld 

based on the overall geometry and expected deformation (see Figure 5-4). The 

element deletion technique was used to describe the crack initiation, 

propagation, and failure in TS samples. A mesh refinement analysis was 

performed to investigate the sensitivity of results to element size by increasing 

the number of elements from around 130k to 270k. 

FE solver options: Two FE solvers can be used for solving the quasi-static 

loading condition in UT and TS tests; (i) the implicit (computationally intensive) 

quasi-static solver and (ii) dynamic explicit (less computationally intensive) 

solver. The latter is usually suggested for solving problems that include 

 

 

Figure 5-4: Image from optical microscopy of cross-section of M1700 spot 
weld. A 2% Nital etchant was used to reveal the microstructure. Results 
from hardness mapping are also shown in addition to FE model partitioned 
for material assignment. 
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nonlinearities in both geometry and material properties, large deformations, 

failure and fracture modeling. However, with several parameters in the dynamic 

loading (mainly mass and time scaling, and damping factors), the justification of 

the results becomes important. In this work we initially used the implicit solver for 

the TS model with CYPP material and ran the simulation. The computational time 

for this solver was about two days with difficulties in finishing the simulation due 

to large deformation, nonlinearities, and fracture model. The explicit solver, on 

the other hand, was able to solve the same problem in about three hours. This 

could be expected as the implicit solver needs a series of iterations to establish 

the equilibrium condition between the elements while the explicit solver does not 

seek the equilibrium condition and directly solves the nodal accelerations. The 

computationally intensive inversion of the stiffness matrix and the decrease in 

time step size is another reason responsible for the longer solution times. More 

details on the differences between these two solvers is out of the scope of this 

work and reader is referred to literature, for examples Ref. [106-109]. A similar 

simulation time was used for both the solvers with a mass scaling of 40 for the 

explicit solver to reduce the computational time. The results from the explicit 

solver were noisy, in terms of amplitude of oscillations in loading response. 

Therefore, numerical filtration was needed to obtain results comparable to that 

from implicit solver. The current work details our calculations based on the 

explicit solver only. 

Material assignment to spot weld regions: The FE models for TS sample was 

partitioned into 9 sections, each section representing one peak temperature used 

in Gleeble thermal simulations. These sections were including the base metal 

(BM), 3 sections in SCHAZ (350, 500, 650°C), ICHAZ (760°C), UCHAZ (950°C, 

corresponding to FGHAZ), UCHAZ (1250°C, corresponding to CGHAZ), and 

nugget (above melting temperature). Each true stress-strain curve shown in 

Figure 5-1 was then assigned to its corresponding partition in FE models. For the 
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nugget the same material as CGHAZ was assigned as it was not practical to 

reproduce this region in Gleeble simulator. Figure 5-4 shows a detailed view of 

above partitions along with the microhardness map and mesh design on the 

cross-section of sample. For two sections in SCHAZ with peak temperatures of 

500 and 650 °C, three different material models, i.e. NYPP, CYPP, and EYPP 

were used, as explained in previous section.  

The results from FE simulations using these material models for 500 and 650 ºC 

were compared with those from experiments, as presented in next section. 

5.2.3 Overview of Validation Experiments 

As detailed in previous chapters, TS samples were prepared by welding two 

sheets of M1700 steel with the same thickness of 1.6 mm and using welding 

parameters resulting in 4- and 8-mm nugget diameters. Sample dimensions and 

mechanical testing procedures were followed as per AWS D8.9 standard [110]. 

An MTS Criterion C45 tensile frame with constant displacement rate of 2 mm/min 

were used for loading the samples and results were recorded in form of load-

extension for comparison with results from FE simulations.  

The mechanical testing on UT samples were performed using the same 

displacement rate. Microstructural analysis on failed TS samples were also 

performed using the scanning electron microscopy to capture the local 

deformations. 

5.3  Results 

5.3.1 Simulation Results for Uniaxial Tensile Testing 

Results from FE simulation of UT sample for the peak temperature of 650 °C are 

presented in Figure 5-5. The material model (shown in Figure 5-2) with CYPP 

material model used in FE simulation was able to predict the stress-strain curve 
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with the YPP and its corresponding observed YS and Lüders strain comparable 

to those observed in UT experiments. Results for UT sample at 500 °C also 

showed that the material model with YPP is able to generate similar stress-strain 

curve similar to that of experiment. In both samples, i.e. 500 and 650 °C, the 

Lüders band nucleated from one end of the gauge length (Figure 5-5-1) and 

propagated through the entire gauge length (Figure 5-5, 1-4). The strain 

hardening stage was then started followed by plastic strain localization and 

failure in the gauge length (Figure 5-5, 5-6). The Lüders angle from FE simulation 

for SCHAZ-650 °C was measured (see Figure 5-5 (c)) to be 56±2 degree 

(depending the location in gauge length) which was comparable to that from 

experiments; 58±3 degree. Finally, the results from UT experiments did not show 

a UYS for 500 and 650 °C. This can be related to several factors including slight 

misalignments of sample in tensile testing (however below standard specified 

range), small scratches, residual stresses, and heterogeneous material 

distribution in tensile samples as can be expected for tempered DP and 

martensitic microstructures. With the material models being calibrated to predict 

the YPP in the UT samples, FE simulation of TS samples were implemented. 

5.3.2 Simulation Results for Tension-Shear Test  

Results from FE simulations of TS samples with 4- and 8-mm nugget diameters 

are presented in Figure 5-6 along with those from experiments. As explained in 

the previous section, three YPP models (NYPP, CYPP, and EYPP) and two 

damage models (with and without TFC) were used in FE simulations.  

Oscillations in load-displacement curve: Although the experiments show only 

slight oscillations in load-displacement curves, results from FE simulations show 

significant oscillations, particularly in higher levels of load close to the peak 

value. The extent of the oscillations increases with the transition of calculations 

moving from NYPP to CYPP and EYPP material models. A comparison between 

the peak load in TS samples, shows a slight increase in the peak load for 
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samples with EYPP in which the UYS and LYS were changed by +18% and -

23%, respectively, with respect to the CYPP. The difference between peak loads 

for NYPP and CYPP is not noticeable. To understand the local and global 

deformation behaviors in the TS sample a closer analysis is needed. This can be 

done by plotting the equivalent plastic strain (PEEQ) at various stages of global 

deformation and on the cross section of the weld (Figure 5-7). Only the results 

from simulations using CYPP material model was presented because there were 

not any noticeable differences in strain distribution contours. 

Based on these observations, the equivalent von Mises stress, 𝜎23, will be used 

later in this study for comparisons. From Figure 5-7 for the TS samples, the strain 

localization initiated in ICHAZ as denoted by point (a). With further increase in 

global deformation, the plastic strain propagates into the SCHAZ where material 

models for peak temperature of 650 °C were assigned to elements. This is 

followed by first instabilities in the form of YPP in these elements (point a and b). 

With small Lüders strain for elemental material models (see Figure 5-1 and 

 

 

Figure 5-5: Results from the FE simulation of uniaxial tensile testing was 
used to calibrate the material models with YPP for peak temperatures of 
500 and 650°C. Results shown for 650 °C uniaxial tensile sample. 
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Figure 5-2), the transition between YPP and strain hardening occurs with a slight 

increase in global extension (0.05 mm for TS). With further increase in global 

extension, the strain hardening initiates in the same elements and at global 

extensions of 0.5 mm. At extension of 0.5 (point d), the crack initiates in the 

ICHAZ region and grows as global extension increases. From this point onwards, 

small oscillations in load are observed with high magnitudes of oscillations with 

simulation of CT  

testing. As mentioned earlier, the range of oscillations in both TS increase from 

NYPP to CYPP and finally EYPP material model. Interestingly, the first two 

models show the same range of oscillations. Finally, simulations suggest that the 

failure in all samples initiates and propagates in the ICHAZ region.  

Stress heterogeneity and application of stress-based damage criteria: 
Results from strain distribution presented in earlier section did not show 

 

     

Figure 5-6: Results from FE simulation of TS sample with 8 mm nugget 
diameter for material models including: NYPP, CYPP, and EYPP. For CYPP 
FE simulations with and without a Tensile Failure criterion were performed. 
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noticeable differences in models with different YPP material models. This could 

be expected as the difference between YPP material models is in the existence 

and level of stress at a certain strain (also NYPP has no UYS and LYS). 

Therefore, we used the calculated heterogeneous stress distributions (equivalent 

von Mises stress, 𝜎24) in this section for comparisons. Figure 5-8 depicts the 

heterogeneous stress distribution at different global extensions from FE 

simulations of TS model. The heterogeneous stress distribution starts in SCHAZ-

650°C and then extends to the SCHAZ-500 °C, as the global extension 

increases. Interestingly, the extent of stress heterogeneity increases with 

transition from NYPP to CYPP and then EYPP material models. 

Perhaps the most important observation from these results is the existence of the 

heterogeneous stress distribution in ICHAZ (while material for this region did not 

show YPP in Gleeble simulations). This condition can be related to the fact that 

in a continuum domain, the loads and thus the stresses can transfer to adjacent 

regions. In addition, the stress levels in ICHAZ showed values above its UTS. 

This indicated the need to use a stress-based failure criterion, TFC, in 

conjunction with the strain-based damage criteria. Results from application of this 

conjunct damage model are presented in Figure 5-9 and Figure 5-10 with results 

from experiments for TS sample with nugget diameters of 4 and 8 mm. Three 

factors are used to compare these results: (i) local deformation and necking, and 

(ii) the failure mode. The two typical types of failure in these spot welds are the 

interfacial failure (IF) occurring in the UCHAZ and nugget, and the plug failure 

(PF) that takes place in HAZ. Figure 5-9 shows the results from FE simulation of 

TS sample with a 4 mm nugget diameter with CYPP material model. The results 

from experiments are also included with micrographs from the failed samples. As 

illustrated, the failure mode from experiments (9c) and FE simulations (9b) by 

only using the strain-based damage model resulted in FIF failure (b and c) while 

the FE model with TFC (9a) resulted in PF-ICHAZ failure (a). The comparison of 
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Figure 5-7: Evolution of equivalent plastic strain in TS sample: (a) initiation 
of plastic strain and instability from ICHAZ, (b) strain hardening initiation in 
the same region, (c) growth of plastic strain and instabilities into SCHAZ, 
(d) crack initiation in ICHAZ, (e) crack propagation in through the sheet 
thickness in ICHA, and (f) failure of TS sample from ICHAZ. The 
deformation scale is set to zero in above figures. 
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Figure 5-8: Heterogeneous stress distribution in the HAZ of TS sample 
obtained from FE simulations show the oscillation and alteration of stress 
in SCHAZ region of the weld. Three material models for SCHAZ were used 
in FE simulations. 
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local deformation and necking is not applicable to this sample since the failure 

mode is different. In addition, the UCHAZ and nugget completely separate from 

the TS sample in the model with conjunct damage model where the TFC was 

added. 

Similar method was used to compare the results for TS model with 8 mm nugget 

diameter. Figure 5-10 presents the results for TS sample with an 8 mm nugget 

diameter. Results are more interesting here. While the failure mode is the same 

(PF-ICHAZ), the local deformations and necking are significantly different. In 

model without TFC, the necking in HAZ < Ae3 is evident with about 20% of 

reduction in the cross section of region. These value match well with results from 

experiments (14% and 24%). The same value for the model with TFC was 

significantly lower and about 4%. 

5.4 Discussions 

5.4.1 Oscillations in Global Loading Response 

Results presented in previous section showed the existence of load oscillations 

in results from FE simulation of TS models, for all the YPP models. The largest 

oscillations were observed in regions close to the peak load in the both type of 

samples. This emergence of large load oscillations can be explained by 

considering the fraction of the material involved in plastic deformation and also 

the YPP material model as the crack revolved around the nugget axis. This is 

shown in Figure 5-11. With increase in the amount of material that involves in 

plastic deformation and YPP, the effect of material model, especially the 

difference between the UYS and LYS, becomes important. This resulted in 

increase in amplitude of load oscillations by moving from NYPP to CYPP, and 

then EYPP. This can be also the reason for seeing larger oscillations in UT 

samples than in TS, as in the UT samples the entire cross section of the sample 

in involved in YPP simultaneously. The heterogeneous and repetitive alteration 
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and fluctuation of stress in the SCHAZ can have detrimental impact on simulation 

with complex geometries that may experience both fatigue and impact loading 

conditions, which is the focus of the future work. Other factor influencing the 

magnitude of the oscillations is the mesh design. This is explained later in this 

section. 

5.4.2 Uncertainties in FE Simulations of YPP 

The study of local deformation and plastic instabilities with the characteristics 

explained in the previous sections stresses the need for characterization 

techniques that are able to measure such phenomena with proper resolution. In 

this study we used FEM for investigating the local and global phenomena, 

however, there are several uncertainties in the results from FE simulations. In 

this part of this study we discuss some of these uncertainties relevant to the FE 

simulation of YPP. Figure 5-12 presents summaries these uncertainties. 

Material model for YPP: The calculations for UYS and LYS were done based on 

the phenomenological model by Schwab and Ruff [99]. These material 

parameters were calibrated by using the experimental results from uniaxial 

tensile testing sample that represent a certain loading condition. Several studies 

have shown the dependency of Lüders strain to the geometry of the sample, 

strain rate, temperature, and stress state [92, 95, 98, 101, 102, 111].  

In addition, fracture models, mesh design and element size can also affect the 

results from FE simulations, particularly the load oscillations, as shown in this 

study. In this study, a strain-based fracture model was used with no dependency 

to stress state, strain rate and temperature. This could result in uncertainty of the 

results from the FE simulations and is indicative of the need for developing 

material models for YPP with above dependencies included. In addition, such 

dependence needs to be considered in experiments and for both the extraction of 

local properties and material models, as well as in TS tests. 
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Figure 5-9: Results from FE simulations and experiments for TS sample 
with 4 mm nugget diameter show that the use of tensile failure criteria can 
lead into incorrect results. The failure mode from experiments and FE 
simulations with only strain-based damage model resulted in FIF failure (b 
and c) while the FE model with TFC resulted in PF-ICHAZ failure (a).  
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Figure 5-10: Results from FE simulations and experiments for TS sample 
with 8 mm nugget diameter also show that the use of TFC can lead into 
incorrect results. Although the failure mode is similarly occurring in ICHAZ, 
however, the local and global deformations are significantly different. The 
model without TFC, shows results similar to those from experiments with 
comparable necking and local deformations, as shown in (a, b, d, e, and f). 

 

 

Figure 5-11: The initiation and growth of equivalent stress from front side 
to the other side of the spot weld. The element size in loading direction 
changes from 0.03 to 0.2 µm affecting the deformation behavior observed 
at peak load in deformation curves from FE simulations.  
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Another uncertainty related to the FE modeling of YPP is regarding the 

homogeneity of nucleation and growth of Lüders band in the gauge length of the 

UT sample or in the specific region of the part. This can promote the Lüders band 

front velocity and thus decrease the local material’s Lüders strain. Results 

Chapter 4 showed that both homogeneous and heterogeneous nucleation can 

occur in the simulated HAZ samples. The complexity of such problems in which 

the microstructural characteristics can affect the nucleation and propagation of 

Lüders band under various loading conditions requires more advanced FE 

methods such as crystal plasticity finite element method (CPFEM) which is out of 

scope of this work however needs to be considered for an effectively descriptive 

FE model for YPP. 

Fracture criteria: Results from application of different damage models in FE 

simulations presented in Figure 5-9 and Figure 5-10 showed that including the 

YPP in material model results in stress heterogeneity in HAZ and more 

importantly increase of stress in ICHAZ to value above its UTS, when the 

material model with EYPP was used. This led into the need for a stress-based 

damage model and as a result, the TFC was added to the damage model 

enabling the damage model to initiate damage and failure in this region.  

The results from this conjunct damage model, however, showed that the 

predicted deformation and failure in TS model do not match with the results from 

experiments. Therefore, although a stress-based failure criterion with value equal 

to the UTS of local material was used, the results from such criterion do not 

match with the observations from experiments and application application of such 

failure criteria for models needs to be investigated in the future work.  

HAZ partitioning and material model assignment: In this work a step-wise 

partitioning technique was used for assigning material models to the of spot weld 

in TS sample. This HAZ partitioning is usually done in welded samples and 

based on the number of peak temperatures that were used to reproduce the local 
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Figure 5-12: Uncertainties in the study of yield point phenomena and its 
effects in deformation behavior of welded samples. 

 

 

Figure 5-13: Mesh sensitivity analysis revealed the effect of element size on 
the oscillations observed in loading response. Results are presented for TS 
FE model with EYPP material input. 
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material in Gleeble simulations. Therefore, it can be expected that the 

discontinuous transition of material and number of partitions for HAZ affect the 

strain localization and local plastic instabilities in the SCHAZ of TS samples and 

generally in models with gradual transition in material properties. 

Mesh design and element size: The fracture models have strong dependency 

to the mesh design and element size therefore a special attention needs to be 

paid to the mesh design and element type. Results from a sensitivity analysis on 

element size performed in this work (see Figure 5-13) showed that, mesh design 

and element size in combination with the fracture models can influence the 

amplitude of load oscillations. This needs to be considered when interpreting the 

results from FE simulations, especially when fracture models are used in 

combination with material models with YPP included. 

5.5 Summary 

In this study, experimental and computational approaches were used to 

investigate the effect of YPP on the deformation behavior and plastic instabilities 

in TS samples made from M1700 AHSS. Several uncertainties relevant to the 

material model with YPP and FE simulation technique were considered. 

Following conclusion can be made from these studies: 

• Local and global instabilities in the form of load oscillations were observed in 

the deformation behavior of both TS samples with nugget diameters of 4 and 

8 mm. The local instabilities were in the form of stress heterogeneities in 

SCHAZ were input elemental material was assigned with YPP included and 

showed dependency to YPP model and its corresponding UYS and LYS. 

• Global instabilities in loading curves were related to the material model with 

YPP, mesh characteristics, and FE solver options. Studies on these factors 

showed several uncertainties relevant to FE simulation of YPP in AHSS spot 

welds. 
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• The amplitude of load oscillations was similar in result from experiments and 

those from the FE simulations with NYPP and CYPP. The EYPP showed 

oscillations significantly larger than those from experiments, NYPP and 

CYPP. This was related to the difference between UYS and LYS used in the 

material model, with a direct correlation.  

• Results from FE simulations showed large oscillations in load, in regions 

close to the peak load. The magnitude of the oscillations in this region 

showed increase from NYPP model to CYPP model and then EYPP. This 

was related to the difference between the UYS and LYS in the YPP material 

models as well as the variation of element size and aspect ratio. Another 

factor affecting the amplitude of oscillation was the element size used in 

region where in the crack initiates and propagates. 

• A stress-based failure criterion (TFC) was added to the damage model to 

capture the failure due to the increase of stress in ICHAZ to value above the 

UTS. Results from this model showed pre-matured semi-brittle abrupt failure 

from ICHAZ for both the 4 and 8 mm nugget diameters. The local and global 

deformation and necking was also significantly different when the stress-

based model was added to damage model. Although this model showed the 

possible failure from this region, the results did not match with those from 

experiments and added another uncertainty to the FE simulation of YPP in 

spot welds. 

• With several uncertainties in the FE simulations stemmed from material 

dependency to loading condition, strain rate, temperature, and length scales, 

this can be concluded that current material models for YPP for application in 

FE simulations are still primitive with respect to the material scale, rate 

dependency, and stress state. 
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6 The Individual Role of Weld Geometry and HAZ 
Softening on Mechanical Performance of AHSS Spot 

Welds 

 

6.1 Introduction 

With the new regulations for the automotive industry to produce greener cars, 

steel makers have been focused on designing new generation of steels known as 

advanced high strength steels (AHSS) to reduce the weight and fuel 

consumption and increase the safety of cars. Dual-phase (DP) and Martensitic 

(MS) steels are among the AHSS that are widely used in manufacturing of 

chassis and body of the cars in automotive industry. Resistance Spot Welding 

(RSW) is the main joining technique in manufacturing of the parts made from 

these steels. DP and MS steels have a ferritic-martensitic and fully martensitic 

microstructures, respectively. Although martensite is a hard microconstituent with 

high levels of tensile strength (up to about 2800 MPa) however it has a 

metastable structure and decomposes into ferrite and carbide during the RSW in 

a phenomenon known as martensite tempering in temperatures below the Ae1 

phase transformation temperature of steel, as extensively studied by several 

researchers [3, 12-14, 16, 18, 19, 63]. Results presented in Chapters 3 and 4 on 

this work also showed that constitutive properties are heterogeneous throughout 

the DP and MS spot welds, depending on the initial microstructure and carbon 

content of the steel. In addition, the HAZ softening was observed in both ICHAZ 

(due to formation of fresh ferrite) and SCHAZ (due to tempering of martensite) in 

all the steels with different extent increasing from DP590 to M1700.  

The deformation and failure behavior of the spot welded samples has been 

investigated in several studies [40-42] and it has been shown that the strength 
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and failure in spot welds in a function of the geometry of the spot weld and 

material properties. In these studies, failure type or mode in DP and MS spot 

welds are categorized into two main types of interfacial failure (IF) and round 

button (RB, also Plug Failure (PF)) failure. The failure location is different in 

these two. In interfacial failure, crack passes through the nugget of the weld on 

the faying surface of spot weld (fully interfacial failure, FIF), or initially moves on 

the faying surface and then deviates through the thickness of steel sheet and 

passes through the FGHAZ and/or CGHAZ. The second type of failure, i.e. RB 

failure, can take place in two regions of HAZ: (i) in softened HAZ (ICHAZ and 

SCHAZ), and (ii) in FGHAZ and CGHAZ. A combination of above failure modes 

can also occur in spot welds. In this chapter a combination of failure type and its 

location is used to describe the failure in the spot welds. This has been shown 

later in this chapter in Figure 6-3. 

While the role of spot weld geometry on the strength and failure of spot welded 

samples is studied by several researchers, the individual role of spot weld 

geometry and HAZ softening has not yet fully understood. In this chapter, the 

local constitutive properties obtained from tensile testing and digital image 

correlation on Gleeble simulated HAZ samples are used as material input for FE 

simulations of TS and CT samples with three nugget diameters of 4, 6, and 8 

mm. These descriptive FE simulations help to understand the local-global 

relationship in deformation behavior and failure of AHSS spot welds made form 

DP and martensitic AHSS and reveal the root cause of the nonlinearity seen in 

the strength of these welds (as shown in Figure 1-2). The results from these FE 

simulations are then compared with those from experiments for validation. This 

needs to be mentioned here that in this chapter and based on the results shown 

in Chapter 5 of this work, it is assumed that YPP has little to no impact on the 

global deformation and failure behavior of these steels and therefore, in this 
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chapter material models without calculated upper and lower yield stresses were 

used in FE simulations.  

6.2 Experimental procedure 

6.2.1 Materials 

Three grades of AHSS including DP590, DP980LC, and M1700 were used for 

this study. Chemical composition, initial microstructure and tensile properties for 

these steels are shown in Table 6-2 and 6-3, for comparisons. These three steels 

represent a wide range of carbon content and martensite volume fraction in their 

base metal.  

6.2.2 Local constitutive properties and damage model 

As comprehensively presented in Chapter 4, the thermal cycles due to resistance 

spot welding process results in heterogeneous made from DP and MS AHSS. 

These local constitutive properties are required for the FE simulations as material 

input. These local mechanical properties were obtained in Chapter 4 of this work 

from the mechanical testing on Gleeble simulated HAZ samples and the base 

metal for each steel and are presented in Figure 6-1 in form of engineering 

stress-strain curves, for comparisons. To predict the failure of the TS and CT 

samples there is a need to a damage model. In this work we use the equivalent 

  

Table 6-1: Chemical composition, martensite fraction, and phase 
transformation temperature of the investigated steels. 

Steel 
Alloying elements (Wt. %) CM 

(Wt. %) 
fM  

(Vol. %) C Mn Si 
DP590 0.09 0.99 0.284 0.441 16 

DP980LC 0.10 2.19 0.65 0.154 59 
M1700 0.31 0.47 0.19 0.31 100 
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plastic strain (PEEQ) at failure as a strain-based damage model. It is assumed 

that the failure in model is not stress-state and strain-rate dependent and 

therefore a constant plastic strain failure is used in the FE simulations. To obtain 

the PEEQ at failure for each region of HAZ, a virtual extensometer with a length 

of 1-mm was in the strain measurements from DIC data. This was the smallest 

possible extensometer that could be used in DIC analysis based on the 

dimensions of the sample, resolution of DIC system, and experiment setup. The 

DIC equipment was manufactured by Correlation Solutions® and the VIC-2D 

post-processing software, was used for this purpose. For the nugget the same 

material properties as the FGHAZ-1250 °C was used as it was not practical to 

reproduce this region in Gleeble thermos-physical simulator. The plastic strains 

at failure for different regions of HAZ of spot welds made from the three steels of 

this study are presented in Table 6-3. 

 

Table 6-2: As-received tensile properties for the AHSS used in this study. 

Steel Thickness 
(mm) 

YS  
(MPa) 

UTS  
(MPa) 

Total Elongation (%) 
(25-mm Gauge Length) 

DP590 1.5 390 636 23 
DP980LC 1.4 710 1056 13 

M1700 1.6 1706 1876 5 

 

Table 6-3: Equivalent plastic strain at failure for different regions of HAZ of 
the steels used in FE simulations for the damage model. 

Steel SCHAZ-
350 °C 

SCHAZ-
500 °C 

SCHAZ-
650 °C 

ICHAZ-
760 °C 

FGHAZ-
950 °C 

CGHAZ-
1250 °C 

DP590 - - 0.95 0.86 0.08 0.06 
DP980LC 0.61 0.68 0.72 0.45 0.07 0.06 

M1700 0.46 0.64 0.61 0.34 0.07 0.05 
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Figure 6-1: Engineering stress-strain curves obtained from tensile tests 
performed on base metal and Gleeble thermally simulated HAZ samples 
made from the three DP and MS AHSS used in this study. 
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6.2.3 Overview of Validation Experiments 

As detailed in previous chapters, TS and CT samples were prepared by welding 

two sheets of the same steel and using welding parameters resulting in nugget 

diameters of 4, 6, and 8 mm. Sample dimensions and mechanical testing 

procedures were followed as per AWS D8.9 standard [110]. An MTS Criterion 

C45 tensile frame with constant displacement rate of 2 mm/min were used for 

loading the samples and results were recorded in form of load-extension for 

comparison with results from FE simulations. 

6.3 Finite element simulations 

Three-dimensional FE models for the TS and CT samples were prepared in 

Abaqus commercial FE package by following the specifications detailed in AWS 

D8.9 standard [50]. Due to the symmetrical geometry and to minimize the 

computational cost, only on half and one quarter of TS and CT samples were 

modeled, respectively. These models are shown in Figure 6-2 and Figure 6-3. As 

illustrated in Figure 6-3, the HAZ of the FE models for TS and CT tests were 

partitioned into several regions as following: BM, SCHAZ-350 °C, SCHAZ-500 

°C, SCHAZ-650 °C, ICHAZ-760 °C, UCHAZ-950 °C, UCHAZ-1250 °C. This 

partitioning was done based on the number of tempering peak temperatures 

used in Gleeble simulations and for different regions of spot weld. 

With a width of about 200 microns for the ICHAZ (depending on the distance 

between the Ae1 and Ae3 phase transformation temperatures of steel) and the 

existence of SCHAZ with three regions corresponding to three tempering peak 

temperatures (350, 500, and 650 °C), there is a need to design local meshes that 

are able to capture the deformations in these narrow regions with sharp 

transitions in constitutive properties. As a result, the meshing in both TS and CT 

models was done by using C3D8R elements with size ranging from 70 microns to 

2 mm and at least 4 elements were used in the thickness of the steel sheet in 



90 

 

regions far away from the spot weld. Explicit FE direct solver was used in the FE 

simulations based on the complex geometry, large plastic deformations, and 

nonlinear material behavior with fracture models. Ductile fracture model and 

progressive damage were used in Abaqus to model the failure in parts. As 

explained earlier a constant equivalent plastic strain at failure was used and it 

was assumed that stress-state and strain rate do not change the strain at failure.  

6.4 Results 

Results from the FE simulations and mechanical testing on spot welded samples 

with 4, 6, and 8 mm nugget diameters are presented in Figure 6-4, for 

comparisons. The failure modes from the experiments and FE simulations are 

also reported in these figures. This must be noted that due to difference in the 

thickness of the steel sheets used in this study, results are normalized with the 

thickness of the sheet with the thickness of steel sheet thickness, as sheets 

ranged from 1.4 to 1.6 mm. While the FE simulations were able to predict the 

deformation behavior and failure mode for each sample, there were differences 

between the peak load (PL) and the extension at peak load (PLE) obtained from 

these simulations and those from experiments. This could be related to several 

uncertainties relevant to the experiments and FE simulations and is discussed in 

detail later in this chapter. The analysis of load-extension curves shown in Figure 

6-4 showed that three sections can be distinguished in each loading curve: (i) 

initial linear section, (ii) nonlinear section with inclination of loading curve up to 

the peak load (PL), and finally (iii) the post-peak load (PPL) section. Two main 

PPL behavior can be seen in the TS curves: (i) complete drop of the load to 

failure which is related to the sudden brittle failure and corresponds to IF and RB-

FGHAZ/CGHAZ, and (ii) gradual decrease in load as the global extension 

increases up to final complete failure which is related to progressive ductile 

damage and corresponds to RB-ICHAZ/SCHAZ. 
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Figure 6-2: Finite element models for TS and CT samples with partitioned 
HAZ, material assignment, and mesh design. Due to the symmetrical 
geometry and for the sake of computational time. 

 

 

Figure 6-3: HAZ was partitioned into several regions based on the number 
of the tempering peak temperatures used in Gleeble thermal simulations. 
Results from hardness mapping are shown in addition to the mesh design 
and typical failure modes in AHSS spot welds. 
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Figure 6-4: Results from experiments and FE simulations for DP590, 
DP980LC, and M1700 TS samples with 4, 6, and 8 mm nugget diameters. 
Failure modes are also shown in the legend of each plot. 
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The nugget diameter (ND) and the base metal tensile strength (BMS) also 

showed to have impact on the performance of the spot welded TS and CT 

samples. Figure 6-5 shows the normalized TS strength (TSS) and CT strength 

(CTS) as a function of ND and BMS. One general observation from these results 

is that the strength of both TS and CT samples increases initially with the nugget 

diameter and BMS up to certain values of (critical nugget diameter, NDcr, and 

base metal strength, UTScr) and then decreases. This is interesting that the 

failure mode also changes at these critical values from the IF or RB-UCHAZ to 

RB-ICHAZ/SCHAZ. 

From Figure 6-5 (a) and (c), the effect of nugget diameter on the strength of spot 

weld (TSS and CTS) can be seen. In general increase in nugget diameter leads 

to increase in TSS and CTS however the effectiveness decreases as the nugget 

diameter passes a critical nugget diameter in both TS and CT samples for all 

steels. The critical nugget diameter in all cases is around 6 mm, and it is 

interesting to note that the failure mode in TS samples changes at this nugget 

diameter, from FIF/Shear to RBH. For the CT samples a change in failure mode 

from RB to RBH is clear.  

On exemption from this general rule is the TS sample for DP980LC for which the 

strength continuously increases with the same slope with the nugget diameter. It 

is important to notice that the failure mode does not change for this sample at the 

critical nugget diameter (around 6 mm). The drop in the strength for both the 

DP590 and M1700 is the same in Figure 6-5 (a). 

Figure 6-5 (b) and (d) illustrate the normalized TSS and CTS as a function of the 

BMS, for nugget diameters of 4, 6, and 8 mm. As it can be seen it both plots for 

TS and CT samples, the nonlinearity increases in both the TSS and CTS with 

increase in nugget diameter, indicating the role of weld geometry on the 

nonlinearity. 
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Figure 6-5: Experimental results from TS (a and b) and CT (c and d) 
samples made from DP590, DP980LC, and M1700 with three nugget 
diameters of 4, 6, and 8 mm. The initial martensite volume fraction for these 
steels are 16, 59, and 100 percent, respectively. Failure mode for each 
sample is also shown. 
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6.5 Discussion 

Results presented in the previous section reconfirmed the existence of a 

nonlinear relationship between the BMS, and TSS and CTS in the DP and MS 

AHSS used in this study. These results showed that the nugget diameter 

(geometrical factor) and BMS (related to the chemical composition and initial 

microstructure of steels) have direct impact on the strength and failure behavior 

of these AHSS spot welds. In this section results from experiments and FE 

simulations are used to explain the above nonlinearity by considering the 

individual role of nugget diameter and material heterogeneity, with particular 

attention to the HAZ softening in ICHAZ and SCHAZ, in spot welds using a local 

to global approach. 

6.5.1 Plastic strain evolution and failure path 

Figure 6-6 shows the plastic strain localization, crack initiation and propagation 

and failure for M1700 TS samples with different nugget diameters. Only the cross 

section of the TS samples is shown. From this figure three different failure modes 

can be distinguished. For the nugget diameter of 4 mm although the initial plastic 

strain localization occurs in the ICHAZ, the growth of plastic strain in the notch tip 

of the weld reaches the plastic strain failure criteria and crack initiates from this 

point. By continuing the loading, the crack growth into the nugget and TS sample 

fails from the nugget with FIF failure mode.  

The evolution of the plastic strain in different regions of spot weld (including 

notch, FGHAZ, ICHAZ, and SCHAZ) for this sample and other two samples with 

nugget diameters of 6 and 8 mm are presented in Figure 6-7 for comparisons. 

These results, in addition to those shown in Figure 6-8 can be used to 

understand the plastic strain concentration and evolution in the TS and CT 

samples made with different nugget diameters. As examples, results for M1700 

for TS and CT models.  
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Figure 6-6: Results from FE simulation of TS test for M1700 spot welds with 
4, 6, and 8 mm nugget diameters. The evolution and localization of the 
equivalent plastic strain on the cross section of samples show M1700 TS 
samples. Three failure modes were observed: FIF for ND=4 mm, RB-FGHAZ 
for ND=6 mm, and RB-ICHAZ for ND=8 mm. The main competition was 
observed between the ICHAZ and FGHAZ based on the strain localization, 
crack initiation, propagation, and failure.  
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Figure 6-7: Equivalent plastic strain evolution in different regions of TS 
samples made from with 4, 6, and 8 mm nugget diameters. Note that in 
each plot, only one region reaches the failure plastic strain and failure and 
other curves never reach their failure strain levels. 
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Figure 6-8: Results from the FE simulations of M1700 CT sample with 4, 6, 
and 8 mm nugget dimeters showing the evolution of the PEEQ in different 
regions of the HAZ on the cross section of CT sample. 
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6.5.2 The role of HAZ softening on spot welds performance 

A new set of FE simulations was performed to investigate the role of HAZ 

softening that occurs in both the ICHAZ and SCHAZ on the performance of the 

TS and CT spot weld. The FE model for TS and CT samples with 8 mm nugget 

diameter and M1700 fully martensitic AHSS was selected for this investigation. 

The selection of steel and weld geometry was based on following: (i) the largest 

extent of softening was observed in this steel based on results shown in Chapter 

3 and 4, and (ii) results from TS and CT experiments showed that the largest 

degradation in strength of spot welds belongs to this steel and when the nugget 

diameter is 8 mm. The methodology for this investigation is based on substituting 

the material properties for certain softened regions, i.e. ICHAZ and/or SCHAZ, in 

the FE model with that of base metal, simulating the condition that the HAZ 

softening does not happen in those regions. Based on this methodology, 

following cases (also shown in Table 6-4) were considered in this study:  

• Case 1: Both ICHAZ and SCHAZ are included (similar to spot weld) 

• Case 2: Softening do not occur in ICHAZ and material for SCHAZ-650°C 

is used instead. 

• Case 3: Softening do not occur in SCHAZ and BM material used instead. 

• Case 4: Softening do not occur in entire weld. BM material properties used 

for both ICHAZ and SCHAZ. 

The strength (peak load, PL) of TS and CT samples (TSS and CTS) obtained 

from FE simulations for cases shown in Table 6-4 are presented in Figure 6-9, for 

comparisons. These results show that for both the TS and CT samples if there is 

not HAZ softening (both SCHAZ and ICHAZ) in FE simulations about 12% and 

14% change (increase) in TSS and CTS can be expected. Considering the 

extensive softening that occurs in the M1700 (highest between the three steels 

used in this study) one can assume that the softening is not a dominant factor in 
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degradation of the AHSS spot welds. This however needs to be investigated for 

other steels, as done later for DP980LC in this section. This is also interesting 

that for the case in which ICHAZ was not considered (Case 2) the TSS and CTS 

showed 0.2% and 4.1% change, respectively. In general, and for M1700 it can be 

said that exclusion of either ICHAZ or SCHAZ from the FE simulations can lead 

to up to 15.5% increase in the strength of spot weld. Results presented in Figure 

6-9 for M1700 TS and CT samples showed that the HAZ softening is not a 

dominant factor on the strength of M1700 spot welds and the geometry (nugget 

diameter) is the main factor. 

Above behavior needs to be investigated for other steels as well. As an example, 

the same methodology was used for DP980LC to understand that if the HAZ 

softening has a similar role in performance of the spot welds made from this 

steel. The load-extension curves obtained from FE simulations for DP980LC and 

M1700 TS and CT sample are plotted in Figure 6-10, for comparisons. The 

results interestingly show that HAZ softening has a completely different role in 

different steels. While the role of HAZ softening was minor in M1700 spot welds  

 

Table 6-4: Material assignment to different regions of the spot weld for 
studying the role of HAZ softening on spot weld performance. 

 Material properties assigned to spot weld HAZ regions (ND=8mm) 

 Case 1 CGHAZ-
1250°C 

CGHAZ-
1250°C 

FGHAZ-
950°C 

ICHAZ-
760°C 

SCHAZ-
650°C 

SCHAZ-
500°C 

SCHAZ-
350°C BM 

Case 2 CGHAZ-
1250°C 

CGHAZ-
1250°C 

FGHAZ-
950°C 

SCHAZ-
650°C 

SCHAZ-
650°C 

SCHAZ-
500°C 

SCHAZ-
350°C BM 

Case 3 CGHAZ-
1250°C 

CGHAZ-
1250°C 

FGHAZ-
950°C 

ICHAZ-
760°C BM BM BM BM 

Case 4 CGHAZ-
1250°C 

CGHAZ-
1250°C 

FGHAZ-
950°C BM BM BM BM BM 
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performance, it significantly impacts the strength (TSS and CTS) and extension 

at peak load (TSE and CTE) in DP980LC samples. In DP980LC, HAZ softening 

decrease the TSS and TSE by 44% and 32% and decrease the CTS and CTE by 

31% and 36%, respectively. The same changes in M1700 were 12% and 42% 

increase in TSS and TSE, and 14% and 63% increase CTS and CTE. Therefore, 

while HAZ softening has a positive impact on the M1700 performance, it has a 

negative impact on DP980LC performance.  

Results from FE simulations presented above for DP980LC and M1700 steels 

are combined with the experimental data for a range of DP and MS AHSS and 

shown in Figure 6-12, for comparisons. In this figure this is assumed that HAZ 

softening has a linear effect on the strength of DP and MS steels, meaning that in 

both the effect of HAZ softening increases with the extent of softening which was 

shown to be related to initial microstructure and carbon content of steels (see  

 

 
Figure 6-9: The change in the TSS and CTS when the SCHAZ and/or ICHAZ 
were not included in the FE simulations. Results show that exclusion of 
only ICHAZ has minimal impact on both TSS and CTS while the exclusion 
of either or both SCHAZ and ICHAZ can have up to 15.5% change (increase) 
in TSS and CTS. 
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Chapter 3 and 4 for details). This can be rationalized by considering the extent of 

HAZ softening and its role in the performance of the spot welds. For example, 

DP590 with 16% martensite in its base metal showed slight HAZ softening (only 

6% drop in hardness, based on results presented in Chapter 3 and 4), and 

therefore a slight impact on the weld’s strength can be expected. This is shown in 

Figure 6-12 by a small difference between the curve for spot welds behavior 

without HAZ softening and that with the HAZ softening (from TS experiments). 

DP980LC with 59% martensite in its initial microstructure however showed a 

higher extent of softening in HAZ (18% drop in hardness) and 44% drop in 

performance due to HAZ softening. Therefore, this can be concluded that the 

extent of HAZ softening is directly related to the initial microstructure of the steel, 

i.e. the martensite volume fraction in base metal.  

 

 

Figure 6-10: The effect on HAZ softening on TS and CT strength and 
extension for DP980LC and M1700 steels showed that the role of HAZ 
softening is complex and different in different grades of AHSS. While it 
deteriorates the performance of DP980LC spot welds it improves the 
performance of M1700 ones.  
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The drop in the performance of the DP AHSS spot welds can be related to the 

fact that the martensite acts as the hardening microconstituent in these steels 

and the HAZ softening significantly reduces its strength in regions close to the 

spot weld, resulting in a drop in peak load and global deformation of the spot 

welded sample. This however is different in MS AHSS, meaning that since in 

these spot welds the base metal has a semi-brittle behavior with low ductility 

(about 5% for M1700, for example), small global deformations can lead to high 

strain concentrations in range of failure strain of base metal resulting in crack 

initiation and failure occurring in UCHAZ. The occurrence of HAZ softening 

increases the ductility in the softening region (ICHAZ/SCHAZ) and allows for 

more deformation and energy absorption, and consequently increases the peak 

load for the spot welds made from MS AHSS. The strain localization and failure 

also occur in regions with more distance from the spot welds centerline. This is 

evident from the results from FE simulations shown in Figure 6-10 and Figure 

6-11.  

6.5.3 Uncertainties in FE simulation of AHSS Spot Welds 

During the FE simulations and when comparing their results with those from 

experiments (TS and CT tests) differences between the peak load (PL) and 

extension at peak load (PLE) were seen. Figure 6-13 summarizes the differences 

between peak load measured from FE simulations and experiments. Steps were 

taken by adjusting the fracture strain for different regions of HAZ to calibrate the 

FE models so that results match better with the experimental work. However, 

with several sources of uncertainties in both the FE simulations and also the 

experiments, this seemed to be a tedious task and therefore FE simulations were 

used as descriptive models in this study. 

Figure 6-13 shows that for both the TS and CT samples, as the nugget diameter 

increases the difference between the results from experimental and FE 

simulations increases. This is interesting to notice that larger nugget diameters 
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Figure 6-11: Equivalent plastic strain localization, crack initiation, and path 
on the cross section of CT sample made from DP980LC in (a) and (b), and 
M1700 in (c) and (d), with and without HAZ softening obtained from FE 
simulations. In DP980LC HAZ softening resulted in premature failure and in 
M1700 improved the weld strength. Local and global deformations and 
failure type and mechanisms were affected by existence of HAZ softening 
in this sample. 
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Figure 6-12: The complex role of HAZ softening on the strength of Tension-
Shear samples made from DP and MS AHSS. While HAZ softening plays a 
strong role in strength of DP steels and can significantly reduce welds 
strength, for example by 44% in DP980LC sample, depending on the 
martensite volume fraction in initial microstructure, it has a minor role in 
strength of MS steels and improves welds strength by 16% in M1700 TS 
sample, as an example.  
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result in failure in the softened HAZ. In addition, the differences are larger in 

results for CT samples. To understand the underlying reasons or these 

differences there is a need to understand the uncertainties and assumptions 

relevant to both the experiments and FE simulations. Some of these 

uncertainties are listed in following: 

• Material assignment to HAZ in FE models (continuous versus step-wise) 

• Stress triaxiality and strain rate dependency of constitutive behavior and 

fracture strain 

• TS and CT loading fixture and measurement techniques 

• Existence of micro-cracks at the notch and voids on faying surface on spot 

welds 

• Nugget size measurement 

Several uncertainties are explained in more details in following: 

 

        

Figure 6-13: Difference between the peak loads measured from 
experiments and FE simulations for TS and CT samples with 4, 6, and 8 mm 
nugget diameter. The difference increases from DP590 to DP980LC and 
M1700 as the material heterogeneity and nugget diameter increase. 
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6.5.3.1 Material distribution in HAZ  

While a continuous material distribution and gradual change between HAZ 

regions exist in the real spot welds, a step-wise method was used in the FE 

models for TS and CT samples (see Figure 6-2 and Figure 6-3). The used in 

step-wise method was due to partitioning of HAZ and the limited number of peak 

temperatures used in Gleeble simulations. By using the step-wise method, a 

constant material property is used for a region of HAZ that does not represent the 

real material distribution is spot welds. These can change the results from FE 

simulations and calibration techniques are needed to match the deformation 

behavior predicted from FE simulations with that from experiments. 

6.5.3.2 Damage model and failure criteria  

A constant fracture strain failure criterion was used in this study. This failure 

criterion was obtained from uniaxial tensile testing. Results from the work by 

many researchers have shown that the fracture strain is a function of the stress 

triaxiality and Lode angle [112, 113]. This can influence the crack initiation and 

propagation in the spot welded samples based on the local stress state (stress 

triaxiality).  

6.5.3.3 Effect of micro-cracks and voids on faying surface of spot weld 

Results from scanning electron microscopy on the cross section of spot welded 

samples (see Figure 6-14 as an example) showed the existence of micro-cracks 

at the notch where two sheets of steel are welded, and voids on faying surface of 

spot welds. To investigate the effect of these micro-cracks on spot welds 

performance, we included a crack with a length of 200 microns, as shown in 

Figure 6-14, typical to those observed in spot welds, and compared results with 

the model without this crack. Results from this analysis are shown Figure 6-15.  

Result showed that including the micro-crack can have significant impact on the 
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Figure 6-14: Results from scanning electron microscopy revealed pre-
existence of micro-cracks and voids at the notch tip and on faying surface 
of the spot welds (a). FE model with and without crack at faying surface for 
M1700 CT with 4 mm nugget diameter (b). 

 

 

Figure 6-15: Results from FE simulation of M1700 CT sample with nugget 
diameter of 4 mm for the sample with and without micro-crack at the notch 
tip. Including the micro-crack to model resulted into 28% and 43% decrease 
in PL and PLE (a). This also affected the crack path to regions closer to the 
nugget for the sample with micro-crack (b). 
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CTS and CTE on the spot welds (here M1700 CT sample with nugget diameter 

of 4 mm). While the failure mode was RB-FGHAZ in both models, the crack 

initiation site and propagation path were different. In the model with the micro-

crack, the crack moved towards the nugget and changed path when faced the 

CGHAZ and continued propagated on the boundary between the FGHAZ and 

CGHAZ. Therefore, although the failure mode did not change, the peak load and 

the extension at peak load in the model with micro-crack decreased by 28% and 

43%, respectively. This significant change in results should be considered when 

comparing the results from experiments with those from the FE simulations, as a 

source of uncertainty. 

6.6 Summary 

Following conclusions can be made based on the results obtained from this 

study: 

• Results from experiments and FE simulations showed that TSS and CTS 

does not increase linearly with the BMS or nugget diameter. Critical BMS 

and nugget diameter of 1000 MPa and 6 mm were detected as the values 

that the failure mode in both the TS and CT samples changes from a 

semi-brittle (IF and RB-UCHAZ) to a ductile failure (RB-ICHAZ/SCHAZ).  

• The failure from ICHAZ has not been reported in literature. The lowest 

yield stress in this region, make it the site for plastic strain localization, 

crack initiation and propagation in the samples with larger nugget diameter 

(above the critical size). This was captured in the results from FE 

simulations. 

• Results from experiments and FE simulations showed that the mechancial 

performance of AHSS spot welds is influenced by the weld geometry and 

the heterogeneous distribution of constitutive properties in the spot weld. 

The HAZ softening showed to have a complex role in performance of spot 
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welds. Results from FE simulatons showed that HAZ softening can play a 

different role in different grades of steels. It was shown that it can lead into 

degradation of DP980LC spot welds performance while improving M1700 

performance. 

• One interesting outcome from this study was the observation of minium 

yield stress in the ICHAZ. This suggest that improving the mechanical 

performance of the SCHAZ can not be effective without paying attention to 

ICHAZ. This also has to be noticed that the HAZ softening is beneficial in 

the performance of MS steels and there is no need to alleviate the HAZ 

softening in these steels. 

• The uncertainties in experiments and FE simulations were shown to have 

significant impact on the peak load and extension at peak load of spot 

welded samples making it difficult to obtain an accurate assessment of 

spot welds performance in terms of peak load and extension at peak load 

from the FE simulations. These models however can help in 

understanding the local-global deformation and failure behavior, as well as 

the role of individual regions of the spot weld, as presented in this chapter. 
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7 Conclusions and Recommendations for Future Work 

7.1 Conclusions 

A comprehensive study was performed on the deformation behavior and failure 

of the AHSS spot welded samples. The role of heterogeneous material 

distribution and spot weld geometry was investigated by understanding the 

material-process-performance relationship and using a local-global approach. 

The effects of local thermal cycles typical to those in resistance welding process 

on the local microstructural evolutions and mechanical performance changes 

were investigated to rationalize the global deformation and failure behavior and 

explain the nonlinearity seen in the strength of AHSS spot welds. Results 

obtained from above study are concluded in below: 

• Microstructural and mechanical evaluations on spot welds and Gleeble 

simulated samples showed that thermal cycles due to resistance spot 

welding can significantly change the local microstructure and mechanical 

properties, leading to a heterogeneous material distribution in AHSS spot 

welds. The extent of this heterogeneity was shown to be related to the 

initial microstructure and chemical composition of steels, as well as the 

experiences thermal cycle. 

• A comparision between the yiefld stress values obtained from the 

microhardness scaling method and those from the Gleeble simulated HAZ 

showed that hardness scaling method in not effective in prediction the 

yield stress in the softened HAZ and overstimates the yield stress in this 

region of DP and MS AHSS spot welds.  

• Significant softening, in terms of hardness change, was observed in both 

SCHAZ and ICHAZ regions of spot welded samples. The extent of 

softening was similar in these regions in areas close to Ae1 phase 
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transformation temperature of each steel. The lowest and highest extents 

of softening were observed in DP590 and M1700, with hardness ratios of 

94% and 58%, respectively.  

• Interestingly, the minimum yield stress ratio (YSLocal /YSBM) was observed 

in the ICHAZ regions with experienced peak temperature between Ae1 

and Ae3 in all steels of this study, suggesting this region to be the location 

for plastic strain localization and damage initiation. This result is in 

contrast with existing understanding that the SCHAZ might be the site of 

strain localization initiation. 

• Yield stress and tensile stress heterogeneities were observed in all steels 

with degradation of these properties in the softened HAZ (both SCHAZ 

and ICHAZ). The heterogeneity in these softened regions increased in 

higher strength steels with a higher fraction of martensite and carbon in 

their microstructure. 

• Discontinuous yielding in the form of yield point phenomena with 

corresponding Lüders band was observed in higher temperatures in 

SCHAZ of all steels. The Lüders strain in each steel increased with the 

peak temperature and was shown to be related to the carbon content of 

the tempered martensite and the peak tempering temparature. The 

magnitude of the Lüders strain was shown to be inversely related to the 

carbon content of martensite. 

• The formation of Lüders band and its propagation was different in different 

steels. In higher strength steels, more initiation sites and cross-width 

propagation were observed. 

• Results from implementation of YPP in FE models revealed local and 

global instabilities in the form of load oscillations in TS samples. The local 

instabilities were in the form of stress heterogeneities in SCHAZ when the 
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input elemental material was assigned with YPP and showed dependency 

to YPP model and its calculated UYS and LYS. 

• Global instabilities in loading curves were related to the YPP material 

model, mesh characteristics, and FE solver options. Studies on these 

factors showed several uncertainties relevant to FE simulation of YPP in 

AHSS spot welds. 

• Results from FE simulations showed the existance of large oscillations in 

load in regions close to the peak load of the load-extension curve. The 

magnitude of the oscillations in this region showed increase by moving 

from NYPP to CYPP and then EYPP and increase in the difference 

between the calculated UYS and LYS.  

• A stress-based failure criterion was added to the damage model to 

capture the failure due to the increase of stress in ICHAZ to value above 

its tensile strength. Results from this model showed pre-matured semi-

brittle abrupt failure from ICHAZ for both the 4 and 8 mm nugget 

diameters. The local and global deformation and necking was significantly 

different when the stress-based model was added to damage model. 

Although this model showed the possible failure from this region, the 

results did not match with those from experiments and added another 

source of uncertainty to the FE simulation of YPP in spot welds. 

• With several uncertainties in the FE simulations of YPP in AHSS spot 

welds due to material dependency to loading condition, strain rate, 

temperature, and length scale, this can be concluded that current material 

models for YPP for application in FE simulations are still primitive and 

needs improvements. 

• Results from Tension-Shear and Cross-Tension experiments and FE 

simulations showed that TSS and CTS does not increase linearly with the 

BMS or nugget diameter. Critical BMS and nugget diameter of 1000 MPa 
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and 6 mm were detected as the values that the failure mode in both the 

TS and CT samples changes from a semi-brittle to a ductile failure. The 

location of the failure also changed from the nugget with hard martensitic 

microstructure to the softened HAZ (mainly ICHAZ based on FE 

simulations).   

• The failure from ICHAZ has not been reported in literature. With the lowest 

yield stress seen in this region this can be expected for this region to be 

the strain localization and failure initiation site. 

• Results from experiments and FE simulations showed that the loading and 

failure behavior is influenced by the weld geometry and the 

heterogeneous distribution of constitutive properties in the spot weld. The 

HAZ softening showed to play a complex role in performance of spot 

welded sample. In DP AHSS it decreased the strength and global 

extension of TS and CT samples. In contrast, it played a different and 

minor role by improving the strength and global extension of MS AHSS.  

• The uncertainties in experiments and FE simulations were shown to have 

significant impact on the measured peak load and extension at peak load 

in spot welded samples making it difficult to match the results from FE 

simulations with those from experiments. 

• Results from this wrok showed that despite the current believe that HAZ 

softening leads into degradation of performance of AHSS resistance spot 

welds, the role of HAZ softening is in fact complex and different in different 

grades of AHSS. The results from this work can help the steel makers and 

automotive industry to better understand the role of HAZ softening in each 

steel grade and take proper action to improve the performance of the parts 

made from these steels. 
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7.2 Recommendations for Future Work 

• Results from tensile testing on Gleeble simulated HAZ samples showed 

the existence of yield point phenomena (YPP) in the subcritical heat 

affetcted zone (SCHAZ) of all the DP and MS AHSS used in this work. 

The existence of this phenomena needs to be also evaluated in AHSS 

spot welds by using advanced characterization techniques such as 

nanoindentation and microscale mechanical testing. 

• The impact of YPP on performance of spot welds needs further 

investigations, especially under dynamic and cyclic loading relevant to 

fatigue behavior. 

• Numerous studies have shown the dependence of the material behavior 

(including YPP) and damage model (fracture strain) to the stress state 

(stress triaxiality), Lode angle, and strain rate. Therefore, the material and 

damage models need improvement by including above factors in the 

future studies. 

• With the levels of yield stress and ultimate tensile strength in both the 

SCHAZ and ICHAZ, techniques to improve the mechanical performance of 

this region needs to be employed. Post-welding heat treatments, post-

weld straining of weak regions (here ICHAZ), and alloy design can be of 

helpful techniques in this manner. 

• Alloy design can be used by modifying the chemical composition to reduce 

the Ae3 and Ae1 so that the distance between spot welds centerline and 

ICHAZ/SCHAZ regions increases resulting an increase in the welds 

performance. This technique could be used in DP spot welds as HAZ 

softening has showed to reduce the performeance in these steels. (HAZ 

softenign showed to improve the performance of MS steels).  

• Since the nugget diameters below the criotical size (around 6 mm) leads 

to interfacial failure with low energy absorption and poor crashworthiness 
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and not desired in the automotive industry, techiques to improve the welds 

toughness, such as tempering of all the regions above the Ae3 can be 

beneficial. This can increase the strength and global extension of the spot 

welded samples with higher impact on higher grades (with higher carbon 

content in the martensite that resulted in lower ductility in UCHAZ of weld). 
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