
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

5-2019 

Analysis and Control of Socio-Cultural Opinion Evolution in Analysis and Control of Socio-Cultural Opinion Evolution in 

Complex Social Systems Complex Social Systems 

Farshad Salimi Naneh Karan 
University of Tennessee, fsalimin@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Salimi Naneh Karan, Farshad, "Analysis and Control of Socio-Cultural Opinion Evolution in Complex Social 
Systems. " PhD diss., University of Tennessee, 2019. 
https://trace.tennessee.edu/utk_graddiss/5366 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F5366&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Farshad Salimi Naneh Karan entitled "Analysis 

and Control of Socio-Cultural Opinion Evolution in Complex Social Systems." I have examined 

the final electronic copy of this dissertation for form and content and recommend that it be 

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a 

major in Mechanical Engineering. 

Subhadeep Chakraborty, Major Professor 

We have read this dissertation and recommend its acceptance: 

Michael Berry, Eric R. Wade, Xiaopeng Zhao 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Analysis and Control of Socio-Cultural

Opinion Evolution in Complex Social

Systems

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Farshad Salimi Naneh Karan

May 2019



© by Farshad Salimi Naneh Karan, 2019

All Rights Reserved.

ii



To my parents,

Behrouz and Zhila

and my sisters,

Elnaz and Sanaz

iii



Acknowledgements

I would like to express my highest appreciation to Dr. Subhadeep Chakraborty for giving

me the opportunity to work an learn under his supervision. Every single conversation with

him has been a learning opportunity for me. His patience, trust, and encouragement have

been crucial for me to have peace of mind during my program. I hope someday I can return

the favor and add value to his life.

I would like thank my parents Behrouz and Zhila, my sisters Elnaz and Sanaz, and their

husbands Bahram and Behzad for bearing the hardship of being contiuously separated from

each other for the past �ve years. Without their love and support, my long and overwhelming

path of PhD studies would have never been possible. I hope my accomplishments at the UTK

make them proud and put a smile on their faces during my absense in Iran.

Furthermore, I would like to thank all my colleagues Aravinda Ramakrishnan Srinivasan,

David M. Harris, Navneeth Kikkery, Christopher J. LaBord, and Russell Graves for providing

a very warm and welcoming atmosphere for me in the o�ce. They have helped me

tremendously to get integrated into the American culture by answering numerous cultural

questions of mine. I have learned so much from each of these individuals in di�erent ways,

and I am thankful for that. Additionally, I would like to thank all the friends (residing in

Iran or the USA) who have always been there for me. We have lived through this together,

supported each other in hardships, and celebrated accomplishments. Their friendships reside

in my heart, and I feel blessed to have met them in my journey. Also, I would like to thank

all my teachers during the last 27 years. I shall never forget Dr. Arthur Hatton's help.

Last but not least, I would like to thank my committee members, Dr. Eric R. Wade, Dr.

Xiaopeng Zhao, and Dr. Michael W. Berry for their informative suggestions and guidance

throughout my PhD program.

iv



"I appreciate the teacher who taught me how to think,

instead of teaching me other people's thoughts!"

- Dr. Ali Shariati

v



Abstract

The overarching goal of this thesis is to further our understanding about opinion evolution

in networked societies. Such insights can be used in a variety of �elds such as economy,

marketing, transportation, egress, etc. Three main subjects build up this interdisciplinary

research: Sociology, Statistical Mechanics, and Network Sciences. In this thesis, for macro-

level (or society-level) analyses, techniques from statistical mechanics have been borrowed

to mathematically model the opinion dynamic on di�erent network topologies based on

di�erent interaction models. Also, for micro-level (individual-level) analyses, Individual

Decision Making Algorithms (IDMA) have been designed. To account for both macro-level

and micro-level dynamics, these two regimes are combined resulting in a more accurate model

for opinion propagation. Assessing the controllability of such dynamics through experiments

in presence of actual humans is the part of this thesis.

vi



Table of Contents

1 Introduction and Literature Review 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Di�erential Equation Models (DE-Models) . . . . . . . . . . . . . . . 2

1.1.2 Agent Bast Models (AB-Models) . . . . . . . . . . . . . . . . . . . . 3

1.1.3 In�uence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Interaction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Individual Decision Making Algorithms . . . . . . . . . . . . . . . . . 8

1.2.3 In�uence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Scienti�c Gaps and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Scienti�c Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Modeling and Numerical Simulations of the In�uenced Sznajd Model 14

2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Recent Studies on the Sznajd Model . . . . . . . . . . . . . . . . . . . . . . 16

2.3 In�uenced Sznajd Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Convergence and Indeterminate Zones . . . . . . . . . . . . . . . . . 23

2.4.2 Convergence Zone with Varying Control Inputs . . . . . . . . . . . . 27

2.4.3 Entropy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



3 Dynamics of a Repulsive Voter Model 36

3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Intorduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 The Repulsive Voter Model Dynamics . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Discussion and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 The Equilibrium Density . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Progression of the Density Function . . . . . . . . . . . . . . . . . . . 43

3.5 RVM on a Random Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Model Formulation and Analytical Solution . . . . . . . . . . . . . . 44

3.5.2 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . 45

3.6 RVM on a Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 E�ect of Zealots on the Opinion Dynamics of Rational Agents with

Bounded Con�dence 54

4.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Individual Decision Making Algorithms (IDMAs) . . . . . . . . . . . . . . . 57

4.3.1 Normative Perspective Modelled as a Probabilistic Finite State Au-

tomata (PFSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Rewards, Transition Costs and Probabilities . . . . . . . . . . . . . . 59

4.3.3 Measure of Attractiveness of the States . . . . . . . . . . . . . . . . . 62

4.4 Elements of Social Computations . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.2 E�ect of In�uencing Agents in Decision Making . . . . . . . . . . . . 64

4.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 PFSA Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 BC Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



5 An Experimental Study on the Controllability of Collective Human

Behaviors in Networked Societies 76

5.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Experiment Scenarios and Results . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Scenario 1. Benchmark (BM) . . . . . . . . . . . . . . . . . . . . . . 79

5.4.2 Scenario 2. Three hidden in�uences on nodes with highest degrees

(3HIHD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.3 Scenario 3. Three known in�uences on nodes with highest degrees

(3KIHD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.4 Scenario 4. One hidden in�uence on the node with the highest degree

(1HIHD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.5 Scenario 5. One known in�uence on the node with the highest degree

(1KIHD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.6 Scenario 6. Three known in�uences on the nodes with the lowest

degrees (3KILD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.7 Scenario 7. One known in�uence on the node with the lowest degree

adjacent to high degree nodes (1KILD) . . . . . . . . . . . . . . . . . 86

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusion 88

6.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 92

Appendices 103

A A Parametric Study of Opinion Progression in a Divided Society 104

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



A.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2.1 Probabilistic Finite state Automata . . . . . . . . . . . . . . . . . . . 105

A.3 Simulation Scenarios and Results . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3.1 E�ect of Global Events . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3.2 E�ect of In�uences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.3.3 E�ect of Distance Parameter (d) . . . . . . . . . . . . . . . . . . . . 112

A.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B Detecting Behavioral Anomaly in Social Networks Using Symbolic Dy-

namic Filtering 115

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.2 Block 1: The MDP Framework . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.3 Block 2: Interaction and Social Feedback Algorithms . . . . . . . . . . . . . 119

B.4 Simulation Results and Symbolic Dynamic Filtering . . . . . . . . . . . . . . 121

B.5 Block 3: Pattern Extraction with Symbolic Dynamic Filtering (SDF) . . . . 122

B.5.1 Symbolic Dynamic Encoding . . . . . . . . . . . . . . . . . . . . . . . 122

B.5.2 Probabilistic Finite State Machine Construction . . . . . . . . . . . . 123

B.6 Data Analysis - Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.7 Data Analysis - Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.8 Chapter Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . 129

Vita 130

x



List of Tables

2.1 Coe�cients of Eqns. 2.11 and 2.12 . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 List of PFSA States and Events . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 List of parameters used for BA scale-free network . . . . . . . . . . . . . . . 64

4.3 Convergence time related to di�erent ratios in Fig. 4.3 . . . . . . . . . . . . 67

4.4 Comparison of characteristics related to two di�erent Networks . . . . . . . . 74

A.1 List of parameters used for BA scale-free network . . . . . . . . . . . . . . . 107

B.1 List of MDP States and Events . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Parameters for the scale free extended BA network . . . . . . . . . . . . . . 121

B.3 Membership indicators for the 11 classes . . . . . . . . . . . . . . . . . . . . 128

xi



List of Figures

1.1 Graphical representation of people's social interactions, information resources,

and decision making processes . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Erd®s Rényi random graph . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 The Small World (SW) network topology . . . . . . . . . . . . . . . . . . . . 10

1.4 The Barabási-Albert network topology . . . . . . . . . . . . . . . . . . . . . 11

2.1 Population composition and external in�uence groups [59] . . . . . . . . . . 15

2.2 E�ect of the population size N on the steady state density Pss(m) . . . . . . 22

2.3 Dependency of the mean steady state magnetization on initial magnetization. 23

2.4 Conv. zone and stationary PDF's of a system with N = 100, I+ = 12, I− = 10. 26

2.5 Dependency of mean steady state magnetization on initial magnetization and

control input for N = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 (a) m∗0l and m
∗
0h

marked on the 3D graph related to λ = 0.2 for all possible

values of u. (b) 2D representation of the boundaries on the m0 − u plane. . . 28

2.7 Three dimensional linear scaling property . . . . . . . . . . . . . . . . . . . . 30

2.8 Scalability zone for all m0s for N = 100. . . . . . . . . . . . . . . . . . . . . 31

2.9 Entropy of distributions for di�erent values of λ for N = 100. . . . . . . . . . 32

3.1 (a) An example demonstrating tra�c �ow modelled with the Repulsive Voter

dynamics, (b) Population composition . . . . . . . . . . . . . . . . . . . . . 38

3.2 (a) E�ect of the population size (N) on the equilibrium density Pe(m), and

(b) E�ect of size of in�uence groups on Pe(m) . . . . . . . . . . . . . . . . . 42

3.3 E�ect of scale factor on the mean and variance of Pe(m) . . . . . . . . . . . 43

xii



3.4 (a) Progression of the PDF with time for N = 200, I+ = 5 and I− = 2, (b)

E�ect of N on the time to convergence . . . . . . . . . . . . . . . . . . . . . 44

3.5 E�ect of connection probability p on the equilibrium density for di�erent N . 46

3.6 E�ect of average degree 〈k〉 on the mean equilibrium density for di�erent

population sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 E�ect of connection probability on convergence time of a system with N = 100

and τ = t/(N/p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Evolution of mean opinion in nodes at sites x = 0, x = 1 and x = 2 . . . . . 50

3.9 Opinion di�usion in a two-dimensional lattice . . . . . . . . . . . . . . . . . 51

3.10 Magnetization versus time on the two-dimensional lattice . . . . . . . . . . . 52

4.1 Schematic of the interaction between PFSA based individual logic mechanisms

and the society. At each decision step, an individual chooses the most

attractive state based on a utility maximization principle. This choice

in�uences the reward estimates of each of his neighbors within his con�dence

bounds, who in turn choose the most attractive state. This cycle of interaction

and reward update continues till equilibrium is reached. . . . . . . . . . . . . 56

4.2 Schematic of normative perspective encoded as a PFSA . . . . . . . . . . . . 59

4.3 E�ect of external events on the �nal state distribution of the society with

|I| = 10 and ∆ = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 e�ects of incorporating an IDMA . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Dependence of the dynamics of the R state on d and ∆ with |I| = 10 . . . . 69

4.6 E�ect of µ on convergence time . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Clustering behavior of the BC model for di�erent d's with |I| = 10 . . . . . . 71

4.8 Clustering behavior of a society in the presence of in�uences with variable

control input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 E�ect of di�erent network types on the �nal state distribution with |I| = 10 73

5.1 Networks used in the experiments . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Physical setup of the experiments and game's user interface . . . . . . . . . . 79

5.3 Location of three hidden in�uences . . . . . . . . . . . . . . . . . . . . . . . 80

xiii



5.4 E�ect of hidden in�uences (3HIHD) on the dynamic compared to the

benchmark (BM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 User interface when the participant is connected to a known in�uence . . . . 82

5.6 E�ect of Known in�uences (3KIHD) compared to the e�ect of hidden

in�uences (3HIHD) and the benchmark (BM) . . . . . . . . . . . . . . . . . 82

5.7 E�ect of one hidden in�uence (1HIHD) compared to the E�ect of three hidden

in�uences (3HIHD) and the benchmark (BM) . . . . . . . . . . . . . . . . . 83

5.8 E�ect of one known in�uence (1KIHD) compared to the E�ect of one hidden

in�uence (1HIHD) and the benchmark (BM) . . . . . . . . . . . . . . . . . . 84

5.9 Location of the three known in�uences on the nodes with the lowes degrees . 85

5.10 E�ect of placing 3 known in�uences on the nodes with the lowest degrees . . 85

5.11 Location of the in�uence on the node with lowest degree but connected to

nodes with high degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.12 E�ect of placement of in�uences on low degree nodes adjacent to high degree

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.1 Normative perspective of di�erent groups . . . . . . . . . . . . . . . . . . . . 106

A.2 E�ect of external events on population opinion without in�uence group . . . 109

A.3 E�ect of external events on population opinion in presence of in�uences . . . 111

A.4 E�ect of number of in�uences on a G-dominant society with r = 9 : 1 . . . . 112

A.5 E�ect of distance parameter, |I| = 5, r = 1 : 1 . . . . . . . . . . . . . . . . . 113

B.1 Organization of the data �ow and enumeration of the a�erent blocks used in

this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2 Schematic of normative perspective coded as a PFSA . . . . . . . . . . . . . 120

B.3 A 100 node network created with the Pajek software [110] . . . . . . . . . . 121

B.4 Evolution of statistical patterns with increasing in�uence group size . . . . . 126

B.5 Measure of the amount of In�uence estimated by SDF . . . . . . . . . . . . . . 127

B.6 Confusion matrix demonstrating the classi�cation e�ciency of the SDF

generated patterns processed by a two-layer feed-forward neural network . . 128

xiv



Chapter 1

Introduction and Literature Review

1.1 Introduction

Humans have always interacted with each other, either in small social groups such as a

circle of close friends or larger social settings such as social media websites. Thus, they have

likely always been attuned to the preferences and positions of others. At the same time,

we have evolved sophisticated sensory systems and brains capable of reaching independent

conclusions about the world. Therefore, in our e�orts to function e�ectively, we have likely

had to balance our own experiences, ideas, and beliefs with those of close and powerful others

with whom we interact.

Through interactions, a speci�c idea, an opinion or a thought can initiate, develop, and

in some cases, spread to the whole society. The study of such evolution trends traditionally

falls into the �eld of social psychology, however, in recent years, borrowing techniques

from the realm of statistical physics [1], mathematical sociologists [2] started investigating

the emergence of consensus and divergence in networked nodes by constructing simplistic

interaction models [3, 4]; however, the assumption in these simplistic interaction models is

often, that every individual reacts the same way in response to di�erent situations. These

statistical methods are in the form of Di�erential Equations representing the time evolution

of the probability of the system being at any point in the opinion space Fig. 1.1.

1
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Figure 1.1: Graphical representation of people's social interactions, information resources,
and decision making processes

1.1.1 Di�erential Equation Models (DE-Models)

Such di�erential equations are derived by using aggregate parameters of the society (e.g.

the total number of people supporting a speci�c ideology in the society). As a result, the

solutions of these di�erential equations explain the aggregate behavior of the society. But,

they fail to include and explain individual level parameters and behaviors in the dynamics

of opinion evolution. DE-Models have roots in the statistical analyses of order-disorder

transitions in the paradigm of the Ising model.

Ising model is a mathematical model in statistical mechanics which studies ferromag-

netism in alloys [5]. This model has discrete variables that represent magnetic spins. The

spins can be in one of the two states (+1 or −1). Each spin can also get aligned with the

neighboring spins. Ising model studies the transition from an initial disordered state (of

spins) to an ordered state (where the spins are aligned) as an outcome of the interactions

between spins. As a result of the available similarities between equations related to the

Ising model and those of social interactions, statistical physics tools have been often used
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to study social interactions [6, 7]. A statistical physics approach investigates the ways local

interactions between agents can lead to order starting from a disordered initial condition [8,

9]. Direct outcomes of this approach are several elegant theories of emergent social behaviors,

such as evolution of opinions, consensus formation, properties of elections, and formation of

a common language.

The Ising model, based on a macroscopic approach, uses a master equation for global

variables to study the main characteristics of ordering processes in such complex networks.

The Master Equation is a set of �rst-order di�erential equations describing how the

probability of �nding the system in a speci�c state (m) at time t changes with time:

dP (m, t)

dt
=
∑
m′ 6=m

T (m|m′)P (m′, t)−
∑
m6=m′

T (m′|m)P (m, t) (1.1)

where, the quantity T (m|m′) is the transition rate from state m′ to state m, and is only

de�ned for m 6= m′.

1.1.2 Agent Bast Models (AB-Models)

Although DE-Models are capable of predicting the opinion dynamic in the society, they ignore

individual level parameters. People a�ect each others' mental states through interactions,

but this does not mean every person changes opinions as a result of his/her interactions.

Individual's perceptions, past experiences, and background (cultural, political, religious,

etc.) are some of the important factors in this process. Individual decision making abilities

help the person to analyze all the information acquired (from conventional media, social

media, di�erent events, etc.), and then conclude whether or not s/he should change her/his

opinion.

Decisions can be described in terms of three essential components: alternatives,

anticipated consequences, and uncertainty. Despite vast diversity in the �eld of judgment

and decision-making, its boundaries and major theoretical concerns are mostly related to the

historically dominant expected utility family of theories made popular by Von Neumann &

Morgenstern [10] and Savage [11, 12]. The heart of the theory, sometimes called the rational

expectations principle or expectancy-value model [13], proposes that each alternative course
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of action or choice option should be evaluated by weighting its global expected satisfaction-

dissatisfaction with the probabilities that the component consequences will occur and be

experienced. For example, in the Logit model, the relative frequency of usage of a strategy

is proportional to the number of times it was successful. In mathematical terms, this law

of relative e�ect [14] reads p(i) = N(i)/(Σi′N(i′)) = eU(i)/T

Σi′e
U(i′)/T , where for any parameter

T (sometimes called the `social temperature'), U(i) = T lnN(i) is the utility function,

somewhat arbitrarily de�ning a preference scale.

However, although expectancy-value theory has been very successful in explaining central

concepts in uses and grati�cations research, other factors have been recognized that in�uence

the process. For example the social and psychological origins of needs, which give rise to

motives for behavior, may be guided by beliefs, values, and social circumstances into seeking

various grati�cations through media consumption (Fig. 1.1) and other non-media behaviors.

In a network setting, such as Twitter, one's estimate of rewards are not absolute quantities,

but are in�uenced by opinions of friends and neighbors. Social scientists, for many years

have developed theories of group position [15], social identity [16], and system justi�cation

[17]. Now, such theories can be validated quantitatively by analyses of �retweets�, �via�, �hat

tip� and �mention� conventions which have been shown to be analogous to broadcasting one's

position, and helps explain how virality, meme propagation, and opinion formation occur on

social networks [18].

In reality, not everyone responds the same way in di�erent situations. To demonstrate

this non-deterministic behavior, di�erent models for individual decision making have been

proposed [19, 20, 21]. In di�erent studies, Agent-Based Modeling (ABM) techniques are

used to simulate individual decision making. In ABM, the idea is to construct computational

entities (known as agents) with some properties. These agents function in parallel to simulate

real phenomena. Agent based modeling has been applied in various �elds such as molecular

dynamics [22, 23], cellular automata [24], and population biology [25]. In social dynamics,

the goal is to address the problem of emergence from the lower levels of the social system to

the higher levels of such social systems. In this thesis, agents will be given decision making

abilities.
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1.1.3 In�uence

Although interactions among society members might lead them to change their opinions,

there are individuals in the society who never change their ideas. However, they are able to

a�ect other people's perceptions through interactions. To explain such behavior, the concept

of non-conformity was introduced to the �eld of opinion evolution; in essence, these agents

do not conform with the opinions of other agents. These non-conformists are also called

�in�uences� or �zealots� in the literature. Presence of in�uences has proven to be e�ective

in dramatically changing the dynamic of opinion evolution. In some studies, in�uences are

used (as control inputs) to control the dynamic of opinion evolution [26, 8, 27].

With the rapid improvement in the accessibility of computing resources, social scientists

have been able to practice their models on larger scales to represent a more realistic behavior

of the entire society [22]. Such simulations can also be used as a means of assessing the

accuracy of assumptions and analytical analyses of quantitative sociology. In social dynamics,

Monte Carlo (MC) simulation techniques are used because of the random nature of social

interactions.

The main contributions of this thesis are:

1) Systematically studying the idea of exposing a society to in�uences ( or in�exible agents)

who never change opinions but do alter the dynamics of the system. The main research

hypothesis of this part is that group level di�usion of opinions and ideology can be modeled

and analyzed using discrete choice models for individuals interacting via �gossip�, and this

opinion di�usion process can be controlled or at least contained using strategically placed

�in�uences�. It was shown that by using such moderating agents the system can be forced

to approach desired global behavior [8]. Nevertheless, so far, the placement of these control

inputs has been random. We believe that a more methodical approach is very much needed

to deal with this problem.

2) Addressing the gap between methods from quantitative sociology (DE-Models) and

methods related to individual decision making (AB-Models) to develop a platform which

is able to take advantage of both methods in predicting opinion evolution in a society.
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In the remainder of this chapter, �rst, a brief literature review on di�erent aspects of

social dynamics is provided. Then the observed scienti�c gaps in the preceding studies are

listed. At the end, the objectives of this thesis addressing the scienti�c gaps are described.

1.2 Literature Review

1.2.1 Interaction Models

In the study of large scale order as a result of local interactions, the Voter model [28, 29],

the Sznajd-Weron model [30, 31], and the Bounded Con�dence model [32, 33] have received

considerable attention. These interaction models, their similarities and di�erences, and their

related literature are provided below.

The Voter Model

Denoting the opinion of a node by s, in the Voter dynamics, a node i and one of its neighbors

j are randomly selected, and si is set equal to sj (or, ↑⇓−→↑⇑). It has been proven that the

Voter model tends to increase the order of the system [34]. Slanina et.al. [27] show that on a

complete graph, the mathematical model has the form of a Fokker-Planck equation and can

be solved analytically. Watts and Strogatz [35] considered the Voter model on a small-world,

and they found out that the initial dynamic is similar to a one-dimensional lattice. Voter

dynamic includes only two agents and ignores the concept of social validation. Sznajd model,

addresses this shortcoming by including three or four agents.

The Sznajd Model

Although the Sznajd-Weron model is similar to the Ising or Voter models in spirit, it describes

a decision making mechanism in a closed community based on social validation. Sznajd

model suggests that at each time step, a pair of neighbors in the same state, convinces their

neighbor to join them (↑↑⇓−→↑↑⇑) [36]. In the Sznaid model, two types of steady states are

always reached, either complete consensus (ferromagnetic) or stalemate (anti-ferromagnetic).
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The Sznajd model has been studied on di�erent networks. One such work by Elgazzar

[37] studies the Sznajd model on a small world network and observes that the stalemate

situation disappears by including short-cutting neighbors. This work also considers the

e�ects of including leaders (in�uences) in the behavior of the society. Further research by

Schulze [38] investigates the e�ects of long-range interactions on opinion spread and phase

transition through the Sznajd model. Slanina et.al. have proposed the analytical results for

the Sznajd model [27] on a complete graph. They have witnessed sharp phase transitions in

their simulations.

It is important to note that Voter model and Sznajd model are de�ned over a discrete

opinion space; i.e. +1 vs −1 (or up spins vs down spins). These models fail to model opinions

in between the two extremes. This shortcoming in interaction models was addressed by

introducing a continuous opinion space. Bounded Con�dence interaction model is based on

a continuous opinion space.

The Bounded Con�dence Model

In bounded con�dence, connectivity is not the only condition for interaction. For two

connected agents with opinions x(t) and x′(t), the di�erence between the opinions has to

be less than a speci�c threshold (|x(t) − x′(t)| < d) to interact. After the interaction is

complete, agents get closer to each other in the opinion space by a fraction, µ (convergence

parameter) [32]. Bounded con�dence can be best described by mathematical representation:

if |x(t)− x′(t)| < d, then:

x(t+ 1) = x+ µ.(x′(t)− x(t)) (1.2)

x′(t+ 1) = x′ + µ.(x(t)− x′(t)) (1.3)

Fortunato et al. have shown that on complete graph, regular lattices, and scale-free

networks for d > 1
2
complete consensus happens (all the agents have the same opinions)

[39]. Ben-Naim et al. have mathematically modelled and solved the bounded con�dence

on a complete graph [40]. Leguna et al. and Por�ri et al. have done extensive numerical

simulations on bounded con�dence and have proven that the number of clusters in the

society in the steady state depends on the threshold d. They also show that the time to
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reach stationary state (the convergence time) depends on the convergence parameter, µ [41,

42].

1.2.2 Individual Decision Making Algorithms

Individual Decision Making Algorithms (IDMAs) have been designed with di�erent levels

of accuracy and complexity. It has been concluded that in order to investigate the global

behavior of a society, simpler IDMAs are more suitable and computationally cost-e�cient

[43]. However, to study the behavior of an individual or a small group, higher levels of

complexity are needed to demonstrate and explain decision making patterns. According to

Gilbert [44], this complexity of agents might range from �production system architectures�

(i.e. agents that follow simple IF-THEN rules) to agents with sophisticated �cognitive

architectures� which take into account emotions and feelings of the agent too. In the previous

section, the theory of expected utility and related studies were explained.

1.2.3 In�uence

In the past few years, the e�ect of �in�uences�, �sharply opinionated agents�, �zealots� or

�committed agents� has been the main subject of numerous studies in agent-based modeling

on almost all kinds of networks [45, 46]. The idea is exposing the society to the agents

whose ideas never change [47]. Galam [48] and Mobilia [49] studied the role of �in�uences�

on the breaking of democratic opinion dynamics. Xie [50, 51] investigated the consensus

in the presence of competing committed groups. Also, Yildiz [52] explains binary opinion

dynamics with stubborn agents.

1.2.4 Networks

Among elements of social dynamics, topology (the structure determining which agents can

interact, with which frequency and intensity) carries a lot of importance [53, 54]. In a

network, agents are placed on nodes (vertices), and the links between nodes represent a

possibility to interact. A few of the important network structures are brie�y explained in

the following.
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Random Graph

The Erd®s Rényi random graph G(N, p) is de�ned as N labeled nodes connected by n

edges which are chosen randomly from (N(N − 1))/2 possible edges [55]; i.e. every pair

of nodes is connected with probability p = n
[(N(N−1))/2]

. Since there are Cn
[(N(N−1))/2] ways

to construct such a graph, a probability space is formed in which every realization of the

random graph owns an equal probability of happening. The probability of constructing a

speci�c realization of a random graph such as G0 with the speci�cations mentioned above is

P (G0) = pn(1− p)[N(N−1))/2]−n.

These graphs are static graphs; i.e. the number of vertices in the network is constant.

Isolation of vertices could happen, Fig. 1.2. Most importantly, di�erent graphs with the

same set of nods (N) and edges (E) are possible to be formed. In the limit p −→ 1, ER

graph becomes the Complete Graph where all nodes are connected to each other.

Small World

Small World is a well-known network structure in which the average distance between two

agents is small [56]. Also, unlike the ER graph, many triangles are available, Fig. 1.3. In

[35], authors characterize a SW network by two parameters: the characteristic path length

L(p), de�ned as the number of edges in the shortest path between two vertices, averaged over

Figure 1.2: The Erd®s Rényi random graph
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all pairs of vertices, and the clustering coe�cient C(p), de�ned as follows. If a node i has

k connections, then at most k(k−1)
2

edges can exist between its neighbors (this occurs when

every neighbor of i is connected to every other neighbor. The clustering coe�cient C(p)

denotes the fraction of these allowable edges that actually exist, averaged over all nodes.

Small-world networks feature high values of C(p) and low values of L(p).

Figure 1.3: The Small World (SW) network topology
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Barabási-Albert

In reality, most networks are not static but evolving with new agents entering the network

and making connections with the already existing ones. The Barbasi-Albert (BA) model [57,

58] is one of the most famous models for growing networks, and it is constructed as follows:

starting from a small set of m fully interconnected nodes, new nodes are introduced one by

one. Each new node selects m older nodes according to the preferential attachment rule, i.e.,

with probability proportional to their degree, and creates links with them. The procedure

stops when the required network size N is reached, Fig. 1.4.

Figure 1.4: The Barabási-Albert network topology

1.3 Scienti�c Gaps and Objectives

1.3.1 Scienti�c Gaps

Gap 1. Some of the interaction models have not been mathematically modelled on all of

the available network topologies. In addition, in some of the already studied interaction

models, the e�ect of in�uences has not been accounted for. Developing mathematical

models for opinion evolution based on di�erent combinations of interaction models and

network topologies in presence of in�uences can provide answers on progression of opinion,

convergence time, and �nal distribution of opinions in the society. Also, these mathematical

models can be used in studying the controllability of such dynamics.

Gap 2. As mentioned in previous sections, quantitative sociology studies social dynamics
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only on societal levels without taking into account any individual decision making. On the

other hand, studies on decision making mostly consider the individual without taking into

account e�ects of the society. Augmenting these two techniques could provide information

on their mutual e�ects on each other. Such augmented systems can also predict the opinion

evolution more accurately. Again, manipulation of perception by incorporating in�uences

can potentially lead to the control of opinion evolution.

Gap 3. Current state of the art involves control of opinion propagation by randomly

introducing in�uences to a community. However, the authors believe the placement of

these in�uences in the network, their strength, their density, and their activation time

are important factors in maximizing their in�uence. Understanding the role each of these

parameters play in the dynamics of opinion evolution could potentially lead to an optimal,

cost-e�ective, and time-e�ective control strategy.

1.3.2 Research Objectives

The following objectives attempt to address the scienti�c gaps mentioned above:

Objective 1 (addressing Gap 1 ). Mathematical modeling of opinion evolution (DE-

Models). In this section of the thesis, mathematical modeling of various combinations of

interaction models and network topologies will be performed in the framework of the Master

Equation (ME). ME is a stochastic di�erential equation describing how the population is

distributed over the opinion space and how such distribution changes with time. All the

analyses will be performed accounting for the presence of in�uences (control inputs) in the

society. Analytical solutions are expected to cast light on di�erent aspects of the system

such as convergence time, equilibrium state opinion distribution, progression of the opinion

dynamics, controllability of the system, etc.

Objective 2 (addressing Gap 1 ). Numerical simulations of the systems from

Objective 1. This part will be devoted to extensive Monte Carlo simulations of the systems

indicated in Objective 1. These simulations will be used to validate the precision of modeling

procedures and accuracy of analytical solutions. Also, these simulations will serve as a guide
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towards appropriate time scaling procedures of the systems. E�ects of control inputs on the

�nal state of the society can be investigated with such simulations.

Objective 3 (addressing Gap 2 ). Decision making (AB-Models). So far, only the

objectives related to the study of the aggregate behavior (macro-level parameters) of the

society have been mentioned. This section of the thesis will concentrate on the decision

making processes of individuals (designed in the framework of a Probabilistic Finite State

Automata (PFSA)). The decision making algorithm will be able to model the behavior of

agents when they are exposed to external events, and also when they interact with other

people. This part of the study combines micro-level and macro-level parameters of opinion

evolution. Such combination can be instrumental in understanding the mutual e�ects that

the society and the individual have on each other; or, how in�uences can alter an individual's

decisions and cognitive states.

Objective 4 (addressing Gap 3 ). Assessing controllability of collective human

behaviors in presence of actual humans. This part of the thesis will be devoted to

studying the controllability of collective behavior of people in an experimental setup in

presence of actual humans. Di�erent in�uence scenarios will be developed with the purpose

of maximizing the in�uence of control inputs.
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Chapter 2

Modeling and Numerical Simulations of

the In�uenced Sznajd Model

2.1 Objective

Various studies in the �eld of opinion evolution consider mathematical modeling of

interaction models on di�erent network topologies; [59] is one of the studies in which the

Voter interaction model is mathematically modelled on a complete graph to investigate the

e�ect of biased nodes on the conrollability of the dynamic. Fig. 2.1 shows the composition

of the society including the in�uence groups.

At �rst, [59] derives the Master equation on a complete graph which can be characterized

by de�ning the magnetization parameter m = N+−N−
N

, where at a certain instant, there are

N+ nodes in state +1, N− nodes in state −1. N = N+ +N− nodes make up the vertices of

the graph. At each time step, a node i and one of its neighbors j is randomly selected, and

si is set equal to sj. In addition to the N sites, there are I = I+ + I− external agents with

respective pre-conceived allegiance to states +1 and −1.

De�ning the control variable u = I+−I−
I

, the master equation is composed as [59]:

Ṗm = rm+ 2
N
Pm+ 2

N
+ gm− 2

N
Pm− 2

N
− (rm + gm)Pm (2.1)
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Figure 2.1: Population composition and external in�uence groups [59]

where,

rm = P (m→ m− 2

N
) =

(
N+

N

)(
N− + I−
N + I − 1

)
gm = P (m→ m+

2

N
) =

(
N−
N

)(
N+ + I+

N + I − 1

)

rm+ 2
N

=

(
N+ + 1

N

)(
N− − 1 + I−
N + I − 1

)
gm− 2

N
=

(
N− + 1

N

)(
N+ − 1 + I+

N + I − 1

) (2.2)

Using Eqn. 2.2 in Eqn. 2.1,

Ṗm =

(
N+ + 1

N

)(
N− − 1 + I−
N + I − 1

)
Pm+ 2

N

+

(
N− + 1

N

)(
N+ − 1 + I+

N + I − 1

)
Pm− 2

N

−
[(

N+

N

)(
N− + I−
N + I − 1

)
+

(
N−
N

)(
N+ + I+

N + I − 1

)]
Pm

(2.3)

In the limit N →∞, assuming that I � N , I−Pm+2/N + I+Pm−2/N ≈ IPm, with proper

scaling of time as τ = t/N2 and noting that N+I−−N−I+ = NI
2

(m− u), the master equation

15



is simpli�ed to its �nal form as,

∂Pm
∂τ

=
1

2

∂2

∂m2
[B(m)Pm]− ∂

∂m
[A(m)Pm] (2.4)

where, B(m) = 2
(
1−m2

)
(2.5)

A(m) = I (u−m) (2.6)

Then, the authors continue to solve the derived di�erential equation, and assess the

controllability of the dynamics. [59] is a thorough example of using the master equation to

model opinion evolution on a network (DE-Models).

The Voter model is considered one of the simplest interaction mechanisms, and since only

two agents are present in the interaction mechanism, the social validation concept is ignored

in the Voter model. Sznajd model is an interaction mechanism which brings in the social

validation concept. Sznajd model in presence of in�uences is the focus of the this chapter.

First, a review of the most recent studies on the Sznajd model is provided. In section 2.3,

the Sznajd model is mathematically modelled on a complete graph in presence of in�uences.

In section 2.4, the modelled system is analyzed and interesting behaviors of the system are

presented and discussed. In section 2.5, a summary of all the �ndings of this chapter is

presented and the chapter is concluded.

2.2 Recent Studies on the Sznajd Model

In recent years, nonconformity has been a focal point for a large number of studies on the

Sznajd model. In these studies, two types of nonconformity are usually considered: anti-

conformity and independence. In a study by Nyczka et al., the authors investigate the e�ect

of two types of social responses: conformity and anti-conformity in the dynamics of the

Sznajd model on a complete graph [60]. In this dynamic, conformists choose the opinion of

the group with probability p1 (i.e. ↑↑⇓−→↑↑⇑ with probability p1, no change with probability

1 − p1), and anticonformists choose the opposite opinion of the group with probability p2
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(i.e. ↑↑⇑−→↑↑⇓ with probability p2, no change with probability 1 − p2). In another study

by the same group, authors expand this idea to investigate the qualitative and quantitative

di�erences of the two types of nonconformity under the framework of the q-voter model [61]

on a complete graph. In this dynamic, anticonformists choose the opposite opinion of the

group, and the independent agents do not follow the group; they act independently and

choose the opposite opinion of the group with probability 1
2
.

J¦drzejewski [62], expanded these studies with the Pair Approximation methodology to

study the behavior of a q-voter model with stochastic noise characterized as Independence

on several complex networks. In this model, with probability p, a chosen agent acts

independently and adopts the opposite opinion or preserves the old one with equal chances.

Otherwise, with probability 1− p, the agent will be a conformist.

A special class of independent agents are �zealots� (sometimes called �in�exibles� or

�in�uences�). These are agents who do not change their state throughout the progression

of the dynamics. Mobilia uses Mean-Field approximation method to analytically model the

nonlinear q-voter model in presence of zealots [63]. In this work, for simplicity, repetition

in choosing agents is allowed. The derived transition probabilities are used for bifurcation

analysis and �nding critical zealotry density. Analyses presented in this work relate to special

cases of symmetric and parameterized asymmetric zealotry distributions.

In this chapter, we model and investigate the e�ects of in�uences and initial conditions on

the dynamics of the Sznajd model. The problem setup is closely linked to [63], but in contrast

to Mobilia's work, it does not allow repetitive agent choices. Disallowing repetitive agent

choices is not only more realistic, but surprisingly, leads to a new master equation which

can be solved under speci�c conditions. Also, we do not observe rapid phase transitions

in this dynamic. Here, in�uences are nonconformists of the Independent type, who never

change their opinions (as opposed to [62]) but a�ect other agents' decisions. It is worth

mentioning that in�uences of this study are di�erent from what have been used in [60, 61].

In [60, 61], the nonconformists are Anticonformists, however in our study, we have chosen

Independents as nonconformists.
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2.3 In�uenced Sznajd Model

In this study, a complete graph is considered. A complete graph can be characterized by

a �magnetization parameter� de�ned as m = N+−N−
N

, where, N+ represents the number of

agents in state +1, and N− represents the number of agents in state −1 at any instant.

N = N+ + N− nodes make up the vertices of the graph [64]. The system also includes

I = I+ + I− in�uences, in which I+ represents the number of in�uences in state +1, and I−

represents the number of in�uences in state −1.

In the original Sznajd Model [65], the idea of social validation is used to introduce a spin

dynamic with ±1 alignments:

� In each time step a pair of spins Si and Si+1 is chosen to change spins of their nearest

neighbors, namely Si−1 and Si+2.

� If Si = Si+1 then Si−1 = Si and Si+2 = Si (social validation).

� If Si = −Si+1 then Si−1 = Si+1 and Si+2 = Si.

In this chapter, a simpli�ed Sznajd model dynamics, modi�ed for a complete graph,

rather than a one-dimensional lattice, introduced in [27], is used which inherits the social

validation concept, but has slightly di�erent update rules:

� In each time step a pair of nodes (i and j), respectively in states Si and Sj are chosen

at random and attempt to change the state Sk of a randomly chosen common nearest

neighbor, k ∈ Ni ∩Nj, where Ni is the set of neighbor nodes of node i.

� If Si = Sj then Sk = Si (social validation).

� If Si = −Sj then nothing happens.

Due to the stochastic process of spin �ips, Master Equation (ME) is used to formulate

this model. ME represents the time evolution of the probability of a system having any

con�guration of ±1 spins de�ned by m. Eqn. 2.7 represents the general form of the ME

which includes in/out-�ow rates calculated as probabilities [64].
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Ṗm = rm+ 2
N
Pm+ 2

N
+gm− 2

N
Pm− 2

N
− (rm + gm)Pm (2.7)

where, in/out-�ow rates are derived based on the Sznajd model as:

rm = P (m→ m− 2

N
) =

(
N− + I−
N + I

)(
N− + I− − 1

N + I − 1

)(
N+

N + I − 2

)
gm = P (m→ m+

2

N
) =

(
N+ + I+

N + I

)(
N+ + I+ − 1

N + I − 1

)(
N−

N + I − 2

)
rm+ 2

N
= P (m+

2

N
→ m) =

(
N− + I− − 1

N + I

)(
N− + I− − 2

N + I − 1

)(
N+ + 1

N + I − 2

)
gm− 2

N
= P (m− 2

N
→ m) =

(
N+ + I+ − 1

N + I

)(
N+ + I+ − 2

N + I − 1

)(
N− + 1

N + I − 2

)
(2.8)

By substituting Eqn. 2.8 in Eqn. 2.7, after some manipulations, and by de�ning the

control variable as u = I+−I−
I

, for large but �nite population sizes N , the master equation

can be expressed as:

Ṗm =
1

N4

[(
Nm2 −N +

N2

2
− N2m2

2
+
I2

2
+
I2u2

2
+ IN − I2mu− Im2N

)
∂2Pm
∂m2

+

(
10mN + INu− INm− N3m

2
− I2uN −N2Iu− 2N2m+

N3m3

2

+
I2mN

2
+
I2u2mN

2
+N2Ium2 − 4ImN − 2I2u+ 4Iu

)
∂Pm
∂m

+

(
4N − 3IN −N2 − N3

2
+

3N3m2

2
+ 2N2Imu+

I2N

2
+
I2u2N

2

)
Pm

]
(2.9)

Assuming that a steady state density function exists, limt→∞
dPm
dt

= 0 [66], the steady

state density Pss(m) has to satisfy:
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(
Nm2 −N +

N2

2
− N2m2

2
+
I2

2
+
I2u2

2
+ IN − I2mu− Im2N

)
d2Pss(m)

dm2
+(

10mN + INu− INm− N3m

2
− I2uN −N2Iu− 2N2m+

N3m3

2
+

I2mN

2
+
I2u2mN

2
+N2Ium2 − 4ImN − 2I2u+ 4Iu

)
dPss(m)

dm
+(

4N − 3IN −N2 − N3

2
+

3N3m2

2
+ 2N2Imu+

I2N

2
+
I2u2N

2

)
Pss(m) = 0

(2.10)

which is a homogeneous second order linear di�erential equation. The terms can be

rearranged to a more compact form:

d

dm

[(
Σ3
i=0aim

i
)
Pss(m) +

(
Σ2
i=0bim

i
) dPss(m)

dm

]
= −4mN

dPss(m)

dm
(2.11)

Integrating the same equation and using the identity
∫ 1

−1
Pss(m)dm = 1, the general form

of a �rst order ODE is obtained:

B(m)
dPss(m)

dm
+ A(m)Pss(m) = 4N (2.12)

The coe�cients of this equation are presented in Table 2.1.

Table 2.1: Coe�cients of Eqns. 2.11 and 2.12

Coe�cient Quantity
a0 4Iu− I2u−N2Iu−NI2u+

NIu

a1 8N−3NI−N2− N3

2
+ NI2

2
+

NI2u2

2

a2 N2Iu

a3
N3

2

b0 −N + N2

2
+ I2

2
+ I2u2

2
+ IN

b1 −I2u

b2 N −NI − N2

2

A a3m
3 + a2m

2 + a1m+ a0

B b2m
2 + b1m+ b0
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The analytical solution of such equations has the general form of:

Pss(m) =
1

v(m)

(∫
v(m)

4N

B(m)
dm

)
+ C, (2.13)

where v(m) = e
∫ A(m)
B(m)

dm. Pss(m) after normalization, provides the steady state distribution

of the population starting from an initial distribution m0. In the simpli�ed setting of I = 0

and N → ∞, the population almost surely converges to either all +1 or all −1 states, the

two attractors for that dynamics, i.e. Pss(m) = δ(m±1) where δ is the Dirac delta function.

Which direction the population converges to depends on the initial starting condition, i.e.

whether m0 is greater or less than 0. However, for all these cases, it is observed that

Pss(m = 0) = 0, i.e. at steady state the probability of the population being equally divided

between +1 and −1 states is almost surely 0, which stems from m = 0 being an unstable

equilibrium and the stochastic nature of the process.

Keeping these in mind, the ODE is solved separately over two ranges, Pssl solved over

−1 ≤ m ≤ 0 and Pssh solved over 0 ≤ m ≤ 1 with Pss(m = 0) = 0, as the boundary

condition for both. It will be shown later that the entire span [−1, 1] of possible starting

values for m0 can be divided into two distinct regions,

� a convergence zone (ZC), starting from which the population consistently converges

toward a particular attractive state - consequently, the steady state PDF matches either

Pssl or Pssh, and

� an indeterminate zone (ZI), starting from which the population can, by chance converge

toward any of the two attracting states, thus Pss(m) has a bimodal distribution which

is a combination of Pssl and Pssh.

It may be noted, that for the simple case of I = 0 and N → ∞, ZI is a singleton set, with

ZI = {0}.
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2.4 Results

Using a variable-step Runge-Kutta method, Eqn. 2.12 is numerically solved and plotted

for di�erent population sizes. Then, results from the Monte Carlo (MC) simulations are

overlayed on it.

Figure 2.2 includes numerical solution of Eqn. 2.12 (solid lines) as well as data points

from MC simulations for di�erent population sizes (N). Larger populations are characterized

by higher peak values and lower variances. Additionally, the assumption of large but �nite

N lower bounds the population size. This can be seen in the N = 50 plot, where results from

numerical simulations are not in accordance with the numerical solution of the mathematical

model. High degree of �delity between MC simulations data and numerical solutions of the

model is observed for N > 100.
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Figure 2.2: E�ect of the population size N on the steady state density Pss(m)

A caveat on the assumption of large population size should be mentioned here.

Realistically, N cannot be unbounded, since there is a cognitive limit to the number of

people with whom one can maintain social relationship - this is known as the Dunbar number

[67]. It is true that in�uence in the world of social network is not completely dictated by

relationships in which an individual knows the identity of each person and how s/he relates

to every other person. For example, the Pew Research Center puts the average number

of friends for a Facebook user at 338 [68]. However, these kinds of social networks rarely
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ever assume a complete graph topology, but can be more realistically modelled as a scale-

free network. Keeping this in mind, and since the derivations in this study rely on the

complete graph assumption, all subsequent results are for an intermediate population size

(N = 100) which is large enough for numerical accuracy, but smaller than the permissible

Dunbar number limit (Nlimit = 150).

2.4.1 Convergence and Indeterminate Zones

This section aims to elaborate on the e�ect of initial magnetization (m0) on the steady

state of the system. Each result is from 1000 runs of Monte Carlo simulations in which the

magnetization parameter m is treated as a random variable. The rescaled histogram of the

random variable is used to estimate the probability density function of the system at steady

state. Di�erent population sizes are considered and simulated with all the possible initial

conditions (m0 varies with steps equal to 2
N
).

For ease of representation, the mean magnetization 〈mss〉 estimated from the steady

state PDF, Pss(m), for each simulation is plotted. Although, not the most comprehensive

representation, Fig. 2.3 provides a visual representation of the convergence and indeterminate

zones by representing the behavior of the mean steady state magnetization of systems as

initial magnetization varies.
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Figure 2.3: Dependency of the mean steady state magnetization on initial magnetization.
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Figure 2.3 depicts the two regions, convergence and indeterminate zones. The convergence

zone is again composed of two regions - ZC = ZCl ∪ ZCh , where

ZCl =
{
m0 ≤ m∗0l |Pss(m) = Pssl(m)

}
ZCh =

{
m0 ≥ m∗0h|Pss(m) = Pssh(m)

} (2.14)

The indeterminate zone

ZI =
{
m∗0l < m0 < m∗0h|Pss(m) = ClPssl(m) + ChPssh(m)

}
where Cl > 0, Ch > 0. For di�erent con�gurations of population size and in�uences, ZCl

and ZCh are represented by green with boundaries denoted by m∗0l and m
∗
0h
.

It can be observed that as population size increases, the convergence zone covers

larger intervals of m0. In addition, with linear scaling of simulation parameters, systems

starting from their respective convergence zones converge to the same mean steady state

magnetization value. In other words, for two generic systems α and β, with a scale factor of η,

if (m0α = m0β) ≤ m∗0l or if (m0α = m0β) ≥ m∗0h , then 〈mss(N, I+, I−)〉 = 〈mss(ηN, ηI+, ηI−)〉,

η = 2, 3, 4, . . ..

It may be noted that although the results presented so far are illustrated with the help

of the mean of the stationary distribution, in fact, the hypothesis is that for each α, the

sequence, Pα
n (m) converges in distribution to Pss(m), i.e., limn→∞ P

α
n (m) = Pss(m).

To prove this, denoting a system con�guration as sys = {N, I+, I−,m0}, the following

null and alternative hypotheses are constructed:

� Null Hypothesis (H0): For sysα and sysβ with Nα = Nβ, I+α = I+β , I−α = I−β , if

(m0α 6= m0β) ≤ m∗0l or if (m0α 6= m0β) ≥ m∗0h then Pα
ss(m) ∼ P β

ss(m).

� Alternative Hypothesis (H1): For sysα and sysβ with Nα = Nβ, I+α = I+β , I−α =

I−β , if (m0α 6= m0β) ≤ m∗0l or if (m0α 6= m0β) ≥ m∗0h then Pα
ss(m) � P β

ss(m).

Simulation data with di�erent m0's are tested at α = 0.01 signi�cance level using the

two-sample Kolmogorov-Smirnov (KS) test. Results of the testing do not reject the null

hypothesis; thus, the null hypothesis stands true with 99% certainty.
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Figure 2.4 illustrates steady state PDF's of a system with di�erent initial conditions

(marked by red stars in Fig. 2.4a) for visual veri�cation. It may be noted that when initial

conditions are chosen from ZCh(Figs. 2.4f, g, h), or from ZCl (Figs. 2.4c, d, e), the steady

state PDFs each time converge respectively to Pssl(m) and Pssh(m).

Form∗0l ≤ m0 ≤ m∗0h (Fig. 2.4b), the PDF is a mixture of two PDFs. K-S tests reveal that

the rescaled PDFs of these modes are the same as Pssl and Pssh proving that the solution of

Eqn. 2.10 contains both speci�c solutions; or equivalently, Cl 6= 0 and Ch 6= 0.

25



-1 -0.5 0 0.5 1
Initial Magnetization

-1

-0.5

0

0.5

1

 m
ss

 
m0

h

*

m0
l

*

(a) Conv. Zone for N = 100

-1 -0.5 0 0.5 1
Stationary Magnetization

0

5

10

15

20

25

P
ro

b
ab

ili
ty

 D
en

si
ty

(b) m0 = −0.04

-1 -0.95 -0.9 -0.85
Stationary Magnetization

0

20

40

P
ro

b
ab

ili
ty

 D
en

si
ty

(c) m0 = −0.7

-1 -0.95 -0.9 -0.85
Stationary Magnetization

0

20

40

P
ro

b
ab

ili
ty

 D
en

si
ty

(d) m0 = −0.8

-1 -0.95 -0.9 -0.85
Stationary Magnetization

0

20

40

P
ro

b
ab

ili
ty

 D
en

si
ty

(e) m0 = −0.9

0.9 0.95 1
Stationary Magnetization

0

10

20

30

40

P
ro

b
ab

ili
ty

 D
en

si
ty

(f) m0 = 0.5

0.9 0.95 1
Stationary Magnetization

0

10

20

30

40

P
ro

b
ab

ili
ty

 D
en

si
ty

(g) m0 = 0.7

0.9 0.95 1
Stationary Magnetization

0

10

20

30

40

P
ro

b
ab

ili
ty

 D
en

si
ty

(h) m0 = 0.9

Figure 2.4: Conv. zone and stationary PDF's of a system with N = 100, I+ = 12, I− = 10.
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2.4.2 Convergence Zone with Varying Control Inputs

In section 2.4.1, a �xed control input is used to �nd the convergence zones related to

di�erent population sizes. The objective of this section is to investigate whether there exist

convergence zones for other values of u. Also, how such convergence zones depend on the

control input is studied.

To do this, control input u is treated as an independent variable in Fig. 2.5. Similar

to section 2.4.1, MC simulations are performed for all possible combinations of m0 and u.

Then, mean magnetization of the system at the steady state is calculated and plotted.

A speci�c control input can correspond to di�erent combinations of I+ and I−; for e.g.,

I+ = 8, I− = 2 and I+ = 16, I− = 4 both represent u = 0.6. To fully specify the problem, we

de�ne in�uence ratio, λ = I
N
, as a simulation parameter, where |I| = |I+|+ |I−|. Somewhat

arbitrarily, we focus on the range 0 ≤ λ ≤ 1 for λ, which regulates the total number of

in�uences in the system to be at most the same size as the population. In Fig. 2.5, the

control input changes with steps equal to 2
I
to cover all possible discrete values in [−1, 1].

Existence of convergence zones: Fig. 2.5 depicts that for di�erent combinations of λ

and u, region(s) (m0 ≤ m∗0l or m0 ≥ m∗0h) exist, where the mean steady state magnetization

〈mss〉 loses its dependency on the initial magnetization, and all systems converge to a unique

PDF.

To determine boundaries of convergence zones, a new set of �gures are presented.

Fig. 2.6a represents the case with λ = 0.2 with markers for m∗0l and m∗0h . Fig. 2.6b is

the two dimensional location of the same markers on the m0 − u plane. As it can be seen,

for most values of the control input, both m∗0l and m∗0h are present. However, in extreme

cases of control input one of them is absent. For example, u = −1 and u = 1 lack m∗0h and

m∗0l respectively. Same analysis can be applied to systems with other values of λ.

Exit probability, i.e. the probability that the system ultimately reaches consensus as

a function of the initial composition of the population, is a very important �rst-passage

property [69]. In this work, the concept of exit probability is not completely applicable since

the in�uenced system never reaches consensus. However, the proof of our Null Hypothesis
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Figure 2.5: Dependency of mean steady state magnetization on initial magnetization and
control input for N = 100.
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does show some similarities with the concept of exit probability. Here, we have shown

that two similar systems with initial conditions belonging to the same convergence zone

will converge to the same probability distribution in their stationary states. The limits of

convergence zones depend on N, λ, and u.

E�ect of in�uence ratio (λ): Fig. 2.5a represents an unin�uenced society. 〈mss〉 is only

a function of m0, and boundaries of convergence zone are clear on both sides. However, as

soon as in�uences are added to the society (λ = 0.2), the behavior of the 〈mss〉 starts to

change, and dependency on u is noticeable. For instance, on plane u = −1, the 〈mss〉s for

positive m0s decrease since all of the in�uences are focused on the negative side. Also, on

plane u = 1, the 〈mss〉s for negative m0s increase because all the in�uences are focused on

the positive side.

More importantly, at λ = 0.2, number of in�uences is not high enough to make the 〈mss〉

�atten as m0 changes on planes u = ±1. This is the reason why there is neither a m∗0h on

plane u = −1 nor a m∗0l on u = 1. However, for higher values of λ, number of in�uences is

high enough to overcome the e�ect of m0 and make the 〈mss〉 �atten (Figs. 2.5c-f).

In Figs. 2.5c-e, as λ increases, the control input becomes the dominant parameter

in changing the behavior of 〈mss〉, and 〈mss〉 completely loses its dependency on m0 as

u −→ ±1. In addition, when u −→ 0, m0 is the dominant parameter in the behavior of

〈mss〉. Interestingly, Fig. 2.5f, 〈mss〉 is a function of u only. It is interesting to note that

when the in�uence size (I) exactly matches the population size (N) the steady state PDF

completely loses its dependency on the initial condition.

Comparison to previous studies: In the study by Slanina and Lavi£ka [27], it is proven

that for a simpli�ed Sznajd model dynamic on a complete graph, there exists a phase

transition at m0 = 0. However, in our simulations this phase transition is absent in Fig. 2.5.

In the case of λ = 0, this is due to the fact that, in their analyses, Slanina and Lavi£ka

assume the population size is in�nite, N → ∞; however, in our simulations we assume the

population is large but �nite. In cases where λ 6= 0, the absence of a phase transition is

partly because of the large but �nite N assumption, and in part because of the presence of
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in�uences.

Linear scaling property: In section 2.4.1, the linear scaling property with a �xed control

input is mentioned. In this section, we investigate if this property holds true for other values

of control input. Fig. 2.7 compares the behavior of 〈mss〉 for two population sizes N = 50 and

N = 100 (η = 2). From visual inspection, linear scaling of simulation parameters preserves

the general trend of 〈mss〉.

However, point-to-point comparison of 〈mss〉 data shows that the relation 〈mss(N, I+, I−)〉 =

〈mss(ηN, ηI+, ηI−)〉 does not hold true for all values of u. To determine the interval of control

input for which the scalability property stands, we study the point-to-point di�erence in

〈mss〉 data values. Fig. 2.7c represents δ = 〈mss〉|N=50 − 〈mss〉|N=100 calculated on planes

m0 = −1 (blue line) and m0 = +1 (red line).

It can be seen that for some values of u, 〈mss〉 of the scaled system (N = 100) and the

base system (N = 50) are exactly equal (δ = 0); thus, for the corresponding m0 scalability

property stands. For instance, if λ = 0.2, for ∀u ∈ [−1, 0.4], δ = 0 on plane m0 = −1 (the

green area). For a unique m0, intervals of control input for which δ = 0 will be referred to

as the Scalability Zone of the base system for that m0.

To study the existence of scalability zone for di�erent values of initial magnetization, the

same process has been applied to 〈mss〉 data on other available m0 planes. Fig. 2.8 presents

δ(m0, u) for di�erent values of in�uence ratio. Interesting characteristics are observed for
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Figure 2.8: Scalability zone for all m0s for N = 100.

di�erent values of λ regarding existence of scalability zone and its expansion, maximum

di�erence values, and sign of δ.

It can be seen in Fig. 2.8a that for some values of m0 close to zero δ 6= 0. However,

scalability zone appears and expands in the �rst and third quadrants of the m0 − u plane

(where sgn(m0) = sgn(u)) towards outer borders. In this �gure, dependency of δ on m0 is

clear in a large area. Also, maximum di�erence happens in the second and fourth quadrants

near the outer borders (where sgn(m0) = −sgn(u)).

As λ increases, the dependency of δ on m0 decreases; maximum di�erences decrease, and

they happen close to u = 0 plane. The scalability zone is available for all values of m0.

When λ = 1, δ is a function of u only. Interestingly, sgn(δ) = sgn(u) = −sgn(m0) for all

values of λ. This means that for m0 ≥ 0, δ < 0⇒ 〈mss〉|N=50 < 〈mss〉|N=100 if δ(m0, u) 6= 0,

or for m0 ≤ 0, δ > 0⇒ 〈mss〉|N=50 > 〈mss〉|N=100 if δ(m0, u) 6= 0.

So far, our �ndings are dominantly based on the mean of the probability distribution

function of the system at its steady state; however, while calculating the mean, some

information of the PDF is lost. For instance, although a family of Gaussian distributions
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de�ned as f(x) = 1√
2πσ2

e
−x2
2σ2 have a mean value of zero, their disorder or uncertainty cannot

be explained by their mean. In information theory the concept of Entropy is used to study

the uncertainty of PDFs. Next section is devoted to the study of system entropy at steady

state.

2.4.3 Entropy Analysis

Entropy of a random variable X is de�ned as the expectation of the random variable

− logP (X) with respect to the probability measure P [70, 71]:

H(X) = EPX{− logPX(X)} = −
∑
x∈X

PX(x) logPX(x) (2.15)

where, EP denotes the expectation with respect to probability distribution P . We use the

steady state magnetization PDF of the systems in Fig. 2.5 to calculate entropy of each data

point. Fig. 2.9 represents the entropy of the system for di�erent values of in�uence ratio. It

is worth noting that low entropy corresponds to higher certainty and high entropy represents

lower certainty in the steady state.

0
1

0.5

1

E
n

tr
o

p
y 1

u
0

m 0

1.5

0
-1 -1

(a) λ = 0

0
1

0.5

1

E
n

tr
o

p
y 1

u
0

m 0

1.5

0
-1 -1

(b) λ = 0.2

0
1

0.5

1

E
n

tr
o

p
y 1

u
0

m 0

1.5

0
-1 -1

(c) λ = 0.4

0
1

0.5

1

E
n

tr
o

p
y 1

u
0

m 0

1.5

0
-1 -1

(d) λ = 0.6

0
1

0.5

1

E
n

tr
o

p
y 1

u
0

m 0

1.5

0
-1 -1

(e) λ = 0.8

0
1

0.5

1

E
n

tr
o

p
y 1

u
0

m 0

1.5

0
-1 -1

(f) λ = 1

Figure 2.9: Entropy of distributions for di�erent values of λ for N = 100.
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For λ = 0, there are no in�uences in the population, and entropy of the system is a

function of m0 only. Entropy is zero for m0 ≤ m∗0l or m0 ≥ m∗0h because in these regions

there are enough agents at the corresponding state to push the system PDF towards a Dirac

delta function at either −1 for m0 ≤ m∗0l or at +1 when m0 ≥ m∗0h . Also, entropy reaches

its maximum at m0 = 0, because in this region neither of the groups in ±1 states are strong

enough to completely attract the population towards themselves; this phenomenon results

in a more distributed density function over the magnetization axis, and consequently higher

entropy.

Figures 2.9b-f depict that adding in�uences to the population increases the entropy of the

system. The reason is that although small in number, in�uences are capable of attracting

agents to their state; as a result, the steady state magnetization of the system will have

a di�erent value from that of the unin�uenced population. So, the density function of the

system becomes more distributed over the magnetization axis leading to higher entropy

values.

For instance, u = 0|λ=0.2 represents a system with in�uences equally divided between the

two groups; this might imply that their e�ects on the steady state PDF will be eliminated

by each other, and the resulted PDF will be the same as that of the unin�uenced system

(λ = 0). However, by point-to-point comparison of data points we �nd that ∀m0 on the

u = 0 plane, the PDF of the in�uenced system is more distributed, and H(m0, u = 0)|λ=0 <

H(m0, u = 0)|λ=0.2.

In Fig. 2.9b, entropy is at its lowest levels when sgn(m0) = sgn(u). In this situation

higher number of in�uences support the initially more populated state resulting in a sharp

less-distributed magnetization density function close to one of the ends of the magnetization

axis. The opposite happens when sgn(m0) = −sgn(u) since more in�uences are in the favor

of the initially less populated state preventing the population from clustering at one of the

edges of the magnetization axis; the resulting density function is nicely distributed causing

higher entropy. This reasoning explains why the point (m0 = 0, u = 0) is similar to a saddle

point. It is observed in Fig. 2.9b that entropy is more sensitive to the control input rather

than the initial condition. Consider point (m0 = −1, u = −1) on the graph. Entropy starts

to propagate from zero faster if {m0 = const. and u ↑} compared to the situation where
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{u = const. and m0 ↑}. The reason is that in�uences (even in small numbers) are always

active in the process of changing agents' states to theirs. However, an agent is active in

attracting other agents to its initial state till s/he changes to the opposite state; i.e. its

e�ect is not ever-lasting. As a result, more agents are needed to have the same e�ect of a

few number of in�uences on the PDF of the system and the entropy.

In Fig. 2.9b, as u increases on m0 = −1 plane, entropy ascends till u = 0.9. This

phenomenon is easy to comprehend since more in�uences in state +1 attract more agents

from state −1, and the PDF of the system is more distributed. However, at u = 1, since all

the in�uences are at the positive side, they are able to dramatically shift the PDF towards

themselves and make it narrower resulting in lower entropy value. Here, the number of

in�uences is not high enough to change the PDF into a Dirac delta function, so entropy does

not reach zero.

On the contrary, in Figures 2.9c-f, number of in�uences is high enough to completely

attract the population towards themselves on planes u = ±1; so, the entropy is zero. As λ

increases, similar to 〈mss〉, for larger intervals of u entropy loses its dependency on m0 and

sgn(m0), and the saddle point disappears; for λ = 1, entropy depends on the control input

only.

2.5 Chapter Summary

In this chapter, e�ects of external in�uences on the behavioral dynamic of a group of agents

who interact with each other based on the Sznajd model are studied. The Sznajd model

is formulated on a complete graph in presence of in�uences, and the governing di�erential

equation for the population behavior at steady state is derived. The resulted ODE shows

the dependency of pe(m) on population size N , control input u = I+−I−
I

, and total in�uence

size I.

The mathematical model is numerically solved, and the results are compared with data

from numerical simulations. Higher peak values and lower variances are observed for larger

population sizes. We �nd good agreement between the results from numerical experiments

and numerical solution of the mathematical model for network sizes exceeding N = 100.
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Based on numerical simulations, regions (called convergence zone) are available where

the steady state loses its dependency on the initial condition. By adopting Kolmogorov-

Smirnov hypothesis testing method, it is proven with 99% certainty that steady state PDF's

of systems with initial conditions belonging to the same convergence zone are equivalent.

Di�erent graphs are provided to display this phenomenon. A relationship based on these

�ndings and the general solution of the stationary ODE is drawn for di�erent ranges of

m0. Furthermore, results show that by increasing the population size, the convergence zone

covers a larger area. Interestingly, it is observed that linear scaling of simulation parameters

causes the same convergence value for the mean steady state magnetization.

E�ect of the control input on convergence zones is studied on three dimensional graphs

by de�ning a new parameter λ = I
N

named in�uence ratio. Results show that for di�erent

combinations of u and λ, convergence zone(s) exist. Figures are provided to show the

boundaries of the convergence zones. It is shown that increase in the number of in�uences

results in larger convergence zones. When λ = 1, the whole m0 − u plane is independent

of m0. In addition, the absence of a phase transition is explained by the large-but-�nite

population size assumption and presence of in�uences.

Linear scaling property is also investigated for all combinations of m0 and u. It is shown

that not for all values of the control input the mentioned property stands. Three dimensional

�gures are provided which show the dependency of the di�erence between the 〈mss〉's of two

linearly scaled systems for di�erent λ's. In general, as in�uence ratio increases, δ decreases;

and δ loses dependency on m0. The reason behind high values of δ on the second and fourth

quadrants of the m0−u plane is discussed in detail. It is also shown that for negative initial

conditions, the 〈mss〉 of the base system is higher than that of the scaled system.

Entropy study of the system reveals that higher in�uence (although small in number)

equals higher entropy. Generally, entropy is a function of the initial magnetization and the

control input, but as λ increases, the system loses its dependency on m0. When λ = 1 the

entropy is only a function of the control input.
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Chapter 3

Dynamics of a Repulsive Voter Model

3.1 Objective

In literature, all of the interaction models are attracting models; i.e. after the interaction,

the interacting agents become the same (Voter model and Sznajd model), or similar to each

other in some sense (Bounded Con�dence model). However, attracting interaction models

are not capable of explaining all types of behaviors observed in the society. For example,

anti-conformal behavior cannot be modelled using attracting interaction models. To model

anti-conformal behaviors in the society, new types of interaction models, �repelling� models,

are needed. This chapter introduces a new interaction model where similar agents repel each

other instead of attracting each other.

3.2 Intorduction

In contrast to the rich and well-researched mode of conventional social interaction, in this

chapter, we discuss a modi�ed scenario where, each node is repelled, rather than attracted by

its neighbors. Such anti-conformal behavior, though not nearly as wide-spread as `herding' or

mimicking behavior, is exhibited in a variety of social situations where there is a premium on

novelty or on choices which can demonstrate an attitude of indi�erence or rebellion towards

current trends. In the 1950s, a minimalist style described as `anti-fashion' emerged with

the advent of rock and roll, especially with young adolescent women [72]. Instead of the
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standard dress or skirt, many young women wore jeans and plaid or T-shirts in rebellion

with the gender roles and societal norms at that time. This fashion has the roots of many

modern anti-fashion trends, such as Grunge [72], decades later.

A more recent example of anti-conformal behavior is observed by analyzing the beer

drinking trend in America's young adults. Preference to beers in youths aged 18 to 29 has

dropped from 75% to 40% in the last twenty years [73]. It is hypothesized that a cause of

this shift in drinking preference is due to young people rebelling against the tastes of the

generation before them - because what their parents drink isn't "cool".

We also draw inspiration from a behavioral demand model to trigger lane-changing

maneuver of drivers in a multi-lane highway. When confronted with a slower car in the same

lane, in the absence of other external factors, drivers tend to change to the other `emptier'

lane. This behavior exempli�es the repulsive Voter model dynamics that is introduced,

described and analyzed in this chapter, albeit at a very low level of abstraction.

In this chapter, we introduce the simplest case, analogous to the Voter model, where at

any time, each node has only two discrete states +1 and −1; thus, a single variable si = ±1

fully speci�es the state of node i. This Ising model based approach is not intended to model

any real phenomena, rather allow a mathematical treatment of a new emergent phenomena,

where simple interactions among agents lead to complex global behaviors.

In this chapter, section 2 introduces the Repulsive Voter Model (RVM), and discusses it in

the context of a complete graph. We derive the equilibrium solution of the Master equation

related to our model formulated on a complete graph, which reveals some interesting facts

about the role of the in�uencing nodes on the convergence state, time to convergence, etc.

This is then validated by numerical simulations in section 3, the theoretical results are

compared with numerical simulations, and several interesting characteristics of the system

are pointed out. Section 4 presents the derivation of the Master equation for the Repulsive

Voter model with biased nodes on a random graph with connection probability p. In this part

also, numerical simulations are conducted not only to validate the mathematical modeling

but also to perform a sensitivity analysis on the connection probability of p. Section 5

is dedicated to analytical solution of the Repulsive Voter model on a regular lattice. The

analytical solution demonstrates some interesting results of the time evolution of the system.
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In the �nal section of this chapter, the �ndings from this chapter are summarized and the

chapter is concluded.

3.3 The Repulsive Voter Model Dynamics

In this section, a complete graph is considered. The complete graph, being a fully connected

random graph G(N, p) in the limit p → 1, can be conveniently characterized by a single

parameter, the magnetization factor, de�ned as m = (N+ −N−)/N , where, at any instant,

N+ represents the number of nodes (agents) in state +1, and N− represents the number of

nodes of the network in state −1. N = N+ +N− nodes make up the vertices of the graph.

The Repulsive Voter model dynamics is a straightforward modi�cation of the standard

Voter model. At each time step, a node i and one of its neighbors j are randomly selected,

and si is set equal to −sj, i.e. node i chooses the opposite state as its neighbor. Several

social behaviors �nd parallel in this anti-conforming tendency in a group, a typical example

being lane selection in heavy tra�c. Although not accurate at a �ne level of granularity,

an analysis of the dynamics can provide valuable information regarding the steady state

equilibrium distribution, its dependence on group size and stabilization time.

Figure 3.1 demonstrates the instantaneous composition of the population which, in

addition to N+ and N− nodes, comprises of I = I+ + I− external agents with respective

pre-conceived allegiance to states +1 and −1. In the repulsive interaction scenario, the

in�uence groups represent decentralized control inputs which aim at repelling nodes away in
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Node in I+
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Figure 3.1: (a) An example demonstrating tra�c �ow modelled with the Repulsive Voter
dynamics, (b) Population composition
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order to attain a target state distribution. Natural examples of such repulsive in�uences in

a tra�c network are police vehicles stationed near accidents or construction sites in order to

attain smooth uninhibited tra�c �ow [74, 75] through reduced number of lanes.

We use the same nomenclature as Slanina and Lavicka to develop the Master equation for

the RVM dynamics. A Master equation is a set of �rst-order di�erential equations describing

how the probability of �nding the system in state m at time t changes with time:

dP (m, t)

dt
=
∑
m′ 6=m

T (m|m′)P (m′, t)−
∑
m6=m′

T (m′|m)P (m, t) (3.1)

where, the quantity T (m|m′) is the transition rate, and is only de�ned for m 6= m′. It may

be noted that, in our case, the system performs a random walk over a [−1,+1] range of the

magnetization parameter m with a discrete step size of ±2/N . For such a one step process,

the master equation takes the simpler form:

dP (m, t)

dt
= T (m|m+

2

N
)P (m+

2

N
, t)

+ T (m|m− 2

N
)P (m− 2

N
, t)

− [T (m− 2

N
|m) + T (m+

2

N
|m)]P (m, t)

(3.2)

We can now proceed to compose the master equation as:

Ṗm = rm+ 2
N
Pm+ 2

N
+ gm− 2

N
Pm− 2

N
− (rm + gm)Pm, (3.3)

where,

rm = T (m− 2

N
|m) =

(
N+

N

)(
N+ + I+ − 1

N + I − 1

)
gm = T (m+

2

N
|m) =

(
N−
N

)(
N− + I− − 1

N + I − 1

)
rm+ 2

N
= T (m|m+

2

N
) =

(
N+ + 1

N

)(
N+ + I+

N + I − 1

)
gm− 2

N
= T (m|m− 2

N
) =

(
N− + 1

N

)(
N− + I−
N + I − 1

)
(3.4)
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Using Eqn. 3.4 in Eqn. 3.3, we get:

Ṗm =

(
N+ + 1

N

)(
N+ + I+

N + I − 1

)
Pm+ 2

N

+

(
N− + 1

N

)(
N− + I−
N + I − 1

)
Pm− 2

N

−
[(

N+

N

)(
N+ + I+ − 1

N + I − 1

)
+

(
N−
N

)(
N− + I− − 1

N + I − 1

)]
Pm

(3.5)

De�ning the control variable as u = I+−I−
I

, for large N , after simpli�cation, the Master

equation can be expressed as:

Ṗm =
1

N(N + I − 1)

[
(1 +m2)

∂2Pm
∂m2

+ (2mN + 2m+ Iu+ Im)
∂Pm
∂m

+2NPm + IPm]

(3.6)

With the proper time scaling as τ = t/N , the �nal form of the in�uenced Repulsive Voter

model can be expressed as:

∂Pm
∂τ

=
∂

∂m

[
(1 +m2)

1

N

∂Pm
∂m

+ 2mPm +
I

N
Pm(m+ u)

]
(3.7)

If we assume that an equilibrium density function exists, then limτ→∞
∂Pm
∂τ

= 0, and by

assuming that constants of integration are equal to 0, the equilibrium density Pe(m) has to

satisfy:

(1 +m2)
1

N

∂Pe(m)

∂m
+ 2mPe(m) +

I

N
Pe(m)(m+ u) = 0 (3.8)

whose solution is:

Pe(m) =
1

C

e−Iu tan−1(m)

(1 +m2)(N+I/2)
(3.9)

where C is the constant that ensures proper normalization of the probability density function.
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The e�ect of in�uences is apparent both in the exponential term in the numerator and in

the power of the denominator. Putting I = 0 results in the solution of the Repulsive Voter

model without in�uence.

3.4 Discussion and Numerical Results

We can estimate the probability density functions at each time (decision) point simply with

a rescaled histogram by performing Monte Carlo simulations and treating the magnetization

parameter m as a random variable. We expect Eqn. 3.9 to accurately represent the density

estimates at the steady state and provide us with insights into some characteristics of this

interesting system such as the expected equilibrium magnetization, e�ect of N , I, u, etc.

3.4.1 The Equilibrium Density

It may be noted that Pe(m) from the analytical solution is not independent of N for large but

�nite population sizes. Thus, for bigger populations to reach similar expected magnetization

levels, more control (bigger u) has to be exerted. This is in stark contrast to the regular

Voter model with in�uence, where the mean magnetization was shown to be independent of

the population size [8].

To investigate the dependence of Pe(m) onN , we plotted probability densities for a variety

of population sizes. Numerical results from 1000 Monte Carlo simulations are overlayed on

the analytical solutions for each N in Fig. 3.2a. Larger populations are characterized by

lower variance and mean magnetization close to 0. The assumption of large N lower bounds

the population size. This may be observed in the N = 10 plot where the data points from

MC are not in accordance to the theoretical result obtained in Eqn. 3.9. High degrees of

�delity between MC simulation data and analytical result is observed for N > 100.

Expected Magnetization

The e�ect of size of di�erent in�uence groups on the equilibrium density is shown in Fig.

3.2b along with the expected magnetization 〈m〉 plotted as vertical lines. It is observed that

the Repulsive Voter model is extremely stable in the sense that even high values of u and I
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Figure 3.2: (a) E�ect of the population size (N) on the equilibrium density Pe(m), and
(b) E�ect of size of in�uence groups on Pe(m)

are not be able to cause noticeable shifts in 〈m〉. In smaller populations, however, the e�ect

is much more pronounced. Recalling the signi�cant shift in the beer drinking preference in

youths, we may observe that this is one case, where the in�uencing set (parents) is similar

in size to the target population. Without such large in�uence, signi�cant shifts in the mean

magnetization is impossible to achieve.

An interesting behavior for the system is observed if the in�uences I+ and I− are scaled

proportionally with the population size. Figure 3.3 shows the e�ect of the scale factor α.

Interestingly, 〈m〉 is independent of α, i.e.:

〈m(N, I+, I−)〉 = 〈m(αN, αI+, αI−)〉

This result may have practical use in planning tra�c management strategies in congested

highways using police vehicles. The results suggest that if I = 5 police cars were su�cient to

achieve the mean target lane distribution for a N = 100 car capacity section of a highway, in

a N ′ = 5×100 = 500 car capacity highway section, I ′ = 5×5 = 25 police cars would achieve

the same mean lane distribution. However, the variance monotonically decreases with scale.
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Figure 3.3: E�ect of scale factor on the mean and variance of Pe(m)

3.4.2 Progression of the Density Function

So far, only aspects of the system at its equilibrium point have been presented. Now, we

investigate the dynamic characteristics of the probability density function; speci�cally, the

e�ect of the in�uence groups I+ and I−.

Figure 3.4a plots the progression of the PDF for such a numerical experiment with

simulation parameters N = 200, I+ = 1 and I− = 9. Starting from a delta distribution

p(m)|τ=0 = δ(m−0.8), the �gure gives a snapshot of the distribution at time instants spaced

in a geometric sequence. The choice of the time instants displayed are purely based on

aesthetic considerations. The plots with the empty circles are scaled histograms from 1000

simulation runs at the corresponding scaled time points, while the solid lines are the normal

distributions �t to the data. An important observations from these plots is that starting

from a delta, the distribution at each instant quickly assumes and remains in the Gaussian

form, which should help policy making by providing suitable con�dence bounds for achieving

target distributions within a certain time frame.

Figure 3.4b plots the expected magnetization trajectory 〈m〉 with τ . It can be readily

seen that the convergence time is independent of the population size N if time is scaled

as τ = t/N . This implies that the number of interactions it takes for the Repulsive Voter

dynamical system to reach equilibrium is proportional to the size of the population. This

means that for N = 20, if the time (number of decisions) to convergence is t = 60, then for

N ′ = 200, the convergence time is simply t′ = 600. Even at this very low level of �delity,
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Figure 3.4: (a) Progression of the PDF with time for N = 200, I+ = 5 and I− = 2, (b)
E�ect of N on the time to convergence

this information can be potentially useful in a variety of situations including the design of

merge sections in highways.

3.5 RVM on a Random Graph

In this part, behavior of the RVM on a random graph is investigated. The Erd®s Rényi

random graph G(N, p) is de�ned as N labeled nodes connected by n edges which are chosen

randomly from (N(N − 1))/2 possible edges [55]; i.e. every pair of nodes is connected with

probability p = n
[(N(N−1))/2]

. Since there are Cn
[(N(N−1))/2] ways to construct such a graph, a

probability space is formed in which every realization of the random graph owns an equal

probability of happening. The probability of constructing a speci�c realization of a random

graph such as G0 with the speci�cations mentioned above is P (G0) = pn(1− p)[N(N−1))/2]−n.

3.5.1 Model Formulation and Analytical Solution

In order to formulate this system, elements of the Master equation do not need to be

composed again. Intuitively, every interaction happens with probability p, so all parts of the

Master equation are going to be the same as the case involving complete graph with the only

exception that they will incorporate a probability coe�cient. Here, only one representative
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transition rate is presented to clarify the e�ect of connection probability of the random

graph:

rm = T (m− 2

N
|m) =

(
N+

N

)(
N+ + I+ − 1

N + I − 1

)
.p (3.10)

By substituting new rates in Eqn. 3.3 and after following the same steps as before, the

Master equation becomes:

Ṗm =
p

N(N + I − 1)

[
(1 +m2)

∂2Pm
∂m2

+ (2mN + 2m+ Iu+ Im)
∂Pm
∂m

+ 2NPm + IPm

] (3.11)

The �nal form of the in�uenced Repulsive Voter model on a random graph can be

expressed in an exactly similar form as Eqn. 3.9; the only di�erence is that the time needs

to be di�erently scaled as τ = t/(N/p):

Pe(m) =
1

C

e−Iu tan−1(m)

(1 +m2)(N+I/2)
(3.12)

3.5.2 Numerical Results and Discussion

Since e�ects of population size N and di�erent combinations of in�uences I+ and I− have

already been considered in the complete graph scenario, this part will solely be devoted to

demonstrating the e�ects of connection probability p on the behavior of the system in the

equilibrium state as quanti�ed by Eqn. 3.12. Figure 3.5 illustrates results of Monte Carlo

simulations for di�erent population sizes N and for two di�erent values of the connection

probability p. The results are overlayed on the analytical solutions associated with each

system.

In Fig. 3.5a, p is greater than pc = ln(N)
N

for N = 50, 100 and 200, the random graphs

in these cases are almost surely connected and consequently, the analytical solutions and

numerical results represent high degrees of similarity. However, for N = 10, p < pc leading

to development of isolated nodes which cause the equilibrium density to deviate from the

analytical solution. In Fig. 3.5b, for each N , the connection probability is smaller than
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Figure 3.5: E�ect of connection probability p on the equilibrium density for di�erent N

the threshold leading to large deviations. This indicates the presence of a critical connection

probability (pc) and possible phase transition in the expected equilibrium magnetization 〈m〉,

which we hypothesize should coincide with the phase transition related to the emergence of

fully connected random graphs at p ε→0−−→ (1 + ε) lnN
N
.

Figure 3.6 is the result of such investigation where the equilibrium magnetization 〈m〉

is plotted against the average degree of the graph 〈k〉 ≈ pN . We may point out that in

this case, in�uence size is I = 0 and consequently, the analytical solution would predict the

expected equilibrium magnetization 〈m〉 = 0. It can be inferred from the graph that there

exists a 〈kc〉 ≈ lnN above which the mean equilibria of the systems do reach 〈m〉 = 0 mean

magnetization, and they are perfectly aligned with the analytical results. For N = 50, 100

and 200, the critical degree 〈kc〉 = 3.9, 4.6 and 5.3 respectively, which qualitatively match

the critical average degree observed in Fig. 3.6; beyond these critical values the expected

equilibrium magnetizations converge to 〈m〉 = 0.

The signi�cant di�erence of analytical solution on a random graph and a complete graph

is the way the time parameter is scaled. It has already been shown that on a complete graph

if the time is scaled as τ = t/N , the convergence time is independent of the population size.

On a random graph, with time scaled as τ = t/(N/p) the convergence time is independent

of p as well as N . Figure 3.7 demonstrates this behavior. For the case with p = 0.01, since
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Figure 3.6: E�ect of average degree 〈k〉 on the mean equilibrium density for di�erent
population sizes

the connection probability of the graph is lower than pc, the system converges to a �nite

non-zero value of expected magnetization.

Essentially, this exercise and the preceding results provide us with the means of

analytically predicting the mean value of magnetization with which the RVM system will

stabilize and the convergence time when the network existing between the participating

nodes can be modelled as a random graph. More importantly, we can determine the range

of parameters where this analysis is meaningful. The random graph is a step closer to real

networks between individuals.

3.6 RVM on a Lattice

Lattices are regular arrangements of points in the Euclidean space, and their applications

are found in the analyses of various phenomena related to networked environments such

as crystal formation, opinion evolution in societies, etc. Considerable attention has been

given to the study of the Voter model on lattices and how such systems tend to organize

into a single-opinion state in the absence of in�exible agents (or in�uences) [76]. In this

section, �rst, the RVM is formulated and solved analytically on a one-dimensional lattice

without the presence of in�uences. Then the solution is extended to the case of a general

multi-dimensional lattice.
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Figure 3.7: E�ect of connection probability on convergence time of a system with N = 100
and τ = t/(N/p)

On a regular lattice, based on the RVM, the rate at which the state of agent x changes

to −s(x) can be written as:

w(s(x)) =
1

2

(
1 +

s(x)

z
Σy:n.n.xs(y)

)
(3.13)

in which the sum is done over the nearest neighbors of site x. This rate is simply the

probability of state transformation based on an agent's nearest neighbors' states. z is the

coordination number of the graph and is assumed to be constant; i.e. periodic boundary

conditions apply.

Clearly, transition rate of agent x is a linear function of the fraction of the agreeing

neighbors. For instance, when an agent and all his neighbors agree, the transition rate

is one, conversely, if all the neighbors disagree, the transition rate is zero. In contrast to

previous sections where we studied the whole system using a magnetization factor, in this

part, mean spin of an agent at point x namely S(x) = 〈s(x)〉 is studied to represent the

individual behavior throughout the interaction process.

If a change of opinion happens at x, based on RVM, s(x, t+1) = −s(x, t); as a result, the

opinion at x changes by s(x, t + 1) − s(x, t) = −2s(x, t). Based on the previously obtained

change rate, w(s(x)), the average opinion at x will evolve as:

dS(x)

dt
= −2〈s(x)w(s(x))〉 (3.14)
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In the rest of the modeling, we will use s(x) as a substitute to s(x, t) for simplicity. By

substituting Eqn. 3.13 in Eqn. 3.14 we will get:

dS(x)

dt
= −S(x)− 1

z
ΣiS(x+ ei) (3.15)

in which ei are the unit vectors of the lattice. The solution of this linear di�erential equation

will reveal the temporal behavior of an agent at node x. This di�erential equation can

be solved by introducing a one-dimensional Fourier transform considering x as the spatial

variable and employing a generating function representation of the Bessel function Iν(Z) for

a part of the solution. The time evolution of the mean opinion of an agent at point x in one

dimension becomes:

S(x, t) = Ix(−t)e−t (3.16)

For simplicity, the initial condition of S(x, t = 0) = δ(x, 0) is considered; that is, we

start with a single +1 opinion (or spin) in a background population of undecided voters. It

is important to note that the �rst agent is positioned at x = 0. The interested reader can

refer to [76] for full details of the inspiration of this solution. For the general d-dimensional

lattice, the rate equation becomes:

w(s(x)) =
1

2d

(
1 +

s(x)

z
Σy:n.n.xs(y)

)
, (3.17)

Utilizing such a transition rate along with adopting a d-dimensional Fourier transform

(one for each dimension), following the previous steps and assuming the same initial

conditions, the time evolution of the mean opinion of an agent at point x(x1, x2, ..., xd)

will be:

S(x, t) = Πd
i=1Ixi(−t)e−dt (3.18)

Analytical solutions have been plotted for nodes at sites x = 0, x = 1 and x = 2 on a

one-dimensional lattice in Fig. 3.8. The results demonstrate how the mean opinion changes

at the �rst 3 nodes in an in�nitely long 1−d lattice. The blue plot for site x = 0 starts from

1 because the initial condition is assumed to be S(x, t = 0) = δ(x, 0). It starts decreasing

immediately because of its interaction with node at x = 1. The node at x = 1 itself starts to
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Figure 3.8: Evolution of mean opinion in nodes at sites x = 0, x = 1 and x = 2

dip below 0 because, out of its two neighbors, the node at x = 0 is more likely to be +1 and

that interaction drives node at x = 1 opinion towards the −1 state. The e�ect is reversed

for node at x = 2 and the oscillatory pattern continues for increasing node indeces.

The RVM on a lattice, as discussed above, can closely replicate the dynamics of tra�c

�ow and lane change in a 2-lane highway. Before any interactions occur, the leading car (at

node x = 0) has no reason to occupy the faster lane, hence almost surely, his state is +1.

The rest of the cars (at nodes 2, 3, ... are equiprobably occupying either of the two available

lanes (states ±1). This gives rise to the initial condition, S(x, t = 0) = δ(x, 0). As soon

as the cars start to interact, the mean choice for car at node 0 starts to shift towards an

equilibrium value of 0, while that of node 2 dips below 0.

An interesting feature to note is that, the `wave' for node 2 is phase-lagged from the

wave for node 1, node 3 lags node 2 and so on. Also, the e�ect diminishes away from the

seed node at site x = 0. The reason to this lagging behavior could be found in the initial

condition and in the exponentially decaying behavior of the analytical solution.

To get a visual understanding of opinion evolution in lattices, a set of experiments were

conducted on a two-dimensional lattice. Results of the experiments are presented in Fig.

3.9. White squares represent +1 state, and the black ones represent the −1 state. The

system starts from the initial condition m0 = 0.8 which is the reason there are more white

squares than black ones in Fig. 3.9a. Through interactions the system is pushed towards its

equilibrium state of zero magnetization. Eventually, a checkerboard-pattern is observed for
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(a) Step 0 (b) Step 10,000 (c) Step Step 5,000,000

(d) Step 50,000,000 (e) Step 100,000,000 (f) Step 150,000,000

Figure 3.9: Opinion di�usion in a two-dimensional lattice

the converged system, as expected. Figure 3.10 show the progression of the magnetization

factor of the system at di�erent time steps.

3.7 Chapter Summary

In this chapter, a new interaction model has been introduced where each node repels rather

than attracts its neighbors. First, the model is formulated on a complete graph and solved

under the e�ect of in�uences at equilibrium. The equilibrium density pe(m) is derived as a

function of the population size N , total in�uence size I and the control input u = I+−I−
I

.

Then, the model is studied on a random graph with connection probability p. Analytical

solutions for such a network is also derived at equilibrium point. Finally, the behavior of
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Figure 3.10: Magnetization versus time on the two-dimensional lattice

the model on a regular lattice is investigated which is followed by the analytical solutions

for the system on a general d-dimensional lattice.

In the case of complete graph, even though the repulsive dynamics proved to be very

stable around the zero magnetization state, some interesting characteristics were observed.

The expected equilibrium magnetization is dependent on the population size as well as

the size of the positive and negative in�uences, but it is invariant when all three are

scaled identically. The distribution variance is a monotonically decreasing function of the

population size. The time to convergence scales proportionately with the population size

and is independent of in�uences. The validity of analytical results has been checked by

means of extensive numerical simulations. We found good agreement between the results

from numerical experiments and analytical results for network sizes exceeding N = 100.

For a random graph, it is shown that by modifying the time scaling, the same PDE may

be obtained. On this network, too, the equilibrium density is dependent on the network size,

number of in�uences, and the control input. However, the e�ect of connection probability is

traceable only in the scaled time. Extensive Monte Carlo simulations veri�ed that there exists

a critical value of the connection probability p above which the existence of a fully connected

graph facilitated the spread of opinion leading to a zero mean equilibrium magnetization.

Finally, it is concluded that the convergence time of the model on a random graph is

independent of both population size and connection probability only if the time is scaled

as τ = t/(N/p).
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Finally, analytical treatment of the Repulsive Voter model on a multi-dimensional lattice

provided some interesting insight into the time evolution of mean opinion at every site in

the lattice.

It is important to note that the nontrivial phenomenology we have witnessed in this

chapter may lead to decision aids in design and policy making. However this is only valid

under the strict assumptions of the Voter dynamics and simpli�ed graph topology considered

in this system. To address this issue and expand the applicability of the results, future

studies should adopt the solution for more complex decision space and more realistic di�usion

characteristics of opinions. Another important investigation area can be the application of

the RVM dynamics on di�erent network topologies, such as the con�guration model, the

small world topology and the scale free network.
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Chapter 4

E�ect of Zealots on the Opinion

Dynamics of Rational Agents with

Bounded Con�dence

4.1 Objective

In the previous two chapters, we were able to mathematically model opinion evolution on

di�erent networks based on di�erent interaction models (the Sznajd model and the Repulsive

Voter model). These models have a few limitations:

� They are de�ned over a two-state opinion space (up vs down spins, or +1 vs −1).

� If interaction conditions are met, change of opinion in the agent is certain.

� E�ects of environmental e�ects such as news and mass media cannot be included.

� Society level statistics are studied and individual level decision dynamics are ignored.

In this chapter, we try to develop a decision making algorithm which can include multiple

states (instead of two) in the opinion space. Also, in this algorithm, change of opinion after

interaction is not guaranteed. The algorithm can include e�ects of environmental stimuli.

Additionally, the algorithm can track individuals' desire to change their opinions.
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4.2 Introduction

To study the e�ect of social in�uence and interaction on emergent behavior, a statistical

physics approach deals with a single basic question of social dynamics: how do local

interactions between social agents create order out of an initial disordered situation? Much

theoretical e�orts have been devoted to clarify the implications on the macroscopic outcomes

among other aspects of di�erent interaction mechanisms (modelled by the Voter model [77],

Sznajd model [27], Bounded Con�dence model [78, 33, 79], as well as di�erent topologies of

the interaction networks (such as the complete graph, Erd®s Rényi random graphs [55], the

Watts-Strogatz small world network [80, 81], and the Barabási-Albert scale free topology

[82]).

In all the above-mentioned models, opinions are modelized as numbers, integer or

real. Each agent is initialized with a random number as their representative opinions.

As interactions proceed, the agents rearrange their opinion variables, through mutual

discussions. At some stage, the system reaches a con�guration which is stable under the

chosen dynamics; this �nal con�guration may represent consensus with all agents sharing the

same opinion, polarization with two main clusters of opinions (�parties�), or fragmentation

where several opinion clusters survive. In all such evolutionary models of societies, the

detailed behavior of each human, inherently the complex outcome of many internal processes,

is largely overlooked. This gross simpli�cation is justi�ed by assuming that only higher level

features such as symmetries, dimensionality, and topology of the interaction network are

relevant for the global behavior of the society rather than microscopic details of individual

motives, perceptions, and judgments.

In this chapter, we try to bridge this gap between microscopic and macroscopic studies

of emergent behavior using an Agent-Based Model (ABM) in presence of in�uences. We

incorporate individual judgment and decision mechanism parameterized as a Probabilistic

Finite State Automata (PFSA) while observing the e�ect of interactions between these PFSA

models and in�uences linked through a Barabási-Albert scale free network. The basic idea

behind this PFSA-based discrete choice model (DCM) is that each decision maker chooses

from a �nite set of alternatives to maximize the potential cumulative reward s/he can collect
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over several steps in the future, Fig. 4.1. The perceived reward for the di�erent choices

are negotiated by each individual through interaction with a subset of her/his neighbors

whose reward values do not di�er from hers/his by more than a chosen threshold (con�dence

bound).

To do so, we consider a society whose population are indecisive about supporting their

government or opposing it by joining the rebellion group. The population includes a few

in�uences who try to convince the population to join the rebellion group. We have created

a setup which enables individuals to interact with other agents in their network, take into

account di�erent actions of the government, and then decide which of the two groups they

should join or remain indecisive.

Section 2 discusses the PFSA-based discrete choice model used in this chapter. Section 3

explains elements of the social computation such as the interaction model and the network

topology. Section 4 presents the results obtained from simulations along with necessary

discussions. Finally, �ndings of this chapter are summarized and the chapter is concluded.
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Figure 4.1: Schematic of the interaction between PFSA based individual logic mechanisms
and the society. At each decision step, an individual chooses the most attractive state based
on a utility maximization principle. This choice in�uences the reward estimates of each of
his neighbors within his con�dence bounds, who in turn choose the most attractive state.
This cycle of interaction and reward update continues till equilibrium is reached.
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4.3 Individual Decision Making Algorithms (IDMAs)

Assumption 1. Finite set of discrete choices

At each instant, every individual in the network is faced with the same set of �nite discrete

choices � for example, to vote for political candidate `A' or `B' or not to vote at all [83]. In

Markov Decision Modeling [84] as well as in the current framework, the problem is posed

as �nding the optimal choice policy for maximizing the rewards gained as a result of one's

own choices. It may be noted that this marks a departure from the usual setting in which

the Krause and Hegselmann bounded con�dence model is studied. To a degree, our model

resembles the study of vector opinion dynamics such as those done by Axelrod [85] and

several studies by Jacobmeier [86] and Fortunato et al. [87]. In vector opinion dynamics,

the opinion has an integer number of components and the agents occupying the sites of a

network communicate within the KH framework.

Assumption 2. Rational perspective

Individuals are assumed to be rational. This means they order the states into which they

can reach, and they maximize something, reward function in the case of this chapter [83].

Subscription to the rational perspective does not suggest similar reactions from individuals

under the same in�uence. But, it creates a rational structure for individuals' behavior. Since

this behavioral logic will be encoded as a Probabilistic Finite State Automaton (PFSA) in

the next section, rational perspective permits pairs of states without authorized transitions

to exist.

Assumption 3. Probabilistic individual decisions

In the IDMA, decision making is not assumed to be a deterministic phenomenon, i.e. we

assume that even when provided with the same conditions and reward vectors, di�erent

individuals may choose di�erent decisions, and even the same individual can choose

di�erently on di�erent occasions [83]. The only constraint is that the choices should conform

with the rational perspective (Assumption 2).
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Assumption 4. Two kinds (external and internal (ε)) of events

External/global events simultaneously a�ect all individuals often resulting in uncontrollable

large scale transitions in the society as a whole. In contrast, internal/local events represent

the individuals' personal choices.

4.3.1 Normative Perspective Modelled as a Probabilistic Finite

State Automata (PFSA)

The assumption of rational perspective allows individual behavior to be encoded as a PFSA.

Even though the IDMA described in the last section is a generic mathematical structure

which can be used to model various scenarios of emergent opinions, in this work, we study

the speci�c case of a society in the cusp of a rebellion against the existing ruling power. In our

simpli�ed depiction of the situation, each individual faces the internal decision of supporting

the existing government, supporting the rebelling group, or remaining in a state of indecision.

Additionally, the individual can reach a state of political advantage, or disadvantage, but

the uncontrollable transition to these two states can only occur through an external event,

namely, the success or failure of the revolution. The �ve PFSA states and events are described

in table 4.1.

Figure 4.2 gives a schematic of the assumed rational perspective encoded as a PFSA. It

may be noticed that transitions such as g : G → R or g : I → R are unauthorized, since it

is assumed that a favorable act by the government should not make anyone decide to join

Table 4.1: List of PFSA States and Events

States Description Events Description

I State of being undecid-
ed/neutral

g A popular act by the
government

R State of supporting the Rev-
olutionary group

g̃ An unpopular govern-
ment act

G State of supporting the Gov-
ernment

ε An internal decision

A State of political advantage s Success of the revolution
D State of political disadvan-

tage
f Failure of the revolution
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Figure 4.2: Schematic of normative perspective encoded as a PFSA

the opposing group. Also, the same event can cause alternate transitions from the same

state; the actual transition will depend probabilistically on the measure of attractiveness of

the possible target states. In the simpli�ed model described, all events of the same type

are clubbed together as g (popular) or g̃ (unpopular acts by the government). However,

varying degrees of `popularity' and `unpopularity' of government acts can be encoded by

creating separate groups g1, g2, ..., gn and g̃1, g̃2, ..., g̃m with di�erent costs associated with

these transitions.

4.3.2 Rewards, Transition Costs and Probabilities

The probability of transitioning from one state to another depends on three things - whether

the target state is reachable from the current state, whether the current event acts as an

impetus for state change, and whether the target state is relatively more attractive compared

to the current state. The concept of positive real measure of a sequence of events is used to

calculate the relative degree of attractiveness of states [88]. This is brie�y explained next.

A �nite state machine consists of states, inputs and outputs. The number of states is

�xed; when an input is executed, the state is changed and an output is possibly produced.

The probabilistic automaton is a generalization of the �nite automaton structure and includes

two probabilities: the probability P of a particular state transition taking place, and with

the initial state q0 replaced by a stochastic vector giving the probability of the automaton

being in a given initial state.
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With suitable de�nitions of the states, inputs and transition matrices, the PFSA structure

is well-suited for quantifying the IDMA framework. Let the discrete choice behavior be

modelled as a PFSA as:

Gi ≡ (Q,Σ, δ, qi, Qm) (4.1)

where Q = {I, R,G,A,D} is the �nite set of choices with |Q| = 5 and the initial state

qi ∈ Q = I; i.e. the whole society is neutral in the initial stage. The distribution of

states may be represented as a coordinate vector of the form v̄i, de�ned as the 1×N vector

[vi1, v
i
2, ..., v

i
N ], given by:

vij =

 1 if i = j,

0 if i 6= j.
(4.2)

Σ = {ε, g, g̃, s, f} is the (�nite) alphabet of events (inputs to the PFSA) with |Σ| = 5; the

Kleene closure of Σ is denoted as Σ∗; the (possibly partial) function δ : Q× Σ×Q→ [0, 1]

represents probabilities of state transitions and δ∗ : Q×Σ∗×Q→ [0, 1] is an extension of δ;

and Qm ⊆ Q is the set of marked (i.e. accepted) states. It may be noted that the parameters

of the model introduced so far are a physical manifestation of the choices that each rational

actor faces in an election scenario (as explored in [88]) - the choice set Q is well de�ned by

the number of available options (parties to vote for, G and R in this case), and the initial

state choice (qi = I) allows the simulation to start from the same point every time. The

e�ect of initial clustering of similar choices in regional and local neighborhoods can be an

important factor. The transition probability δ signi�es a parameter that the actors learn or

estimate through their experience and understanding.

De�nition. The reward from each state χ : Q → [0,∞) is de�ned as a characteristic

function that assigns a positive real weight to each state qi, such that

χ(qj) ∈

 [0, ∞) if qj ∈ Qm,

{0} if qj /∈ Qm.
(4.3)

60



De�nition. The event cost, conditioned on a PFSA state at which the event is generated,

is de�ned as π̃ : Σ∗ ×Q→ [0, 1] such that ∀qj ∈ Q, ∀σk ∈ Σ,∀s ∈ Σ∗,

(1) π̃[σk, qj] ≡ π̃jk ∈ [0, 1);
∑

k π̃jk < 1;

(2) π̃[σ, qj] = 0 if δ(qj, σ, qk) = 0∀k; π̃[ε, qj] = 1;

The event cost matrix, (Π̃-matrix), is de�ned as: Π̃=


π̃11 π̃12 . . . π̃1m

π̃21 π̃22 . . . π̃2n

...
... . . . ...

π̃n1 π̃n2 . . . π̃nm


The characteristic vector χ̄ is a numerical depiction of an individual's perception of

expected bene�ts or �rewards� to be obtained by being in a particular state. For example,

if the states represent various job choices, the remuneration from these jobs can serve as

the characteristic vector. On the other hand, the event cost is an intrinsic property of the

nominal perspective. The event cost is conceptually similar to the state-based conditional

probability of Markov Chains, except
∑

k π̃jk = 1 is not allowed to be satis�ed. The condition∑
k π̃jk < 1 provides a su�cient condition for the existence of the real signed measure as

discussed in [89].

De�nition. The state transition function of the PFSA is de�ned as a function

π : Q× Q→ [0, 1) such that ∀qj, and qk ∈ Q,

(1) π(qj, qk) =
∑

σ∈Σ: δ(qj ,σ,qk)6=0

π̃(σ, qj) ≡ πjk

(2) and πjk = 0 if {σ ∈ Σ : δ(qj, σ) = qk} = ∅.

The state transition matrix, (Π-matrix ), is de�ned as: Π=


π11 π12 . . . π1n

π21 π22 . . . π2n

...
... . . . ...

πn1 πn2 . . . πnn


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4.3.3 Measure of Attractiveness of the States

A real measure νiθ for state i is de�ned as:

νiθ =
∞∑
τ=0

θ (1− θ)τ v̄iΠτ χ̄ (4.4)

where θ ∈ (0, 1] is a user-speci�ed parameter and v̄i is de�ned in Eqn. 4.2.

Remark. Physical Signi�cance of Real Measure

Assuming that the state probability vector is v̄i corresponding to the current state of the

Markov process (i), at an instant τ time steps in the future, the state probability vector is

given by v̄iΠτ . Consequently, the expected value of the characteristic function is given by

v̄iΠτ χ̄. The measure of state i described by Eqn. 4.4, is the weighted expected value of χ over

all time steps in the future for the Markov process that begins in state i. The weights for

each time step θ (1− θ)τ form a decreasing geometric series (sum equals to 1). The measure

in vector form yields

ν̄θ = θ (I− (1− θ) Π)−1 χ̄ and ν̄norm =
1∑
k νk

ν̄ (4.5)

Remark. The e�ect of θ

The rate at which the weights decrease with increasing values of τ is controlled by θ.

More importance is put on the states reachable in the near-future if parameter θ assumes

large values (close to 1) because of the fast decay in the weights. The states through time

are more uniformly weighted for small values of θ allowing the system to interact with a

large neighborhood of the connected states.

The probabilistic decisions are made based on ν̄norm. The discounted expected reward of

a state is proportional to the measure of that state. Higher measure of a state corresponds

to a higher discounted expected reward, hence the potential to make a transition to that

state is higher.
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4.4 Elements of Social Computations

The dynamics of the KH Bounded Con�dence model is very simple: one of the agents is

chosen at random; then, the agent adopts the average opinion of its compatible neighbors [90,

91]. Compatibility between two nodes is determined by the distance between the current

opinions held by the two nodes. The procedure is repeated by selecting another agent

randomly and so on. The type of �nal con�guration reached by the system depends on the

value of the con�dence bound d. For a complete graph, consensus is reached for d > dc,

where dc ' 0.2 or 0.5, depending on whether the average degree of the graph diverges or

stays �nite when the number of vertices goes to in�nity.

In this chapter, it is assumed that the interaction is entirely through the characteristic

function χ of the states [92]. This assumption is based on the insight that the anticipated

reward from a state is the most well-discussed and well-broadcast quantity in a social network

[93, 94]. The update rule for the reward vector of agent i due to interactions with its neighbors

is as follows:

χ̄it+1 = χ̄it + µ.(χ̄itneighbors − χ̄
i
t) (4.6)

where χ̄itneighbors is the mean reward vector of the �rst-order neighbors in the network of agent

i at time step t. Following the notion of bounded con�dence, only those neighbors whose

opinions are within χ(qj)±d,∀j contribute to the opinion update of agent i. Here, µ (or the

convergence parameter) is the weight which determines how much an agent is in�uenced by

the other one.

Since many networks in the real-world are conjectured to be scale free including the World

Wide Web, biological networks, and social networks, in this study, a BA extended model

network created by the Pajek software program is used. Table 4.2 presents the parameters of

the network. In addition, one of the experiments is repeated on a complete graph topology

for comparing the results related to di�erent networks.

4.4.1 Numerical Simulations

In this chapter, a population of 100 people are initialized and assigned a random number

drawn from a uniform distribution U(0, 1), representing the time remaining before that
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Table 4.2: List of parameters used for BA scale-free network

Number of vertices 100
Number of initial disconnected nodes 3

Number of added/rewired edges at a time 2
Probability to add new lines 0.3333
Probability to rewire edges 0.33335

person makes a decision. This imposes an ordering on the list of people in the network. As

soon as someone makes a decision, the time to her/his next decision, drawn from U(0, 1), is

assigned and the list is updated. Additionally, external events g and g̃ are also associated

with a random time drawn from U(a, b). Choosing a and b, the external events can be

interspersed more or less densely.

At t0, all 100 individuals are initialized at state I. Initial values of a mean reward vector

χ̄m and the true event probabilities are �xed. Individuals receive a noisy estimate of the

true probabilities and the rewards. At the time epoch tk when it is the ith person's turn to

make a decision, s/he updates his personal estimate of the reward vector according to the

in�uence equation (Eqn. 4.6). S/he then calculates the degree of attractiveness of the states

based on the normalized measure using Eqn. 4.5. The transition probabilities are calculated

as P (qtk+1
= q′|qtk = q, σ = σ′) = νnorm(q′)R(q, σ′, q′) where R(q, σ′, q′) = 1 if σ′ : q → q′

exists, otherwise 0. The only di�erence in the case of an external event such as g, g̃, s or f

is that everyone simultaneously updates their states rather than asynchronously, as in the

case of internal events. Alg. 1 describes how numerical simulations of this study have been

conducted.

4.4.2 E�ect of In�uencing Agents in Decision Making

In this chapter, the in�uences are treated as indistinguishable except for the fact that they

never update or change their χ̄ values; moreover, they do not make decisions, and stay in the

same state of mind during the entire simulation. Also, it is typical that the in�uences are

serving a certain agenda, in this case, trying to mobilize forces to join the rebellion. But, this

in�uence is exerted very passively, by advertising a higher value for χ(R) and lower values
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Algorithm 1: Interactions and decision making
Data: N,µ, d, θ, In�uence size, network

1 Initialization: Randomly order nodes and events;
2 while Not converged do
3 for Node i do
4 Update χ̄it+1 from Eqn. 4.6;
5 Update ν̄inorm from Eqn. 4.5;
6 Update state for Node i;
7 Insert Node i randomly in the ordered list;
8 end
9 if an external event occurs then
10 Update χ̄it+1 ∀i ∈ N ;
11 Update ν̄inorm ∀i ∈ N ;
12 Update state for all nodes;
13 end

14 end

for all other states as:

χI(qj) =

 χm(qj)−∆ if j = 1, 3, 4, 5,

χm(qj) + ∆ if j = 2.
(4.7)

in which χI(qj) represents the reward associated with state qj for in�uence nodes, and χ̄m

is an estimate of the reward values expressed by the whole society on an average. ∆ is a

parameter adjusting the strength of in�uences (control input). In a situation where in�uences

have to favor other states, the corresponding element in the mean reward vector needs to be

strengthened.

4.5 Results and Discussions

This chapter investigates the simultaneous interplay between two separate subsystems,

namely a logical decision making subsystem, modelled by a PFSA and the interaction and

in�uence subsystem, modelled by Bounded Con�dence. Parameters of each subsystem is

investigated separately. Moreover, each simulations is conducted in two phases. During the

�rst phase (decision epoch ≤ 5000) the dynamics of the opinion evolution is studied without
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introducing the e�ect of in�uences. In the second phase (decision epoch > 5000), a group of

10 in�uences is activated.

4.5.1 PFSA Parameters

External Events: in the �rst set of experiments, the ratio of occurrences of �good� and

�bad� external events, r = P (g) : P (g̃) is varied to observe the e�ect of long term government

policies on a population. Each simulation was run 30 times and the average of all the runs

are showed in Fig. 4.3.

E�ects of external events can be observed in the �rst phase (decision epoch≤ 5000) of

each sub�gure. When r = P (g) : P (g̃) = 1 : 1, the percentage of the population in states

R and G are equal, and a large part of the population remains undecided (Fig. 4.3a). In

the absence of any deadline for making a decision this result is only to be expected. As the

government starts to push more and more unpopular policies, opinions bifurcate and the
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Figure 4.3: E�ect of external events on the �nal state distribution of the society with
|I| = 10 and ∆ = 0.3
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rebellion group starts to become more popular. Distribution of the society between the 3

states varies monotonically with r.

Presence of in�uences in the second phase causes a dramatic change in system behavior.

In each of the in�uenced cases (Fig. 4.3), the percentage of the population in state R starts

to increase rapidly as soon as the in�uencing nodes are activated. Interestingly, the length

of the transition phase between the initial (unin�uenced) distribution and the �nal steady

state is independent of r (Table 4.3). The �nal steady state distribution, on the other hand

is a�ected both by r, and I. In Fig. 4.3e, the number of popular policies by the government

is high enough to overcome the e�ect of in�uences, and therefore, a smaller portion of people

are converted to join the rebellion state. It may be noted that the quick transition period

is a clear indication of the narrow window of opportunity available to intervene and prevent

the society from transitioning into instability.

Table 4.3: Convergence time related to di�erent ratios in Fig. 4.3

r 1 : 9 3 : 7 1 : 1 7 : 3 9 : 1

Convergence Time 6958 6940 6986 6856 6739

Comparison of IDMA with Standard Interaction Models: a focus on network

structure and large scale dynamics rather than individual behavior have successfully put

forward several elegant theories of emergent social behaviors such as evolution of opinions,

consensus formation, properties of elections, and formation of a common language.

In order to gauge the relative expressive power of such a simple interaction dynamics with

the IDMA framework developed in this study, we directly compare the results obtained by

implementing the more complex IDMA framework with that of a well-established but simple

model of social interaction, namely the Voter model where at each step, an arbitrarily chosen

node imitates the state of an arbitrarily chosen neighbor. We use the same parameters

to make the comparison reliable such as the same BA scale free network, and consider a

population of indecisive people alongside a few in�uences who promote joining the rebellion

group. In this setup, people can stay in the indecisiveness state, or they can join either the

rebellion group, or the group which supports the government. Again, in�uences enter the

simulations after the 5000th decision step, Fig. 4.4.
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Figure 4.4: e�ects of incorporating an IDMA

One of the shortcomings of the Voter model becomes apparent from the �rst phase of

the simulations; since the Voter model runs purely on imitation, starting from an initial

condition where all agents are in the state of indecisiveness, none of them is able to change

their state to another one. Conversely, when IDMA is included in the model, with the help

of the reward vector, e�ects of external events can be taken into account resulting in opinion

change of agents in this region.

Another drawback of the Voter model can be seen in the second phase of the simulations.

As soon as in�uences are activated, the number of people supporting the revolution increases;

and �nally converges to one of the stable equilibria where all nodes cluster in the R-state.

This phenomenon is rather unrealistic. However, in the model with IDMA, although this

increase is seen, this is limited by the heterogeneity in the probabilistic decision making

logic of individuals. Most importantly, this model can thus predict and converge to multiple

equilibria, rather than just the three unrealistic pure states where the Voter model converges.

Considering these factors, the bene�ts of incorporating rational decision making in opinion

change models become apparent though it comes with added layers of complexity.
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4.5.2 BC Model Parameters

Distance Parameter (d) and the Control Input ∆: the in�uences deliberately advertise

biased reward values in an attempt to pull the population slowly towards the state of their

choice (R, in this chapter). The amount of bias (∆) is vitally important since too high

of an o�set would cause the in�uences to drift outside the con�dence bound of the general

population, and consequently they will not be able to enter into dialogues with the undecided

nodes. On the other hand, a very low ∆ will not have a pronounced e�ect on the dynamics

of opinion evolution and will not be able to produce a substantial change on a global scale.

Since ∆ may be thought of as an opinion bias adopted by the in�uencing group in order

to �control� the �nal distribution of people over the di�erent states, we call ∆ the control

input. d is the distance parameter that determines the bound in the Bounded Con�dence

model. For simplicity, the e�ect of d and ∆ are presented here only with respect to the state

R,Fig. 4.5. The results for other states are qualitatively equivalent. Higher values of ∆ mean

stronger in�uences exist in the society whose reward vectors have been altered signi�cantly

(Eqn. 4.7). Hence, for low values of d, agents do not interact with in�uences causing no

change in the system behavior. However, for low values of ∆, although agents interact with

in�uences, the in�uences are not strong enough to seriously a�ect the system behavior.

As an example, for an intermediate con�dence bound (d = 0.3), agents can interact with

strong in�uences resulting in noticeable changes in the behavior. However, if the control

∆ is too high, in�uences lie out of the con�dence zone of agents. So, although present,
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Figure 4.5: Dependence of the dynamics of the R state on d and ∆ with |I| = 10
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in�uences cannot a�ect the society. For d = 0.5, agents are able to interact with even

stronger in�uences. Consequently, a higher percentage of the population is in state R. From

a social psychology perspective, it is very important to estimate the bound of con�dence for

individual groups in order to be e�ective in bringing about positive change. The optimal

approach when trying to impact an older population may not be similar to the control

parameter suitable for younger demographics.

Convergence Parameter: based on Eqn. 4.6, the convergence parameter determines the

in�uenceability of a node, i.e. to what extent a node adheres to his personal estimates of

anticipated rewards from a choice as opposed to converging to the mean estimate gathered

from his �rst-order neighbors. µ = 0 implies complete self-reliance while making decisions,

whereas µ = 1 implies complete malleability. It may be conjectured that, larger µs might

lead to fewer steps required for convergence for the population as a whole. This conjecture

is validated in Fig. 4.6.
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Figure 4.6: E�ect of µ on convergence time

Clustering Behavior: formation of clusters is a typical behavior observed in the Bounded

Con�dence (BC) model. The distance parameter d determines the number of clusters in the

equilibrium state of a system. Large values of d results in interactions among a large number

of nodes, and consequently very few clusters emerge [78]. This phenomena is visualized in

Fig. 4.7. As the distance parameter increases, the number of clusters decreases.
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(a) d = 0.1 (b) d = 0.3 (c) d = 0.5

Figure 4.7: Clustering behavior of the BC model for di�erent d's with |I| = 10

Addition of in�uences after 5000 decision epochs adds a layer of complexity to the

clustering process. The in�uences e�ectively attract and cluster nodes, but in societies with

low con�dence bounds (d = 0.1), the e�ect is very local. Most clusters retain their identities

and never enter into any interactions outside their own clique. This is demonstrated in Fig.

4.7a where the small e�ect of the in�uences is illustrated in the inset. Broadly speaking,

this implies that societies which are highly clustered due to low con�dence bounds are more

di�cult to in�uence, unless all the nodes are very homogeneous to begin with. An increase

in d allows more agents to interact (with each other as well as with in�uences), and therefore

a more populated cluster forms around in�uences (d = 0.3). Finally, when d = 0.5, the

in�uences are reachable to all agents resulting in only one cluster around in�uences.

Varying Control Input ∆(t): so far, the in�uences have always been treated as static

agents; i.e. the pro-revolution value of χI(q2) was �xed and unchanged during the course of

the simulation. The motivation behind studying varying control input (∆) is to investigate

whether a small group of in�uences can start from a popular stand-point, cluster the

population around themselves, a�ect them continuously without getting out of population's

con�dence bound, and guide them to a di�erent set of rewards (χ̄) which ultimately

get �ltered through the IDMA to support of a di�erent state. To do so, a new set of

experimentations have been conducted using the exact same model; however, the χ value of

in�uences increases linearly as a function of time steps with a rate of r.
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The results of these experiments are shown in Fig. 4.8. Results are presented based on the

distance parameter d and the rate r. The red graph represents the χ value of in�uences at

each time step. Fig. 4.8 depicts that for a speci�c distance parameter, there is a threshold for

r after which the in�uences get strong so fast that the society looses its reach to in�uences.

For example, in Fig. 4.8a, the increase rate is low resulting in a homogenous population

clustered around in�uences. However, as r increases, clusters appear both in and out of

the reach of in�uences, Fig. 4.8b. Finally, after the threshold, the whole society looses its

reach to the in�uences, Fig. 4.8c, rendering their presence in the society obsolete. The same

reasoning can be applied for Figs. 4.8d, e, f.

It can also be seen that the threshold for r depends on the distance parameter d. When

r = 0.0005, d = 0.3 produces a cluster who do not get a�ected by the in�uences, but d = 0.5

produces a homogenous population grouped around in�uences. Or, in the case of r = 0.001,

d = 0.3 results in a society which does not interact with in�uences, however, d = 0.5 results
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Figure 4.8: Clustering behavior of a society in the presence of in�uences with variable
control input
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in a society with clusters both in and out of the reach of in�uences. This phenomenon is in

line with the �ndings of the previous section.

The interesting �nding of these experiments is the fact that although for some rates the

in�uences get out of the reach of individuals very fast, in the time interval when they do

interact with individuals, the whole society is a�ected by their presence. For example, in

Fig. 4.8b, in the �rst few time steps, most of the society start lagging the in�uences, but

they cluster again at a higher level of reward values. This means that the society is more

inclined towards the rebellion state (although in�uences are out of reach) in comparison to

the period when in�uences were absent.

E�ect of Network Topology: �gure 4.9 provides a comparison of the time evolution of

the BC interactions deployed on a BA network and on a complete graph. Intuitively, the

complete graph promises to have a faster dynamics since the average degree of each node is

higher and in�uence should propagate faster. Conversely, results from numerical simulations

indicate the opposite; in�uence propagation through the BA network is faster (measured

by a smaller transition period between initial and �nal states). This can be qualitatively

explained by the fact that the relative in�uence on each node from the in�uences is much

lower when the nodes are connected through a complete network. The presence of many

links from other regular nodes dilute the e�ect of the in�uencing nodes leading to a slower
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Figure 4.9: E�ect of di�erent network types on the �nal state distribution with |I| = 10
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change and a lower percentage of the population in state R at equilibrium. The convergence

times for the two networks under discussion are reported in Table 4.4.

Table 4.4: Comparison of characteristics related to two di�erent Networks

Network Convergence Time Percentage of population in R
BA 6624 51.51

Complete Graph 8156 49.98

4.6 Chapter Summary

This chapter attempts to incorporate a micro-level decision making paradigm along with

a social interaction model (Bounded Con�dence) in presence of in�uences (zealots). Every

agent in the society is given a decision making ability (to choose from a �xed set of states).

The decision making is based on maximization of accumulated rewards gained as a result of

an individual's own choices in presence of di�erent events.

The e�ects of interactions and events on the �nal distribution of decision states are studied

with and without the presence of in�uences. Bounded con�dence model parameters (the

distance parameter and the convergence parameter) are used to study the �nal distribution of

states and the time the society needs to reach its equilibrium (convergence time). Moreover,

e�ects of network topology on the �nal distribution of states, convergence time, and dynamic

of the society is presented.

It is observed that without in�uences, the �nal distribution of states is purely a function of

the external events; more unpopular policies by the government result in higher percentages

of people joining the rebellion group. However, presence of in�uences causes a rapid change

in the behavior of the system in favor of the group they support (state R). A short transition

period is required for the system to reach equilibrium after the in�uences are activated.

It is shown that no change in the �nal distribution of states takes place unless in�uences

are in the con�dence bound of the population and at the same time, have large enough

o�sets. The clustering behavior of the BC model is visualized for di�erent values of the

distance parameter. It is concluded that the time interval needed for a system to reach

its equilibrium decreases as the convergence parameter increases. In addition, the e�ect of

74



varying in�enceability is studied. Results show that there is a limit for the in�uence rate

so that the society can keep up with the in�uences, and that limit depends on the distance

parameter.

Finally, simulations reveal that not only is in�uence propagation slower in the society

when agents have higher number of links (complete graph network), but also their e�ect in

the �nal distribution of state R is weaker too.
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Chapter 5

An Experimental Study on the

Controllability of Collective Human

Behaviors in Networked Societies

5.1 Objective

In the preceding chapters, the main focus of this thesis was theoretical development of

concepts related to opinion evolution and e�ect of in�uences in networked societies. To do

so, mathematical models were developed, analytical solutions were derived, and numerical

simulations were provided. However, both the literature and this thesis lack experimental

studies on the e�ect of in�uences on collective behavior of groups. This chapter provides

an experimental setup along with di�erent experimental scenarios to study the e�ect of

in�uences on collective human behaviors.

5.2 Background

E�ect of in�uences (control inputs) on the behavioral dynamics of a group of people has

been one of the focal points of social psychology studies for years - group psychology and

attitude change being studied through small-scale group experiments. From word-of-mouth

marketing studies and mathematical study of virality and meme propagation, it has been
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shown that using in�uences is an e�ective way to change the behavioral dynamics of groups

[64, 95, 96]. This chapter aims to expand on a series of experiments from 2006 performed

by Kearns et al. [97] to gain a better understanding of the e�ect of in�uences on a group in

collaboratively solving a puzzle.

Kearns et al. [97] studied the e�ect of di�erent network structures on the behavioral

dynamics of people by the use of the well-known �Graph Coloring Problem�. In this game,

every individual (player) is in charge of a node on the network, and the collective goal is for

every player to select a di�erent color for their node that is di�erent from the colors of all

of their network neighbors [98]. The number of available colors in the experiment is equal

to the Chromatic Number of the network which is the minimum number of colors necessary

to color the entire network without any con�icts. The graph is �solved� when there are no

con�icts in the graph (no two nodes with the same colors are attached to each other). In this

work, it is concluded that the higher the complexity of the network, the harder it is for the

participants to solve the graph. The metrics of this study are the frequency of �successful�

solutions, and the Average Solution Time (AST).

We have modi�ed the graph coloring problem description to make it suitable to

quantitatively study the e�ect of in�uences on this collective behavior. Additionally, the

graph coloring problem mimics the dynamics of the Repulsive Voter Model introduced in

chapter 3 when the chromatic number of the network is 2. We de�ne in�uences as individuals

who collectively select a unique solution to the particular network under consideration,

assume the colors representative of that solution and never change their color during the

experiment. These in�uences can be hidden or known. We have chosen only two types of

the networks, from the previous study [97], small world and scale free. These networks are

visualized in Fig. 5.1. The chromatic number of the small world network is 2, whereas the

chromatic number of the scale free network is 3.

5.3 Experimental Setup

This section explains all the details of the experimental setup. In [97], the e�ect of parameters

such as social status, level of friendship, people's feelings, etc. is eliminated by using an online
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(b) Scale Free Network

Figure 5.1: Networks used in the experiments

network. Each participant is assigned the control of a node in the network, and they can

interact only through the network. We have created our networked game on UnrealEngine4.

After everyone playing the game logs in, they are randomly connected to each other

based on a pre-designed network representing which nodes are socially connected. As the

participants click through their choices (colors), these choices are recorded for each user's

identi�er along with a time stamp corresponding to the time when each decision is made.

The full set of information passed to each user in the game's interface is (Fig. 5.2):

1. The progression of the game.

2. The opinion of his/her anonymous network neighbors.

3. The con�icts between the participant and his/her neighbors.

4. The remaining time.

In our experiments, participants are university undergraduate and graduate students. In

each experiment, depending on the scenario under study, there are approximately 30 students

from a selection of di�erent disciplines. Each experiment is programmed to stop when the

graph is solved or otherwise at 5 minutes, and each scenario is conducted 6 times. Students

have the option to not participate and are provided with an informed consent document.

Figure 5.2 represents the physical setup of the experiments.
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(a) User Interface (b) Physical Setup

Figure 5.2: Physical setup of the experiments and game's user interface

5.4 Experiment Scenarios and Results

In this section, di�erent experiment scenarios and their results will be presented. The order

of experiments and results does not necessarily follow the order of the actual experiments.

5.4.1 Scenario 1. Benchmark (BM)

In this scenario there are no in�uences present, and it is designed as a benchmark and a

basis for comparison. We witness a lot of similarity between the results of our experiments

and those of [97]; In our experiments, too, it is harder to solve the network with higher

complexity (scale free). In our experiments, the small world network is solved 5 times, and

the scale free networke is solved once. In [97], the small world network was solved 6 times,

and the scale free networked was solved 2 times. The slight di�erence in the results of our

experiments and those of [97] follow from the fact that the network sizes and consequently

their structures are not exactly the same in these two studies.

Futhermore, our analysis shows that in most of the unsuccessful experiments, 98% of the

graph is solved, and the only con�icting nodes are the nodes with high number of connections.

If one of the nodes changes its color to resolve only one con�ict, then up to 12 con�icts might

apprear within their neighborhood.
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5.4.2 Scenario 2. Three hidden in�uences on nodes with highest

degrees (3HIHD)

As mentioned earlier, in�uences are de�ned as as individuals who collectively select a unique

solution to the particular network under consideration, assume the colors representative of

that solution and never change their color during the experiment. A hidden in�uence is

de�ned as a node whose neighbors do not know that their color is �xed. In this scenario

we chose 3 of the nodes of each network with the highest number of connections to be the

in�uences. Figure 5.3 shows the placement of in�uences.
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(b) Scale Free Network

Figure 5.3: Location of three hidden in�uences

The results of the experiment show clear changes in the behavioral dynamics of

participants. The small world network is solved 6 times and with a shorter AST. Also,

the scale free networked is solved 5 times with a much shorter AST, Fig. 5.4. This drastic

change in the dynamics is in part because three nodes do not change colors during the

experiments, so there are 27 nodes left to color, and in part because the problematic nodes

from the benchmark experiments are already solved by the in�uences.
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Figure 5.4: E�ect of hidden in�uences (3HIHD) on the dynamic compared to the
benchmark (BM)

5.4.3 Scenario 3. Three known in�uences on nodes with highest

degrees (3KIHD)

In [97], researchers studied the e�ect of providing extra information to the participants on

the collective behavior of the group by giving them the global view of the experiment. In our

experiments, we provide extra information to the participants by informing them whether

they are attached to in�uences; the in�uences were in the shape of a triangle. We also

inform the participants that the in�uences do not change colors by writing �Fixed� inside

the triangles; we also instruct the participants to expect their neighbors to not change colors

when they see that their neighbor is a triangle with the word �Fixed� on them. Figure 5.5

illustrates the presentation of known in�uences to the participants (if connected) in the user

interface. We have chosen the same nodes from 3HIHD to be in�uences.

The results illustrate that in presence of known in�uences the success rate is 100%, and

the AST is even shorter than those of the hidden in�uences in both networks, Fig. 5.6. This

is because of the fact that most people are connected to in�uences; when an agent knows

one of it's neighbors will never change colors, the size of the decision space for them reduces

to 1 dimension in the small world network, and to 2 or 1 in the scale free network. This

makes it easier for the participents to make decisions and choose colors.
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Figure 5.5: User interface when the participant is connected to a known in�uence
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Figure 5.6: E�ect of Known in�uences (3KIHD) compared to the e�ect of hidden in�uences
(3HIHD) and the benchmark (BM)
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5.4.4 Scenario 4. One hidden in�uence on the node with the highest

degree (1HIHD)

The results from previous experiments indicate that having three in�uences does a�ect the

dynamics of the collective behavior. In this scenario, we want to investigate the e�ect of

number of in�uences on the dynamics. We use only one in�uence on the node with the

highest number of connections.

Results of the experiments depict that for the small world network, the success frequency

is 6/6 which is better than that of the benchmark, and the AST is also shorter than AST of

the benchmark. However, when comparing these results to the scenario with three hidden

in�uences, it is observed that AST increases, Fig. 5.7.

Conversely, in the scale-free network, acquired data reveals that one hidden in�uence is

not capable of changing the dynamics compared to the benchmark neither in the frequency

of success, nor in shortening the AST, Fig. 5.7. This phenomenon happens because the

chromatic number of the scale free network is 3, and adding only one in�uence does not

reduce the size of the solution space to 1. As a results, there is no di�erence between a

system with one in�uence and a system without in�uences. In this case, it would have been

better to have two in�uences to limit the size of the solution space to 1.
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Figure 5.7: E�ect of one hidden in�uence (1HIHD) compared to the E�ect of three hidden
in�uences (3HIHD) and the benchmark (BM)
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5.4.5 Scenario 5. One known in�uence on the node with the highest

degree (1KIHD)

In this scenario, we repeat the experiment from 1HIHD with a known in�uence. In the

scale free network, the performance gets slightly better than the hidden scenario both in

frequency of success, and AST. However, in the small world network, only �ve experiments

are successful, and the AST is longer. This �nding is in contrast with the previous �ndings

that known in�uences have better performance than the hidden types. We believe the

only unsuccessful experiment could be because of human errors during the game. If the

unsuccessful experiment is removed from the analyses, then the AST is much shorter than

that from 1HIHD, Fig. 5.8.
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Figure 5.8: E�ect of one known in�uence (1KIHD) compared to the E�ect of one hidden
in�uence (1HIHD) and the benchmark (BM)

5.4.6 Scenario 6. Three known in�uences on the nodes with the

lowest degrees (3KILD)

So far, to expose most of the nodes in both networks to in�uences, we have been choosing

the nodes with the highest degrees to be in�uences. In this scenario, we want to study the

e�ect of in�uence placement on the dynamics on the collective behavior. We choose three of

the nodes with the lowest connections to be the in�uences. We also argue that since six or
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seven nodes will be exposed to in�uences, it would be better to have only known in�uences.

Figure 5.9 shows the placement of in�uences for this scenario.
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Figure 5.9: Location of the three known in�uences on the nodes with the lowes degrees

Results of the experiments illustrate that even though placed on the nodes with the

lowest degrees, having in�uences in the network changes the dynamics in both networks in

comparison to the benchmark; the success frequencies are higher and the AST is shorter.

However, this type of in�uence placement is not as e�ective as placing in�uences on the

nodes with the highest degrees, Fig. 5.10.
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Figure 5.10: E�ect of placing 3 known in�uences on the nodes with the lowest degrees

85



28

1

3

2

4

5

6
7 8 9

10

11

12

13

14

15

16

17

18

19

20

2122
232425

26

27

29

30

(a) Small World

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2122

23

24

2526

2728 29

30

(b) Scale Free

Figure 5.11: Location of the in�uence on the node with lowest degree but connected to
nodes with high degrees

5.4.7 Scenario 7. One known in�uence on the node with the lowest

degree adjacent to high degree nodes (1KILD)

We already learned that location of the in�uences is very important in the dynamics of the

system. In this scenario, the purpose is to study whether choosing the node with the highest

degree is the best option to maximize in�uence. We will repeat the experiment 1KIHD with

a di�erent placement in both networks. In the scale free network, we have chosen a node

with two connections which is connected to nodes with high degrees. In the small world

network, again, we have chosen a node with two neighbors one of whom had the highest

number of connections and the other one did not, Fig. 5.11.

Results of the experiments depict that in the scale-free network this placement enhances

both frequency of success and AST compared to 1KIHD scenario. Conversely, a negative

e�ect on the collective behavior is observed in the small world network, Fig. 5.12. This proves

that having high number of connections does not necessarily result in the optimized in�uence

on the collective behavior; i.e. �rst degree exposure to in�uences is not the determining factor

in in�uence maximization.
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Figure 5.12: E�ect of placement of in�uences on low degree nodes adjacent to high degree
nodes

5.5 Chapter Summary

In this chapter, e�ects of in�uences on the collective behavior of a group of connected

individuals has been experimentally studied. To do so, we have extended on a series of

experiments by Kearns et al. [97] by adding the concept of in�uences. We have presented

the details of the experiment setup, and then we have explained how the experiments are

conducted. We have designed di�erent scenarios to investigate di�erent phenomena such

as e�ect of adding hidden in�uences, e�ect of adding known in�uences, e�ect of number of

in�uences, and e�ect of placement of in�uences.

We found out that having in�uences does enhance the performance of participants, and

between hidden and known in�uences, the known in�uences performed even better. We

also showed that placement of in�uences is of great importance to optimize the performance

control. Additionally, we proved that having high number of �rst degree neighbors for a

node does not necessarily make it a better candidate for in�uence placement for optimized

in�uence.
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Chapter 6

Conclusion

6.1 Research Overview

The overarching goal of this thesis is to further our understanding about opinion evolution

in networked societies. Such insights can be used in a variety of �elds such as economy,

marketing, transportation, egress, etc. Three main subjects build up this interdisciplinary

research: Sociology, Statistical Mechanics, and Network Sciences. In this thesis, �rstly,

techniques from statistical mechanics have been borrowed to mathematically model opinion

dynamics on di�erent network topologies based on di�erent interaction models (macro-level

or society-level analyses). Controllability of such dynamics have been investigated both

mathematically and with simulations. Secondly, to incorporate individual-level parameters in

opinion dynamics of a group of people, Individual Decision Making Algorithms (IDMA) have

been designed. Finally, extensive experimentation in presence of actual humans have been

performed to study the conrollability of collective human behaviors in a group of connected

individuals. The common theme among the above-mentioned goals is to understand

dynamics of opinion propagation in networked socities and whether such dynamics can be

controlled.
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6.1.1 Contributions

Objective 1 (addressing Gap 1 ). Mathematical modeling of opinion evolution (DE-

Models). In this section of the thesis, mathematical modeling of various combinations of

interaction models and network topologies will be performed in the framework of the Master

Equation (ME). ME is a stochastic differential equation describing how the population is

distributed over the opinion space and how such distribution changes with time. All the

analyses will be performed, which accounts for the presence of in�uences (control inputs) in

the society. Analytical solutions are expected to cast light on different aspects of the system

such as convergence time, equilibrium state opinion distribution, progression of the opinion

dynamics, controllability of the system, etc.

� Mathematically modelled the In�uenced Sznajd model on a Complete Graph and

assessed the controllability of the dynamics (Chapter 2)

� Introduced a new interaction model called �The Repulsive Voter Model�, modelled it

with/without in�uences on di�erent network topologies e.g. Complete Graph, Random

Graph, and a lattice; assessed the controllability of the derived dynamics (Chapter 3)

Objective 2 (addressing Gap 1 ). Numerical simulations of the systems from

Objective 1. This section will be devoted to extensive Monte Carlo simulations of the

indicated systems in Objective 1. These simulations will be used to validate the precision of

modeling procedures and accuracy of analytical solutions. Also, these simulations will serve

as a guide towards appropriate time scaling procedures of the systems. Effects of control

inputs on the �nal state of the society can be investigated with such simulations.

� Developed a Monte-Carlo simulation in presence of in�uences and studied the

controllability of the in�uenced Sznajd model, proved the existance of convergence

zones, proved the linear scalibility property of the system, and performed entropy

analyses (Chapter 2)

� Developed a Monte-Carlo simulation in presence of in�uences and studied the

controllability of the repulsive voter model, studied the equilibrium density and

expected magnetization of the system (Chapter 3)
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Objective 3 (addressing Gap 2 ). Decision making (AB-Models). This section of

the thesis will concentrate on the decision making processes of individuals (designed in the

framework of a Probabilistic Finite State Automata (PFSA)). The decision making algorithm

will be able to model the behavior of agents when they are exposed to external events, and

also when they interact with other people. This part of the study combines micro-level

and macro-level parameters of opinion evolution. Such combination can be instrumental in

understanding the mutual effects that the society and the individual have on each other; or,

how in�uences can alter an individual's decisions and cognitive states.

� Developed an Individual Decision Making Algorithm in the frame of the Probabilistic

Finite State Automata and incorporated the e�ect of interactions in it (Chapter ??)

� Developed a Monte-Carlo simulation in presence of in�uences and studied the

controllability of the groups collective decision making patterns (Chapter ??)

� Performed a thorough parametric study and provided the results and discussions

(Chapter ??)

Objective 4 (addressing Gap 3 ). Assessing controllability of collective human

behaviors in presence of actual humans. This part of the thesis will be devoted to

studying the controllability of collective behavior of people in an experimental setup in

presence of actual humans. Different in�uence scenarios will be developed with the purpose

of maximizing the in�uence of control inputs. Optimality, and time-effectiveness of these

algorithms are the important design parameters.

� Developed a multi-player game on UnrealEngine4 and tested it (Chapter 5)

� Designed di�erent experiment scenarios to investigate the e�ect of presence of

in�uences in a system, number of in�uences in the system, and the placement of

in�uences in the network (Chapter 5)

� Conducted the experiments in two di�erent sessions (Summer and Fall of 2018) and

acquired data (Chapter 5)
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� Performed extensive analyses on the collected data and provided results and compre-

hensive discussions (Chapter 5)

6.2 Future Directions

The research line of this thesis can be continued in di�erent directions. Expanding on the

mathematical modeling of di�erent interaction models is one of the avenues to take on.

In�uenced bounded con�dence is a clear example. Or, new models need to be developed

to capture the e�ect of agents' movements (Chapters 2 and 3). The individual decision

making aspect of this research could be followed by incorporating real world data into the

development of algorithms, or by further involving psychological concepts in the simulations

(Chapter 4). The experimental study presented in this thesis has the potential to be

used for numerous studies regarding collective behaviors. Behavioral anomaly detection,

behavioral classi�cation, study of gate keepers, autonomous vehicle platoon formation,

building evacuation, roadway crossings, etc. are a few of the avenues for which researchers

can further utilize this experimental setup (Chapter 5).
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Appendix A

A Parametric Study of Opinion

Progression in a Divided Society

In chapter 4, it was assumed that all the agents shared the same normative perspective, and

the agents did not have speci�c biases. However, in reality, people carry preconceptions and

biases. These preconceptions play a prominent role in their decision making. This chapter

is an e�ort to address this problem. In this chapter, we simulate a society which includes

three groups with di�erent pre-biases.

A.1 Introduction

While the extremity of the current (2017) political rhetoric may feel unprecedented,

confrontation has always focused on the singular goal of winning over the other side. As an

entire population becomes consumed by this mindset, we reenact partisan patterns of con�ict

that may comfort our fears, promote strong clustering between like-minded people, but

undermine cooperation across society and the chance of ever achieving unity and consensus.

Studies suggest that the operation of homophily, i.e. the tendency to follow like-minded

individuals and to shun those with opposing opinions, is strongly prevalent in social media

applications [99]. Furthermore, shared geo-locality and communal bonds are strengthened

via Twitter posts, permitting forms of �peripheral awareness and ambient community" [100].

To model these �ndings, several non-linear interaction models among individuals, have been
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studied which illustrate polarized decision, the self-organization of behavioral conventions,

and the transition from individual to mass behavior. In one such study by Shutters [101],

the cultural polarization phenomenon has been studied on di�erent network structures in

the presence of extremists in the framework of bounded con�dence. In this study, the change

of opinion after each interaction is guaranteed for non-extremists, rendering the imitation

and simulation of human decision making rather unrealistic.

This chapter is an attempt to construct a parametric study that can address at least

a portion of these ideas within a mathematically tractable agent-based modeling (ABM)

framework. The Probabilistic Finite State Automata (PFSA) based discrete choice model,

proposed and studied in [88] has been modi�ed with one key di�erence. The scenario under

discussion and its key di�erence are explained in the next section. Also, the PFSA framework

and its assumptions are brie�y explained. Next, we discuss how the Bounded Con�dence

interaction model is applied in the simualtions. Then the results of simulations for di�erent

scenarios are presented and discussed. In the end, all �ndings of this chapter are summarized

and concluded.

A.2 Simulation Setup

A.2.1 Probabilistic Finite state Automata

This framework has already been explained in chapter 4. However, because another problem

is addressed in this chapter, some changes have been made to the assumptions. In this

framework, it is assumed that every agent has the same �nite set of discrete choices (or states)

at each time instant. Also, we assume that agents subscribe to the normative perspective

of the group they belong to; social norms of groups can di�er from each other, but inside a

group the same social norm is shared with everybody.

Assumption. Di�erent normative perspective for di�erent groups

In this chapter, it is assumed that the society is divided in three groups: the Independent

group, the group with preexisting bias towards Revolution (R-Leaning), and the group biased
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towards the government (G-Leaning). The way each group perceives the actions of the

government is di�erent. Members of the Independent group perceive the popular actions as

good and the unpopular actions as bad. However, members of the R-Leaning group perceive

all actions of the government as bad. On the other hand, members of the G-Leaning group

perceive all actions of the government as good. This assumption results in having three

di�erent normative perspectives in the population, Fig. A.1.

Figure A.1a gives a schematic of the assumed normative perspective encoded as a PFSA

for the Independent group . It may be noticed that transitions such as g : G → R or

g : I → R are unauthorized since it is assumed that a favorable act by the government

should not make anyone decide to join the opposing group. Also, the same event can cause

alternate transitions from the same state; the actual transition will depend probabilistically

on the measure of attractiveness of the possible target states. In Fig. A.1b, all actions of

the government are clubbed together and recognized as good for the G-Leaning group. The

elimination of some transitions between states in Figs. A.1b, c is rooted in the biased views

that the G-Leaning and R-Leaning groups have. For example, the only way the transition

G → R can be authorized is when an unpopular action by the government, g̃, happens.

Since unpopular actions are perceived as good by the G-Leaning group, G → R can never

happen for this group and must be eliminated.

In the PFSA framework, the probability of transitioning to a di�erent state is dependent

on the reachability of that state from the current state, the current event (external or

internal), and also the relative degree of attractiveness of the target state. The state
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attractiveness measure is calculated using the concept of positive real measure attributed to

a string of events [102]. It depends on the reward from each state (χ), the state transition

matrix (Π), and the distribution of states (v̄i). A real measure νiθ for state i is de�ned as:

νiθ =
∞∑
τ=0

θ (1− θ)τ v̄iΠτ χ̄ (A.1)

where θ ∈ (0, 1] is a user-speci�ed parameter. Mathematical structure of the mentioned

parameters are available in chapter 4.

It should be noted at this point that the premise for these assumptions are the authors'

hypotheses and conjectures based on observations from the political sphere, but these are

as of now unsubstantiated by studies or data analytics. The basic observation is that in

response to the SAME political event two groups of people respond in diametrically opposite

manners (strongly in favor, or strongly against) - each group with the same passion and

conviction that they are correct. Thus, although within their own logical construct, the two

groups are not dissimilar, but the perturbation that drives the two groups manifest itself in

two completely di�erent ways; to the G-leaning group, each action by the government seems

perfect, while to the R-leaning group, the same actions are detestable.

The other interesting dynamic in these composite groups is the possibility of gradual

drift of opinion due to interaction and inter/intra-group communications. It seems that the

KH bounded con�dence model of interactions is appropriate since this model predicates that

two nodes only communicate if they are not too dissimilar. A BA-extended model network

created by the Pajek software program is used [103]. Table A.1 presents the parameters of

the network. In addition, one of the experiments is repeated on a complete graph topology

for comparing the results related to di�erent networks.

Table A.1: List of parameters used for BA scale-free network

Network Parameter Quantity
Number of vertices 100

Number of initial disconnected nodes 3
Number of added/rewired edges at a time 2

Probability to add new lines 0.3333
Probability to rewire edges 0.33335
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In�uence Model: the in�uences are treated as indistinguishable except for the fact that

they never update or change their χ̄ values; moreover, they do not make decisions, and stay

in the same state of mind during the entire simulation. Also, it is typical that the in�uences

are serving a certain agenda, in this case, trying to mobilize forces to join the Revolution.

But, this in�uence is exerted very passively, by advertising a higher value for χ(R) and lower

value for all other states.

χI(qj) =

 χm(qj)−∆ if j = 1, 3, 4, 5,

χm(qj) + ∆ if j = 2.
(A.2)

in which χI(qj) represents the reward associated with state qj for in�uence nodes, and χ̄m

is an estimate of the reward values expressed by the whole society on an average. ∆ is a

parameter adjusting the strength of in�uences (control input).

Simulation Process: a population of 100 people are divided in three groups with speci�c

ratios (Gi, Ri, Ii where Gi +Ri + Ii = 1). Each group is initialized and given the respective

normative perspective. All agents are assigned a random number drawn from a uniform

distribution U(0, 1), representing the time remaining before that person makes a decision.

This imposes an ordering on the list of people in the network. As soon as someone makes a

decision, the time to his next decision, drawn from U(0, 1), is assigned and the list is updated.

Additionally, external events g and g̃ are also associated with a random time drawn from

U(a, b).

At the time epoch tk, when it is the ith person's turn to make a decision, he updates his

personal estimate of the reward vector according to the Bounded Con�dence model. Then,

he calculates the degree of attractiveness of the states based on the normalized measure,

using Eqn. A.1. The only di�erence in the case of an external event such as g, g̃, s or f

is that everyone simultaneously updates their states rather than asynchronously, as in the

case of internal events. Each simulation is run 50 times and the average of all the runs is

analyzed.
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A.3 Simulation Scenarios and Results

A.3.1 E�ect of Global Events

This experiment studies the e�ect of the ratio of good to bad external events, or equivalently

r = P (g)
P (g̃)

, on the opinion dynamic of the population. First, we consider equal initial

distributions for G-Leaning and R-Leaning groups (Gi = Ri = 0.25). The �rst row of

Fig. A.2 provides the results of this type of initial distribution. In all three cases, as soon as

events happen, members of the Independent group change their opinions.

In Fig. A.2a, the same probability of good and bad external events causes the Independent

group to equally divide between the G-Leaning and R-Leaning groups. However, in Fig. A.2b,

because of the higher probability of bad events, people from the Independent group lean

towards the Revolution group. The exact same reasoning can be used for Fig. A.2c

where good actions by the government outnumber the bad ones causing people from the

Independent group to support the Government. It can be concluded that in the absence of
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(b) r = 3 : 7
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(c) r = 7 : 3
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(d) r = 1 : 1
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(e) r = 4 : 6
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(f) r = 3 : 7

Figure A.2: E�ect of external events on population opinion without in�uence group

110



in�uences, for equal initial distribution, r is the determining factor of the state distribution

of the population at equilibrium.

In a second set of experiments, we consider unequal initial distributions for G-Leaning

and R-Leaning groups (Gi = 0.45, Ri = 0.25). Similar to the previous experiment, when

equal number of good and bad events happen, the Independent group leans towards either

groups somewhat equally, Fig. A.2d.

In Fig. A.2e, when bad events slightly outnumber the good events, the Revolution state

starts to increase, but it is not the dominant opinion of the population as it was in Fig. A.2b.

The reason is that a high percentage of the population is initially in the G-Leaning group. As

a result, Independent members have a higher chance of interacting with G-Leaning members

in their network, and consequently, changing their opinions to G. Nonetheless, when bad

policies outnumber the good policies signi�cantly, the Revolution state rises to the top and

becomes the dominant opinion of the population, Fig. A.2f. The slight increase in the G state

in the beginning of the simulation is because of this phenomenon. In conclusion, in absence

of in�uences, for unequal initial distribution both initial distribution and r are important in

the steady state opinion distribution of the population.

A.3.2 E�ect of In�uences

This experiment investigates the e�ects of presence of in�uences and their quantity on

the steady state behavior of the population. In order to speci�cally observe the e�ect

of in�uences, they are activated at decision step 10000, and they are biased towards the

Revolution state. The in�uences randomly choose people to form links with where the

probability of forming a link is 0.25. Figure A.3 presents the results of this experiment for

Gi = Ri = 0.3.

In the �rst experiment, only one in�uence is available in the society, Figs. A.3a, b, c.

When r = 1 : 1, as discussed earlier, Independent members start joining the R or G state

equally, Fig. A.3a. However, as soon as the in�uence is activated, the percentage of people

in the R state starts rising drastically because of the interactions which happen among the

population. The interesting point is that there is a slight increase in the state of Indecision

too. The reason can be found in the normative perspective of the G-Leaning group, Fig. A.1b.
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(a) |I| = 1; r = 1 : 1
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(b) |I| = 1; r = 7 : 3
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(c) |I| = 1; r = 9 : 1
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(d) |I| = 5; r = 1 : 1
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(e) |I| = 5; r = 7 : 3
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(f) |I| = 5; r = 9 : 1

Figure A.3: E�ect of external events on population opinion in presence of in�uences

As a result of continuous interactions with in�uences, even a G-Leaning member might

change her/his opinion to R, and the only path s/he can change her/his opinion from the G

state is through state I. This causes a slight increase in the number of agents in the state

of Indecision.

As the number of popular acts by the government increases, in the �rst phase of the

simulation, the Independent members join the G state making it the dominant opinion of

the whole population, Fig. A.3b. However, the presence of the in�uence a�ects people's

opinions through interactions causing the R state to be the dominant opinion of the society

although there are more popular acts by the government. In this scenario, higher probability

of the good actions just makes the transition to the R state slower. The same reasoning is

applicable for Fig. A.3c with the only exception that presence of one in�uence is not able to

overcome the e�ect of signi�cantly higher probability of the popular acts, to destabilize the

society.
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In another set of experiments, higher number of in�uences were added to the population,

Figs. A.3d, e, f. It is observed that with more in�uences present, the transition is faster,

and almost all the populations joins the R state. Also, higher number of popular act by

the government cannot prevent the destabilization of the society. This raises the question

that "Can high number of In�uences guide the population towards destabilization under any

condition?"

To answer this question, we consider an extreme case where the initial distribution

is highly in favor of the G-Leaning group (Gi = 0.45, Ri = 0.1), and the probability of

popular actions by the government is signi�cantly higher. Figure A.4 represents the results

of simulation for such a case with varying number of in�uences. As number of in�uences

increases, the percentage of population in the R state increases. Moreover, this transition

is faster. However, the in�uences are not able to dominate the majority opinion. Both

the dominant initial G-Leaning distribution and the high number of popular acts by the

government cause this behavior. So, a large group of in�uences is not a guarantee for

guiding a population towards a predetermined state under all conditions.
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(a) |I| = 5
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(b) |I| = 10
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(c) |I| = 50

Figure A.4: E�ect of number of in�uences on a G-dominant society with r = 9 : 1

A.3.3 E�ect of Distance Parameter (d)

In�uences deliberately advertise biased reward values in an attempt to pull the population

slowly towards the state of their choice (R, in this study). Nonetheless, they would be

successful in doing so if they are reachable for agents in the society. The parameter which

controls reachability is the distance parameter d. In this section, we study the e�ect of
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the distance parameter on the steady state behavior of the population. Figure A.5 presents

the behavior of a society with two values of d. In Fig. A.5a, because of the low distance

parameter, most of the agents are not able to interact with in�uences. As a result the change

in the population behavior is not signi�cant. However, in Fig. A.5b, the distance parameter

is higher, more agents are a�ected by the in�uences as a result of interacting with them, and

the change in the behavior of the society is signi�cant.
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Figure A.5: E�ect of distance parameter, |I| = 5, r = 1 : 1

A.4 Chapter Summary

This chapter studies the temporal evolution of opinions of individuals in an ideologically

divided society by incorporation a PFSA framework along with the KH Bounded Con�dence

model. Three ideological groups called Independent, G-Leaning and R-Leaning, form a

population in which people are connected. Indistinguishable in�uences are also present

in some experiments. There are two motives for individuals to change their decisions:

popular/unpopular acts by the government, and interactions between people.

Results show that, in absence of in�uences, ratio is the determining parameter in the

equilibrium state of the population unless one of the groups includes a signi�cantly higher

number of members. The results also reveal that although very small in number, in�uences

are capable of creating drastic changes in the opinion dynamic of the society. Higher number
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of in�uences result in faster transitions and attracting more people to the target state. It is

shown that in the presence of a major group, there are situations where in�uences, although

very high in number, are not able to push the population's opinion towards the opinion of

the minor group. Finally, it is presented that with a low distance parameter, the societies

behavior is not greatly a�ected by the in�uences.
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Appendix B

Detecting Behavioral Anomaly in Social

Networks Using Symbolic Dynamic

Filtering

B.1 Introduction

Humans have always existed in social groups and hence have likely always been attuned to the

preferences and positions of others. At the same time, we have evolved sophisticated sensory

systems and brains capable of reaching independent conclusions about the world. Therefore,

in our e�orts to function e�ectively, we have likely had to balance our own experiences, ideas,

and beliefs with those of close and powerful others. This fulcrum between maintaining one's

idiosyncratically-derived views and acquiescing to consensus has been the focus of several

social in�uence researches in psychology.

As insightful as this largely individual- and laboratory-based approach has been, it was

not designed to explain social in�uence at a broader, mass-scale and has rarely been employed

to explain social in�uence at the societal level. At the same time, undeniable and radical

change in the availability of consensus information is likely to have a�ected that fulcrum

of in�uence between the self and others. The rapid dissemination of consensus information

via social media has placed such information literally at the �ngertips of billions. Although
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speculative, it has been proposed that the accessibility of such information has facilitated

social movements and rapid mass opinion change, including, perhaps, the recent Arab Spring

that spanned several nations and continents simultaneously, and the rapid rise of ISIS in Syria

and Northern Iraq.

Such events demonstrate a crucial need for better tools to understand the underlying

decision mechanisms that mobilize sudden transitions from indi�erence to passive crowd

support of fringe social movements to active political violence. These cultural, political

and social snowballing e�ects are called information cascades [104]. The impact of these

information cascades are felt in many aspects of the social experience, from emergence of

viral videos to large untraceable �uctuations in the stock market. From a process-control

perspective, social networks have changed the time scale of the cascading e�ect.

The concept of information cascades, based on observational learning theory was formally

introduced in a 1992 article by Bikhchandani S. et.al. [104]. Watts D.J. [105] has studied

the origin of rare cascades in terms of a sparse, random network of interacting agents using

generating functions. Statistical mechanics tools, such as the Ising model [106] as well as

non-equilibrium statistical models [107] has been used extensively to model the spread of

in�uence in a networked society. In�uence maximization, deals with �nding the optimal set

of people in a society to start an information cascade. Approximate solutions to this problem

have been studied by Kempe [108] using submodular functions. However, in all these models,

individual decision logic is largely overlooked.

In a previous work, using an Agent-Based model, the authors have shown [88] that a

handful of in�uences (extremists) can cause rapid destabilization. At the same time, the

e�ectiveness of this radical group can be enhanced by repeated imposition of unpopular

policies by the existing government. This has also been borne out by analytical modeling [8,

26] and real world studies implying that being able to estimate the quantity and mechanism

of in�uence in a society has become vital to our well being and security. In this chapter,

we try to estimate the size of the extremist population in a society by monitoring global

responses to relevant external impetus. We are using a stochastic signal processing tool

called Symbolic Dynamic Filtering (SDF) for generating and clustering behavioral patterns

in networks corresponding to di�erent levels of in�uence. Further, we use neural networks
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to classify and distinguish patterns that characterize two distinct behaviors; one in�uenced

by extremist nodes, and the other which is a cumulative response to continued government

unpopularity.

The organization and �ow of the research described in this chapter is best described by

the �gure shown in Fig. B.1, [109]. In Block 1, we generate data from an agent-based discrete

choice model which relies on a Markov Decision Process (MDP) framework for stochastic

simulation of decision-making in a social setting where choices and decisions by individuals

are in�uenced by social interactions. We show that such collective imitative behavior, based

on local interaction between nodes, (described in Block 2) leads to rapid unstable �uctuations

in the society, the �uctuation statistics being a weak function of the number of extremist

nodes (in�uences/bigots in our example) present in the network as well as the ratio of

popular vs. unpopular policies enacted by the government. The global response is then

passed through SDF (Block 3) which captures the essential characteristics of the data in

the form of statistical patterns. We investigate the e�ectiveness of SDF in estimating the

number of in�uences in the network using a time-trace of opinions in the society. Also, we

use a trained neural net to classify the patterns corresponding to the two types of responses

described above. A short description of each of these blocks are included next.

Figure B.1: Organization of the data �ow and enumeration of the a�erent blocks used in
this chapter
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B.2 Block 1: The MDP Framework

The assumption of normative perspective allows rational behavior to be encoded as an

MDP. The Markov Decision Process is conceived as an abstract mathematical construct

that consists of a �nite number of states (a set of cognitive states S relevant to the decision

problem). For example, in a society in the cusp of seeing a revolution, for an individual, the

set S may denote the discrete states of supporting either the government, the revolution, or

remaining neutral. The probabilistic automaton generalizes the concept of a Markov chain.

In this chapter, we have modelled the discrete choice behavior as a discrete-time MDP:

Gi = (S,A, T, χ, γ) where S = {s1, s2, ..., sn} is de�ned as before, A = {a1, a2, ..., am} is a

(�nite) set of actions, and the (possibly partial) function T : S × A × S → [0, 1] represents

probabilities of transitions from one state to another; also χ : A × S → χ is the reward or

payo� that a person expects to receive from each state. The payo� assigns a real weight

to each state si, chosen based on the individual state's impact and the event occurrence

probabilities. When serving as a simplistic Markov decision model for human cognition,

the probability of choosing a particular action from the current state according to a policy

π : S → A is dependent on:

- whether that action is available from the current state (for example, the action of

attending a political rally organized by the government is available to the individuals

who are already in a pro-government state),

- external trigger events (for example, news of atrocities by the government troops may

trigger an instantaneous change in some people), and

- the estimated payo� from choosing that action, the expected discounted payo� from

possible future actions, and the estimated external political, economic and strategic

event occurrence probabilities. Depending on the context, the payo� may be �nancial,

personal security, social approval, etc.

The value of a state V π(s, χ) is the weighted expected reward over all time-steps in the

future for the Markov process that begins in state s and adopts policy π. V π(s, χ) is de�ned
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as:

V π(s, χ) = χ(s) + γΣs′T (s, π(s), s′)V π(s′, χ). (B.1)

The parameter γ controls the rate at which the weights decrease with time. Large values

of γ force the weights to decay rapidly, thereby placing more importance to states reachable

in the near future from the current state. Thus, γ is the parameter which describes the

balance between long-term and short-term objectives.

In our example, each individual in th society is either in a state of supporting the existing

government, the revolutionary group, or in a state of neutrality. Additionally, the individual

can reach a state of political advantage or disadvantage, but the uncontrollable transition to

these two states can only occur through an external event, namely, the success or failure of

the revolution. The �ve MDP states and events are described in Table B.1.

Figure B.2 gives a schematic of the assumed normative perspective encoded as a triggered

MDP. It may be noticed that transitions such as g : G→ R or g : I → R are unauthorized,

since it is assumed that a favorable act by the government should not make anyone decide

to join the opposing group. Also, the same event can cause alternate transitions from the

same state; the actual transition will depend probabilistically on the value of the possible

target states.

B.3 Block 2: Interaction and Social Feedback Algorithms

One of the most interesting facets of a networked society is the strong interdependence

between rewards and popularity of choices. For example, the reward from joining the

Table B.1: List of MDP States and Events

States Description Events Description
I State of indecision g A popular act by the government
R State of supporting the revolution g̃ An unpopular government act
G State of supporting the government ε An internal decision
A State of political advantage s Success of the revolution
D State of political disadvantage f Failure of the revolution
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Figure B.2: Schematic of normative perspective coded as a PFSA

revolutionary group (χ(R)) may be small at the initial stages, but as more and more people

join, the estimate of χ(R) as well as the probability of success of the revolution P (s) increases.

Thus, in our modi�ed MDP, the reward χ(s) of a node is a function of the reward values for

adjoining nodes.

In this chapter, it is thus assumed that the in�uence is entirely through the reward χ(s)

of the states. This assumption is based on the physical insight that the anticipated reward

from a state is the most well-discussed and well-broadcast quantity in a social network. In

addition, in�uence of mass media can be accounted for by assuming that an unbiased reporter

reports the mass opinion in the form of a uni�ed reward for the di�erent choices averaged

over the entire population. The interaction dynamics may be mathematically expressed as:

χ̄i(t+ 1) = fiχ̄
i(t) + gi

1

|Ni|
∑
j∈Ni

R̄j(t) + hi
1

N

N∑
j=1

χ̄j(t) (B.2)

where N is the size of the network, Ni is the set of �rst order neighbors of node i, fi is

that fraction of the ith individual's opinion about potential value of the available states that

is based on his past beliefs, gi is the fraction derived from the opinion of his acquaintances

(network neighbors), and hi=1-fi-gi is the fraction formed due to the in�uence of mass media

such as newspapers, television, etc.
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B.4 Simulation Results and Symbolic Dynamic Filtering

For simulations, the scale free BA extended model network created with the Pajek [110]

software, Fig. B.3 has been used to model the connectivity structure since many of the real-

world networks are conjectured to be scale free, including the World Wide Web, biological

networks, and social networks [57]. The mechanism of preferential attachment and the

�tness model have been proposed as a mechanisms to explain conjectured power law degree

distributions in real networks. The parameters are listed in Table B.2.

Figure B.3: A 100 node network created with the Pajek software [110]

Before the start of the simulation, the list of nodes in the society is sorted randomly

indicating the order in which individuals will make decisions. As soon as someone makes

a decision, he is reinserted into the list at a new random location, and the list is updated.

Additionally, external events g and g̃ are also interspersed in the list. At t0, all individuals

are initialized at state I. Initial values of the true reward vector χ̄ and the true event

probabilities are �xed. Individuals receive a noisy estimate of the true probabilities and the

Table B.2: Parameters for the scale free extended BA network

Network Parameter Quantity
Number of vertices: (N) 100

Number of initial, disconnected nodes: (m0) 3

Number of edges to add/rewire at a time: (m ≤ m0) 2

Probability to add new lines: (p) 0.3333

Probability to rewire edges: (0 ≤ q ≤ 1− p) 0.33335
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rewards. At the time epoch tk, when it is the ith person's turn to make a decision, s/he

updates her/his personal estimate of the reward vector according to the in�uence equation

(Eqn. B.2). Then s/he calculates the degree of attractiveness of the states based on the

normalized value V π(S, χ) by solving the Bellman equation (Eqn. B.1). The transition

probabilities are calculated as P (stk+1
= s′|stk = s, σ = σ′) = Vnorm(s′)R(q, σ′, q′) where

R(s, σ′, s′) = 1 if σ′ : q → q′ exists, otherwise 0. The only di�erence in the case of an

external event such as g, g̃, s or f is that everyone simultaneously updates their states rather

than asynchronously as in the case of internal events.

B.5 Block 3: Pattern Extraction with Symbolic Dynamic

Filtering (SDF)

An independent observer can estimate the global opinion state of the society by calculating

the percentage of people in the individual states. In practice, this data (here generated using

the interacting MDP framework described above) can be obtained by conducting opinion

polls, monitoring social network contents, etc. This global observation is passed to the next

block where it is processed using a stochastic signal processing tool called symbolic dynamic

�ltering (SDF) [111] for extraction of characteristic pattern vectors. While the details are

reported in di�erent publications [111], the essential concepts of space partitioning[112],

symbol sequence generation [113], construction of a �nite-state machine [114] and pattern

recognition [115] are consolidated here and succinctly described for self-su�ciency and clarity.

B.5.1 Symbolic Dynamic Encoding

Let Ω ∈ Rn be the compact (i.e. closed and bounded) region within which the global opinion

trajectory is circumscribed. The region Ω is partitioned into a �nite number of (mutually

exclusive and exhaustive) cells so as to obtain a coordinate grid. Let the cell visited by the

trajectory at a time instant be denoted as a random variable taking a symbol value from

the alphabet Σ. A trajectory of the opinion dynamics is described by the time series data

as {x0, x1, · · · , xk, · · · } with xi ∈ Ω, which passes through or touches one of the cells of the
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partition. Each initial state x0 ∈ Ω generates a sequence of symbols de�ned by a mapping

from the opinion space into the symbol space as:

x0 → s0s1s2 · · · sk · · · (B.3)

where each si, i = 0, 1, · · · takes a symbol from the alphabet Σ. The mapping in Eq. (B.3)

is called Symbolic Dynamics as it attributes a legal (i.e. physically admissible) sequence of

symbols to the system dynamics starting from an initial state.

Figure B.1 pictorially elucidates the concepts of partitioning a �nite region of the phase

space and the mapping from the partitioned space into the symbol alphabet. This represents

a spatial and temporal discretization of the system dynamics de�ned by the trajectories.

Fig. B.1 also shows conversion of the symbol sequence into a �nite-state machine and

generation of the state probability vectors as explained in the following subsections.

The time series data set of selected observable outputs such as the global opinion data

or percentage of supporters can be used for partitioning and symbolic dynamic encoding.

B.5.2 Probabilistic Finite State Machine Construction

Using the discrete-time discrete-valued stochastic sequence created by partitioning, the state

machine is constructed on the principle of sliding block codes [113]. A window of length D

on the symbol sequence S = · · · , s−2, s−1, s0, s1, s2, · · · is shifted to the right by one symbol

such that it retains the last (D−1) symbols of the previous state and appends it with the new

symbol at the end. The states of the machine are represented by blocks sisi+1si+2...si+D−1 in

the symbol sequence. Each state belongs to an equivalence class of strings characterized by

a speci�c word of length D at the leading edge. Thus, with cardinality |Σ| of the alphabet

and depth D of a symbol string of a state, the total maximum number of states in the D-

Markov machine is given by |Σ|D. The state machine moves from one state to another upon

occurrence of a symbol. All symbol sequences that have the same last D symbols represent

the same state. The machine constructed in this fashion is called the D-Markov machine

[111] because of its Markov properties.
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De�nition. S = · · · , s−2, s−1, s0, s1, s2, · · · is called Dth order Markov process if the

probability of the next symbol depends only on the previous (at most) D symbols, i.e.:

P (si|si−1si−2 · · · si−D · · · ) = P (si|si−1si−2 · · · si−D)

The �nite state machine constructed above has D-Markov properties because the

probability of occurrence of symbol σi` on a particular state depends only on the con�guration

of that state, i.e. the previous D symbols. The states of the machine are marked with

the corresponding symbolic word permutation and the edges joining the states indicate the

occurrence of a symbol σi` . The occurrence of a symbol at a state may keep the machine in

the same state or move it to a new state.

De�nition. The probability of transitions from state qj to state qk belonging to the set Q

of states under a transition δ : Q× Σ→ Q is de�ned as [111]:

πjk = P (σ ∈ Σ | δ(qj, σ)→ qk) ;
∑
k

πjk = 1; (B.4)

Thus, for D-Markov machines, the irreducible stochastic matrix Π ≡ [πij] describes all

transition probabilities between states with at most |Σ|D+1 nonzero entries.

The time series data at the reference unin�uenced condition, set as a benchmark,

generates the state transition matrix Π which, in turn, is used to obtain the state probability

vector p whose elements are the stationary probabilities of the state vector where p is the left

eigenvector of Π corresponding to the (unique) unit eigenvalue. The state probability vector

q is obtained from time series data at a condition where one or more in�uencing agents are

present. The partitioning of time series data and the state machine structure should be the

same in both cases but the respective state transition matrices could be di�erent.

Pattern changes take place in the global opinion condition due to variations in the number

of in�uences. These variations are a result of passive or active propaganda, word of mouth

persuasion, etc. The probability distributions obtained by analyzing the opinion data for

di�erent in�uenced conditions serve as low-dimensional feature vectors which are unique to

that particular condition of the society.
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Behavioral pattern changes may take place in dynamical systems due to incorporation of

external in�uences such as fake reviewers, political party canvassers, etc. The pattern changes

are quanti�ed as deviations from the nominal pattern (i.e. the probability distribution at the

nominal condition). The resulting anomalies (i.e., deviations of the evolving patterns from

the nominal pattern) are characterized by a scalar-valued function called In�uence Measure

µ. The in�uence measures at respective in�uence conditions {f1, f2, . . . , fk, · · · } are obtained

as:

µk ≡ d
(
pk,p0

)
(B.5)

where the d(•, •) is an appropriately de�ned distance function.

B.6 Data Analysis - Part I

In our experiment, to assess the resolving capability of SDF, we have studied the e�ect of low

numbers of in�uences in the society. As a preliminary study, 1, 2, 3, 5 and 10 person groups

of external agents have been added to a total networked group of 100. This group randomly

forms links with people in the network; the probability of forming a link is 0.25. At a certain

time, this in�uence group is activated all at once with all external agents initialized to state

R. Themselves being in state R and broadcasting a high reward value for R, this group

indirectly starts convincing its �rst order neighbors to increase their personal estimate of

the payo� χ(R) from state R. Furthermore, in this particular setting, probability of success

of the revolution P (s) being linked to the percentage of the population in R, individuals

develop a higher estimate of P (s) as a result of being associated with these in�uence group

members. Even though the e�ect of adding in�uences is easily understandable in principle,

for a particular case, the time series data denoting the opinion dynamics is remarkably

noisy and characterized by rapid unstable �uctuations in the society. It is evident that the

�uctuation statistics is a function of the number of extremist nodes present in the network.

Time series data for both nominal and in�uenced conditions have been analyzed using

symbolic dynamic �ltering (SDF) method for generation of statistical patterns of evolving

trends. For symbol sequence generation, maximum entropy partitioning has been used. The
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symbol alphabet size for partitioning is chosen to be |Σ| = 6 and the depth D = 1 for

construction of the �nite state machine. Hence, the number of states in the �nite state

machine is n = |Σ|D = 6.

Figure B.4 shows the results of SDF -based analysis of the time series data sets. The

top row of Fig. B.4 shows the time trace of �uctuations in the percentage of government

followers for four di�erent in�uenced conditions of the society: a) unin�uenced i.e. size of

in�uence group |Inf | = 0, b) |Inf | = 1, c) |Inf | = 3, d) |Inf | = 5, and e) |Inf | = 10.

In order to generate statistically stationary data, the test data is generated for su�ciently

large number of decision epochs; su�ciency of data length is governed by a stopping rule

and has been discussed in [111]. The bottom row of Fig. B.4 shows the histograms of

probability distribution that are generated from the SDF analysis of corresponding opinion

data sets. The histograms represent the statistical patterns at the above four di�erent

in�uence conditions. As more and more in�uence nodes are active in the network, the

statistical patterns gradually evolve from the nominal pattern of uniform distribution as

seen in plots Fig. B.4a-e.

Figure B.5 shows the pro�le of in�uence measure with gradual increment in the

number of in�uences. In�uence measure is quantitatively expressed as a (scalar) distance

(e.g. the Euclidean norm) between the statistical patterns (i.e. probability distributions)

corresponding to an in�uenced condition and the nominal condition that are generated using
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Figure B.4: Evolution of statistical patterns with increasing in�uence group size
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Figure B.5: Measure of the amount of In�uence estimated by SDF

SDF of global opinion data. The distance function is chosen to be the Euclidean norm of the

di�erence between the two patterns (see Eqn. B.5). A non-zero value of anomaly measure

indicates deviation from the nominal condition and therefore provides a warning of anomalous

behavior trends. It is seen in Fig. B.5 that the anomaly measure pro�le grows as the size

of the in�uence group increases, but more interestingly, even small in�uence (|Inf | = 1 or

|Inf | = 2) can be observed in the presence of random �uctuations using this technique.

B.7 Data Analysis - Part II

In the last section, we presented results demonstrating the e�ectiveness of SDF in

distinguishing the e�ect of small in�uencing groups in large population opinion dynamics. In

this section, we report the use of the SDF generated patterns in distinguishing the e�ect of

in�uencing groups from the other source of perturbation in the global opinion - government

policies. In this series of numerical simulations, we modify the ratio of popular vs. unpopular

policies (g/g̃) imposed by the government and generate the global opinion dynamics data

for each case. The in�uence group size for all these cases are kept constant at |Inf | = 3.

The patterns generated for all 11 cases are used to train and test a two-layer feed-forward

neural network with sigmoid hidden and output neurons. Such networks can classify vectors

arbitrarily well given enough neurons in its hidden layer. The network was trained with

scaled conjugate gradient back- propagation [116]. Once trained, the performance of the
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neural net is evaluated on a total of 22 separate data sets, 2 sets for each class as de�ned in

Table B.3.

Table B.3: Membership indicators for the 11 classes

Classes 1 2 3 4 5 6 7 8 9 10 11

g/g̃ 1/9 3/7 5/5 7/3 9/1 5/5 5/5 5/5 5/5 5/5 5/5

|Inf | 3 3 3 3 3 0 1 2 3 5 10

Figure B.6 demonstrates the resolving capability of the SDF generated patterns in the

form of a confusion matrix. The algorithm shows an overall success rate of 81.8%, but

even when the data is misclassi�ed, the estimated class is not wrong by much, in fact

adjacent to the true class in both cases. Speci�cally, the 2 datasets belonging to Class

3 are misclassi�ed as Class 2 and Class 4, respectively. In other words, the government

policy ratio g/g̃ is estimated to be 3/7 and 7/3 instead of the correct value 5/5. The only

other misclassi�cation occurred when the number of in�uences is wrongly estimated as 3 in

one case and 10 in another, while the true value was |Inf | = 5.
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Figure B.6: Confusion matrix demonstrating the classi�cation e�ciency of the SDF
generated patterns processed by a two-layer feed-forward neural network
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B.8 Chapter Summary and Future Work

In this chapter, some of the critical and practical issues regarding the problem of monitoring

opinion trends in societies have been discussed, and a data-driven algorithm has been

investigated. The two primary features of this proposed concept are: (i) an MDP architecture

for simulating cognitive processes, (ii) local interaction by exchange of reward information

between nodes connected through an extended BA topology, and (iii) a stochastic signal

processing approach for generating patterns from global information.

The reported work is a step toward building a real-time data-driven tool for estimation of

parametric conditions in nonlinear dynamical systems. Spread of in�uence and �recruiting�

by extremist groups through social networks has become an important political issue in recent

years. This study is a step in the direction of building tools to preempt and intervene such

e�orts. Further theoretical, computational, and experimental work is necessary before the

SDF-based trend detection tool can be considered for incorporation into decision guidance

tools. For example, an important issue in trend detection is the unavailability of data in

a convenient form. Often, the current state is not always directly observable, rather a set

of observations about the behavior may be available which provides an estimate of what

state the system is in. For example, even though an individual may not publicly proclaim

allegiance to a party, Twitter updates from that person may contain clues to his political

inclinations. The observations are probabilistic, so the observation model also needs to be

speci�ed. These issues are currently under investigation using a Partially Observable MDP.
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