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Abstract

Coarse geometry is the study of the large scale properties of spaces. The interest in large

scale properties is mainly motivated by applications to geometric group theory and index

theory, as well as to important open problems such as the Novikov Conjecture. In this

thesis, we introduce and study coarse versions of the following classical topological notions:

connectedness, monotone-light factorizations, extension theorems, and quotients by properly

discontinuous group actions. We will draw on the analogy between large scale geometry and

topology as well as on the perspective of category theory using Roe’s coarse category. In

the first of four research chapters, we look at a large scale connectedness condition arising

from the coarse category and show that it coincides with the topological connectedness of

the Higson corona. In the second, we introduce coarse versions of monotone and light maps

(calling them coarsely monotone and coarsely light maps respectively) and show that these

maps constitute a factorization system on the coarse category. We also show that coarsely

light maps preserve some important large scale properties. In the third research chapter,

we unify the proof of three extension theorems: the classical Tietze Extension Theorem

from topology, Katetov’s extension theorem for uniform spaces, and an extension theorem

for slowly oscillating functions (an important class of functions in coarse geometry). The

unification is achieved via a general extension theorem for neighbourhood operators. In the

final research chapter, we study warped spaces associated to group actions on metric spaces,

focussing in particular on coarsely discontinuous actions which we introduce as large scale

analogues of properly discontinuous actions in topology. For such actions, we relate the

(maximal) Roe algebra of the warped space with the crossed product of the (maximal) Roe

algebra of the original space and the group, and prove a deck transformation result.
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Chapter 1

Introduction

1.1 When are two spaces the same?

The main object of study in this thesis will be that of a metric space. A metric space

consists of a set X and a “distance” function d from pairs of points in X to the real numbers

satisfying the following conditions

• d(x, y) ≥ 0 for all x, y ∈ X,

• d(x, y) = d(y, x) for all x, y ∈ X,

• d(x, y) = 0⇔ x = y,

• d(x, y) + d(y, z) ≤ d(x, z) for all x, y, z ∈ X.

Metric spaces appear in many places in mathematics. For example, Rn can be equipped

with a variety of different metrics – the most common probably being the Euclidean distance

function

d((x1, x2, . . .), (y1, y2, . . .)) =

√∑
i

(xi − yi)2.

which we will assume in this thesis unless stated otherwise. Here are some of the main classes

of metric spaces of interest in this thesis.

Example 1. Let G be a finitely generated group and S a finite generating set for G. We

will assume that S is symmetric (i.e. if x ∈ S then x−1 ∈ S). Define a metric d on the
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elements of G as follows: d(g, h) is the least number of elements of S required to write g−1h

as a product of elements of S (where we identify the identity element of G with an empty

product, so that d(x, x) = 0). This is called a word-length metric and it depends on the

choice of S.

Example 2. Let M be a smooth Riemannian manifold of dimension n. Roughly speaking,

this is a space which looks locally like Rn and for which a length has been assigned to every

tangent vector at every point in a smooth way. For a smooth curve γ : [0, 1]→ M , one can

define its length by

L(γ) =

1∫
0

||γ′(t)||dt.

We can then define the distance d(x, y) to be the infimum

inf{L(γ) | γ(0) = x, γ(1) = y}

and this defines a metric.

We should warn the reader already that we will often refer to a metric space simply by

a single letter X and use d as the distance function for all metric spaces in a particular

statement. Here is an obvious but important construction for putting metrics on spaces.

Example 3. Let (X, dX) be a metric space and A ⊆ X a subset of X. Then there is a

natural subspace metric on A, given by dA(x, y) = dX(x, y).

Metric spaces appear outside pure mathematics as well. For example, in many applied

sciences data is often represented as a point cloud in some high dimensional space, with a

natural metric inherited from that higher dimensional space, or one may want to consider

vectors of features with a metric capturing the similarity between them.

A key question when dealing with metric spaces is to ask when two metric spaces should

be considered “the same”. A very strong condition for being the same is being isometric.

Two metric spaces (X, dX) and (Y, dY ) are (globally) isometric if there is a bijection f from

X to Y such that for all x, x′ ∈ X,

dX(x, x′) = dY (f(x), f(x′)).
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Such a map f is called a (global) isometry. For example, the x-axis and the y-axis in R2

are isometric, where each is equipped with the subspace metric coming from R2, with the

isometry given by (x, 0) 7→ (0, x).

Being isometric is a very strong condition, and many fields of mathematics prefer to use

a weaker notion of similarity. In topology, a common condition is that of homeomorphism.

A map f : (X, dX) → (Y, dY ) between metric spaces is called continuous if for all x ∈ X

and ε > 0 there is a δ > 0 such that

dX(x, x′) < δ =⇒ dY (f(x), f(x′)) < ε

Two metric spaces (X, dX) and (Y, dY ) are homeomorphic if there is a bijection f : X → Y

which is continuous and which has continuous inverse f−1 : Y → X. Such a map f is called

a homeomorphism. It is easy to check that any isometry is a homeomorphism. On the

other hand, the map f(x) = tan(x) is a homeomorphism from (−π/2, π/2) to R which is

not an isometry. Indeed, (−π/2, π/2) and R cannot be isometric since any two points in the

former are at most π apart, while the latter has unbounded distances between points.

Homeomorphism is a good notion for studying “smooth” spaces like manifolds, but the

group example above (Example 1) illustrates that it is not useful for every space. Indeed, if G

is any infinite finitely generated group given the metric in Example 1, then it is homeomorphic

to the integers with their usual distance metric d(a, b) = |a−b|. Indeed, G must be countable

and we can pick a bijection between the elements of G and Z. One easily checks that this

bijection is automatically continuous and has continuous inverse (simply choose δ = 1/2 for

any ε). What is behind this fact is that both G and Z have the discrete topology under their

respective metrics.

The fact that the finite diameter space (−π/2, π/2) is homeomorphic to the infinite

diameter space R should convince us that homeomorphisms do not care that much about

the large scale structure of a space, i.e. the information contained in large distances. To

put it even more starkly, one may observe that given any metric space (X, dX), the metric

d′ defined by

d′(x, y) = min(d(x, y), 1)

3



makes the identity set map a homeomorphism from (X, dX) to (X, d′). Notice how d′ “ignores

large distances”. There is another notion of similarity of spaces which cares only about the

large scale structure of a space, and this notion turns out to be very useful when studying

spaces like groups with word metrics, whose topology is trivial. Here are two fundamental

definitions for this thesis, which together will help us formulate this notion.

Definition 1. Let (X, dX) and (Y, dY ) be metric spaces. A set map f : X → Y is called

bornologous (or uniformly expansive or large scale continuous) if for every R > 0

there is an S > 0 such that

dX(x, x′) ≤ R =⇒ dY (f(x), f(x′)) ≤ S.

Definition 2. Let (X, dX) and (Y, dY ) be metric spaces. Two set maps f, g : X → Y are

called close if there is an R > 0 such that for all x ∈ X.

dY (f(x), g(x)) ≤ R.

At large scale, we should think of close maps as being more or less the same. Our notion

of being the same at large scale is thus going to be based on a bornologous map which is

invertible up to closeness.

Definition 3. Let (X, dX) and (Y, dY ) be metric spaces. Then X and Y are coarsely

equivalent (or large scale equivalent) if there exist bornologous maps f : X → Y and

g : Y → X such that g ◦ f and f ◦ g are close to the identity maps on X and Y respectively.

For the sake of completeness, we prove a classical example of a coarse equivalence. The

idea is that Z is coarsely equivalent to R because as you “zoom out” they resemble one

another.

Proposition 1. Z is coarsely equivalent to R (with the usual metrics).

Proof. We begin by defining our maps. Let f : Z → R be the inclusion, and let g : R → Z

be the floor map, i.e. g(x) = max{r ∈ Z | r ≤ x}. We have

|f(x)− f(y)| = |x− y|

4



and

|g(x)− g(y)| ≤ |x− y|+ 2

which shows that f and g are bornologous. Finally, g ◦ f is the identity, and for x ∈ R

|f(g(x))− x| ≤ 1.

which shows that f ◦ g is close to the identity.

Note that if two spaces are isometric, then they are coarsely equivalent. Thus coarse

equivalence is a weaker condition than isometry which captures a very different similarity

between metric spaces. Coarse geometry, the area in which the results of this thesis naturally

lie, can be defined as the study of those properties of metric spaces which are invariant

under coarse equivalence. More informally, it is the study of the large scale properties of

spaces. Before proceeding on, we should briefly mention another very useful and well-known

characterisation of coarse equivalences.

Definition 4. Let f : X → Y be a map between metric spaces. The map f is called a

coarse embedding if for all S > 0, there is an R > 0 such that for all x, x′ ∈ X,

d(f(x), f(x′)) ≤ S =⇒ d(x, x′) ≤ R.

The map f is called coarsely surjective if there is some C > 0 such that for all y ∈ Y ,

d(f(x), y) ≤ C for some x ∈ X.

Proposition 2. Let f : X → Y be a bornologous map between metric spaces. Then f is a

coarse equivalence if and only if f is a coarsely surjective coarse embedding.

Proof. (⇒) Let g : Y → X be a bornologous map such that d(f(g(y)), y) ≤ C and

d(g(f(x)), x) ≤ C for all x ∈ X, y ∈ Y . The former inequality already shows that f is

coarsely surjective. Suppose now that d(f(x), f(x′)) ≤ S. There is an R > 0 depending only

on S so that d(g(f(x)), g(f(x′))) ≤ R because g is bornologous. Thus

d(x, x′) ≤ d(x, g(f(x))) + d(g(f(x)), g(f(x′)) + d(g(f(x′)), x′) ≤ 2C +R.

5



which shows that f is a coarse embedding.

(⇐) For every y ∈ Y , there is an x ∈ X such that d(f(x), y) ≤ C. For each y, choose

such an x and define g(y) = x. Clearly f ◦ g is close to the identity. We claim that g is

bornologous. If d(y, y′) ≤ R for y, y′ ∈ Y , then

d(f(g(y)), f(g(y′))) ≤ d(y, f(g(y))) + d(y, y′) + d(y′, f(g(y′))) ≤ R + 2C,

so since f is a coarse embedding, d(g(y), g(y′)) ≤ S for some S depending on R and C.

Finally, if x ∈ X, then since d(f(x), f(g(f(x)))) ≤ C, we have that d(x, g(f(x))) ≤ D for

some D depending on C since f is a coarse embedding.

Having looked at a number of different senses in which metric spaces can be the same, a

natural question is to ask what techniques exist for determining when two metric spaces are

the same in a given sense. For example, the circle S1 is not homeomorphic to the real line,

but how can we prove this? A common technique in topology and related areas is to use

invariants. The fundamental group π1 is a classical example of a topological invariant – that

is, if X and Y are homeomorphic, then π1(X) is isomorphic to π1(Y ) in a natural way. In

particular, it can be shown that π1(S1) is isomorphic to the group of integers, while π1(R)

is trivial, so that we can be sure that S1 is not homeomorphic to R.

As the above example illustrates, topological invariants can be readily used to tell when

two spaces are not homeomorphic. The reverse question: whether two spaces are the same

given isomorphic topological invariants, is usually very hard and often the subject of long-

standing open questions. For example, the Borel Conjecture posits that any two aspherical

topological manifolds are homeomorphic if their fundamental groups are isomorphic; it is

still open over half a century after it was stated though it has been shown in some cases

[27]. The Borel Conjecture is an example of a so-called rigidity conjecture – an assertion

that some weaker form of “sameness” implies a stronger form.

At the heart of coarse geometry is the study of coarse invariants - objects or properties

associated to spaces which are invariant under coarse equivalence. In the next section we

will briefly survey some of these invariants in order to give context for the research chapters

that follow while also giving some idea of applications of coarse geometry to other fields.
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1.2 A brief survey of some coarse invariants

1.2.1 The Roe algebra

In this thesis, the Roe algebra will feature only in the final research chapter, where its

maximal counterpart (introduced in [31]) will also make an appearance. Nonetheless, it is

an important object of study in applications of coarse geometry, and the fact that it is a

coarse invariant illustrates how coarse geometry is motivated by questions from manifold

topology.

The Roe algebra was introduced by John Roe in his work on index theory for non-

compact Riemannian manifolds. This work represents one of the main motivations for

the study of abstract coarse geometric concepts. Roughly speaking, one is interested in

studying smooth Riemannian manifolds via (elliptic) differential operators on them and

their associated indices. For the case of compact manifolds, these indices are computed by

the celebrated Atiyah-Singer Index Theorem, but to move beyond the compact case (as we

should expect if we are to reach large scale theory, since all compact manifolds have finite

diameter), one needs a more general notion of index based on something called the Roe

algebra. For details, we refer the reader to [56].

We will define the Roe algebra here for certain kinds of metric spaces – this is no great

restriction as many spaces of interest turn out to be coarsely equivalent to a space of this

kind. Firstly, our spaces will be discrete, so that they are topologically trivial. They will

also have bounded geometry. A discrete space X is said to have bounded geometry if for

every R > 0 there is an N > 0 such that for every x ∈ X, the ball BR(x) of radius R around

x has at most N points in it. Let H be a separable infinite dimensional Hilbert space, for

example `2(N), the set of all sequences (ai)i∈N of complex numbers such that
∑
|ai|2 < ∞.

We let `2(X,H) be the set of all functions f from X to H such that

∑
x∈X

||f(x)||2 <∞

7



If we have a linear transformation H from `2(X,H) to `2(X,H), we can define an X-by-X

matrix T whose entries are linear transformations from H to H as follows:

Tx,y(h) = H(ey,h)(x)

where ey,h is the function which sends y to h and every other point to 0. This gives a bijection

between the set of bounded operators on `2(X,H) and a subset of X-by-X matrices with

entries in B(H), the algebra of bounded operators from H to H. Recall that an operator S

is bounded if

sup{||S(v)|| | ||v|| = 1} <∞.

Denote by C[X] the algebra of all bounded operators T on `2(X,H) such that, when T is

written as a matrix (Tx,y)x,y∈X of operators,

• Tx,y is a compact operator for all x and y (that is, T is locally compact), and

• there exists an R > 0 such that for all x, y ∈ X with d(x, y) > R, Tx,y = 0.

The second condition is referred to as finite propagation, and it is where the large scale

structure of X is finally coming into play. Associated to bounded operators on a Hilbert space

one always has the operator norm sup{||S(v)|| | ||v|| = 1} < ∞ and the corresponding

metric d(S1, S2) = ||S1 − S2||. The Roe algebra C∗(X) of X is the closure of C[X] in

B(`2(X,H)) under this norm.

Proposition 3. The Roe algebra is a coarse invariant.

Proof. This proof will be based on the proof of Lemma 2 in [36]. Let X and Y be discrete

metric spaces of bounded geometry, and let f : X → Y be a coarse equivalence. We will

assume that f is surjective. For every y ∈ Y , the inverse image f−1(y) is a finite non-empty

set since it is bounded and X has bounded geometry. For every y, we can find an isometry

Vy from `2({y}, H) ∼= H to `2(f−1(y), H) ∼= ⊕x∈f−1(y)`
2({x}, H) ⊆ `2(X,H). This is because

H is isometric to any finite direct sum of copies of H. Putting these isometries together

gives an isometry V from `2(Y,H) to `2(X,H). We now define a map AdV from bounded

8



operators on `2(X,H) to bounded operators on `2(Y,H) via

AdV (T ) = V ∗TV.

It is straightforward to check that AdV is an isometric isomorphism with inverse AdV ∗ given

by T 7→ V TV ∗. If T ∈ C[X] with propagation R (i.e. Tx,y = 0 for d(x, y) > R), then

AdV (T ) has propagation given by

max{d(f(x), f(x′)) | d(x, x′) ≤ R}

which is bounded by some S depending only on R because f is bornologous. Similarly, AdV ∗

maps C[Y ] to C[X] because f is a coarse embedding. Thus C[X] and C[Y ] are isometrically

isomorphic, and so C∗(X) and C∗(Y ) are too.

The only remaining obstacle is to remove the assumption that f be surjective. Note that

f factorizes as two maps: the surjective map f ′ : X → Im(f) and the inclusion i : Im(f)→ Y .

Since f is coarsely surjective, there is a C > 0 such that for all y ∈ Y , d(f(x), y) ≤ C for

some x ∈ X. Define g : Y → Im(f) by choosing for each y such an x in such a way that

g ◦ i is the identity. One can check that g is a surjective coarse equivalence, and so we can

apply our earlier result to it. Finally, we conclude that C∗(X) ∼= C∗(Im(f)) ∼= C∗(Y ) as

required.

Note that the isometry V and hence the isometry AdV above is far from canonical.

However, it turns out that the induced map on K-theory is canonical (see [36]). This is

fortunate, since the K-theory of the Roe algebra is in fact the codomain of the “coarse index

map” [56] featuring in the applications to index theory mentioned earlier.

The K-theory of the Roe algebra is also one side of the coarse Baum-Connes Conjecture,

a conjecture which is false in general but has implications for the Novikov Conjecture via

the principle of descent when it holds [56]. In the next two sections we will encounter some

coarse properties which imply this Conjecture, and which are consequently the subject of a

great deal of interest.
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1.2.2 Dimension-type invariants

Many different notions of dimension have been introduced in topology – see [48] for one

treatment of this topic. In coarse geometry, the most important notion of dimension is the

concept of asymptotic dimension introduced by Gromov in his seminal monograph on the

large scale geometry of groups [32].

There are a number of equivalent definitions of asymptotic dimension, so we will choose

one which is most relevant for this thesis. Let U be a cover of a metric space X, that is, a

family of subsets of X whose union is all of X. We say that U has Lebesgue number at

least R if every subset of diameter less than R is contained in some element of U . We say

that U has point multiplicity at most M if every point in X is contained in at most M

elements of U .

Definition 5. Let X be a metric space. We say that X has asymptotic dimension less than

n, writing asdimX ≤ n, if for every R > 0, there is a cover U of X and a number S > 0

such that U has Lebesgue number at least R and point multiplicity at most n + 1 and the

diameter of any U ∈ U is at most S. The asymptotic dimension of X is then the least n

such that asdimX ≤ n.

Another way to state this above is as follows. Call a cover U uniformly bounded if

there is an S > 0 such that the diameter of any U ∈ U is at most S. Also, say that a cover

U is a refinement of a cover V if every element of U is contained in some element of V .

Then asdimX ≤ n if and only if every uniformly bounded cover refines a uniformly bounded

cover of point multiplicity n+ 1. The advantage of such a statement is that it can be easily

compared with an important topological notion of dimension called covering dimension –

indeed, recall that a metric space has Lebesgue covering dimension at most n if every

open cover is refined by an open cover of point multiplicity at most n+ 1.

Example 4. The space Zn has asymptotic dimension n, although this is not easy to prove

without relying on results from topological dimension theory (see Chapter 2 of [50]).

Often one is not interested in the asymptotic dimension of a space, but just whether

it is finite. For example, hyperbolic groups in the sense of Gromov has finite asymptotic
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dimension (see Theorem 9.25 in [57]). The interest in finite asymptotic dimension is readily

explained by the following famous result of Guoliang Yu.

Theorem 1 (Yu [73]). Let G be a finite generated group of finite homotopy type which (as

a metric space with the word metric) has finite asymptotic dimension. Then the Novikov

Conjecture holds for G.

Apart from the conceptual link between asymptotic dimension and covering dimension,

there is also a direct link due to Dranishnikov via the Higson corona: for proper metric

spaces, the asymptotic dimension coincides with the (topological) covering dimension of the

Higson corona whenever the former is finite [18]. The Higson corona is a kind of boundary

of a space which captures large scale information. It plays an important role in the Chapters

2, 3 and 4, so we will defer the definition and further discussion until then.

1.2.3 Amenability-type invariants

Amenability is a classical property of groups introduced by Von Neumann in the 1920s

motivated by the Banach-Tarski paradox. There are many equivalent definitions, but for us

the following will be the most natural.

Definition 6. A discrete finitely generated group G is amenable if for every finite subset

F ⊆ G and every ε < 0, there is a finite subset E ⊆ G such that for all f ∈ F ,

|fE∆E|
|E|

≤ ε

where A∆B = (A ∪B) \ (A ∩B) is the symmetric difference, and | · | denotes cardinality.

Amenability has long been known to be a coarse invariant of groups, i.e. if G is amenable

and H is coarsely equivalent to it, then H is also amenable (see Theorem 3.1.5 of [50]). In

[74], Yu introduced the following “non-equivariant” generalization of amenability for general

metric spaces.

Definition 7. A discrete metric space X has Property A if for any R > 0 and ε > 0,

there exist a family of finite subsets {Ax} of X × N indexed by points in X such that
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1. (x, 1) ∈ Ax for all x ∈ X,

2. |Ax∆Ay |
|Ax∩Ay | ≤ ε whenever d(x, y) ≤ R,

3. there exists S > 0 such that if (y,m) ∈ Ax, then d(x, y) ≤ S.

To see the comparison with amenability, one should think of the sets Ax as being the

translates of the finite set E, and of the R being related to the maximum word length of

elements of the finite set F . In particular, any discrete finitely generated amenable group has

Property A when considered as a metric space (see e.g. [50]). Other equivalent definitions

of Property A are often used in the literature, and we will have occasion in this thesis to use

them when convenient. The interest in Property A is again explained by its applications to

the Novikov Conjecture. In the same paper [74] where Yu introduced Property A, Yu also

proved the following two results.

Proposition 4 (Yu [74]). If a discrete metric space X has Property A, then there is a coarse

embedding from X to a Hilbert space.

Theorem 2 (Yu [74]). Let X be a discrete metric space of bounded geometry. If X admits a

coarse embedding into Hilbert space, then the coarse Baum-Connes Conjecture holds for X.

The coarse Baum-Connes Conjecture was already mentioned in this introduction in

connection with the Roe algebra. By the principle of descent, the coarse Baum-Connes

Conjecture implies the Novikov Conjecture for finitely generated groups of finite homotopy

type [56], which allowed Yu to prove the following corollary.

Theorem 3 (Yu [74]). Let G be a finite generated group of finite homotopy type which (as

a metric space with the word metric) coarsely embeds into Hilbert space. Then the Novikov

Conjecture holds for G.

Note that any discrete metric space of finite asymptotic dimension has Property A (see

Section 4.3 of [50] for a proof), so that this result is an improvement on Yu’s earlier result

in [73].

This result, along with other applications of coarse invariants, has given rise to an industry

of introducing and studying coarse properties which are weaker than finite asymptotic
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dimension but which imply coarse embeddability in Hilbert space. These concepts will

not feature very prominently in this thesis and so we will not recall their definitions here.

They include, for example, Asymptotic Property C [18] and finite decomposition complexity

and its variants [33].

1.3 Category theory

One of the main tools which will be used in this thesis is category theory. The use of category

theory is motivated by the discussion in Section 1.1 of this introduction since a category is

the most natural abstract framework in which one can talk about spaces being “the same”.

One of the main uses of category theory is to unify concepts and proofs from different areas

of mathematics – in this thesis these areas will usually be topology and coarse geometry.

Very little understanding of category theory will be necessary to understand the work

in this thesis, however for the sake of completeness we should collect some basic definitions

here just in case. A good reference for basic category theory is [43].

Definition 8. A category C consists of objects and arrows between objects (called morphisms)

together with

• the choice, for each object X, of an identity morphism 1X , and

• the choice, for any two morphisms f : A→ B, g : B → C, of a composite gf : A→ C,

such that

• for any morphism f : X → Y , f ◦ 1X = 1Y ◦ f = f , and

• composition of morphisms is associative.

For example, there is a category whose objects are all metric spaces and whose morphisms

are all bornologous maps, with the usual composition and identity maps. To prove that this

is a category is straightforward once one checks that the composition of two bornologous

maps is again a bornologous map. Within the framework of a category, one can define

certain kinds of morphisms.
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Definition 9. Let C be a category and let f : X → Y be a morphism. Then f is said to be

• a monomorphism if for any two morphisms g, h : W → X, fg = fh =⇒ g = h,

• an epimorphism if for any two morphisms g, h : Y → Z, gf = hf =⇒ g = h,

• an isomorphism if there is a morphism f−1 : Y → X such that ff−1 = 1Y and

f−1f = 1X .

For example, in the category whose objects are all sets and whose morphisms are all

functions between sets, monomorphisms are precisely the injections, epimorphisms precisely

the surjections and isomorphisms precisely the bijections. One often wants isomorphisms to

capture a certain notion of being the same. In the category of metric spaces and bornologous

maps mentioned earlier, the isomorphisms are the bijective coarse equivalences. If we want

to capture all coarse equivalences, then we need to change the category – see Chapter 2 of

this thesis.

We may also need the notion of a functor. A functor F from a category C to a category

D assigns to each object (resp. morphism) in C an object (resp. morphism) in D such

that identity morphisms are sent to identity morphisms and composition is respected, i.e.

F (gf) = F (g)F (f) whenever the composite gf makes sense. A basic exercise is to show that

functors send isomorphisms to isomorphisms – this explains their usefulness in constructing

invariants of one type or another. Important functors in coarse geometry are the Higson

corona functor and the functor which sends a space to the K-theory of its Roe algebra.

1.4 Abstract contexts for coarse geometry

During the development of topology, it became clear that it was important to work in a

context more general than that of metric spaces. What followed was the introduction of

the notion of topological space. The advantage of such a generalization is firstly to be able

to examine more general kinds of spaces (such as non-metrizable compactifications), but

also to allow for more intuitive statements and proofs of results by illuminating the abstract

ideas behind them rather than focussing on details such as the particular metric. In coarse
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geometry, it also makes sense to move beyond metric spaces into more general contexts.

This thesis will make use of two such contexts – Chapter 2 uses Roe’s notion of coarse space,

probably the earliest abstract context for coarse geometry, while the other three research

chapters make use of the notion of large scale space introduced by Dydak and Hoffland in

[21]. The definitions will be recalled when needed, but we also give them here.

Definition 10 (Roe [57]). A coarse space is a pair (X,X ) where X is a set and X is a

family of binary relations on X which contains the diagonal ∆ and which is closed under

taking subrelations, inverses, products (i.e. composition of relations) and finite unions.

Definition 11 (Dydak-Hoffland [21]). A large scale structure L on a set X is a nonempty

set of families B of subsets of X (which we call the uniformly bounded families in X)

satisfying the following conditions:

(1) B1 ∈ L implies B2 ∈ L if each element of B2 consisting of more than one point is

contained in some element of B1.

(2) B1,B2 ∈ L implies st(B1,B2) ∈ L.

Those readers familiar with the theory of uniform spaces (see e.g. [38]) will notice the

similarity between these definitions and the two main definitions of uniform space (in terms

of entourages and covers respectively). This analogy is useful to keep in mind, since coarse

geometry is often viewed as “dual” to the theory of uniform spaces.

1.5 Themes of the thesis and guide to the text

This aim of this thesis is to develop new theory and prove new results in coarse geometry

by drawing on the following two themes:

• looking for concepts and results which are analogous to existing ones in classical and

algebraic topology,

• using category theory to give new theory a natural and rigorous underpinning.
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These themes are expressed in the research chapters in the following ways:

In Chapter 2, a basic topological notion (connectedness) is transported to coarse geometry

using the language of category theory.

In Chapter 3, a coarse geometric version of a foundational result in classical topology (the

Tietze Extension Theorem) is proved using the abstract notion of neighbourhood operator.

In Chapter 4, a classical notion in topology (monotone-light factorizations) has been

transported to coarse geometry using dimension-theoretic ideas. The language of category

theory is then used to verify the naturalness of the new definitions and to compare them in

an abstract way to the topological versions.

In Chapter 5, we look at group actions in coarse geometry and study a coarse version of

properly discontinuous group actions (an important class of actions in algebraic topology).

Category theory mainly plays a role in this chapter in allowing us to view Roe’s warped

spaces as coarse quotients.

The chapters are each based on a published paper by the author (sometimes with a

coauthor). The chapters have been designed to be self-contained for readers familiar with

basic notions in topology and geometry. The result is that some definitions are repeated,

however we believe that this cost is worth it to ensure that the reader be able to pick up any

individual chapter and understand it, rather than have to carry definitions in their heads for

four chapters.
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Chapter 2

A coarse version of connectedness

This chapter is based on the accepted manuscript of the following paper: T. Weighill, On

spaces with connected Higson coronas, Topology and its Applications 209, 2016, 301–315.

One round of revisions took place after comments by the anonymous referee. The introduction

has been adapted, otherwise the manuscript has remained more or less unchanged.

2.1 Introduction

In this chapter we will examine a coarse version of the notion of connectedness in topology.

Connectedness and its variants such as local connectedness play a central role in general

topology – for example in the study of covering spaces. A topological space X is said to be

connected if there are disjoint non-empty open subsets A and B in X such that X = A∪B.

Note that by this definition, the empty space is presumed to be disconnected, while some

authors prefer to call it connected.

In fact, our goal in this chapter will be to show that two very natural notions of

connectedness for coarse geometry are one and the same. These two notions come from

two different important ways to study coarse properties, namely:

1. studying metric spaces as objects in the appropriate category, for example the coarse

category (defined in the next section), and
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2. associating to each metric space a topological space or algebra which captures coarse

properties of the space, for example the Higson corona [34] or the uniform Roe

algebra [54, 55] (see also [56, 57]).

In this chapter, we will exhibit a connection between a condition stated in the language of

the coarse category and a topological condition on the Higson corona. For a metric space

X, the Higson corona of X, denoted by νX, is a compact topological space which captures

coarse properties of X. It was introduced in [34], motivated by considerations in index

theory, and is defined for proper metric spaces as the complement of X in the so-called

Higson compactification of X. While the Higson compactification is only defined for proper

metric spaces (or for proper coarse spaces in the sense of [57]), the Higson corona can be

defined for arbitrary metric spaces (and arbitrary coarse spaces). We recall this definition

here, following [57].

Definition 2.1. Let X be a metric space. Given a bounded map f : X → C (not necessarily

continuous) to the complex numbers, f is said to be slowly oscillating if for every ε > 0 and

R > 0, there is a bounded set B such that

d(x, x′) ≤ R⇒ d(f(x), f(x′)) ≤ ε

for x, x′ ∈ X \B.

We say that a bounded map f : X → C tends to zero at infinity if for every ε > 0,

there is a bounded set B in X such that |f(x)| ≤ ε whenever x /∈ B. Let Bh(X) be the set

of bounded slowly oscillating functions from X to C, and let B0(X) be the set of bounded

functions from X to C which tend to zero at infinity. It is easy to check that Bh(X) is a

unital C∗-algebra with the sup-norm and pointwise operations, and that B0(X) is a closed

ideal of Bh(X).

Definition 2.2. The Higson corona of X, denoted by νX, is the spectrum of the C∗-algebra

Bh(X)/B0(X).

In other words, νX is the unique (up to homeomorphism) compact Hausdorff space whose

algebra C(νX) of continuous complex-valued functions is ∗-isomorphic to Bh(X)/B0(X)
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(for more on the theory of C∗-algebras, see for example [2]). For proper metric spaces this

definition coincides with the original definition in terms of the Higson compactification (see

Lemma 2.40 in [57]). The study of coarse properties of metric spaces can be viewed as the

study of properties which are invariant under coarse equivalence of metric spaces (defined in

the next section). It turns out that coarsely equivalent metric spaces have homeomorphic

Higson coronas [57], so that the Higson corona is indeed a coarse invariant of a space. A good

example of the relationship between coarse properties of a space and topological properties of

its Higson corona is Theorem 7.2 of [18], where it was shown that if the asymptotic dimension

of a proper metric space is finite, then the asymptotic dimension coincides with the covering

dimension of its Higson corona.

Topological connectedness of the Higson corona can be easily stated very easily in terms

of the algebra Bh(X)/B0(X). Note that any topological space X is disconnected if and

only if it admits a continuous non-constant map to the discrete space {0, 1} ⊂ C. As an

immediate consequence, we obtain the following result:

Lemma 2.3. Let X be a compact Hausdorff space and C(X) its C∗-algebra of continuous

complex-valued functions. Then X is disconnected if and only if C(X) contains a non-trivial

idempotent element. In particular, the Higson corona of a space X is connected if and only

if Bh(X)/B0(X) contains no non-trivial idempotent elements.

The main result of this chapter will be to show that connectedness of the Higson corona

can be characterised by a categorical condition (condition (C) in Section 2.4) which is a

natural generalization of the notion of connectedness in topological spaces, stated in the

language of the coarse category. This result motivates the study of categorical conditions in

the coarse category. Note that, in general, any condition stated in categorical language in the

coarse category is automatically invariant under coarse equivalence (since coarse equivalences

are isomorphisms in this category). We will also give one further connection between a

categorical notion and a well-known coarse condition in this chapter, namely, we give a

categorical characterisation of the notion of ω-excisive decomposition introduced in [36]. It

would be interesting in the future to investigate what other categorical conditions stated
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in terms of the coarse category turn out to correspond to well-known or interesting coarse

properties of spaces.

We should note that since the Higson corona can be defined for arbitrary metric spaces

via the algebra Bh(X)/B0(X) (see Definition 2.2 above), metric spaces will not be assumed

to be proper in this chapter, unless otherwise stated.

2.2 Preliminaries

Throughout this chapter, we will often deal with the disjoint union X+Y of two sets X and

Y . For convenience, we will not distinguish between (relations on) the set X and (relations

on) the image of X under the inclusion ιX : X → X+Y . For a subset A of a metric space X

and R > 0, we denote the set {x ∈ X | d(x,A) < R} by B(A,R). Throughout the chapter

we will make use of elementary category theoretic notions, most importantly the notion of

coproduct and pushout, although we give explicit descriptions of the universal property in

question whenever possible. For an introduction to category theory, we direct the reader

to [43].

Let X and Y be metric spaces, and let f : X → Y be a map. We call the map f

ρ-bornologous, where ρ is a function ρ : [0,∞)→ [0,∞), if for any points x, x′ in X,

dX(x, x′) ≤ R⇒ dY (f(x), f(x′)) ≤ ρ(R).

The map f is called bornologous if it is ρ-bornologous for some ρ. In other words, f is

bornologous if and only if for every R > 0 there is an S > 0 such that dX(x, x′) ≤ R ⇒

dY (f(x), f(x′)) ≤ S. It is easy to check that the composite of two bornologous maps is again

bornologous. Consequently, metric spaces together with bornologous maps form a category,

which we denote throughout by MetBorn. A map f between metric spaces is called proper

if the inverse image of any bounded set under f is bounded. A map is called coarse if it is

both bornologous and proper. Proper maps are closed under composition, so coarse maps

form a subcategory of MetBorn.
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Two maps f and g from a metric space X to a metric space Y are close if there is a R > 0

such that dY (f(x), g(x)) ≤ R for all x ∈ X. A map f from X to Y is a coarse equivalence

if there exists a bornologous map f ∗ : Y → X such that ff ∗ and f ∗f are close to the

respective identities. Note that coarse equivalences are always proper. Coarse equivalences

are also coarsely surjective: if u : X → Y is a coarse equivalence, then there is an R > 0

such that Y ⊆ B(Im(u), R).

In MetBorn the isomorphisms are precisely the bijective coarse equivalences. This is

inconvenient in practice, since one would like any coarse equivalence to be an isomorphism.

Thus it is often convenient to consider the category whose objects are metric spaces and

whose morphisms are equivalence classes of coarse maps under the closeness relation (note

that in in this category, coarse equivalences represent isomorphisms). In this chapter, we will

call this category the coarse category of metric spaces, by analogy with the coarse category

as defined in [56] (where objects are abstract coarse spaces). Note that composition is well-

defined in this category, since if f is close to g and h is close to k, where f ,g, h and k are

bornologous maps, then hf is close to kg whenever these composites are defined.

2.3 Coarse coproducts

In this section we introduce coarse coproducts of metric spaces and prove some basic results

about them.

Definition 2.4. Let X and Y be two metric spaces, and let x0 ∈ X and y0 ∈ Y be two

arbitrary points (which we will call the base points for the coproduct). Then the coarse

coproduct of (X, dX) and (Y, dY ) is the space (X + Y, dX+Y ) whose underlying set is the

disjoint union of X and Y and where the distance dX+Y is defined as follows:

dX+Y (a, b) =


dX(a, b) a, b ∈ X

dY (a, b) a, b ∈ Y

dX(a, x0) + 1 + dY (y0, b) a ∈ X, b ∈ Y.
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Proposition 2.5. Let X and Y be metric spaces with coarse coproduct X + Y and let

ιX : X → X + Y and ιY : Y → X + Y be the evident isometric embeddings. Then

(1) X + Y (together with ιX and ιY ) is the coproduct in MetBorn of X and Y , i.e. if

there are bornologous maps f : X → Z and g : Y → Z, then there exists a unique

bornologous map h : X + Y → Z such that hιX = f and hιY = g;

(2) in the notation of (1) above, both f and g are proper if and only if h is proper;

(3) in the notation of (1) above, if h′ : X + Y → Z is a map such that h′ιX is close to f

and h′ιY is close to g, then h′ is close to h.

Proof. For (1), define h to coincide with f on X and g on Y . It remains to show

that h is bornologous, since then h is clearly unique with the desired property. Let

r = dZ(f(x0), g(y0)), where x0 ∈ X and y0 ∈ Y are the chosen base points, and suppose f

and g are ρ- and σ-bornologous respectively. Since h is clearly bornologous on X and Y , it

remains to consider points a ∈ X and b ∈ Y with d(a, b) ≤ R. We have

d(h(a), h(b)) = d(f(a), g(b)) ≤ d(f(a), f(x0)) + r + d(g(y0), g(b))

Since d(a, x0) ≤ d(a, b) ≤ R and d(y0, b) ≤ d(a, b) ≤ R in X + Y , we have

d(h(a), h(b)) ≤ ρ(R) + r + σ(R)

which gives the required result. For (2), note that a subset of X + Y is bounded if and only

if its restrictions to both X and Y are bounded. (3) is easy to check.

It follows from the proposition above that the coarse coproduct of X and Y is defined

up to bijective coarse equivalence – that is, if different base points x1 ∈ X and y1 ∈ Y are

chosen for the construction, then the resulting coarse coproduct is coarsely equivalent to the

one with base points x0, y0 via the identity set map.

The proposition above also shows that not only is X + Y the coproduct in MetBorn,

but it also gives the coproduct in the subcategory of coarse maps, as well as in the coarse

category of metric spaces. As usual, the existence of binary coproducts gives the existence
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of finite coproducts in all these categories. It is easy to show that arbitrary coproducts (for

example, an uncountable coproduct of singleton spaces) do not exist in MetBorn. Countable

coproducts do exist in MetBorn, however, as the following proposition shows.

Proposition 2.6. Let X1, X2, . . . be a countable family of metric spaces and x1 ∈ X1, x2 ∈

X2, . . . chosen base points in each space. Let
∑

iXi be the metric space whose underlying set

is the disjoint union of X1, X2, . . . and whose distance d is defined as follows:

d(a, b) =


0 a = b

dXi(a, b) + i a, b ∈ Xi, a 6= b

dXi(a, xi) + i+ j + dXj(b, xj) a ∈ Xi, b ∈ Xj, i 6= j

Then
∑

iXi, together with the obvious injections (ιi)i≥1, is the coproduct of the Xi in

MetBorn.

Proof. Suppose Z is a metric space and fi : Xi → Z a family of bornologous maps. Let

f :
∑

iXi → Z be the induced set map. Then for any R > 0, there is a k ∈ N such

that d(a, b) ≤ R ⇒ a = b whenever a ∈ Xi and b ∈ Xj with max(i, j) ≥ k. For f to be

bornologous it is thus enough for it to be bornologous on subspaces of the form

⋃
i≤k

Xi ⊆
∑
i

Xi

which is easy to show using similar arguments to Proposition 2.5.

Note that it is not true in general that, in the notation of the proof, the map f :
∑

iXi →

Z is proper whenever the fi are. Moreover, if f ′ιi is close to fi for every i for some bornologous

map f ′, then f ′ need not be close to f .

If one changes the definition of the metric d defined in Proposition 2.6 to

d(a, b) =

dXi(a, b) a, b ∈ Xi

dXi(a, xi) + i+ j + dXj(b, xj) a ∈ Xi, b ∈ Xj, i 6= j
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then one obtains a space �iXi with the following universal property: for any family fi :

Xi → Z of ρ-bornologous maps, there is a unique bornologous map f : �iXi → Z such that

fιi = fi for each i. Note that in this case the fi must share the same function ρ.

This construction is well known in the case when X = G is a finitely generated group

with the word length metric and Xi = G/Gi is a sequence of finite quotients of G such that

every finite index normal subgroup of G contains some Gi. The space �iXi is then (up

to bijective coarse equivalence) the box space of G introduced in [57]. An important result

about box spaces is as follows: a residually finite group G (i.e. one which admits such a

sequence Gi) is amenable if and only if the box space satisfies Yu’s Property A (see [50]).

2.4 Connectedness of the Higson corona

Given any category with coproducts, there are a number of conditions on an object X which

in the category of topological spaces and continuous maps all reduce to the usual notion of

topological connectedness. Some of these conditions are listed and compared in [39]. In this

chapter, we will use the following condition from this list:

• any morphism f from X to a coproduct Y + Z factors through a coproduct injection,

i.e. there exists either a map g : X → Y such that ιY g = f or a map h : X → Z such

that ιZh = f .

It is easy to check that this captures the notion of connectedness in the case of topological

spaces when applied in the category of topological spaces and continuous maps. In the coarse

category of metric spaces, this condition becomes the following condition on a metric space

X:

(C) for every coarse map f : X → Y +Z, there exists either a coarse map g : X → Y such

that ιY g is close to f or a coarse map h : X → Z such that ιZh is close to f .

Theorem 2.7. For a metric space X, the following are equivalent:

(a) X doesn’t satisfy (C);

(b) there are two unbounded subsets A and B of X such that

24



– X = A ∪B, and

– for any R > 0, there is a bounded set CR ⊆ X such that

a ∈ (A \ CR) ∧ b ∈ (B \ CR)⇒ dX(a, b) ≥ R.

(c) X is (bijectively) coarsely equivalent to a coarse coproduct Y +Z where neither Y nor

Z is bounded;

(d) there exists a coarse map f : X → Z such that the image of f has no maximum or

minimum.

Proof. (a) ⇒ (b): Suppose f : X → Y + Z is a coarse map such that f does not factor,

up to closeness, through either ιY or ιZ , and suppose that f is ρ-bornologous. Then in

particular, neither Im(f) ∩ Y nor Im(f) ∩ Z are bounded. Let A = f−1(Y ), B = f−1(Z);

since f is bornologous, neither A nor B are bounded subspaces of X. For any R > 0, let

K = B(y0, ρ(R))∪B(z0, ρ(R)) where y0 ∈ Y and z0 ∈ Z are the base points of the coproduct.

Since f is proper, CR = f−1(K) is bounded. If a ∈ (A \ CR) and b ∈ (B \ CR), then using

the definition of Y + Z, we have that

d(f(a), f(b)) ≥ 2ρ(R) + 1 > ρ(R),

so that d(a, b) ≥ R as required.

(b) ⇒ (c): It is easy to see that A ∩ B has to be bounded, so that B \ A must be non-

empty. Choose points a0 ∈ A and b0 ∈ B \ A. Note that we may choose the CR such that

for all R > 0, {a0, b0} ⊆ CR. Let W = A + (B \ A), choosing a0 and b0 as base points and

where the metric on A and B \A is induced by X. The identity set map W → X is clearly

bornologous, so it remains to prove that it has bornologous inverse. The inverse is clearly

bornologous on A and B \ A, so let a ∈ A and b ∈ B \ A, and choose a bounded subset CR

corresponding to the value R = dX(a, b). Let D be the diameter of CR. Then one of a and

b must be in CR, so

dW (a, b) = dX(a, a0) + dX(b, b0) + 1 ≤ dX(a, b) + 1 + 2D
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since {a0, b0} ⊆ CR. This shows that the inverse of i is bornologous, since D depends only

on dX(a, b).

(c) ⇒ (d): Suppose X is coarsely equivalent to Y + Z with chosen base points y0, z0.

Define a map g : Y → Z by g(y) = k, where k ≤ dY (y, y0) < k + 1. Define a map h : Z → Z

by h(z) = −k, where k ≤ dZ(z, z0) < k+ 1. Clearly both g and h are coarse, so the induced

map f : Y + Z → Z is also coarse. Moreover, the image of f has no maximum or minimum

since Y and Z are unbounded. Finally, composing with the coarse equivalence from X to

Y + Z gives the required map.

(d) ⇒ (a): This follows from the fact that Z is (bijectively coarse equivalent to) the

coarse coproduct of N with itself.

Example 1. The metric spaces Z and R do not satisfy (C) (indeed, they are both coarsely

equivalent to the coarse coproduct N + N). The metric space {n2 | n ∈ N} also does not

satisfy (C) as can be seen from (b) in the above theorem (take A to be the even numbers and

B the odd ones). It is easy to show using condition (b) in Theorem 2.7, however, that the

metric space N does satisfy (C). In particular, there are no surjective coarse maps from N

to Z.

In topological spaces, a space X is disconnected if and only if it admits a non-trivial map

to the two element discrete space. Thus the space Z in some sense plays the role of the two

element discrete space for condition (C).

Corollary 1. If f : X → Y is a surjective coarse map and X satisfies (C), then Y satisfies

(C).

Proof. This follows from condition (d) in Theorem 2.7.

Recall from [57] that the map which takes a metric space X to its Higson corona νX

extends to a functor ν from the coarse category of metric spaces to the category of compact

Hausdorff spaces and continuous maps (in fact, the result in [57] is stated only for the case

of proper metric/coarse spaces, but the proof works for arbitrary metric/coarse spaces). In

particular, coarsely equivalent metric spaces have homeomorphic Higson coronas. It turns

out that the functor ν preserves coproducts, as we will now show.
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Lemma 2.8. Let X and Y be metric spaces with coarse coproduct X + Y . Let f : X → C

and g : Y → C be maps to the complex numbers. Then the map h : X+Y → C which agrees

with f on X and with g on Y is slowly oscillating/tends to zero at infinity if and only if both

f and g are slowly oscillating/tend to zero at infinity.

Proof. The equivalence for tending to zero at infinity is clear, as is the fact that if h is slowly

oscillating, then f and g both are. Suppose then that f and g are slowly oscillating. Let

ε > 0 and R > 0. Since f and g are slowly oscillating, there are bounded sets B1 in X and

B2 in Y such that, outside of B1 ∪B2 ⊆ X + Y , d(a, b) ≤ R⇒ d(h(a), h(b)) ≤ ε whenever a

and b are either both in X or both in Y . Let x0 ∈ X and y0 ∈ Y be the base points chosen

for X + Y , and let C = B(x0, R) ∪ B(y0, R). Then for x, x′ ∈ (X + Y ) \ (B1 ∪ B2 ∪ C), we

have that x and x′ are either both in X or both in Y . Consequently, d(h(x), h(x′)) ≤ ε as

required.

Proposition 2.9. The Higson corona preserves binary coarse coproducts. That is, if X and

Y are metric spaces, then νX + νY and ν(X + Y ) are homeomorphic.

Proof. Consider the algebras C(ν(X)+ν(Y )) ∼= C(νX)×C(νY ) and C(ν(X+Y )). There is a

canonical ∗-homomorphism F : C(ν(X+Y ))→ C(νX)×C(νY ) which sends an equivalence

class of maps [f ] to the pair ([fιX ], [fιY ]). It follows from Lemma 2.8 that this map has

trivial kernel and is surjective, so F is an isomorphism. Thus we obtain that νX + νY and

ν(X + Y ) are homeomorphic.

We are now ready to state the main result of this chapter.

Theorem 2.10. The following are equivalent for a metric space X:

(a) X satisfies (C);

(b) the Higson corona of X is (topologically) connected;

(c) Bh(X)/B0(X) does not contain a non-trivial idempotent element.

Proof. (b) ⇒ (a): This follows from Proposition 2.9 and the fact that for an unbounded

metric space, the Higson corona is non-empty.
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(b) ⇔ (c): This follows from Lemma 2.3.

(a)⇒ (c): Suppose that (c) doesn’t hold. Then there is a slowly oscillating map f : X →

C such that [f 2 − f ] = [0], with [f ] 6= [0], [f ] 6= [1]. This means that for any ε > 0, there

is a bounded set C such that the image of X \ C under f is contained in B(0, ε) ∪ B(1, ε).

In particular, one can choose C such that the image of X \ C under f is contained in

B(0, 1/4) ∪ B(1, 1/4). Let A = f−1(B(0, 1/4)) and B = X \ A. The non-triviality of [f ]

ensures that neither A nor B are bounded. It follows that for any R > 0, we can choose a

bounded set C ′ such that

d(x, x′) ≤ R⇒ d(f(x), f(x′)) ≤ 1/4

for any x, x′ /∈ C ′, and such that

f(X \ C ′) ⊆ B(0, 1/4) ∪B(1, 1/4).

In particular, if d(x, x′) ≤ R and x, x′ /∈ C ′, then x and x′ must either both be in A or

both be in B. Thus A and B satisfy the conditions in (b) in Theorem 2.7, so we obtain the

required contradiction.

2.5 ω-Excisive decompositions and coarse pushouts

In this section we make some connections between the work done so far and the notion of

ω-excisive decomposition found in [36]. We do so via a result (Theorem 2.12 below) which

in its own right further motivates the study of categorical conditions in the coarse category.

Recall the following definition from [36].

Definition 2.11. Let X be a metric space and let A and B be closed subspaces with X =

A ∪ B. Then X = A ∪ B is an ω-excisive decomposition if for each R > 0 there exists a

S > 0 such that B(A,R) ∩B(B,R) ⊆ B(A ∩B, S).

Such decompositions are important because they give rise to Mayer-Vietoris sequences at

the level of coarse cohomology as well as at the level of K-theory of uniform Roe algebras [36].
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In particular, this allows ω-excisive decompositions to be used to prove the coarse Baum-

Connes conjecture for certain spaces [72]. We now show that such decompositions amount

to pushouts in the coarse category.

Theorem 2.12. Let X be a metric space and let A and B be closed subspaces with X = A∪B.

Then X = A ∪ B is an ω-excisive decomposition if and only if A ∩ B is non-empty and the

diagram of inclusions

X

A

;;

B

cc

A ∩B

;;cc
(2.1)

is a pushout in the coarse category of metric spaces, i.e. for any coarse maps f : A→ Y and

g : B → Y which are close on A∩B, there is a unique-up-to-closeness map h : X → Y such

that h is close to f on A and close to g on B.

Proof. (⇒): Suppose X = A ∪ B is a ω-excisive decomposition, and that f : A → C and

g : B → C are two coarse maps such that f and g are close on A∩B, with f ρ-bornologous

and g σ-bornologous. Define h : X → C to be f on A and g on X \ A. It remains to show

that h is coarse. It is clearly coarse on A and B, so it remains to consider a ∈ A, b ∈ X \A.

Suppose d(a, b) ≤ R. Then a, b ∈ B(A,R) ∩ B(B,R), so by hypothesis, there is an S such

that a, b ∈ B(A ∩ B, S). Suppose d(a, c1) ≤ S + 1 and d(b, c2) ≤ S + 1 for c1, c2 ∈ A ∩ B.

The distance d(h(a), h(b)) = d(f(a), g(b)) is bounded above by

d(f(a), f(c1)) + d(f(c1), f(c2)) + d(f(c2), g(c2)) + d(g(c2), g(b)).

The first and last terms are bounded by ρ(S + 1) and σ(S + 1) respectively. The third term

is bounded by a constant since f and g are close on A ∩ B. Finally, the second term is

bounded by ρ(2S + 2 +R) since

d(c1, c2) ≤ d(a, c1) + d(a, b) + d(b, c2).
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This shows that h is bornologous (since S depends only on R), and properness of h is easy

to check.

(⇐): Define a new metric d′ on X as follows:

d′(a, b) =


d(a, b) a, b ∈ A \B

d(a, b) a, b ∈ B \ A

inf{d(a, c) + d(c, b) | c ∈ A ∩B} a ∈ A, b ∈ B

One checks that this is a metric. Consider the inclusions i : A → (X, d′), j : B → (X, d′).

They are actually isometric embeddings, and hence coarse. The maps i and j agree on

A ∩ B, so by the universal property of the pushout, there must be a coarse map h : X →

(X, d′) which is close to the identity. Since maps which are close to bornologous maps are

bornologous, we may assume that h is the identity. Suppose that h is ρ-bornologous. Let

R > 0, and let x ∈ B(A,R) ∩B(B,R). Without loss of generality, suppose that x ∈ A, and

that d(x, b) ≤ 2R for b ∈ B. Since h is bornologous, we have (by definition of the metric d′)

that x must be at most ρ(2R) + 1 away from A ∩B. Thus we can set S = ρ(2R) + 1.

Note that in the coarse category of metric spaces, there is at most one morphism from

a bounded space K to a metric space X (since any two coarse maps K → X are close).

Thus, by general category theoretic arguments, if A ∩B is bounded then the diagram (2.1)

is a pushout if and only if X (together with the inclusions) is the coproduct of A and B.

Furthermore, note that in condition (b) of Theorem 2.7, one may choose the sets A and B

to have non-empty intersection and to be closed (simply take all points which are at most R

distance from A and B respectively, for a suitable R). This leads to the following corollary,

which can also be verified directly using condition (b) in Theorem 2.7.

Corollary 2. A metric space X satisfies (C) (or equivalently, has a connected Higson corona)

if and only if in every ω-excisive decomposition X = A ∪ B of X with A ∩ B bounded, one

of A and B is bounded.

The fact that proper metric spaces which do not satisfy (C) have disconnected Higson

coronas can now be seen as a direct consequence of Proposition 1 in [36], while Lemma 2.8
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in this chapter can be seen as a consequence of Proposition 2 in [36] for the proper case

(noting that every coarse map is slowly oscillating on a bounded subset). Theorem 2.10 of

the present chapter states in part that disconnectedness of the Higson corona νX ensures

the existence of a ω-excisive decomposition X = A ∪B of X with A and B unbounded and

A ∩B bounded.

2.6 Cohomological characterisation

In this section, we prove the following:

Theorem 2.13. A metric space M has a connected Higson corona if and only if its first

coarse cohomology group HX1(M) is trivial.

We briefly recall the definition of coarse cohomology, following [57]. For M a metric

space and q a natural number, a subset E ⊆ M q+1 is called controlled if all the product

projections π1, . . . , πq+1 are close on E. The subset E is called bounded if every product

projection is close to a constant map. Note that if q = 0, then every subset is controlled,

while the bounded sets are precisely the bounded sets in the usual sense.

Definition 2.14. Let M be a metric space. A subset D ⊆M q+1 is called cocontrolled if its

intersection with every controlled set E ⊆M q+1 is bounded.

In the case of q = 0, the cocontrolled subsets are precisely the bounded ones. Given an

abelian group G, the coarse complex of M with coefficients in G, denoted by CX∗(M ;G), is

defined as the space of functions φ : M q+1 → G with cocontrolled support. The complex can

be equipped with coboundary maps δ : CXq+1(M ;G)→ CXq+2(M ;G) defined as follows:

δφ(x0, . . . , xq+1) =

q+1∑
i=0

(−1)iφ(x0, . . . , x̂i, . . . , xq+1),

where the ‘hat’ denotes omission of a specific term. One checks that this defines a cochain

complex, and the coarse cohomology HX∗(M ;G) is defined to be the cohomology of this

complex. When G = Z, we denote the cohomology simply by HX∗(M).
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Proof of Theorem 2.13. (⇒): Suppose f : M2 → Z represents a non-trivial cohomology

class in HX1(M). In other words, f satisfies f(b, c)− f(a, c) + f(a, b) = 0 (because δf = 0)

but cannot be written as f(a, b) = g(a)− g(b) for any function g : M → Z with cocontrolled

(equivalently, bounded) support. Define a relation R on M as follows:

aRb⇔ f(a, b) = 0.

It follows from the conditions on f that R is an equivalence relation. We claim that any

equivalence class of R has an unbounded complement. Suppose not; let A be an equivalence

class with bounded complement and pick a ∈ A. Define a function g : M → Z as follows:

g(x) = f(x, a).

Note that g has bounded support, since the complement of A is assumed to be bounded, and

that δg = f , a contradiction. Thus we conclude that we can divide M into two unbounded

sets A and B, each a union of equivalence classes. Let S > 0. Then a ∈ A, b ∈ B and

d(a, b) ≤ S implies

(a, b) ∈ supp(f) ∩ {(x, y) | d(x, y) ≤ S}

where the intersection is bounded because f has cocontrolled support. It follows that A and

B satisfy the conditions in (b) of Theorem 2.7, which gives the required result.

(⇐): Let M = A∪B with A and B satisfying the conditions in (b) of Theorem 2.7. We

may suppose that A and B are disjoint (simply take B = M \A in the event this is not the

case). Let f : M2 → Z be the map

f(x, y) =


1 x ∈ A, y ∈ B

−1 x ∈ B, y ∈ A

0 otherwise
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It is easy to check that f represents a non-trivial cohomology class in HX1(M). Indeed, the

conditions on A and B force f to have cocontrolled support, while the unboundedness of A

and B ensure that f is non-trivial in cohomology.

Theorem 2.13 shows that coarse coproducts are not preserved (i.e. taken to direct sums)

when taking first cohomology groups, since a space may be the coproduct of two unbounded

spaces each having a connected Higson corona. For proper metric spaces, one part of the

proof above (namely that having a disconnected Higson corona implies non-trivial first

cohomology), follows from Corollary 2 in the previous section and the result in [36] that

there is a long exact Mayer-Vietoris sequence

. . . // HX0(A)⊕HX0(B) // HX0(A ∩B) // HX1(M) // . . .

for any ω-excisive decomposition M = A∪B. Indeed, if A and B are unbounded and A∩B

is bounded, then HX0(A) and HX0(B) are trivial, while HX0(A ∩ B) is isomorphic to Z

(see Section 5.1 of [57]).

2.7 Geodesic spaces and finitely generated groups

We expect that connectedness of the Higson corona should be the same as being “connected

at infinity” for certain spaces. In this section we show such a result for the case of geodesic

spaces. Recall that a metric space X is said to be geodesic (see for example [50]) if for any

two points x, y ∈ X there is an isometric embedding γ of the interval [0, d(x, y)] into X with

γ(0) = x, γ(d(x, y)) = y. We refer to the image of γ as the geodesic from x to y.

Theorem 2.15. The following are equivalent for a geodesic metric space X:

(a) the Higson corona of X is (topologically) disconnected;

(b) there exists a bounded set X0 ⊆ X such that for any bounded set C containing X0,

X \ C is topologically disconnected.
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Proof. (a) ⇒ (b): Suppose X = A ∪ B with A and B satisfying the conditions in (b) in

Theorem 2.7. Let X0 be the bounded set such that a ∈ A \X0, b ∈ B \X0 ⇒ d(a, b) ≥ 1.

Then the result follows easily from the fact that A and B are unbounded.

(b) ⇒ (a): Let X0 be as in (b). By the assumption on X0, every connected component

of X \ X0 must have an unbounded complement in X \ X0. It follows that we can divide

X \X0 into two sets A and B′, each a union of connected components. By connectedness,

the geodesic from a point a ∈ A \X0 to a point b ∈ B′ \X0 must pass through X0. Thus,

for any R > 0, the distance between points a ∈ A \ B(X0, R) and b ∈ B′ \ B(X0, R) is at

least R, so A and B = B′ ∪X0 satisfy the conditions in (b) in Theorem 2.7.

Example 2. The above theorem shows that Rn has a connected Higson corona for n 6= 1,

and a disconnected Higson corona when n = 1. Note, however, that by Theorem 5 of [42],

the Higson corona of Rn is neither locally connected nor arcwise connected for n > 1.

We now consider the special case of finitely generated groups, seen as metric spaces. Let

G be a finitely generated group generated by a finite set S which is closed under taking

inverses. We can construct two coarsely equivalent metric spaces associated to the pair

(G,S):

• the group G equipped with the word length metric, i.e. where d(g, h) is the length of

the minimal representation of gh−1 using elements of S, and

• the Cayley graph Γ(G,S) of G, i.e. the graph with vertices the elements of G and an

edge from g to gs for every g ∈ G, s ∈ S, viewed as a 1-complex and equipped with

the path length metric.

It turns out that both of these metric spaces do not depend, up to coarse equivalence,

on the choice of finite generating set S (see for example [50]). In particular, the Higson

corona of a group G with the word length metric is invariant under choice of generating set,

and is moreover homeomorphic to the Higson corona of any Cayley graph associated to G.

The number of ends of G is defined to be the number of (topological) ends of its Cayley

graph. Note that the number of ends of the Cayley graph also does not depend on the finite

generating set S (see for example Section 13 of [30] for more on ends of groups).
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Corollary 3. A finitely generated group G with the word length metric has a connected

Higson corona if and only if it has at most one end.

Proof. By the above remarks, a group G with the word length metric has a connected Higson

corona if and only if its Cayley graph Γ(G,S) does. Note that Γ(G,S) is a geodesic space.

Fix a vertex g in Γ(G,S) and consider the cover of Γ(G,S) by compact sets

B(g, 1) ⊆ B(g, 2) ⊆ B(g, 3) ⊆ · · ·

Here we use the fact that Γ(G,S) is locally finite, i.e. every vertex is an endpoint of finitely

many edges. An end of Γ(G,S) is then a sequence

U1 ⊇ U2 ⊇ U3 ⊇ · · ·

where for each i, Ui is a connected component of Γ(G,S) \B(g, i). If Γ(G,S) has more than

one end, then there must be an n such that Γ(G,S) \B(g, n) has two unbounded connected

components, in which case Γ(G,S) has a disconnected Higson corona by Theorem 2.15.

Conversely, if Γ(G,S) has a disconnected Higson corona, then by Theorem 2.15 there is

some n such that for any bounded set K containing B(g, n), Γ(G,S) \ K has at least two

connected components. Notice that since Γ(G,S) is locally finite, Γ(G,S) \ B(g, n) has

finitely many connected components. It follows that two of its connected components must

be unbounded, so that Γ(G,S) has more than one end as required.

Note that Corollary 3 also follows from Theorem 13.5.5 in [30] and the fact that the

usual group cohomology of a finitely generated group G (with coefficients in the group ring

ZG) coincides with the coarse cohomology of the group as a metric space (see Example 5.21

of [57]).

Remark 1. A complete characterisation of finitely generated groups with more than one

end is already known. A finitely generated group can have either 0, 1, 2 or infinitely many

ends; a finitely generated group G has two ends if and only if G has an infinite cyclic

subgroup of finite index. The characterisation for infinitely many ends is given by a theorem

of Stallings [64, 65]. For more details and proofs of these facts, we refer the reader to [30].
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2.8 Abstract coarse spaces

In this section we consider the more general setting of coarse spaces. Most of the results

of the previous sections generalise to this context, so long as one works with coarse spaces

which are “connected” in the sense of [57], i.e. in which finite sets are bounded.

Recall from [57] that a coarse space is a pair (X,X ) where X is a set and X is a family

of binary relations on X which contains the diagonal ∆ and which is closed under taking

subrelations, inverses, products (i.e. composition of relations) and finite unions. A map f

between (the underlying sets of) coarse spaces (A,A) and (B,B) is called bornologous if

(f × f)(R) ∈ B for every R ∈ A. Given a coarse space (A,A), a subset B of A is called

bounded if it is contained in {a ∈ A | aRx} for some R ∈ A and x ∈ A. The notion of proper

map can thus be defined for coarse spaces. Two maps f, g : (A,A)→ (B,B) are said to be

close if {(f(a), g(a)) | a ∈ A} ∈ B.

Every metric d on a set A induces a bounded coarse structure, consisting of all those

relations R for which the set {d(a, b) | aRb} is bounded. A map f : A → B between

metric spaces is bornologous with respect to the metrics if and only if it is bornologous with

respect to the respective bounded coarse structures. Thus MetBorn can be viewed as a full

subcategory of the category of coarse spaces and bornologous maps. A coarse space (A,A)

is called connected [57] if every finite subset of A × A is in A. Bounded coarse structures

associated to metrics (which are not allowed to take the value ∞) are always connected.

We say that a coarse structure on a set A is metrizable if it is the bounded coarse structure

associated to a metric on A. We recall the following result.

Theorem 2.16 ([57]). A connected coarse structure A on A is metrizable if and only if it

is countably generated.

Let A0 be a collection of relations on a set A. Then it is easy to show that there exists

a smallest coarse structure on A containing A0, which we denote by A0. By “countably

generated” in Theorem 2.16, we mean there is a countable set A0 of relations such that

A0 = A.

36



Lemma 2.17. Let A be a set of relations on a set A and let f : A→ B be a map. Then we

have

(f × f)(A) ⊆ (f × f)(A).

Proof. This follows from the fact that for two relations R and S on A,

(f × f)(R ◦ S) ⊆ (f × f)(R) ◦ (f × f)(S).

Proposition 2.18. The category of connected coarse spaces and bornologous maps admits

arbitrary coproducts. Moreover, the countable (or finite) coproduct of metrizable coarse spaces

is metrizable.

Proof. Suppose (Aα,Aα)α∈I is a family of connected coarse spaces. For each Aα, pick a base

point aα ∈ ια(Aα). Define a coarse structure
∑

αAα on the disjoint union
∑

αAα of the Aα

as follows: ∑
α

Aα =
⋃
α

Aα ∪
⋃
α∈I

⋃
α′∈I

{(aα, aα′)},

Note that since each (Aα,Aα) is connected, (
∑

αAα,
∑

αAα) is also connected. Moreover, it

is clearly the smallest connected coarse structure containing all the Aα, so using Lemma 2.17

it is easy to check that this gives the required coproduct.

Suppose now that I = N and that each (Ai,Ai) is metrizable, with each Ai generated by

relations {Ai,1,Ai,2, . . .}. Note that the set

⋃
i∈N

⋃
j∈N

{(ai, aj)},

is countable, as is the set

{
k−1⋃
i=1

Ai,k−i | k ∈ {2, 3 . . .}}

and together they generate
∑

αAα. Thus by Theorem 2.16,
∑

αAα is metrizable.

It is easy to check that the construction of binary coproducts given in the proposition

above gives the binary coproduct in the subcategory of coarse maps as well as in the coarse
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category of connected coarse spaces, i.e. the category whose objects are connected coarse

spaces and whose morphisms are equivalence classes of coarse maps under the closeness

relation.

Throughout the rest of this section, by a coarse coproduct of two connected coarse spaces,

we mean the coproduct of the two spaces in the category of connected coarse spaces and

bornologous maps. By the proof of Proposition 2.18, the coarse coproduct of (X,X ) and

(Y,Y) is given by

(X + Y,X ∪ Y ∪ {(x0, y0)}),

where x0 ∈ X and y0 ∈ Y are arbitrary chosen base points.

Proposition 2.18 gives an alternative proof that the category of metric spaces and

bornologous maps admits finite and countable coproducts. The explicit construction of

the metric d in Proposition 2.6 can be derived from the proof of Theorem 2.16 (see [57]) and

the second half of the proof of Proposition 2.18 above. In the case of binary coproducts (see

Proposition 2.5), the description of the metric follows naturally from the following lemma.

In order to state the lemma, we introduce the following notation. If X and Y are sets and

R is a relation on X, we denote by Rr the smallest reflexive relation on the disjoint union

X+Y whose restriction to X is R (it is nothing but the union of R with the diagonal relation

on X + Y ).

Lemma 2.19. Let (X + Y,X + Y) be the coarse coproduct of (X,X ) and (Y,Y), and let

x0 ∈ X, y0 ∈ Y . Then every relation in X + Y is contained in a relation of the form

(Rr ◦ U ◦ Sr) ∪ (Sr ◦ U ◦Rr),

where R and S are in X and Y respectively, and U = {(x0, y0), (y0, x0)} ∪∆.

Proof. Let Z0 be the set of all relations of the form

(Rr ◦ U ◦ Sr) ∪ (Sr ◦ U ◦Rr),

for R ∈ X and S ∈ Y , and let Z1 be its closure under taking subrelations. Since X ,Y ⊆

Z1 ⊆ X + Y , it is enough to show that Z1 is a coarse structure by minimality of X + Y .
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Some straightforward computations show that Z0 is closed under composition of relations,

and the result follows.

Since condition (C) in Section 2.4 was stated in the language of coarse coproducts, coarse

maps and closeness of maps, the definition extends to the case of general coarse spaces.

Theorem 2.7 generalizes partially to this setting, as shown in the following theorem. The

proof of the theorem is a straightforward adaptation of the proof of Theorem 2.7 now that

we have Lemma 2.19, so we omit it.

Theorem 2.20. For a connected coarse space (X,X ), the following are equivalent:

(a) X doesn’t satisfy (C);

(b) there are two unbounded subsets A and B of X such that

– X = A ∪B, and

– for any R ∈ X , there is a bounded set CR such that if xRx′ for x, x′ ∈ X \ CR,

then {x, x′} intersects at most one of A and B,

(c) is (bijectively) coarsely equivalent to a coarse coproduct (Y + Z,Y + Z) where neither

Y nor Z is bounded.

Example 3. Let X be any infinite set and let X be the smallest connected coarse structure

on X. In other words, X consists of all finite subsets of X ×X together with all relations of

the form R∪∆, where R is a finite subset of X×X. It is easy to show that (X,X ) does not

satisfy (C) (using for example (b) from Theorem 2.20 and noting that finite sets are always

bounded in a connected coarse space), and thus has a disconnected Higson corona.

The above example shows that we cannot hope for a version of (d) from Theorem 2.7 to

appear in the above theorem. Indeed, take X to be any uncountable set and X the smallest

connected coarse structure on X. Then there are no proper maps from (X,X ) to Z.

A map f : (X,X )→ Y from a coarse space to a metric space Y is called slowly oscillating

if for every R ∈ X and ε > 0, there exists a bounded set K ⊆ X such that for any a, b ∈ X,

a, b /∈ K,

aRb⇒ d(f(a), f(b)) ≤ ε.
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This, together with a similar definition for tending to 0 at infinity, allows one to define the

C∗-algebra Bh(X)/B0(X) for any coarse space, and consequently also the Higson corona [57].

We have the following generalization of the main theorem.

Theorem 2.21. The following are equivalent for a connected coarse space (X,X ).

(a) (X,X ) satisfies (C);

(b) the Higson corona of X is (topologically) connected;

(c) Bh(X)/B0(X) does not contain a non-trivial idempotent element.

Proof. This is an easy adaptation of the metric case now that we have Theorem 2.20 (and

in particular, part (b)). Note that for connected coarse spaces, the finite union of bounded

sets is bounded.
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Chapter 3

A coarse Tietze Extension theorem

This chapter is based on the accepted manuscript of the following paper: J. Dydak

and T. Weighill, Extension theorems for large scale spaces via coarse neighbourhoods,

Mediterranean Journal of Mathematics 15, 2018, 59. The contributions of each author of

the above manuscript may be considered roughly equal. Two rounds of revisions took place

after comments by the anonymous referees. The introduction has been adapted, otherwise

the manuscript has remained more or less unchanged.

3.1 Introduction

In this chapter, we prove an analogue of a foundational result in general topology: the Tietze

Extension Theorem.

Theorem 4 (Tietze Extension Theorem). Let X be a normal topological space and let A be

a closed subset of X. Then any continuous function f : A → [0, 1] extends to a continuous

function g : X → [0, 1].

When studying the large scale properties of spaces, one typically replaces continuous

functions to subsets of Rn with slowly oscillating functions to subsets of Rn. A good example

of this analogy in action can be found in [22], where asymptotic dimension is approached

by considering extensions of slowly oscillating functions to spheres, based on the approach
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to covering dimension via extensions of continuous maps to spheres. In the same paper, the

authors also prove the following result:

Theorem 5 (Dydak-Mitra [22]). Given a metric space X, any slowly oscillating function

on a subset of X to [0, 1] extends to a slowly oscillating function on the whole of X to [0, 1].

This may be seen as a large scale Tietze Extension Theorem for metric spaces. However,

as can be seen, in the context of metric spaces no additional criteria are needed to prove the

extension theorem. This is not surprising as the topological Tietze theorem holds true for all

metric spaces. Thus just as the topological theorem makes more sense in the broader context

of general topological spaces, we will prove a result in a more general framework, namely

that of large scale spaces. In fact, we will work in the even more general context of hybrid

large scale spaces introduced in [4] – that is, sets equipped with a large scale structure and

a topology satisfying a compatibility axiom – so that we are interested in maps which are

both slowly oscillating and continuous. Results for large scale spaces (with no topology) can

be recovered as special cases of the hybrid results by endowing the large scale space with the

discrete topology.

Our purely large scale result (in other words, Theorem 10 with the discrete topology) is

very close to a result of Protasov in [53]. The differences between the two results are twofold:

firstly, Protasov works within the abstract framework of balleans, a framework which is

known to be equivalent to coarse spaces and large scale spaces but which has different axioms.

Secondly, his “normality” condition (the condition required for the extension theorem to

hold) is different from ours, although the equivalence follows fairly readily from Lemma 2.2

in [53], modulo the translation between balleans and large scale spaces.

The main contribution of this chapter, though, is not so much the result itself but the

proof, in that we unite the proofs of three different extension theorems: the classical Tietze

theorem in topology, Katetov’s theorem for extension of uniformly continuous functions,

and the (hybrid) large scale result. This unification is achieved via the general notion of a

neighbourhood operator, which is already present in the topology literature. This approach

via abstract neighbourhood operators may be of independent interest to readers outside
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of coarse geometry, and suggests possible further investigation into the use of relational

structures such as neighbourhood operators in uniting coarse geometry and topology.

3.2 Hybrid large scale spaces

The main context for the results in this chapter is that of a hybrid large scale space, which is

a set equipped with a topology (representing the small scale) and a large scale structure (or

ls-structure) which are compatible in a suitable sense. The idea to consider a space equipped

with a topology and ls-structure which are compatible goes back to Roe (see Chapter 2 of

[57]). Note that the notion of ls-structure is equivalent to the notion of coarse structure in

the sense of [57] (see [21]).

Let us recall the definition of ls-structure from [21]. Let X be a set. Recall that the star

st(B,U) of a subset B of X with respect to a family U of subsets of X is the union of those

elements of U that intersect B. More generally, for two families B and U of subsets of X,

st(B,U) is the family {st(B,U) | B ∈ B}.

Definition 12. A large scale structure L on a set X is a nonempty collection of families

of subsets of X (which we call the uniformly bounded families) satisfying the following

conditions:

(1) B1 ∈ L implies B2 ∈ L if each element of B2 consisting of more than one point is

contained in some element of B1.

(2) B1,B2 ∈ L implies st(B1,B2) ∈ L.

A set equipped with a large scale structure will be called an ls-space. A uniformly bounded

family which is a cover is also called a scale.

Definition 13. A hybrid large scale space (or hls-space for short) is a set X equipped

with both a large scale structure and a topology (which together we call the hybrid large scale

structure on X) such that there is a uniformly bounded cover of X which consists of open

sets. We call a uniformly bounded open cover an open scale.
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Note that in an hls-space, any scale can be coarsened to an open scale (we say that U

coarsens V in case V refines U).

Lemma 1. Let X be a set equipped with an ls-structure and a topology. Then the following

are equivalent:

(1) X, together with the two structures, gives an hls-space.

(2) there is a uniformly bounded cover U relative to the ls-structure such that for every

subset A in X, cl(A) ⊆ st(A,U).

Moreover, if X is an hls-space, then for any open scale U and any subset A of X, we have

cl(A) ⊆ st(A,U).

Proof. To prove the last statement, notice that for any open scale U and subset A of an

hls-space X, if x ∈ cl(A) and x ∈ U ∈ U , then U intersects A. This also gives (1) ⇒ (2).

(2)⇒ (1): Let U be as in (2). Then the interiors of the elements of the cover st(U ,U) form

an uniformly bounded open family V of subsets. Moreover, if U ∈ U , then cl(X \ st(U,U)) ⊆

st(X \ st(U,U),U) ⊆ X \ U , so V coarsens U , and thus is a cover as required.

Example 5. The canonical example of a large scale space is a metric space (X, d) equipped

with the ls-structure consisting of all families U of subsets which refine {B(x,R) | x ∈ X} for

some R > 0. In fact, this ls-structure together with the metric topology gives an hls-space.

Every result in this chapter which is proved for hls-spaces provides a version of the result

for ls-spaces as a special case. This is because any ls-space can be viewed as an hls-space

by equipping it with the discrete topology. On the other hand, every topological space can

be viewed as an hls-space by equipping it with the ls-structure consisting of all families of

subsets.

Let us now consider the notion of connectedness in the context of (hybrid) large scale

spaces. In any scale category (see [4]) an important issue is connectedness at some scale,

that is, the existence of a scale such that any two points in X are connected by a chain in

that scale.
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Definition 14. Given a cover U of a set X and two points x and y in X, we say that x and

y are U-connected and write x ∼U y if there is a finite sequence Ui, 1 ≤ i ≤ n, of elements

of U such that Ui ∩ Ui+1 6= ∅ for all i < n, x ∈ U1 and y ∈ Un. A U-component of X

is an equivalence class of the equivalence relation ∼U . We say that X is U-connected, or

connected at the scale U , if it has at most one U-component.

In the case of ls-spaces one is often interested in spaces that are U -connected for some

uniformly bounded cover U (for example, every geodesic metric space, as an ls-space, is

such). This is not to be confused with the weaker condition, called coarse connectedness

by Roe [57], which, in terms of uniformly bounded covers, can be translated as saying that

any two points are U -connected for some uniformly bounded cover U . Clearly this is the

same as to say that all finite subsets of X are bounded (a subset of an ls-space is called

bounded if it is an element of some uniformly bounded cover).

Definition 15. A coarse component of a point x in an ls-space is the union of all the

bounded sets containing x.

A non-empty ls-space X is thus coarsely connected in the sense of Roe if it has only one

coarse component. To distinguish Roe’s version of connectivity from the stronger one we

introduce the following concept:

Definition 16. An ls-space is scale connected if it is U-connected for some uniformly

bounded cover U .

For example, the subspace {x2 | x ∈ N} with the ls-structure induced by the usual metric,

is coarsely connected but not scale connected. In an hls-space, the topology of X dictates

large scale connectivity:

Proposition 5. Let X be an hls-space and let U be an open scale. Then

(1) the U-components of X are open-closed,

(2) the coarse components of X are open-closed,

(3) if the topology of X is connected, then X is connected at all open scales.

45



Proof. Given an open scale U , the U -components of X are clearly open and they partition

X, which proves (1). Part (2) follows from the fact that every bounded set is contained in

an open bounded set. Finally, (3) follows from (1).

Lemma 2. If X is a hybrid large scale space and U = {Us}s∈S is an open scale of X,

then each U-component of X can be expressed as a union
⋃∞
n=1 An, where the sequence {An}

satisfies the following properties:

1. each An is closed and bounded,

2. An is contained in the interior of An+1 for each n ≥ 1.

Proof. Let A be a U -component of X, and let Us ∈ U be contained in A. Consider the

sequence Bn defined as follows:

1. B1 = Us,

2. Bn+1 = st(Bn,U).

By the definition of U -component, the union
⋃∞
n=1Bn is the whole of A. Define An = cl(Bn)

for each n. Then the sequence An satisfies the conditions by Lemma 1.

Lemma 3. If X is a hybrid large scale space that is coarsely connected, then all precompact

subsets (that is, subsets whose closure is compact) of X are bounded.

Proof. This is an easy consequence of Lemma 2 and the fact that in any coarsely connected

ls-space, the finite union of bounded sets is bounded.

Definition 17. A subset K of an ls-space X is called weakly bounded if its intersection

with any coarse component is bounded.

We now recall the definition of a slowly oscillating map. For a coarsely connected ls-space

X, a slowly oscillating map is usually defined as a map to a metric space M such that for

every uniformly bounded family U in X and every ε > 0 there is a bounded set K in X

such that (U ∈ U) ∧ (U ∩ K = ∅) =⇒ diam(f(U)) < ε. If X is not coarsely connected,

then this definition is too restrictive. Indeed, it is easy to check that, under this definition,

46



a slowly oscillating map must be constant on all but one of the coarse components of X.

Thus we use the following definition taken from [4], which reduces to the usual definition

when X is coarsely connected, and agrees with the classical definition of Higson function in

[57] for proper metric spaces (or more generally for proper hls-spaces introduced in the next

section).

Definition 18. Let X be an ls-space, M a metric space and f : X →M a map. Then f is

slowly oscillating if for every uniformly bounded family U in X and every ε > 0 there is

a weakly bounded set K in X such that (U ∈ U) ∧ (U ∩K = ∅) =⇒ diam(f(U)) < ε.

Note that under Definition 18, a map from an ls-space X is slowly oscillating if and only

if its restriction to each coarse component is slowly oscillating.

3.3 Proper hls-spaces

By Lemma 3, every precompact subset of a coarsely connected hls-space is bounded. On the

other hand, even for metric spaces with the induced hls-structure, it may not be the case

that all bounded sets are precompact.

Definition 19. A hybrid large scale space X is called proper if its topology is Hausdorff,

and its family of bounded sets is identical with the family of all precompact subsets of X. In

particular, X is (topologically) locally compact and coarsely connected.

For example, any proper metric space (i.e. in which bounded sets are precompact)

together with the induced hls-structure is a proper hls-space. It might initially appear that

the notion of a proper hybrid large scale space is a generalization of the notion of coarsely

connected proper coarse space introduced by Roe (see [57], Definition 2.35), since the

assumption of paracompactness is missing in our definition. However, Corollary 4 below

shows that a proper hls-space X must be paracompact, so the two notions are, in fact,

identical.

Corollary 4. The topology of any proper hybrid large scale space is paracompact.
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Proof. Pick an open scale U and express each U -component of X as in Lemma 2. Suppose

V is an open cover of X. Since each An is closed and compact, we may suppose that

each An intersects only finitely many elements of V . Moreover, each An is paracompact

since it is compact Hausdorff. Pick a partition of unity on A1 subordinate to the cover

{V ∩A1 | V ∈ V}. By Theorem 1.5 in [20], we can extend this to a partition of unity on A2

which is subordinate to the cover {V ∩ A2 | V ∈ V}. Inductively we obtain a partition of

unity on the whole of X subordinate to the cover V , where the continuity follows from the

fact that each An is contained in the interior of An+1.

Corollary 5. There is no proper hybrid large scale structure on the space of all countable

ordinals SΩ whose topology is the order topology.

Proof. SΩ with the order topology is the basic example of a normal space that is not

paracompact (see [47]).

We also have the following corollary of Lemma 2.

Corollary 6. If X is a proper hls-space and U is an open scale, then each U-component

admits a countable basis of bounded sets, that is, a countable set B of bounded sets such that

every bounded set is contained in some element of B. In particular, each U-component of X

is σ-compact.

If f : X → Y is a map from an ls-space X to an ls-space Y , we say that f is large-scale

continuous or ls-continuous if for every uniformly bounded family U in X, the family

f(U) = {f(U) | U ∈ U}

is uniformly bounded in Y . A map f : X → Y between hls-spaces is called hls-continuous

if it is continuous with respect to the topologies and ls-continuous with respect to the

ls-structures. Two ls-continuous maps f, g : X → Y are said to be close if the family

{{f(x), g(x)} | x ∈ X} is uniformly bounded.

Recall that an ls-continuous map f : X → Y between ls-spaces is called a large scale

equivalence (or coarse equivalence) if there is an ls-continuous map f ′ in the other direction
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such that ff ′ and f ′f are both close to the identity, i.e. such that both families

{{ff ′(y), y} | y ∈ Y }, {{f ′f(x), x} | x ∈ X}

are uniformly bounded. It is easy to check that an ls-continuous map f : X → Y is a large

scale equivalence if and only if both of the following hold:

• f is coarsely surjective, i.e. there is a uniformly bounded family U in Y such that

Y ⊆ st(f(X),U);

• f is a a coarse embedding, i.e. for every uniformly bounded family U in Y , f−1(U) =

{f−1(U) | U ∈ U} is uniformly bounded in X.

Proposition 6. If X is a hybrid large scale space, then it contains a topologically discrete

subset Y such that the inclusion i : Y → X, with the induced ls-structure on Y , is a large

scale equivalence. If X is proper, then Y can be chosen such that the bounded subsets of Y

are finite.

Proof. Pick an open scale U of X. Let Y be a maximal subset of X with respect to the

following property: Y ∩U contains at most one point for all U ∈ U . The inclusion i : Y → X

is clearly coarsely surjective, and it is a coarse embedding since the ls-structure on Y is

induced by X.

Proposition 6 is well known in the case where X is a metric space. Indeed, the discrete

subset Y can be realised as a maximal 1-separated subset of X, that is, a maximal subset

Y with respect to the property that any two points of Y are at least distance 1 apart (see

for example Section 1 of [32]).

3.4 Neighbourhood operators

In order to make clear the connection between the results for (hybrid) large scale spaces

contained in this chapter and the classical topological results for topological spaces, we

prove some results in the context of a set equipped with a neighbourhood operator satisfying
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certain axioms. By a neighbourhood operator on a set X we mean a binary relation ≺

on the power set P(X) of X such that A ≺ B =⇒ A ⊆ B. If A ≺ B, we say that B is a

neighbourhood of A with respect to ≺. Neighbourhood operators appear in many places in

the literature: see for example [13] for applications to topology, or [37] for a more categorical

approach. For our purposes, we will be interested in neighbourhood operators ≺ on a set X

satisfying the following conditions:

(N0) A ≺ X for all A ⊆ X.

(N1) if A ≺ B then X \B ≺ X \ A.

(N2) if A ≺ B ⊆ C, then A ≺ C.

(N3) if A ≺ N and A′ ≺ N ′ then A ∪ A′ ≺ N ∪N ′.

It is easy to see that, together, axioms (N0)− (N3) imply:

(N0′) ∅ ≺ A for all A ⊆ X.

(N2′) if A ⊆ B ≺ C then A ≺ C.

(N3′) if A ≺ N and A′ ≺ N ′ then A ∩ A′ ≺ N ∩N ′.

We now introduce some examples of neighbourhood operators, the first three of which are

the most important for our purposes.

• the topological neighbourhood operator on a topological space X: define A ≺ B

if and only if B contains an open set containing cl(A).

• the coarse neighbourhood operator on an ls-space X: define A ≺ B if and only if

B is a coarse neighbourhood of A, that is, A ⊆ B and for every uniformly bounded

cover U of X, st(A,U) is contained in B ∪K for some weakly bounded set K.

• the hybrid neighbourhood operator on an hls-space X: define A ≺ B if and only

if B is a neighbourhood of A with respect to the topological neighbourhood operator

and the coarse neighbourhood operator on X.
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• the uniform neighbourhood operator on a uniform space X (see for example [38]):

define A ≺ B if there is a uniform cover U such that such that st(A,U) ⊆ B.

If B is a neighbourhood of A with respect to the topological neighbourhood operator, then

we say that B is a topological neighbourhood of A, and similarly for the coarse and hybrid

neighbourhood operators. For proper metric spaces the notion of coarse neighbourhood

is closely related to the notion of asymptotic neighbourhood in [6]. Indeed, a coarse

neighbourhood of a subset A of a proper metric space is nothing but an asymptotic

neighbourhood of A which contains A. Note that what we in this chapter call the topological

neighbourhood operator does not capture the neighbourhood relation in the usual sense (that

is, where B is a neighbourhood of A if and only if B contains an open set which contains A).

Indeed, the usual neighbourhood relation does not satisfy (N1), while one can check that the

topological neighbourhood operator above does.

Observation 1. Conditions (N0)-(N3) are satisfied by all four examples given above.

Remark 2. Clearly every neighbourhood operator ≺ on a set X which satisfies (N0) and

(N3′) induces a topology on X wherein a set U ⊆ X is open if and only if for every x ∈ U ,

{x} ≺ U . For a T1 topological space and the topological neighbourhood operator, this recovers

the original topology. For a uniform space and the uniform neighbourhood operator, this

recovers the topology induced by the uniform structure in the usual sense. For a large scale

space and the coarse neighbourhood operator, every superset of a singleton set is a coarse

neighbourhood of that set, so the induced topology is the discrete topology.

Definition 20. Let X and Y be sets equipped with neighbourhood operators ≺X and ≺Y
respectively. A set map f : X → Y is called neighbourhood continuous with respect

to ≺X and ≺Y if A ≺Y B =⇒ f−1(A) ≺X f−1(B) for any subsets A and B of Y .

We now show that neighbourhood continuity generalises both topological continuity and

being slowly oscillating for maps into [0, 1].

Proposition 7. Let X and Y be topological spaces and let f : X → Y be a set map. If f is

topologically continuous, then it is neighbourhood continuous with respect to the topological

neighbourhood operators on X and Y . If Y is a T1-space then the converse also holds.
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Proof. It is easy to check that if f is topologically continuous then it is also neighbourhood

continuous. Suppose then that f is neighbourhood continuous, Y is a T1 space and let A be

an open set with f(x) ∈ A. Since the point f(x) is closed, we have {f(x)} ≺ A. Thus we

have f−1(f(x)) ≺ f−1(A), which gives us continuity at x.

For convenience, when we are referring to a map f from a set X equipped with a

neighbourhood operator ≺ to a subset of R, we say that f is neighbourhood continuous

to mean that it is neighbourhood continuous with respect to the neighbourhood operator ≺

and the topological neighbourhood operator on the codomain.

Lemma 4. Let X be a set and ≺ a neighbourhood operator on X satisfying (N0)− (N3). A

map f : X → [0, 1] is neighbourhood continuous if and only if for every a < b in [0, 1] we

have f−1([0, a]) ≺ f−1([0, b)).

Proof. (⇒) is obvious.

(⇐) Suppose A has neighbourhood N in [0, 1] relative to the topological neighbourhood

operator. We must show that f−1(A) ≺ f−1(N). We may suppose that N is open and A is

closed since the neighbourhood operator ≺ satisfies (N2) and (N2′). Since [0, 1] is compact,

there is an ε > 0 such that B(A, ε) ∩ [0, 1] ⊆ N (indeed, the function x 7→ d(x,X \ N)

achieves a minimum on A which cannot be 0). The connected components of A′ = {x ∈

[0, 1] | ∃a∈A d(a, x) ≤ ε/2} have diameter at least ε, so A′ is a finite union of closed intervals.

Moreover, A′ contains A and is contained in N ′ = B(A′, ε/2) ∩ [0, 1], which is in turn

contained in N . Using (N2) and (N2′) again together with (N3), we may thus reduce to

the case where A = [a, b] and N = (a′, b′) ∩ [0, 1] for a′ < a and b < b′, and we can choose

b′ < 1 if b < 1. If 0 < a′ < b′ < 1, then noticing that [a, b] = [0, b] ∩ ([0, 1] \ [0, a)) and

(a′, b′) = [0, b′)∩ ([0, 1]\ [0, a′]) and using condition (N2′) and (N1), we can reduce to the case

of A = [0, x] and N = [0, y) for x < y. If a = 0 and b < 1, then we are already reduced to the

desired case. Finally, if A = [0, 1], then by (N0), we have that f−1(A) = X ≺ X = f−1(N),

so we can discard this case.

Proposition 8. Let X be an ls-space and f : X → [0, 1] a set map. Then f is

slowly oscillating if and only if f is neighbourhood continuous with respect to the coarse

neighbourhood operator on X and the topological neighbourhood operator on [0, 1].
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Proof. It is enough to consider the case when X is coarsely connected.

(⇒) Let a < b, with b−a = ε. If U is a uniformly bounded cover, then there is a bounded

set K in X such that f(U) has diameter less than ε/2 for every U in U not contained in K.

Thus st(f−1([0, a]),U) is contained in f−1([0, a+ ε)) ∪K, which gives the result by Lemma

4.

(⇐) Suppose that f is not slowly oscillating. Then there is an ε > 0 and a uniformly

bounded cover U of X such that Y =
⋃
{U ∈ U | diam(f(U)) > ε} is unbounded. Divide

[0, 1] into consecutive closed intervals I1, . . . , Ik of length less than ε/2 with non-empty

interior, and let I0 = Ik+1 = ∅ for convenience. Then there exists a 1 ≤ m ≤ k such

that f−1(Im) ∩ Y is unbounded (otherwise Y is a finite union of bounded sets). The subset

N = Im−1 ∪ Im ∪ Im+1 is a topological neighbourhood of Im, but st(f−1(Im),U) \ f−1(N) is

not bounded, so f−1(N) is not a coarse neighbourhood of f−1(Im).

Proposition 9. Let X be an hls-space and f : X → [0, 1] a set map. Then f is continuous

and slowly oscillating if and only if f is neighbourhood continuous with respect to the hybrid

neighbourhood operator on X and the topological neighbourhood operator on [0, 1].

Proof. This follows from Proposition 7 and 8 above.

Now that we have motivated the notion of neighbourhood continuity, we are ready to

prove some general results about neighbourhood operators. Before we do, we introduce a

“normality” condition on a neighbourhood operator ≺.

(N4) for every pair of subsets A ≺ C, there is a subset B with A ≺ B ≺ C.

Lemma 5. Let X be a set equipped with a neighbourhood operator ≺ satisfying (N0)–(N3)

and let {As}s∈S be a family of subsets of X indexed by a dense subset S of [0, 1]. If, for each

s < t ∈ S, we have As ≺ At, then the function f : X → [0, 1] defined by

f(x) = inf{t | x ∈ At}

is neighbourhood continuous.
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Proof. Let [0, a] ⊆ [0, b) be subsets of [0, 1]. Pick s, s′ ∈ S such that a < s < s′ < b. Then

f−1([0, a]) ⊆ As ≺ As′ ⊆ f−1([0, b)).

Thus by Lemma 4 we obtain the result.

Theorem 6 (Urysohn’s Lemma for neighbourhood operators). Let X be a set and ≺ a

neighbourhood operator satisfying (N0)–(N3). Then the following are equivalent:

(1) ≺ satisfies (N4),

(2) for any subsets A and B of X such that A ≺ X\B, there is a neighbourhood continuous

function f : X → [0, 1] such that f(A) ⊆ {0} and f(B) ⊆ {1}.

Proof. (1) =⇒ (2): By Lemma 5, it is enough to produce a family of subsets As indexed

by a dense subset S of [0, 1] such that As ≺ At whenever s < t. Using (N4) we can define

such subsets indexed by the dyadic fractions, starting with A0 = A and A1 = X \B.

(2) =⇒ (1): Given A ≺ N , construct a neighbourhood continuous map f taking A to

0 and X \N to 1. Then f−1([0, 1/2)) is the required intermediate neighbourhood.

Notice that the proof of Theorem 6 is a straightforward adaptation of the standard proof

of Urysohn’s Lemma from topology. We can recover the classical Urysohn’s Lemma from

Theorem 6 above.

Lemma 6. Let X be a topological space. Then X is normal if and only if the topological

neighbourhood operator on X satisfies (N4).

Corollary 7 (Urysohn’s Lemma). Let X be a normal topological space. Then for any closed

disjoint subsets A and B of X there is a continuous map f : X → [0, 1] such that f(A) ⊆ {0}

and f(B) ⊆ {1}.

3.5 Hybrid large scale Urysohn’s Lemma

In this section we apply the results of the previous section to prove results for hybrid large

scale spaces.
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Definition 21. Let X be an ls-space and A, B be subsets of X. We say that A and B

are coarsely separated for every uniformly bounded family U in X, st(A,U) ∩ st(B,U) is

weakly bounded.

Note that in the case of metric spaces, this is the same as saying that A and B diverge

in the sense of [17]. Clearly if A and B are disjoint subsets of an ls-space X, then A and B

are coarsely separated if and only if X \B is a coarse neighbourhood of A.

Definition 22. Let X be a hybrid large scale space. We say that X is hybrid large scale

normal (or hls-normal) if for every closed subset A and every hybrid neighbourhood N of

A, there is a closed subset V of X such that V is a hybrid neighbourhood of A and N is a

hybrid neighbourhood of V . We say that an ls-space is ls-normal if it is hybrid large scale

normal when equipped with the discrete topology.

Lemma 7. An hls-space is hls-normal if and only if the hybrid neighbourhood operator

satisfies (N4).

Proof. (⇒) Suppose A has a hybrid neighbourhood N . In particular then, cl(A) is contained

in the interior of N . But since cl(A) ⊆ st(A,U) for any open scale U , N is a coarse

neighbourhood of cl(A). Thus N is a hybrid neighbourhood of cl(A), and we can obtain

an intermediate hybrid neighbourhood as required.

(⇐) Consider a closed subset A and a hybrid neighbourhood N of A. Condition (N4)

gives us an intermediate hybrid neighbourhood V . Taking cl(V ), by similar arguments to

the previous direction, produces the required closed intermediate hybrid neighbourhood.

Combining Lemma 7 and Lemma 6 we obtain:

Corollary 8 (Urysohn’s Lemma for hybrid large scale spaces). Let X be an hls-space. Then

the following are equivalent:

(1) X is hls-normal,

(2) if A has hybrid neighbourhood N , then there is a continuous slowly oscillating map

f : X → [0, 1] such that f(A) ⊆ {0} and f(X \N) ⊆ {1},
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(3) for any closed coarsely separated disjoint subsets A and B of X there is a continuous

slowly oscillating map f : X → [0, 1] such that f(A) ⊆ {0} and f(B) ⊆ {1}.

Proof. The only part which needs proving is the equivalence of (2) and (3). Clearly (2)

implies (3). To show (3) implies (2), notice that if A has hybrid neighbourhood N , then

cl(A) and cl(X \N) are closed, coarsely separated and disjoint.

3.6 Hls-normal spaces

In this section we look at some more properties of hls-normal spaces, as well as some classes

of examples of hls-normal hls-spaces.

Lemma 8. The topology of any hls-normal hls-space is normal.

Proof. It is enough to consider the case where X is U -connected for some open scale U (since

the U -components are open-closed). Notice that the topology induced on any closed and

bounded subset Y of X is normal due to the fact that any two disjoint, closed subsets of

Y are coarsely separated in X. Express X as in Lemma 2. Since each Ai is topologically

normal, so is their directed union. Indeed, for any closed subsets A and B of X, define a

continuous function f1 taking A ∩ A1 to 0 and B ∩ A1 to 1. Then use the Tietze Extension

Theorem to extend the function which agrees with f1 on A1 and which sends A ∩ A2 to 0

and B ∩ A2 to 1 to all of A2. Continuing this process one defines a function f inductively

which sends A to 0 and B to 1, and which is continuous by the conditions on the An.

Theorem 7. If X is a hybrid large scale space, then the following conditions are equivalent:

(1) X is hls-normal,

(2) X is ls-normal as an ls-space and the topology of X is normal.

Proof. (1)⇒ (2) : In view of Lemma 8, the topology of X is normal. Suppose A and B are

two disjoint and coarsely separated subsets of X. Then the closures of A and B are also

coarsely separated and disjoint outside of a bounded set K by Lemma 1. Thus there is a

a slowly oscillating continuous function f : X → [0, 1] sending cl(A) \ K to 0 and sending
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cl(B) \K to 1 by hls-normality. Redefine f on K such that it sends A ∩K to 0 and B ∩K

to 1, and notice that the new f is slowly oscillating.

(2) ⇒ (1) : Suppose A is a closed subset of X and U is its hybrid neighbourhood. We

need to find a closed coarse neighbourhood V of A such that U is a coarse neighbourhood of

V . Pick an open scale U of X and pick a coarse neighbourhood W of A so that U is a coarse

neighbourhood of W . The set V = cl(st(W,U)) is closed and is a coarse neighbourhood of A.

However, it may not be contained in U . Nonetheless, since V is contained in st(st(W,U),U),

it is contained in U ∪K for some bounded set K. Using the topological normality of X, we

may find a closed topological neighbourhood V ′ of A which is contained in U . The required

intermediate closed hybrid neighbourhood between A and U is then (V \ st(K,U)) ∪ (V ′ ∩

cl(st(K,U))).

Thus we may say that

hls-normality = topological normality + ls-normality.

We should note that the compatibility axiom played a crucial role in the proof of this fact.

We now present some examples of hls-normal spaces. In particular, we show that metric

spaces, both with the usual ls-structure and with the C0 structure introduced by Wright, are

hls-normal, as is any set equipped with the maximal uniformly locally finite ls-structure.

Definition 23 (Wright [71]). Let (X, d) be a metric space. Let L be the collection of all

families U of subsets of X such that for every ε > 0, there is a bounded set B ⊆ X such

that diam(U) ≤ ε for all U ∈ U not intersecting B. Then L is an ls-structure, called the C0

ls-structure associated to the metric d.

Proposition 10. Let X be a metric space equipped with the metric topology. Then X

equipped with either the metric or C0 ls-structure is hls-normal.

Proof. The same construction works for both the metric and C0 ls-structures. Let A be a

closed subset and U a hybrid neighbourhood of A. Let V be the set of all points x ∈ X

such that d(x,A) ≤ d(x,X \U). Clearly V is closed and contains a neighbourhood of A. We

claim that V is an intermediate coarse neighbourhood between A and U . Indeed, let U be a
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cover of X by balls of bounded radii. If st(A,U) intersects X \ V in an unbounded set, then

it is easy to check that st(A,U ′) intersects X \ U in an unbounded set, where U ′ is the set

formed from U by replacing every ball B(x,R) by B(x, 2R). This is a contradiction since U ′

is uniformly bounded whenever U is for both ls-structures. A similar argument shows that

U is a hybrid neighbourhood of V .

A family U of subsets of a set X is uniformly locally finite if there is a natural number

m so that card(st(x,U)) ≤ m for all x ∈ X

Definition 24 (Sako [59]). A large scale space X is uniformly locally finite if every

uniformly bounded cover U of X is uniformly locally finite.

On any set X the collection of all uniformly locally finite families forms an ls-structure

(called the maximal uniformly locally finite ls-structure), which is the largest uniformly

locally finite ls-structure on X. Viewed as a coarse structure in the sense of Roe, the maximal

uniformly locally finite structure is nothing but the universal bounded geometry structure

in the sense of [57].

Proposition 11. Let X be a set equipped with the maximal uniformly locally finite ls-

structure. Then X is an ls-normal space.

Proof. Note that given any two coarsely separated subsets A and B of X relative to this

structure, one of them is finite. The result follows easily from this observation.

3.7 Non-normal spaces

At this point, one might ask if there are any hls-spaces which are not hls-normal. An example

of an ls-space which is not ls-normal is described below in Proposition 12. In Section 3.11

we will also see a class of topological groups which are not hls-normal as hls-spaces.

Proposition 12. Let X be the subset of the upper half-plane of Z2 given by −y ≤ x ≤ y,

y > 0. Let A = {(x, x) | x ∈ Z, x > 0} and B = {(−x, x) | x ∈ Z, x > 0}. Define an

ls-structure on this space as follows: let L be the set of all uniformly locally finite families

V such that for any scale U in the metric ls-structure on X the set of V ∈ V intersecting

st(A ∪B,U) is uniformly bounded in the metric ls-structure on X. Then:
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(1) The collection L is a uniformly locally finite ls-structure on X. The uniformly bounded

families with respect to the metric ls-structure are members of L.

(2) A and B are coarsely separated in (X,L ).

(3) there is no slowly oscillating (with respect to L ) function f : X → [0, 1] such that

f(A) = 0, f(B) = 1.

so that, in particular, X is not hls-normal.

Proof. (1) Suppose V1,V2 ∈ L are covers. We will show that st(V1,V2) is in L . Clearly

st(V1,V2) is uniformly locally finite. Suppose then that U is a scale in the metric ls-structure

on X, and let U = st(A∪B,U). Let V ′2 be the family of elements of V2 intersecting U , V ′1 the

family of elements of V1 intersecting st(U,V ′2) and V ′′2 the family of elements of V2 intersecting

st(st(U,V ′2),V ′1). Each of these families is uniformly bounded in the metric ls-structure, and

the family of elements of st(V1,V2) intersecting U clearly refines st(V ′1,V ′2 ∪ V ′′2 ), so it is

uniformly bounded in the metric ls-structure.

(2) Suppose V ∈ L . The set st(A,V) ∩ st(B,V) is contained in the union of all sets

V1∩V2, where V1 ∈ V intersects A and V2 ∈ V intersects B, so the family of those sets forms

a uniformly bounded family U in the metric ls-structure onX. Therefore st(A,V)∩st(B,V) ⊂

st(A,U) ∩ st(B,U) which is finite.

(3) Suppose such an f exists. Let Xi be the set {(x, i) | x ∈ Z}∩X. Consider the cover of

X by 2-balls in the l1-metric structure on X. Since f is in particular slowly oscillating with

respect to the metric ls-structure, there is some M > 0 such that outside of the M -ball at

(1, 1) one has |f(z1)−f(z2)| < 1/6 if z1, z2 are on the same horizontal line and their distance

is 1. Therefore f−1([1/6, 1/3]) and f−1([2/3, 5/6]) both intersect Xi for i > M + 2. Take

zi ∈ f−1([1/6, 1/3])∩Xi and wi ∈ f−1([2/3, 5/6])∩Xi for i > M+2. Notice Z = {zi, wi}i>M+2

belongs to L . Indeed, since f is slowly oscillating with respect to the metric structure, the

union of Z must be coarsely separated from A and B in the metric ls-structure. Thus the

family Z is an element of L . However, |f(zi) − f(wi)| ≥ 1/3 for all i > M + 2, which

contradicts the fact that f is slowly oscillating with respect to L .
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3.8 The Tietze Extension Theorem

As with Urysohn’s Lemma, the proof of the Tietze Extension Theorem for neighbourhood

operators is a straightforward adaptation of the classical proof, and gives us the result for

(hybrid) large scale spaces as a corollary.

Lemma 9. Let ≺ be a neighbourhood operator on a set X satisfying (N0) − (N3) and let

f, g : X → [−M,M ] be two neighbourhood continuous maps. Then f + g is neighbourhood

continuous.

Proof. By Lemma 4 (since [−2M, 2M ] is homeomorphic to [0, 1]), it is enough to show that

for any interval [−2M, b] in R and ε > 0, that (f + g)−1([−2M, b]) has neighbourhood

(f + g)−1([−2M, b + ε)) relative to ≺. Cover [−M,M ] by finitely many intervals In =

[−M, nε/4 + ε/4] and Jn = [−M, b− nε/4], n ∈ Z. It follows that

(f + g)−1([−2M, b]) ⊆
⋃
n

f−1(In) ∩ g−1(Jn)

⊆
⋃
n

f−1(B(In, ε/4)) ∩ g−1(B(Jn, ε/4))

⊆ (f + g)−1([−2M, b+ ε)).

Since f and g are neighbourhood continuous and ≺ satisfies (N0)− (N3), we have

⋃
n

f−1(In) ∩ g−1(Jn) ≺
⋃
n

f−1(B(In, ε/4)) ∩ g−1(B(Jn, ε/4))

which completes the proof.

Lemma 10. Let ≺ be a neighbourhood operator on a set X satisfying (N0)− (N3). Suppose

gn : X → [−mn,mn] is a sequence of neighbourhood continuous maps such that

∞∑
i=1

mn = m <∞.

Then f =
∑∞

i=1 gn : X → R is neighbourhood continuous.

60



Proof. By Lemma 4 (since [−m,m] is homeomorphic to [0, 1]), it is enough to show that for

any interval [−m, b] in R and ε > 0, that f−1([−m, b]) has neighbourhood f−1([−m, b+ ε))

relative to ≺. Pick M such that
∑∞

n=M mn < ε/4 and let f ′ =
∑M−1

n=1 gn. Then

f ′ is neighbourhood continuous by Lemma 9, so f ′−1([−m, b + ε/4]) has neighbourhood

f ′−1([−m, b+ ε/2)). But

f−1([−m, b]) ⊆ f ′−1([−m, b+ ε/4])

and

f ′−1([−m, b+ ε/2)) ⊆ f−1([−m, b+ ε))

from which we obtain the required result.

Definition 25. Let X be a set and ≺ a neighbourhood operator. If A is a subset of X, then

the induced neighbourhood operator ≺A on subsets of A is defined as follows: S ≺A T

precisely when there exists a subset T ′ of X such that S ≺ T ′ as subsets of X and T = T ′∩A.

Observation 2. If a neighbourhood operator ≺ on X satisfies (N0)− (N4), then so does the

induced neighbourhood operator on any subset.

Theorem 8 (Tietze Extension Theorem for neighbourhood operators). Let X be a set and

≺ a neighbourhood operator satisfying (N0) − (N3). Then ≺ satisfies (N4) if and only if

for any function f : A → [−2, 2] from a subset A of X which is neighbourhood continuous

with respect to the operator induced by ≺ on A and the topological neighbourhood operator

on [−2, 2], there is a neighbourhood continuous function g : X → [−2, 2] which extends f .

Proof. The proof follows the classical topological proof closely. Suppose ≺ satisfies (N4).

Claim: Given a neighbourhood continuous map f : A → [−3m, 3m], m > 0, there is a

neighbourhood continuous map g : X → [−m,m] such that |f(x)−g(x)| ≤ 2m for all a ∈ A.

Proof of Claim: Let S = f−1([−3m,−m]) and T = f−1([m, 3m]). Since f is

neighbourhood continuous, we have S ≺A A \ T . It follows from the definition of ≺A
and condition (N2) that S ≺ X \ T , so by Theorem 6, there is a neighbourhood continuous

map g′ : X → [0, 1] such that g′(S) ⊆ {0} and g′(T ) ⊆ {1}. Composing with the appropriate

linear map [0, 1]→ [−m,m], we obtain the required map g. This proves the claim.
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Now, define m(n) = 2n+1/3n for n ≥ 0. Using the Claim, inductively construct a sequence

of functions gn : X → [−m(n),m(n)] which are neighbourhood continuous and such that for

all a ∈ A,

|f(a)−
n+1∑
i=1

gi(a)| ≤ 2m(n).

Then the map g =
∑∞

i=1 gi is neighbourhood continuous by Lemma 10 and agrees with f on

A.

For the other direction, note that if A ≺ N , then the function which sends A to 0 and

X \N to 1 is neighbourhood continuous on A ∪ (X \N). Thus by Theorem 6 we have the

result.

Corollary 9 (Tietze Extension Theorem). Let X be a normal topological space and let A be

a closed subset of X. Then any continuous function f : A → [0, 1] extends to a continuous

function g : X → [0, 1].

Proof. In order to apply Theorem 8, we have only to show that the function f is continuous

with respect to the neighbourhood operator ≺A induced by the topological neighbourhood

operator on X. Suppose S and T are subsets of A, and that the closure of S in A is contained

in a subset V ⊆ T which is open in A. Since A is closed, the closure of S in A coincides with

the closure of S in X. Let V ′ be an open set in X such that V ′ ∩ A = V . Thus the closure

of S (in X) is contained in V ′ which is contained in T ∪X \A, so S ≺A T . This shows that

the topological neighbourhood operator associated to the subspace topology is contained (as

a relation) in ≺A, which gives the required result.

We also obtain a result for hybrid large scale spaces. Note that if A is a subset of an

ls-space X, then the coarse neighbourhood operator induced by the subspace ls-structure

on A coincides with the neighbourhood operator induced on A by the coarse neighbourhood

operator on X.

Corollary 10 (Tietze Extension Theorem for hybrid large scale spaces). Let X be an hls-

space. Then X is hls-normal if and only if for any closed subset A of X, any continuous
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slowly oscillating function f : A→ [0, 1] extends to a continuous slowly oscillating function

g : X → [0, 1].

Corollary 11. Given a metric space X, any bounded continuous slowly oscillating function

on a closed subset of X to R extends to a bounded continuous slowly oscillating function on

the whole of X to R.

Proof. We have already seen that metric spaces are hls-normal as hls-spaces, so the result

follows from Corollary 10.

The purely large scale version of the above result is just Theorem 5.

Neighbourhood operators can also be applied to obtain results for small scale/uniform

spaces. We will use the definition of uniform space in terms of covers introduced by Tukey

[66] (see also [38]), which is equivalent to the original definition in terms of entourages

introduced by Weil [69] and used in Chapter 2 of Bourbaki’s book on general topology [8].

A uniform space is a set X equipped with a collection S of covers of X (which we call

“uniform covers”) satisfying the following axioms:

• {X} is in S,

• If st(U ,U) refines V and U is in S, then V is also in S,

• if U and V are elements of S, then there exists an elementW of S such that st(W ,W)

refines both U and V .

Note the apparent duality with the notion of large scale space. Indeed, uniform spaces

are also called small scale spaces in the literature. For a more formal investigation of

the connections and duality between large and small scale structures, we refer the reader

to [3] and [4]. A map f : X → Y from a uniform space X to a uniform space Y is called

uniformly continuous if for every uniform cover V of Y , f−1(V) = {f−1(V ) | V ∈ V} is a

uniform cover of X. Metric spaces such as R carry a natural uniform structure consisting of

all covers which have positive Lebesgue number. For compact metric spaces, this is just the

set of all covers which are refined by an open cover.
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Lemma 11. Let X be a uniform space and f : X → [0, 1] a function. Then f is

uniformly continuous if and only if it is neighbourhood continuous with respect to the uniform

neighbourhood operator on X and the topological neighbourhood operator on [0, 1].

Proof. (⇒) is easy to check using Lemma 4.

(⇐) Let ε > 0. Choose a finite number of points t1, . . . , tn in [0, 1] such that 0 <

tk+1− tk < ε/2 for all 1 ≤ k ≤ n− 1. By neighbourhood continuity, for each of the intervals

[0, ti], we have a uniform cover Un of X such that st(f−1([0, tn]),Un) ⊆ f−1([0, tn+1)). Taking

a common refinement V of the Un, we have that diam(V ) ≤ ε for every V ∈ V as required.

One can check that for a subset A of a uniform space X, the uniform neighbourhood

operator on A induced by the subspace uniform structure on A coincides with the

neighbourhood operator induced by the uniform neighbourhood operator on X. Thus we

recover the result of Katetov below.

Corollary 12 (Katetov [41]). Let X be a uniform space and A ⊆ X a subspace. Then any

uniformly continuous function f : X → [0, 1] extends to a uniformly continuous function g

on the whole of X.

Proof. It is enough to show that the uniform neighbourhood operator always satisfies the

axiom (N4). Suppose we have N,M ⊆ X with N ≺ M with respect to the uniform

neighbourhood operator. Then there is a uniform cover U in X such that st(N,U) ⊆M . By

the definition of uniform structure, there is a uniform cover V such that st(V ,V) refines U .

Then N ≺ st(N,V) ≺ st(st(N,V),V) ⊆M as required.

We should mention some similarities between the work in [41] and the approach to

extension theorems via neighbourhood operators in this chapter (which was developed

independently with large scale spaces in mind). In [41], Katetov proves a version of his

insertion theorem for abstract relations on sets and functions preserving them, with two key

examples of such relations being what we call the topological and uniform neighbourhood

operators in this chapter. From this he is able to obtain the (topological) Katetov-Tong

Theorem (Theorem 1 in [41]), as well as the result for uniform spaces given above. In

the corrections to [41], the author notes that some axioms are needed (on the relations) in
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order to prove the insertion theorem for relations. These axioms (found in Lemma 1 of the

corrections) closely resemble axioms (N3) and (N4) given in this chapter.

3.9 The Higson compactification and corona

The concept of Higson compactification really belongs to hybrid large scale geometry. For

completeness, let’s prove the following result:

Proposition 13. Given a hybrid large scale space X the following conditions are equivalent:

(1) There is a Hausdorff compactification h(X) of X with the property that every

continuous slowly oscillating function f : X → [0, 1] extends uniquely over h(X),

(2) X is Tychonoff as a topological space.

Proof. The implication (1) =⇒ (2) holds for any space X that admits a Hausdorff

compactification. To show (2) =⇒ (1) first observe that, given any x0 ∈ X and given a

bounded open neighbourhood U of x0 in X, any continuous function f : X → [0, 1] that

vanishes outside of U is slowly oscillating. Thus the set of continuous slowly oscillating

functions on X separates closed sets from points. It is easy to check that the collection of

continuous slowly oscillating functions from X to [0, 1] is a subring of the ring of continuous

functions from X to [0, 1] that is complete with respect to the sup-norm and contains the

constant functions. Thus (1) follows from well-known results in compactification theory (see

for example Theorem (m) in Section 4.5 of [52]).

In [57] (pp. 30–31) the Higson corona of a coarse space X is defined abstractly as a

compact space νX satisfying

C(νX) =
Bh(X)

B0(X)
.

Here Bh(X) is the C∗-algebra of all bounded slowly oscillating (not necessarily continuous)

complex-valued functions and B0(X) is the closed two-sided ideal of functions that “approach

0 at infinity”, i.e. all f ∈ Bh(X) such that for every ε > 0 there is a bounded set K such that

|f(x)| < ε for all x /∈ K. It is shown that the geometric realization of the Higson corona, in

the case of a (paracompact) proper coarse space, can be obtained as h(X) \X, where h(X)
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is the Higson compactification of X, i.e. the compactification corresponding to the algebra

of all continuous bounded slowly oscillating functions X → [0, 1].

In case of arbitrary hybrid large scale spaces we can talk about two ways of defining the

Higson corona: one as above (using Bh(X)/B0(X)) and the other using continuous slowly

oscillating functions, that is via the formula

C(νX) =
Bc
h(X)

Bc
0(X)

.

where Bc
h and Bc

0 are the subalgebras of continuous functions in Bh and B0 respectively. One

purpose of this section is to show that for normal hls-spaces these definitions are equivalent.

There is a natural homomorphism
Bch(X)

Bc0(X)
→ Bh(X)

B0(X)
induced by the inclusion of Bc

h into Bh;

what we are interested in is when that homomorphism is an isomorphism.

Theorem 9. If X is hls-normal as a hybrid ls-space, then the natural homomorphism α :

Bch(X)

Bc0(X)
→ Bh(X)

B0(X)
is an isomorphism.

Proof. Since α has trivial kernel, it is enough to show that Bh = B0 + Bc
h. Let f ∈ Bh and

let U be an open scale. Let A be a subset of X which is maximal with the property that no

two elements of A are in the same element of st(U ,U). Then A is a discrete subset of X, and

no element of x belongs to the closure of more than one element of A. Define a map f ′ from

cl(A) to [0, 1] which sends a′ ∈ A to f(a), where a′ is in closure of {a}. Then one checks that

f ′ is slowly oscillating and continuous. By Theorem 10, we can extend f ′ to a continuous

slowly oscillating function g on all of X. It remains to show that g − f is in B0. Indeed, let

ε > 0. Then for some bounded set K, {a, b} ∈ U ∈ st(U ,U) implies that |g(a)− g(b)| < ε/2

and |f(a)−f(b)| < ε/2. Since every element of X is in the same element of st(U ,U) as some

element of A, we have that |f(x)− g(x)| < ε for every x /∈ K.

Proposition 14. Suppose X is a hybrid large scale space whose topology is Tychonoff. Then

X is hls-normal if and only if, for each closed subset Y of X, its closure Y in the Higson

compactification h(X) is the Higson compactification of Y .

Proof. The Higson compactification of a closed subset Y of X is completely characterized

by the fact that any continuous slowly oscillating complex-valued function on Y extends
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uniquely to hY . If X is hls-normal, then any continuous slowly oscillating function

on Y extends to the whole of X by Corollary 10, and hence to hX and in particular,

to Y , the closure of Y in hX. Uniqueness is easy to check. Conversely, if Y is the

Higson compactification of Y then any continuous bounded slowly oscillating complex-valued

function f on Y extends to a continuous function on Y = hY . By the classical Tietze

Extension Theorem, this extends to a continuous function on hX, which when restricted to

X is a continuous bounded slowly oscillating function extending f .

Proposition 15. Let X be an hls-space whose topology is Tychonoff. Then the following are

equivalent, where for Y ⊆ X, Y denotes the closure of Y in hX:

(1) X is hls-normal,

(2) two disjoint closed subsets A and B of X are coarsely separated if and only if A∩B = ∅.

Proof. (1) =⇒ (2): Suppose X is hls-normal. If A∩B = ∅ then we can define a continuous

map f from hX to [0, 1] which sends A to 0 and B to 1. The restriction of f to X is a

slowly oscillating function sending A to 0 and B to 1. It follows that A and B are coarsely

separated. If A and B are coarsely separated, then by Corollary 8, we can define a slowly

oscillating function sending A to 0 and B to 1. Extending this to hX we see that we must

have A ∩B = ∅ as required.

(2) =⇒ (1): By Corollary 8 it is enough to produce, for closed subsets A and B of X

such that A ∩ B = ∅, a slowly oscillating continuous map f sending A to 0 and B to 1.

This can be accomplished by constructing a continuous map sending A to 0 and B to 1 and

restricting to X.

Note that for proper metric spaces, condition (2) in the above proposition follows from

Proposition 2.3 in [17] and plays a crucial role in relating properties of a proper metric space

with its Higson corona in various places in the literature (see for example [5] or [17]),

3.10 Hybrid structures induced by compactifications

In this section we discuss hybrid ls-structures related to the work of Mine, Yamashita, and

Yamauchi (see [44], [45]) who studied properties of the C0-structure on a locally compact
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metric space relative to a compact metric compactification. Our next definition generalises

that concept.

Definition 26. Given a closed subset A of a topological space X with empty interior define

the large scale structure LS(X,A) on X \A as follows: a family U of subsets of X \A is in

LS(X,A) if and only if for each open neighbourhood U of any a ∈ A in X there is an open

neighbourhood V of a in U such that W ∈ U and W ∩ V 6= ∅ implies W ⊂ U .

It is easy to check that this indeed defines an ls-structure. Note that the bounded sets

in X \ A equipped with the ls-structure LS(X,A) are precisely the subsets of X \ A whose

closure does not intersect A.

Proposition 16. Given a closed subset A of a topological space X with empty interior and

given a continuous function f : X \ A → Y to a complete metric space Y , consider the

following statements:

1. f extends continuously over X,

2. f is slowly oscillating with respect to the large scale structure LS(X,A) on X \ A.

It is always the case that (1) ⇒ (2) and, if each point of A has a countable basis of

neighbourhoods and X is Hausdorff, then (2)⇒ (1).

Proof. (1) ⇒ (2): Let U be an element of LS(X,A) and let ε > 0. For each point a ∈ A,

pick a open neighbourhood Va of a such that f(Va) has diameter less than ε, and choose an

open neighbourhood Wa of a inside Va such that for all U ∈ U , U ∩Wa 6= ∅ ⇒ U ⊆ Va.

Consider the union W of all the Wa. Its complement is a closed subset of X \ A, hence

bounded. Any set U ∈ U which intersects (X \ A) \W must be contained in an element of

Va, so that f is slowly oscillating as required.

(2) ⇒ (1) : Suppose f : X \ A → Y is continuous and slowly oscillating. The first

issue is to construct an extension g : X → Y of f and then to show its continuity. The

natural way to define g(a) for a ∈ A is as the only point belonging to the intersection of all

sets cl(f(U)), U being a neighbourhood of a in X. Choose a decreasing sequence {Un} of

neighbourhoods of a in X. The intersection of all sets cl(f(Un)), n ≥ 1, consists of exactly
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one point if for each ε > 0 there is M > 0 such that the diameter of f(Un) for n > M

is smaller than ε. Suppose for contradiction that there is a sequence xn, yn ∈ Un so that

dist(f(xn), f(yn)) ≥ ε. Since every bounded set in X \ A is contained in some X \ Un,

the family {xn, yn}n≥1 cannot be uniformly bounded because f is slowly oscillating. By

definition of the ls-structure LS(X,A), there must exist a b ∈ A and a neighbourhood V of

b such that for every neighbourhood V ′ ⊆ V of b, there is an n for which {xn, yn} ∩ (X \ V )

and {xn, yn} ∩ V ′ each have exactly one point. We claim that a = b. Indeed, if not, then

since X is Hausdorff, we can choose a neighbourhood of b which contains none of the xn,

yn, a contradiction. Suppose then that Uk ⊆ V . We can choose a neighbourhood V ′ ⊆ Uk

of a such that V ′ does not contain xi or yi for i ≤ k. It follows that if {xn, yn} ∩ V ′ 6= ∅,

then {xn, yn} ⊆ Uk ⊆ V . This is a contradiction. Thus f is well-defined, and its continuity

is easy to show.

Corollary 13. If X is compact Hausdorff, A is a closed subset of X with empty interior

whose every point has a countable basis of neighbourhoods in X, and LS(X,A) is a

hybrid large scale space when equipped with the topology induced from X, then the Higson

compactification of X \ A equipped with the ls-structure LS(X,A) is exactly X.

Proposition 17. If X is a compact metric space and A is a closed subset of X with empty

interior, then LS(X,A) is a hybrid large scale space when equipped with the topology induced

from X.

Proof. Consider the family {B(x, d(x))}x∈X\A, where d(x) is half the distance from x to A.

It is a scale in LS(X,A).

Proposition 18. Suppose X is a Hausdorff topological space, A is a closed subset of X

with empty interior, and each point of A has a countable basis of neighbourhoods in X. If

LS(X,A) is a hybrid large scale space when equipped with the topology induced from X, then

two closed subsets B and C of X \ A are coarsely disjoint if and only if their closures in X

are disjoint.

Proof. Suppose B and C are coarsely disjoint but a ∈ A belongs to cl(B) ∩ cl(C). Pick

sequences bn ∈ B and cn ∈ C, both converging to a. We claim that F := {bn, cn}∞n=1 is a
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uniformly bounded family in LS(X,A). Indeed, let d ∈ A have open neighbourhood U in

X. If d = a, then we can choose N > 0 such that bn ∈ U and an ∈ U for all n > N . Using

the fact that X is Hausdorff, we can choose a smaller neighbourhood V ⊆ U of d which

does not contain ai or bi for i ≤ N . Thus if F ∈ F intersects V , it must be contained in

U . If a 6= d, then we can use the fact that X is Hausdorff to choose an open neighbourhood

V ⊆ U of d which contains none of the an or bn, so that no element of F intersects V . Thus

F is uniformly bounded. On the other hand, st(B,F)∩ st(C,F) is not bounded because its

closure contains a. This is a contradiction.

Suppose B and C are closed in X \A and cl(B)∩ cl(C) = ∅. Since any scale of LS(X,A)

can be coarsened to an open scale, it suffices to show that st(B,U) ∩ st(C,U) is bounded

for any open scale U of LS(X,A). Suppose, on the contrary, that a ∈ A belongs to the

closure of st(B,U) ∩ st(C,U). Without loss of generality, we may assume a /∈ cl(B). Pick

a neighbourhood V of a in X \ cl(B) such that U ∩ V 6= ∅, U ∈ U , implies U ⊂ X \ cl(B).

Since V ∩ st(B,U) 6= ∅, there is U ∈ U intersecting both B and V . But then U ⊂ X \ cl(B),

a contradiction.

Corollary 14. Suppose X is a normal topological space, A is a closed subset of X with empty

interior, and each point of A has a countable basis of neighbourhoods in X. If LS(X,A) is a

hybrid large scale space when equipped with the topology induced from X, then it is hls-normal.

Proof. Suppose B and C are disjoint, closed, coarsely separated subsets of X \ A. By

Proposition 18, the closures of B and C in X are disjoint. Thus the function f from

cl(B) ∪ cl(C) ⊆ X to [0, 1] which sends cl(B) to 0 and cl(C) to 1 is well-defined. Since

it is continuous, it can be extended to the whole of X by topological normality. Thus the

restriction of f to X \ A is a slowly oscillating function, and sends B to 0 and C to 1.

3.11 Topological groups as hls-spaces

Let G be a group. Then G admits a natural ls-structure given by all families of subsets U

which refine a family of the form {g · F | g ∈ G} for some finite subset F [21]. If the group

is finitely generated, then this ls-structure coincides with the one given by the word-length
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metric associated to any finite generating set (see for example [50] for a definition of this

metric). If the group is countable, then this ls-stucture coincides with the unique ls-structure

which is induced by a proper left-invariant metric on the group [62]. For a subset F of G,

we denote the cover {g ·F | g ∈ G} by G(F ). The following lemma gives an explicit formula

for starring such covers.

Lemma 12. Let E and F be subsets of G. Then we have

st(E,G(F )) = E · F−1 · F

st(G(E), G(F )) = G(E · F−1 · F )

Proof. If x ∈ st(E,G(F )), then there is an e ∈ E and g ∈ G such that e = gf1 and x = gf2

for some f1, f2 ∈ F . Thus g = ef−1
1 so x ∈ E · F−1 · F as required. On the other hand,

if x = ef−1
1 f2 ∈ E · F−1 · F , then e ∈ E and {e = ef−1

1 f1, x = ef−1
1 f2} ⊆ ef−1 · F , so

x ∈ st(E,G(F )) as required. Since st(G(E), G(F )) is the collection of all sets st(g ·E,G(F )),

to prove the second equation it suffices to note that g · (E · F−1 · F ) = (g · E) · F · F−1.

More generally, if G is a locally compact topological group, then G admits an ls-structure

given by all families of subsets which refine G(K) for some compact set K. Since the product

of two compact subsets in a topological group is again compact, Lemma 12 shows that this

is indeed an ls-structure. Moreover, G together with this structure and the topology given

form a hybrid large scale space (the uniformly bounded open cover is just G(V ), where V is a

precompact neighbourhood of the identity element). We now describe coarse neighbourhoods

in the case of a locally compact topological group.

Lemma 13. Suppose V is a precompact, symmetric neighbourhood of the identity element

in a locally compact topological group G. Then the following conditions are equivalent:

(1) N is a coarse neighbourhood of U ,

(2) U · V · F · V \N is precompact for each finite subset F of G,

(3) U · V · x · V \N is precompact for each point x of G.
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Proof. (1) =⇒ (2). Suppose N is a coarse neighbourhood of U and F is a finite subset of G.

Enlarge F , if necessary, to contain the neutral element 1G of G and be symmetric. Consider

the uniformly bounded family U = G(F ·V ). If N is a coarse neighbourhood of U , then there

is a precompact set C such that st(U,U) ⊂ N ∪C. By 12 that implies U ·V ·F ·F ·V \N ⊂ C

is precompact. In particular, U · V · F · V \N is precompact.

(2)⇐⇒ (3) is obvious.

(2) =⇒ (1) Given a precompact C ⊂ G, find a symmetric finite subset F of G satisfying

C ⊂ F · V . The uniformly bounded family W = G(F · V ) coarsens the cover C = G(C).

Since (using 12) st(U,W) \N is precompact, so is st(U, C) \N .

Theorem 10. Let G be a locally compact abelian group. Then the following conditions are

equivalent:

(1) G is hybrid large scale normal as an hls-space,

(2) G is σ-compact,

(3) the ls-structure on G is metrizable, that is, induced by a metric.

Proof. (1)⇒ (2) Suppose G is not σ-compact. By local compactness, we can pick a countably

infinite discrete subset B of G. Let V be a precompact symmetric neighbourhood of the

identity element. Notice that for any countable set C in G, G cannot be generated by

V ∪ C. Thus we can construct an uncountable set A = {at}t<ω1 of elements of G indexed

by countable ordinals such that for any t < ω1, at is not in the subgroup generated by

B ∪ V ∪ {ar | r < t}. Note that B is discrete, as is A (since any subset g · V intersects at

most one element of A), so that every precompact subset of either A or B must be finite.

We claim that A has coarse neighbourhood G \B. First note that cl(A) ⊆ st(A,G(V )) and

cl(B) ⊆ st(B,G(V )) are disjoint, so that G \ B contains an open set which contains the

closure of A. We now show that G \B is a coarse neighbourhood of A. Let x be an element

of G, and consider the set A · V · x · V ∩B. If b1 = a1v1xv
′
1 ∈ B and b2 = a2v2xv

′
2 ∈ B with

a1, a2 ∈ A and v1, v
′
1, v2, v

′
2 ∈ V , then a1 (resp. a2) is in the subgroup generated by B∪V and

a2 (resp. a1) so we must have a1 = a2. Thus A · V · x · V ∩B contains only a single point, so

by Lemma 13 we have that X \B is a coarse neighbourhood of A. Suppose for contradiction

72



there is an intermediate coarse neighbourhood N between A and G \ B. For b ∈ B, let

Z(b) = {a ∈ A | a · b /∈ N}. Since N is a coarse neighbourhood of A, each Z(b) · b, and thus

each Z(b), must be precompact, hence finite. Thus the union of all the Z(b) is countable, so

there is an a ∈ A such that a ·b ∈ N for all b ∈ B. But then a−1 ·N ⊆ N ·V ·a−1 ·V intersects

B in an infinite (in particular, not precompact) set, which by Lemma 13 contradicts the fact

that G \B is a coarse neighbourhood of N .

(2)⇒ (3) Suppose G = ∪∞i=1Ki, where the Ki are compact subspaces. If V is an uniformly

bounded open cover, then G is the union of the countable set {st(Ki,V)}∞i=1 of precompact

open sets. Every compact set is contained in a union of finitely many of the st(Ki,V). It

follows that there is a countable set C of precompact subsets such that each precompact

subset is contained in an element of C, and that consequently, the ls-structure on G is

countably generated, i.e. metrizable (see Theorem 2.55 of [57]).

(3) ⇒ (1) Since the ls-structure is metric, G is ls-normal as an ls-space. It is well-known

that locally compact Hausdorff groups are topologically normal, so by Theorem 7 we have

the result.

Corollary 15. Let X be the set R be equipped with the ls-structure coming from the group

structure and the discrete topology. Then X is not hls-normal.

Question 1. The proof of Proposition 10 holds more generally for any group where the

“left-translation structure” (that is, the ls-structure used here) and the “right-translation

structure” (that is, the ls-structure generated by families of the form {K · g | g ∈ G} for K

compact) coincide: only the last sentence of (1)⇒ (2) needs to be changed. Does Proposition

10 hold for all groups?

3.12 Coarse neighbourhoods and ls-structures

Since the coarse neighbourhood operator completely determines which maps to [0, 1] from

an ls-space are slowly oscillating, one might ask to what extend coarse neighbourhoods

determine the ls-structure on a set.
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Definition 27. Given any ls-space X with ls-structure X , we define X cn to be the collection

of all families of subsets U such that for every coarse neighbourhood N of A in X, st(A,U) ⊆

N ∪K for some bounded set K (that is, bounded in the sense of the original structure X ).

Clearly we always have X ⊆ X cn, and if X1 ⊆ X2 are ls-structures on X which induce

the same bounded sets, then X cn
1 ⊆ X cn

2 . The collection X cn need not coincide with X in

general, as the following example shows.

Example 6. Let X be an infinite set and let X be the maximal uniformly locally finite ls-

structure. Then N is a coarse neighbourhood of A ⊆ N if and only if either A is finite or

N is cofinite. Consider a cover of X by infinitely many disjoint finite subsets of unbounded

cardinality. One checks that this cover is in X cn, but it is clearly not in X .

For metric spaces, however, X cn turns out to be equal to the original (metric) ls-structure.

Proposition 19. Let X be a metric space and X the associated ls-structure. Then X = X cn.

Proof. We already have X ⊆ X cn, so suppose for contradiction that there is a family U in

X cn which is not in X . Since U is not uniformly bounded, we may choose a sequence Un

of elements of U and pairs {an, bn} ⊆ Un of points in X such that the bn are unbounded,

and for each n, d(an, bn) > n. Consider the subset N =
⋃∞
n=0B(an, n). Clearly it is a

coarse neighbourhood of A = {an | n ∈ N}, but st(A,U) ∩ X \ N contains the bns, so it is

unbounded.

More generally, one may ask when X cn is an ls-structure. As shown below, for ls-normal

ls-spaces X cn turns out to be an ls-structure. Note that the maximal uniformly locally finite

structure is ls-normal, so even if X cn is an ls-structure, it need not coincide with the original

structure X as Example 6 above shows.

Proposition 20. Let X be an ls-space which is ls-normal. Then X cn is an ls-structure.

Proof. Let U and V be elements of X cn and let A have coarse neighbourhood N . By

normality, there are intermediate coarse neighbourhoods A ≺ L ≺ M ≺ N . Then

A1 = st(A,V) is contained in L ∪ K for some bounded subset K. In particular, M is a

coarse neighbourhood of st(A,V). Similarly, A2 = st(A1,U) has coarse neighbourhood N .
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Finally, st(A2,V) = st(A, st(U ,V)) is contained in N ∪K ′ for some bounded set K ′, which

gives the result.

Proposition 21. Let X and Y be metric spaces and let f : X → Y be a map which sends

bounded sets in X to bounded sets in Y and which is proper (that is, the inverse image of a

bounded set is bounded). Then f is ls-continuous if and only if for every subset A of Y and

every coarse neighbourhood N of A, f−1(N) is a coarse neighbourhood of f−1(A).

Proof. (⇒) Suppose N is a coarse neighbourhood of A ⊆ Y . Then for every uniformly

bounded cover U of X, the image of st(f−1(A),U) is contained in st(A, f(U)), which in turn

is contained in N ∪K for some bounded set K. It follows, since f is coarse, that f−1(N) is

a coarse neighbourhood of f−1(A).

(⇐) Suppose that f is not ls-continuous. Then there is some R > 0 such that the set

{d(f(x), f(x′)) | (x, x′) ∈ X ×X, d(x, x′) < R}

is unbounded. In particular, we may choose a sequence of pairs of points (an, bn)n∈N in X

such that d(an, bn) < R and d(f(an), f(bn)) > n for every n. Because f sends bounded

sets to bounded sets, the an and bn cannot all be contained in a single bounded set K, since

otherwise all the f(an) and f(bn) would be contained in the bounded set f(K). Since each an

is distance at most R from bn, we can moreover say that neither of the sequences (an)n∈N and

(bn)n∈N are bounded. Thus neither of the sequences (f(an))n∈N and (f(bn))n∈N are bounded,

because f is a proper map.

We now choose a subsequence of (an, bn) for which the images of the points are sufficiently

spread out. To do so, we pick a base point y0 ∈ Y and set φ(0) = 0. The induction proceeds

as follows: for i ∈ N, let

p(i) = max
{
{d(y0, f(aφ(k))) | k ≤ i} ∪ {d(y0, f(bφ(k))) | k ≤ i}

}
+ i+ 1

and choose φ(i+1) ≥ i+1 so that f(aφ(i+1)) and f(bφ(i+1)) are both outside the bounded set

B(y0, p(i)). Thus we obtain a subsequence (aφ(n), bφ(n))n∈N with the property that for every

k, i ∈ N, f(bφ(k)) is distance at least i− 1 from f(aφ(i)).
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Clearly N =
⋃∞
i=0B(f(aφ(n)), n−1) is a coarse neighbourhood of A = {f(aφ(n)) | n ∈ N}.

We claim, however, that f−1(N) is not a coarse neighbourhood of f−1(A). Indeed, if U is

the uniformly bounded cover of X by balls of radius R, then st(f−1(A),U) contains all the

bφ(n). On the other hand, X \ f−1(N) also contains each bφ(n) by construction. Since the set

{bφ(n) | n ∈ N} is unbounded, we have that st(f−1(A),U) ∩ (X \ f−1(N))) is unbounded, so

f−1(N) is not a coarse neighbourhood of f−1(A).
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Chapter 4

A coarse version of monotone-light

factorizations

This chapter is based on the accepted manuscript of the following paper: J. Dydak and T.

Weighill, Monotone-light factorizations in coarse geometry, Topology and its Applications

239, 2018, 160–180. The contributions of each author of the above manuscript may be

considered roughly equal. No revisions were recommended by the referees. The introduction

has been adapted, otherwise the manuscript has remained more or less unchanged.

4.1 Introduction

In this chapter we are interested in a coarse version of a particular factorization of continuous

maps between compact Hausdorff spaces, namely the so-called monotone-light factorization.

Recall that continuous map from a compact Hausdorff space X to a compact Hausdorff space

Y is called monotone if it is surjective and each of its fibres is connected, and is called light

if each of its fibres is totally disconnected (see for example [70]). Eilenberg showed in [26]

that every continuous map f between compact metric spaces factorizes as f = me, where m

is light and e is monotone (in fact, the result holds more generally for compact Hausdorff

spaces, see [12]). Moreover, this factorization satisfies a universal property, namely that for

77



any commutative diagram

• e //

u

��

• m // •
v

��
•

e′
// •

m′
// •

where the arrows are continuous maps and the objects are compact Hausdorff spaces, with e′

monotone and m′ light, there is a unique continuous map h making the diagram commute:

• e //

u

��

•
h
��

m // •
v

��
•

e′
// •

m′
// •

In the language of category theory, this is to say that the classes of monotone maps and light

maps constitute a factorization system [29] on the category of compact Hausdorff spaces

and continuous maps.

In this chapter, we introduce large scale analogues of the topological monotone and

light maps mentioned above, to which we give the names coarsely monotone and coarsely

light maps respectively. These classes of maps will turn out to constitute a factorization

system on the coarse category (defined in the next section). A large part of the chapter

is devoted to making some connections between the topological and large scale notions of

monotone and light. We do so in two ways. Firstly, we examine these classes of maps from a

categorical perspective inspired by the results in [12]. Secondly, we make some connections

using the Higson corona in the case when the large scale spaces involved are proper metric

spaces. Coarsely light maps generalize both coarse embeddings and coarsely n-to-1 maps; we

prove that coarsely light maps preserve certain coarse properties such as finite asymptotic

dimension and Yu’s Property A in a similar way to these classes of maps. In the final section

of the chapter, we make some remarks on coarsely monotone and light maps between groups.

The main goal of this chapter is to introduce two interesting classes of maps between large

scale spaces and study some of their properties. Along the way, however, we also investigate

some of the structure of the coarse category and apply some basic categorical arguments

to large scale spaces and maps between them. It would be interesting to see what other

categorical notions turn out to be useful in the study of large scale spaces.
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4.2 Preliminaries

We recall some basic terminology from [21]. Let X be a set. Recall that the star st(B,U)

of a subset B of X with respect to a family U of subsets of X is the union of those elements

of U that intersect B. More generally, for two families B and U of subsets of X, st(B,U) is

the family {st(B,U) | B ∈ B}.

Definition 28. A large scale structure L on a set X is a nonempty set of families B

of subsets of X (which we call the uniformly bounded families in X) satisfying the

following conditions:

(1) B1 ∈ L implies B2 ∈ L if each element of B2 consisting of more than one point is

contained in some element of B1.

(2) B1,B2 ∈ L implies st(B1,B2) ∈ L.

Remark 3. Note that any uniformly bounded family U can be extended to a cover which

is also uniformly bounded by adding singleton sets to the family (we call this cover the

trivial extension of U), so we will often assume that a given family is in fact a cover

for convenience. Note that a family U of subsets of X refines st(U ,V) for any cover V of X.

By a large scale space (or ls-space for short), we mean a set equipped with a large scale

structure. A subset of a large scale space X is called bounded if it is an element of some

uniformly bounded family in X. A classical example of a large scale space is as follows. Let

(X, d) be an ∞-metric space. Define the uniformly bounded families in X to be all those

families U for which there is a M > 0 such that every element of U has diameter at most

M . In fact, a large scale structure on X arises in this way from an ∞-metric on X if and

only if it is countably generated [21]. We call such a large scale structure metrizable.

Given a set map f : X → Y from an ls-space X to an ls-space Y , we say that f is

large scale continuous or ls-continuous if for every uniformly bounded family U in X,

the family

f(U) = {f(U) | U ∈ U}
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is uniformly bounded in Y . Given two set maps f, g : X → Y , we say that f and g are close

and write f ∼ g if the family

{{f(x), g(x)} | x ∈ X}

is uniformly bounded, in which case we say that this family (or any uniformly bounded

family which it refines) witnesses the closeness of f and g.

Certain types of ls-continuous maps are worth mentioning. Recall that a map f : X → Y

between ls-spaces is called coarsely surjective if there is a uniformly bounded family U in

Y such that Y ⊆ st(f(X),U). An ls-continuous map f is called a coarse equivalence if

there is an ls-continuous map f ′ in the other direction such that ff ′ and f ′f are both close

to the identity. An ls-continuous map f : X → Y is called a coarse embedding if for every

uniformly bounded family U in Y , f−1(U) = {f−1(U) | U ∈ U} is uniformly bounded in

X. It is easy to check that an ls-continuous map is a coarse equivalence if and only if it is

coarsely surjective and a coarse embedding.

We are now ready to introduce the category on which we will construct a factorization

system. In the present chapter, by the coarse category we mean the category whose objects

are large scale spaces and whose morphisms are equivalence classes of ls-continuous maps

under the closeness relation. Note that this differs from Roe’s coarse category in [56], where

the maps are further required to be proper (an ls-continuous map is proper if the inverse

image of every bounded set is bounded), although similar results will hold for this category

as well (see Remark 5). It is easy to check that composition is well-defined in the coarse

category, that is, if f ∼ g and h ∼ j, then hf ∼ jg whenever these composites are defined.

Note that the isomorphisms in the coarse category are represented by coarse equivalences.

For a set X, a family U of subsets of X and x, x′ ∈ X, we write xUx′ to mean that there

is an element of U containing both x and x′. We say that x and x′ are U-connected if there

is a finite sequence x = x1, x2, . . . , xk = x′ of elements of X with xiUxi+1. Equivalence

classes under the relation “x is U -connected to x′” will be called U -components. For U

and V two families of subsets of X, we write U ≤ V in case U refines V , in which case we

also say that V coarsens U .
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4.3 Coarsely light maps

In this section we introduce the large scale analogue of topological light maps.

Definition 29. Let f : X → Y be an ls-continuous map between ls-spaces. For every pair

of uniformly bounded families U in X and V in Y , denote by c(U , f,V) the family of subsets

consisting of all U-components of elements of f−1(V). The closure under refinement of the

set of all such c(U , f,V) is called the light structure on X with respect to f .

Proposition 22. Let f : X → Y be an ls-continuous map between ls-spaces. Then the light

structure on X with respect to f is an ls-structure which contains the ls-structure on X.

Proof. Let c(U , f,V) and c(U ′, f,V ′) be two elements of the light structure. We may suppose

that U , U ′, V and V ′ are covers and that V and V ′ coarsen f(U) and f(U ′) respectively. It

is easy to check that

st(c(U , f,V), c(U ′, f,V ′)) ≤ c(st(U ,U ′), f, st(V ,V ′)).

It follows that the light structure is an ls-structure. To see that it contains the ls-structure

on X, note that for a uniformly bounded cover U of X, we have U ≤ c(U , f, f(U)).

Proposition 23. If f : X → Y is a map between metrizable coarse spaces, then the light

structure on X with respect to f is also metrizable.

Proof. Since the ls-structures on X and Y are generated by metrics, we may assume that

there are countable families (Ui)i∈N and (Vi)i∈N of uniformly bounded covers of X and Y

respectively such that any uniformly bounded cover of X refines some Ui and any uniformly

bounded cover of Y refines some Vi. It follows that the light structure on X with respect to

f is generated by the countable family (c(Ui, f,Vj))i,j∈N.

Definition 30. We say that an ls-continuous map f : X → Y is coarsely light if the light

structure on X with respect to f coincides with the ls-structure on X.

If X is an ls-space, and A ⊆ X is a subset, then there is a natural ls-structure on A

induced by X, namely, all those families in A which are uniformly bounded as families in
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X. We will call such an A together with the induced structure a subspace of X. Given a

collection (Aα)α∈I of subspaces of an ls-space X, let
⊔
Aα be the disjoint union of the Aα,

with the ls-structure given by all families U which satisfy the following conditions:

(1) the image of U under the obvious map p :
⊔
Aα → X is a uniformly bounded family;

(2) each member of U intersects at most one of the Aα.

Using the above construction, we can formulate a generalization of the notion of uniform

asymptotic dimension of subspaces of a metric space given in [7]. A family (Aα)α∈I of

subspaces of an ls-space X satisfies the inequality asdim ≤ n uniformly if asdim
⊔
Aα ≤

n, that is, for every uniformly bounded cover U of
⊔
Aα, there is a uniformly bounded cover

V of
⊔
Aα which coarsens U and which has point multiplicity at most n + 1. In particular,

a space X is of asymptotic dimension less than n iff {X} satisfies asdim ≤ n uniformly. It

is easy to see that an ls-space is of asymptotic dimension 0 if and only if for every uniformly

bounded family U , the U -components of X form a uniformly bounded family.

Proposition 24. Let f : X → Y be an ls-continuous map. Then the following are equivalent:

(a) f is coarsely light,

(b) for any uniformly bounded cover V of Y , the family of subspaces f−1(V) = {f−1(V ) |

V ∈ V} satisfies the inequality asdim ≤ 0 uniformly.

If Y is a metric space with the induced ls-structure, then the above are further equivalent to

(c) asdimf = 0 in the sense of [9], that is, for every subspace B ⊆ Y with asdim(B) = 0,

asdimf−1(B) = 0.

Proof. (a)⇔ (b): To say that f is coarsely light is precisely to say that the U -components of

the elements of f−1(V) form a uniformly bounded family for any uniformly bounded families

U in X and V of Y . This is clearly equivalent to (b).

(a) ⇒ (c): Suppose B ⊆ Y has asymptotic dimension 0, and let U be a uniformly

bounded cover of f−1(B). Consider the uniformly bounded cover f(U) of B. By hypothesis,

the f(U)-components of B form a uniformly bounded family V . Thus the U -components of
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the family f−1(V) form a uniformly bounded cover of f−1(B). But this cover is precisely the

set of U -components of f−1(B).

(c)⇒ (a): If f is not coarsely light, then there is a family c(U , f,V) which is not uniformly

bounded, with U and V uniformly bounded families in X and Y respectively. In particular,

there is a sequence V1, V2, . . . of elements of V such that f−1(Vi) has a U -component of

diameter greater than i. If there is a bounded set K in Y containing infinitely many of

the Vi, then asdimK = 0, but f−1(K) has an unbounded U -component, which contradicts

(c). Thus every bounded set K in Y contains only finitely many of the Vi. Since the Vi are

uniformly bounded, we may choose a subsequence Wi such that d(Wi,Wi+1) > i. The union

W =
⋃
Wi is clearly of asympotic dimension 0, but its inverse image has an unbounded

U -component, which once again contradicts (c).

Example 7. The following are examples of coarsely light maps:

• any ls-continuous map f : X → Y where asdimX = 0.

• any ls-continuous map f : X → Y where Y has bounded geometry (i.e. where the

elements of any uniformly bounded cover have bounded cardinality) and

sup{|f−1(y)| | y ∈ Y } <∞.

• any coarse embedding, and in particular any coarse equivalence.

Recall that an ls-continuous map f : X → Y is called coarsely n-to-1 [3, 46] if for every

uniformly bounded cover V of Y there is a uniformly bounded cover U of X such that each

element of f−1(V) is contained in the union of n elements of U .

Proposition 25. If f : X → Y is coarsely n-to-1, then it is coarsely light.

Proof. Let U and V be uniformly bounded covers of X and Y respectively. We may assume

that U is large enough so that every element of f−1(V) is contained in a union of n elements

of U . It follows that c(U , f,V) refines Un−1, the star of U with itself n − 1 times, so it is

uniformly bounded.

Lemma 14. If f : X → Y is coarsely light and is close to g, then g is coarsely light.
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Proof. This follows from the fact that for any uniformly bounded cover V of Y , there is a

uniformly bounded cover U of Y such that g−1(V) ≤ f−1(U).

By the lemma above, it makes sense to speak of the class of coarsely light maps in

the coarse category: a morphism in the coarse category is coarsely light if and only if one

(and hence all) of its representatives are coarsely light. The following lemma shows that

coarsely light maps form a subcategory of the coarse category, i.e. that they are closed under

composition.

Lemma 15. If f : X → Y and g : Y → Z are coarsely light maps, then gf is a coarsely

light map.

Proof. Let V be a uniformly bounded cover of Z and U a uniformly bounded cover ofX. Since

f and g are coarsely light, c(f(U), g,V) is uniformly bounded, as is c(U , f, c(f(U), g,V)).

Since c(U , gf,V) is refinement of this cover, it is uniformly bounded.

Given any ls-continuous map f : X → Y of coarse spaces, let Xf denote X with the light

structure with respect to f . Then f factorises as

X

e   

f // Y

Xf

f ′

>>

(4.1)

where e is the identity set map. One checks that f ′ is ls-continuous and coarsely light; we

will call f ′ the light-part of f . This factorization satisfies a universal property, as the

following lemma shows.

Lemma 16. Let f = f ′e be the factorization as above. Given any diagram of solid arrows

below consisting of ls-continuous maps which commutes up to closeness and in which n is a

coarsely light map, there is a unique-up-to-closeness ls-continuous map g making the diagram
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commute up to closeness.

X

f

��

e

��

e′

  
Xf

f ′

��

g
//W

n

��
Y

h
// Z

(4.2)

Proof. Since e is the identity as a set map, the map g, if it exists, is clearly unique-up-

to-closeness. Define a g : Xf → W to be the same as e′ at the level of underlying sets.

It that remains to show that g so defined is ls-continuous. Consider a uniformly bounded

family in Xf , which we may suppose to be of the form c(U , f,V). If x and x′ are in an

element U of U , then g(x) and g(x′) are in the subset g(U) = e′(U) ∈ e′(U). Moreover, if

f ′(x) = f(x) and f ′(x′) = f ′(x′) are both in an element V ∈ V , then hf ′(x) and hf ′(x′) are

both in h(V ) ∈ h(V). Let T be the uniformly bounded cover which witnesses the closeness

of hf and ne′. Then under the assumptions on x and x′, ng(x) and ng(x′) are in some

V ′ ∈ V ′ = st(h(V), T ). In other words, g(c(U , f,V)) ≤ c(e′(U), n,V ′). Since n is coarsely

light, this second cover is uniformly bounded, so g is ls-continuous as required.

4.4 Coarsely monotone maps and monotone-light fac-

torizations

We are now ready to define coarsely monotone maps. Let f : X → Y be an ls-continuous

map and consider its factorization f = f ′e as in (4.1). We say that f is coarsely monotone

if f ′ (i.e. the light-part of f) is a coarse equivalence. Since coarse equivalences are always

light, it is easy to see that any coarse equivalence is also monotone. The following lemma is

easy to show.

Lemma 17. An ls-continuous map f : X → Y is coarsely monotone if and only if it

is coarsely surjective and for every uniformly bounded cover V of Y , there is a uniformly
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bounded family U in X and a family T of U-connected subsets of X which coarsens f−1(V)

such that f(T ) is a uniformly bounded family in Y .

The following lemma shows that it makes sense to speak of coarsely monotone maps in

the coarse category.

Lemma 18. If f ∼ g and f is coarsely monotone, then g is coarsely monotone.

Proof. The light structures induced by g and f are the same, so the light-parts of g and f

are close. The result follows.

Let C be a general category and let (E ,M) be a pair of classes of morphisms in C.

Recall that the pair (E ,M) is said to constitute a factorization system [29] if the following

conditions are satisfied:

(1) each of E and M contains the isomorphisms and is closed under composition;

(2) every morphism f in C can be written as f = me with m ∈M and e ∈ E ;

(3) given any commutative diagram of solid arrows below, with e, e′ ∈ E , m,m′ ∈ M,

there is a unique morphism h making the diagram commute:

• e //

u

��

•
h
��

m // •
v

��
•

e′
// •

m′
// •

Note that in (3), if u and v are isomorphisms, then so is h. Let CMon be the class

of (equivalence classes of) coarsely monotone maps and CLight be the class of (equivalence

classes of) coarsely light maps in the coarse category.

Theorem 11. The pair (CMon,CLight) constitutes a factorization system on the coarse

category. In particular, every ls-continuous map f factorizes as f = f ′e where f ′ is coarsely

light and e is coarsely monotone.

Proof. Let f be an ls-continuous map, and let f = f ′e be the factorization of f as in (4.1).

Clearly e is coarsely monotone, so this proves (2) in the definition of a factorization system.

86



Condition (3) is an easy consequence of Lemma 16. Thus, after Lemma 15, all that remains

to be shown is that coarsely monotone maps are closed under composition. This in fact

follows from (2), (3) and Lemma 15. Let e : X → Y and e′ : Y → Z be coarsely monotone

maps, thought of as morphisms in the coarse category, and factorize e′e as e′e = me′′ with

m coarsely light and e′′ coarsely monotone. Then by (3) we have the morphism h in the

following commutative diagram:

• e // •
h
��

•
e′

��
•

e′′
// • m

// •

We also have the morphism j in the diagram

• e′ // •
j

��

•

•
h′
// •

mi
// •

where h = ih′ is the (CMon,CLight)-factorization of h. Thus ij is a right inverse (in the

coarse category) to m. To show that it is a two-sided inverse, we apply the uniqueness part

of (3) to the commutative diagram

• e′′ // •
ijm

��

m // •

•
e′′
// • m

// •

Remark 4. In the language of category theory, Lemma 16 states that the coarse category

admits a right CLight-factorization system in the sense of [15] (see also [25]). It is

well known that for a category C and a class M of morphisms in C, if M contains the

isomorphisms and is closed under composition and C admits a rightM-factorization system,

then M is part of a unique factorization system (E ,M) on the category. Thus the above

theorem can be proved using categorical arguments once we have Lemmas 15 and 16.
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We will call a factorization f ∼ f ′e with f ′ coarsely light and e coarsely monotone a

coarse monotone-light factorization of f . Note that, by condition (3) in the definition

of a factorization system, such a factorization is unique up to a coarse equivalence which

makes the obvious diagram commute up to closeness. A large number of useful properties

of coarsely monotone and light maps follow from the above theorem and general facts about

factorization systems. For example, if fg and f are coarsely light, then so is g; dually, if

fg and g are coarsely monotone, then so is f . We conclude this section with the following

easy observations, which show how coarsely light and coarsely monotone maps can be used

to characterise certain types of ls-spaces.

Proposition 26. An ls-space X has asymptotic dimension 0 if and only if every ls-

continuous map f : X → Y is coarsely light. An ls-space X is U-connected for some

uniformly bounded cover U if and only if every ls-continuous map f : X → B to a bounded

space B is coarsely monotone.

Remark 5. If f , g and h are ls-continuous maps such that f = gh and h is surjective,

then g and h are both proper whenever f is proper. From this and Theorem 11 it follows

easily that the classes of coarsely monotone coarse maps and coarsely light coarse maps form

a factorization system on Roe’s coarse category (i.e. the subcategory of the coarse category

consisting of the coarse maps).

4.5 Pullbacks in the coarse category

In this section we collect some basic facts about pullbacks in the coarse category which we

will need in the next section. Suppose the following diagram of ls-continuous maps represents

a pullback in the coarse category:

P

g
��

j // C

f
��

A
h
// B

(4.3)

Explicitly, this means that the above square commutes up to closeness, and for any ls-space

X and any ls-continuous maps u : X → A and v : X → C such that hu ∼ fv, there is a
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unique-up-to-closeness map w : X → P such that gw ∼ u and jw ∼ v. Consider the product

A×C, with the ls-structure given by all families U such that πA(U) and πC(U) are uniformly

bounded, where πA : A×C → A and πC : A×C → C are the evident projections. There is

a canonical ls-continuous map k = (g, j) : P → A× C.

Lemma 19. The map k = (g, j) given above is a coarse embedding.

Proof. Suppose not. Let U be a uniformly bounded family in A × C such that k−1(U) is

not uniformly bounded. Let W be the set {(p, p′) ∈ P × P | k(p)Uk(p′)} equipped with the

ls-structure consisting only of families of singleton sets. The projections α1, α2 : W → P are

ls-continuous, and by construction, kα1 and kα2 are close. It follows that gα1 ∼ gα2 and

jα1 ∼ jα2. But then the uniqueness part of the pullback property forces α1 and α2 to be

close, which cannot be the case since k−1(U) is not uniformly bounded.

Remark 6. The above lemma also follows from the observation that the monomorphisms in

the coarse category are precisely the coarse embeddings.

From Lemma 19 above it follows that the pullback, when it exists, can be canonically

embedded into the product. Thus, we can replace P by the image of the map k and replace

j and g by the obvious projections and still obtain a pullback. The fact that the resulting

diagram must commute up to closeness means that we may always assume that P is a subset

of

A×S C = {(a, c) ∈ A× C | h(a)Sf(c)}

for some S a uniformly bounded family in B. We are now ready to present an example to

show that not all pullbacks exist in the coarse category.

Example 8. Let A be the one point set, B be the natural numbers with the ls-structure

arising from the usual metric, and C the subspace

{(a0, a1 . . .) | (i > a0)⇒ (ai = 0)} ⊆
∞⊕
i=1

N

where the metric on
⊕∞

i=1 N is Euclidean distance. Let h : A→ B be the inclusion of 0 and

let f : C → B be the projection (a0, a1, . . .) 7→ a0. Then f and h are ls-continuous, but no

pullback of f along h exists.
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Proof. Suppose a pullback does exist, given by the diagram (4.3). By the above arguments,

we may set P ⊆ A×S C for some uniformly bounded family S in B. Since h is the inclusion

of 0, this means that P can be viewed as a subspace of f−1(B(0, N)) for some N > 0. Let

Q be the subspace f−1(B(0, N + 1)), with l : Q → C the obvious inclusion and m the

unique map to A. Since hm ∼ fl, by the property of the pullback, there must be a unique

ls-continuous map k : Q → P such that jk ∼ l. In particular, everything in the image of l

should be a bounded distance from the image of j, but while the (N + 1)th coordinate in P

has to be 0, in Q it can be arbitrary, giving the required contradiction.

Note that products do exist in the coarse category (as defined in the present chapter):

the product of a ls-space A and B is given by the set A×B with the ls-structure consisting

of all those families U such that πA(U) and πB(U) are both uniformly bounded, where πA

and πB are the projections.

4.6 Coarsely monotone maps arising from a reflection

Recall that a subcategory X of a category C is reflective if for every object C of C, there is

an object I(C) of X and morphism ηC : C → I(C) which is universal in the following sense:

for any X an object of X and f : C → X a morphism in C, there is a unique morphism

g : I(C) → X in X such that gηC = f . The assignment C 7→ I(C) extends to a functor

I : C→ X in the obvious way, which we call the reflection of C onto X.

Let CHaus be the category of compact Hausdorff spaces and continuous maps (the

category on which the classical monotone and lights maps constitute a factorization system),

and let CHaus0 be the full subcategory consisting of the totally disconnected spaces. Then

CHaus0 is reflective in CHaus. Indeed, for X a compact Hausdorff space, let I(X) be the

set of connected components of X with the quotient topology, and let ηX : X → I(X) be

the quotient map. Then I(X) is a totally disconnected compact Hausdorff space, and ηX

is the universal continuous map from X to a totally disconnected compact Hausdorff space

(see for example [8]).

The monotone maps between compact Hausdorff spaces can be recovered from this

reflection in the following way. For a general reflection I : C → X, let EI be the class of
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morphisms f such that I(f) is an isomorphism. Thus in the case currently being considered,

EI is the class of continuous maps which induce a bijection on connected components. Every

monotone map is in EI , but not every map in EI is monotone. It is easy to check that a

continuous map f is monotone if and only if for every pullback

P

g

��

// X

f
��

1 // Y

where 1 is the one point space, the map g is in EI .

Remark 7. In fact, a continuous map f is monotone if and only if every pullback of f is

in EI . The construction of the class of monotone maps from the reflection I is a special case

of a much more general process outlined in [12]. The context in [12], however, is that of a

category admitting pullbacks, of which the coarse category is not an example as we have seen.

Since a compact Hausdorff space is totally disconnected if and only if it has inductive

dimension 0 (see for example [1]), one might wonder if a similar process can be applied

using the class of ls-spaces of asymptotic dimension zero to arrive at the class of coarsely

monotone maps. We must first describe the reflection. If X is an ls-space, then let I(X)

be the ls-space whose underlying set is the same as X, but whose ls-structure consists of all

families which refine the set of U -components of X for some uniformly bounded family U in

X. Clearly I(X) has asymptotic dimension zero, and the identity set map ηX : X → I(X)

is ls-continuous. The following lemma is easy to prove.

Lemma 20. Let f : X → Y be an ls-continuous map, where asdimY = 0. Then f factors

(up to closeness) uniquely (up to closeness) through ηX : X → I(X).

It follows that the assignment X 7→ I(X) gives a reflection from the coarse category to

the full subcategory of ls-spaces of asymptotic dimension zero. In particular, the assignment

X 7→ I(X) extends to a functor I, which (in terms of representatives) assigns to each ls-

continuous map f : X → Y an ls-continuous map I(f) : I(X) → I(Y ) (which is the same

as f at the level of underlying sets). As in the classical case, we let EI be the class of
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all (equivalence classes of) ls-continuous maps f such that I(f) is a isomorphism (i.e. is

represented by a coarse equivalence). Clearly:

Lemma 21. A coarsely surjective ls-continuous map f : X → Y is in EI if and only if for

every V a uniformly bounded cover in Y there is a uniformly bounded family U in X such

that the inverse image of each V-component of Y is contained in a U-component of X.

We will need the following easy categorical lemma.

Lemma 22. Let I : C→ X be any reflection. Then, for any pair of morphisms f : A→ B,

g : B → C, such that f has a right inverse, we have

gf ∈ EI ⇒ g ∈ EI .

Proof. Let h be the two-sided inverse of I(gf) = I(g)I(f). Then I(f)h is a right inverse of

I(g). We also have

I(f)hI(g)I(f) = I(f)

so applying the right inverse of I(f) to both sides, we have that I(f)h is a two-sided inverse

of I(g) as required.

We can already observe from Lemma 21 that coarsely monotone maps are always in EI .

The converse, however, does not hold. By analogy with the classical case, one might ask for

a characterisation of coarsely monotone maps in terms of stability under certain pullbacks.

However, as we have seen, not all pullbacks exist in the coarse category. This motivates us

to instead consider an alternative condition.

Lemma 23. Let C be a category which admits all pullbacks, and let EI be the class of

morphisms inverted by a reflection I : C → X. Then the following are equivalent for

morphisms f : X → Y and j : Z → Y in C:

(P1) the pullback of f along j is in EI ,
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(P2) for every commutative diagram

W
i //

g
��

X

f
��

Z
j
// Y

there is a commutative diagram with e ∈ EI

W
d

  

g

��

i

##
P

e
��

c // X

f
��

Z
j
// Y

(4.4)

Proof. (P1 ⇒ (P2) is obvious – simply let e be the pullback of f along j.

(P2 ⇒ (P1): In (4.4) above, let W be the pullback of f along j and i and g the projections.

It follows from the property of the pullback that d has a left inverse s such that gs = e ∈ EI .

Thus s has a right inverse, so applying Lemma 22, we obtain g ∈ EI as required.

Let F be a class of morphisms in a category C. We say that a morphism f : X → Y in

EI is stably in EI with respect to F if for every j : Z → Y in F , the condition (P2) in

the above lemma is satisfied. The classical monotone maps are thus precisely the continuous

maps which are stably in EI with respect to all maps j whose domain is the one point space

(where I is the reflection onto the totally disconnected spaces). We are now ready to state

an analogue for coarsely monotone maps. Recall that a ls-space is called monogenic if its

ls-structure is generated by a single family of subsets [57].

Theorem 12. Let F be the set of all (equivalence classes of) ls-continuous maps whose

domain is monogenic. Then a map f : X → Y is coarsely monotone if and only if it is stably

in EI with respect to F , where I is the reflection onto ls-spaces of asymptotic dimension 0.

Proof. (⇒) Consider a diagram

W
i //

g
��

X

f
��

Z
j
// Y

93



of ls-continuous maps which commutes up to closeness as witnessed by the uniformly bounded

cover T in Y , where f is coarsely monotone and U is a cover that generates the ls-structure

on Z. Since f is coarsely surjective, there is some R a uniformly bounded cover in Y such

that Y ⊆ st(Im(f),R). We now construct the P in diagram (4.4). For every y ∈ Y , select

an s(y) ∈ X such that yRfs(y). Define the uniformly bounded family

S = st(st(j(U), T ),R).

Since f is coarsely monotone, there is a uniformly bounded family W in X and a family

Q of W-conncted subsets in X such that f(Q) is uniformly bounded. Define P to be the

subspace of Z × X consisting of all pairs (z, x) such that js(z)Qx, and let e : P → Z and

c : P → X be the projections. Note that e is surjective, and that je and fc are close as

witnessed by st(f(Q),R). If f(x)T j(z), then by construction of Q, (z, x) is in P , so there

is a canonical map d : W → P making diagram (4.4) commute. It remains to show that e is

in EI . Suppose (z, x) and (z′, x′) are points in P such that zUz′. We claim that (z, x) and

(z′, x′) are U ×W-connected in P . Indeed, (z, x) is clearly ∆×W-connected to (z, sj(z)) in

P (where ∆ is the trivial cover by singletons), and similarly, (z′, x′) is ∆×W-connected to

(z′, sj(z′)) in P . Since fsj(z) and fsj(z′) are both in some element of S, there is a ∆×W

chain from (z, sj(z)) to (z, sj(z′)). Finally, (z, sj(z′)) and (z′, sj(z′)) are U ×∆-connected.

Composing the chains, we obtain a proof of the claim. This shows that the inverse image

of a U -component of Z is U ×W-connected. Since the ls-structure on Z is generated by U ,

this is enough to show that e is in EI .

(⇐) We first claim that f is coarsely surjective. In the diagram

W i //

g
��

X

f
��

Z
j
// Y

let Z be the underlying set of Y equipped with the smallest ls-structure, i.e. such that the

only uniformly bounded families are families of singletons. Let j be the identity set map

and let W be the empty ls-space with the empty maps g and i. Then there is a diagram
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(4.4) with e ∈ EI . In particular, e must be surjective, and it follows by commutativity of

(4.4) that f must be coarsely surjective. Now let U be a uniformly bounded cover of Y .

For each element U of U , pick a point sU ∈ U . Let Z be the set of all such sU equipped

with the smallest ls-structure, and let j be the map induced by the inclusion of each point

sU . Clearly Z is monogenic as an ls-space. Let W be the set of all pairs (x, U) such that

U ∈ U and x ∈ f−1(U), let i : W → X be the map (x, U) 7→ x and g : W → Z the

map (x, U) → sU . Put the largest ls-structure on W for which i and g are ls-continuous.

In particular, {(x, U), (y, V )} is never bounded if U 6= V . Since fi and jg commute up to

closeness (as witnessed by U), we must have a diagram of the form of (4.4) with e ∈ EI . Since

e is in EI , each e−1(sU) must be W-connected for some fixed uniformly bounded family W

in P . Thus for every U ∈ U , f−1(U) = i(g−1(sU)) must be contained in st(c(e−1(sU)), T ), a

st(c(W), T )-connected subset of X, where T witnesses the closeness of cd and i. Moreover,

the family f(st(c(e−1(sU)), T )) is uniformly bounded because je ∼ fc. Since U was arbitrary,

f is coarsely monotone as required.

Recall from [57] that an ls-space is monogenic if and only if it is coarsely equivalent

to a geodesic ∞-metric space (that is, in which points which are finite distance apart are

connected by a geodesic). Thus we have the following corollary of the above result.

Corollary 16. Let F be the set of all (equivalence classes of) ls-continuous maps whose

domain is a geodesic ∞-metric space. Then a map f : X → Y is coarsely monotone if

and only if it is stably in EI with respect to F , where I is the reflection onto ls-spaces of

asymptotic dimension 0.

A result which more closely resembles the topological situation (which involves pullbacks

along maps from the singleton space) is as follows, where the singleton set is replaced by a

disjoint union of singleton ls-spaces.

Corollary 17. Let F be the set of all (equivalence classes of) ls-continuous maps whose

domain is a set with the trivial ls-structure (i.e. the ls-structure consisting of families of

singleton sets). Then a map f : X → Y is coarsely monotone if and only if it is stably in EI
with respect to F , where I is the reflection onto ls-spaces of asymptotic dimension 0.
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Proof. (⇒): This follows from Theorem 12 and the fact that the trivial ls-structure is

monogenic.

(⇐): This follows from the proof of Theorem 12.

Remark 8. One can easily show that a continuous map f : A → B between compact

Hausdorff spaces is (classically) monotone if and only if for every open set V ∈ B, the

restriction f |f−1(V ) induces a bijection between connected components. We can thus think of

classical monotone maps as those that induce bijections on connected components “on any

fixed small scale”, i.e. open neighbourhood. We can view Theorem 12 as saying that coarsely

monotone maps are those that induce bijections between U-components “on any fixed large

scale”.

Remark 9. The absence of pullbacks in the coarse category presents significant obstacles to

applying basic category theory arguments in coarse geometry. The above result shows that it

can sometimes be useful to consider weaker notions along the lines of condition (P2) in the

coarse category, which in categories that do admit pullbacks reduce to familiar notions.

4.7 Pullback-stability of coarsely monotone maps

Given any factorization system (E ,M) on a category C, it is always the case that the classM

is stable under all pullbacks that exist in the category (that is, every pullback of an element

ofM is inM). The same is not true in general for the class E . Many important factorization

systems do have this property, though, including the classical monotone-light factorization

system. We now show that this also holds for the coarse monotone-light factorization system.

Proposition 27. If the diagram below is a pullback in the coarse category and f is coarsely

monotone, then g is also monotone.

P

g
��

j // C

f
��

A
h
// B
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Proof. By the remarks in Section 4.5, we may assume that P is a subspace of A × C with

g and j the projections. Let P be the uniformly bounded family in B which witnesses the

closeness of fj and hg, extended to a cover. We first show that g is coarsely surjective. We

know that f is coarsely surjective, so suppose that B ⊆ st(Im(f),R) for some uniformly

bounded cover R of B. Consider the subspace of A× C

R = {(a, c) | a ∈ A, c ∈ C, h(a)Rf(c)}

and the obvious projections ρ1 and ρ2 to A and C respectively. Note that ρ1 is surjective.

By the property of the pullback, there is a map l : R → P such that gl ∼ ρ1. Since ρ1

is surjective, it follows that gl is coarsely surjective, and consequently that g is coarsely

surjective as required.

Now, let V be a uniformly bounded family in A, and consider the uniformly bounded

family h(V) in B. Let V ′ = st(h(V),P). Since f is coarsely monotone, there is a uniformly

bounded cover V ′′ of B, which we may suppose to be coarser than V ′, and a uniformly

bounded cover W in C such that each element of f−1(V ′) is contained in a W-component of

an element of f−1(V ′′). Let Q be the subspace

{(a, c) | a ∈ A, c ∈ C, h(a)V ′′f(c)}

and let π1 : Q→ A, π2 : Q→ C be the obvious projections. Since hπ1 is close to fπ2, by the

property of the pullback, there must be an ls-continuous map k : Q→ P such that gk ∼ π1

and jk ∼ π2. Since a map which is close to an ls-continuous map is ls-continuous, we may

suppose that k is the identity on those elements which are also in P . Consider the uniformly

bounded cover

V ×W = {V ×W | V ∈ V , W ∈ W}

of A×C restricted to Q, and let T be its image under k. We claim that g−1(V) refines the set

of T -components of g−1(st(V ,X )), where X is the cover of A which witnesses the closeness

of kg and π1. Indeed, suppose (a, c) and (a′, c′) are elements of P such that {a, a′} ⊆ V ∈ V .
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Then there is a V ′ ∈ V ′ containing all of f(c), f(c′), h(a) and h(a′), and a V ′′ ∈ V ′′ containing

V ′ such that c and c′ are W-connected inside f−1(V ′′). Consider the chain

(a, c) (a′, c) (a′, c1) · · · (a′, c′)

where c, c1, . . . , c
′ is a chain ofW-related elements in f−1(V ′′). First note that every element

in this chain is in Q, and in particular, in π−1
1 (V ) ⊆ Q. Moreover, each pair of consecutive

elements is related by V ×W . Taking the image of the chain under k, it follows that (a, c)

and (a′, c′) are connected by a T -chain inside an element of g−1(st(V ,X )).

4.8 Maps extended to the Higson corona

We will now deal with the special case of a map f : X → Y where X and Y are proper

metric spaces (with the induced ls-structures) and f is a coarse map (i.e. an ls-continuous

map such that the inverse image of a bounded set in Y is bounded in X). Such a map

induces a continuous map νf : νX → νY between the Higson coronas of X and Y . We

briefly recall the relevant definitions from [57].

Definition 31. Let X be a metric space, and g : X → C a bounded function to the complex

numbers. Then g is said to be slowly oscillating if for every R > 0 and ε > 0 there is a

bounded set B in X such that d(x, x′) ≤ R⇒ |g(x)− g(x′)| ≤ ε for x, x′ ∈ X \B.

The Higson compactification hX of a proper metric space X is the compactification of

X characterised by the fact that a bounded continuous complex-valued function g : X → C

extends continuously to g̃ : hX → C if and only if it is slowly oscillating. In particular, X

is dense in hX. The complement νX = hX \X is called the Higson corona of X.

In terms of C∗ algebras, hX is the compact Hausdorff space which corresponds (under

Gelfand duality) to the algebra Ch(X), while νX corresponds to Ch(X)/C0(X), where Ch(X)

is the algebra of continuous bounded slowly-oscillating complex-valued functions on X and

C0(X) is the ideal of Ch(X) consisting of those functions which tend to zero at infinity. Let

Bh(X) be the algebra of (not necessarily continuous) bounded slowly oscillating complex-

valued functions on X and B0(X) be the ideal of Bh(X) consisting of those functions which
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tend to zero at infinity. Recall from [57] that Ch(X)/C0(X) is canonically isomorphic to

Bh(X)/B0(X) via the map induced by the inclusion Ch(X)→ Bh(X). Thus the corona can

be defined in a way which is independent of the topology of X, which is expected since the

corona captures large-scale behaviour of X.

Given a coarse map f : X → Y between metric spaces, the map [g] 7→ [gf ] defines a

∗-homomorphism f ∗ : Bh(Y )/B0(Y ) → Bh(X)/B0(X), which corresponds under Gelfand

duality to a continuous map νf : νX → νY . This defines a functor ν from the category

of proper metric spaces and closeness classes of coarse maps to the category of compact

Hausdorff spaces [57]. In particular, νf is a homeomorphism whenever f is a coarse

equivalence.

Lemma 24. Let f : X → Y be a coarse map between proper metric spaces and νf : νX →

νY the induced map. If f is continuous, then νf is (up to homeomorphism) the restriction

to νX of the unique continuous extension hf : hX → hY of f .

Proof. One only needs to check that the diagram

Ch(Y )/C0(Y )

∼=
��

[g]7→[gf ] // Ch(X)/C0(X)

∼=
��

Bh(Y )/B0(Y )
f∗ // Bh(X)/B0(X)

commutes, which is easy.

We will need the following lemma, which is taken from [22].

Lemma 25. Any slowly oscillating function from a subset A of a proper metric space X to

[0, 1] extends to a slowly oscillating function on the whole of X to [0, 1].

Corollary 18. Any bounded slowly oscillating function f from a subset A of a proper metric

space X to C extends to a bounded slowly oscillating function on the whole of X to C.

Proof. Rescaling by a constant and translating preserves slowly oscillating functions, so we

may assume that f has image [0, 1]×[0, 1]. The projections π1f and π2f are slowly oscillating

functions from A to [0, 1], so by Lemma 25 we can extend each of them to slowly oscillating
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functions on X. Taking the induced map from X to [0, 1] × [0, 1] we obtain the required

extension.

Proposition 28. Let f : X → Y be an ls-continuous map and νf : νX → νY the induced

continuous map between Higson coronas. Then

(1) νf is injective if and only if f is a coarse embedding;

(2) νf is surjective if and only if f is coarsely surjective;

(3) νf is a homeomorphism if and only if f is a coarse equivalence.

Proof. (1): Suppose νf is injective; under duality, this is the same as to say that

f ∗ : Bh(Y )/B0(Y )→ Bh(X)/B0(X)

is surjective. Suppose that f is not a coarse embedding. Pick a sequence of points (an, bn)

in X such that d(an, bn) tends to infinity, but d(f(an), f(bn)) is bounded. Since f is proper,

an and bn cannot be bounded, so we may choose the an and bn such that each ai (resp. bi) is

at least i away from all the bj (resp. aj) for j < i. Define a map on the union of the an and

the bn to [0, 1] which sends every an to 0 and every bn to 1. This map is slowly oscillating, so

we can extend it to a slowly-oscillating map on the whole of X. However, this map cannot

be written as gf + b for g ∈ Bh(Y ) and b ∈ B0(X), which contradicts the surjectivity of

f ∗ : Bh(Y )/B0(Y )→ Bh(X)/B0(X). Now suppose that f is a coarse embedding. Then f is,

up to coarse equivalence, the inclusion of its image into Y . By Lemma 18, such inclusions

give rise to surjective maps Bh(Y )/B0(Y )→ Bh(X)/B0(X), which gives the required result.

(2): Suppose νf is surjective, i.e. that f ∗ : Bh(Y )/B0(Y ) → Bh(X)/B0(X) is injective,

and that f is not coarsely surjective. For every n, pick a point yn in Y such that d(f(X), Y ) ≥

n. Define a function on {yn} to C which sends every yn to 1. This map is clearly slowly

oscillating, so it extends by Lemma 25 to a slowly oscillating function g : Y → C. Then

g is not in B0(Y ) but gf is in B0(X), contradicting the fact that f ∗ : Bh(Y )/B0(Y ) →

Bh(X)/B0(X) is injective. The other direction is to say that if f is coarsely surjective, and

gf is in B0(X), then g is in B0(Y ), which is easy to check.

(3) is a consequence of (1) and (2).
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If we are given a coarse map f : X → Y between proper metric spaces, then we can

consider a 1-net X1 in X (i.e. a maximal 1-separated subset of X). The space X1 is a proper

metric space, the inclusion i : X1 → X is a coarse equivalence, and the composite fi is a

continuous coarse map. As a result, the induced map ν(fi) : X1 → Y is the unique extension

of fi to hX1 → hY restricted to νX1. But νi is a homeomorphism, so νf and ν(fi) are

the same up to homeomorphism. Thus in the rest of the section we will often assume that

a given coarse map f is actually continuous, and that the map νf is its extension restricted

to the corona. The following lemma is a special case of Proposition 2.3 from [17].

Lemma 26. For A and B two subsets of a proper metric space X, A∩B∩νX is non-empty

if and only if there is a S > 0 such that B(A, S) ∩B(B, S) is unbounded.

The proof of the following theorem was inspired in part by the techniques used in [5].

Theorem 13. Let f : X → Y be a coarse map between proper metric spaces. Then f is

coarsely monotone if and only if the induced map νf : νX → νY is (classically) monotone.

Proof. By the above remarks, we may assume that X is topologically discrete, and that νf

is the restriction of a continuous extension hf .

(⇒) By Proposition 28, νf is surjective. Suppose for contradiction that there is a y ∈ νY

whose fibre under νf is disconnected, i.e. hf−1(y) = A ∪ B with A and B disjoint closed

subsets. Find a continuous function g from hX to C which sends A to 0 and B to 1 using the

Tietze Extension Theorem. Then, g|X : X → C must be slowly oscillating. Fix 0 < ε < 1/8.

Since hf is a closed map, and hY is compact, we may choose a open neighbourhood D of y

in hY such that

hf−1(D) ⊆ g−1(B(0, ε) ∪B(1, ε))

Let A′ = g′−1(B(0, ε)) ∩ hf−1(D) ∩ X and B′ = g′−1(B(1, ε)) ∩ hf−1(D) ∩ X. Since y ∈

hf(A′) ∩ hf(B′) ∩ νY , by Lemma 26, there is an S > 0 such that, for every bounded

set K in X, there is a pair aK , bK of points in X with aK ∈ A′ \ K, bK ∈ B′ \ K and

d(f(aK), f(bK)) ≤ S. We now use the coarse monotone property of f to get that each aK is

W-connected to bK inside an element of f−1(V) for some uniformly bounded families W in

X and V in Y . Since g|X is slowly oscillating, there is some bounded set K ′ in X such that,
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for K ′ ⊆ K, there must be an element of the W-chain from aK to bK , say cK , such that

g(cK) ∈ C \ (B(0, 2ε) ∪ B(1, 2ε)). It follows that the closure of C = {cK | K ′ ⊆ K} in X

intersected with νX does not intersect g−1(B(0, ε)), and thus that hf(C) does not intersect

hf(A′). But the set {f(cK), f(aK)} is uniformly bounded, so the closure of the f(cK) and

the f(aK) intersect on νY by Lemma 26, which gives the required contradiction.

(⇐) By Proposition 28, f is coarsely surjective. Suppose f is not coarsely monotone.

This means that there is a uniformly bounded cover U of Y such that for every integer

m > 0, there is an element Um ∈ U such that f−1(Um) is not contained in an m-component

of f−1(B(Um,m)). Moreover, we may assume that the distance from each f−1(B(Um,m))

to all the previous f−1(B(Ui, i)) tends to infinity as m → ∞. Define a map g on the

union of the f−1(B(Um,m)) to {0, 1} such that each m-component of f−1(B(Um,m)) is

mapped to a single value, and such that g is surjective on each f−1(Um). It is easy to see

that this is a slowly oscillating function, so that it extends to a slowly oscillating function

g′ : X → [0, 1] ⊆ C. The map g′ extends to a continuous map g′′ : hX → C. Let

A = g′′−1(0) ∩ X and B = g′′−1(1) ∩ X and let A′ and B′ be the intersection of the union

of the f−1(Um) with A and B respectively. By Lemma 26, the closures of f(A′) and f(B′)

intersect on νY . Suppose y ∈ f(A′) ∩ f(B′). We claim that A and B cover hf−1(y) ⊆ νX.

Indeed, suppose that hf(x) = y with g′′(x) /∈ {0, 1}. Pick a subset S of X such that

g′′(S) ⊆ B(g′(x), ε) for ε > 0 small, and x ∈ S. Since f(A′) and f(S) intersect, by Lemma

26, there must be a R > 0 such that B(f(A′), R) ∩ B(f(S), R) is unbounded. But then S

must intersect some f−1(B(Um,m)), which is a contradiction, since g′′ was defined to be 0

or 1 on these sets. Thus the fibre of y under hf is covered by the disjoint closed sets A and

B, so it cannot be connected.

As was previously mentioned, the Higson corona can also be defined for arbitrary ls-

spaces. Unfortunately, Theorem 13 no longer holds in this more general context, as the

following example shows.

Example 9. Let X be N with the usual metric ls-structure, and let Y be the set N with

the universal bounded geometry structure [57], i.e. wherein the uniformly bounded

families are those families U such that {|U | | U ∈ U} is bounded and U has finite point
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multiplicity. Recall from [57] that the Higson corona of Y is the one-point space, and recall

from [68] that N has a connected Higson corona. Let f : X → Y be the identity set map.

It is clearly coarse, but is not coarsely monotone. Indeed, consider the uniformly bounded

family V = {{n2, (n+1)2} | n ∈ N} in Y . The family f−1(V) does not refine an M-connected

family of subsets with bounded cardinality for any M , so f is not monotone. Nonetheless, the

induced map on Higson coronas sends νX to a single point, and is consequently (classically)

monotone.

In fact, it is easy to see that in the above example, f is coarsely light, but the induced

map νf is not classically light. Thus we cannot expect an equivalence of the form of Theorem

13 for coarsely/classically light maps for general ls-spaces.

Proposition 29. Let f : X → Y be a coarse map between proper metric spaces. If νf is

light, then f is coarsely light.

Proof. Factorize f = f ′e with f ′ coarsely light and e coarsely monotone. By Theorem 13, νe

is monotone. Since νf is light and factors through νe, νe must be a homeomorphism. But by

Proposition 28, this implies that e is a coarse equivalence, so that f is light as required.

Question 2. Suppose f : X → Y is a coarse map between proper metric spaces. Is νf light

if f is coarsely light?

4.9 Asymptotic dimension and exactness

In this section we investigate the permanence of some coarse properties under coarsely light

maps. Since we have already seen that coarsely n-to-1 maps are coarsely light, these results

generalize some results of Dydak-Virk [23] obtained for coarsely n-to-1 maps.

Proposition 30. Suppose f : X → Y is an ls-continuous map between ls-spaces. If f is

coarsely light, then the asymptotic dimension of X is at most the asymptotic dimension of

Y .

Proof. Suppose asdim(Y ) ≤ k < ∞ and U is a uniformly bounded cover of X. Pick a

uniformly bounded cover V of Y coarsening f(U) that has multiplicity at most k+1. Consider
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the family W consisting of the U -components of elements of f−1(V). Since f is light, W is

uniformly bounded. Moreover, it coarsens U , and its multiplicity is at most k + 1.

The following definition generalizes the concept of exactness from metric spaces (as

introduced by Dadarlat-Guentner [14]) to arbitrary ls-spaces. For an index set S, let ∆(S)

denote the set of formal linear combinations

∑
s∈S

as · s

such that as ∈ [0, 1] for each s, as = 0 for all but finitely many s, and
∑
as = 1. We will

equip ∆(S) with the l1 metric. The star of a vertex s ∈ S is the set of all elements of ∆(S)

with as 6= 0. By a partition of unity on a set X, we mean a map φ : X → ∆(S) for some

set S. Recall that the mesh of a family U of subsets of a metric space X is defined as follows

mesh(U) = sup{diam(U) | U ∈ U}.

In particular, the family U is uniformly bounded if and only if it has finite mesh.

Definition 32. A large scale space X is exact if for each uniformly bounded cover U of X

and each ε > 0 there is a partition of unity φ : X → ∆(S) such that point-inverses of stars

of vertices form a uniformly bounded cover of X and the mesh of φ(U) is smaller than ε.

Theorem 14. Suppose f : X → Y is a large scale continuous map between ls-spaces. If f

is coarsely light and Y is exact, then X is exact.

Proof. Suppose U is a uniformly bounded cover of X and ε > 0. Choose a partition of unity

φ : Y → ∆(S) such that point-inverses of stars of vertices form a uniformly bounded cover

of Y and the mesh of φ(f(U)) is smaller than ε. Consider the family J of U -components of

point-inverses of stars of vertices of the partition of unity φ ◦ f : X → ∆(S). Create a new

partition of unity ψ : X → ∆(J) as follows:

ψ(x) =
∑
j∈J

aj · j,
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where aj 6= 0 only if x belongs to j, in which case it equals the coefficient of φ(f(x)) at

the corresponding s ∈ S. If x, y belong to U ∈ U , then they always belong to the same U -

component, so the distance from ψ(x) to ψ(y) is less than ε. Since f was coarsely light, the

family of point-inverses of stars of vertices (that is, the family J) is uniformly bounded.

Corollary 19. Suppose f : X → Y is a large scale continuous map between metric spaces

of bounded geometry. If f is coarsely light and Y has Property A [74], then X has Property

A.

Proof. As shown in [14], a metric space of bounded geometry has Property A if and only if

it is exact.

4.10 Groups

In this section we make some remarks on the case when the ls-spaces involved are groups

and the maps are group homomorphisms. Let X be a (discrete) group. Following [21] we

equip X with the ls-structure consisting of all refinements of covers of the form

{x · F | x ∈ X}

where F is a finite subset of X. If X is countable, then this ls-structure coincides with the

ls-structure arising from any proper left-invariant metric on X (see [62]). In particular, if X

is finitely generated, then this ls-structure coincides with that induced by the word-length

metric associated to any choice of finite generating set (see for example [50]). Clearly any

group homomorphism f : X → Y is ls-continuous with respect to the ls-structures on X and

Y .

Lemma 27. Let X be a group. Then X has asymptotic dimension zero if and only if it is

locally finite (i.e. every finitely generated subgroup is finite).

Proof. (⇒): Let F be a finite subset, and U = {x ·F | x ∈ X} the corresponding cover. Note

that any element of 〈F 〉 is U -connected to the identity element e, so that 〈F 〉 is contained

in the U -component of e, which by hypothesis is bounded and hence finite.
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(⇐): Let U = {x · F | x ∈ X} be a cover where F is a finite subset. Notice that xUy for

elements x, y ∈ X if and only if x−1y ∈ F ·F , from which it follows inductively that if x and

y are U -connected, then x−1y ∈ 〈F 〉. By assumption, 〈F 〉 is finite, so the U -component of e

is finite. Every other U -component is a left translation of this component, so the family of

U -components is uniformly bounded, as required.

Note that the above lemma was proved for countable groups in [62]; the proof given above

is a straightforward adaptation of the proof found there. We will need the following lemma,

based on the Finite Union Theorem in [7]. For a subspace A ⊆ X of an ls-space X and a

family U of subsets of X, we write U|A to mean the family {A ∩ U | U ∈ U}.

Lemma 28. Let X be an ls-space. If X = A ∪ B for subsets A and B of X, and A and B

each have asymptotic dimension zero as a subspace, then X has asymptotic dimension zero.

Proof. Let U be a uniformly bounded cover of X. Let VA and VB be the families of U|A-

components and U|B-components of A and B respectively. Then VA and VB are uniformly

bounded by hypothesis. If a ∈ A is U -connected to a′ ∈ A, then it is easy to see that

a is in the same st(st(VB,U)|A,VA)-component of A as a′. Note that the family W1 of

st(st(VB,U)|A,VA)-components of A is uniformly bounded as a family in X. Using this and

similar arguments one can construct a uniformly bounded family W in X which coarsens

the family of U -components of X, which gives the required result.

We will also need the following generalization of Corollary 1.19 in [57].

Lemma 29. Let h : A → X be an inclusion of a subgroup A into a group X. Then f is a

coarse embedding.

Proof. Let F be a finite subset in X. Pick a set of representatives S for the left cosets of

A in X, and let T be the subset of S consisting of all those s ∈ S such that F ∩ sA 6= ∅.

Clearly T is finite. Let F be the finite set F ′ = (
⋃
t∈T t

−1 · F ) ∩ A. If a is an element of A

with a = xf ∈ x · F for some x ∈ X, f ∈ F , then f = x−1a ∈ F , so we may pick a t ∈ T

in the same left coset of A as x−1. Then a = xtt−1f ∈ xt · F ′ with xt ∈ A, and hence also

t−1f ∈ A. Thus we have that {x · F ∩ A | x ∈ X} refines the uniformly bounded family

{a · F ′ | a ∈ A} as required.
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We are now ready to present a characterisation of those group homomorphisms which

are coarsely light as maps between ls-spaces.

Proposition 31. Let f : X → Y be a group homomorphism. Then f is coarsely light if and

only if ker(f) has asymptotic dimension zero, or equivalently, if ker(f) is locally finite.

Proof. Note that by Lemma 29, we can either consider ker(f) as a group itself or as a

subspace of X since the ls-structure is the same in each case.

(⇒) This follows from Proposition 24 since the set consisting only of the identity in Y

has asymptotic dimension zero.

(⇐) By Lemma 29, the inclusion of the image of f into Y is a coarse embedding, and

hence coarsely light. Since coarsely light maps are closed under composition, it is sufficient

to consider the case when f is surjective. Let F be a finite set in Y . Then f−1(F ) is a union

of |F | copies of the kernel of f , so by Lemma 28, f−1(F ) has asymptotic dimension zero.

Since

{x · f−1(F ) | x ∈ X} = f−1({y · F | y ∈ Y })

when f is surjective, the family of inverse images of the family {y · F | y ∈ Y } is a family

of left translates of f−1(F ), and so satisfies asdim = 0 uniformly. Thus by Lemma 24, f is

coarsely light.

Corollary 20. Let f : X → Y be a group homomorphism whose kernel is locally finite.

Then X has finite asymptotic dimension if Y does. If both X and Y are countable, then X

has Property A if Y does.

Lemma 30. Let X be a group. Then X is finitely generated if and only if X is U-connected

for some uniformly bounded family U .

Proof. If X is finitely generated, then its ls-structure is generated by a word-length metric,

under which X is clearly 1-connected. Conversely, suppose X is U -connected, where U =

{x · F | x ∈ X}. We claim that F generates X. Indeed, as in the proof of Lemma 27, x and

y are U -connected if and only if x−1y ∈ 〈F 〉, so that in particular, every x ∈ X, being in the

U -component of the identity, is in 〈F 〉.
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Corollary 21. A group X is finitely generated if and only if the unique map from X to the

trivial group is coarsely monotone, and locally finite if and only if the unique map from X

to the trivial group is coarsely light.
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Chapter 5

A coarse version of quotients by

group actions

This chapter is based on the accepted manuscript of the following paper: L. Higginbotham

and T. Weighill, Coarse quotients by group actions and the maximal Roe algebra, Journal of

Topology and Analysis, online ready at https://doi.org/10.1142/S1793525319500341. The

contributions of each author of the above manuscript may be considered roughly equal. One

round of revision took place after comments by the anonymous referee. The introduction has

been adapted, otherwise the manuscript has remained more or less unchanged.

5.1 Introduction

In this chapter, we are interested in studying a coarse version of the quotient of a space

by a group action. In topology, given an action of a group G on a space X one can form

the orbit space X/G with the quotient topology and study some of its properties. One may

want to know the covering dimension of X/G or its fundamental group. The interest in such

spaces is often motivated by the fact that any “nice space”, say a manifold or CW-complex,

is the quotient of a simply-connected space X (i.e. its universal cover) by a group action.

Moreover, this group action has good properties such as being properly discontinuous.

If we are interested in large scale properties and are given a group G acting on a metric

space X, then there is in fact more than one way to construct a kind of “quotient” by the
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action. One could take the orbit space X/G and put a structure on it which is natural from

the large scale point of view, and this situation has been considered in the literature (see for

example [40]). However, keeping in mind that close maps are often viewed as identical in

coarse geometry, one could also construct the universal space for which the action of each

g ∈ G is close to the identity map. This is the so-called warped space XG introduced by

Roe.

If X is the cone over a compact metric space M and the action of G on X is induced by

an action of G on M , then the resulting warped space XG is called a warped cone. Warped

cones were introduced along with warped spaces by Roe in [58] to construct examples of

spaces with exotic large scale behaviour (such as not being coarsely embeddable into Hilbert

space). Very recently there has been a considerable increase in interest in these warped cones;

see for example [19, 60, 49] as well as a large number of preprints, including two very recent

preprints by different authors which make essential use of the coarse fundamental group of a

warped cone [28, 67]. It remains to be seen what possible applications exist for the results in

this chapter in the study of warped cones (whose actions often satisfy the central conditions

studied in this chapter, see Example 12 below).

In this chapter, we begin by generalizing the construction of the warped space to the

setting of arbitrary groups acting on large scale spaces in the sense of Dydak and Hoffland

[21]. This has the effect of making the universal property of the construction more apparent.

After studying some general properties of the space XG, we restrict our attention to a

particular class of group actions, which we call coarsely discontinuous actions. These are the

analogues of properly discontinuous actions for topological spaces. We show that when the

action of G is coarsely discontinuous and X is an unbounded space which is coarsely one-

ended (see Definition 38), then the group G can be recovered from XG as an appropriately

defined automorphism group Aut(X/XG).

An important C∗-algebra in the index theory of non-compact complete Riemannian

manifolds is the Roe algebra. The Roe algebra is a coarse invariant (that is, invariant

under coarse equivalences up to isomorphism) and is functorial with respect to proper large

scale continuous maps at the level of K-theory (see for example Lemma 3.5 in [56]). Thus
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the Roe algebra is naturally an object of study in coarse geometry. The coarse Baum-

Connes conjecture (see for example [72]) concerns an index map from the K-homology of

Rips complexes on X to the K-theory of the Roe algebra of X (the conjecture is that this

map is an isomorphism; it is false in general [35]). A famous result of Yu [74] states that the

conjecture is true for spaces which admit a coarse embedding into Hilbert space.

Gong, Wang and Yu introduced the related notion of maximal Roe algebra in [31] and

formulated a version of the coarse Baum-Connes conjecture for this algebra in [51]. In this

chapter, we obtain some results relating the maximal Roe algebras of X and XG for coarsely

discontinuous actions. In particular, for such actions we obtain a short exact sequence

0→ K → C∗max(XG)→ (C∗max(X)/K) oα G→ 0.

where K is the algebra of compact operators. Note that the crossed product in the above

sequence is the full crossed product. It is impossible in general to replace the full crossed

product by the reduced crossed product and the maximal Roe algebra by the usual one in

the sequence above (see Corollary 24). However, we show that when G is amenable and X

has Property A, then XG also has Property A (recovering a result of Roe in [58]) and we

have a short exact sequence

0→ K → C∗(XG)→ (C∗(X)/K) or,α G→ 0.

In Section 5.6, we ask the following question: to what extent can the space XG can

be considered a type of “coarse quotient”? To answer this question, we first introduce

and study what we call weak coarse quotient maps between large scale spaces. We show

that the class of weak coarse quotient maps is closed under closeness and composition with

coarse equivalences, and that the weak coarse quotient maps are precisely the maps which

correspond to regular epimorphisms in the coarse category. Note that a notion of coarse

quotient map has already been introduced by Zhang [75], so we use the term “weak” here

to avoid conflicting with that definition. When G is finitely generated, the canonical map

X → XG will turn out to be a weak coarse quotient map. The final section is devoted to
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explicitly constructing metrics which induce the various large scale structures considered in

the chapter, including the one on XG.

5.2 Preliminaries

5.2.1 Large scale spaces

The notion of large scale space (introduced in [21]) provides a general context for large scale

geometry in the same way that uniform spaces provide a general context for questions of

uniform continuity or convergence. A large scale space is a space equipped with a collection

of families of subsets which are declared to be “uniformly bounded”. To continue the analogy

with uniform spaces above, the notion of large scale space is equivalent to the notion of coarse

space in the sense of Roe [57] in roughly the same way that the uniform covers definition of

uniform space is equivalent to the entourage definition of uniform space (see [21]). Since the

reader may not be familiar with the terminology of large scale structures we recall all the

necessary definitions in this section, based mostly on [21].

Let X be a set. Recall that the star st(B,U) of a subset B of X with respect to a family

U of subsets of X is the union of those elements of U that intersect B. More generally, for

two families B and U of subsets of X, st(B,U) is the family {st(B,U) | B ∈ B}.

Definition 33. A large scale structure L on a set X is a nonempty set of families B

of subsets of X (which we call the uniformly bounded families in X) satisfying the

following conditions:

(1) B1 ∈ L implies B2 ∈ L if each element of B2 consisting of more than one point is

contained in some element of B1.

(2) B1,B2 ∈ L implies st(B1,B2) ∈ L.

Note that any uniformly bounded family can be extended to a uniformly bounded cover

by adding all the singleton subsets to it, so we will often assume that a particular uniformly

bounded family is in fact a cover. Also, note that if U and V are elements of a large scale

structure B, then so is U ∪ V . By a large scale space (or ls-space for short), we mean a
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set equipped with a large scale structure. To be precise, we should write large scale spaces

as pairs (X,X ), where X is a set and X is a large scale structure. However, when we are

dealing with only one large scale structure on each set, we will often write simply X to mean

the set equipped with its large scale structure.

Example 10. The canonical example of a large scale space is as follows. Let (X, d) be an

∞-metric space (that is, a metric space where the metric is also allowed to assume the value

∞). Define the uniformly bounded families in X to be all those families U for which

mesh(U) = sup{diam(U) | U ∈ U} <∞

This is the large scale structure induced by the metric d.

A subset of a large scale space X is called bounded if it is an element of some uniformly

bounded family in X. A large scale space is called coarsely connected if every finite set

is bounded (for example, every metric space is such). Every set admits a smallest coarsely

connected large scale structure, namely those families of finite subsets which have only finitely

many non-singleton sets.

Example 11. Another important class of a large scale structures comes from group

structures. If G is a group, we can put a large scale structure on the underlying set of

G consisting of all refinements of covers of the form

{g · F | g ∈ G}

for some finite subset F ⊆ G. If G is finitely generated, then this is the same large scale

structure as the one induced by any word metric (see for example Chapter 1 of [50]) on G. If

G is countable, this is the large scale structure induced by any discrete proper left-invariant

metric on G (see [62]).

When dealing with quotients of metric spaces, it will often be easiest to first define

(usually via a generating set) the large scale structure on the quotient, and then find a

metric on the quotient space that induces this large scale structure. For this purpose, we

113



need the following result, which was originally stated for coarse spaces by Roe in Section

2.4 of [57] and later for large scale spaces in [21]. For completeness we include a proof. We

say that a collection of families of subsets A generates a large scale structure X if X is the

smallest large scale structure containing A.

Theorem 15 (Theorem 1.8 in [21]). Let X be a large scale space. Then there exists an

∞-metric on X which induces the large scale structure on X if and only if the large scale

structure is countably generated.

Proof. Clearly if the large scale structure is induced by a metric d then the countable set

(Ui)i∈N, where

Ui = {B(x, i) | x ∈ X},

generates the large scale structure. Suppose then that the large scale structure is generated

by the countable set (Ui)i∈N of uniformly bounded families. We may assume that for every

i, st(Ui,Ui) refines Ui+1, and that U0 is actually a cover. For points x and y in X, define

d(x, y) to be the smallest i for which there is an element of Ui containing both x and y. One

checks that this defines an ∞-metric that induces the large scale structure.

In fact, every collection X of families of subsets of some set X generates a large scale

structure. Two possible constructions exist for this large scale structure, which we denote

by X . One can either

• take the intersection of all large scale structures containing X (this is based on

Proposition 2.12 in [57]),

• add the cover by singletons to X if necessary, close X under the star operation and

then close the resulting collection under refinement.

Lemma 31. Let f : X → Y be a map between sets and let X be a collection of families of

subsets of X. Then

f(X ) ⊆ f(X )

where f(X ) = {f(U) | U ∈ X}.
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Proof. Using the second construction above, this follows from the fact that for any two

families U and V of subsets of X, the family f(st(U ,V)) refines st(f(U), f(V)).

Finally, we establish some notation. For two families of subsets U and V , we write U ≤ V

if U refines V , in which case we also say that V coarsens U . For two points x and y, we

write xUy, if U coarsens {{x, y}}.

5.2.2 Large scale continuous maps

We now recall the right notion of “continuous map” between large scale spaces. Given a set

map f : X → Y from an large scale space X to an large scale space Y , we say that f is

large scale continuous or ls-continuous if for every uniformly bounded family U in X,

the family

f(U) = {f(U) | U ∈ U}

is uniformly bounded in Y . These maps are the equivalent of bornologous maps for coarse

spaces. In particular, a map f : X → Y from a metric space X to a metric space Y is large

scale continuous if and only if for every R > 0 there exists an S > 0 such that the following

holds for every x1, x2 ∈ X:

d(x1, x2) ≤ R =⇒ d(f(x1), f(x2)) ≤ S.

Let f, g : X → Y be two set maps between large scale spaces, not necessarily large scale

continuous. We say that f and g are close and write f ∼ g if the family of subsets

{{f(x), g(x)} | x ∈ X}

is uniformly bounded. Notice that any map that is close to a large scale continuous

map is large scale continuous. Any uniformly bounded family which coarsens the family

{{f(x), g(x)} | x ∈ X} is said to witness the closeness of f and g.
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If A is a subset of a large scale space X, then there is a natural large scale structure

which makes A a subspace of X, namely the restriction of all uniformly bounded families

in X to A. Now let f : X → Y be a large scale continuous map. We say that f is

• coarsely surjective if there is a uniformly bounded family V in Y such that Y ⊆

st(f(X),V),

• a coarse embedding if for every uniformly bounded family V in Y , the family

f−1(V) = {f−1(V ) | V ∈ V}

is uniformly bounded in X.

• a coarse equivalence if it is both coarsely surjective and a coarse embedding.

Clearly the inclusion of a subspace into a large scale space is a coarse embedding. A

large scale continuous map f : X → Y being coarsely surjective is clearly the same as

requiring that the subspace inclusion f(X) → Y is a coarse equivalence. One can easily

check that a large scale continuous map f : X → Y is a coarse equivalence if and only if

there exists a large scale continuous map g : Y → X such that fg and gf are both close to

the respective identity map. This suggests that coarse equivalences should be isomorphisms

in an appropriate category.

5.2.3 The coarse category

Various definitions exist in the literature for the coarse category, which was originally

introduced by Roe in [56]. For example, Roe requires that all maps in this category be

proper (the inverse image of a bounded set is bounded), while the authors of [16] prefer

to exclude this requirement since otherwise the category does not admit products. One

common requirement however is that close maps are identified in the category. We will use

the following definition for this chapter.
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Definition 34. The category Coarse/ ∼, called the coarse category, is the category

whose objects are large scale spaces and whose morphisms are equivalence classes of large

scale continuous maps under the closeness relation ∼.

Composition in this category is defined in terms of representatives: [α] ◦ [β] = [α ◦ β].

One can check that this is well-defined. We recall the following lemma, which for coarse

spaces is proved in [16]. The proof of the first two facts is an easy adaptation of the proof

presented there. The third fact follows from the remarks in the previous subsection.

Lemma 32. Let f represent a morphism [f ] in Coarse/ ∼. Then

• [f ] is an epimorphism if and only if f is coarsely surjective;

• [f ] is a monomorphism if and only if f is a coarse embedding;

• [f ] is an isomorphism if and only if f is a coarse equivalence.

The coarse category (as defined in this chapter) admits binary products. For two large

scale spaces X and Y , their product is the set X×Y equipped with the large scale structure

consisting of all refinements of families of the form

U × V = {U × V | U ∈ U , V ∈ V}

for uniformly bounded families U in X and V in Y .

5.3 Group actions and XG

Definition 35. Let X be a large scale space with large scale structure X and let G be a

group acting on the underlying set of X. Let XG be the large scale structure on X generated

by X together with all families of the form

{{x, gx} | x ∈ X}

for some g ∈ G. We denote the set X together with the large scale structure XG by XG and

call it the warped space. We denote by pG : X → XG the identity set map.
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One way to view XG is that it is the underlying set of X equipped with the smallest large

scale structure which makes the action of each g ∈ G close to the identity.

Remark 10. It is easy to check that for any finite subset F ⊆ G, the family

{F · x | x ∈ X} = {{f · x | f ∈ F} | x ∈ X}

is uniformly bounded in XG. In particular, let G be a group and |G| the underlying set

of G with either the large scale structure consisting only of families of singletons or the

smallest coarsely connected large scale structure. Let G act on |G| by right translation, that

is, g ·h = hg−1. Then |G|G is G with the large scale structure coming from the group structure

(see Example 11).

Let X be a large scale space. By an action of a group G on X by coarse equivalences

we mean an action of G on the underlying set of X such that every g ∈ G acts as a large

scale continuous map.

Lemma 33. Let (X,X ) be a large scale space and let G be a group acting on X by coarse

equivalences. Then the large scale structure on XG is precisely the collection X ′ of refinements

of families of the form st(U ,F), where U is a uniformly bounded family in X and F is of

the form

{F · x | x ∈ X}.

for some finite subset F ⊆ G.

Proof. Since X ′ contains X and all families of the form {{x, gx} | x ∈ X}, it is enough to

show that X ′ is a large scale structure, that is, closed under stars. Since

st(st(U1,F1), st(U2,F2)) ≤ st(st(st(st(U1,F1),F2),U2),F2)

it is enough to prove that both st(st(U1,F1),F2) and st(st(U1,F1),U2) are in X ′ for any

U1,U2 ∈ X and any two families

F1 = {F1 · x | x ∈ X}, F2 = {F2 · x | x ∈ X}.
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where F1 and F2 are finite subsets of G. For the first, we have

st(st(U1,F1),F2) ≤ st(U1,F3)

where

F3 = {F1 · F−1
1 · F2 · x | x ∈ X}.

For the second one, let V be the element of X (using the fact that F1 is finite)

{g · U | U ∈ U2 ∧ g ∈ F1 · F−1
1 }.

Then

st(st(U1,F1),U2) ≤ st(st(U1,V),F1)

which gives the required result.

Some readers may prefer to use Lemma 33 as the definition of the large scale structure

on XG. Definition 35 emphasises the universal property of XG, whereas in practice the one

provided by the lemma is most useful. We now briefly consider the case when G is finite.

In particular, we show that XG is the same, up to coarse equivalence, as X/G with an

appropriate large scale structure.

Lemma 34. Let (X,X ) be a large scale space and let G be a finite group acting on X by

coarse equivalences. Let q : X → X/G be the quotient map onto the orbit space, and let

q(X ) be the collection of all images of elements of X under q. Then q(X ) is a large scale

structure.

Proof. Let U ,V ∈ X . Let U ′ =
⋃
g∈G g(U) and V ′ =

⋃
g∈G g(V) respectively, and note that

U ′ and V ′ are each in X because G is finite. Then U and V refine U ′ and V ′ respectively,

and one can check that

st(q(U ′), q(V ′)) = q(st(U ′,V ′)) ∈ q(X ).
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Proposition 32. Let (X,X ) be a large scale space and let G be a finite group acting on X

by coarse equivalences. Let X/G be the orbit space with the large scale structure q(X ), where

q is the quotient map q : X → X/G. Then the natural map p : XG → X/G is a coarse

equivalence.

Proof. Since the image of every family {{x, gx} | x ∈ X} under q is a family of singletons,

the map p is a large scale continuous map by Lemma 31, which is moreover surjective. It

remains to show it is a coarse embedding. By Proposition 34, every uniformly bounded

family U in X/G is the image under q of a uniformly bounded family U ′ in X. Then

q−1(U) ≤ st(U ′,G)

where G = {{x, gx} | g ∈ G, x ∈ X}. The family st(U ′,G) is uniformly bounded in XG

because G is finite, which completes the proof.

Proposition 33. Let X be a metric space and G a finite group acting on X by coarse

equivalences. Then the large scale structure q(X ) on the orbit space X/G, where q is the

quotient map q : X → X/G and X is the large scale structure on X, is induced by the

Hausdorff metric on orbits, that is,

dHaus([x], [y]) = min{ sup
x′∈[x]

inf
y′∈[y]

d(x′, y′), sup
y′∈[y]

inf
x′∈[x]

d(x′, y′)}.

Suppose further than G acts by isometries. Then q(X ) is also induced by

dmin([x], [y]) = min{dX(x′, y′) | x′ ∈ [x], y′ ∈ [y]} = min{dX(x, g · y) | g ∈ G}.

Proof. If dHaus([x], [y]) ≤ R, then there are x′ ∈ [x], y′ ∈ [y] such that dX(x′, y′) ≤ R, so

clearly every cover which is uniformly bounded with respect to dHaus is contained in q(X ).

On the other hand, if dX(x, y) ≤ R for x, y ∈ X, then there is an S > 0 depending only on

R such that dX(g · x, g · y) ≤ S for all g ∈ G. It follows that dHaus([x], [y]) ≤ S, so every

element of q(X ) is uniformly bounded with respect to dHaus. If G acts by isometries, then

dmin([x], [y]) is indeed a metric, and it is easy to see that it induces q(X ).
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We recall the definition of coarsely light map from [24]. For A a subset of a large scale

spaceX and U a cover ofX, let AU be the set of equivalence classes of A under the equivalence

relation: x ∼ x′ if and only if there exists a finite sequence x0, . . . , xn of elements of A with

xUx0, xnUx′ and xiUxi+1 for all 0 ≤ i < n. A large scale continuous map f : X → Y is

called coarsely light if for every pair of uniformly bounded covers V of Y and U of X, the

family of subsets ⋃
V ∈V

f−1(V )U

is uniformly bounded in X. Equivalently, f is coarsely light if for every uniformly bounded

family V in Y , the family of subsets f−1(V) has asymptotic dimension zero uniformly (see

[24] for details).

Proposition 34. Let (X,X ) be a large scale space and let G be a group acting on X by

coarse equivalences. Then the identity set map pG : X → XG is coarsely light.

Proof. Let st(V ,F) be a uniformly bounded cover of XG, where V is a uniformly bounded

cover of X and F = {F · x | x ∈ X} for a finite subset F ⊆ G containing the identity (see

Lemma 33). Since for any st(V,F) ∈ st(V ,F),

st(V,F) ⊆
⋃

g∈F ·F−1

g · V,

it follows that every element of st(V ,F) is contained in a union of n = |F · F−1| elements

of the family V ′ =
⋃
g∈F ·F−1 g · V , which is uniformly bounded in X. Let U be a uniformly

bounded cover in X, which we may assume coarsens V ′. Then for any W ∈ st(V ,F), each

element of WU is contained in an element of the uniformly bounded cover

st(st(· · · st(︸ ︷︷ ︸
n−1 times

U ,U),U) · · · ,U),U).

Corollary 22. Let (X,X ) be a large scale space and let G be a group acting on X by coarse

equivalences. Then asdim X ≤ asdim XG.
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Proof. This follows from Proposition 9.1 in [24].

In the case when G is finite, we can apply a result of Kasprowski [40] to get a better

result. Kasprowski proves that for a proper metric space X and a finite group G acting on

X by isometries, X/G with the metric

d([x], [x′]) = min
g∈G

d(x, gx′) (5.1)

has asymptotic dimension equal to that of X. We get the following corollary for XG.

Corollary 23 (of Theorem 1.1 in [40]). Let X be a proper metric space and let G be a finite

group acting on X by coarse equivalences. Then asdimXG = asdimX.

Proof. As was already observed in [23], the metric

d′X(x, x′) =
∑
g∈G

d(g · x, g · x′)

on X induces the same large scale structure as the original metric on X, and the group G

acts on X by isometries with respect to the metric d′. Thus we may reduce to the case when

G acts by isometries (since asymptotic dimension is invariant under coarse equivalence). Let

d be the metric on X/G defined in (5.1), which by Proposition 33 induces the large scale

structure q(X ) on X/G, where q : X → X/G is the quotient map. Applying Kaprowski’s

result, we have that asdim X/G = asdim X, and since asymptotic dimension is invariant

under coarse equivalence, we obtain the result by Proposition 32.

When X is a metric space and G is a countable group then the large scale structure on

XG is countably generated, hence metrizable. If G is finitely generated, then the space XG

is the same (up to coarse equivalence) as the warped space introduced by Roe in [58], as

shown in Proposition 35 below.

Definition 36 ([58]). Let (X, d) be a proper metric space and let G be a group acting on X,

provided with a finite generating set S. The warped metric dG on X is the greatest metric
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that satisfies the inequalities

dG(x, x′) ≤ d(x, x′), dG(x, s · x) ≤ 1 ∀s ∈ S.

We call X with the metric dG the (metric) warped space.

Proposition 35. The warped metric dG induces the large scale structure on XG.

Proof. Let L be the large scale structure induced by dG, and let XG be the large scale

structure on XG. Clearly L contains the generating families of XG, hence XG ⊆ L. On

the other hand, if dG(x, y) ≤ k, then by Proposition 1.3 in [58], there is a sequence x =

x0, x1, . . . , xk+1 = y in X and elements γi ∈ G with

d(γixi, xi+1) ≤ k and |γi| ≤ k

for all i, where |γ| is the word-length of γ. This implies that xiUxi+1 for all i, where U is

the star of the family ⋃
|γ|≤k

{{x, γx} | x ∈ X}

against the family of k-balls with respect to the metric d. Both of these families are in XG
so, since the length of the sequence depends only on k and not on x or y, it follows that the

set of all k-balls with respect to dG is in XG, and thus L ⊆ XG as required.

Note that if the group G acts by isometries then it follows from Proposition 1.3 in [58]

that the warped metric dG has a simpler description, namely

dG(x, x′) = inf
g∈G
{d(x, gx′) + |g|}

where |g| is the word-length of g and d is the metric on X.

5.4 Coarsely discontinuous actions

We now restrict our attention to the analogue of properly discontinuous actions on topological

spaces, which we call coarsely discontinuous actions.
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Definition 37. Let X be a large scale space and let G be a group acting on X by coarse

equivalences. We say that the action of G is coarsely discontinuous if for every uniformly

bounded family U and every element g ∈ G \ {e}, there is a bounded set K such that for

every U ∈ U with U ∩K = ∅, we have U ∩ g · U = ∅.

If X is a metric space, then to say that an action of G on X is coarsely discontinuous is

clearly the same as to say that for each g ∈ G \ {e} and each R > 0 there is a bounded set

K such that d(x, g · x) ≥ R for all x /∈ K. Or, more succintly, d(x, g · x)→∞ as x→∞ for

every g 6= e.

Example 12. We recall the construction of the warped cone given in [58] in detail. Let X be

a compact metric space. By the cone CX on X we mean the quotient X× [0,∞)/ ∼, where

∼ is the equivalence relation generated by the pairs {((x, 0), (x′, 0)) | x, x′ ∈ X}. We can

turn CX into a metric space by choosing a continuous weight function Φ : [0,∞) → [0,∞)

with Φ(t) = 0⇔ t = 0 and defining

d([(x, t)], [(x′, t′)]) = inf

{
n−1∑
j=0

|tj − tj+1|+ max{Φ(tj),Φ(tj+1)}dX(xj, xj+1)

}

where the infimum is taken over all finite sequences (xj, tj)0≤j≤n of points in CX with

(x0, t0) ∼ (x, t) and (xn, tn) ∼ (x′, t′). One checks that this is a metric. If X is a path

metric space, then this is the same metric defined in (3.46) of [55]. If G is a group which

acts on X, then there is a natural action of G on CX given by g · (x, t) = (g · x, t). The

warped space (CX)G is called the warped cone.

If the action of G on X is by isometries, then the action of G on CX is also by isometries,

hence by coarse equivalences. If Φ(t) → ∞ as t → ∞ and the group G acts freely on X,

then the action is also coarsely discontinuous. Indeed, let R > 0 and g ∈ G \ {e}. Define

kg = min{dX(x, g · x) | x ∈ X} > 0.

Pick t0 > R such that Φ(t) > R/kg for all t > t0 − R. If (x, t) ∈ CX with t > t0, then for

any sequence (xj, tj)0≤j≤n with (x, t) = (x0, t0) and (g · x, t) = (xn, tn), if tj ≥ t0 for all j
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then

n−1∑
j=0

|tj − tj+1|+ max{Φ(tj),Φ(tj+1)}dX(xj, xj+1) ≥
n−1∑
j=0

R/kg · dX(xj, xj+1) ≥ R

otherwise tm < t0 for some m and thus

n−1∑
j=0

|tj − tj+1|+ max{Φ(tj),Φ(tj+1)}dX(xj, xj+1) ≥
m−1∑
j=0

|tj − tj+1| ≥ R

by the triangle inequality. Thus outside of the bounded set X×[0, t0]/ ∼, d((x, t), g·(x, t)) ≥ R

as required.

Example 13. Let G be a group equipped with a discrete proper left-invariant metric (such

as a word-length metric). Denote d(e, g) by |g| so that d(g, h) = |g−1h|. Consider the action

of G on itself as a metric space by left translation: g · x = gx. This action is an action by

isometries, hence in particular by coarse equivalences. Since d(x, gx) = |x−1gx|, this action

will be coarsely discontinuous if for every R > 0 and g 6= e, {x | |x−1gx| ≤ R} is finite. The

ball of radius R around the identity element is itself finite, so this is clearly equivalent to

requiring that for each x ∈ G, {y ∈ G | y−1gy = x−1gx} is finite. Since x−1gx = y−1gy if and

only if xy−1 is in the centralizer of g, we have that the action of G on itself by left translation

is coarsely discontinuous if the centralizer of every g ∈ G \ {e} is finite. Conversly, if the

centralizer of some g ∈ G \ {e} is infinite, then d(x, gx) = |g| for infinitely many x ∈ G, so

the action can’t be coarsely discontinuous. Thus the action of G on itself by left translation

is coarsely discontinuous if and only if the centralizer of every non-identity element of G is

finite.

Nonexample 1. Again consider a finitely generated group equipped with discrete proper left-

invariant metric, but this time consider the action by right translation: g · x = xg−1. The

action of each g ∈ G by right translation is close to the identity since d(x, xg−1) ≤ |g−1|, so

it follows that this action is by coarse equivalences, but is never coarsely discontinuous if G

is infinite.
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If X is a large scale space and G is a group acting on X by coarse equivalences, then we

can consider the set of all coarse equivalences X → X which are close to the identity when

considered as maps on XG. If we identify in this set those maps which are close as maps

on X, then we obtain a group under composition which we denote by Aut(X/XG). In the

language of category theory, this is the automorphism group of pG : X → XG in the slice

category (Coarse/ ∼)/XG. If X satisfies a connectedness condition and G acts coarsely

discontinuously, then we will see that Aut(X/XG) is naturally isomorphic to G.

If U is a cover of a set X, then the U-component of x ∈ X is the set of all x′ ∈ X

for which there is a finite sequence (Ui)0≤i≤n of elements of U with x ∈ U0, x′ ∈ Un and

Ui ∩ Ui+1 6= ∅ for 0 ≤ i < n. A set is called U-connected if it contains at most one

U -component.

Definition 38. Let X be a large scale space and let U be a uniformly bounded cover of X.

We say that X is coarsely one-ended at scale U if for every bounded set K in X there is

a bounded set K ′ containing K such that X \K ′ is U-connected. We say that X is coarsely

one-ended if it is coarsely one ended at some scale.

Proposition 36. Let X be a proper geodesic metric space. Then X is coarsely one-ended

if and only if it is topologically one-ended, that is, for every bounded set K ⊆ X there is a

bounded set K ′ ⊆ X so that K ⊆ K ′ and X \K ′ is topologically connected.

Proof. (⇒) : Suppose X is coarsely one-ended at scale U . Without loss of generality, let U

be the cover by R-balls, R > 0. Let K be a bounded set and consider N = st(K,U). Then

there is a L containing N so that N ⊆ L and X \L is U -connected. If X \L is topologically

connected, then we’re done. Otherwise, let {Ci}i∈I be the connected components of X \ L.

Since X \ L has one U -component, for each connected component Ci there is a distinct

connected component Cj and points xi ∈ Ci and xj ∈ Cj so that xiUxj. In particular,

d(xi, xj) < 2R. Let γi,j be a geodesic from xi to xj. Then γi,j must intersect L (lest Ci and

Cj not be distinct connected components) but γi,j does not intersect K since N is an 2R-ball

about K and the length of γi,j is at most 2R. In the new set γi,j ∪X \ L, xi and xj are in

the same connected component. It follows from a Zorn’s lemma argument that we can add

a union of geodesics, none of which intersect K, to X \ L to obtain a connected subspace.
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(⇐) : This follows from the observation that if a space is topologically connected, then

it is U -connected for any open cover U .

Lemma 35. Let (X,X ) be an unbounded large scale space, and let G be a group that acts

on X by coarse equivalences. Then the action of G is coarsely discontinuous if and only if

for every finite subset F ⊆ G and every pair of uniformly bounded families U and V in X,

there is a bounded subset K such that for any x, y ∈ X \K with xUy, and any g1 6= g2 in

F , {{g1 · x, g2 · y}} does not refine V.

Proof. Suppose the action is coarsely discontinuous, and let F ⊆ G be a finite subset and

U be a uniformly bounded family. For each g ∈ F · F−1 \ {e} choose a bounded subset Kg

such that if x /∈ Kg then {{x, g · x}} does not refine st(V ,U ′), where

U ′ =
⋃
g∈F

g · U .

Define the bounded set

K =
⋃

h∈F−1

⋃
g∈F ·F−1

h ·Kg.

If xUy, x, y /∈ K and {g1 · x, g2 · y} ⊆ V ∈ V with g1 6= g2, then (g2 · y)U ′(g2 · x) so

(g1 · x)st(V ,U ′)(g2 · x). But g2x = g2g
−1
1 g1 · x and g1 · x /∈ Kg2g

−1
1

, a contradiction. The

converse is easy to check.

Theorem 16. Let (X,X ) be an unbounded large scale space, and let G be a group that acts

on X coarsely discontinuously by coarse equivalences. If (X,X ) is coarsely one-ended, then

there is a canonical group isomorphism G ∼= Aut(X/XG).

Proof. Suppose (X,X ) is coarsely one-ended at scale U . Define a map Φ from G to

Aut(X/XG) by sending g to its action on X. This is clearly a group homomorphism. We

claim it is surjective. Let f ∈ Aut(X/XG) and suppose (by use of Lemma 33) that f is

close to the identity on XG as witnessed by st(V ,F) with V a cover in X (which we may

assume coarsens U) and F = {{F · x}}x∈X for F ⊆ G finite. Then for every x ∈ X there is

a f1f
−1
2 ∈ F · F−1 and an x′ such that f(x) = f1f

−1
2 · x′ and xVx′. Hence for every x there
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is a f1f
−1
2 ∈ F · F−1 such that (f1f

−1
2 · x)V ′f(x), where V ′ is the bounded family

V ′ =
⋃

h∈F ·F−1

h · V .

For each x, pick such an f1f
−1
2 ∈ F ·F−1 and call it α(x). We claim that outside of a bounded

set, α(x) is uniquely defined. Using Lemma 35, choose a bounded set K such that for any

x, y /∈ K with xVy and any g1 6= g2 in F · F−1, {g1 · x, g2 · y} does not refine st(f(U),V ′). If

xUy with x, y /∈ K, then (α(x) ·x)V ′f(x)f(U)f(y)V ′(α(y) · y), so we must have α(x) = α(y).

Choose a bounded set K ′ containing K such that X \K ′ is U -connected. Then for any two

points x, y /∈ K ′, x and y are connected by a chain of elements of U and so α(x) = α(y) by

the above. Thus, f is close to the action of some h ∈ F · F−1 outside of a bounded set, as

witnessed by V ′. Since f is large scale continuous, it must be close to the action of h on all

of X, which shows that Φ is surjective. By coarse discontinuity, Φ is also injective, since no

action of g is close to the identity on (X,X ) so long as X is unbounded.

Both coarse one-endedness and coarse discontinuity are necessary for the above theorem

to hold true. To see the former, take X to be the subspace of R3 consisting of the positive

x, y and z-axes. Let G = Z/3Z act on this space via 1 · (x, y, z) = (z, x, y). The space XG

is then coarsely equivalent to the positive real axis. But any permutation of x,y and z gives

rise to an element of Aut(X/XG). For coarse discontinuity, take for example the action of a

finitely generated group G on itself by right translation (see Example 11). If we denote the

underlying large scale space of G by |G| then |G|G, with respect to this action, is just |G|

(see Nonexample 1), and so Aut(|G|/|G|G) is trivial regardless of what G is.

5.5 The maximal Roe algebra

We recall the definition of the maximal Roe algebra from [31] (see also [51]). For the

remainder of this section, X denotes a discrete bounded geometry metric space (for example,

a finitely generated group with a word metric). Recall that a metric space has bounded

geometry if for every R > 0 there is an integer N such that every R-ball in X has at
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most N elements. Our goal is to relate the Roe algebra of X with that of XG for a coarsely

discontinuous action of G, where G is a countable group.

Fix a separable infinite-dimensional Hilbert space H and consider the algebra of bounded

operators on `2(X)⊗H. We can view an operator T on `2(X)⊗H as a matrix (Tx,y)(x,y)∈X×X

of operators on H. We say that T has propagation less than R if Tx,y = 0 for d(x, y) ≥ R.

The support of T is the subset of X×X for which Tx,y 6= 0. Denote by C[X] the algebra of

all bounded operators T on `2(X)⊗H such that, when T is written as a matrix (Tx,y)x,y∈X

of operators,

• Tx,y is compact for all x and y (that is, T is locally compact), and

• there exists an R > 0 such that T has propagation less than R (that is, T has finite

propagation).

The (usual) Roe algebra C∗(X) of X is the operator norm closure of C[X] in B(`2(X)⊗H).

However, for our purposes we will need a different C∗-algebra: the maximal Roe algebra.

Definition 39 ([31]). The maximal Roe algebra C∗max(X) of C[X] is the completion of

X with respect to the the ∗-norm

||T || = sup(φ,Hφ)||φ(T )||B(Hφ)

where (φ,Hφ) runs through representations φ of C[X] on a Hilbert space Hφ.

Note that it follows from a “partial translation decomposition” argument (see [31]) that

this norm is well-defined. If G is a countable group and X is a metric space then the large

scale structure on XG is induced by a metric (which we may assume is discrete) since it is

countably generated. It is easy to see that C[XG] (and thus C∗(XG) and C∗max(XG)) is the

same for any two metrics inducing the same large scale structure, so from now on we will

assume that some metric on XG has been chosen which induces the large scale structure. It

follows from Lemma 33 that if X has bounded geometry, then so does XG.

Clearly C[X] contains all the rank one operators

e(x,v),(y,w) : δz ⊗ u 7→ 〈δy ⊗ w, δz ⊗ u〉δx ⊗ v.
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It follows that the maximal Roe algebra contains a closed two-sided ideal canonically

isomorphic to K, the compact operators on `2(X) ⊗ H (this is because K is the universal

C∗-algebra generated by a system of matrix units). We will want to work with the quotient

C∗max(X)/K.

Suppose a group G acts on X by coarse equivalences. For an element g ∈ G, let Mg be

the operator on `2(X)⊗H given by

(Mg)x,y =

1H if gy = x

0 otherwise

Note that MgMh = Mgh and M∗
g = Mg−1 . Thus G has an induced action on B(`2(X)⊗H)

via

g · T = MgTM
∗
g .

This action restricts to an action on C[X] which extends to an action on C∗max(X). This

action preserves the ideal K, so we obtain an action on C∗max(X)/K. Note also that Mg,

while not an element of C[XG] (it is not locally compact), is a multiplier of C[XG] because

it has finite propagation.

Theorem 17. Let G be a countable group which acts coarsely discontinuously by coarse

equivalences on a discrete bounded geometry metric space X . Let α be the action of G on

C∗max(X)/K given by g · [T ] = [MgTM
∗
g ]. Then there is a canonical ∗-isomorphism

(C∗max(X)/K) oα G
∼= // C∗max(XG)/K

where oα denotes the full crossed product.

Proof. Since for any T ∈ C[X], ||TMg||2 = ||TMg(TMg)
∗|| = ||TT ∗|| = ||T ||2 in C∗max(X),

the map T 7→ TMg extends to a multiplier of C∗max(XG). Define a map Φ from Cc[G,C
∗
max(X)]

to C∗max(XG) by Tδg 7→ TMg. One checks that this actually defines a ∗-homomorphism,

where the product on Cc[G,C
∗
max(X)] is the convolution product with respect to the action
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α. This gives rise to a ∗-homomorphism

Φ : C∗max(X) oα G→ C∗max(XG)

Since the image of K oα G under this map is contained in K(`2(X)⊗H), we get a map

Φ′′ : (C∗max(X)/K) oα G→ C∗max(XG)/K

Here we are implictly using the fact that the full crossed product functor is exact, so that

(C∗max(X)/K) oα G ∼= (C∗max(X) oα G) / (K oα G) .

We claim that Φ′′ is a ∗-isomorphism. We will prove this by constructing an inverse Ψ′′ to

it.

Let T ∈ C[XG]. We claim that T can be written as

T =
∑
g∈G

TgMg

where each of the Tg are in C[X] and only finitely many of the Tg are non-zero. Moreover, we

claim that if T =
∑

g∈G SgMg is some other decomposition of T with each Sg ∈ C[X], then

Sg − Tg ∈ K(`2(X) ⊗H) for every g ∈ G. To prove the existence of such a decomposition,

note that by Lemma 33, there exists an R > 0 and a finite set F = {g0, . . . , gk} of elements

of G such that the support of T can be written as a disjoint union tki=0Rgi where for any

(x, y) ∈ Rgi , there exists an x′ such that gix
′ = y and dX(x, x′) ≤ R (note that this distance

is in X, not XG). Write the corresponding decomposition of T (thinking of T as a map from

X ×X to K(H)) as

T =
k∑
i=0

T |Rgi
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It follows from the definition of Rgi that M∗
gi
T |Rgi (and thus also MgiM

∗
gi

(T |Rgi )M
∗
gi

=

(T |Rgi )M
∗
gi

) is an element of C[X]. Thus we have our decomposition

T =
k∑
i=0

TiMgi ,

where Ti = T |RgiM
∗
gi

.

Now suppose there is another such decomposition T =
∑l

i=0 SiMgi with each Si ∈ C[X].

Then
∑l

i=0(Si − Ti)Mgi = 0 with Ti = 0 for i > k for convenience. Pick an R′ > 0 such

that for every i, Si − Ti has propagation less than R′. Using Lemma 35, choose a bounded

set K such that for every pair gi 6= gj in {g0, . . . , gl}, d(gi · x, gj · x) > 2R′. Notice that for

any i, 0 ≤ i ≤ l, (Si − Ti)Mgi can only have a nonzero (x, y) entry if d(gi · x, y) ≤ R′. If

d(gj · x, y) ≤ R′ for some other 0 ≤ j ≤ l, then

d(gi · x, gj · x) ≤ 2R′

implies x ∈ K. Thus for x /∈ K, the (x, y) entry of the sum
∑l

i=0(Si− Ti)Mgi is contributed

to by exactly one (Si − Ti)Mgi . It follows that the support of every (Si − Ti) is a finite set,

and thus each (Si − Ti) is compact.

We are now ready to define our inverse map. For any T ∈ C[XG], decompose T as

T =
∑

g∈G TgMg with each Tg ∈ C[X] and define

Ψ(T ) =
∑

[Tg]δg ∈ (C∗max(X)/K) oα G.

Our previous calculations show that this is well-defined. One easily checks that this defines

a ∗-homomorphism, and so it extends to a map

Ψ′ : C∗max(XG)→ (C∗max(X)/K) oα G

The final step is to note that the image of K under this map is 0, so we have an induced

map

Ψ′′ : C∗max(XG)/K → (C∗max(X)/K) oα G
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which by construction is a two-sided inverse for Φ′′.

Another way to write the conclusion of Theorem 17 above is that there is a short exact

sequence

0→ K → C∗max(XG)→ (C∗max(X)/K) oα G→ 0. (5.2)

The proof of Theorem 17 was inspired by the proof of Proposition 2.8 in [51]. We now show

that we recover this result as a special case. Let Γ be a residually finite finitely generated

group and let

Γ0 ⊃ Γ1 ⊃ . . .

be a sequence of normal finite index subgroups such that ∩i∈NΓi = {e}. Let dΓ be the left-

invariant metric associated to some generating set in Γ and give Γ/Γi the metric di defined

by di(aΓi, bΓi) = min{dΓ(aγ1, bγ2) | γ1, γ2 ∈ Γi}. We define the box space to be the set

X(Γ) = ti∈NΓ/Γi equipped with a metric d such that

• d agrees with the metric di defined above on Γ/Γi,

• d(Γ/Γi,Γ/Γj) > i+ j if i 6= j, and

• the action of Γ on X(Γ) induced by left translation is an action by isometries.

Note that this last point is really a matter of appropriately defining d(x, y) for x ∈ Γi and

y ∈ Γj with i 6= j.

Corollary 24 (Proposition 2.8 in [51]). In the situation above, there is a short exact sequence

0→ K → C∗max(X(Γ))→ AΓ oα Γ→ 0.

where AΓ = `∞(X(Γ),K(H))/C0(X(Γ),K(H)) and the action of Γ on AΓ is induced by the

action of Γ on X(Γ) given by right translation, that is g · f(hΓi) = f(hgΓi).

Proof. Let X ′ be the underlying set of X(Γ) equipped with the smallest coarsely connected

large scale structure, that is, wherein uniformly bounded families are precisely those which

contain finitely many non-singleton sets (since X(Γ) is countable, this large scale structure

is metrizable). Then Γ acts on X ′ by coarse equivalences. Moreover, this action is coarsely
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discontinuous. Indeed, since ∩i∈NΓi = {e}, every γ ∈ Γ only fixes a finite number of points

in X ′. It is easy to check, by similar arguments as in Example 11, that X(Γ) is coarsely

equivalent to X ′Γ in the sense of Definition 35. Thus we can assume that X ′Γ = X(Γ) as

metric spaces. From Theorem 17, we have an exact sequence

0→ K → C∗max(X(Γ))→ (C∗max(X ′)/K) oα Γ→ 0.

It is enough then to show that C∗max(X ′)/K is ∗-isomorphic to AΓ in a way that preserves

the action of Γ. There is an obvious ∗-homomorphism

Θ : AΓ → C∗max(X ′)/K

given by sending an element f ∈ `∞(X(Γ),K(H)) to the (zero-propagation) diagonal matrix

with entries (f(γ))γ∈Γ. This map is clearly injective since such an f represents a compact

operator if and only if it is in C0(X(Γ),K(H)). It remains to show it is surjective. Let

T ∈ C[X ′]. Then by definition of the large scale structure on X ′, T can be written as

T ′+T ′′ where T ′ has finitely many entries and T ′′ is a diagonal matrix of compact operators.

Thus T ′′ is in the image of the map Θ above. Thus the image of Θ is dense and so Θ is

surjective.

Remark 11. In fact, the action of Γ on X(Γ) in Proposition 2.8 in [51] is implied to be

by left translation. However, the authors believe that this is an error in [51]. The key

observation is that if d(e, g) ≤ R for some g ∈ Γ with d being a left-invariant metric,

then left translation by g on `2(Γ) is not in general a finite propagation operator because

d(a, ga) = |a−1ga|. On the other hand right translation by g is an operator of propagation

less than R since d(a, ag) = |a−1ag| ≤ R. A similar argument shows the same fact for the

action of g on X(Γ). Thus in the proof of Proposition 2.8 in [51], the operators LγiΓ should

really be right translation operators and not left translation operators.

This corollary together with Remark 2.12 in [51] also shows that there is no hope for an

exact sequence of the form of (5.2) where the maximal Roe algebra is replaced by the usual

Roe algebra and the full crossed product is replaced by the reduced crossed product. We
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will show, however, that in case X has Yu’s Property A (first introduced in [74]) and the

group G acting on it is amenable, we can make the replacement.

Many equivalent definitions of Property A exist in the literature. We will use a definition

(which is equivalent to Property A for bounded geometry discrete metric spaces) due to

Dadarlat-Guentner. For an index set S, let ∆(S) denote the set of formal linear combinations

∑
s∈S

as · s

such that as ∈ [0, 1] for each s, as = 0 for all but finitely many s, and
∑
as = 1. We will

equip ∆(S) with the l1 metric. The star of a vertex s ∈ S is the set of all elements of ∆(S)

with as 6= 0. By a partition of unity on a set X, we mean a map φ : X → ∆(S) for some

set S.

Definition 40. [14] A large scale space X is exact if for each uniformly bounded cover U

of X and each ε > 0 there is a partition of unity φ : X → ∆(S) such that point-inverses of

stars of vertices form a uniformly bounded cover of X and the mesh of φ(U) is smaller than

ε.

Theorem 18. Let G be a countable group which acts on a large scale space X by coarse

equivalences. If G is amenable and X is exact, then XG is exact.

Proof. Let X be the large scale structure on X, let st(U ,F) be a uniformly bounded family

in XG, with F = {F · x | x ∈ X} and U ∈ X , and let ε > 0. By the amenability of G, we

have that there is a finite E ⊆ G so that for all g ∈ F · F−1,

|E∆E · g|
|E|

< ε/3.

Since G acts by coarse equivalences, we have that g · U = {g · U}U∈U is in X for all g and

hence

UE =
⋃
k∈E

k · U

is also in X .
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Since X is exact, we have that there is a partition of unity (φi)i∈I such that the family

V = (Vi)i∈I is in X , where Vi = {x ∈ X | φi(x) 6= 0}, and for every x, y ∈ U with U ∈ UE,

we have ∑
i∈I

|φi(x)− φi(y)| < ε

3
.

Define a new partition of unity (ψi)i∈I on X via

ψi(x) =
1

|E|
∑
k∈E

φi(k · x),

and let W = (Wi)i∈I be the cover of X given by Wi = {x ∈ X | ψi(x) 6= 0}. We claim that

W is uniformly bounded in XG. Indeed, x ∈ Wi implies ψi(x) 6= 0 so there is a k ∈ E so that

k · x ∈ Vi. It follows that W refines the cover st(V , E), where E =
⋃
k∈E{{x, k · x} | x ∈ X}.

It remains to show that for any x, y ∈ st(U,F) with U ∈ U , we have
∑

i∈I |ψi(x)−ψi(y)| <

ε. It is enough to show that (1) for any x, y ∈ U we have
∑

i∈I |ψi(x)−ψi(y)| < ε/3 and (2)

for x ∈ X and g, h ∈ F we have
∑

i∈I |ψi(g · x)− ψi(h · x)| < ε/3.

We first show inequality (1). Let x, y ∈ U for some U ∈
⋃
k∈E

k · U . Then

∑
i∈I

|ψi(x)− ψi(y)| ≤ 1

|E|
∑
k∈E

∑
i∈I

|φi(k · x)− φi(k · y)|.

For any k ∈ E, x, y ∈ U implies k · x, k · y ∈ k · U ∈ UE, so by the construction of the φi,

∑
i∈I

|ψi(x)− ψi(y)| ≤ 1

|E|
· |E| · ε

3
=
ε

3
.

We now show (2). Let x ∈ X and g, h ∈ F . Then

∑
i∈I

|ψi(g · x)− ψi(h · x)| = 1

|E|
∑
i∈I

|
∑
k∈E

φi(k · g · x)− φi(k · h · x)|.
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Notice that if k · g ∈ E · g ∩ E · h, then the term φi(k · g · x) is cancelled out. So from the

above we get

∑
i∈I

|ψi(g · x)− ψi(h · x)| = 1

|E|
∑
i∈I

|
∑

l∈E·g\E·h

φi(l · x) −
∑

m∈E·h\E·g

φi(m · x)|

≤ 1

|E|
∑

l∈E·g∆E·h

∑
i∈I

|φi(l · x)|

=
|E · g∆E · h|

|E|
.

since each φi is a partition of unity. But |E · g∆E · h| = |E∆E · hg−1|, so by the condition

on E, we have
|E · g∆E · h|

|E|
≤ ε/3

as required.

Recall from [14] that a bounded geometry discrete metric space is exact if and only if it

has Property A. Thus from the above theorem we recover the following slight generalization

of Proposition 3.1 from [58]. Note that even in the metric case the proof of Theorem 18

differs from the proof in [58] since we use exactness instead of the definition of Property A

using probability measures.

Corollary 25. Let G be a countable group which acts on a discrete bounded geometry metric

space X by coarse equivalences. If G is amenable and X has Property A, then XG has

Property A.

Note that by Proposition 34 in this chapter and Corollary 9.4 in [24], X has Property A

if XG does, for any countable group G. The following corollary was already proved in [23].

Corollary 26. Let G be a finite group which acts on a discrete bounded geometry metric

space X by coarse equivalences. If X has Property A, then X/G has Property A when

endowed with the Hausdorff metric.

Proof. Since Property A is invariant under coarse equivalence, this follow from Propositions

32 and 33 and the fact that any finite group is amenable.
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We now recall the following result from [63]. In fact, the result in [63] requires the space

to be uniformly discrete, but since every metric space is bijectively coarsely equivalent to a

uniformly discrete one (simply increase the distance between distinct points by some fixed

ε > 0), we can drop this assumption.

Theorem 19 (Proposition 1.3 in [63]). If X is a bounded geometry discrete metric space

with Yu’s Property A, then the canonical quotient λ : C∗max(X)→ C∗(X) is a ∗-isomorphism.

Recalling that the full crossed product and reduced crossed product agree for amenable

groups, we have the following corollary.

Corollary 27. Let X be a bounded geometry discrete metric space with Yu’s Property A,

and let G be a countable amenable group acting on X coarsely discontinuously by coarse

equivalences. Then we have an exact sequence

0→ K → C∗(XG)→ (C∗(X)/K) or,α G→ 0.

By Proposition 32, if G is finite, XG is coarsely equivalent to X/G. This coarse

equivalence gives rise to a (non-canonical) ∗-isomorphism φ : C∗max(XG) → C∗max(X/G).

The map φ is constructed as follows: let H = ⊕g∈GHg be an orthogonal decomposition of

H into infinite dimensional subspaces, and let ψg : H → Hg be a unitary isometry for every

g ∈ G. For each equivalence class [x] ∈ X/G, choose a representative s([x]) ∈ [x]. Then we

can define a unitary operator

Up : `2(XG)⊗H → `2(X/G)⊗H

by Up(δx ⊗ h) = δ[x] ⊗ ψg(h) where x = g · s([x]). We can then define an isometry

AdUp : C∗[XG]→ C∗[X/G]

by AdUp(T ) = UpTU
∗
p , which extends to an isometry φ : C∗max(XG) → C∗max(X/G) as

required. Since φ preserves all the rank-one projections, it also preserves the compact
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operators. Thus we obtain the following corollary of Theorem 17, Propositions 45 and

32.

Corollary 28. Let G be a finite group acting coarsely discontinuously by coarse equivalences

on a discrete bounded geometry metric space X, and let X/G be the orbit space with the

Hausdorff metric. Then there is a ∗-isomorphism

(C∗max(X)/K) or,α G
∼= // C∗max(X/G)/K

Moreover, if X has Property A, then the maximal Roe algebra above can be replaced by the

usual Roe algebra.

Example 14. Let G = {1, γ} ∼= Z/2Z and let G act on the metric space X = Z by γ(x) =

−x. This action is coarsely discontinuous, and the quotient X/G is coarsely equivalent to

N. Since Z has Property A and Z/2Z is amenable, we have a ∗-isomorphism

(C∗(Z)/K) or Z/2Z
∼= // C∗(N)/K

Example 15. Recall from Remark 10 that if G is a finitely generated group and X is

the underlying set of G equipped with the smallest coarsely connected large scale structure,

then XG is coarsely equivalent to G, where the action of G is by right translation. By

similar arguments to the proof of Corollary 24, one can check that C∗max(X)/K is naturally

isomorphic to `∞(|G|,K(H))/C0(|G|,K(H)) where |G| is the underlying set of G. It follows

that there is a natural isomorphism

C∗max(G)/K ∼= `∞(|G|,K(H))/C0(|G|,K(H)) oG.

where the action of G on `∞(|G|,K(H))/C0(|G|,K(H)) is given by right translation: g ·

f(h) = f(hg−1). Compare this result to Theorem 4.28 in [57] which states that

C∗u(G) ∼= `∞(|G|) or G

139



where C∗u(−) denotes the uniform Roe algebra. There is also a well-known isomorphism

C∗max(G) ∼= `∞(G,K(H)) oG

where C∗max(G) is the maximal Roe algebra of G (the proof is an easy adaptation of the proof

of Proposition 5.1.3 in [10]).

5.6 Weak coarse quotient maps

In this section, we introduce the notion of weak coarse quotient map, of which pG : X → XG

is an example when G is finitely generated, and motivate the definition using the coarse

category.

Recall that given a topological space X and a surjective set map f from the underlying set

of X to a set Y , the quotient topology on Y is the finest topology that makes f continuous.

We now introduce an analogous notion for large scale spaces, based on the definition of

quotient coarse structure in [16].

Definition 41. Let X be a large scale space and let f be a surjective set map from the

underlying set of X to a set Y . Then the quotient large scale structure on Y is

defined to be f(X ) where X is the large scale structure on X and f(X ) is the collection

{f(U) | U ∈ X}.

Clearly the quotient large scale structure is the smallest large scale structure which makes

the map f large scale continuous. The quotient large scale structure also has a universal

property. In fact, the existence of the quotient large scale structure and the universal property

follow from general categorical considerations in [16]. For completeness, we present a direct

proof here.

Proposition 37. Let f : X → Y be a surjective large scale continuous map. Then Y has the

quotient large scale structure with respect to f if and only f satisfies the following universal

property:

(Q1) for any large scale continuous map g : X → Z which is constant on the fibres of f ,

there is a unique large scale continuous map h from Y to Z such that hf = g.
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Proof. (⇒) Let X be the large scale structure on X. The map h is uniquely defined:

h(f(x)) = g(x). The fact that h is large scale continuous follows from Lemma 31:

h(f(X )) ⊆ hf(X ) = g(X ) ⊆ Z

where Z is the large scale structure on Z.

(⇐) Suppose (Q1) holds. Consider the map f ′ : X → Y ′, where Y ′ is the underlying set

of Y equipped with the quotient large scale structure and f ′ is the same as f at the level of

underlying sets. It follows that the identity set map Y → Y ′ must be large scale continuous,

and the result follows from this.

We may be tempted to define a weak coarse quotient map as a surjective large scale

continuous map f : X → Y such that Y has the quotient large scale structure with respect

to f . The problem with this idea is that such a definition is not very “coarse”. Indeed, we

should expect a class of maps E defined by a large scale property to satisfy the following

conditions:

(LS1) if f is close to g, and f is in E , then so is g;

(LS2) if f is a large scale continuous map, and φ and ψ are coarse equivalences such that the

composite φfψ is defined, then f is in E if and only if φfψ is in E .

In fact, as the following proposition shows, (LS2) implies (LS1).

Proposition 38. If a class E of large scale continuous maps satisfies (LS2) then it also

satisfies (LS1).

Proof. Let f : X → Y be in E , and suppose g is a map whose closeness to f is witnessed by

the uniformly bounded cover U . Let X ′ be the subspace of the product X × Y given by

{(x, y) | f(x)Uy}.

The map i : X → X ′ given by x 7→ (x, f(x)) is a coarse equivalence, and we have π2 ◦ i = f ,

where π2 : X ′ → Y is the projection onto the second coordinate. It follows that π2 is in E by
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(LS2). We have a map j : X → X ′ given by x 7→ (x, g(x)), which is also a coarse equivalence,

such that π2 ◦ j = g. Applying condition (LS2), we have that g is in E as well.

The class of all surjective maps f whose codomain carries the quotient large scale

structure with respect to f satisfies neither (LS1) nor (LS2). We thus introduce the following

definition of weak coarse quotient map instead.

Definition 42. Let f : X → Y be a large scale continuous map. Then f is a weak coarse

quotient map if it is coarsely surjective and there exists a uniformly bounded cover V of

Y such that the large scale structure on Y is generated by f(X ) ∪ {V}, where X is the large

scale structure on X. A cover V satisfying this property is called a quotient scale of f .

Observation 3. Consider a group action G on a large scale space X. If the group G is

generated by a finite set S, then the collection of all families

{{x, gx} | x ∈ X}

is contained in the large scale structure generated by the single family

S = {S · x | x ∈ X},

so that the identity set map X → XG is a weak coarse quotient map with quotient scale S.

Note that if V is a quotient scale for the weak coarse quotient map f : X → Y , then so is

any uniformly bounded coarsening of V . In particular, we can always pick a quotient scale

V such that Y ⊆ st(f(X),V). A weak coarse quotient map satisfies a universal property.

Proposition 39. Let f : X → Y be a large scale continuous map and let V be a uniformly

bounded cover of Y . Then the following are equivalent.

(a) f is a weak coarse quotient map with quotient scale V,

(b) for any large scale continuous map g : X → Z such that g(f−1(V)) is uniformly

bounded, there exists a unique-up-to-closeness map h : Y → Z such that hf is close to

g.
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Proof. (a) ⇒ (b): Without loss of generality, choose the weak coarse quotient scale V so

that Y ⊆ st(f(X),V). Suppose there is a large scale continuous g : X → Z so that

g(f−1(V)) ∈ Z where Z is the large scale structure on Z. We define a map h : Y → Z. Let

y ∈ Y . Then we can pick a V ∈ V and an x ∈ X so that y ∈ V and f(x) ∈ V . Define

h(y) = g(x). We claim that h ◦ f and g are close. Indeed, let x ∈ X. Then hf(x) = g(x′)

for some x′ such that f(x′)Vf(x). It follows that g(f−1(V)) witnesses the closeness of g and

h ◦ f . The uniqueness up to closeness follows from the fact that f is an epimorphism in

the coarse category. Finally, if U is a uniformly bounded family in X, then hf(U) refines

st(g(U), g(f−1(V))). This, together with the fact that V and f(X ) together generate the

large scale structure on Y , give that h is large scale continuous.

(b) ⇒ (a): It is easy to check that f must be an epimorphism, and hence coarsely

surjective. Let Y ′ be the underlying set of Y with the large scale structure generated by V

and f(X ). By hypothesis, there is a large scale continuous map Y → Y ′, which must be

close to the identity on f(X) and thus also on all of Y . Since the identity map is close to

a large scale continuous map, it is itself large scale continuous, and it follows easily that Y ′

and Y have the same large scale structure.

Recall that for a category C and two morphisms f, g : X → Y , a coequalizer of f and

g is a morphism h : Y → Z such that hf = hg and such that if h′ : Y → Z ′ is another

morphism such that h′f = h′g, then there exists a unique morphism i : Z → Z ′ such that

ih = h′. A regular epimorphism is a coequalizer of a pair of morphisms. In the category

of topological spaces and continuous maps, the epimorphisms are the surjective continuous

maps, which are not quotient maps in general. On the other hand, the regular epimorphisms

are precisely the quotient maps.

Proposition 40. Let f : X → Y be a large scale continuous map. Then [f ] is a regular

epimorphism in Coarse/ ∼ if and only if f is a weak coarse quotient map.

Proof. (⇒): Suppose f is the coequalizer of [a], [b] : W → X, and let

V = {{f(a(w)), f(b(w))} | w ∈ W}.
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Then since fa ∼ fb, V is uniformly bounded. We claim that f is a weak coarse quotient

map with quotient scale V . Indeed, if g : X → Z is some other map that sends f−1(V) to a

uniformly bounded family, then ga ∼ gb and so [g] factors uniquely through [f ] in the coarse

category. By Proposition 39, f is a weak coarse quotient map.

(⇐): Suppose f is a weak coarse quotient map with quotient scale V . Let W be the

subspace of X×X given by {(x, x′) | f(x)Vf(x′)}, and let π1, π2 be the projections W → X,

which are clearly large scale continuous. Then fπ1 ∼ fπ2, and if gπ1 ∼ gπ2, then g sends

f−1(V) to a uniformly bounded family, so that [g] factors uniquely through [f ] in the coarse

category by Proposition 39. It follows that [f ] is the coequalizer of [π1] and [π2].

Corollary 29. Any coarse equivalence is a weak coarse quotient map. Moreover, the class

of weak coarse quotient maps satisfies (LS1) and (LS2).

Proof. Any isomorphism is a regular epimorphism, and regular epimorphisms are closed

under composition with isomorphisms, which gives (LS2).

Clearly if f : X → Y is a surjective large scale continuous map and Y has the quotient

large scale structure, then f is a weak coarse quotient map with any uniformly bounded

cover of Y as a quotient scale. Much more general situations are possible, however, as the

proposition below shows.

Proposition 41. Let Y be a large scale space. Then the following are equivalent:

(1) Y is monogenic, that is, the large scale structure on Y is generated by a single uniformly

bounded family V;

(2) every coarsely surjective large scale continuous map f : X → Y is a weak coarse

quotient map.

Proof. (1)⇒(2): Pick the generating family V as the quotient scale.

(2)⇒(1): Let Y ′ be the underlying set of Y with the smallest large scale structure, and

consider the identity set map Y ′ → Y . The large scale structure on Y ′ must be generated

solely by a quotient scale V of this map, and the result follows.
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In particular, any coarsely surjective large scale continuous map whose codomain is

a geodesic metric space is a weak coarse quotient map. Thus at least in the setting of

geodesic metric spaces (or more generally, spaces which are coarsely equivalent to geodesic

metric spaces – see Proposition 2.57 in [57]), weak coarse quotients are nothing but coarsely

surjective maps. In light of this observation, one may ask whether we can find a smaller class

of large scale continuous maps which includes the class of all surjective maps f : X → Y

such that Y has the quotient large scale structure and still satisfies (LS1) and (LS2). The

following proposition shows that this is impossible.

Proposition 42. Let E be the class of all surjective large scale continuous maps f : X → Y

such that Y has the quotient large scale structure. Then the class of weak coarse quotients

maps is the smallest class of large scale continuous maps satisfying (LS1) and (LS2) and

containing E.

Proof. Suppose E ′ is a class of large scale continuous maps satisfying (LS1) and (LS2) and

containing E . We claim it contains all the weak coarse quotient maps. Let f : X → Y be a

surjective large scale continuous map where the large scale structure on Y is generated by

f(X ) and the cover of subsets V , where X is the large scale structure on X. Define X ′ to

be the subspace of the product X × Y given by

{(x, y) | f(x)Vy}

and let i : X → X ′ be the map x 7→ (x, f(x)). One can check that i is a coarse equivalence.

The projection onto the second coordinate π2 : X ′ → Y is such that π2 ◦ i = f . The large

scale structure on Y is the quotient large scale structure with respect to π2. Indeed, if X ′ is

the large scale structure on X ′, then π2(X ′) clearly contains f(X ) by π2◦i = f , as well as the

cover V (take the image of the family ∆×V in X ×Y restricted to X ′, where ∆ is the cover

by singletons). Thus π2 is in E , and so f is as well. Finally, we can weaken the requirement

that f be surjective to coarsely surjective by applying the above argument to the restriction

X → f(X) of f and then using (LS2) to compose with the inclusion f(X)→ Y , which is a

coarse equivalence.
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We now make the connection with the notion of coarse quotient mapping in [75]. Recall

from [75] that a map f : X → Y between metric spaces is called a coarse quotient

mapping with constant K if it is large scale continuous and for every ε there exists a

δ = δ(ε) such that for every x ∈ X

B(f(x), ε) ⊆ f(B(x, δ))K

where for A ⊆ Y , AL = {y ∈ Y | ∃a∈Ad(a, y) ≤ L}. If f : X → Y is a coarse quotient

mapping, then every uniformly bounded family U in f(X) refines the image of st(f(V),BK)

for some uniformly bounded family V in X, where BK is the cover of Y by R-balls. Thus the

restriction f : X → f(X) is a weak coarse quotient map with quotient scale BK . As noted

in [75], every coarse quotient mapping is coarsely surjective, so it follows that every coarse

quotient mapping is a weak coarse quotient map. The converse is not true: simply take any

large scale continuous and coarsely surjective map into a geodesic metric space which is not

a coarse quotient mapping.

Proposition 43. Let X be a metric space and let G be a finite group acting on X by coarse

equivalences. Then the identity set map pG : X → XG is a coarse quotient mapping in the

sense of [75] for any metric inducing the large scale structure on XG.

Proof. Let K = max{d(x, g · x) | x ∈ X, g ∈ G}, which is finite by the definition of the

large scale structure on XG. Let ε > 0. From Lemma 33, and using the fact that G is finite,

there is a uniformly bounded family U such that any ball B(f(x), ε) in XG is contained in⋃
g∈G g · U for some U ∈ U . It follows that B(f(x), ε) is contained in B(f(x), δ)K where

δ = mesh(U).

5.7 Metrization of quotient large scale structures

If f : X → Y is a weak coarse quotient map, and X is a metric space, then the large scale

structure on Y is countably generated, hence metrizable. The following proposition gives an

explicit construction of a metric on Y which induces the large scale structure.
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Proposition 44. Let f : X → Y be a weak coarse quotient map with quotient scale V. Let

V ′ = st(V ,V). If X is a metric space with metric dX , then the large scale structure on Y is

induced by the metric dY defined by dY (y, y) = 0 and for y 6= y′,

dY (y, y′) = inf{n+
n∑
i=1

dX(ai, bi) | f(a1)Vy, f(bn)Vy′, f(bi)V ′f(ai+1), n ∈ Z+}.

Proof. Let Y denote the large scale structure on Y . It is easy to check that dY is a metric.

Since aVb =⇒ dY (a, b) = 1, the cover V ∈ Y is uniformly bounded with respect to V .

The image under f of any uniformly bounded family in X is also clearly uniformly bounded

with respect to dY . Thus since Y is generated by f(X ) ∪ {V}, we have the containment

Y ⊆ L(dY ), where L(dY ) is the large scale structure induced by dY . It remains to show

that every element of L(dY ) is an element of Y . Let U ∈ L(dY ), and pick M ∈ Z such that

dY (y, y′) < M for any yUy′. By the definition of dY we have that for every yUy′ there is a

sequence (ai, bi)1≤i≤k of pairs of elements of X such that

• k ≤M and d(ai, bi) ≤M for all i,

• f(a1)Vy, f(bn)Vf(b) and f(bi)V ′f(ai+1) for all i.

If W ∈ Y is a common coarsening of V ′ and f(BM), where BM is the cover of X by M -balls,

it follows that y is connected to y′ by a chain of at most 2M + 1 elements ofW , which shows

that U is an element of Y .

Corollary 30. Let X be a metrice space, and let G be a finitely generated group that acts

on X by coarse equivalences, with G generated by the finite symmetric set S containing the

identity. Then the large scale structure on XG is induced by the metric defined by dXG(x, x) =

0 and for x 6= x′,

dXG(x, x′) = inf{n+
n∑
i=1

dX(ai, bi) | x ∈ S2 · a1, x
′ ∈ S2 · bn, bi ∈ S4 · ai+1, n ∈ Z+}.

where Sn = {s1s2 · · · sn | ∀isi ∈ S}.

Proof. This follows from Observation 3.
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Corollary 31. Let X be a metric space and let f be a surjective set map from the underlying

set of X to a set Y . Then the quotient large scale structure on Y is induced by the metric

d′f defined by d′f (y, y) = 0 and for y 6= y′,

d′f (y, y
′) = inf{n+

n∑
i=1

dX(ai, bi) | f(a1) = y, f(bn) = y′, f(bi) = f(ai+1), n ∈ Z+}

Proof. The quotient large scale structure on Y is the unique large scale structure for which

f is a weak coarse quotient map with quotient scale the cover by singletons.

The metric d′f in Corollary 31 may seem unfamiliar, but when X is uniformly discrete, it

coincides with the classical quotient metric. We briefly recall the definition of the quotient

(pseudo)metric (see for example Definition 3.1.12 in [11]). Let X be a metric space and

let f : X → Y be a map from the underlying set of X to a set Y . Then the quotient

pseudometric on Y with respect to f is defined to be

df (y, y
′) = inf{

n∑
i=1

dX(ai, bi) | f(a1) = y, f(bn) = y′, f(bi) = f(ai+1), n ∈ Z+}

(in fact the definition is usually stated for an equivalence relation E on X, but this is clearly

the same thing as a surjective set map X → Y ). Note that this may not be a metric since

distinct points may be distance 0 apart. Recall the following definition (see for example [50]).

Definition 43. A metric space X is called uniformly discrete if there is a constant C > 0

such that for any x 6= x′, d(x, x′) > C.

Proposition 45. Let X be a uniformly discrete metric space and let f be a surjective set

map from the underlying set of X to a set Y . Then the (classical) quotient pseudometric on

Y is a metric and induces the quotient large scale structure on Y with respect to f .

Proof. It is easy to see that the quotient pseudometric is a metric. Let C > 0 be such that

for any x 6= x′, d(x, x′) > C. Let d′f be defined as in Corollary 31 and let df be the quotient

metric on Y with respect to f . Suppose df (y, y
′) < R. Then there is a sequence of pairs of
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points (ai, bi)1≤i≤k such that f(a1) = y, f(bn) = y′ and f(bi) = f(ai+1), and such that

k∑
i=1

dX(ai, bi) ≤ R.

Since X is uniformly discrete, this means that kC ≤ R, which implies that

k +
k∑
i=1

dX(ai, bi) ≤ R +R/C

from which it follows that d′f (y, y
′) ≤ R + R/C. On the other hand, if d′f (y, y

′) < R then it

is easy to check that df (y, y
′) < R, so we have that df and d′f induce the same large scale

structure.

Finally, we have the following characterization of weak coarse quotient maps between

metric spaces.

Proposition 46. Let f : X → Y be a large scale continuous map between non-empty metric

spaces. Then the following are equivalent:

(a) f is a weak coarse quotient map;

(b) there exists a T > 0 such that for every R > 0 there is an S(R) > 0 and an

integer n(R) such that if dY (y, y′) ≤ R for y, y′ ∈ Y then there is a sequence of

pairs of points (ai, bi)1≤i≤n(R) in X such that dY (f(a1), y) ≤ T, dY (f(bn), y′) ≤ T , and

dY (f(bi), f(ai+1)) ≤ T and dX(ai, bi) ≤ S(R) for all i.

Proof. (a) ⇒ (b): Suppose f is a weak coarse quotient map with quotient scale V . We

claim that T = mesh(st(V ,V)) works. Let d′Y be the metric on Y constructed in Proposition

44 which we know induces the large scale structure on Y . Thus for every R > 0 there is

an R′ > 0 such that dY (y, y′) ≤ R =⇒ d′Y (y, y′) ≤ R′ for all y, y ∈ Y where dY is the

original metric on Y . By construction of the metric d′Y , if d′Y (y, y′) ≤ R′ then there must be

a sequence of pairs of points (ai, bi)1≤i≤n in X with n ≤ R+ 1 such that f(a1)Vy, f(bn)Vy′,

f(bi)st(V ,V)f(ai+1) for all i and d(ai, bi) ≤ R + 1 for all i. Thus setting n(R) > R + 1,

S(R) = R + 1 we have the result.
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(b) ⇒ (a): Clearly f must be coarsely surjective with Y ⊆ B(f(X), T ). Let R > 0 and

pick S(R) and n(R) as in (b). Let BS(R) and BT be covers of X and Y by S(R)-balls and

T -balls respectively. If d(y, y′) ≤ R for y, y′ ∈ Y then (b) implies that y and y′ are connected

by a chain of at most n(R) elements of st(f(BS(R)),BT ). Since n(R) and S(R) depend only

on R, the cover of Y by R-balls is an element of the large scale structure generated by f(X )

and BT where X is the large scale structure on X. It follows that f is a weak coarse quotient

map with quotient scale BT .

Note that we can obviously choose n(R) = S(R) for every R in (b) of Proposition 46,

but it is more intuitively clear to keep the two quantities separate.
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Chapter 6

Conclusion

6.1 Concluding remarks

This thesis makes contributions to the field of coarse geometry by introducing and studying

new large scale notions. These notions arise through an analogy between coarse geometry

and topology, and are analogues of notions which have already played a significant role in

the field of topology and beyond. It is hoped that some of these new coarse geometric ideas

will be useful in future work in the area of coarse geometry and other areas in a similar way.

A guiding force in much of the study of these new notions is category theory – a powerful

theoretical framework for drawing parallels between different fields. The main aim of using

category theory is to ensure that the “right” definitions are chosen as far as possible, i.e.

those that are natural and behave in the way one would expect.

6.2 Future avenues for research

In this section, we briefly survey some future research directions suggested by the work in

this thesis.
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6.2.1 Coarse covering spaces

A motivation for a lot of the theory developed in this thesis is to move towards a theory

of covering spaces for coarse geometry. Covering spaces play a crucial role in foundational

results in algebraic topology, and are in particular closely related to the fundamental group

and other homotopy invariants of topological spaces. Of particular importance in studying

covering spaces in topology are connectedness properties, both for individual spaces and for

maps between spaces; connectedness was the main theme of Chapter 2. Also, topological

covering maps are always topologically light – here is the connection to the work of Chapter

4. The most striking connection is to Chapter 5: covering spaces in topology are intimately

related to properly discontinuous actions, whose coarse analogues are the main objects of

study in that chapter. In particular, Theorem 16 resembles a classical topological result

about deck transformation groups (see Chapter 13 of Munkres for example [47]).

6.2.2 Neighbourhood operators in coarse geometry

One lesson that can be learned from Chapter 3 is that neighbourhood operators can provide a

bridge from topology and uniform spaces to coarse geometry. The final section of that chapter

makes it clear that for metric spaces, the neighbourhood relation completely determines

the coarse structure. However, it is not at all clear how to usefully formulate important

coarse concepts like Property A or asymptotic dimension in terms of coarse neighbourhoods.

Beyond metric spaces, the coarse neighbourhoods need no longer determine the coarse

structure in a straightforward way (as was shown in that section as well), so there is also

the potential to investigate using neighbourhood operators as the axiomatic framework for

coarse geometry, perhaps instead of coarse structures in some cases.

6.2.3 Warped spaces and warped cones

As was mentioned in the introduction to Chapter 5, warped cones have recently become

the subject of a great deal of interest in the coarse geometry community since they provide

examples of spaces with exotic large scale behaviour. It would be interesting to investigate

applications of the work in Chapter 5 to warped cones – the Roe algebra is involved in the
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coarse Baum-Connes Conjecture, after all, and Sawicki has recently showed that warped

cones can violate this conjecture [61]. Looking beyond warped cones, there seems to be a

vast potential for new kinds of spaces in the warped space construction. If there is already

so much of interest just in warped cones, one wonders what other exotic behaviour can be

exhibited by general warped spaces.
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