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Abstract

Increased urbanization, infrastructure degradation, and climate change threaten to

overwhelm stromwater systems across the nation, rendering them ineffective. Green

Infrastructure (GI) practices are low cost, low regret strategies that can contribute to urban

runoff management. However, questions remain as to how to best distribute GI practices

through urban watersheds given the precipitation uncertainty and the hydrological responses

to them.

First, we develop a two-stage stochastic robust programming model to determine the

optimal placement of GI practices across a set of candidate locations in a watershed to

minimize the total expected runoff under medium-term precipitation uncertainties. We

develop a systemic approach to downscale the existing daily precipitation projections into

hourly units and efficiently estimate the corresponding hydrological responses. We conduct

a case study for an urban watershed in a mid-sized city in the U.S., perform sensitivity

analyses and provide insights.

Second, we develop a mathematical model to optimally place GI practices when

(re-)designing an urban area, subject to uncertainties in population growth and future

precipitation. Specifically, we develop a finite-horizon Markov decision process model to

determine the extent to which GI practices need to be incorporated in different parts of a

given urban area to maximize their benefits, considering the dynamic changes in population

density and precipitation. We conduct a case study, perform sensitivity analyses and provide

insights.

Finally, we consider a problem of scheduling maintenance crew following a storm event

to efficiently maintain GI practices across a watershed to mitigate surface runoff due to

future events. Specifically, we investigate a condition for which the polyhedron of the flow

shop scheduling problem is integer-optimal. This condition is used to construct a column

generation algorithm to solve the problem to optimality. The solution approach is boosted

with a heuristic that sequentially solves a series of linear programming models to generate a

quality initial solution. The solution approach is also integrated with a commercial solver,

which results in significant computational savings. Computational experiments show that

the developed algorithm can efficiently solve test problems to near-optimality.
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Chapter 1

Optimizing Green Infrastructure

Placement Under Precipitation

Uncertainty

One of the most important factors threatening infrastructure in the U.S. is climate change.

Climate change affects the frequency, intensity, spatial extent, duration as well as timing

of extreme events [48]. Over the past decade, we have observed more frequent, intense

and untimely events damaging infrastructure and impacting people and businesses (e.g.,

Hurricane Katrina, Superstorm Sandy). Thus, there are major concerns as to whether

cities are protected against these projected increasing number of extreme weather events.

To mitigate these effects, municipalities are beginning to seek opportunities to improve the

resiliency of infrastructure through better urban planning and taking advantage of innovative

solutions. This is extremely timely, as by the end of next decade, 60% of the world population

will live in cities [103].

Provision of scientifically-based methodologies for understanding and evaluating climate

impacts will be critical to the development of adaptation strategies designed to avoid

the increasing socioeconomic costs of severe weather-related damages to urban landscapes

[82]. Despite this understanding, city managers are forced to make infrastructure decisions

complicated by massive amounts of data and uncertainty. In a time when multiple, sometimes

conflicting, climate projections exist, tools to distill these data into a usable format for such

individuals are critical. Hence, city managers need a tool which addresses the complexity

and uncertainty of climate projections to allow optimized choices for building resiliency into

urban systems.

In the 2013 “Report Card” for American infrastructure, the nation’s stormwater systems

(in combination with wastewater) were awarded a D+, indicating the poor state of these

critical components of the urban landscape. Exacerbating this need is the specter of climate

change, leading us to the age of non-stationarity, where past trends of precipitation may
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no longer be relevant as a basis of design for civil infrastructure. Stormwater systems are

particularly susceptible, as the size of pipes is selected based on how much stormwater needs

to be conveyed for a given storm of interest or design storm applied to the watershed. As

design storms are determined based on historical rainfall data, climate change threatens to

overwhelm pipes that are in poor condition and undersized relative to changing weather

patterns. Thus climate change and the associated overwhelming of stormwater pipe systems

is likely to cause increased flooding in urban watersheds, escalating the already present trend

of flooding and flash flooding as (on average) the leading cause of weather-related fatalities

in the U.S., beyond even hurricanes and tornadoes [63]. For instance, in April 2016, a 17-inch

rainfall resulted in significant flooding in Houston Texas, with the estimated total cost of 1.2

billion dollars.

Replacing existing stormwater sewers with pipes of larger capacity would be prohibitively

expensive and time consuming in many urban environments due to surrounding infras-

tructure and social conflicts. However, building resiliency into urban stormwater systems

through the use of green infrastructure (GI) is an increasing trend nationwide. The

2014 Intergovernmental Panel on Climate Change (IPCC) has identified changes to urban

drainage systems as a key adaption issue for North America and recommends consideration

of low–regret strategies such as GI to reduce flooding while also providing co-benefits to

freshwater provision, ecological processes, and freshwater fish populations [5, 73]. The U.S.

Environmental Protection Agency (EPA) is promoting GI as a means to enable communities

to avoid costly water infrastructure replacement and repair by using vegetation and soil to

manage rainwater where it falls, thereby reducing the burden on aging sewer pipes [20]. These

systems act as localized storage centers, where stormwater can enter, be detained, then leave

the system as evaporation, infiltration, or as runoff with diminished energy and volume. As

such, GI has been deemed as a way to build better infrastructure as part of the National

Academy of Engineering’s Grand Challenge to restore and improve urban infrastructure.

In recent years, researchers have considered the impact of GI on urban flooding at the

watershed scale [34, 67]. Kim et al. [65] studied the impact of urban green spaces on

reducing urban flood risk. As their case study, they considered a flooded area in Seoul,

South Korea. They divided the case study area into four regions based on topographic and

physical characteristics, and used logistic regression to determine how flooding probabilities

change with respect to green space area. Based on their results, the probability of flooding

could be reduced by over 50% depending on the location of green spaces and their types.

In a related study, Liu et al. [68] developed a simulation model to determine the reduction

of peak flow rate in flooding for an urban community in Beijing, China. They reported

that an integrated GI configuration can reduce peak flow by 92.8-100%. Liu et al. [69]

also investigated the impact of GI practice types and sizes on reducing urban flooding.

They reported that expanding green spaces, concave green space, storage pond, and porous

brick pavements are effective in reducing urban flooding. Using different sizes of these GI,
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Figure 1.1: Projected annual precipitation over the city of Knoxville, Tennessee, in inches,
between 2018 and 2050 under 10 popular climate models.

they studied runoff reduction in 5-year recurrence storm and concluded that the proper GI

combination together with appropriate GI sizing is necessary for urban stormwater runoff

management. Thus, the properties of the GI and how it is configured in a given watershed

have shown to be an important factor in literature for determining the effectiveness of these

interventions [45, 44].

Although the current body of work provides invaluable insights, to improve the resiliency

of infrastructure, we need to modify our approach to infrastructure planning to account

for future changes in climate. Accounting for extreme events does not necessarily translate

into planning for the worst-case scenario; instead, it requires policymakers to allocate the

budget and effort for future urban planning and maintenance actions by accounting for

a wide range of factors under uncertainty. In our context, climate parameters, specifically

future precipitation, are the main uncertainty. One important factor to consider when trying

to optimize a measure of interest under uncertainty, is that not only is knowledge about

climate patterns limited and inherently stochastic, but there are multiple climate models

that at times make inconsistent predictions. For example, Figure 1.1 gives the projected

annual precipitation, in inches, between 2018 and 2050 in the City of Knoxville, Tennessee,

using 10 coupled general circulation models (CGCMs) [56]. As seen in the figure, there is

significant difference between these 10 models in terms of annual precipitation levels, e.g., in

year 2021, standard deviation of precipitation is 7.27 inches. Hence, if placing GI practices

in an urban watershed is performed under one projected scenario, it may fall extremely short

of addressing the true stormwater management needs if another scenario is realized.

3



Stochastic and robust programming have been used extensively for decision making under

uncertainty, e.g., power systems [105], finance [66, 88], and many engineering applications [47,

52]. Specifically, these approaches has been extensively used in modeling facility location

under uncertainty [90]. To the best of our knowledge, the use of these two important

methodologies in environmental engineering applications has been limited, especially when

it comes to placing GI practices in an urban environment under various uncertainties.

Ramshani et al. [84] is perhaps one the few of such studies, and uses a stochastic programming

model to optimally place PV panels and green roofs in a mid-sized city under climate change

uncertainty to maximize the overall profit from energy generated and saved.

In this paper, we use stochastic and robust programming to account for the uncertainty

in future precipitation when placing GI practices in an urban watershed. Specifically, we

first develop a two-stage stochastic programming model to determine the optimal placement

of GI practices across a set of candidate locations in an urban watershed to minimize the

total expected surface runoff under medium-term precipitation uncertainty. Using statistical

analysis on the performance of GI practices, we then develop a robust two-stage stochastic

programming to produce alternative solutions to the problem of placing GI practices in

an urban watershed. We conduct a case study for a watershed in the City of Knoxville,

Tennessee, in which we calibrate the model using literature, historical precipitation data,

future precipitation projections, watershed hydrological responses to precipitation and GI

installations, and expert opinion. We provide the results obtained from the two modeling

approaches under various levels of available budget, investigate their differences, conduct

extensive sensitivity analyses, and provide insights.

No work has been identified in literature that addresses GI placement in an urban

watershed under precipitation uncertainties. Perhaps the closet work is Loáiciga et al.

[70]. Their objective was to minimize total construction cost such that volumetric water

balance, stormwater volumes, and water-quality characteristics fell within an allowable range.

However, this work does not account for the uncertainty in future precipitation projections.

The rest of the paper is organized as follows. First, we formulate the model in Section 2.1.

Next, in Section 2.2, we calibrate our model for a watershed in a mid-size city in the U.S.

In Section 2.3, we provide the computational results for our case study and draw insights.

Finally, we provide a summary and additional insights in Section 1.4.

1.1 Model Formulation

In this study, our goal is to minimize the expected total runoff volume over a medium-

term planning horizon under future precipitation uncertainty, given an available budget for

investment. This is consistent with challenges currently facing city planners throughout

the world. Various types of GI differ in their expense, requirements for advanced

planning, necessary land allocation, and their efficiency in reducing surface runoff following

4



precipitation. Accordingly, in this study, we consider two groups of GI and two stages for

placing them. The first set of decisions are made to install large-scale GI practices during

the planning horizon to prevent excess runoff before a precipitation scenario is realized. The

second set of decisions, which involve placing small-scale GI practices to further improve

the overall performance and increase runoff volume reduction, are made after realizing a

precipitation scenario.

1.1.1 Two-Stage Stochastic Programming Model

In this section, we develop a two-stage stochastic programming model. The goal is

determine the extent to which each sub-catchment must be covered by each of the available

types of GI, in the two stages, to minimize the expected total runoff over the planning

horizon under precipitation uncertainty. For brevity, we refer to this model as ‘stochastic

model’ in the remainder of the manuscript.

Let V = {1, 2, , . . . , |V |} denote the set of sub-catchments within a watershed whose

impervious areas are candidates for placing GI practices. For any given sub-catchment, let

G = {1, 2, . . . , |G|} denote the set of all available types of GI practices. We assume that

each GI practice may be installed in various levels within a given sub-catchment, e.g., to

cover 5%, 7.5%, and 10% of the impervious area within any given sub-catchment with GI.

Let L = {1, 2, . . . , |L|} denote the set of available levels of installation of GI practices within

a given sub-catchment.

As discussed in Section 2, although CGCMs may be used to project future precipitation

in a given region, the resulting projections from different models do not necessarily agree.

Hence, the variability across these precipitation projections are the source of uncertainty in

our model. Let T denote the length of the planning horizon in years and Ψ denote the finite

set of projected precipitation time series for the watershed over the planning horizon T . We

let ψ ∈ Ψ denote a projected precipitation time series, corresponding to scenarios in the

model, and πψ denote the realization probability of scenario ψ ∈ Ψ.

As discussed earlier in Section 2.1, we consider two groups of large- and small-scale GI

practices in this study, where practices from the former and latter groups can be placed

before and after a CGCM is realized. Let T ≤ T denote the year in which a precipitation

scenario is realized. Also, let GI and GII , where GI ∪ GII = G,GI ∩ GII = ∅, denote the

set of possible types of GI practices available for placement at t ≤ T − 1 and T ≤ t ≤ T ,

respectively. Consequently, let xti,j,l denote the first stage binary decision variable indicating

whether or not a GI practice of type j ∈ GI ⊂ G in level l is placed within sub-catchment i in

year t ≤ T−1. Similarly, let yψ,ti,j,l denote the second stage binary decision variables indicating

whether or not a GI practice of type j ∈ GII ⊂ G in level l is placed within sub-catchment

i in T ≤ t ≤ T . The decision variables assume the value 1 if the corresponding practice is

installed, and the value 0, otherwise. Lastly, we let δi,j,l denote the corresponding area (in
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square feet) of GI practice type j ∈ G installed in level l ∈ L, within sub-catchment i ∈ V .

In this study, we assume only one type of GI can be placed in each sub-catchment, mainly

due to the sizes of GI practices considered, compared to the sizes of the sub-catchments.

Precipitation that is not infiltrated into the soil becomes surface runoff. We incorporate

precipitation scenarios into our model by quantifying their impact on each sub-catchments’

surface runoff reduction. Let Qψ,t
i denote the total baseline surface runoff under scenario

ψ ∈ Ψ over sub-catchment i ∈ V in year t when no GI practice is placed. Similarly, let

Q̂ψ,t
i,j,l denote the surface runoff captured by GI practice of type j ∈ G installed in level l ∈ L

within sub-catchment i ∈ V under scenario ψ ∈ Ψ in year t. Hence, clearly for any given

i ∈ V , the difference between Qψ,t
i and Q̂ψ,t

i,j,l gives the total surface runoff in sub-catchment i

over year t under scenario ψ ∈ Ψ as a result of installing GI practices of type j ∈ G in level

l ∈ L within the sub-catchment.

In this study, we assume that once a GI practice is constructed, it must be maintained

annually to preserve its runoff reduction properties. Let Ct
i,j denote the per square feet

present total cost of placing GI practice of type j within sub-catchment i in year t. Also, let

B denote the total available budget at the beginning of the planning horizon for placing GI

practices.

A key goal to achieve in planning GI is connectivity as it provides additional resilience

against storms and flooding [36, 40, 51, 62, 75]. For instance, all else held constant, a series of

connected GI practices is more effective in managing water quantity and quality than a set of

disjoint GI practices that are surrounded by urban development [87]. This is mainly because

runoff that flows from a sub-catchment to a downstream sub-catchment can be slowed or

captured by GI practices before reaching downstream [51, 62]. This impact is particularly

pronounced in adjacent/neighboring sub-catchments with respect to watershed hydrology

as the connected GI practices can further mitigate runoff resulting from ‘directly connected

impervious areas,’ reducing runoff volumes, peak discharge, and baseflow effects [79].

Figure 1.2 illustrates a subset of a watershed consisting of seven sub-catchments and

its main stream. Placing GI practices in any of the sub-catchments reduces the surface

runoff in that sub-catchment. Additionally, dependent on sub-catchments characteristics

[35], placing a GI practice in an upstream sub-catchment, may further reduce the surface

runoff in a downstream sub-catchment. Lastly, simultaneous placement of GI practices has

the potential to further mitigate the surface runoff, if the sub-catchments are ‘hydrologically

connected.’ For instance, because sub-catchments 3 and 5 are hydrologically connected,

placing GI practices in sub-catchment 3 can potentially also reduce the amount of run-off over

sub-catchment 5, even if no GI is placed on the latter sub-catchment. Furthermore, placing

GI practices in both sub-catchments 3 and 5 can potentially result in a larger reduction in

surface runoff, compared to that obtained from placing the same type/level of GI practices

in the two sub-catchments if they were not hydrologically connected.
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Figure 1.2: A small portion of a watershed consisting of seven sub-catchments and its main
stream.

We capture sub-catchment connectivity in a watershed using a directed acyclic graph.

Specifically, let the directed acyclic graph G(V,A) denote the system of sub-catchments where

V is the set of nodes in the graph, corresponding to the sub-catchments in the watershed,

and A denotes the set of sub-catchment connectivity arcs, where there exists an arc ai′,i ∈ A
if and only if sub-catchments i′, i ∈ V are connected.

Consider a given pair of connected sub-catchments i′ and i, ai′,i ∈ A. When accounting

for surface run-off reduction over sub-catchment i due to a GI practice placed upstream,

assuming large-scale GI practice installations only, three distinct cases must be considered:

(a) a GI practice is placed within upstream sub-catchment i′ in year t′ after a GI is placed

within downstream sub-catchment i in year t such that 0 ≤ t ≤ t′ ≤ T − 1; (b) a GI is

placed within downstream sub-catchment i in year t after a GI is placed within upstream

sub-catchment i′ in year t′ such that 0 ≤ t′ ≤ t ≤ T − 1; and (c) a GI is placed within

upstream sub-catchment i′ in year t′ and no GI placed in downstream sub-catchment i by

the beginning of year T̄ , i.e., 0 ≤ t′ ≤ T − 1.

To be able to account for the adjustment in surface runoff reduction due to GI

installations in connected sub-catchments as described in cases (a)-(c), we introduce the

runoff ‘adjustment factor’ βi
′,j′,l′

i,j,l and the variable zt
′,i′,j′,l′

t,i,j,l . Specifically, for any given pair of

connected sub-catchments i′ and i, where ai′,i ∈ A, we let 0 ≤ βi
′,j′,l′

i,j,l ≤ 1 denote the runoff

‘adjustment factor’ over the downstream sub-catchment i ∈ V , when a GI practice of type

j′ ∈ GI in level l′ ∈ L is installed within upstream sub-catchment i′ ∈ V and no GI practice or

a GI practice of type j ∈ GI in level l ∈ L is installed within the downstream sub-catchment

i ∈ V . We use j = 0 to indicate that no GI is installed within a sub-catchment. In addition,

we let zt
′,i′,j′,l′

t,i,j,l denote the binary variable indicating whether or not GI practices of types

j′, j ∈ GI in levels l′, l ∈ L are installed within sub-catchment i′, i ∈ V in years t′, t ≤ T̄ − 1,

respectively. The variable assumes the value 1 if the corresponding practices are installed and
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equals 0, otherwise. In addition, we define zt
′,i′,j′,l′

t,i,0,l = 0 for all t′, i′, j′, l′, t, i, and l, to account

for cases when only the upstream sub-catchment is selected for installing large-scale GI

practices. Note that a downstream sub-catchment can be hydrologically connected to more

than one upstream sub-catchment. We assume that the ‘adjustments’ over downstream sub-

catchments are additive. Lastly, for completeness, we define Q̂ψ,t
i,0,l = 0 for all ψ, t, i, and l to

account for the case where no GI is installed in sub-catchment i ∈ V .

In addition to accounting for potential adjustments in runoff reduction as a result

of hydrological connectivity, we require first stage decision variables to fulfill a certain

connectivity constraint to ensure that the model provides at least a minimum desired level

of connectivity among large-scale GI practices by the beginning of year T . Specifically, we

define GI connectivity as a 1-neighbor constraint on first stage decision variables, which

prescribe large-scale GI practice installations. That is, a first stage GI practice can be

installed in sub-catchment i if there exists at least one placed first stage GI practice in one

of the sub-catchments that are hydrologically connected to sub-catchment i. For simplicity

of notation, in the remainder we use x = [xti,j,l], z = [zt
′,i′,j′,l′

t,i,j,l ], y = [yψ,ti,j,l] to refer to the

vectors of the corresponding variables. The notation is summarized in Appendix A.

We let φS(x, z, y) denote the total expected surface runoff across the watershed G(V,A)

over the planning horizon, T , under the decision variables x, z, and y for the stochastic model.

Therefore, given the total available budget, B, the following model minimizes φS(x, z, y), i.e.,

min
x,z,y

φS(x, z, y) = min
x,z,y

∑
ψ∈Ψ

πψ ·

[∑
i∈V

∑
{t|0≤t≤T}

Qψ,t
i

−
∑
i∈V

∑
j∈GI

∑
l∈L

∑
{t|0≤t≤T−1}

∑
{t′|t≤t′≤T}

Q̂ψ,t′

i,j,l · x
t
i,j,l

−
∑
ai′,i∈A

∑
j∈GI∪{0}

∑
j′∈GI

∑
l∈L

∑
l′∈L

∑
{t|0≤t≤T−1}

∑
{t′|0≤t′≤T−1}

∑
{t′′ |max{t·1{j 6=0},t′}≤t

′′≤T}

βi
′,j′,l′

i,j,l

(
Qψ,t

′′

i

(
xt

′

i′,j′,l′ − z
t′,i′,j′,l′

t,i,j,l

)
+ Q̂ψ,t

′′

i,j,l · z
t′,i′,j′,l′

t,i,j,l

)
−
∑
ai′,i∈A

∑
j∈GI∪{0}

∑
j′∈GI

∑
l∈L

∑
l′∈L

∑
{t|0≤t≤T−1}

∑
{t′|0≤t′≤t−1}

∑
{t′′ |t′≤t′′≤t−1}

βi
′,j′,l′

i,j,l ·Q
ψ,t

′′

i · zt
′,i′,j′,l′

t,i,j,l

(1.1)

−
∑
i∈V

∑
j∈GII

∑
l∈L

∑
{t|T≤t≤T}

∑
{t′|t≤t′≤T}

Q̂ψ,t′

i,j,l · y
ψ,t
i,j,l

]
,
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s.t.
∑
i∈V

∑
j∈GI

∑
l∈L

∑
{t|0≤t≤T−1}

Ct
i,j · δi,j,l · xti,j,l

+
∑
i∈V

∑
j∈GII

∑
l∈L

∑
{t|T≤t≤T}

Ct
i,j · δi,j,l · y

ψ,t
i,j,l ≤ B,

∀ψ ∈ Ψ, (1.2)

xt
′

i′,j′,l′ + xti,j,l ≤ zt
′,i′,j′,l′

t,i,j,l + 1,

∀i′, i ∈ V, ai′,i ∈ A,
∀j′, j ∈ GI ,∀l′, l ∈ L,
0 ≤ t′, t ≤ T − 1,

(1.3)

xti,j,l ≥
∑
j′∈GI

∑
l′∈L

∑
{t′|0≤t′≤T−1}

zt
′,i′,j′,l′

t,i,j,l ,

∀i, i′ ∈ V, ai′,i ∈ A,
∀j ∈ GI ,∀l ∈ L,
0 ≤ t ≤ T − 1,

(1.4)

xt
′

i′,j′,l′ ≥
∑
j∈GI

∑
l∈L

∑
{t|0≤t≤T−1}

zt
′,i′,j′,l′

t,i,j,l ,

∀i, i′ ∈ V, ai′,i ∈ A,
∀j′ ∈ GI ,∀l′ ∈ L,
0 ≤ t′ ≤ T − 1,

(1.5)

zt
′,i′,j′,l′

t,i,j,l = 0,

∀i′, i ∈ V, ai′,i ∈ A,
j = 0,∀j′ ∈ GI ,∀l, l′ ∈ L,
0 ≤ t, t′ ≤ T − 1,

(1.6)∑
j∈GI

∑
l∈L

∑
{t|0≤t≤T−1}

xti,j,l ≤
∑
ai′,i∈A

∑
j∈GI

∑
l∈L

∑
{t|0≤t≤T−1}

xti′,j,l, ∀i ∈ V, (1.7)

∑
j∈GI

∑
l∈L

∑
{t|0≤t≤T−1}

xti,j,l +
∑
j∈GII

∑
l∈L

∑
{t|T≤t≤T}

yψ,ti,j,l ≤ 1, ∀i ∈ V, ψ ∈ Ψ, (1.8)

xti,j,l, y
ψ,t

′′

i,j′′ ,l
, zt

′,i′,j′,l′

t,i,j,l ∈ {0, 1},

∀i′, i ∈ V, ai′,i ∈ A,
∀j′, j ∈ GI ,∀j ′′ ∈ GII ,

∀l′, l ∈ L,∀ψ ∈ Ψ,

0 ≤ t, t′ ≤ T − 1,

T ≤ t
′′ ≤ T.

(1.9)

The objective function (1.1) minimizes the total expected surface runoff across the sub-

catchments within the watershed over the planning horizon. The first term in (1.1) captures
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the total baseline runoff. The second term in (1.1) presents the reduction in surface runoff

over the sub-catchments as a result of first stage GI installations within the sub-catchments.

The third and forth terms in (1.1) address the adjustment in surface runoff reduction due

to GI installations in connected sub-catchments (see Appendix B for more details). Finally,

the last term in (1.1) presents the reduction in surface runoff over the sub-catchments as a

result of second-stage GI installations within the sub-catchments.

Constraint (1.2) enforces budget limitations for placing GI practices. Constraints (1.3)-

(1.6) establish the relationship between variables x and z and enforces the latter to

assume the value one when large-scale GI practices are installed within two connected sub-

catchments, and to assume the value zero, otherwise. Constraint (1.7) ensures the 1-neighbor

connectivity among first-stage GI practices. Constraint (1.8) assures that at most one GI

practice is installed in any given sub-catchment throughout the planning horizon. Finally,

constraint (1.9) enforces binary restrictions on the decision variables. Let Ω denote the

feasible set of the problem, i.e., Ω = {χ = (x, z, y)|(1.2)− (1.9)}. Accordingly, we let χ?S ∈ Ω

denote the optimal solution to the stochastic model, i.e., φS(χ?S) ≤ φS(χ) for all χ ∈ Ω.

1.1.2 Two-Stage Stochastic Robust Programming Model

Here, we reformulate the problem as a two-stage stochastic robust model, using the

same notation introduced in Section 1.1.1. Similar to the previous formulation, the model

prescribes the extent to which each sub-catchment must be covered by each type of GI

practice in the two stages. Different from the previous formulation in which the baseline

surface runoff volume, Qψ,t
i , and surface runoff volume captured by a GI practice, Q̂ψ,t

i,j,l,

were assumed to be readily known, in this formulation we assume there is uncertainty in

calculating these runoff volumes. For brevity, we refer to this model as ‘robust model’ in the

remainder of the manuscript.

Specifically, we redefine Qψ,t
i to denote the average baseline surface runoff volume within

sub-catchment i ∈ V under scenario ψ ∈ Ψ in year t, and let 2qψ,ti (α) denote the width of the

100(1−α)% confidence interval (CI) for the corresponding average baseline surface runoff vol-

ume. Similarly, we redefine Q̂ψ,t
i,j,l to denote the average surface runoff volume captured by GI

practice of type j ∈ G installed in level l ∈ L within sub-catchment i ∈ V under scenario ψ ∈
Ψ in year t, and let 2q̂ψ,ti,j,l(α) denote the width of the 100(1−α)% CI for the corresponding av-

erage surface runoff volume captured by the GI practice. Consequently, [Qψ,t
i −q

ψ,t
i (α), Qψ,t

i +

qψ,ti (α)] and [Q̂ψ,t
i,j,l−q̂

ψ,t
i,j,l(α), Q̂ψ,t

i,l,j+q̂
ψ,t
i,j,l(α)] give the corresponding 100(1−α)% CI for the aver-

age baseline surface runoff volume and runoff volume captured, respectively. Accordingly, the

average baseline runoff volume and runoff volume captured by the given GI practice within

sub-catchment i ∈ V under scenario ψ ∈ Ψ in year t are no worse than the CI upper bound

Qψ,t
i + qψ,ti (α) and the CI lower bound Q̂ψ,t

i,j,l− q̂
ψ,t
i,j,l(α), respectively, 100(1−α)% of the time.
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Finally, consistent with Soyster’s method [91], in our objective function of the robust

model, compared with that of the stochastic model in equation (1.1), we use the 100(1−α)%

CI upper bound and lower bounds of the estimated values for Qψ,t
i and Q̂ψ,t

i,j,l to take a

conservative view. Accordingly, we let φRα(x, z, y) denote the total expected surface runoff

volume across the watershed G(V,A) over the planning horizon, T , under the decision

variables x, z, and y for the robust model. Therefore, given the total available budget,

B, the following model minimizes φRα(x,z,y). Note that analogous to the stochastic model,

we let χ?R ∈ Ω denote the optimal solution to the robust model.

min
x,z,y

φRα(x, z, y) = min
x,z,y

∑
ψ∈Ψ

πψ ·

[∑
i∈V

∑
{t|0≤t≤T}

Qψ,t
i + qψ,ti (α)

−
∑
i∈V

∑
j∈GI

∑
l∈L

∑
{t|0≤t≤T−1}

∑
{t′|t≤t′≤T}

(
Q̂ψ,t′

i,j,l − q̂
ψ,t′

i,j,l(α)
)
· xti,j,l

−
∑
ai′,i∈A

∑
j∈GI∪{0}

∑
j′∈GI

∑
l∈L

∑
l′∈L

∑
{t|0≤t≤T−1}

∑
{t′|0≤t′≤T−1}

∑
{t′′ |max{t·1{j 6=0},t′}≤t

′′≤T}

βi
′,j′,l′

i,j,l

((
Qψ,t

′′

i − qψ,t
′′

i (α)
)(

xt
′

i′,j′,l′ − z
t′,i′,j′,l′

t,i,j,l

)
+
(
Q̂ψ,t

′′

i,j,l − q̂
ψ,t

′′

i,j,l (α)
)
· zt

′,i′,j′,l′

t,i,j,l

)
−
∑
ai′,i∈A

∑
j∈GI∪{0}

∑
j′∈GI

∑
l∈L

∑
l′∈L

∑
{t|0≤t≤T−1}

∑
{t′|0≤t′≤t−1}

∑
{t′′ |t′≤t′′≤t−1}

βi
′,j′,l′

i,j,l ·
(
Qψ,t

′′

i − qψ,t
′′

i (α)
)
· zt

′,i′,j′,l′

t,i,j,l

−
∑
i∈V

∑
j∈GII

∑
l∈L

∑
{t|T≤t≤T}

∑
{t′|t≤t′≤T}

(
Q̂ψ,t′

i,j,l − q̂
ψ,t′

i,j,l(α)
)
· yψ,ti,j,l

]
,

(1.10)

s.t. χ = (x, z, y) ∈ Ω.

Although the objective function in the robust model may seem overly conservative

compared with the one in the stochastic model, that only accounts for average volumes, we

believe such a model is practical in our context. Note that the intensity of precipitation, i.e.,

the amount of precipitation in a period of time (especially for short periods, e.g., 24 hours)

is an important predictor of, and is negatively correlated with, GI practice performance [33].

Assuming that the precipitation intensity is relatively similar across all sub-catchments

in a relatively small watershed, when intense precipitation occurs, the performance of all

GI practices are expected to get worse. This means that the resulting runoff across all

sub-catchments would increase accordingly and, in turn, in equation (1.1) all coefficients

pertaining to baseline surface runoff volume, Qψ,t
i , and surface runoff volume captured by

GI practices, Q̂ψ,t
i,j,l, must be adjusted.
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1.2 Model Calibration

In this section, we calibrate the mathematical models presented in Section 2.1 using

literature, historical data, precipitation projections, and expert opinion for an urban

watershed of a mid-sized city in the U.S. First, in Section 2.2.1 we calibrate the parameters

associated with GI practices. Next, in Section 1.2.2 we discuss the preprocessing performed

on precipitation projections to convert them into the requisite format. Finally, in

Section 1.2.3 we describe the hydrological simulations performed to characterize the surface

runoff resulting from precipitation projections in the sub-catchments, under potential GI

placements.

1.2.1 GI Practices

The performance of a GI practice can be described as the volume of surface runoff that

the practice can infiltrate on an hourly basis [89]. The performance of GI practices depend

on an array of factors including design specifications (such as surface storage volume, media

storage, and media composition and depth, etc.) and climate patterns (such as precipitation

event intensity and duration, etc.) [37, 93]. In addition, maintenance activities must be

performed for GI practices to continue their performance [6].

GI types, G, and GI installation levels, L. In this study, we consider two common

types of GI practices, namely, bioretention and rain garden [41], hence |G|= 2. The former

is typically installed in relatively large, commercial scales and is held to a higher design

standard, whereas the latter is a smaller system with lower design standards and is placed

in residential lots [9]. Accordingly, we let bioretentions and rain gardens be available for

placement in the first and second stages, respectively. Hence, in this study we use |GI |= 1

and |GII |= 1.

The amount of surface runoff reduction by GI practices in any given sub-catchment of

a watershed is closely related to the surface area that they cover from the corresponding

sub-catchment [86]. We account for three levels of installation for each of the two GI

practice types considered, i.e., |L|= 3. National Association of City Transportation Officials

(NACTO) [13] recommends using the effective impervious surface area in the drainage region

(sub-catchments) as a key design factor when sizing bioretentions [14]. To that end, and due

to the larger scale of bioretention installation, in this study we allow bioretentions to cover

5%, 7.5%, and 10% of the impervious area of each sub-catchment. Given the size of a

sub-catchment, these ratios can be translated into square feet to obtain the corresponding

values of δi,j,l. For rain gardens, due to their residential-scale implementation, we allocate

the total areas of 2,500, 5,000, and 7,500 square feet for placing the GI practices within

each sub-catchment. Finally, note that for the general attributes of the two types of GI

practices considered, e.g., minimum media depth, ponding depth, media permeability, we
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use the stormwater training manuals from State of Tennessee Department of Environment

& Conservation [17].

GI costs, Ct
i,j. The total cost of placing GI practices includes construction and

maintenance costs. Let cti,j and cti,j denote the per square feet construction and annual

maintenance costs of a GI practice of type j in sub-catchment i in year t ≤ T , respectively.

We assume the maintenance cost incurs annually starting from the year of construction

and is subject to an annual increase with the average annual inflation rate r. Hence, the

present value at time zero of the total per square feet cost of placing GI practice of type j

in sub-catchment i at time t is given by

Ct
i,j =

1

(1 + r)t
·
(
cti,j +

1− rT−t

1− r
· cti,j

)
.

We use the inflation-adjusted EPA Opti-Tool [43] and the University of Texas A&M’s

AGRILIFE Report [46] to obtain the per square feet construction cost of bioretentions and

rain gardens, respectively. For instance, the reported per square feet construction cost of

bioretentions was $15.46 in 2016, and that of rain gardens was $6.00 in 2012. To estimate the

corresponding costs during the planning horizon, we adjust the values using the U.S. Labor

Department’s Consumer Price Index (CPI) inflation calculator [96] . We do not consider

land cost in this study as we assume all GI practices are placed on public land or on land

parcels offered by private property owners. Based on published reports [92], the annual GI

maintenance cost ranges between 3%-6% of its construction cost. Let ρ denote the ratio of

maintenance cost to construction cost, i.e., ρ = cti,j/cti,j. In this study, we set ρ = 3%. Lastly,

we use the average annual inflation rate r = 1.86%, which equals the average annual U.S.

inflation rate over the period 2007-2017 [77].

1.2.2 Pre-Processing of Precipitation Projections

As discussed in Section 2, CGCMs project future precipitation, which are next fed

to hydrological simulators to calculate the resulting surface runoff, at various degrees of

GI installation. In this study, we use precipitation projections for the City of Knoxville

produced by ten CGCMs (see Table C.1 in Appendix C for more detail.) Note that using

CGCMs to produce projections are computationally expensive and hence, the projections

are usually only produced in daily units. Let ψ̂ ∈ Ψ̂ denote a daily precipitation projection

time series produced by one of the ten CGCMs. To accurately capture the GI response to

precipitation, more granular data, i.e., hourly precipitation projections, are required due to

quick transport of runoff in urban watersheds. Therefore, the daily precipitation projections

must be converted into hourly precipitation projections, denoted by ψ ∈ Ψ, before they can

be fed into hydrological simulators to calculate corresponding amounts of surface runoff.
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Note that hourly precipitation projections can be uniquely aggregated to produce daily

precipitation projections; however, the reverse is not true. In this section, we present an

approach for pre-processing daily precipitation projections to generate one of the many

likely hourly precipitation projections. Specifically, we use quartile-based and seasonal-

based temporal distributions [27] to convert a daily precipitation time series into an hourly

precipitation time series. Temporal distributions of precipitation summarize the historical

cumulative percentages of precipitation up to any point during a precipitation event and

provide the proportion of time that the pattern was observed.

Figure 1.3 presents the quartile-based distributions of 24-hour precipitation of Ohio river

basin (including the City of Knoxville), adopted from Precipitation-Frequency Atlas of the

United States [27]. Specifically, Figures 1.3(a)-1.3(d) present the cumulative probability plots

of temporal distributions, where the highest percentage of precipitation during the 24-hour

period occurred in the first-fourth quarters of the day, respectively. For instance, Figure

1.3(a) presents the temporal distributions, where the highest amount of daily precipitation

occurred during the first quarter of the day. The nine cumulative distributions in each

panel present the nine general patterns according to which the corresponding amount of

precipitation was accumulated. The shades of the distributions present the percentage of time

that the particular pattern was observed. For instance, given that the highest percentage of

daily precipitation occurred in the first quantile (Figure 1.3(a)), in 10% of the cases, 55.1%

of total daily precipitation occurred during the first 8.3% of the time-period, i.e., the first 2

hours of the day.

Note that the quartile-based temporal distributions in Figure 1.3 are generated under

the assumption of the homogeneity of monthly precipitation. In the absence of monthly

precipitation homogeneity, seasonality must be considered [81]. Hence, we follow the

procedure described in Huff (1967) to generate seasonal-based temporal distributions. As

the input, we use 20 years of precipitation data (i.e., year 1997–year 2016) in the City

of Knoxville, obtained from National Center for Environmental Information (NCEI) [15],

stratified across the four seasons. Figure 1.4 presents the resulting seasonal temporal

distributions of daily precipitation.

Lastly, to analyze the homogeneity of monthly precipitation to determine whether

quartile-based or seasonal-based temporal distributions can be applied to convert the daily

projections into hourly projections, we use coefficient of variability [38, 81]. Let pk denote

the accumulated precipitation in month k and let η denote the precipitation coefficient of

variability. The value of η is given by

η =

∑12
k=1 p

2
k

(
∑12

k=1 pk)
2
.
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Figure 1.3: Quartile-based Temporal distributions of daily precipitation, adapted from [27].
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Figure 1.4: Seasonal-based temporal distributions of daily precipitation.
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Figure 1.5: Coefficient of variability for the ten precipitation projections for the City of
Knoxville, for years 2018 to 2050.

If the value of η ranges between 0 and 0.1, it suggests that precipitation is relatively uniformly

distributed across the months, i.e., homogeneity of monthly precipitation. In contrast, if

the value of η ranges between 0.1 and 0.2, it indicates seasonal patterns for precipitation.

Note that if the value of η is greater than 0.2, it indicates that there are distinct monthly

precipitations and thus, monthly precipitations are fully heterogeneous. Figure 1.5 presents

the coefficient of variability, η, for the 10 precipitation projections during the planning time

horizon. As seen in the figure, η ranges from 0.085 to 0.125, and is always less than 0.2.

Finally, we use the following procedure to pre-process any given daily precipitation

projection (from any of the ten CGCMs) to generate an hourly projection. First, we

break down the daily precipitation projection by year. For any given year, we first examine

the value of coefficient of variability to determine whether quartile-based or seasonal-based

temporal distributions apply. If quartile-based distributions apply, we first determine the

proportion of time that the highest percentage of precipitation occurred in the first-fourth

quarters of the day using the historical precipitation data collected in the Ohio River Basin,

which includes the City of Knoxville [27]. Next, for any given day of the year in the

daily precipitation projections, we generate a weighted random number according to these

proportions to determine which quartile to use. Next, we generate a weighted random

number according to the probability of observing each of the cumulative distributions in the
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corresponding quantile. Finally, once a cumulative distribution is chosen, we use it to project

the amount of precipitation in that day into an hourly time series. Similarly, if seasonal-

based temporal distributions apply, for any given day in any given season, we generate a

weighted random number according to the probability of observing each of the cumulative

distributions for that season. We then use the selected cumulative distribution to project

the amount of precipitation in that day into an hourly time series.

1.2.3 Hydrological Simulations And Estimating Surface Runoff

As discussed in Section 1.2.2, precipitation projections need to be fed into hydrological

simulators to calculate the surface runoff during any given precipitation event, at various

degrees of GI installation. In this study, to perform hydrological simulations we use EPA

SWMM [86], a widely used software in literature [31, 39, 61, 72, 76, 85, 94, 95]. Note that

conducting brute-force SWMM simulations can be time-consuming. Hence, in this section,

we first discuss the computational difficulties of executing such simulations and then provide

an approach for sampling events to estimate the total baseline surface runoff, Qψ,t
i , and

the surface runoff captured by GI practices, Q̂ψ,t
i,j,l, under various projected precipitation

scenarios, ψ, for the stochastic model. Next, we describe the approach used for calculating

the 100(1−α)% CIs for the amount of surface runoff captured by GI practices that gives the

estimated value of q̂ψ,ti,j,l(α) for the robust model. Finally, we describe the approach used for

calculating the runoff adjustment factor βi
′,j′,l′

i,j,l over any given downstream sub-catchment.

SWMM partitions rainfall to runoff and routes it through the watershed and the potential

GI practices, while accounting for several adjustments such as (i) rainfall interception

from depression storage, (ii) infiltration of rainfall into unsaturated soil layers, and (iii)

percolation of infiltrated water into groundwater layers [86]. Note that SWMM simulation

can be extremely computationally expensive, given a large watershed and a long time horizon

for the input precipitation. For instance, based on our experiments, each SWMM simulation

performed on a 2.4 GHz CPU (single core) to obtain the surface runoff after placing GI

practices within a single sub-catchment can take on the order of approximately 25 minute

to execute for a time series that spans only one year, expressed in hourly units. Note that

increasing the planning horizon proportionally increases the simulation time. In addition,

given the total number of the sub-catchments, |V |, the number of GI types to place in

each sub-catchment, |G|, and the number of possible installation levels, |L|, a total of

(|G|·|L|+1)|V | SWMM simulations must be executed to calculate the surface runoff for all

possible combinations of GI placements if all sub-catchments are hydrologically connected.

Hence, using a brute-force simulation approach is computationally intractable even for a

medium-sized watershed, with approximately 100 sub-catchments.

Therefore, in this study, we exploit three approaches to mitigate the prohibitively

long simulation time to estimate the surface runoff. First, we use a sampling method
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to approximate surface runoff resulting from precipitation scenarios using only a series of

sampled events instead of the entire precipitation time series spanning the planning horizon.

Note that we use the sampling method along with bootstrapping to also calculate CIs for the

estimated surface runoff vlolumes. Second, we run SWMM simulations for all sub-catchments

simultaneously, i.e., we execute one simulation under no GI practice placement to calculate

the baseline surface runoff over all sub-catchments, and a total of |G|·|L| simulations where

the same GI practice of type j in the same level l is placed within all sub-catchments to cal-

culate the corresponding runoff after placement. Clearly, if hydrological connectivity among

sub-catchments are not captured in the watershed model, the estimated runoff volumes give

the parameters Qψ,t
i and Q̂ψ,t

i,l,j, respectively. However, if hydrological connectivity among sub-

catchments are captured in the watershed model, the former and latter groups of estimated

runoff volumes need to be adjusted back by the adjustment factor βi
′,j′,l′

i,j,l to estimate the

parameters Qψ,t
i and Q̂ψ,t

i,l,j, respectively. In our main SWMM simulation model for the wa-

tershed, the hydrological connectivity among sub-catchments is not entirely captured, which

simplifies the estimation of Qψ,t
i and Q̂ψ,t

i,l,j. However, at the same time, it complicates the pro-

cess of estimating the adjustment factors βi
′,j′,l′

i,j,l . To be able to estimate the adjustment fac-

tors, we develop a complementary SWMM model, which we calibrate based on the character-

istics of the sub-catchments and their hydrological connectivity in the watershed. Lastly, we

stratify sub-catchments based on their characteristics and only calculate the adjustment fac-

tors βi
′,j′,l′

i,j,l for a reduced number of sub-catchment type pairs using the set of sampled events.

Sampling events and calculating surface runoff parameters, Qψ,t
i and Q̂ψ,t

i,l,j, for the

stochastic model. As discussed in Section 2.1, precipitation intensity, i.e., the amount of

precipitation in a period of time, is an important predictor of, and is negatively correlated

with, GI practice performance. Depending on the intensity of precipitation events, a GI

practice may present different performance levels. For instance, GI practices generally exhibit

a lower performance under a series of short but intense events, but a higher performance

under long but mild events. Hence, we use precipitation intensity as a basis for sampling

events.

Recall that ψ̂ ∈ Ψ̂ denotes daily precipitation projection time series produced by the

CGCMs, and ψ ∈ Ψ denotes hourly precipitation projection time series, corresponding to

scenarios in the stochastic model. As discussed in Section 1.2.2, the hourly precipitation

projection time series, ψ, resulting from a daily precipitation projection time series, ψ̂, is not

unique. In fact, each of the resulting hourly precipitation projection time series can have

very different daily precipitation intensities in any given day. Therefore, we rely on repeated

sampling to produce a large set of hourly precipitation projection time series, ψ, and then

aggregate them based on precipitation intensities to estimate runoff volumes. The detailed

steps are as follows.
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• Initialization: For each of the ten daily precipitation projections, ψ̂ ∈ Ψ̂, use

precipitation coefficient of variability, η, to identify the relevant set of temporal

distributions for any given rainy day, i.e., when precipitation volume is greater than

zero, over the span of 32 years, i.e., 2018-2050. Next, for each of these rainy days,

randomly select from the corresponding set of temporal distributions to project daily

precipitation into hourly basis. Repeat the procedure to generate 100 time series

of hourly precipitation projections for each of the 10 daily precipitation projections,

ψ̂ ∈ Ψ̂. This results in 1,000 time series of hourly precipitation projections, ψ ∈ Ψ,

each of which consist of a series of hourly precipitation events with various intensities.

• Aggregation: Use all ψ ∈ Ψ to calculate the histogram of hourly event intensities,

using Sturge’s rule to break the intensity range into categories.

• SWMM Simulation: For any given 100 hourly precipitation projections corre-

sponding to daily precipitation projection ψ̂, calculate the histogram of hourly event

intensities using the previously defined categories. Randomly select a set of 10 events

from the category to use in SWMM simulations. If a category has fewer than 10 events,

use all in the simulation. For any chosen event, execute SWMM simulation when no

GI practice is placed in any of the watershed sub-catchments, i ∈ V . For any given

sub-catchment, calculate the category’s corresponding baseline average ‘volume-based

runoff coefficient,’ i.e., the ratio of runoff volume to the precipitation volume [53],

using all selected events in the category. Next, for any selected event, execute SWMM

simulation when identical GI practice j in level l is placed across all sub-catchments.

For any given sub-catchment i, calculate the category’s corresponding average ‘runoff

coefficient’ with respect to the placed GI practice of type j with level l, using all

selected events in the category. Follow the procedure for all ψ̂ ∈ Ψ̂ and calculate all

runoff coefficients.

• Estimating Runoff : Given an hourly precipitation projection ψ ∈ Ψ for sub-

catchment i ∈ V , use the expanded rational method [53] to calculate the baseline

runoff using the corresponding baseline runoff coefficients of the corresponding daily

precipitation projection ψ̂ ∈ Ψ̂. That is, for any given rainy day in the projection

ψ ∈ Ψ, calculate the total daily runoff by multiplying the runoff volume by the runoff

coefficient that corresponds to the precipitation intensity in that day, obtained from the

corresponding ψ̂ ∈ Ψ̂. The overall yearly baseline runoff for the hourly precipitation

projection ψ over sub-catchment i, i.e., Qψ,t
i for all 0 ≤ t ≤ T , is the summation of

calculated total daily runoff volumes in that year. Use the same method to calculate

the overall runoff for sub-catchment i ∈ V with respect to placed GI practice j ∈ G
in level l ∈ L in year t ≤ T . Let Q̃ψ,t

i,l,j denote the surface runoff over sub-catchment

i ∈ V given that GI practice of type j ∈ G is installed in level l ∈ L within the
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Figure 1.6: Boxplots of the estimated volume-based runoff coefficients for all sub-
catchments in the watershed of interest, for all given hourly precipitation projections
corresponding to CGCM ACCESS over the years 2018–2050, under various GI practice
installation. BR and RG stand for bioretention and rain garden, respectively. The three
levels of installation are described in Section 2.2.1.

sub-catchment under the hourly precipitation projection ψ ∈ Ψ in year t. Hence,

under hourly precipitation projection ψ, the corresponding surface runoff captured by

the GI practice, Q̂ψ,t
i,j,l, for all i ∈ V, j ∈ G, l ∈ L, 0 ≤ t ≤ T is obtained as follows:

Q̂ψ,t
i,j,l = Qψ,t

i −Q̃
ψ,t
i,l,j. Repeat this process for all 1,000 hourly precipitation projections to

estimate the corresponding surface runoff volumes Qψ,t
i and Q̂ψ,t

i,j,l for all sub-catchments

in the watershed.

Figure 1.6 presents the variation in the estimated volume-based runoff coefficient across

all sub-catchments in our watershed of interest under various GI practice installation. BR and

RG stand for bioretention and rain garden, respectively, and the three levels of installation

are described in Section 2.2.1. As seen in the figure, the runoff coefficient is generally lower

after installing GI practices, compared with the the baseline (i.e., no treatment). In addition,

bioretention generally have a lower runoff coefficient, hence present a better performance in

reducing runoff compared with rain gardens. Lastly, the larger the GI practice, especially in

bioretentions, the higher the performance.

Calculating confidence intervals for runoff volumes for the robust model. Recall that

the robust model requires the 100(1 − α)% CIs for surface runoff for any given GI practice

in any given sub-catchment. We use bootstrapping to generate these intervals [42]. In

contrast to stochastic model in which we use a total of 1,000 hourly precipitation projections

as scenarios to estimate the corresponding surface runoff volumes, in the robust model

we redefine scenarios to be the aggregate measure of 100 hourly precipitation projections
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produced from any given CGCM. We then use these scenarios to estimate the runoff volumes

as follows.

First, we follow the first three steps in the procedure used for calibrating the stochastic

model, i.e., Initialization, Aggregation, and SWMM Simulation, from which we obtain

volume-based runoff coefficients for all identified categories for any given CGCM. Next, for

each CGCM, we group all volume-based runoff coefficients regardless of the categories and

use bootstrapping to replicate large enough bootstrap samples to calculate the corresponding

100(1−α)% CI for runoff coefficients for each sub-catchment, under all GI practice placement

(and no treatment). Finally, we use the center and half of the width of each CI in the rational

method to estimate the corresponding Q̂ψ,t
i,l,j and q̂ψ,ti,l,j(α).

Calculating runoff adjustment factor, βi
′,j′,l′

i,j,l . As discussed in Section 2.1, the surface

runoff volume over a downstream sub-catchment is not only a function of the amount of

precipitation, the sub-catchment’s hydorlogical characteristics, and the placed GI practices

within the sub-catchment, but also it is affected by (large-scale) GI practices placed within

upstream sub-catchment(s) that are hydrologically connected to this downstream sub-

catchment. Also recall that we assume the adjustments over downstream sub-catchments

are additive when large-sale GI practices are placed within more than one of its upstream

sub-catchments. As discussed earlier in this section, our main SWMM simulation model for

the watershed does not capture the entire hydrological connectivity among sub-catchments.

Hence, to be able to estimate the adjustment factors, we develop a complementary SWMM

model, which we calibrate based on the characteristics of the sub-catchments and their

hydrological connectivity in the watershed.

Specifically, we develop a SWMM model that consists of two hydrologically connected

sub-catchments, where the residual runoff from the upstream sub-catchment flows onto

the downstream sub-catchment. We run the simulation for any given pairs of sub-

catchment characteristics to estimate the adjustment factor, βi
′,j′,l′

i,j,l , under various GI practice

placements as well as no treatment. To further reduce the computation time, we only use

the most important sub-catchment characteristics related to runoff reduction, as identified

in the literature [35], and stratify sub-catchments accordingly (see Appendix D for details).

Figure 1.7 presents a subset of the estimated runoff adjustment factors over the

downstream sub-catchment, where a large bioretention is placed in upstream and a

small bioretention is placed downstream, for all observed combinations of sub-catchment

characteristics as described in Appendix D. Sub-catchment characteristics are shown as

tuples, where the three elements correspond to percent of imperviousness, percent of slope,

and Manning’s n for overland flow over the pervious portion of the sub-catchment, each of

which are categorized into three levels of 0-2, encoding low, medium, and high, respectively.

As seen in the figure, the adjustment factor varies based on the characteristics of the

pair of sub-catchments, ranging between 0.2% and 0.75%. In general, a higher level of
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imperviousness results in a larger amount of runoff. Hence, when the upstream sub-

catchment has a higher level of imperviousness, it contributes a larger amount of flow onto

hydrologically connected downstream sub-catchments. As a result, and as seen in the figure,

placing a large bioretention in a highly impervious upstream sub-catchment contributes to

a larger adjustment in runoff over the downstream sub-catchment. In contrast, the impact

is less pronounced when the upstream sub-catchment is relatively pervious.

Figure 1.7: Heat map of the runoff adjustment factors over the downstream sub-catchment,
where a large bioretention is placed in upstream and a small bioretention is placed
downstream, for all observed combinations of sub-catchment characteristics’ categories as
described in Appendix D. Sub-catchment characteristics are shown as tuples, where the
three elements correspond to percent of imperviousness, percent of slope, and Manning’s n for
overland flow over the pervious portion of the sub-catchment, each of which are categorized
into three levels of 0-2, encoding low, medium, and high, respectively.

1.3 Case Study

In this section, we first conduct a case study for a watershed in a mid-sized city in the

U.S. We then conduct sensitivity analysis, investigate the relationship between 1-neighbor

constraint and the runoff adjustment factor, discuss the findings and provide insights on the

implications of our modeling approaches.

23



Figure 1.8: Map of land cover [57] (left panel) and hydrological sub-catchments (right
panel) of the First Creek, Knoxville, Tennessee.

1.3.1 Case Study Specifications

As a case study, we consider the First Creek in the City of Knoxville, Tennessee. The

creek is located entirely within the City of Knoxville and have been identified as the principal

sources of flooding in Knox County, Tennessee [21]. The watershed’s combined area is 14,805

acres and encompasses parts of the most densely populated regions of the city, including

Downtown Knoxville. The First and Whites Creek hydrological model was provided to us

by the Stormwater Engineering Division of the City [80]. The hydrological model divides

the creek into 140 sub-catchments, all of which are associated with one rain gauge. This

model also includes 365 junction nodes and 439 conduit links that direct the flow into the

Tennessee River.

Figure 1.8 illustrates the map of land cover (left panel) and hydrological sub-catchments

(right panel) of the First Creek. The red shades on the left panel represent level of

development, from low (mostly meadow and forest land cover) to high. As seen in the

figure, the southern region of the watershed, which is where Downtown Knoxville is located,

is highly developed. Subsequently, this dense region has larger amount of impervious area,

compared with other regions in the watershed (see Appendix E for more details).

In this case study, we use a planning horizon of length 32 years (T = 32), i.e., for years

2018–2050, for which the precipitation projections are available. We let the first and second

stage decision variables be taken in the beginning of the planning horizon, i.e., in year 2018,

and 10 years into the planning horizon, i.e., in year 2027 (T = 10).
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1.3.2 Computational Results of the Case Study

In this section, we present the computational results of the case study for both stochastic

and robust models. In all computational experiments, we use the IBM ILOG CPLEX 12.8

(64-bit edition) on a PC running Microsoft Windows 7 (64-bit edition) with a Core i7, 4 GHz

processor and 32 Gigabyte of RAM. Overall, solving the stochastic model is much harder

than the robust model. On average, the computational time of the stochastic model is on

the order of 3-4 minutes, which is approximately two orders of magnitude larger than that

of the robust model, which takes on the order of 1 second to solve.

Given the 1,000 generated hourly precipitation time projections discussed in Section

1.2.3, we let ΦS denote the projected total expected runoff volume, i.e., ΦS =
∑

ψ∈Ψ π
ψ ·∑

i∈V
∑

0≤t≤T Q
ψ,t
i , over the First Creek equals 4.57 × 1011 gallons. This volume is used as

total baseline surface runoff under no treatment (i.e., no GI practice placed) in the stochastic

model. For the robust model, given the same projections that are aggregated regardless of

their daily precipitation intensity categories, we let ΦRα denote the sample average baseline

surface runoff under 100(1 − α)% confidence level. Accordingly, for the given scenarios,

ΦR0.05 = 4.56×1011 and the estimated 95% CI for the expected baseline surface runoff equals

4.56×1011±1.75×109 Note that these runoff volumes correspond to no treatment (i.e., no GI

practice placed) in the robust model. In our computational results, we report the percentage

reduction in total expected runoff volume under the optimal GI practice placement across

the watershed, i.e., (ΦS − φS(χ?S))/ΦS and
(
ΦR0.05

− φR0.05
(χ?R)

)
/ΦR0.05

for the stochastic and robust

models, respectively.

First, we solve the models under the available budgets of 10, 20, and 50 million dollars

and compare the corresponding optimal GI practice placements. Figure 1.9 presents the

first stage decision variables under the optimal solution for all cases considered. That is, it

presents the sub-catchments in which bioretentions are placed and their level of installation.

In addition, Table 1.1 summarizes the second stage decision variables under the optimal

solution for all cases considered. That is, it presents the average percentages of sub-

catchments in which rain gardens are placed, along with the distribution of their level of

installation, given that the scenarios from one of the ten CGCMs are realized. As expected,

and seen in the figure and table, as the available budget increases, a larger number of sub-

catchments are selected for bioretention installation in the first stage and the sizes of placed

rain gardens stochastically increases in the second stage, under all scenarios generated from

the ten CGCMs.

Recall that the unit construction cost of bioretentions (and rain gardens) are equal across

all sub-catchments. However, as discussed in Section 2.2.1, the area used for bioretention

installation corresponds to the level of imperviousness in that sub-catchment, i.e., a fixed

percentage of the impervious area of the sub-catchment is treated with bioretentions.
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Figure 1.9: Map of placed bioretentions and their level of installation (first stage decision
variables) under the optimal solution for various levels of available budget.
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As a result, it is much more expensive to place bioretentions in highly developed sub-

catchments as the level of development largely correlates with the level of imperviousness.

Therefore, in Figure 1.9, sub-catchments in the southern region of the watershed, where the

highly developed Downtown Knoxville is located, are not usually selected for bioretention

installation. Indeed, as seen in the figure, given a limited budget, e.g., 10 million dollars,

solutions to both stochastic and robust models consist of placing bioretention in sub-

catchments with a low level of development, where the construction cost is generally lower.

Recall that in both models, the 1-neighbor constraint on first stage decision variables ensures

connectivity among large-scale GI practice placements. Therefore, if a highly developed

sub-catchment is selected as part of the first stage decisions, the available budget should

be enough to cover the costs of placing bioretentions not only in that sub-catchment, but

also in at least one of its hydrologically connected neighbors. This, in turn, makes placing

bioretentions in general very costly within highly developed regions, e.g., sub-catchments in

the southern region of the watershed, where the highly developed Downtown Knoxville is

located. Accordingly, only as the amount of available budget increases, it becomes optimal

to place bioretentions in some of the more developed sub-catchments. It is interesting to

note that some of the placed bioretentions in Figure 1.9 are stand-alone. Note that this does

not violate the 1-neighbor constraint as these sub-catchments are not downstream to any

of their neighboring sub-catchments, i.e, they have no upstream hydrologically connected

sub-catchments and hence, 1-neighbor connectivity constraint does not apply to them.

As seen in Figure 1.9, the solutions to the stochastic and robust models are not necessarily

identical under the given available budget; however, comparing the results shows similar

reduction in total expected surface runoff over the planning horizon for the two models. For

instance, under 50 million dollars available budget, the optimal GI placement contributes to

12.01% and 11.30% reduction in total expected runoff for the stochastic and robust models,

respectively. It is interesting to note that these reductions are achieved under different

allocations of budget in the first and second stages under the two models. Specifically, in

the stochastic model, the percentages of budget spent in the first stage are 81%, 88%, and

97% under 10, 20, and 50 million dollars available budget, respectively. Compare these

percentages, respectively, with 64%, 82%, and 96% spent in the first stage in the robust

model. This suggests a slightly more conservative allocation of budget in the first stage

under the robust model, compared with the stochastic model, especially when the available

budget is relatively low. As seen in Table 1.1, this relatively conservative allocation of budget

is compensated for in the second stage, where the average percentages of sub-catchments in

which GI practices are placed is generally larger under the robust model, compared with the

stochastic model, across the scenarios generated from the ten CGCMs.

Next, we more extensively compare the percentage reduction in total expected runoff

under the stochastic and robust models. Figure 1.10 presents a comparison of percentage

reduction in total expected runoff under stochastic and robust models, where the available
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Table 1.1: Average percentages of sub-catchments in which rain gardens are placed, along
with the distribution of their level of installation, given that the scenarios from one of the ten
CGCMs are realized (second stage decision variables) for various levels of available budget.

Budget
10 million dollars 20 million dollars 50 million dollars

Model CGCM
% of

Sub-Cat.
Large Med. Small

% of
Sub-Cat.

Large Med. Small
% of

Sub-Cat.
Large Med. Small

Stochastic

ACCESS 64.1% 11.1% 3.8% 85.1% 47.6% 54.4% 4.2% 41.4% 23.6% 67.3% 10.8% 21.9%
BCC 63.7% 11.0% 4.8% 84.3% 49.7% 45.3% 13.4% 41.3% 23.4% 70.4% 6.9% 22.7%
CCSM4 67.1% 9.6% 1.0% 89.4% 53.1% 40.0% 10.9% 49.1% 23.4% 69.6% 7.6% 22.8%
CMCC 66.4% 5.5% 10.5% 84.0% 52.9% 39.1% 13.7% 47.2% 23.6% 72.7% 0.0% 27.3%
FGOALS 67.0% 9.6% 1.3% 89.1% 51.0% 46.1% 6.4% 47.4% 23.6% 69.7% 6.1% 24.2%
GFDL 57.2% 16.1% 8.9% 75.0% 52.8% 39.3% 13.4% 47.3% 23.6% 70.2% 5.1% 24.7%
IPSL 65.4% 8.2% 7.0% 84.8% 49.2% 49.0% 8.1% 42.9% 22.9% 74.4% 4.3% 21.4%
MPI 66.3% 5.2% 11.3% 83.5% 47.0% 53.5% 8.9% 37.6% 22.9% 74.9% 3.3% 21.8%
MRI 54.4% 20.6% 7.3% 72.2% 45.7% 56.3% 9.4% 34.4% 22.6% 68.6% 19.3% 12.1%
NorESM 68.2% 7.3% 3.6% 89.1% 52.3% 42.3% 9.3% 48.4% 23.1% 71.2% 8.3% 20.6%

Robust

ACCESS 80.0% 43.8% 9.8% 46.4% 72.9% 51.0% 7.8% 41.2% 40.0% 60.7% 8.9% 30.4%
BCC 82.1% 43.5% 5.2% 51.3% 74.3% 51.0% 3.8% 45.2% 40.7% 61.4% 3.5% 35.1%
CCSM4 81.4% 42.1% 9.6% 48.2% 73.6% 49.5% 8.7% 41.7% 38.6% 66.7% 5.6% 27.8%
CMCC 84.3% 39.8% 7.6% 52.5% 75.7% 47.2% 7.5% 45.3% 40.7% 59.6% 7.0% 33.3%
FGOALS 84.3% 41.5% 4.2% 54.2% 77.1% 46.3% 5.6% 48.1% 40.7% 63.2% 0.0% 36.8%
GFDL 82.9% 41.4% 7.8% 50.9% 74.3% 49.0% 7.7% 43.3% 39.3% 63.6% 7.3% 29.1%
IPSL 83.6% 41.0% 6.8% 52.1% 75.7% 48.1% 5.7% 46.2% 40.7% 61.4% 3.5% 35.1%
MPI 82.9% 38.8% 12.9% 48.3% 74.3% 47.1% 11.5% 41.3% 39.3% 63.6% 7.3% 29.1%
MRI 83.6% 40.2% 8.5% 51.3% 75.0% 47.6% 8.6% 43.8% 40.0% 62.5% 5.4% 32.1%
NorESM 82.9% 40.5% 9.5% 50.0% 74.3% 47.1% 11.5% 41.3% 40.0% 60.7% 8.9% 30.4%
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Figure 1.10: Comparison of percentage reduction in total expected runoff under stochastic
and robust models, where the available budget ranges between 10 and 150 million dollars.
The shaded area represents the 95% CI for reduction in total expected runoff for the robust
model.

budget ranges between 10 and 150 million dollars. The shaded area represents the 95%

CI for reduction in total expected runoff for the robust model. Note that in reporting the

percentage reduction in total expected runoff under the robust model, we use the center of

the 95% CI, as depicted in the figure. As seen in Figure 1.10, the stochastic model performs

relatively better under lower budgets, i.e., 75 million dollars or less. For instance, under

20 million dollars available budget, the stochastic model outperforms the robust model by

1.89% reduction in total expected runoff. However, this difference between the objective

values decreases in the amount of available budget and at higher budgets, the robust model

performs relatively better than the stochastic model. For instance, under 150 million dollars

available budget, the robust model outperforms the stochastic model by 0.39% reduction in

total expected runoff.

1.3.3 Sensitivity Analyses

In this section, we examine the sensitivity of the solutions with respect to some of the

important calibrated parameters, including the years to realize a scenario, T , the ratio of

maintenance cost to construction cost, ρ, and the runoff adjustment factor, βi
′,j′,l′

i,j,l . In all

cases, we conduct the sensitivity analysis under a wide range of available budgets.
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Figure 1.11: Percentage reduction in total expected runoff for T = 5, 10, and 15 years,
where the available budget ranges between 10 and 150 million dollars.

First, we perform sensitivity analysis on the years to realize a scenario, T , under different

budget limitations. Figure 1.11 shows the percentage reduction in total expected runoff for

T = 5, 10, and 15, with the total available budget ranging between 10 and 150 million

dollars. As seen in the figure, realizing a scenario sooner, i.e., smaller values of T , results in

a larger reduction in total expected runoff. However, the differences among the percentage

runoff reductions for the three cases is low, and decreases in the amount of available budget.

For instance, given 10 million dollars available budget, the maximum difference among the

percentage runoff reductions equals 1.00% and 0.85% for the stochastic and robust models,

respectively. This maximum difference decreases to almost zero for budgets larger than

50 million dollars for both models. This is mainly because under a large enough available

budget, large-scale bioretentions are placed within almost all sub-catchments in the first

stage. Therefore, because at most one type of GI practice can be placed within any given

sub-catchment, there would be few vacant sub-catchments in which rain gardens can be

placed after realizing a scenario at time T in the second stage. This, in turn, decreases the

impact of second stage decisions, resulting in almost no significant difference between the

three cases under larger amounts of budget.

Next, we conduct sensitivity analysis on the amount of maintenance cost. As discussed in

Section 2.2.1, we set the annual annual GI maintenance cost equal to 3% of its construction

cost, i.e., ρ = 3%. Table 1.2 presents the percentage reduction in total expected runoff

under different ratios of maintenance cost to construction cost, ρ, ranging between 1% and

10%, where the available budget ranges between 10 and 150 million dollars. In general, as

expected, given any available budget, the percentage runoff reduction non-increases in ρ.
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Table 1.2: Percentage reduction in total expected runoff for different ratios of maintenance
cost to construction cost, ρ, where the available budget ranges between 10 and 150 million
dollars.

Ratio of maintenance cost to construction cost, ρ
Budget

(million dollars)
Stochastic Model Robust Model

1% 3% 6% 10% 1% 3% 6% 10%
10 6.26% 6.22% 6.16% 6.09% 5.32% 5.30% 5.27% 5.23%
15 7.59% 7.55% 7.50% 7.43% 6.12% 6.09% 6.05% 6.00%
20 8.61% 8.56% 8.51% 8.44% 6.90% 6.87% 6.81% 6.75%
25 9.36% 9.33% 9.26% 9.20% 7.68% 7.64% 7.58% 7.49%
50 12.18% 12.14% 12.07% 11.98% 11.04% 10.97% 10.88% 10.76%
75 13.75% 13.71% 13.65% 13.58% 13.52% 13.47% 13.37% 13.25%
100 14.78% 14.74% 14.69% 14.62% 14.90% 14.86% 14.79% 14.70%
150 15.37% 15.37% 15.37% 15.37% 15.77% 15.77% 15.77% 15.77%

This is because as ρ increases, a larger portion of the budget must be allocated to maintain

the GI practices to be placed. For instance, under 10 million dollars available budget, in

the stochastic model, the runoff reduction decreases by 0.13% when ρ increases from 3%

to 10%. Similarly, in the robust model, the corresponding runoff reduction decrease equals

to 0.07%. Note that for large amounts of available budget, i.e., under 150 million dollars

available budget, changing ρ no longer impacts the solution as the available budget is high

enough that covers all construction and maintenance costs.

Finally, we conduct sensitivity analysis with respect to the value of runoff adjustment

factor, βi
′,j′,l′

i,j,l . Table 1.3 presents the percentage reduction in total expected runoff under

the estimated adjustment factors, no adjustment, and where the estimated adjustment is

modified by 50%, where the available budget ranges between 10 and 150 million dollars.

As seen in the table, connectivity, captured through adjustment factors, contributes to

up to 0.16% and 0.27% reduction in total runoff under various available budgets for the

stochastic and robust models, respectively. Also, note that connectivity contributes to a

higher percentage of runoff reduction under higher levels of available budget. This is mainly

because in such cases, a larger number of bioretentions are placed across the watershed, which

potentially results in a higher number of pairs of hydrologically connected sub-catchments.

1.3.4 Investigating the Relationship Between 1-Neighbor Con-

straint and the Runoff Adjustment Factor

In this section, we evaluate the importance of accounting for the adjustment in surface

runoff reduction due to GI placements in connected sub-catchments using the runoff

adjustment factor, βi
′,j′,l′

i,j,l . In this section, for simplicity of notation, we let β = [βi
′,j′,l′

i,j,l ] denote

the vector of all adjustment factors. Specifically, we evaluate the expected opportunity loss

due to installing a potentially sub-optimal solution as a result of not accounting for runoff
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Table 1.3: Percentage reduction in total expected runoff under different levels of runoff
adjustment factors, where the available budget ranges between 10 and 150 million dollars.

Levels of Runoff Adjustment Factor
Budget

(million dollars)
Stochastic Model Robust Model

No Adj. -50% Estimated Adj. 50% No Adj. -50% Estimated Adj. 50%
10 6.16% 6.19% 6.22% 6.25% 5.25% 5.28% 5.30% 5.32%
15 7.46% 7.50% 7.55% 7.60% 6.03% 6.06% 6.09% 6.12%
20 8.46% 8.51% 8.56% 8.62% 6.78% 6.83% 6.87% 6.92%
25 9.21% 9.26% 9.33% 9.39% 7.53% 7.59% 7.64% 7.70%
50 11.99% 12.07% 12.14% 12.22% 10.78% 10.88% 10.97% 11.07%
75 13.57% 13.64% 13.71% 13.78% 13.20% 13.33% 13.47% 13.60%
100 14.58% 14.66% 14.74% 14.83% 14.64% 14.74% 14.86% 14.97%
150 15.22% 15.30% 15.37% 15.45% 15.60% 15.69% 15.77% 15.85%

adjustment factors. We conduct the analyses with and without considering the 1-neighbor

constraint to draw insights.

First, let χ̃S ∈ Ω denote the optimal solution of the stochastic model, where all

adjustment factors are set to zero in the stochastic objective function (1.1), i.e., χ̃S =χ∈Ω

φS(χ; β = 0). Similarly, let χ̃R ∈ Ω denote the optimal solution of the robust model,

where all adjustment factors are set to zero in the robust objective function (1.10), i.e.,

χ̃R =χ∈Ω φR(χ; β = 0). Recall that χ?S and χ?R denote the optimal solutions of the stochastic

and robust models under the estimated values for the adjustment factors, respectively.

Clearly, φS(χ?S) ≤ φS(χ̃S) and φR(χ?R) ≤ φR(χ̃R), where the equalities respectively hold

when χ̃S and χ̃R are optimal solutionsto the calibrated models with β ≥ 0.

It is interesting to note that per our numerical experiments, both χ̃S and χ̃R are indeed

optimal solutions to their corresponding models, i.e., φS(χ̃S) = φS(χ?S) and φR0.05(χ̃R) =

φR0.05(χ
?
R), where χ?S, χ̃R ∈ Ω, specifically when the 1-neighbor constraint is included

in the models. Our intuition is that because 1-neighbor connectivity constraint (1.7)

enforces placing large-scale GI practices (first-stage decisions) in hydrologically connected

sub-catchments, it protects the solution to remain optimal, regardless of accounting for

adjustment factors. Note that in our watershed of interest, there are only five sub-catchments

(out of a total of 140 sub-catchments) that have more than one upstream sub-catchments;

these five sub-catchments each have exactly two upstream sub-catchments. Suprisingly, for

all these five sub-catchments, the adjustment factors of the two upstream sub-catchments

are rather identical. This further reduces the importance of including the exact adjustment

factors in the model. Hence, we conclude that for our watershed of interest, given the

structure of the corresponding graph G(V,A), enforcing the 1-neighbor constraint (1.7) is

enough to obtain the optimal solution, contributing to a dramatic reduction in calibration

efforts.

To further verify this hypothesis, we replicate the analysis without accounting for the

1-neighbor constraint (1.7). Specifically, we let χ′S and χ̄S denote the optimal solutions to
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the stochastic model under the estimated values for the adjustment factors and where all

adjustment factors are zero, respectively, when relaxing the 1-neighbor constraint (1.7), i.e.,

χ′S =χ∈Ω\{(1.7)} φS(χ), χ̄S =χ∈Ω\{(1.7)} φS(χ; β = 0).

Clearly, φS(χ′S) ≤ φS(χ̄S), where the equality holds when χ̄S is an optimal solution to the

calibrated model with β ≥ 0 when relaxing the 1-neighbor constraint (1.7). Analogously, we

let χ′R and χ̄R denote the optimal solutions to the robust model under the estimated values

for the adjustment factors and where all adjustment factors are set to zero, respectively,

when relaxing the 1-neighbor constraint (1.7). Hence, similar to the stochastic model, for

the robust model we have φR0.05(χ
′
R) ≤ φR0.05(χ̄R), where the equality holds when χ̄R is

an optimal solution to the calibrated model with β ≥ 0 when relaxing the 1-neighbor

constraint (1.7). Consistent with our intuition, our numerical experiments show that

χ̄S and χ̄R are indeed sub-optimal solutions to their corresponding stochastic and robust

problems, respectively, when relaxing the 1-neighbor constraint, i.e., φS(χ′S) < φS(χ̄S) and

φR0.05(χ
′
R) < φR0.05(χ̄R).

Table 1.4 summarizes the numerical analyses on characterizing the relationship between

1-neighbor constraint (1.7) and the runoff adjustment factor, β, at various levels of available

budget. The second through fourth columns show the percentage reduction in total expected

runoff volume under χ?S, χ′S, and χ̄S, respectively. The fifth through seventh columns show

the percentage reduction in total expected runoff volume under χ?R, χ′R, and χ̄R, respectively.

First note that, as discussed, the percentage reduction in total expected runoff volume under

χ̃S and χ̃R are the same as those under χ?S and χ?R, respectively; hence, they are not included

in the table. As seen in the table, the values under χ′S are larger than those obtained under

χ?S. Similarly, the values under χ′R are larger than those obtained under χ?R. This suggests

that, as expected, the 1-neighbor constraint (1.7) is binding under the optimal solutions to

both stochastic and robust models with the original feasible set Ω. In addition, as discussed,

any difference between the values under χ′S and χ̄S, and those under χ′R and χ̄R indicates

that χ̄S and χ̄R are respectively sub-optimal solutions to the stochastic and robust models

with the feasible set Ω \ {(1.7)}. Accordingly, as seen in the table, χ̄S is sub-optimal at

almost all budget levels, except 20 and 150 million dollars, in the stochastic model, and χ̄R
is sub-optimal under available budgets of 25 and 50 million dollars in the robust model.

In summary, this analysis show that, given the structure of the underlying graph of

sub-catchments G(V,A) in our study, 1-neighbor (1.7) constraint guarantees the optimality

of a solution, regardless of accounting for adjustment factors. This has the potential to

dramatically reduce the calibration efforts. However, note that using a set of well-estimated

adjustment factors in models result in more accurate estimated values for the corresponding

objective functions.
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Table 1.4: Percentage reduction in total expected runoff volume under the solutions χ?M ,
χ′M , and χ̄M , M ∈ {S,R}, where the budget available ranges between 10 and 150 million
dollars. The corresponding values under χ̃M and χ?M , M ∈ {S,R}, are the same; hence the
former are not included in the table.

Stochastic Robust
Budget
(million
dollars)

ΦS−φS(χ?
S)

ΦS

ΦS−φS(χ′
S)

ΦS

ΦS−φS(χ̄S)
ΦS

ΦR0.05
−φR0.05

(χ?
R)

ΦR0.05

ΦR0.05
−φR0.05

(χ′
R)

ΦR0.05

ΦR0.05
−φR0.05

(χ̄R)

ΦR0.05

10 6.22% 7.71% 7.16% 5.30% 5.34% 5.34%
15 7.55% 8.41% 8.40% 6.09% 6.16% 6.16%
20 8.56% 9.25% 9.25% 6.87% 6.95% 6.95%
25 9.33% 9.96% 9.95% 7.64% 7.72% 7.70%
50 12.14% 12.41% 12.40% 10.97% 11.01% 10.99%
75 13.71% 13.90% 13.90% 13.47% 13.47% 13.47%
100 14.74% 14.84% 14.83% 14.86% 14.86% 14.86%
150 15.37% 15.37% 15.37% 15.77% 15.77% 15.77%

1.4 Summary and Insights

Climate change threatens to overwhelm stromwater systems across the nation, rendering

them ineffective. Green Infrastructure (GI) practices are low cost, low regret strategies

that can contribute to urban runoff management. However, questions remain as to how to

best distribute GI practices through urban watersheds given precipitation uncertainty and

hydrological responses to their installation. In this work, we showcase an approach that can

enable city managers to incorporate the complexity and uncertainty of climate projections

to make optimized choices for building resiliency into urban systems.

In this study, we developed two-stage stochastic programming and robust programming

to determine the optimal placement of GI practices across a set of candidate locations in a

watershed to minimize the total expected surface runoff under medium-term precipitation

uncertainties, given an available budget. We proposed a novel scenario generation process

that allowed us to efficiently evaluate the impact of precipitation on the entire watershed

system under various combinations of GI practice placements. We calibrated the model using

literature, historical precipitation data, future precipitation projections, and expert opinion

and conducted a case study for an urban watershed in the City of Knoxville. We provided

computational results and conducted extensive sensitivity analyses. Our results show that

the optimal placement of GI practices within our watershed of interest can contribute to up

to approximately 9.5% reduction in total expected runoff over the planning horizon, with a

limited budget of 25 million dollars. The reduction in total expected runoff obtained by the

two modeling approaches are comparable. The two models, however, are quite different with

respect to the computational time. That is, the computational time of the stochastic model is

approximately two orders of magnitude larger than that of the robust model. This is mainly

because of the lower number of scenarios used in the latter approach due to pre-processing
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of the precipitation projections, i.e., using CIs for the baseline runoff volume and surface

runoff captured by a GI practice in any given sub-catchment, instead of all 100 scenarios per

CGCM.

In our models, we accounted for hydrological connectivity in the watershed using an

underlying acyclic connectivity graph of sub-catchments. Specifically, we introduced a 1-

neighbor connectivity constraint over the graph to ensure that a large-scale GI practice can

be placed in a given sub-catchment if there exists at least one large-scale GI practice in

one of the sub-catchments that are hydrologically connected to it. In addition, we carefully

calibrated the runoff adjustments over pairs of hydrologically connected sub-catchments to

more accurately estimate the impact of large-scale GI practices on runoff reduction not only

within the sub-catchments in which they are placed, but also in their downstream sub-

catchments. Our analysis shows that the 1-neighbor constraint protects the optimality of a

solution in our watershed of interest, regardless of accounting for adjustment factors. This

is mainly because of the particular structure of the connectivity graph of sub-catchments.

More in-depth analysis is needed to establish sufficient conditions under which calibration

of runoff adjustment factors is completely unnecessary.

In this study, we only accounted for two relatively similar types of GI practices, i.e.,

bioretentions and rain gardens. The selected types of GI practices are considered to be very

efficient not only in reducing runoff volume, but also in treating stormwater quality. Note

that the model developed is very versatile and allows for including more than two types of

GI practices. Hence, accordingly, city planners can use the model using a wide array of GI

practices to determine the best course of GI practice planning.

In this study, we accounted for future precipitation uncertainty using an array of CGCMs.

This enabled us to account for climate change uncertainty when planning GI practices.

Although we accounted for precipitation uncertainty, in this study we did not account

for population growth and future urban development that can give rise to an increase in

impervious area. Additional studies are needed to account for a close-loop system where a

more livable city leads to urban population growth, which in turn leads to more runoff.

Lastly, in this study, we only accounted for runoff capturing properties of GI practices.

As thoroughly discussed in the literature, GI practices provide a wide array of benefits, e.g.,

improving water and air quality, contributing to urban aesthetics, etc. Future multi-objective

mathematical programs need to be developed to account for all benefits of GI practices when

optimizing GI practice placement within an urban watershed.
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Chapter 2

Optimizing Dynamic Green

Infrastructure Placement in an Urban

Watershed Precipitation and

Population Growth Uncertainties

Green infrastructure (GI) systems provide a variety of social, economic and ecological

benefits [26], well exemplified by several real life implementations. New York City

avoided the need to spend $6-$8 billion on new water filtration and treatment plants

by instead purchasing and protecting watershed land in the Catskill Mountains for $1.5

billion [19]. Likewise Arnold, Missouri dramatically reduced the cost to taxpayers of

disaster relief by purchasing threatened properties and creating a greenway in the flood

plain [71, 18]. Portland, Oregon initiated the Grey to Green (G2G) Initiative to better

handle approximately ten billion gallons of stormwater runoff annually by expanding the

city’s green infrastructure. Nagoya, Japan is working to reduce temperatures by increasing

the percentage of vegetated from 25 to 40 percent by 2050, installing green roofs, trees,

recreational greenways and planting more trees [64, 55]. It is our contention that most

GI projects tend to be reactive i.e. implemented to counter an existing problem and a

more proactive approach in integrating large scale GIs in urban planning could be far more

beneficial. To assist policy makers and urban planners decide how many GIs to place, which

ones to select from a given set of choices and where to place them, we propose an approach

based on three important considerations: stormwater reduction, population proximity and

GI connectivity.

GI can be used to mitigate stormwater runoffs in conjunction with conventional

stormwater management systems such as sewers, pipes etc. Gray infrastructure used to

handle stormwater has has marginal benefits at best - they are costly to build and maintain,

reduce on-site absorption of precipitation thereby creating more runoffs and climate change
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Figure 2.1: Summary of factors that are influenced by/ contribute to placing GI practices
in an urban watershed.

considerations only serve to further reduce the actual benefits from these systems. A large

drainage and stormwater system built for the current levels of precipitation would lose some

of its utility if the precipitation in the region decreases over time and vice-versa. Compared to

such single utility of conventional stormwater management systems, GI is a more attractive

alternative because in addition to handling runoffs just as well, they can have several other

benefits. Our model uses projections of precipitation from several climate models to ascertain

the level of GI required to achieve set targets of runoff reduction. To maximize the benefits

of GI, it is imperative to place them close to centers of population. They provide cleaner

air and water, increased recreational opportunities; improved health and better connection

to nature and sense of place [26]. Well placed green space has also been shown to increase

property values [97, 98, 99, 78]. They have been shown to reduce surrounding temperatures

which is important because an important consequence of urbanization besides stormwater

runoff is the creation of ‘urban heat islands’, i.e., an increase in the local temperatures. The

reasons for this are manifold: emissions (from generators, buildings, HVAC units, traffic),

reduction in evotranspiration i.e. evaporation of water from the surface, reduction in fauna

(trees in specific) and their cooling affect, entrapment of heat from sunlight by buildings,

etc. In short, the important factors in placing a GI practice can be categorized into four

subjects: (i) flood mitigation, (ii) ecosystem health, (iii) economic consideration, and (iv)

recreation/ aesthetics. Figure 2.1 summarizes the factors and sub-factors that are influenced

by/ contributes to placing GI in an urban watershed.

To the best of our knowledge, there is no study that encompasses the dynamic nature of

the GI placement given uncertainties in population and precipitation projections. As such,
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Figure 2.2: A schematic representation of the study horizon. The GI placement intervention
occurs in decision making horizon, i.e., first N years of the study horizon.

in this study, our concentration is on developing a mathematical model through which we

address the placement of GI practices in an urban watershed, upon future population and

precipitation projections, so that the dynamic nature of the problem is efficiently served.

The rest of the chapter is organized as follows. First, we formulate the model in

Section 2.1. Next, in Section 2.2, we calibrate our model for a watershed in a mid-size

city in the U.S. In Section 2.3, we provide the computational results for our case study and

draw insights. Finally, we conclude in Section 3.5.

2.1 Model Formulation

In this section, we develop a finite horizon Markov Decision Process (MDP) model

to optimally place GI in an urban watershed. Specifically, we develop a deterministic

policy solution in response to uncertainty associated with the population and precipitation

projections so that the total expected (discounted) reward placed GI practices across urban

watershed is maximized throughout the study horizon. For any given decision making time

period and any given location, our deterministic policy prescribes set of actions to be taken

with respect to the type and the level of GI practice.

A watershed consist of sub-catchments whose impervious areas candidate locations to

place GI practices during the study horizon. Let N̄ denote the study horizon where the

first N time periods is the decision making horizon. Figure 2.2 shows an schematic concept

of the study and decision making horizons. At the beginning of any given decision making

time period, we make a decision on placing GI practices. Specifically, we decide on the type,

level (size), and the location (sub-catchment) of a GI practice with respect to the available

budget and realized population projection. Due to our made decision in a time period,

the population and the GI level is subject to uncertainty in the next time period. Also,

our decision contributes to runoff volume reduction over the period. Figure 2.3b shows the

timeline of events in time period t.
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Figure 2.3: Timeline of events in time period t

Let ∆ = {1, 2, . . . , |∆|} denote the set of sub-catchments of the watershed of interest.

Let M = {1, 2, · · · , |M |} denote the set of projected population levels in any given sub-

catchment. Regarding the GI practices, let G = {1, 2, . . . , |G|} denote the set of types of GI

practices. Also, let L = {1, 2, . . . , |L|} denote the set of levels associates with the GI types.

Accordingly, we let pair ψ = (g, l) ∈ G × L denote the GI characteristics within any given

sub-catchment. Finally, let T = {1, 2, . . . , N} denote the the decision making horizon.

The state of the process over sub-catchment i at time t is represented by st(i, µ, ψ) where

µ and ψ denote the population level and characteristics of GI within the sub-catchment i. We

start with st at time t. For sub-catchment i in time period t, available actions are defined by

finite set Ast(i,µ,ψ) = {0, 1, 2, .., |Ast(i,µ,ψ)|} in which 0 denote the do nothing (maintain current

GI characteristic), 1 denotes one-level-upgrade (upgrade GI characteristics by one level), and

so on. Also, we let ai ∈ Ast(i,µ,ψ) denote the an action available to take in sub-catchment i

in time t, to which ct((i, µ, ψ), ai) denotes the corresponding cost.

For any given sub-catchment, transitioning between states from period t to the next

period is impacted by actions taken for the sub-catchment. Accordingly, let pai(ψ
′|ψ) denote

the probability of transitioning from GI level ψ to ψ′ under action ai. Also, let p(µ′|µ, ψ) the

probability that the population level transitions from level µ to µ′, given the GI characteristic

ψ.

The revenue of placing a GI practice in any sub-catchment in any time period is deemed

as a factor of surface runoff volume reduction . Clearly, the main source of the runoff

in any time period is the amount of precipitation during the period which is subject to

uncertainty. Let the random variable ζt denote the amount of precipitation in period t, with

the probability mass function pζt and cumulative density function Fζt . Accordingly, we let

bt(i, µ, ψ, x) denote the immediate expected runoff volume reduction for sub-catchment i in

period t as a function of population density level, µ, GI characteristics, ψ, and amount of

precipitation during the period, ζ.Let rt((i, µ, ψ), ai) denote the immediate expected reward

starting from state st under action ai for sub-catchmenti which is given by
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rt((i, µ, ψ), ai) =
∑
ψ′∈Ψ

∑
ζ∈ζt

pai(ψ
′|ψ)bt(i, µ, ψ

′, ζ). (2.1)

Let Vt(s) denote the expected discounted reward for GI practice placement in any sub-

catchment starting from state s. Also, let R(i, µ, ψ) denote the lump-sum reward at time

T . Note that we assume in period N onward, i.e., the next T − T periods, the only

action available for the system is to maintain the current level of GI practice across all

tracts. Therefore, the Bellman equations for the expected discounted reward of GI practice

placement for sub-catchment i, starting from state s across the planning horizon is given by

Vt(i, µ, ψ) =



max
ai

{
rt((i, µ, ψ), ai) + λ

∑
µ′∈M

∑
ψ′∈Ψ pai(ψ

′|ψ)p(µ
′|µ, ψ′)Vt+1 (i, µ′, ψ′))

}
,

t < N,

R(i, µ, ψ)

t = N,

(2.2)

where λ denotes the discount rate.

We are interested in adding the budget constraint to our policy for placing GI practices

within sub-catchments of study across the watershed. Moreover, we are interested in

deterministic policy rather than randomized policy. To do so, we opt to work with the dual

formulation of our proposed Bellman equations (2.2). Let B denote the overall available

budget.Let α(i, µ, ψ), for all i ∈ ∆, µ ∈ M,ψ ∈ Ψ, t ∈ T , denote the initial state for sub-

catchment i. Let xt((i, µ, ψ), ai) be a non negative variable denoting the the average number

of times we observe the sub-catchment i with state st(i, µ, ψ) and take action ai, ai ∈ Ast(i,µ,ψ)

at time period t, t < T . Analogously, let yN(i, µ, ψ) denote the number of times we observe

sub-catchment i with state sN(i, µ, ψ) and take the default action, e.g, ‘do nothing’, at

time period t = N . To enforce deterministic policy, we let zt((i, µ, ψ), ai) be a binary

variable corresponding to xt((i, µ, ψ), ai), where it takes positive value if its corresponding

variable, xt((i, µ, ψ), ai), is positive. The dual linear programming formulation of Bellman

equations (2.2) with budget constraint and enforced deterministic policy solution is given in

the following.

max
∑
i∈∆

∑
µ∈M

∑
ψ∈Ψ

∑
t∈T\{N}

∑
ai∈Ast(i,µ,ψ)

rt((i, µ, ψ), ai)xt((i, µ, ψ), ai)

+
∑
i∈∆

∑
µ∈M

∑
ψ∈Ψ

R(i, µ, ψ)yN(i, µ, ψ)

(2.3a)

40



s.t.
∑

ai∈Ast(i,µ,ψ)

xt((i, µ, ψ), ai) = α(i, µ, ψ),
∀i ∈ ∆,∀µ ∈M,

∀ψ ∈ Ψ, t = 1,

(2.3b)∑
ai∈Ast(i,µ,ψ)

xt((i, µ, ψ), ai)

− λ
∑
µ′∈M

∑
ψ′∈Ψ

∑
a′i∈Ast(i,µ,ψ)

pa′i(ψ|ψ
′)p(µ|µ′, ψ′)xt−1((i, µ′, ψ′), a′i)

= 0,

∀i ∈ ∆,∀µ ∈M,

∀ψ ∈ Ψ,

∀t ∈ T \ {1, N},

(2.3c)

yN(i, µ, ψ)

− λ
∑
µ′∈M

∑
ψ′∈Ψ

∑
a′i∈Ast(i,µ,ψ)

pa′i(ψ|ψ
′)p(µ|µ′, ψ′)xt−1((i, µ′, ψ′), a′i)

= 0,

∀i ∈ ∆,∀µ ∈M
∀ψ ∈ Ψ,∀t = N,

(2.3d)∑
i∈∆

∑
µ∈M

∑
ψ∈Ψ

∑
t∈T\{N}

∑
ai∈Ast(i,µ,ψ)

ct((i, µ, ψ), ai)xt((i, µ, ψ), ai) ≤ B (2.3e)

xt((i, µ, ψ), ai) ≤ zt((i, µ, ψ), ai),

∀i ∈ ∆,∀µ ∈M,

∀ψ ∈ Ψ,

∀ai ∈ Ast(i,µ,ψ),

∀t ∈ T \ {N},
(2.3f)

∑
ai∈Ast(i,µ,ψ)

zt((i, µ, ψ), ai) = 1,

∀i ∈ ∆,∀µ ∈M,

∀ψ ∈ Ψ,

∀t ∈ T \ {N},
(2.3g)

zt((i, µ, ψ), ai) ∈ {0, 1}, xt((i, µ, ψ), ai), yN(i, µ, ψ) ≥ 0,

∀i ∈ ∆,∀µ ∈M,

∀ψ ∈ Ψ,

∀ai ∈ Ast(i,µ,ψ),

∀t ∈ T \ {N}.
(2.3h)

In dual model (2.3), the constraint set (2.3b)-(2.3d) includes well-know flow conservation

constraints, enforcing the balance between the expected flow-in and flow-out for any state

and any time period. Constraint (2.3e) enforces the total expected budget not exceed the
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allocated budget, B. Constraint (2.3f) enforces enforces the binary variable zt((i, µ, ψ), ai)

take the value of one if its corresponding variable xt((i, µ, ψ), ai) is positive. The deterministic

policy is guaranteed by constraint (2.3g). Finally, constraint (2.3h) maintains the domains

of variables.

2.2 Model Calibration

In this section, we calibrate our mathematical model presented in Section 2.1 using the

literature, historical data, precipitation projections, and expert opinion for a given urban

watershed of a mid-sized city in the U.S. First, in Section 2.2.1 we calibrate the parameters

associated with characteristics of GI practices. Next, we discuss our approach in calculating

the population transition probabilities in Section 2.2.2. Next, in Section 2.2.3 we discuss the

preprocessing performed on calculating the immediate and lump-sum terminal rewards.

2.2.1 GI Practices

The GI practices are, generally, implemented in an urban watershed to capture surface

runoff volumes. Also, their performance in improving the water quality during infiltration

is another metric of interest. Hence, depending on the implementation criterion, the GI

type and its other design characteristics (such as surface vegetation, surface storage volume,

media storage composition, underdrain pipe size, etc.) are calibrated accordingly.

GI type, G ,and implementation levels, L. In this study, we consider urban bioretention

areas, |G|= 1, implemented in three levels, |L|= 3, corresponding to a sub-catchment

impervious area, namely low, medium and high levels that respectively treat 5%, 7.5%,

and 10% of the sub-catchment impervious area. Hence, overall GI characteristic |Ψ|=
(|G|×|L|) = 3. Note that, regardless of the bioretention levels of implementation and their

underlying sub-catchments, the remaining design characteristics of the bioretention areas are

identical. These design characteristics are adapted from stormwater training manuals from

State of Tennessee Department of Environment & Conservation [17].

GI cost, ct((i, µ, ψ), ai). The total cost of placing GI practices includes construction and

maintenance costs per square feet which are adjusted based on the level of implementation

in any given sub-catchment. For any given time period, depending on the action taken, we

accrue a cost. That is, for instance if a low level bioretention area is already implemented

in a given sub-catchment, and the policy recommends maintain action, we just accrue

the maintenance cost associated with low level bioretention area in the sub-catchment.

Otherwise, if the the action is upgrade bu one level to medium bioretention, we accordingly

accrue medium level construction cost and maintenance cost associated with that level during

the period. Note that, depending on the period at which we, adjust the cost with respect to

the present value of money. Hence, ct((i, µ, ψ), ai) represent the value of money at t = 0.

42



Figure 2.4: Baseline population in year 2010 (left panel) and projection in years 2030
(middle panel) and 2050 (right panel) over Second Creek, Knoxville, Tennessee [74].

We use the inflation-adjusted EPA Opti-Tool [43] to estimate the per square feet cost

of implementation for bioretention areas; the value was $15.46 in 2016. We use the U.S.

Labor Department’s Consumer Price Index (CPI) inflation calculator [43] to adjust the value.

Regarding the annual maintenance cost a bioretention area, we use published reports [92]

that recommend 3%-6% of its construction cost. We let ρ denote the ratio of maintenance

cost to the construction cost. we use ρ = 3%. Lastly, we use the average annual inflation rate

of 1.86%, which equals the average annual U.S. inflation rate over the period 2007-2017 [77].

2.2.2 Population Transition Probabilities

Preparing the population data. We use the land scan data available for the years 2010,

2030, and 2050. Figure 2.4(a) shows the land scan raster data for the mentioned years in

Knox County, TN. Note that the raster data resolution is 1:1524, whereas sub-catchments’

areas are more granular. Hence, the a population raster cell data may cover more that one

sub-catchment (See Figure 2.4(b)). To project raster cell data to a sub-catchment, we break

down the raster cell population cells data proportional to the cell area which intersects with

a certain sub-catchment. Note that we assume that the raster cell population is equally

spread across the cell area.

Simulating stochastic population transition in sub-catchment level, p(µ|µ′, ψ′). We first

use the interpolating spline method [49] to interpolate the yearly population data between

2018 and 2050 for any given sub-catchment. For any given year, the resulting interpolated

points is then used as a average population in each sub-catchment. Also for the given year t

and the given sub-catchment i, we assume that the population has normal distribution with

the average equal to the interpolated point, d̂it and a standard deviation σi. To estimate the

σi, we use the standard deviation calculated from three different sources that has projected
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Table 2.1: Population in 2010 and projected population in 2030 and 2050 from three
different sources for Knox County, Tennessee.

Source Population 2010
Projected

Population 2030
Projected

Population 2050

LandScan/LandCast [74] 458,877 518,921 643,226
Boyd Center Tennessee
Population Projections:
2016-2070 [29]

- 509,363 578,740

ProximityOne [83] 433,056 501277 564081

Knox County population for the years 2030 and 2050. That is, for any given year, we

calculate the standard deviation as a proportion of the average population in that year.

Then, we take the average of the three proportions and set it as σi, for all i ∈ ∆.

Next, for any given sub-catchment in any given interpolated year, We generate 1,000

trajectories from these normal distributions. Then, we calculate the population densities

out of calculated population trajectories across all sub-catchments. For any given sub-

catchment, we stratify population across all sub-catchments into quartiles (extracting first

and third quartiles). We then categorize the population below first quartile as ‘low’, between

first and third quartiles as ‘medium’ and, greater than equal to the third quartile as ‘high’

population levels. Finally, we calculate the population transitions for any trajectory, for two

consecutive years in the planning horizon, by counting the number of times that we observe

a transition from one population level to (another) level in the next consecutive year, e.g.,

(‘low’,‘low’), (‘low’, ‘medium’), etc. Figure 2.5 shows our simulation algorithm for estimating

stochastic population transition matrix across all sub-catchments.

Stochastic dominance for population with respect to placed GI practices. We assume that

for any given sub-catchment, our actions in placing GI practices, impacts the population

transition probabilities. To establish our assumption, we generate new transition matrices

corresponding to our action set. That is, for maintain action we use the original simulated

population transition matrix. For one-level upgrade to three-level upgrade we use matrices

that are 5%, 10%, and 15% shifted to the right, i.e., they are stochastically greater than the

original simulated matrix in terms of transition from low level to high level of population.

2.2.3 Preprocessing Immediate and lump-sum Rewards

As discussed in Section 2.2.1, our focus is on runoff capturing performance of placed

bioretention areas within the watershed of study. Moreover, we are interested in treating

sub-catchments that are more populated. To calculate the performance of placed bioretention

areas within any given sub-catchment with respect to projected precipitation in the study

horizon.
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Figure 2.5: Simulation algorithm for calculating the population transition probabilities.
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Figure 2.6: Box plots of annual precipitation projections over Knox County, Tennessee
between 2018 to 2050.

In this study, we use 10 precipitation projections for the City of Knoxville produced

by ten well known coupled global circulation models (CGCMs). Figure 2.6 shows the box-

plots of the annual precipitation (in inches) using 10 CGCMs. As the figure shows, the

annual precipitation is varying from one CGCM to another, indicating possible discrepancy

in estimated runoff volumes. We first interpolate these precipitation projections into hourly

projections and then run the EPA SWMM simulation engine [86] to estimate the baseline

runoff volume as well as runoff captured by any given bioretention area within our watershed

of study. Our preprocessing to estimate the surface runoff volumes is described in detail

in [23].

Calculating the immediate reward, rt((i, µ, ψ), ai). The immediate reward of any action

in time period t is the expected runoff volume captured by bioretention area multiplied by

the median of the population category. Hence, with this setting, placing bioretention areas

within more populated sub-catchments are rewarded more.

Calculating lump-sum reward, R((i, µ, ψ)). We set up a Markov chain to calculate the

lump-sum reward. That is, from year N onward, we set up a special MDP in which the

only decision is ‘maintain’ regardless of the population transitions in those years. Note

that for this special case MDP, the immediate reward calculation is identical to that of our

original MDP. Also, for any given sub-catchment, the initial state is defined by state of the

sub-catchment in year N . Lastly, for this special MDP, the lump-sum reward is zero.
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Figure 2.7: Map of land cover [57] (left panel) and hydrological sub-catchments (right
panel) of the Second Creek, Knoxville, Tennessee

2.3 Case Study

As a case study, we consider the Second Creek in the City of Knoxville, Tennessee. The

creek are located entirely within the City of Knoxville and have been identified as one of the

principal sources of flooding in Knox County, Tennessee [21]. The creek is one of the most

dense areas within the City of Knoxville. The creek area is 4913 acres. Our SWMM model

of the creek contains 419 sub-catchments.

Figure 2.7 shows the map of land cover and land cover [57] (left panel) and hydrological

sub-catchments (right panel) of the Second Creek. The red shades on the left panel denotes

level of development ranges from low (e.g., forest land cover) to high. AS the panel shows,

the southern region of the creek near to Tennessee river is highly developed. Subsequently,

this highly developed region has the densest population throughout the City of Knoxville

among years 2010, 2030, and 2050.

In solving the MDP model, we let the study horizon be 32 years (2018-2050), in which the

decision making horizon consist of are years 2018-2029 (N = 12). Recall each time period is

associated with a year. In the beginning of each year of decision making horizon, we decide

on placing bioretention practices. Through years 2030-2050 we run a Markov chain model

to estimate the lump-sum reward. beyond year 2051 the reward of placed bioretentions is

zero.
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Table 2.2: Summarizing total expected reward with respect to available budget.

Budget
(million dollars)

Total Expected Reward Percent Increase Solution Time (s)

0.5 3.89E+11 0.00% 23
1 5.19E+11 33.42% 26

1.5 6.00E+11 54.24% 26
2 6.54E+11 68.12% 25
3 7.17E+11 84.32% 29
4 7.40E+11 90.23% 25
5 7.41E+11 90.49% 26

2.3.1 Computational Study

In this section, we present the computational results of the case study for both stochastic

and robust models. In all computational experiments, we use the IBM ILOG CPLEX 12.8

(64-bit edition) on a PC running Microsoft Windows 7 (64-bit edition) with a Core i7, 2.8

GHz processor and 32 Gigabyte of RAM. Overall, solving the dual MDP model is easy; the

average solution time with respect to different available budgets is less than one minute.

The average expected runoff volume across the watershed during 2018-2050 is estimated

as 3.72E+10 gallons. Placing low, medium and high levels of bioretention across the entire

sub-catchment result is 1.88E+9, 2.81E+9, and 3.75E+9 gallons of runoff volume captured,

respectively. Also, in terms of percentage reduction in total expected runoff volume, low,

medium, and high levels of bioretention contribute to 5.04%, 7.55% and 10.07%, respectively.

The cost associated to these decisions are $2,310,000, $3,462,000, and $4,615,000.

We solve the dual MDP model under available budgets of 0.5, 1, 1.5, 2, 3, 4, and 5

million dollars and compare the total expected rewards. Table 2.2 summarizes the results.

The total expected reward is increasing in available budget, however, the increase slows down

in higher budget levels. For instance, increasing available budget from half million dollar to

one million contributes to 33.42% improvement in total expected reward, whereas increasing

budget from four million dollar to five million only results in 0.29% total expected reward

improvement.

Next, we explore the distribution of recommended actions across sub-catchments while

budget is limited, i.e., two million dollars. Table 2.3 shows the annual distribution of

recommended actions across all sub-catchments while other factors of the state of the system

is given. As the Table shows, action ‘do nothing’ (maintain) is dominate action for any

given year, however, the level of dominance is different with respect to the decision making

time period (year). For instance, in year 2018, the action takes over approximately 38% of

recommended actions given that the population level is low; whereas, the action is 99% in

year 2029 given that the population is low. Also note that for any given population level,
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the recommend action of improving GI level is non increasing; this indicates that as system

evolves the need of intervention, i.e., placing more GI, fades away gradually.

2.3.2 Sensitivity Analyses

In this section, we examine the sensitivity of the solution with respect to some important

calibrated parameters, including the fidelity of decision making horizon and the dynamic

nature of decision making. In former case we use a wide range of available budget, whereas

for the later case we only consider a certain value for available budget .

First, we perform sensitivity analysis on the the fidelity of decision making horizon,

i.e., number of time periods in the horizon. To that extend, we compare the default

annual decision making time periods with bi-annual and six-years decision making periods.

Figure 2.8 shows the total expected reward under different available budget and annual,

bi-annual, and six-years decision making time periods. Consistent with our expectation, we

observe that annual decision making time period provides the best results in terms of total

expected rewards. Also, as the budget increases, the gap in total expected rewards widens.

Note that under limited budget, e.g., half million dollar, the dual MDP model does not

have enough space to take advantage of the dynamic GI placement, hence, higher fidelity

decision making time periods contributes to less significant reward, comparing to the that

of lower fidelity time periods. In contrast, under higher budget, the dual MDP model does

have enough space to take advantage of the dynamic GI placement, resulting in widened gap

in total expected results. For instance, the gap in total expected reward under half million

dollar and five million dollars are 2.40E+10 and 5.10E+10, respectively.

Next, we compare the solution to the dual MDP model with two other competitive

solution approaches to illustrate the impact of dynamic decision making on solution quality.

The first competitive solution approach is to divide the available budget into equal values

and then solve the dual MDP model with respect to the annual available budget; the second

approach is to allocate all available budget in the first year. For this analysis, we consider

two million dollar budget available under which we have summarized the distribution of

optimal (deterministic) recommended actions. Table 2.4 compares the total expected rewards

associated with each of the three approaches. As the table shows, the dual MDP model results

is higher quality solutions comparing to the two other approaches. As the table shows the

total expected reward for the dual MDP model is 14.52% better than the the approach that

we allocate equally-divided budget each year. This stems from the fact that dual MDP

model is less restrictive than the later approach as the solution time is approximately four

order of magnitudes less than the that of that approach. Without no surprise, the dual

MDP approach is still producing higher quality solution comparing the approach in which

we allocate all budget in the first year. However, the difference in total expected reward is

less magnified, indicating that it is better to allocate budget in the first year rather than
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Table 2.3: Distribution of optimal (deterministic) recommended actions for each year,
population, and bioretention area levels across all sub-catchments (bioretention area level 3
is skipped since the only action for that case is ‘do nothing’). The budget is set to 2 million
dollars.

Bioretention Level

0 1 2

Year Population Level
Recommended Action

0 1 2 3 0 1 2 0 1

0
0 38% 37% 19% 7% 100% 0% 0% 100% 0%
1 100% 0% 0% 0% 100% 0% 0% 100% 0%
2 100% 0% 0% 0% 100% 0% 0% 100% 0%

1
0 97% 1% 2% 0% 100% 0% 0% 100% 0%
1 86% 9% 3% 2% 92% 5% 2% 98% 2%
2 86% 10% 2% 2% 91% 6% 3% 96% 4%

2
0 97% 1% 1% 1% 98% 2% 0% 99% 1%
1 88% 8% 3% 1% 90% 6% 3% 97% 3%
2 89% 8% 1% 2% 90% 6% 3% 95% 5%

3
0 96% 1% 1% 1% 96% 2% 2% 99% 1%
1 89% 7% 3% 1% 90% 7% 3% 97% 3%
2 90% 7% 2% 1% 89% 7% 3% 94% 6%

4
0 96% 1% 1% 2% 95% 3% 2% 98% 2%
1 89% 6% 3% 1% 89% 8% 3% 97% 3%
2 90% 7% 1% 2% 89% 8% 3% 93% 7%

5
0 97% 1% 1% 1% 94% 3% 3% 98% 2%
1 90% 5% 3% 1% 90% 7% 3% 97% 3%
2 90% 7% 1% 1% 89% 8% 4% 93% 7%

6
0 97% 1% 1% 1% 93% 4% 3% 97% 3%
1 89% 6% 3% 1% 88% 8% 4% 97% 3%
2 91% 6% 1% 1% 88% 9% 4% 93% 7%

7
0 97% 1% 1% 1% 93% 4% 3% 96% 4%
1 90% 5% 3% 1% 88% 7% 5% 96% 4%
2 91% 6% 2% 1% 89% 8% 3% 92% 8%

8
0 97% 1% 1% 1% 91% 5% 4% 95% 5%
1 92% 5% 2% 0% 89% 6% 5% 95% 5%
2 92% 5% 2% 1% 90% 8% 2% 92% 8%

9
0 97% 1% 1% 1% 91% 6% 4% 95% 5%
1 94% 4% 2% 0% 89% 6% 5% 94% 6%
2 94% 4% 1% 1% 89% 8% 3% 92% 8%

10
0 98% 0% 1% 1% 93% 4% 3% 94% 6%
1 95% 3% 2% 0% 90% 6% 4% 93% 7%
2 97% 2% 1% 0% 91% 5% 3% 92% 8%

11
0 99% 0% 0% 0% 95% 2% 3% 94% 6%
1 96% 3% 1% 0% 94% 4% 2% 94% 6%
2 99% 1% 0% 0% 94% 4% 2% 94% 6%
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Figure 2.8: Optimal total expected reward with respect to the fidelity of decision making
horizon under different budget available.

Table 2.4: Comparing objective of the dual MDP approach with other solution approaches
under two million dollars budget

Solution Approaches
Total Expected

Reward
Difference with

MDP Reward (%)
Solution Time

(s)

Dual MDP approach 6.54E+11 – 25
Equally allocating budget each year 5.59E+11 -14.52% 11,573
Allocating all budget in first year 6.03E+11 -7.86% 2

allocate equally-divided budget each year in each year of decision making horizon. Recall

that distribution of optimal (deterministic) recommended actions indicates significant GI

placement in the first year (see Table 2.3). Nevertheless, we loose total expected reward

by 7.86% if we just allocate the all budget in the first year. In other words, the dynamic

decision making can contribute to up to 7.86% better total expected reward.

2.4 Summary and Insights

In this study, we developed a mathematical model to optimally place GI practices when

(re-)designing an urban area, subject to uncertainties in population growth and future

precipitation. Specifically, we developed a MDP model that addresses the problem of
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dynamic placement of GI practices across an urban watershed with respect to stochastic

nature of population growth and precipitation projections. Furthermore, we enhanced our

model in terms of producing a deterministic policy which is more comprehensible for city

planners. We conducted our analysis on an congested urban watershed in the City of

Knoxville. Our analysis shows that dynamic GI placement is significantly better than the

conventional methods.

In calibrating our model, we included stochasticity of population growth into our model

through population transition matrices, we introduced simulation algorithm that takes into

account the rare information of the population and produces the population transition

matrix. However, there is limited number of resources that are for population projection in

fine scale. Also, note that we faced with the lack of resources in quantifying the population

transition in response to placed GI in an urban neighborhood. Conducting a survey research

that may help us with quantifying the population transition more accurately when we install

a GI in an urban neighborhood.

Lastly, in our model calibration we incorporated the flood mitigation (runoff volume

reduction) and GI recreation/ aesthetics of the GI placement in an urban watershed.

However, there are other factors in placing GI practices that would be center of interest,

e.g., ecosystem health and economic considerations.
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Chapter 3

An Efficient Exact Solution Approach

to the Time-Discretized Job Shop

Scheduling: An Urban Storm

Recovery Case Study

Job shop scheduling problem is a classical optimization problem which has been center of

interest since 1950s. The problem is NP-hard in strong sense [50], indicating that solving even

small job shop problem to optimallity is very hard. Approximation and optimization are two

major techniques in solving the classical deterministic job shop problem [60]. Considering

optimization algorithms, Bowman [28], Wagner [102], and Balas [22] first used (mixed)

integer mathematical formulations to solve the problem. Since then, several formulations

and exact solution algorithms has been introduced for the job-shop problem. We refer

reader to the survey papers [59, 104] for a comprehensive literature review of exact solution

methods for the job shop problem.

To the best of our knowledge, the approach of time-discretized network is not used

to model the classical job shop problem, despite its extensive usage in a variant of the

problem, e.g., train scheduling [30, 32]. The major barrier in using such approach is that

the number of binary variables for even small job-shop problems is extremely high that

results in an inefficient formulation. In a recent research, Barah et al. [25] investigated

conditions for which a time-discredited train scheduling problem is integer-optimal. Their

approach resulted in new extended formulation that has drastically less number of binary

variables, comparing the original binary formulation of the time-discredited train scheduling

problem. Their effort can, somehow, lift the major barrier of using time-discretized network

in formulating the job-shop problem.

In this paper, we extend Barah et al. [25] research to propose a set of valid inequalities.

Furthermore, we propose a column generation algorithm to solve the problem to optimality.
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The solution approach is also integrated with a commercial solver, which results in significant

computational savings. Computational experiments show that the developed algorithm

can efficiently solve test problems to near-optimality. The algorithm is used in a case

study to schedule maintenance crew following a storm event to efficiently maintain green

infrastructure practices across a watershed to mitigate surface runoff due to future events.

The rest of the paper is organized as follows. First, introduce the model formulation in

Section 3.1. Next, in Section 3.2 we develop our valid inequalities and introduce a column

generation technique followed by the computational experiments in Section 3.3. Next, we

introduce a case study of the maintenance crew scheduling in Section 3.4. Finally, we provide

conclusion in Section 3.5.

3.1 Model Formulation

Let L = {1, 2, . . . , |L|} be the set of jobs, M = {1, 2, . . . , |M |} the set of machines

(excluding artificial source, σ, and sink, τ , machines), T = {1, 2, . . . , |T |} be the set of

discrete time-intervals.

The job shop scheduling problem can be visualized by in terms of flows along a digraph.

We let D(V,A) as an acyclic directed network. Let vertices v+
m,t and v−m,t, v

+
m,t, v

−
m,t ∈ V ,

respectively denote the jobs entering the machine m at time t and jobs that their processing

is done at time t on machine m. To enforce a flow conservation over vertices pertaining to

all machines, we let σ and τ , representing dummy source and sink nodes respectively.

Let (v+
m,t, v

−
m,t′) denote the arc corresponding to job l that represents that processing

the job on machine m, beginning at v+
m,t and end at v−m,t′ . Also, let (v−m,t, v

+
m′,t′) denote

the arc the represents job l is transferred from machine m at time v−m,t and reaches to

machine m′ at time v+
m′,t′ . Lastly, let the (v+

m,t, v
+
m,t′) denote job post completion waiting

at machine m from time t′ to time t′. Hence the buffer occurs after processing the job on

any given machine. to establish the flow for any given job, we let dummy arcs (τ, v+
m,t)

and (v−m,t, σ) denote the dummy arcs that begin and end flow, respectively. We let the set

Al = {(v+
m,t, v

−
m,t′), (v

−
m,t, v

+
m′,t′), (v

+
m,t, v

+
m,t′), (τ, v

+
m,t), (v

−
m,t, σ)} denote all arcs corresponding

to job l. Hence, the set A = A1 ∪ A2 ∪ · · · ∪ A|L|.
For any given job, we define a time window for beginning the process on the any given

machine. Let [T lm, T
l

m] denote the time window of beginning the process of job j on machine

m. Note that the job can stay in machine buffer so long as it can be transferred to the next

machine at a time that is within the time window for beginning the job on next machine. Let

δlm be the processing time of job l on machine m. Also, let κlm,m′ be the required minimum

transitioning time of job l between ordered pair of machines (m,m′).

The set A = A1 ∪ A2 ∪ · · · ∪ A|L| consists of the arcs obtained from the union of all

possible arcs for each job in set L. As arcs are specific to each job, we can think of a ∈ Al as

having the color l. Each Al is made up of three types of arcs: arcs representing processing
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Figure 3.1: An example of the time-discretized job shop problem, adapted from [25]. For
ease of exposition, we have omitted the artificial source and sink nodes and arcs corresponding
to them.

on machines, arcs representing transitions from one machine to another machine, and arcs

representing waiting at buffers. An example of a digraph D for job l is depicted in Figure 3.1.

In this figure, Job l requires processing on machines 1, 2, and 3 sequentially. Machine 1 can

begin processing job 1 sometime in [T lm = 1, T
l

m = 6]. There is a 3-minute transitioning

time between machine 1 and 2 for job l, Note that the job gets the highest profit if it gets

processed on machine 3 at time 15. Note that for ease of exposition, we have omitted the

source and sink machines in this figure.

We consider two sets of constraints in our mathematical model. First, all jobs should

physically traverse a sequentially from source to sink, referred to as flow conservation

constraint in the paper. Second, no two jobs can be on the same machine at the same

time interval, referred to as clique constraint in the paper.

In our mathematical model, we have a one-to-one correspondence between our variables

and the arcs in the Digraph D(V,A). Accordingly, we let xlm,t,t′ , y
l
m,m′,t,t′ , and wlm,t,t′ be

binary variables that are corresponding to arcs (v+
m,t, v

−
m,t′), (v−m,t, v

+
m′,t′), and (v+

m,t, v
+
m,t′),
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Table 3.1: The sets

Set Definition

L = {1, 2, . . . , |L|} Set of jobs
M = {1, 2, 3, |M |} Set of machines each job should be processed in its own sequence.
M l = {1, 2, 3, |M |l} Ordered set of machines for job l
T = {1, 2, . . . , |L|} Set of discretized time periods

V = {v+
m,t, v

−
m,t′}

Set of vertices corresponding to discretized time periods of all machine,
where v+

m,t and v−m,t′ respectively denote the time discretized vertices of machine m

corresponding to time period t at which a job enters the machine m for processing
and the time a job processing on the machine is done

A = {Al} Set of all arcs, where, Al denotes the arc set of job l

Table 3.2: The parameters

Parameter Definition

σ Artificial source machine for all jobs
τ Artificial sink machine for all jobs

v+
m,t

Time discretized vertex of machine m corresponding to time t at which a job can enter
the machine for processing

v−m,t
Time discretized vertex of machine m corresponding to time t at which a job processing
on machine m is done

δlm Required processing time of job l on machine m
κl
m,m′ Required minimum transferring time of job l between ordered pair of machines (m,m′)

T lm The earliest time for job l that can be processed on machine m
T̄ lm The latest time for job l that can be processed on machine m
πlm,t,t′ reward of arc (v+

m,t, v
−
m,t′)

µlm,t,t′ penalty of arc (v+
m,t, v

+
m,t′)

respectively. Also, let ylm,σ,t and ylτ,m,t be binary variables corresponding to dummy arcs

(τ, v+
m,t) and (v−m,t, σ), respectively. For simplicity of notation, in the remainder we use

x = [xlm,t,t′ ], y = [ylm,m′,t,t′ ], w = [wlm,t,t′ ] to refer to the vectors of the corresponding variables.

Lastly, our general objective is to schedule all jobs so that the makespan time is

minimized. However, to prioritize particular jobs over other jobs, we assign a reward to

the transitioning arcs. Also, we assign penalty to waiting arcs. Accordingly, let πlm,t,t′ ≥ 0

denote the reward of arc (v+
m,t, v

−
m,t′) and let µlm,t,t′ ≤ 0 denote the penalty corresponding to

arc (v+
m,t, v

+
m,t′). The reward/penalty of other arcs is zero. Our notations are summarized in

Tables 3.1, 3.2, and 3.3.

Table 3.3: The variables

Set Definition

xlm,t,t′ Binary variable denoting if processing arc (v+
m,t, v

−
m,t′) is chosen for job l

ylm,m′,t,t′ Binary variable denoting if transitioning arc (v−m,t, v
+
m′,t′) is chosen for job l

wlm,t,t′ Binary variable denoting if waiting arc (v+
m,t, v

+
m,t′) is chosen for job l
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Given the define sets, parameters and variable, our mathematical model for the time

discretized job shop problem with processing time intervals is defined as following.

max
x,y,w

∑
m∈M l

∑
t∈[T lm,T

l
m−1]

πlm,t,t′x
l
m,t,t+δlm

+
∑

m∈M l\{|M l|}

∑
t∈[T lm,T

l
m−1]

µlm,m′,t,t+κlm
ylm,m′,t,t+κlm

(3.1)

s.t.
∑

t∈[T lm
′,T

l
m−1]

xlm,t,t+δlm = 1, ∀l ∈ L,∀m ∈M, (3.2)

xlm,t−δlm,t = ylm,m′,t,t+κl
m,m′

+ wlm,t,t+1,
∀l ∈ L,∀m,m′ ∈M l, \{|M l|},
t = T lm,

(3.3)

xlm,t−δlm,t + wlm,t−1,t = ylm,m′,t,t+κl
m,m′

+ wlm,t,t+1,
∀l ∈ L,∀m ∈M l \ {|M l|},

∀t ∈ [T lm
′, T

l

m − 1]
(3.4)

xlm,t−δlm,t + wlm,t−1,t = ylm,m′,t,t+κl
m,m′

,
∀l ∈ L,∀m ∈M l, \{|M l|},

t = T
l

m

(3.5)

∑
l∈L

∑
{t′∈[T lm,T

l
m]|t∈[t′,t′+δlm]}

xlm,t′,t′+δlm ≤ 1, ∀m ∈M, ∀t ∈ T, (3.6)

x, y, w ∈ {0, 1}. (3.7)

The objective function (3.1) maximizes the schedule profit. Constraint (3.2) ensures

that exactly one flow is initiated for any given job. Constraints (3.3)-(3.5) are classical

flow conservation constraints, enforcing flow-in flow out balance over vertex set, V \
{v+

m=1,t, v
−
m=|M |,t,∀t ∈ T}. Lastly, constraint (3.6) guarantees that at at time period, at

most one job can be processed on a given machine.

Let Ω = {(x, y, w) ∈ [0, 1]|x|.|y|.|w||(3.3)−(3.5)} and Π = {(x, y, w) ∈ [0, 1]|x|.|y|.|w||(3.6)} be

polyhedrons, where their intersection, Ω∩Π, builds the the problem (3.2)-(3.6) polyhedron.

It is easy to show that Ω and Π are block diagonal totally unimodular (TU) matrices.

However, the intersect is not guaranteed to be TU. Barah et al. [25] show two conditions for

which model (3.1)-(3.6) is integer-optimal. In short, for any given job l on any given machine

m, (i) if the the length of processing arcs, δlm, is less than or equal to the length of time

window at which the job can be start processing on the machine, i,e, δlm ≤ [T lm, T
l

m] , and

(ii) if all penalty coefficient of waiting arcs are non negative, µlm,t,t′ ≤ 0, the resulting model

is integer optimal. Utilizing their polyhedral study, they introduced a new set of binary

variables z that maintains the condition (i); That is, for any given job on any given machine
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m, they decompose the time windows into disjoint time windows, where each of which has

a length at most as the length of processing arc δlm on that machine, i.e.,

∑
t∈[T lm+iρlm,T

l
m+(i+1)ρlm]

xlm,t,t+δlm − z
l,i
m ≤ 0,∀l ∈ L,∀m ∈M,∀i ∈ {0, ρlm′}, ρlm =

[
T
l

m − T lm
δlm

]
,

(3.8)

where, ρlm denotes the maximum length at which the processing arcs corresponding to job l on

machine m overlap at at list one time period. Furthermore, they add all new z variables along

with equation (3.8) into their new model formulation that result in significant computational

saving. Here, we further investigate the efficient ways in generating these variables, as well

as introducing new valid inequalities so that we achieve more computational savings.

3.2 Developing Solution Algorithm

The cardinality of z variables is significantly less than the that of x variables, as a factor

of processing times. Hence, lengthy processing times with short time windows makes the

problem more simple to solve. Note that, adding z variables along with equation (3.8)

to the model (3.1)-(3.7), with relaxed x, y, w variables, results in significant computational

savings [25]. Next, we develop valid inequalities for these new binary variables in line with

achieving more computational savings. Also, we introduce a column generation algorithm in

which we add z variables more efficiently. First we introduce two sets of valid inequalities

to the model (3.1)-(3.8). Next we introduce our column generation algorithm.

We re-define zl,im variables by adding one more index to it; let zl,i
m,t̂

be a binary variable

where t̂ = (T lm + (i+ 1)ρlm)− (T lm + iρlm)/2 denote the center of the time window that is covered

by x variables that are corresponding to zl,im by (equation 3.8). Also let δ̄m be the minimum

processing time of all jobs on machine m. Theorem 3.1 introduces two valid inequalities for

the constraint set defined in (3.2)-(3.8).
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Theorem 3.1. For any given machine m, let δ̄m = min{δlm,∀l ∈ L}. The following

equations are valid to (3.2)-(3.8).

∑
l∈L

∑
i∈{0,ρlm′}

∑
t̂∈[jδ̄m,(j+1)δ̄m]

zl,i
m,t̂
≤ 2, ∀m ∈M, ∀j ∈

{
0,

[
|T |
δ̃m

]
+ 1

}
(3.9)

∑
l∈L

∑
i∈{0,ρlm′}

∑
{t̂∈[T lm+iρlm,T

l
m+(i+1)ρlm]|t∈[t̂−δlm,t̂+δlm−1]}

zl,i
m,t̂

+
∑
l∈L

∑
{t′∈[T lm+iρlm,T

l
m+(i+1)ρlm]|t∈[t′,t′+δlm]}

xlm,t′,t′+δlm

−
∑
l∈L

∑
{t′∈[T lm,T

l
m]|t6∈[t′,t′+δlm]}

xlm,t′,t′+δlm ≤ 2,

∀m ∈M, ∀t ∈ T. (3.10)

Proof. Proof of validity of equation (3.9) by contradiction. For a given machine and given

time window [δ̄m, 2δ̄m], without loss of generality, we assume there would be three zl,im,t
variables can take a positive value that is valid to (3.2)-(3.8). For simplicity of notation, we

let z1, z2 and z3, with corresponding centers t1, t2, t3 (see definition of t̂), be positive in a valid

solution to (3.2)-(3.8). Since z1, z2 and z3 are positive, their corresponding centers do not

overlap and, hence, can be sorted in an strict ascending order. Let δ̄m ≤ t1 < t2 < t3 ≤ 2δ̄m.

On the other hand, let variable x1, x2 and x3, corresponding to variables z1, z2 and z3,

respectively, be all positive in the solution. Recall that due to clique constraint (3.6), a valid

solution requires not having overlap between the corresponding intervals to variables x1 and

x3. Hence, without loss of generality, we let [t1−δ1
m, t

1] and [t3, t3+δ3
m]. Hence, the maximum

interval that is still vacant for variable x2 is [δ̄′m, 2δ̄m − 1] in which δ̄′m ≤ t2 ≤ 2δ̄m − 1. Also,

from the assumption of the theorem, we have δ̄m − 2 < δ3
m. Therefore, there is no enough

vacant time interval for variable x2 for not having overlap with x1 and x3. That is, having

positive x1, x2, and x3, equivalently positive z1, z2, and z3, violates our initial assumption

of validity of the solution to (3.2)-(3.8).

The proof of the validity of the equation (3.10) is straightforward. Given machine m,

suppose clique constraint (3.6) is binding. Hence, the time slot is occupied by at most one

train, namely train l. In this case, the first and second terms in equation (3.10) associated

with that train is one and the third term is zero. Note that there might be a positive z

variable existing in the equation (3.10) that is associated with an other train which it is

canceled out with the third term of the equation.

Next, we describe our column generation algorithm that dynamically defines the z

variables with their corresponding centers and adds them to the model. First, we solve

the LP relaxation of the model (3.1)-(3.7). For any given job l on given machine m, let

x̂ = [xl
m,t,t+δlm

] denote vector of x variables that have fractional solution. Then, given the

fractional solution variables corresponding arcs, we calculate the shortest time interval that
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overlaps all the fractional solution variables. Let [s, s′] denote the interval. Next, beginning

from time s we define zl,i
m,t̂

variable with corresponding 2δlm − 1 time interval length. For

example, beginning from time period s, we define zl,1
m,s+δlm

and continue to define variables

up to t̂ = s′ − δlm′. Then, for a given job l and given machine m and corresponding centers

t̂, we solve the following set covering problem.

min
∑
i

zl,i
m,t̂

(3.11a)

s.t.
∑
i

zl,i
m,t̂

+ x̂lm,t,t+δlm ≥ 1 ∀t ∈ [s, s′], t̂ ∈ [t, t+ δlm], (3.11b)∑
i

∑
t∈[t̂δlm,t̂+δ

l
m−1]

zl,i
m,t̂
≤ 1, ∀t ∈ [s, s′], (3.11c)

zl,i
m,t̂
∈ {0, 1} ∀i. (3.11d)

Given that vector zl,i
m,t̂

is the solution to set covering model (3.11), we add the variable to

model (3.1)-(3.7) along with modified equation (3.8) that links the x variables to z variables.

Then we solve the model (3.1)-(3.8) and capture the solution. If the solution is integral, we

stop since we have reach to optimal solution. Otherwise, we continue our column generation

by adding new z variables generated from model (3.11).

3.3 Computational Study

To evaluate our effort in enhancing our model formulation toward achieving more

computational savings. We solved all computational experiments provided in [24]. We

solved all instances using IBM ILOG Cplex 12.8 on a Microsoft windows 7 desktop PC with

a 2.4 GHz 8 core CPU and 32 GB of RAM.

Table 3.4 summarizes efficiency of our proposed valid inequalities (3.9)-(3.10) in

computational savings. In this table, we report the number of continues and binary variables

in the third and forth columns, respectively. The MIP model is the one introduced in [25].

The Enhanced MIP is the MIP along with equations (3.9) and (3.10). In this table, we also

show the number of processed nodes and number of nodes left. Note that we set the solution

time limit to an hour for each instance.

As Table 3.4 shows, MIP is not able to solve all instances (instances number 17 and 20),

whereas the enhanced MIP is capable to solve all instances to optimality. More insistingly,

the enhanced MIP significantly outperforms the MIP in terms of average computational

saving, i.e., 80%. Our promising results suggest that our valid inequalities are strong enough

to significantly drop the computational time. The number of nodes left in the enhanced

MIP suggest that equations (3.9) and (3.10) contribute to better lower bound which allows
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the CPLEX to prone nodes of the branch and bound tree more quickly. In contrast, the

MIP formulation explores more branch and bound tree nodes at the expense of 80% more

computational times.

3.4 Case Study

Back-to-back storm events are, statistically rare, events that negatively impact the

capability of GI practice runoff capturing volume [100]. Designing a system of GI practices

that is resilient to back-to-back storms events is an ongoing research topic [100, 54, 101].

Although extreme back-to-back events statistically rare, due to climate change we may expect

more frequent extreme events with large negative impact on GI practices in capturing runoff

volumes. In case of (back-to-back) extreme events, an emergency maintenance operations

maybe required to recover GI practices and restore them to their near normal runoff capturing

volume.

As a case study, we consider the First and Whites Creeks in the City of Knoxville,

Tennessee.These creeks are located entirely within the City of Knoxville and have been

identified as the principal sources of flooding in Knox County, Tennessee [21]. to set up our

case study, we divide the watershed into five regions (see Appendix B). We consider a three

group of maintenance operators; the first response group that does rudimentary cleanups

and asses the work load for the regular maintenance group, and finally the quality inspection

group that performs post-maintenance audits to make sure the GI practise is recovered and

restored properly. Our problem is to schedule the maintenance groups so that the overall

maintenance operations is done as soon as possible and also those regions that are susceptible

to destruction addressed immediately. By definition, our case study problem is an instance

of flows shop problem in which jobs has a time window and prioritization. Specifically,

we have flow shop with three machines each of which is corresponding to a maintenance

group. The jobs are regions within the First and Whites Creek. Machines processing time

can be interpreted as the average required workload to perform the fist response operations,

regular maintenance operations, and quality inspections. Also the average travel time from

one region to another is consist of our transitioning arcs. Finally, we assign a randomized

rewards to regions to randomly prioritize regions for maintenance operations. Our analysis

shows that the we can solve a model with up to 100 jobs and 3 machines to optimality in a

reasonable time.

3.5 Conclusion

In this research, we addressed the time discretized job shop problem with specified time

widows for jobs. Specifically, we extended the analysis of the underlying polyhedron of the
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problem to propose a model formulation with valid inequalities. Furthermore, we utilized our

analysis in developing a column generation algorithm. Our computational results showed

that we achieved promising computational saving of 80%, comparing to our benchmark

mathematical formulation, solving certain test problems.
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Table 3.4: Computational comparison of the enhanced MIP with mixed integer programming model (MIP) published in [25].

No.
No. of Jobs

(trains)
No. of machines

(stations)
No. of vars

No. of binary
vars

MIP Enhanced MIP

Solution
time

Best obj.
value

Processed
nodes

Nodes
left

Sol.
time

Best obj.
value

Processed
nodes

Nodes
left

1 10 47 24928 1565 20.83 120653 103 0 21.15 120661.33 29 4
2 10 47 24177 1546 190.89 118037 1540 0 23.63 118046.5 153 2
3 10 47 24694 1575 15.09 125505 74 0 12.73 125505 23 0
4 10 47 23720 1516 13.78 119348 168 0 11.72 119348 29 0
5 15 47 34079 2176 69.81 161903 87 0 28.58 161903 11 0
6 15 47 30320 1955 45.81 154113 78 0 31.5 154113 41 0
7 15 47 35903 2292 601.5 171894 777 0 169.94 171898.49 129 4
8 15 47 31632 2047 8.8 155580 0 0 10.91 155580 0 0
9 15 47 30854 2001 40.99 151720 120 0 17.84 151720 9 0
10 20 47 40260 2562 2637.39 193649 7672 0 155.81 193662.92 255 4
11 20 47 42866 2728 1067.42 204182 1446 0 254.14 204197 93 2
12 20 47 40870 2623 377.56 200102 382 0 177.53 200102 61 0
13 20 47 39538 2511 344.27 195088 727 0 62.33 195088 38 0
14 20 47 38504 2453 165.08 186005 1578 0 31.5 186007 65 4
15 25 47 41372 2637 396.45 203448 690 0 56.52 203448 25 0
16 25 47 42059 2653 3601.48 196250.19 6006 2089 476.05 195618.5 601 11
17 25 47 40740 2615 214.05 196287 200 0 47.02 196287 11 0
18 25 47 43355 2729 2423.77 202027 3425 0 117.11 202042.25 63 4
19 25 47 40604 2601 571.5 200380 1929 0 94.45 200380 64 0
20 30 47 51472 3282 3601.58 247086.1 1948 743 629.95 245960.86 722 37
21 10 52 26838 2194 10.95 177957 3 0 11.8 177964.5 0 1
22 10 52 26353 2136 2.59 189079 0 0 8.5 189079 0 0
23 10 52 26830 2125 2.52 150819 0 0 6.59 150819 0 0
24 10 52 23639 1923 2.48 149488 0 0 7.36 149488 0 0
25 10 52 28766 2292 3.59 183871 0 0 9 183871 0 0
26 15 52 41709 3340 12.05 256705 0 0 20.08 256705 0 0
27 15 52 37656 3008 16.84 235739 9 0 25.95 235741.87 5 4
28 15 52 37540 3014 861.28 262359 895 0 355.3 262385.06 130 17
29 15 52 42335 3417 23.06 285499 5 0 36.24 285524.5 0 1
30 15 52 39800 3261 222.97 272767 84 0 167.72 272767 51 0
31 20 52 49678 3928 11.59 278094 0 0 21.84 278114 0 1
32 20 52 50353 3993 1385 306120 859 0 615.95 306146.26 209 16

575.05 112.76

636363
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[88] Maria Grazia Scutellà and Raffaella Recchia. Robust portfolio asset allocation and

risk measures. Annals of Operations Research, 204(1):145–169, 2013. 4

[89] William Shuster and Stephen Dadio. Soils investigation for infiltration-based green

infrastructure for sewershed management (omaha ne), 2014. 12

[90] Lawrence V Snyder. Facility location under uncertainty: a review. IIE transactions,

38(7):547–564, 2006. 4

[91] Allen L Soyster. Convex programming with set-inclusive constraints and applications

to inexact linear programming. Operations research, 21(5):1154–1157, 1973. 11

[92] Eric Strassler, Jesse Pritts, and Kristen Strellec. Preliminary data summary of urban

storm water best management practices. United States Environmental Protection

Agency, Office of Water.¡ http://www. epa. gov/waterscience/guide/stormwater/#

nsbd, 1999. 13, 43

[93] Robert G Traver and Ali Ebrahimian. Dynamic design of green stormwater

infrastructure. Frontiers of Environmental Science & Engineering, 11(4):15, 2017.

12

[94] Vassilios A Tsihrintzis and Rizwan Hamid. Modeling and management of urban

stormwater runoff quality: a review. Water Resources Management, 11(2):136–164,

1997. 18

[95] Vassilios A Tsihrintzis and Rizwan Hamid. Runoff quality prediction from small urban

catchments using swmm. Hydrological Processes, 12(2):311–329, 1998. 18

[96] Bureau of Labor Statistics” ”U.S. Department of Labor. Cpi inflation calculator.

https://www.bls.gov/data/inflation_calculator.htm. Last accessed July 31,

2018. 13

72

https://www.bls.gov/data/inflation_calculator.htm


[97] Ioan Voicu and Vicki Been. The effect of community gardens on neighboring property

values. Real Estate Economics, 36(2):241–283, 2008. 37

[98] Susan Wachter. The determinants of neighborhood transformation in philadelphia:

Identification and analysis: The new kensington pilot study. University of

Pennsylvania, Wharton School, 2004. 37

[99] Susan M Wachter and Kevin C Gillen. Public investment strategies: How they matter

for neighborhoods in philadelphia. The Wharton School, University of Pennsylvania,

2006. 37

[100] Bridget M Wadzuk, Conor Lewellyn, Ryan Lee, and Robert G Traver. Green

infrastructure recovery: analysis of the influence of back-to-back rainfall events.

Journal of Sustainable Water in the Built Environment, 3(1):04017001, 2017. 61

[101] Bridget M Wadzuk, Conor Lewellyn, Ryan Lee, and Robert G Traver. Closure to “green

infrastructure recovery: Analysis of the influence of back-to-back rainfall events” by

bridget m. wadzuk, conor lewellyn, ryan lee, and robert g. traver. Journal of Sustainable

Water in the Built Environment, 4(3):07018002, 2018. 61

[102] Harvey M Wagner. An integer linear-programming model for machine scheduling.

Naval Research Logistics Quarterly, 6(2):131–140, 1959. 53

[103] World Health Organization (WHO). Global health observatory: Urban population

growth. http://www.who.int/gho/urban_health/situation_trends/, 2014. Situ-

ation in trends and key indicators made available by the WHO at [accessed January

28, 2016]. 1

[104] Jian Zhang, Guofu Ding, Yisheng Zou, Shengfeng Qin, and Jianlin Fu. Review of

job shop scheduling research and its new perspectives under industry 4.0. Journal of

Intelligent Manufacturing, pages 1–22, 2017. 53

[105] Qipeng P Zheng, Jianhui Wang, and Andrew L Liu. Stochastic optimization for unit

commitment—a review. IEEE Transactions on Power Systems, 30(4):1913–1924, 2015.

4

73

http://www.who.int/gho/urban_health/situation_trends/


Appendices

74



A Notation

Table A.1: The sets

Set Description

V Set of sub-catchments

A Set of sub-catchment connectivity arcs

GI Set of large-scale GI practices

GII Set of small-scale GI practices

G = GI ∪GII Set of GI practices

L Set of available levels of installation of GI practices

Ψ Set of projected precipitation time series for the watershed, referred to as scenarios

Ψ̂ Set of projected daily precipitation time series for the watershed, produced by the CGCMs
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Table A.2: The Parameters

Parameter Description

T Length of the planning horizon in years

T The year in which a precipitation scenario is realized, referred to as time to realize a scenario

πψ Probability of scenario ψ ∈ Ψ

ai′i ∈ A
An arc indicating that the upstream sub-catchment i′ ∈ V is connected to the downstream

sub-catchment i ∈ V

Qψ,ti
Total baseline surface runoff under scenario ψ ∈ Ψ over sub-catchment i ∈ V in year

t ≤ T when no GI practice is placed

2qψ,ti (α)
The width of the 100(1-α)% CI for average baseline surface runoff volume within

sub-catchmenti ∈ V under scenario ψ ∈ Ψ in year t ≤ T

Q̂ψ,ti,j,l
Surface runoff captured by GI practice of type j ∈ G installed in level l ∈ L within

sub-catchment i ∈ V under scenario ψ ∈ Ψ in year t ≤ T . We also define Q̂ψ,ti,0,0 = 0.

2q̂ψ,ti,j,l(α)
The width of the 100(1-α)% CI for the average surface runoff captured by GI practice of type

j ∈ G installed in level l ∈ L within sub-catchment i ∈ V under scenario ψ ∈ Ψ in year t ≤ T

βt,i,j,lt′,i′,j′,l′

Runoff ‘adjustment factor’ over the downstream sub-catchment i ∈ V , when a

GI practice of type j′ ∈ GI in level l′ ∈ L is placed within upstream sub-catchment i′ ∈ V and

no GI practice or a GI practice of type j ∈ GI in level l ∈ L is placed within the

downstream sub-catchment i ∈ V

Cti,j
Per square feet present total cost of placing GI practice of type j ∈ G within sub-catchment

i ∈ V in year t ≤ T

cti,j
Per square feet construction cost of a GI practice of type j ∈ G in sub-catchment i ∈ V
in year t ≤ T

cti,j
Per square feet annual maintenance cost of a GI practice of type j ∈ G in sub-catchment

i ∈ V in year t ≤ T

r Average annual inflation rate

δi,j,l
Corresponding area (in square feet) of GI practice type j ∈ G installed in level l ∈ L, within

sub-catchment i ∈ V

η Precipitation coefficient of variability
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Table A.3: The Variables

Variable Description

xti,j,l
First stage binary decision variable indicating whether or not a GI practice of type j ∈ GI ⊂ G
in level l ∈ L is placed within sub-catchment i ∈ V in year t ≤ T − 1

zt
′,i′,j′,l′

t,i,j,l

First stage binary variable indicating whether or not GI practices of types j′, j ∈ GI in levels

l′, l ∈ L are placed within sub-catchment i′, i ∈ V at times t′, t ≤ T , respectively.

We also define zt
′,i′,j′,l′

t,i,0,l = 0.

yψ,ti,j,l

Second stage binary decision variables indicating whether or not a GI practice of type

j ∈ GII ⊂ G in level l ∈ L is placed within sub-catchment i ∈ V year t, T ≤ t ≤ T
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B Adjustment in Surface Runoff Reduction Due to GI

Placement in Connected Sub-Catchments

Note that we assume ‘adjustments’ over downstream sub-catchments are additive. Hence,

without loss of generality, here we simply present adjusting the runoff over the downstream

sub-catchment i when a large-scale GI practice is placed within the single upstream sub-

catchment i′ ∈ V , ai′,i ∈ A.

Figure B.1: The three cases to consider when accounting for surface run-off reduction over a
downstream sub-catchment due to a GI practice placement upstream, where the downstream
and upstream sub-catchments are placed in years t and t′, respectively. Attention is restricted
to large-scale practices only.

Figure B.1 presents the three cases to consider when accounting for surface run-off

reduction over the downstream sub-catchment i due to placing a GI practice within the

upstream sub-catchment i′, ai′,i ∈ A, when accounting for large-scale practices only:

(a) GI practice of type j′ in level l′ is placed within upstream sub-catchment i′ in year t′

after GI practice of type j in level l is placed within downstream sub-catchment i in

year t such that 0 ≤ t ≤ t′ ≤ T − 1. In this case, run-off adjustment is needed only after

the placement of a GI practice in the upstream sub-catchment i′ in year t′. Hence the

adjusted runoff reduction begins in year t′;

(b) GI practice of type j′ in level l′ is placed within upstream sub-catchment i′ in year t′

before GI practice of type j in level l is placed within downstream sub-catchment i in

year t such that 0 ≤ t′ ≤ t ≤ T − 1. In this case, two levels of run-off adjustment

are needed: The first adjustment is needed between years t′ and t − 1, and the second

adjustment is needed on and after year t, i.e., after placing a GI practice in downstream

sub-catchment i;

(c) GI practice of type j′ in level l′ is placed within upstream sub-catchment i′ in year

t′ and no GI placed in downstream sub-catchment i by the beginning of year T , i.e.,

0 ≤ t′ ≤ T − 1: In this case, run-off adjustment over downstream sub-catchment i is

needed on and after year t′.
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First, consider the third term in the objective function (1.1), i.e.,

−
∑

{t′′ |max{t·1{j 6=0},t′}≤t
′′≤T}

βi
′,j′,l′

i,j,l

(
Qψ,t

′′

i

(
xt

′

i′,j′,l′ − z
t′,i′,j′,l′

t,i,j,l

)
+ Q̂ψ,t

′′

i,j,l · z
t′,i′,j′,l′

t,i,j,l

)
.

(B.1)

Equation (B.1) adjusts the run-off after placing a GI practice in the upstream sub-catchment

i′. Also, consider the fourth term in the objective function (1.1), i.e.,

−
∑

{t′′ |t′≤t′′≤t−1}

βi
′,j′,l′

i,j,l ·Q
ψ,t

′′

i · zt
′,i′,j′,l′

t,i,j,l . (B.2)

Equation (B.2) adjusts the run-off after placing a GI practice in the upstream sub-catchment

i′ if it occurs before placing a GI practice in the downstream sub-catchment i.

In case (a), the runoff adjustment over downstream sub-catchment i for the years in

which GI practices are placed in both sub-catchments i′ and i, i.e., in year t′′ such that

t′ ≤ t′′ ≤ T is given by equation (B.1), where the indicator function 1{j 6=0} returns 1, and

max{t · 1{j 6=0}, t
′} returns t′. Note that xt

′

i′,j′,l′ − z
t′,i′,j′,l′

t,i,j,l = 0 since both xt
′

i′,j′,l′ and zt
′,i′,j′,l′

t,i,j,l

are equal to one. Therefore, in case (a) equation (B.1) simplifies as follows:

−
∑

{t′′ |t′≤t′′≤T}

βi
′,j′,l′

i,j,l · Q̂
ψ,t

′′

i,j,l .

Also, clearly, in case (a), equation (B.2) is not valid since t ≤ t′.

Similarly, for case (b), for the years in which GI practices are placed in both sub-

catchments i′ and i, i.e., in year t′′ such that t ≤ t
′′ ≤ T , equation (B.1) simplifies as

follows:

−
∑

{t′′ |t≤t′′≤T}

βi
′,j′,l′

i,j,l · Q̂
ψ,t

′′

i,j,l .

Also, for case (b), for the years in which the GI practice is placed in upstream sub-

catchment i′ and yet no GI is placed in downstream sub-catchment i, i.e., in year t
′′

such

that t′ ≤ t
′′ ≤ t− 1, Equation (B.2) is active and simplifies as follows:

−
∑

{t′′ |t′≤t′′≤t−1}

βi
′,j′,l′

i,j,l ·Q
ψ,t

′′

i ,

because zt
′,i′,j′,l′

t,i,j,l equals one.

Lastly, for case (c), for the years in which the GI practice is placed in upstream sub-

catchment i′, i.e., in year t
′′

such that t′ ≤ t
′′ ≤ T , the equation (B.1) simplifies as follows:
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−
∑

{t′′ |t′≤t′′≤T}

βi
′,j′,l′

i,j,l ·Q
ψ,t

′′

i .

The indicator function 1{j 6=0} returns 0 and hence, max{t · 1{j 6=0}, t
′} returns t′. Note that

variable xt
′

i′,j′,l′ is equal to one and variable zt
′,i′,j′,l′

t,i,j,l is equal to zero as j = 0.

Also, note that equation (B.2) is equal to zero since variable zt
′,i′,j′,l′

t,i,j,l equals to zero in

this case.
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C Coupled Global Circulation Models (CGCMs)

Table C.1: Ten coupled global circulation models used for projecting future precipitation

Model Name Institution

ACCESS: The Australian Community Climate and
Earth-System Simulator [1]

Commonwealth Scientific and Industrial
Research Organisation

BCC-CSM: Beijing Climate Center Climate System
Model [2], referred to as ‘BCC’ in the text

Beijing Climate Center, China Meteorological
Administration

CCSM4: The NCAR’s Community Climate System
Model [3]

Climate and Global Dynamics Laboratory (CGD)
at the National Center for Atmospheric
Research (NCAR)

CMCC-CM: The Centro Euro-Mediterraneo sui
Cambiamenti Climatici Climate Model [4], referred
to as ‘CMCC’ in the text

Euro-Mediterranean Center on Climate Change

FGOALS: Flexible Global Ocean–Atmosphere–
Land System [7]

Institute of Atmospheric Physics, Chinese
Academy of Sciences, State Key Laboratory
of Numerical Modeling for Atmospheric
Sciences and Geophysical Fluid Dynamics

GFDL-ESM2M: Geophysical Fluid Dynamics
Laboratory Earth System Model [8],
referred to as ‘GFDL’ in the text

Geophysical Fluid Dynamics Laboratory
(Princeton University)

IPSL-CM5A: The Institut Pierre Simon Laplace
Climate Model [10], referred to as ‘IPSL’ in the text

Institut Pierre Simon Laplace

MPI-ESM-MR: Max-Planck-Institute Earth
System Model Mixed Resolution [11],
referred to as ‘MPI’ in the text

Max Planck Institute for Meteorology

MRI-CGCM3: Japanese Meteorological Research
Institute Coupled Global Climate Model [12],
referred to as ‘MRI’ in the text

Meteorological Research Institute (MRI) of
the Japan Meteorological Agency

NorESM1-M: Norwegian Earth System Model [16],
referred to as ‘NorESM’ in the text

Multi-institutional, coordinated climate
research in Norway
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D Calculating Runoff Adjustment Factor Over a Down-

stream Sub-Catchment

We designed a set of experiments to calculate runoff adjustment factor over a downstream

sub-catchment for any given pair of hydrologically connected sub-catchments. Consistent

with the literature [35], we only use the most significant sub-catchment characteristics related

to surface runoff in our experiments, namely, sub-catchments’ percent of imperviousness,

percent of slope, and Manning’s n for overland flow over the pervious portion of the sub-

catchment. Next, we use the values of these characteristics for the sub-catchments in the

watershed of interest and calculate their corresponding quartiles. Accordingly, we stratify

each characteristic into three categories of low, medium, and high, if the corresponding

value is at or below the first quartile, between first and third quartiles, and above the third

quartile. Table D.1 summarizes the combination of categories along with the number of

observed sub-catchments within each one for our watershed of interest.

Consequently, we execute the SWMM model for all pairs of sub-catchments, given the

average values for the categories in our watershed of interest. We run these simulations under

the randomly selected precipitation events in the ‘SWMM Simulation’ step of the procedure

described in Section 1.2.3. The runoff adjustment factor over a downstream sub-catchment

is then estimated as the average difference in runoff coefficient in the sub-catchment over all

precipitation events when a certain GI practice is placed within the upstream sub-catchment

and no GI is placed there (i.e., no treatment). Figure D.1 presents the heat map of runoff

adjustment factors over the downstream sub-catchment, given all observed combinations of

sub-catchment characteristics’ categories in the watershed of interest.
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Table D.1: Summary characteristics of the 140 sub-catchments within our watershed of
interest, categorized by percent of imperviousness, percent of slope, and Manning’s n for
overland flow over the pervious portion of the sub-catchment.

% of Imp. % of Slope Manning’s n
Number of

Sub-catchments
Average

Area (acres)
Average
Imp. (%)

Average
Slope (%)

Average
Manning’s n

low low med 2 117.95 7.85 1.56 0.248
low low high 9 153.24 4.64 1.68 0.281
low med high 8 139.16 3.94 2.86 0.290
low high high 16 98.50 4.78 6.59 0.282
med low med 2 92.14 11.60 1.46 0.250
med low high 2 80.65 8.80 1.86 0.262
med med med 3 154.36 10.43 2.74 0.255
med med high 9 76.10 9.69 2.75 0.272
med high med 5 85.88 10.62 7.29 0.248
med high high 13 90.97 9.47 8.27 0.266
high low low 8 66.28 20.53 1.58 0.211
high low med 7 139.53 16.57 1.58 0.247
high low high 5 147.74 16.62 1.78 0.283
high med low 10 88.49 23.39 3.02 0.219
high med med 3 43.49 18.93 2.46 0.247
high med high 2 121.45 23.15 3.15 0.283
high high low 18 67.87 19.82 5.11 0.211
high high med 12 90.44 14.36 6.70 0.247
high high high 6 121.26 17.87 6.09 0.282
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Figure D.1: Heat map of the runoff adjustment factors over the downstream sub-catchment, given all observed combinations
of sub-catchment characteristics’ categories in the watershed of interest. Sub-catchment characteristics are shown as tuples,
where the first element corresponds to the GI level – 0 encodes no treatment and 1-3 refer to the levels low, medium, and large
bioretentions, respectively. Elements 2-4 of the tuple correspond to percent of imperviousness, percent of slope, and Manning’s n
for overland flow over the pervious portion of the sub-catchment, each of which are categorized into three levels of 0-2, encoding
low, medium, and high, respectively.
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E Summary of the Characteristics of the Sub-catchments

in First Creek, Knoxville, Tennessee

Figure E.1: Watershed of First Creek, grouped based on similarities in sub-catchment
characteristics.

Table E.1: Summary of the characteristics of the sub-catchments in First Creek as labeled
in Figure E.1.

Region
Total Area

(Acres)
Average Impervious

Area (%)
Average slope

(%)

1 1292.05 23.36 3.65
2 3187.31 18.01 4.74
3 4915.84 8.07 3.83
4 807.43 8.31 6.12
5 3745.82 12.61 4.31
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