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Abstract 

Dissimilar Metal Welds (DMWs) made between ferritic low alloy steel (BCC) and austenitic alloys 

(FCC) are widely used in the high temperature components of power plants. Ex-service data from 

power plants suggests these bimetallic welds fail prematurely by creep mechanism, with lifetimes 

much lesser than the creep lives of either of the base materials. Earlier creep studies have 

demonstrated that failures are associated with creep cavities along the ferritic steel HAZ close to 

BCC/FCC boundary, due to the local detrimental microstructure. Structure-property relationships 

have not been established for these heterogeneous materials due to the limitation in the spatial 

measurement of creep strain rates. Hence, the objective of this research study is to develop a 

methodology to extract the local creep constitutive properties from heterogenous weld 

configurations and correlate these properties with the underlying microstructure. The following 

heterogeneous weld configurations were considered: 

I. Conventional DMWs made between 2.25Cr-1Mo steel and Alloy 800H base materials 

using Inconel weld consumable, 

II. Graded Transition Joints (GTJs) made between 2.25Cr-1Mo steel and Alloy 800H base 

materials using each of the three candidate filler metals viz., (i) Inconel 82, (ii) P87, 

and (iii) 347H 

Local creep studies discretized the heterogeneous creep behavior in both these welded 

configurations. Global creep strain from both these welded configurations was a result of creep 

strain evolution from the 2.25Cr-1Mo base material and regions inside 2.25Cr-1Mo HAZ, while 

the other austenitic regions showed negligible creep formation. In both DMWs and GTJs, creep 

strain was accumulating inside 2.25Cr-1Mo HAZ and was driving the premature failure in these 

welded joints. 
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Research findings from these local creep studies were summarized as follows: 

1. In DMWs, creep strain accumulation and the creep damage occurred close to BCC/FCC 

boundary due to the localized decarburization (depletion of carbides) in those regions,  

2. In all the GTJs, creep strain accumulation and the creep damage occurred in the FGHAZ 

at 3.5mm away from the weld interface, as a result of carbide coarsening during weld 

processing. 

Microstructure based creep model framework was developed to model the discrete creep strain 

rates with the local microstructures of 2.25Cr-1Mo steel.  
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Chapter 1 

 

Introduction 

 

Dissimilar Metal Welds (DMWs) have been widely used in many industry applications. The 

adoption of DMW configurations provides flexible material design, with the efficient use of both 

the material properties, with considerable economic savings. Two major fractions of DMW 

configurations are as follows: 

I. DMWs made between ferritic chrome-molybdenum steels and austenitic alloys used in the 

steam generators of fossil and nuclear energy power plants [1,2], 

II. DMWs made between ferritic low carbon steel pipes and austenitic Ni-alloy clad used in 

the subsea oil and gas applications [3]. 

DMWs used in both these applications experience premature failure, much below the expected 

design life of either of the base metal components. Failure occurs close to the weld fusion line of 

the ferritic base material and the weld deposit in both these DMW configurations. However, it is 

observed in the heat affected zone (HAZ) of ferritic base metal in (I) and the austenitic material in 

transition in (II). In this research study, DMWs used in the power plant applications have been 

considered for improvement in the design life of these bimetallic joints. However, it is being 

anticipated that the research findings will serve as a tool to solve the DMW problems in subsea 

applications of oil and gas industries as well. 

DMWs made between ferritic Chrome-Molybdenum low alloy steel (BCC) and austenitic alloys 

(FCC) have been widely used in the fossil and nuclear energy power plant components. The less 

expensive low alloy steels are used in the low temperature components, while the high temperature 

oxidation and corrosion resistant austenitic alloys in the high temperature components of a power 

plant. Data from ex-service welds [1,4–6] have demonstrated that premature failure of these 
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DMWs occur well below the expected creep life of either of these base metals and the design life 

of a power plant. These premature failures can cost a power company up to $850000/day loss in 

revenue due to forced plant outages [7]. In addition, these premature failures are a subject of major 

concern for life extension of existing power plants and the design of new high efficiency power 

plants. Hence the primary focus of this research study is to overcome the premature creep failure 

of DMWs used in power plant applications. 

In this research study, premature creep failure of the DMW configuration made between 2.25Cr-

1Mo steel and Alloy 800H materials has been evaluated for an improvement in creep strength. 

This specific DMW configuration is been used in the steam generators [1,8] of power plants. A 

schematic of steam generator used in the high-temperature gas-cooled (HTGR) reactor of nuclear 

power plants is shown in figure 1.1. This steam generator unit, showing the bimetallic weld 

connecting upper and lower bundles, is capable of producing high temperature process heat for 

industry. Table 1.1 gives the chemical compositions of the materials involved in high temperature 

service.  

 

 

Figure 1.1: Schematic of steam generators used in power plant applications 
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Table 1.1: Chemical compositions of alloys used in Dissimilar Weld Configuration (DMW)

 

 

As shown in figure 1.1, the upper tube bundle is made up of Alloy 800H material and the lower 

bundle is made up of 2.25Cr-1Mo and these two members are connected by a weld made of Inconel 

82 filler metal. Based on ASME BPVC design specifications, this bimetallic weld configuration is 

designed for an operating pressure of 11MPa at an expected service temperature of 465ºC. Hoop 

stress (σH), which is the maximum principal stress, acting on the cylindrical weld joint resulting 

from the operating pressure is calculated to be 55MPa. 

Research findings from this study have been systematically organized in the following six 

chapters: 2 to 7. A brief description of the contents of each of these chapters are as follows: 

 Chapter 2 provides the literature survey of the creep failure mechanism of DMWs. 

 Chapter 3 provides a description of research objectives and the methodology used in the 

course of this research study. 

 Chapter 4 describes the baseline creep studies on the failure prone Dissimilar Metal Welds 

(DMWs) 

2.25Cr-1Mo 

(Base material)

Inconel 82 

(Filler metal)

Alloy 800H 

(Base material)

Al -- -- 0.15-0.6

C 0.05-0.15 0.1 0.06-0.1

Cr 2-2.5 18-22 19-23

Cu -- 0.5 0.75

Fe Balance 3 min 39.5

Mn 0.3-0.6 2.5-3.5 1.5

Mo 0.9-1.1 -- --

Nb + Ta -- 2-3 --

Ni 0.045 67 (min) 30-35

Si 0.5 -- 1

Ti -- 0.75 0.15-0.6

Chemical composition (Wt%)

Elements
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 Chapter 5 describes the comparative creep studies performed on the candidate Graded 

Transition Joints (GTJs) 

 Chapter 6 describes a creep phenomenology-based model framework to predict the 

heterogeneous minimum creep strain rates in the dissimilar weld configurations. 

 Chapter 7 enlists the conclusions drawn from this present research study, along with the 

suggestions for future directions. 
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Chapter 2  

Problem background 

 

2.1. Base materials 

2.25Cr-1Mo steel: 2.25Cr-1Mo is a class of creep resistant ferritic steels, developed around 1930s, 

specifically for steam generators in power plants for operating temperatures and pressure more 

than 450℃ and 5MPa respectively [9,10]. This category of steels is primarily strengthened by a 

fine dispersion of secondary precipitates, especially carbides (MxCy) in the ferritic matrix. A few 

researchers in the past have also identified interactive solid solution strengthening effect [11–13] 

resulting from Mo-C clusters in the ferritic matrix. However, the effective contribution of solid 

solution strengthening mechanism to the long-term creep strength of 2.25Cr-1Mo steel can be 

regarded insignificant, since all Carbon available in the ferritic solid solution will be precipitated 

as carbides during the initial stages of tempering treatments. These steels are designed for a creep 

life of 200,000hr in the mentioned operating conditions during service of steam generators. 

Alloy 800H: Alloy 800H, commercially known as Incoloy 800H, was invented by Special Metals 

corporation Inc. This specific type of alloy was designed for high temperature strength and 

resistance to oxidation, carburization, and other types of high-temperature corrosion [14]. It has 

superior creep strength and designed for operation in the temperature range of 593-816℃. These 

are austenitic Ni solid solution alloys primarily strengthened by precipitated such as Ti nitrides, Ti 

carbides and Cr carbides. 

2.2. Dissimilar Metal Weld (DMW) failure mechanism 

Review on the dissimilar metal weld (DMW) failures [15] between 2.25Cr-1Mo and Ni-base weld 

metal have summarized the failure as low ductility intergranular creep fracture in 2.25Cr-1Mo 

steel. The fracture occurs along the 2.25Cr-1Mo steel Heat Affected Zone (HAZ) close to the 
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interface (~5µm) of 2.25Cr-1Mo steel / Ni-base weld deposit. Fractured specimen typically 

representing service failure is shown in figure 2.1. Simulated creep tests carried out by Parker et. 

al [16,17] and Nicholson [4] have demonstrated that the fracture occurs as a result of nucleation, 

growth and coalescence of creep cavities at a distance of 5µm close to the interface. Ferritic matrix-

precipitate interface of semi continuous array of type I carbides (M23C6 and M6C type) formed 

close the interface as shown in figure 2.2 acts as the nucleation sites for these creep cavities.  

Parker et. al [16,17], Nicholson et. al [4] and Laha et. al [18] have carried out accelearted creep 

tests of welds made between 2.25Cr-1Mo steel and an austenitic alloy using Inconel 82 filler metal, 

to understand the failure mechanism in this DMW configuration. These tests were performed 

typically at temperatures and stresses higher than the actual service temperatures to accelarate low 

ductility interfacial failure as seen in service. Laha et. al [18] performed creep tests in the stress 

range of 90-250MPa at 550ºC, but the failures were not associated with the Type I interfacial 

carbides, typical of service failure. It was identified that the stress levels used in these test 

conditions were too high and the corresponding failure times were too low to induce the service 

failure [15]. Nicholson et. al [4] performed creep tests at tempeartures: 570ºC and 640ºC and at 

stresses: 62 MPa and 100MPa, but the total failure time was insufficient for the formation of Type 

I interfacial carbides. 

Later, Parker et. al [16,17] understood the importance in the selection of stresses and temperatures 

to induce service type failures. They came up with a matrix of creep tests at temperatures 590-

625ºC and at reduced stresses 30-80MPa. Samples in the above mentioned test temperatures and 

stresses were tested both in ‘New’ condition, which was only Post weld heat treated (PWHT) 

(700ºC for 3 hours), and ‘Aged’ condition, which was given an aging heat treatment of 625 ºC for 

3500h in addition to the Post Weld Heat treatment (PWHT). The purpose of this additional aging 



  7 

treatment was to simulate Type I interfacial carbide morphologies, which were perceived to be 

responsible for the nucleation of creep cavities. New samples exhibited low ductility interfacial 

failure at all stresses 30-80MPa. However, the aged samples exhibited low ductility interfacial 

fracture at stresses 50MPa and below and high ductilty fracture in 2.25Cr-1Mo base metal at 

stresses above 50MPa. In all the new welds and aged welds testes at stresses 50 MPa and below, 

failure occurred as a consequence of interlinkage of creep cavities formed along Type I interfacial 

carbides. It was anticipated before test, aged samples with pre-existing array of carbides will 

decrease the failure lives of the samples, but the failure life comparison between aged and new 

samples at stresses 50 MPa and below showed no significant difference. It was hypothesized that 

a critical amount of strain along the interface is needed to initiate creep cavities. This work has 

also etablished that DMWs made between 2.25Cr-1Mo steel and an austenitic alloy with Inconel 

82 filler metal can be tested at stresses at 50MPa and below to simulate the failure seen in service. 

 

 

 

Figure 2.1: Photograph showing typical low-ductility 2.25Cr-1Mo/ In-82 interface failure 

observed in simulated creep tests at 590-625ºC, stress<80MPa [14] 
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Figure 2.2: Micrograph showing creep voids developed in association with interfacial carbides 

after a life fraction of 79% observed in creep tests at 590-625ºC, stress< 80MPa [14] 

 

2.3. Microstructural evolution in DMWs in the as-welded and the subsequent aged 

conditions 

To understand the evolution of these interfacial carbide morphologies, we need to understand the 

chemical composition changes and microstructural changes that occur along the weld interface in 

a DMW, in the as-welded and during subsequent heat treatments like post weld heat treatment and 

in service. A distinctive feature observed in a DMW weld joint microstructure is the formation of 

a region of finite width inside the fusion zone known as Partially Mixed Zone (PMZ) as shown in 

figure 2.3(a).  Across this region, chemical composition steeply changes from that of the weld 

metal to the base metal or the vice versa. The distribution of alloying elements within PMZ of the 

weld made between 2.25Cr-1Mo steel and Inconel 182 weld deposit [18] is shown in figure 2.3(b). 

Variation in filler metal chemical composition (Inconel 82) to base metal chemical composition 

(2.25Cr-1Mo) is found to occur in narrow region of 80µm. The actual width of PMZ can be 

determined by the electrical parameters used for welding, such as filler wire feed rate and heat 

input [19]. 
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Figure 2.3: (a) Schematic illustration of different microstructural zones formed during a spot 

weld of Inconel-82 on 2.25Cr-1Mo steel block, (b) distribution of major alloying elements in the 

PMZ of a weld between 2.25Cr-1Mo steel and Inconel 182 electrode [18] 

 

 

In addition to the chemical composition changes, this narrow PMZ region will have regions of 

finite widths corresponding to both FCC and BCC crystal structures (based on the concentrations 

of ferrite and austenite stabilizers along the width of PMZ) in the as-welded condition. Knowing 

the chemical composition variation as a function of PMZ width, Schaeffler diagram [20] can be 

used to predict the widths of different phases that can form in a PMZ as a result of cooling rates 

typical of arc welding. Based on Schaeffler diagram’s prediction, formation of FCC and BCC 

phases have been shown in figure 2.3(b). It has been shown in various studies [21,22], that the 

regions corresponding to BCC inside PMZ in the as-welded regions will have non-equilibrium as-

quenched martensitic microstructure. As-quenched martensite is formed in the as-welded 

condition due to high mixing of alloying elements and cooling rates associated with PMZ.  

Adjacent to the PMZ, inside the steel substrate, a zone of finite width, usually in a few millimeters, 

gets affected by thermal cycles (peak temperatures less than melting temperature, TL) during 
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welding process. This zone of visibly different microstructure in the as-welded condition is termed 

as Heat Affected Zone (HAZ). In the case of welding of steel, there are four different zones that 

would exist inside the HAZ [23] viz., (i) Sub-critical HAZ (Peak temperature, TP <A1) 

characterized relatively less distribution of carbides compared to the unaffected base metal ferritic 

microstructure, (ii) Inter-critical HAZ (Peak temperature, A3<TP >A1) characterized relatively less 

distribution of carbides compared to the unaffected base metal ferritic microstructure, (iii) Fine 

Grained HAZ (Peak temperature, TP>A3) characterized by fine grained ferritic microstructure, (iv) 

Coarse Grained HAZ (Peak temperature, TP>>>A3), characterized by coarse grained prior 

austenitic grains with as-quenched martensite. Schematic diagram of various sub-zones of the 

HAZ approximated corresponding to the 0.15 wt.% C on the Fe-Fe3C equilibrium diagram is 

shown in figure 2.4. 

 

 

 

Figure 2.4: Schematic illustration of various sub-zones of the HAZ approximated for 0.15 wt% C 

in Fe-Fe3C equilibrium diagram [23] 
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During the subsequent Post-weld heat treatment (PWHT) and aging in service, concentration 

gradients and microstructural gradients existing inside PMZ will result in the evolution of different 

carbide sizes and morphologies. Evolution of different carbide sizes and morphologies in the PMZ 

is mainly attributed to the diffusion of C down its chemical potential gradient at high temperatures. 

Carbon migration has been shown to be the most important factor for failure in DMWs and has 

received a lot of attention in the literature [24–29]. It needs to be noted that Chromium (Cr) lowers 

the chemical potential of Carbon. Inside PMZ, the chemical potential of Carbon decreases as Cr 

content increases from the undiluted ferritic side to the undiluted austenitic side. Existence of 

Carbon chemical potential gradient in the as-welded condition will be the driving force for 

diffusion of Carbon from the low Cr to high Cr regions. Furthermore, diffusion of Carbon from 

ferritic to austenitic alloys in the transition will be controlled by the relative diffusivities and 

solubilities of carbon in these respective matrices. Baker and Nutting [30] have shown M23C6 and 

M6C carbides as the equilibrium carbides in the carbide evolution sequence, during the tempering 

treatment of quenched 2.25Cr-1Mo steel.  

Parker et. al [31,32] have done aging heat treatment studies at 625ºC till a time of 6000h to 

understand the growth and morphology characteristics of Type I interfacial carbides. Sizes and 

number densities of these carbides were studied every 500h of exposure till 6000h. Interfacial 

carbides of 0.3µm diameter were formed after a minimal 300h of thermal exposure. These carbides 

start to nucleate as spherical shape, but gradually acquire a lenticular morphology before 

developing into regions of continuous or semi continuous network of carbides close to the 

interface. Figure 2.5 shows the changes in carbides sizes and morphologies observed after 2000h 

and 6000h exposure at 625ºC.  
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Figure 2.5: Type I interfacial carbides that are formed along 2.25Cr-1Mo HAZ very close to 

fusion line (a) after 2000h exposure at 625ºC and (b) after 6000h exposure at 625ºC [32] 
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Growth rates of carbides along major and minor axes of interfacial carbides are shown in figure 

2.6. The growth kinetics have been compared with that of the interfacial carbides observed during 

creep tests at 625ºC at 30-80MPa [31]. Both the aged (without stress) and creep tested samples 

seem indistinguishable. Based on these results, it was suggested that the stress didn’t seem to affect 

the growth kinetics of these interfacial carbides.  

DuPont [15] summarized the microstructural and chemical concentration gradients in figures 2.7 

and 2.8, that occur in a DMW made between 2.25Cr-1Mo steel and an austenitic alloy in the as-

welded condition and aged/PWHT condition. 

 

 

 

Figure 2.6: Variation in major and minor axis with aging time at 625ºC for Type I carbides t that 

develop along the interface between 2.25Cr-1Mo steel and Inconel 82 [31] 
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Figure 2.7: Schematic illustration of general evolution of microstructures in a DMW between 

2.25Cr-1Mo steel and an austenitic alloy in the as welded condition [15] 

 

 

Figure 2.8: Schematic illustration of general evolution of microstructures in a DMW between 

2.25Cr-1Mo steel and an austenitic alloy in aged/PWHT condition [15] 
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2.4. Grading the composition in layers: a possible solution? 

Literature review gives a clear indication that high microstructural and chemical concentration 

gradients that exist along the DMW interface leads to the degradation of creep rupture properties 

of DMWs. DuPont [15] enlisted the factors that contribute to the failure in these DMW 

configurations during high temperature service. Two primary factors are as follows: 

1. Development of thermal stresses along the weld interface due to the inherent Coefficient of 

Thermal Expansion (CTE) mismatch between the ferritic low alloy steel (2.25Cr-1Mo: 14 

μm m-1 K-1) and austenitic weld consumable (Inconel 82: 16.9 μm m-1 K-1) during heating, 

2. Carbon migration from Cr-depleted ferritic low alloy steel towards Cr-rich austenitic weld 

consumable leading to the nucleation and growth of creep life detrimental Type I interfacial 

carbides. 

Primary reason for the development of both these factors being the steep change in concentration 

of alloying elements within 100µm of PMZ. 

Therefore, the current research will focus on mitigating or prolonging Carbon diffusion by 

developing ‘Graded Transition Joints’. A Graded Transition Joint (GTJ) will be produced by 

functionally grading the chemical composition of 2.25Cr-1Mo steel and a candidate filler metal in 

layers. Schematic of a sample GTJ fabricated with 4 transition layers of chemical composition 

from 2.25Cr-1Mo steel to Inconel 82 is shown in Figure 2.9. A GTJ fabricated by this method can 

be be welded with end members which will have similar chemical composition as the base metals, 

thereby reducing premature creep failures. 
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Figure 2.9: Schematic illustration of an example for GTJ fabricated between 2.25Cr-1Mo steel 

and Inconel in 4 transition layers 
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Chapter 3 

Research objectives and methodology 

 

3.1. Objectives 

In a broader perspective, overarching aim of this research is to establish a test methodology to 

extract local creep constitutive properties of a heterogeneous weld configuration and correlate 

these properties with the underlying microstructure. The following research questions need to be 

answered, which would add valuable inputs to the existing literature on the premature failure of 

dissimilar metal welds (DMWs): 

1) How Carbon migration in DMWs during high temperature exposure, results in poor creep 

resistance properties in the ferritic steel HAZ? 

2) Can Graded Transition Joints (GTJs) extend the creep life of the bimetallic joint involving 

ferritic steels and austenitic alloy? 

3) Can a creep constitutive model be developed for dissimilar metal welds to predict the 

heterogenous creep behavior of these joints? 

Research work was divided in four specific tasks as mentioned below in figure 3.1. In the task 1, 

a baseline creep test methodology to measure local creep constitutive properties of heterogenous 

weld configurations will be pursued. In the task 2, will be a study of local creep deformation 

behavior of baseline Dissimilar Metal Welds (DMWs). In this task, fundamental mechanism 

behind Carbon migration leading to premature creep failure will be discussed. In the task 3, 

candidate GTJs, which have been designed and fabricated by Lehigh university as the potential 

candidate to extend creep life of DMWs, will be creep tested using the methodology developed in 

task 2. Primary objective of this task to evaluate the suitability of GTJs to replace failure prone 

conventional DMWs in high temperature service. In the task-4, a phenomenological creep  
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Figure 3.1: Specific designed tasks for the research study 

 

constitutive model to predict the steady state creep behavior of heterogenous microstructure in 

these weld configurations (DMWs and GTJs) will be discussed. 

3.2.Test methodology 

Goal of this research is to establish a methodology to measure local interfacial creep strain 

concentration in a short duration of time, say ~1 month, in the DMWs made between 2.25Cr-1Mo 

steel and an austenitic alloy using Ni-base weld consumable. This involves two important 

considerations: (i) Selection of accelerated creep test condition that can induce interfacial fracture 

similar to the one seen in service, and (ii) Selection of an appropriate creep strain measurement 

technique. 

Creep studies by Parker and Stratford [16] established that DMWs between 2.25Cr-1Mo steel and 

an austenitic alloy welded with Inconel 82 can be tested at stresses of 50MPa and below to simulate 

the service failure. Hence, the creep test condition: 625ºC, 50MPa has been selected for this work. 
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Moreover, to induce the formation of creep detrimental Type I interfacial carbides before the start 

of any creep test, DMW samples were aging heat treated at 600ºC for 2000h and 600ºC for 4000h 

to induce the presence of Type I interfacial carbides with varying sizes and distribution. 

Creep tests done by Parker and Stratford [16] were coupled with capacitive resistance change based 

strain sensors (see figure 3.2) to measure  localized strain in 2.25Cr-1Mo steel HAZ, which resulted 

in low ductily fracture close to the weld interface. However the technique used was not capable of 

measuring localized deformation occuring in less than a millimeter where Type I interfacial 

carbides nucleate and grow along the interface. In addition, it didn’t possess the capabilty to 

measure local strain measurements from multiple local regions in the hetergeneous transition. It is 

imperative that the technique used to measure localized deformation in a DMW joint during a 

uniaxial creep test, should have a better spatial resolution less than 1mm and should be able to 

measure the localized deformation throughout the entire gauge length with such a spatial 

resolution. Hence, in this research work, Digital Image Correlation (DIC), an in-situ, and non-

contact surface deformation measurement technique has been used to measure localized non-

uniform creep deformation. 

Over the last two decades, DIC technique has been employed to measure full field strains in a 

deforming object [33]. In various applications, DIC has been successfully used to measure 

residual stress distribution in components [34–37] and study high temperature tensile behavior of 

materials [38,39]. Yu. et. al [40] have shown the effectiveness of DIC technique in determining 

the localized creep deformation in the Heat affected zone (HAZ) of creep resistant Gr 91 steels in 

an inert atmosphere. In that work, two grades of Grade 91 steel welds that had undergone two 

different tempering heat treatments at 760ºC (standard) and 650ºC (non-standard), were creep 

tested at 650ºC with a stress of 70MPa to study the creep strain distribution. 



  20 

 

Figure 3.2: Local capacitive resistance change based strain-measurement set-up used to 

measured localized creep deformation along 2.25Cr-1Mo steel/ Inconel 82 weld interface [16] 

 

Figure 3.3 illustrates the effectiveness of DIC technique in determining the local creep strain 

concentration in the HAZ of Grade 91 steel sample which had undergone a standard tempering 

heat treatment at 760ºC. Figure 3.4 clearly indicates the standard extensometer measurements 

made during a standard creep test will not be able to detect the localized high deformation 

occurring in the specific regions of a heterogeneous test sample. In an extension to this 

technology, work presented in this paper would describe the usage of DIC technique in measuring 

localized creep deformation in DMWs in the open-air atmosphere, as used in conventional 

laboratory creep tests. 
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Figure 3.3: High temperature strain map showing strain concentration (A1) in the HAZ of 

Standard heat treatment specimen after 90h of test [40] 

 

 

Figure 3.4: Comparison of localized strain measurement by DIC technique and overall strain 

measured by extensometer during the creep test of Standard specimen after 90h of test [40] 
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Chapter 4 

 

Study of heterogeneous creep deformation in conventional Dissimilar Metal Welds 

(DMWs) 

 

4.1. Introduction 

Earlier creep failure studies on DMWs [4,17,41] have described the premature failure as low 

ductility intergranular creep fracture in ferritic matrix at the Heat Affected Zone (HAZ) close to 

the fusion line of Nickel-base weld deposit. DuPont [15] summarized all the DMW research 

studies and attributed the premature failure to two major factors.  The first factor is the formation 

of a continuous network of carbides, termed as Type I interfacial carbides, along ferritic steel Heat 

Affected Zone (HAZ), at about 5-10μm close to the weld fusion line. This microstructure evolution 

is controlled by Carbon migration from ferritic region towards the weld  interface. At the same 

time, creep cavities are nucleated at the interface of carbide-ferritic matrix interface [4,17]. Even 

though a positive correlation between network of carbides and premature creep life has been 

confirmed, the primary reason for the nucleation of these voids at carbide/ferritic matrix interfaces 

is not completely understood. The second factor for failure is associated with mismatch of 

coefficient of thermal expansion (CTE) between ferritic steel and austenitic Nickel-base weld 

region. On heating to service temperature, these differences lead to thermal stresses  and further 

strain localization close to weld fusion line. The relative contribution of these two factors towards 

creep failure has not been discussed before due to lack spatial measurements of creep rates. These 

limitations motivated us to develop strain measurement methodology that can measure localized 

creep strain in these DMWs.   

Parker and Stratford [16] used local strain sensors planted across the weld interface of ferritic 

2.25Cr-1Mo steel and austenitic Inconel-82 weld deposit. This arrangement was intended to 
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measure local creep strain along a length of 6-8mm across the weld interface in these DMWs. 

Although these measurements captured strain concentrations along the length of 6-8mm, the length 

of these strain gauges included almost equal lengths of both 2.25Cr-1Mo steel and Inconel 82 weld 

deposit materials. As a result, the spatial resolution of the strain measurement was insufficient to 

characterize discrete local creep strain behavior in microstructurally distinct regions of the DMW.  

In this regard, Digital Image Correlation (DIC), an in-situ and non-contact surface deformation 

measurement technique, has the ability to measure discrete local strains in heterogeneous materials 

with spatial resolution less than a millimeter. One of the early pioneering studies to measure local 

creep strain using DIC was performed by Yu. et. al [40] for Gr-91welds with the same chemical 

composition, but with microstructural heterogeneity.  The above experiment was conducted using 

a Gleeble® thermo-mechanical simulator which relies on the joule heating mechanism.  However, 

this methodology cannot be extended to DMWs due to large variations in the electrical resistance 

of BCC (Fe-base), FCC (Ni-base) and FCC (Fe-base) materials.  Therefore, extended the DIC 

testing technique to measure local creep constitutive properties of DMWs, made between ferritic 

Cr-Mo steels and austenitic alloys, within a conventional creep tester in open air atmosphere, 

which is closer to the real-life operating conditions. Characterization studies have been carried out 

to rationalize the observed local creep properties in these DMWs with underlying microstructure 

evolution.  

4.2. Experimental procedure 

4.2.1. Sample fabrication 

The DMW Configuration consists of a weld made between 2.25Cr-1Mo steel and Alloy 800H 

material using Inconel weld consumable. The DMW coupon was fabricated with ¾” (25.4mm) 

thick base metal plates of 2.25Cr-1Mo steel and Alloy 800H materials using Nickel-base weld 
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consumables. Chemical compositions of base materials and Nickel-base weld consumables are 

given in Table 4.1. Two base metal plates were machined at edges to form  60º included angle 

single ‘V’ groove with 2mm of root opening. Initial two root weld passes were made with Inconel-

82 bare filler wire using Gas Tungsten Arc Welding (GTAW) process with Ar gas purging using 

welding current of 105-110A, arc voltage of 9-10V and weld travel speed of 60mm/minute. The 

remainder of the plate thickness was filled with Inconel-82 electrode using Shielded Metal Arc 

Welding (SMAW) process purging using welding current of 120-130A, arc voltage: 23-25V and 

weld travel speed of 120mm/minute. 

 

 

Table 4.1: Chemical composition of materials used in high temperature applications (Single 

values are maximum) 

 

 

 

 

2.25Cr-1Mo 

(Base material)

Inconel 82 

(Filler metal)

Inconel 182 

(Filler metal)

Alloy 800H 

(Base material)

Al -- -- -- 0.15-0.6

C 0.05-0.15 0.1 0.1 0.06-0.1

Cr 2-2.5 18-22 13-17 19-23

Cu -- 0.5 0.5 0.75

Fe Balance 3 10 min 39.5

Mn 0.3-0.6 2.5-3.5 5.0-9.0 1.5

Mo 0.9-1.1 -- -- --

Nb + Ta -- 2-3 1 --

Ni 0.045 67 (min) 59 (min) 30-35

Si 0.5 -- 1 1

Ti -- 0.75 1 0.15-0.6

Elements

Chemical composition (Wt%)
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4.2.2. Microstructural characterization 

Detailed multilength scale characterization spanned specific regions from 2.25Cr-1Mo HAZ  and 

the transition region between 2.25Cr-1Mo, and Inconel 82 weld region (see figure 4.1), using light 

optical microscopy (OM), scanning electron microscopy (SEM), X-ray energy dispersive 

spectroscopy (EDS) and selected samples with transmission electron microscopy (TEM).  Samples 

for OM and SEM were prepared by grinding through 1200-grit SiC grit papers, followed by 

diamond polishing in 3μm and 1μm suspensions. The final polish was obtained through vibratory-

polishing with 0.05μm colloidal silica suspension for 3 hours. For carbide characterization in the 

2.25Cr-1Mo regions, the polished DMW samples were immersion etched in freshly prepared 2% 

Nital solution for about a minute.  A Leica DM2500 metallograph was used for performing OM 

analyses. Scanning electron miscrsocopy (SEM) analyses were performed using JEOL 6500 SEM 

equipped with both secondary electron (SE) and backscattered electron (BSE) detectors, with 

accelerated beam voltages in the range of 15-20kV was used. Detailed characterizations of carbide 

size-distribution in  (i) specific regions of  2.25Cr-1Mo HAZ, and (ii) Type I interfacial carbides 

close to the BCC/FCC boundary, as referenced as (1) and (2) in  figure 4.1, were performed in 

SEM and image analysis. The microstructural images were acquired at uniform intervals (400-

2000µm) and magnifications (2000-6000X) for one-to-one comparison of carbide size-

distributions in samples of different aged conditions. The greyscale images were imported to 

ImageJ® software and particle analysis was performed after binary thresholding to delineate 

carbide particles from 2.25Cr-1Mo ferritic matrix background.  The EDS analyses was performed 

in a Versa 3D scanning electron microscope (SEM) built with Oxford® X-ray EDS detectors. X-

ray Energy Dispersive Spectroscopy (EDS) area maps and line profiles were obtained at a beam 

accelerated voltage of 20kV with a step size of 0.06μm. The EDS compositional analyses were 
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performed across a 60μm transition length, as referenced as (3) in figure 4.1, spanning equal 

amounts of ferritic and austenitic regions.  For an in-depth microstructural analysis of some 

samples, transmission electron microscopy (TEM) was performed in FEI F2000X Talos scanning 

and transmission electron microscope (STEM).  Samples for TEM characterization were extracted 

along a 30μm transition length, as referenced as (4) in figure 4.1, covering almost equal amounts 

of ferritic and austenitic materials, using Quanta 3D DualBeam microscope equipped with focused 

ion beam (FIB) machining capability.  

 

 

Figure 4.1: Schematic illustration showing different characterization studies in the aged DMW 

specimens: (1), (2) Optical & SEM, (3) EDS, (4) TEM 

 

4.2.3. Creep testing with Digital Image Correlation (DIC) 

An ATS 2330 series ® lever arm tensile testing system was used for conducting creep tests. The 

furnace in the test frame was customized with a viewport opening of size 3” (L) x 1” (W) on the 

front side. This viewport enabled viewing of the test specimen, from outside of the furnace, while 

being subjected to creep deformation. 3D-Digital Image Correlation (DIC) set up was deployed 

with this creep tester as shown in figure 4.2. The 3D-DIC set up consists of two digital cameras 

mounted at a distance ~100mm apart on a vertical bar and inclined at 10-15º with respect to the 

vertical bar. This set-up covers the full view of the gauge surface of the sample and tracks 3D  



  27 

 

Figure 4.2: 3D-DIC set-up in front of ATS 2330 (3:1 lever arm) creep test system 

 

displacements of every point on the gauge surface. Digital cameras (Point grey® cameras: 2.4MP) 

with Schneider lenses with a fixed focal length of 28mm were linked to a computer with VIC-

snap® image acquisition software for the programmed capturing of images. An external LED 

lamp, clamped in between the cameras, was used for illuminating the specimen gauge surface. 

The total gauge length for measuring local strain using DIC covered a length of 47mm with 14-

14.2mm of 2.25Cr-1Mo material and the remainder of Inconel-82 and Alloy-800H materials. The 

gauge surfaces of these test specimens were sandblasted for good adherence to the DIC speckle 

pattern paints. Random speckle patterns were created by an innovative 3-layer speckle pattern 

procedure [42] with randomly distributed black speckles on a white background. Three 

thermocouples were attached to the back surface of the specimen, one on each region of the test 

specimen, i.e., 2.25Cr-1Mo steel, middle of the Inconel-82 weld and Alloy 800H to monitor 
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temperature gradients within +/- 1℃ during creep tests.  Speckle patterned test specimens were 

heated inside the furnace to the test temperature of 625ºC at a heating rate of 150ºC/hr. After 1 

hour of soak time at 625℃, 50MPa stress was applied. At the onset of stress application, the VIC-

Snap® software was programmed to capture images of the speckled gauge surface at every 5.25-

minute interval throughout the entire duration of test. While the VIC-Snap® software was 

periodically collecting images of speckled sample surface during creep deformation, collected 

images were parallelly imported to VIC-3D® software to determine creep strain (eyy) distribution 

in the gauge surface along the loading direction. DIC image capturing was stopped after 268h and 

712h in 4000h aged and 2000h aged DMW creep tests respectively, once the locally developed 

regions of strain concentration reached tertiary stage of creep in the respective test specimens. 

However, both the test specimens were unloaded after 712h of creep test, to make an even 

comparison of the extension of creep damage in both the crept samples. 

4.3. Results 

4.3.1. Pre-test microstructural characterization of aged DMW samples 

Microstructural heterogenity: Since majority of DMW creep failures have been associated with 

ferritic steel HAZ [4,16] microstructural characterization was focussed on the 2.25Cr-1Mo HAZ 

regions. Salient results are as following. (i) width of the 2.25Cr-1Mo HAZ in the 2000h aged 

sample was 1.6 to 1.8mm. (ii) the region adjacent to the boundary between ferritic (BCC) 

/austenitic (FCC) materials consisted of tempered martensitic microstructure, typical to that of 

coarse grained (prior-austenite grain size of ~25μm) HAZ (CGHAZ) microstructure, as shown in 

figure 4.3. This CGHAZ region ranged from 270-300μm of the total HAZ width. (iii) Right next 

to the CGHAZ,  mixture of bainite and tempered martensite typical to that of fine grained (grain 

size of ~5μm) grain HAZ (FGHAZ) was observed (see  figure 4.3). This FGHAZ region spanned  
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Figure 4.3: Microstructures observed in the different regions of 2.25Cr-1Mo Heat Affected Zone 

(HAZ) of 2000h aged DMW: (a) Bainite/tempered martensite in FGHAZ, (b) Tempered 

martensite in CHGAZ 

 

the remainder of the width of the HAZ. Since these DMW samples were aged for relatively long 

periods of time, the Inter Critical HAZ (ICHAZ) could not be delineated. The width of the HAZ 

and the microstructural gradients in the 4000h aged sample were similar to that of the 2000h aged 

sample. 

Carbide size distributions: The carbide particle analysis confirmed that the majority of Type I 

interfacial carbide paricles were in the lenticlular shape, with the Major axis (M) lying parallel to 

the BCC/FCC boundary (perpendicular to the stress direction) and minor axis lying perpendicular  

to the BCC/FCC boundary (parallel to the stress direction). This observation is indeed in agreement 

with published work by Parker and Startford [31]. Typical distribution of Type I interfacial 

carbides in the 2000h and 4000h aged DMW samples are shown in figures 4.4a and 4.4b  

respectively. Particle size distribution in both the 2000h anad 4000h aged conditions comfirmed 
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to log-normal distribution function as shown in figures 4.4 (c) & (d) respectively . Average carbide 

sizes along the Major (Mc) and minor (mc) axes are tabulated in Table 4.2. From the data shown 

in the Table 4.2,  it is evident that there is a noticeable increase in the carbide sizes along the Major 

(Mc) and minor (mc) axes in the 4000h aged DMW sample, in comparsion to the 2000h aged DMW 

sample. These results are indeed expected due to the continued growth of carbides with aging time. 

 

 

Figure 4.4: SEM micrographs showing an array of Type I interfacial carbides close to the 

boundary between ferritic (BCC)/austenitic (FCC) materials (Inconel 82- Left, 2.25Cr-1Mo- 

Right) in (a):2000h aged DMW sample, (b) 4000h aged DMW sample. Carbide size distributions 

along Major (M) and minor (m) axes of (c) 2000h aged DMW sample, (d) 4000h aged DMW 

sample 
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Table 4.2: Average carbide particle dimensions along the major (Mc) and minor (mc) axes in both 

the aged conditions 

 

 

Chemical heterogenity: Chemical concentration analyses were performed along a distance of 

~60μm across BCC/FCC boundary in the as-welded, 2000h aged, and 4000h aged conditions. The 

relative amounts of  Fe, Ni, Cr, Mo, Mn and Nb were determined by plottting characteristric X-

ray normalized intensity counts of all  elements as a function of the transition distance in figures 

4.5(a)-(c). In comparison to the chemical concentration profiles observed in the as-welded 

condition, chemical concentration of major alloying elements in both 2000h aged and 4000h 

showed local depletions and enrichments (indicated by arrows in Figures 4.5(b)-(c)) primarily in 

the ferritic portion. These local variations in chemical concentration should be arising from various 

metastable carbides that form in the ferritc Cr-Mo steels during isothermal aging treatments. In 

both 2000h and 4000h aged samples, Mo-rich carbides were seen away from BCC/FCC boundary 

and Cr-rich Type I interfacial carbides close to the BCC/FCC boundary on the ferritic side. It may 

be worthwhile to note that a direct comparison of the gradient lengths in the partially mixed zones 

between the samples can not be made because the size the of gradients is highly dependent on the 

fluid flow conditions during welding, which can be highly variable along the fusion line. 

Aging condition

Average carbide 

dimension along minor 

axis, mc (nm)

Average carbide 

dimension along major 

axis, Mc (nm)

2000h aged 214 ± 96 363 ± 176

4000h aged 272 ± 152 428 ± 236
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Figure 4.5: Chemical concentration profiles of alloying elements: Fe, Cr, Ni, Mn, Mo, Nb across 

ferrite (BCC) /austenite (FCC) boundary in (a) as-welded, (b) 2000h aged, and (iii) 4000h aged 

conditions 

 

4.3.2. Creep response of the aged DMW samples 

Stability of Speckle Pattern during Creep Tests: In the 2000h aged specimen, minor speckle paint 

degradation occurred on Alloy 800H surface during the process of heating the specimen to the test 

temperature of 625ºC. This limited the total gauge length within the Region of Interest (ROI) used 

for post-process creep strain (eyy) analysis. Despite this limitation, 32mm of gauge section 

including 13.2mm of 2.25Cr-1Mo material and 19mm of Inconel 82 + Alloy 800H materials were 

included in the ROI for creep strain (eyy) analysis. In the 4000h aged specimen, almost the entire 

gauge length covering 13mm of 2.25Cr-1Mo material and 31mm of Inconel 82 + Alloy 800H 

materials were included in the ROI. 

Global and Local Creep Strain Variations: A summary of creep strain (eyy) results as a function of 

time (hr) for both the 2000h aged and 4000h aged specimens is shown in figures 4.6 & 4.7, 
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respectively. Creep strain distribution in these DMW samples, in both the aged conditions, reveal 

a heterogeneous creep behavior. The global creep strain (eyy_global) in these DMW samples is the 

result of accumulated strain across three discrete regions viz., 2.25Cr-1Mo base material, 2.25Cr-

1Mo HAZ and Nickel-base alloys (Inconel-82 + Alloy 800H) within this heterogenous 

configuration. In both the aged samples, creep strain (eyy) emanating from the local 2.25Cr-1Mo 

HAZ crept faster than the 2.25Cr-1Mo base material and was driving the creep-rupture in these 

DMW samples. One noticeable difference, between the creep test results of 2000h aged and 4000h 

aged samples, is the time of emergence of a weak-region inside the 2.25Cr-1Mo HAZ. In the case 

of 2000h aged sample, the weak local region in the 2.25Cr-1Mo HAZ took more than 120 hours 

of test duration, while in the 4000h aged sample the weak local region in the 2.25Cr-1Mo HAZ 

emerged in just 30 hours of test duration.  The minimum creep strain rates in the regions containing 

Inconel-82 weld and Alloy 800H materials were negligible, for both the aged conditions. The 

minimum creep strain rates exhbited by both these alloys were of the order of 10-7 hr-1 or less and 

remained in the steady state condition.  This is indeed expected, since both Inconel-82 and Alloy 

800H materials are considered to be highly creep resistant. Both these alloys exhibit a steady state 

creep strain rate of 10-7 hr-1 or less for a creep test condition of 650ºC, 50MPa, as shown in the 

material data sheets of these alloys [43,44]. 
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Figure 4.6: Creep strain (eyy) evolution in different regions viz., 2.25Cr-1Mo HAZ (Red), 

2.25Cr-1Mo base material (Blue) and Nickel-base alloys (Pink) of 2000h aged DMW specimen. 

Creep test condition: 625ºC, 50MPa, duration: 0-712h 

 

 

Figure 4.7: Creep strain (eyy) evolution in different regions viz., 2.25Cr-1Mo HAZ (Red), 

2.25Cr-1Mo base material (Blue) and Nickel-base alloys (Pink) of 4000h aged DMW specimen. 

Creep test condition: 625ºC, 50MPa, duration: 0-268h 
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Figure 4.8 shows calucated creep strain rates (deyy/dt) as a function of time for 2.25Cr-1Mo base 

material and 2.25Cr-1Mo HAZ for both the aged conditions. In both 2000h and 4000h aged 

conditions, 2.25Cr-1Mo base materials showed steady state of creep for the entire test duration. 

Minimum creep strain rates exhibited by 2.25Cr-1Mo base materials in 2000h and 4000h aged 

conditions were 1.9 x 10-5 hr-1 and 3.3 x 10-5 hr-1 respectively. The increase in creep strain rates 

between the two aged conditions can be correlated to the precipitate coarsening in 2.25Cr-1Mo 

steel during thernal aging. The 2.25Cr-1Mo HAZ in both the aged conditions reached tertiray stage 

of creep. This statement was based on the observation of accelerated creep in these regions, after 

almost 70% of the total test time. The  minimum creep rates of 2.25Cr-1Mo HAZ in 2000h aged 

and 4000h aged conditions were 6 x 10-5 and 10-4 hr-1, respectively. 

 

 

Figure 4.8: Local creep strain rate (deyy/dt) as function of test time (hr) for the regions (i) 2.25Cr-

1Mo HAZ and (ii) 2.25Cr-1Mo base material in the creep test condition: 625ºC, 50MPa 



  36 

4.3.3. Identification of regions with accelerated creep strain rate within 2.25Cr-1Mo HAZ 

In order to determine the location of creep strain (eyy) concentration, the creep strain (eyy) 

distribution along the entire gauge length (mm) is plotted as a function of test time (hr) in figures 

4.9(a) & (b) for the 2000h aged and 4000h aged specimens, respectively. In the 2000h aged sample, 

creep strain concentration occurred at 2.25Cr-1Mo HAZ close to the BCC/FCC boundary. 

However, due to the limitation of the spatial resoltion with DIC technique, any strain localization 

within 300μm cannot be confirmed without ambiguity. This  needs to be validated with the 

microstructural  characterization of creep damage  in the samples close to the BCC/FCC boundary. 

In the 4000h aged sample, creep strain concentration occured more than 400μm away from 

BCC/FCC boundary. This observation must also be validated with the microstructural 

characterization. Therefore, OM and SEM analyses were performed to delineate creep cavities 

which can be used as markers for the strain localization. 

 

  

Figure 4.9: (a) Creep strain (eyy) evolution along the gauge length of 2000h aged DMW 

specimen. Creep test condition: 625ºC, 50MPa, 0-712h, (b) Creep strain (eyy) evolution along the 

gauge length of 4000h aged DMW specimen. Creep test condition: 625ºC, 50MPa, 0-268h 

 



  37 

2000h aged crept sample: OM’s resolution was not sufficient to delineate any creep cavities along 

the 2.25Cr-1Mo HAZ at the locations of strain concentration.  Therefore, the crept sample was 

characterized using SEM.  Regions along a width of 200µm across the BCC/FCC boundary were 

characterized for the possible presence of creep cavities.  SEM micrographs (see figure 4.10) show 

the presence of creep cavities as big as ~1µm, close (<5μm) to BCC/FCC boundary on 2.25Cr-

1Mo steel side. Closer examination along the whole interface length of 2mm revealed the presence 

of 10 cavities in the size range of 0.5-1μm on 2.25Cr-1Mo side close (<5μm) to BCC/FCC 

boundary. 

 

 

 

Figure 4.10: SEM micrographs close to the ferrite (BCC)/austenite (FCC) boundary (Inconel 82- 

Right, 2.25Cr-1Mo- Left) showing the presence of creep cavities on 2.25Cr-1Mo side close to 

the boundary in the crept 2000h aged DMW sample. Creep test condition: 625ºC, 50MPa, After 

712h 
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4000h aged crept sample: Interestingly, OM analyses revealed copious amount of creep cavities 

in the 2.25Cr-1Mo HAZ regions. Creep cavities were finely distributed across a region as wide as 

500µm and 400µm away from the BCC/FCC boundary. Further characterization in SEM (see 

figure 4.11) showed the presence of creep cavities in HAZ, approximately 350-400μm away from 

BCC/FCC boundary. The observed cavities were in the size range of 1.5-4µm and were much 

bigger than those observed in the 2000h aged crept samples, even though both the crept samples 

were examined after similar test conditions, i.e., 625ºC, 50MPa, 712 hours. 

 

 

  

Figure 4.11: SEM micrographs showing the presence of creep cavities in HAZ (~400μm away 

from ferrite (BCC) /austenite (FCC) boundary) in the crept 4000h aged DMW sample. Creep test 

condition: 625ºC, 50MPa, after 712h 
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4.4. Discussion 

4.4.1. Comparison of global creep strain rates with previous creep studies on DMWs 

The results confirmed our hypothesis that local creep deformation behavior of 2.25Cr-1Mo HAZ 

will drive the premature failure in the Dissimilar Metal Weld (DMW) made between 2.25Cr-1Mo 

steel and an austenitic alloy using Nickel-base weld consumable. Interestingly, most of the 

published literature ignore the local variations of creep strain rate. In the creep studies performed 

by Parker and Startford [16] on DMWs made between 2.25C-1Mo steel and an austenitic alloy 

with Inconel weld consumable, a global creep strain rate of 3.33 x 10-6 hr-1 was obtained for the 

same creep test condition used here (625℃, 50MPa). Samples used for these tests were post-weld 

heat treated (PWHT) at 700℃ for 3h after weld fabrication. To allow for one to one comparison, 

mimimum global creep rates in the present study were recalculated by maintaining the same 

proportions of different materials (46.25% of Inconel 82 weld deposit, 26.875% each of ferritic 

and austenitic base materials) in the gauge section similar to that of Parker and Stratford [16]. 

Minimum global creep strain rates obtained in the 2000h aged and 4000h aged specimens were 

1.7 x 10-5 hr-1 and 2.72 x 10-5 hr-1, which are approximately an order higher than that observed in 

the creep tests by Parker and Startford [16] in the same test condition. Considerable increase in the 

observed global creep strain rates in the present study can be rationalized due to the presence of 

pre-existing array of Type I interfacial carbides, resulting from the aging treatments (600℃ for 

2000h and 600℃ for 4000h). Furthermore, the location of creep strain conecntration in the 4000h 

aged DMW specimen is far away from the BCC/FCC boundary and the underlying creep 

mechanism in this aged condition might be different from  that observed in the 2000h aged DMW 

aged counterpart.   
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4.4.2. Correlation of creep damage to failures in ex-service DMWs 

SEM characterization of the 2000h aged crept specimen revealed a sparse distribution of creep 

cavities. The creep cavities were in the size range of 0.5-1μm and were distributed at an average 

of 5 cavities/mm on 2.25Cr-1Mo steel side close to the BCC/FCC boundary. This was in good 

agreement with interrupted creep cavity evaluation done by Parker and Stratford [17], on crept 

samples of DMWs made between 2.25Cr-1Mo steel and AISI 316 stainless steel as parent 

materials, welded with Inconel 82 weld consumable. Their studies showed that creep cavities 

observed were in the size range of 0.5-1μm and they were distributed at an average of less than 10 

cavities/mm untill 50% of life. No cavity coalesecnce or microcracks were observed untill 80% of 

life was exhausted  in these earlier studies. These agreements gave a clear indication that the creep 

damage observed in the crept 2000h aged DMW specimen should replicate low ductility 

intergranular creep fracture observed close to BCC/FCC boundary in ex-service DMWs. Creep 

cavities observed in the 4000h aged crept specimen were finely distributed in the HAZ, away from 

the BCC/FCC boundary. Moreover, observed creep cavities were in the size range of 1.5-4μm. 

These observations indicate 4000h aged DMW specimen will not repliate low ductility 

intergranular creep fracture as seen in ex-service welds.  

4.4.3. Correlation of creep strain concentration to microstructural heterogeneity 

2000h aged condition: Creep strain measurements from 2000h aged DMW sample showed strain 

concentration and sparse distribution of creep cavities on 2.25Cr-1Mo side close to BCC/FCC 

boundary. To correlate the creep damage in this local region to microstructure, EDS maps of 

alloying elements (Cr, Mo and Si), along BCC/FCC boundary of 2000h aged DMW sample before 

creep, were acquired as shown in figures 4.12(b)-(d) respectively. These maps show a line of Cr-

rich carbides close to BCC/FCC boundary and a network of Mo rich carbides with traces of Si, 
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away from BCC/FCC boundary on ferritic steel side.  Location and distribution of Cr-rich carbides 

in these maps is a clear indication that these are Type I interfacial carbides similar to those 

observed in DMWs during aging heat treatments. Futher high resolution TEM EDS analyses of 

carbides were perfomed close to BCC/FCC boundary to characterize the type of these carbides. 

Figures. 4.13(a) & (b) show TEM EDS maps obtained from two regions: (a) close to BCC/FCC 

boundary that includes Cr-rich carbides  and (b) 5μm away from BCC/FCC boundary that includes 

Mo-rich carbides. X-ray spectra analyses from these carbides as shown in figures 4.13(c)&(d), 

show that Cr-rich carbides also contain substitutional alloying elemets such as Fe, Mo, Ni in the 

decreasing order of predominance, and Mo-rich carbides also contain substitutional alloying 

elements such as Fe, Si, Cr, Ni in the decreasing order of predominance. Ratio of weight percent 

of substitutional alloying elements (excluding C weight percent) in Cr-rich carbides is observed to 

be Cr: Fe: Mo: Ni = (48.5-51) : (35-37.5) : 8.2 : 5.6. These observed wieght proportions of 

substitutional alloying elements are consistent with M23C6 type carbides that are formed in 2.25Cr-

1Mo steels during isothermal tempering in the tempetrature range of 600-650℃ [45]. Ratio of 

weight perecent of substitutional alloying elements (excluding C weight percent) in Mo-rich 

carbides is observed to be Mo: Fe: Si: Cr: Ni = 51 : 29.5 : 11.6 : 6 : 1.9. Two attributes [45,46] that 

identify these carbides as M6C type carbides are (i) presence of Si in these carbides and (ii) 

presence of Fe as the second richest alloying element after Mo in these carbides. These two 

attributes rule out the possiblity of these carbides being Mo-rich M2C carbides. It also needs to 

noted down that small concentrations of Ni existed in both these carbides, which might have 

occurred as a result of diffusion from Ni rich austenitic alloy side during isothermal tempering. 
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Figure 4.12: EDS maps of elements b) Chromium, b) Molybdenum, and d) Silicon across ferrite 

(BCC) (left)/austenite (FCC) (right) boundary of 2000h aged DMW sample before creep test 
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Figure 4.13: High magnification TEM images of 2000h aged crept DMW sample (Creep test 

condition: 625℃, 50MPa, 712h) showing (a) Cr-rich Type-I interfacial carbides along with their 

(c) X-ray energy spectrum close to ferrite (BCC)/austenite (FCC) boundary, (b) Mo-rich carbides 

along with their (d) X-ray energy spectrum at a distance of 5μm away from ferrite 

(BCC)/austenite (FCC) boundary.  (Interface between ferritic and austenitic alloys are denoted 

by black arrows, ferritic (BCC) side on the left and austenitic (FCC) side on the right in (a))  
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To determine the influence of total Carbon content on the type and volume fraction of equilibrium 

carbides in 2.25Cr-1Mo steels, thermodynamic simulations were performed at the aging 

temperature of 600℃. Figure.4.14 shows thermodynamic calculations performed in Thermocalc 

sofware using TCFe8 database to determine equilibrium volume fraction of carbides in 2.25Cr-

1Mo steel with carbon content (weight percent) varying from 0.02% to 0.28%. Nominal 

composition of 2.25Cr-1Mo steel used for calculations is listed in Table 4.1. Thermodynamic 

calculations (as shown in figure 4.14) show an increase or decrease in total C content results in the 

respective increase or decrease in total volume fraction of equilibrium carbides with respect to that 

of the nominal 2.25Cr-1Mo steel composition. However, enrichment of C results in Cr-rich M23C6 

carbides becoming thermodynamically more stable at the expense of Mo rich M6C carbides and in 

contrast, depletion of C results in Mo rich M6C carbides carbides becoming thermodynamically 

more stable at the expense of Cr-rich M23C6 carbides. Klueh et. al [47] and Pilling et. al [48] have 

also observed similar carbide evolution in decarburized 2.25Cr-1Mo steel favoring the growth Mo 

rich M6C carbides at the expense of Cr-rich M23C6 carbides during isothermal tempering in the 

temperature range of 566℃-700℃.  

In the present creep study on 2000h aged DMW sample creep damage occuring on 2.25Cr-1Mo 

steel side close to to BCC/FCC boundary can be rationalized as creep strain localizing in an 

apparent Carbon depleted region characterized by M6C carbides immediately adjacent to an 

apparent Carbon enriched region characterized by a line of M23C6 carbides.  
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Figure 4.14: Thermocalc® predicted equilibrium volume perecentages of (i) Parent α-Fe solid 

solution, (ii) M23C6 carbide and (iii) M6C carbide in 2.25Cr-1Mo base material (chemical 

composition reported in Table I) with Carbon content varying from 0.02 to 0.28 weight percent 

(0.15% C being nominal composition in 2.25Cr-1Mo steel) 

 

Comparison with 4000h aged condition: Creep strain measurements made using DIC technique on 

4000h aged DMW sample showed strain concentration away from the BCC/FCC boundary and 

futher OM and SEM characterization of the 4000h aged crept DMW sample showed a fine 

distribution of creep cavities in the 2.25Cr-1Mo HAZ approximately 400μm away from the 

BCC/FCC boundary. EDS maps of alloying elements (Cr, Mo and Si) (see figures. 4.15b-d), 

captured from the location of creep strain concentration showed predominantly Mo-rich rich 

carbides with traces of Si inside them indicating an apparent Carbon depleted region, similar to 

EDS observations in the location of creep strain concentration in 2000h aged condition. 
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Figure 4.15: EDS maps of elements a) Chromium, b) Molybdenum, and c) Silicon at the location 

of creep strain concentration (~400μm away from BCC/FCC boundary) in 4000h aged DMW 

sample before creep test  

 

 

 

 

 

 

 

 

 

 

 



  47 

To rationalize the shift in the location of creep strain concentration in the 4000h aged condition, 

carbide distribution and the creep strain localization in these samples has to be compared with 

discussions from 2000h sample data. Figure 4.16(a) show carbide volume fraction at the location 

creep strain concentration in 2000h aged (indicated as location-1) and 4000h (indicated as location-

2) aged DMW samples. It can be noticed from this plot that there is a relative increase in volume 

fraction of carbides close to BCC/FCC boundary (location-1) in 4000h aged condition in 

comparison to that in 2000h aged condition and a relative decrease in volume fraction of carbides 

at a distance of 400μm away from BCC/FCC boundary (location-2) in 4000h aged condition in 

comparison to that in 2000h aged condition. Representative SEM images of location-1 and 

location-2 in 2000h and 4000h aged DMW specimens and their respective images processed in 

ImajeJ® sofware to characterize carbide distribution are shown in figures 4.16(b)&(c) 

respectively. In the location of creep strain concentration (location-2) in 4000h aged DMW sample 

(as shown in figure 4.16c), there is an apparent depletion in the amount of carbides in comparison 

to the 2000h aged DMW sample. In the 2000h aged DMW, carbides are distributed both along the 

grain boundaries and inside the grains (indicated by black arrows). However, in the 4000h aged 

DMW, carbides are majorly distrubuted along the grain boundaries and the majority of grain 

interiors are depleted of carbides (indicated by black arrows). Carbide depletion away from 

BCC/FCC boundary (location-2)  in 4000h aged condition can be inferred due to the diffusion of 

C towards BCC/FCC boundary. This rationale is supported by the enrichment of carbides in 4000h 

aged condition, as Type I interfacial carbides (as shown figure 4.16)  close to BCC/FCC boundary 

(figure 4.4) and a network of carbides at a distance of 5μm away from BCC/FCC boundary 

(location-1) (as shown in figure 4.16b) compared to 2000h aged condition. 
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Figure 4.16: (a) Plot showing volume fraction of carbides as a function of distance from 

ferrite/austenite boundary in both 2000h and 4000h aged conditions,   (b) SEM micrographs and 

the respective processed images of region close to ferrite (BCC)/austenite (FCC) boundary in 

2000h and 4000h aged conditions, (c) SEM micrographs and the respective processed images of 

region at distance 400μm away from ferrite (BCC)/austenite (FCC) boundary in 2000h and 

4000h aged conditions 
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4.4.4. Implications of the current results 

The above discussions confirm that the localized microstructural heterogenities lead to spatial and 

temporal variation of creep strain rates, thereby the published global strain rates from DMW must 

be compared only if they have similar initial microstructures. To demonstrate the significance of 

these local creep strain rates, strain rate measurements made in the present studies are compared 

with (i) creep studies on a similar DMW configuration from Parker and Stratford [16], and (ii) 

creep studies on decarburized 2.25Cr-1Mo steel by Klueh [49]. Details of these mentioned creep 

studies are enlisted in Table 4.3. Figure 4.17 shows the comparison of minimum creep strain rates 

(ε.) obatined across these studies with the present study. Local creep strain rates measured in the 

work of Parker and Stratford [16] (as indiacted as I in figure 4.17) are comparable only to the local 

creep strain rates obtained in the 2.25Cr-1Mo base material in 2000h aged condition (as indicated 

as II in figure 4.16) of the present study. This clearly demonstrates that spatial resolution (less than 

1mm) obtained using DIC technique is needed to discretize locally weak microstructures in such 

DMW configurations.  

In addition, since the present study attributed the creep strain concentration in the locally weak 

regions of 2.25Cr-1Mo HAZ to the carbide depletion in these regions, further comparison was 

made with the creep studies performed on decarburized 2.25Cr-1Mo steel [49]. In the creep studies 

of Klueh [49], creep strain rates observed in the aged + decarbruzied 2.25Cr-1Mo material 

(labelled as VII in figure 4.17) was almost 3 times the creep strain rates observed in the aged 

2.25Cr-1Mo material (labelled as VI in figure 4.17) in the same creep test condition. Similar to 

these observations, in the present study, creep strain results obtained in 2.25Cr-1Mo HAZ (labelled 

as III and V in figure 4.17) were 3-4 times more than the respective aged 2.25Cr-1Mo base  
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Figure 4.17: Comparison of minimum creep strain rates (ε.) across creep studies: (I) Parker and 

Stratford [8], (II-V) Present study, and (VI-VII) Klueh [23] 

Table 4.3: Details of creep studies used for creep strain rates comparison in Figure 4.15

 

 

 

 

Legends Reference Test specimen Strain measurement location
Creep test 

condition
Remarks

I Parker and Stratford [8]

DMW with base materials: 2.25Cr-1Mo and 

AISI 316 stainless teel,                           

weld deposit: Inconel 82

Weld interface 625℃ , 50 Mpa

Local creep strain measurements made 

across a distance of 6-8mm including 

equal amounts of 2.25Cr-1Mo and Inconel 

82 weld deposit

II 2.25Cr-1Mo base material

III 2.25Cr-1Mo HAZ

IV 2.25Cr-1Mo base material

V 2.25Cr-1Mo HAZ

VI
Annealed 2.25Cr-1Mo material aged at 

566℃  for 26500h
566℃ , 55MPa --

VII
Annealed 2.25Cr-1Mo material aged and 

decarburized at 566℃  for 26500h
566℃ , 55MPa

Decarburizing was carried out by aging 

these material in Sodium exposure

Global strain measurement

Local creep strain measurements made 

using DIC technique with a spatial 

resolution ~300μm

Present study

Klueh [23]

DMW with base materials 2.25Cr-1Mo and 

Alloy 800H, weld deposit: Inconel 82 aged 

at 600℃  for 2000h

DMW with base materials 2.25Cr-1Mo and 

Alloy 800H, weld deposit: Inconel 82 aged 

at 600℃  for 4000h

625℃ , 50 MPa

625℃ , 50 MPa
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materials (labelled as II and IV in figure 4.17). These results prove local creep strain measurements 

made in the present study were efficient in revealing the heterogenity in creep behavior of DMWs. 

4.5. Summary 

Creep studies were performed on Dissimilar Metal Welds (DMWs) made between ferritic steel 

and austenitic alloy using Ni-base weld consumable to study spatial and temporal variation of 

creep deformation in these heterogeneous configurations. As-fabricated DMW blocks were aged 

at two conditions: (i) 600℃ for 2000h, and (ii) 600℃ for 4000h to induce the nucleation and 

growth of different sizes and distribution of creep detrimental Type I interfacial carbides close to 

BCC/FCC boundary. Short term (~1 month) creep tests (Creep test condition: 625℃, 50MPa) 

were integrated with Digital Image Correlation (DIC) technique to measure local creep strains 

along the entire heterogeneous gauge section. Following concluding remarks were drawn out of 

these creep studies:  

 Local creep strain measurements made using DIC technique discretized the creep behavior in 

Dissimilar Metal Weld (DMW) configurations. Such local creep strain behavior information 

is essential for developing creep resistant microstructures with the potential to overcome 

premature failures in DMWs.  Further refining to address limitations in current methods will 

make this technique an appropriate methodology to study creep behavior is dissimilar metal 

configurations. 

 2000h aged DMW specimen used for these creep tests exhibited strain concentration in 2.25Cr-

1Mo HAZ close to BCC/FCC boundary. Strain concentration occurred in this local region due 

to the apparent depletion of total Carbon content as a result of formation of line of Type I 

interfacial carbides close to BCC/FCC boundary. 
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 4000h aged DMW specimens used for these creep tests exhibited strain concentration in 

2.25Cr-1Mo HAZ at a distance of ~400μm away from BCC/FCC boundary. These specimens 

are perceived to have been overaged to replicate strain concentration close to BCC/FCC 

boundary as seen in both 2000h aged condition and ex-service welds. Strain concentration 

occurred in this local region due to the depletion of carbides in this region resulting from the 

relative enrichment of carbides close to BCC/FCC boundary. Failures in regions away from 

BCC/FCC boundary can also be envisaged, when power plants do not operate at their full 

capacties and experience frequent shutdowns. 
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Chapter 5  

 

Comparative creep studies on functionally Graded Transition Joints (GTJs) 

 

5.1. Introduction 

In the last decade, functionally graded transition joints have been identified as potential candidates 

to replace failure prone dissimilar metal welds (DMWs) in power plant applications. A 

conventional Graded Transition Joint (GTJ) is fabricated between two alloys, say A and B, by 

additively depositing layers of increasing dilution levels (0 to 100%) of alloy B on the alloy A 

substrate or the vice versa. Based on the design concepts, a typical as-fabricated GTJ is expected 

to have a gradual change in chemical composition, microstructure and mechanical properties 

transitioning from one alloy to that of the other alloy.  

Researchers at Lehigh university [50] pioneered the design concepts to develop GTJs between 

ferritic steels and austenitic alloys. In their modelling studies, Finite Element (FE) based models 

were utilized to optimize the grade length and geometry of GTJs to minimize the development of 

local interfacial stresses due to inherent thermal expansion mismatch between the ferritic and 

austenitic materials. Results from their FE models indicated almost 80% (from ~240 MPa to ~50 

MPa) reduction in local thermal stresses is possible with a grade length of 120mm. Additionally, 

thermodynamics and kinetics-based models were used to predict the loss of Carbon content in the 

graded region due to incumbent Carbon chemical potential gradients across the graded regions 

during high temperature service exposure. A grade length of 25mm was determined to be sufficient 

for negligible loss in Carbon content, at a service temperature of 500ºC. Fabrication of GTJs were 

attempted using powder-blown laser direct metal deposition process [51,52] and wire fed dual wire 

gas tungsten arc welding (DWGTAW) [53] process. Both processes have shown reasonable 

promise in fabricating transitions joints. 
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Recently, Galler et. al [54] developed GTJs with an objective to overcome premature creep failure 

in a specific DMW configuration made between 2.25Cr-1Mo steel (BCC) tubes and Alloy 800H 

(FCC) tubes used in the steam generators of power plants.  In this study, three different filler metals 

viz., (i) Inconel 82, (ii) P87, and (iii) E347H were utilized as candidate filler materials for 

fabricating GTJs. These filler metals were selected based on one of the design requirements to 

possess an intermediate coefficient of thermal expansions (CTEs) (temperature range: 400-600℃) 

between the two base materials: 2.25Cr-1Mo (14 μm m-1 K-1) and Alloy 800H (16.9 μm m-1 K-1). 

Further, a grade length of 20mm was determined for transition based on the other design 

requirement to minimize Carbon content loss in graded transition within 10 weight percent in the 

operating temperature range: 400-600℃ for 20 years lifetime. It was done using commercially 

available software tools like Thermocalc and Dictra [55–57] for performing thermodynamic and 

kinetic simulations. In this chapter, creep studies were performed on the three different candidate 

GTJs using the test methodology established in Chapter-2. Local creep constitutive strain results 

obtained from these studies were compared with that of the baseline DMWs in the Chapter-3 to 

determine the suitability of GTJs to replace the failure-prone conventional DMWs. 

5.2. Experimental procedure 

5.2.1. Fabrication of Graded Transition Joint (GTJ) coupons 

Graded Transition Joint (GTJ) coupons were manufactured with three candidate filler metals: (i) 

Inconel 82, (ii) P87, and (iii) 347H. All these filler materials are Ni-rich austenitic alloys and the 

nominal chemical composition of them are listed in Table 1. GTJs’ fabrication has been performed 

using 2.25Cr-1Mo material (Dimensions: 12” (L) x 3” (W) x ½” (T)) as the substrate base plate. 

Deposition of graded transition layers was done in the ‘weld overlay’ fashion on the thickness (½” 

T) surface of the substrate plate and along the length (12” L) of the substrate plate. Dual wire Gas 
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Tungsten Arc Welding (GTAW) process, equipped with two cold wire feeder assembly, was 

utilized for the fabrications of these GTJ coupons. Wire feed rates of the two feedstocks (Ferritic: 

2.25Cr-1Mo and Austenitic: Inconel 82 or P87 or 347H) were systematically varied to get the 

desired dilution level in each transition layer, as determined in the modeling studies of Galler et. 

al [54]. Twenty graded transition layers were deposited with welding parameters of 250A, 12V 

and a travel speed of 1mm/s. Under these current welding conditions, these twenty layers added 

up to ~20mm of graded transition length. Following the deposition of twenty graded transition 

layers, an additional 3 layers of 100% Inconel 82 was deposited on the graded region. These 

additional layers were used as buffer material to machine a single ‘V’ groove and this was further 

welded to a 3” thick Alloy 800H base material. Schematic of the final fabricated product of a GTJ 

is shown in figure 5.1. As discussed in 4.3.3, creep studies on the conventional DMW sample aged 

at 600ºC for 2000h, exhibited creep strain concentration and creep damage close to BCC/FCC 

boundary, characteristic of interfacial failure as seen in ex-service welds of these DMWs. To make 

an even comparison with the observed creep strain results of these baseline 2000h aged DMW 

samples, all these as-fabricated Graded Transition (GTJs) were given a similar aging treatment of 

600ºC for 2000h post fabrication. 

 

 

Figure 5.1: Schematic of the final as-fabricated part of Inconel 82 GTJ (adapted from Galler et. 

al [58]) 
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5.2.2. Microstructural characterization 

Detailed characterization of microstructural and microhardness gradients in the transition layers 

of GTJs were performed in the characterization studies of Galler et. al [58]. Some of the key 

research findings of that study that has relevance to the creep studies performed in this chapter 

have been discussed in the appendix section. In the current investigation, detailed characterization 

spanned 2.25Cr-1Mo HAZ to 2.25Cr-1Mo base material regions using light optical microscopy 

(OM), scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS).  

Samples for OM and SEM were prepared by grinding through 1200-grit SiC grit papers, followed 

by diamond polishing in 3μm and 1μm suspensions. The final polish was obtained through 

vibratory-polishing with 0.05μm colloidal silica suspension for 3 hours. For the purposes of 

carbide characterization and identifying microstructurally different regions inside the 2.25Cr-1Mo 

HAZ, the polished GTJ samples were immersion etched in freshly prepared 2% Nital solution for 

about a minute.  A Leica DM2500 metallograph was used for performing OM analyses. Scanning 

electron microscopy (SEM) analyses were performed using JEOL 6500 SEM, equipped with both 

secondary electron (SE) and backscattered electron (BSE) detectors, using accelerated beam 

voltages in the range of 15-20kV. The EDS analyses were performed in a Versa 3D scanning 

electron microscope (SEM) built with Oxford® X-ray EDS detectors. X-ray Energy Dispersive 

Spectroscopy (EDS) area maps were obtained at a beam accelerated voltage of 20kV with a step 

size of 0.01μm.  

5.2.3. Creep testing with Digital Image Correlation (DIC) 

ATS 2330 series ® lever arm tensile testing system, used for conducting creep tests on aged 

DMWs was utilized for conducting creep tests on GTJs as well. Creep test frame set-up with 3D 

DIC have been discussed in detail in 4.2.3. 



  57 

The total gauge length for measuring local strain using DIC covered a length of 48mm with 12-

14mm of 2.25Cr-1Mo material, 20mm of graded transition region and the remainder of Inconel-

82 and Alloy-800H materials. Speckle pattern application procedure used for GTJ samples was 

similar to that used for the creep tests of aged DMW samples, as discussed in the 4.2.3. Three 

thermocouples were attached to the back surface of the specimen, one on each region of the test 

specimen, i.e., 2.25Cr-1Mo steel, middle of the graded transition region, and Alloy 800H to 

monitor temperature gradients within +/- 1℃ during creep tests.  Speckle patterned test specimens 

were clamped and heated inside the furnace to the test temperature of 625ºC at a heating rate of 

150ºC/hr. A small tensile pre-load of 8lbs was applied during heating time period to avoid any 

buckling of the test samples due to thermal expansion. After 1 hour of soak time at 625℃, test 

stress of 50MPa was applied. At the onset of stress application, the VIC-Snap® software was 

programmed to capture images of the speckled gauge surface at every 5.25-minute interval 

throughout the entire duration of test. While the VIC-Snap® software was periodically collecting 

images of speckled sample surface during creep deformation, collected images were parallelly 

imported to VIC-3D® software to determine creep strain (eyy) distribution in the gauge surface 

along the loading direction. DIC image capturing was stopped after about a month (~700 hours) 

in all the creep tests, once the locally developed regions of strain concentration reached tertiary 

stage of creep in the respective test specimens. However, all the test specimens were unloaded 

after 1180h of creep test, to make an even comparison of the extension of creep damage in all the 

crept samples. 
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5.3. Results and discussion 

5.3.1. Pre-test microstructural characterization of aged GTJ samples 

Microstructural heterogenity: Key characterization results of the heat affected zone (HAZ) of aged 

(600ºC for 2000h) GTJs are as follows:  (i) width of the 2.25Cr-1Mo HAZ in all the aged GTJ 

samples ranged from 4.2-4.5mm, and (ii) the region adjacent to the boundary between ferritic 

(BCC) / 1st layer (L1) of graded transition consisted of tempered martensitic microstructure, typical 

to that of coarse grained (prior-austenite) HAZ (CGHAZ) microstructure, as shown in Figure 5.2. 

This CGHAZ region constituted ~1mm of the total HAZ width, (iii) right next to the CGHAZ,  

bainitic microstructure  typical to that of fine grained (prior-austenite) grain HAZ (FGHAZ) was 

observed (see Figure 5.2). This FGHAZ region spanned the remainder of the width of the HAZ. 

Since these GTJ samples were aged for relatively long periods of time, the Inter Critical HAZ 

(ICHAZ) could not be delineated. The width of the HAZ and the microstructural gradients were 

similar in all the aged GTJ samples as these have been with the same heat of 2.25Cr-1Mo 

substrated and the same welding conditions. 
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Figure 5. 2: Microstructures observed in the different regions of 2.25Cr-1Mo Heat Affected Zone 

(HAZ) of 2000h aged Inconel 82 GTJ: (a) Bainite in FGHAZ, (b) Tempered martensite in 

CHGAZ (prior austenite grain sizes marked in red dotted lines) 

 

5.3.2. Creep response of the 2000h aged GTJ samples 

Stability of Speckle Pattern during Creep Tests: In the Inconel-82 GTJ specimen, minor speckle 

paint degradation occurred on Alloy 800H surface during the process of heating the specimen to 

the test temperature of 625ºC. This limited the total gauge length within the Region of Interest 

(ROI) used for post-process creep strain (eyy) analysis. Despite this limitation, 23mm of gauge 

section including 13.8mm of 2.25Cr-1Mo material and 9mm of graded transition were included in 

the ROI for creep strain (eyy) analysis. In the P87 GTJ specimen, almost the entire gauge length 

covering 12mm of 2.25Cr-1Mo material and 35mm of graded transition + Alloy 800H materials 

were included in the ROI.  A major speckle pattern degradation occurred over the entire length of 

transition in the 347H GTJ, which prevented DIC local strain analysis on it. 
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Global and Local Creep Strain Variations: Creep strain (eyy) evolution in different local regions, 

as a function of test time (hr) for Inconel-82 GTJ and P87 GTJ specimens, are shown in figures 

5.3(a) & (b), respectively. Similar to the creep response of  2000h aged DMW samples, creep 

strain distribution in these 2000h aged GTJ samples, reveal a heterogeneous creep behavior. The 

global creep strain (eyy_global) in these DMW samples is the resultant accumulated strain across four 

discrete regions viz., 2.25Cr-1Mo base material, 2.25Cr-1Mo HAZ, BCC region of transition, and 

Dual (mixture of BCC + FCC) + FCC regions of the transition and Nickel-base alloys (Inconel-82 

+ Alloy 800H) within this heterogenous configuration. In both the aged samples, creep strain (eyy) 

emanating from the local 2.25Cr-1Mo HAZ crept faster than the 2.25Cr-1Mo base material and 

was driving the creep-rupture in these GTJ samples. The minimum creep strain rates in the regions 

constituting Inconel-82 weld, Dual (mixture of BCC + FCC) + FCC regions of the transition were 

negligible, for both the Inconel 82 and P87 GTJ samples. The minimum creep strain rates exhbited 

in these regions were of the order of 10-7 hr-1 or less and remained in the steady state condition for 

the entire test duration.  Creep strain rate observed in the BCC region of graded transition was 

much lesser to that observed to those in the 2.25Cr-1Mo base material and HAZ regions. All these 

creep strain results in the graded transition layers were indeed expected based on the design 

concepts of these transition layers in these GTJs [54].  
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Figure 5.3: Creep strain (eyy) evolution in different regions viz., 2.25Cr-1Mo HAZ (Red), 

2.25Cr-1Mo base material (Blue), BCC region in transition (Green) and Dual + FCC regions of 

the graded transition (Pink) of 2000h aged (a) Inconel 82 GTJ, (b) P87 GTJ specimens.       

Creep test condition: 625ºC, 50MPa, duration: 0-700h 

 

Comparison of creep strain rates (deyy/dt) as a function of time for 2.25Cr-1Mo base material and 

2.25Cr-1Mo HAZ for 2000h aged DMWs and GTJs is shown in figure 5.4. In both the DMWs and 

GTJs, 2.25Cr-1Mo base materials showed steady state of creep for the entire test duration and the 

minimum creep strain rates exhibited by them were in the range of (1.9)-(2.6) x 10-5h-1. Usage of 

different heats of 2.25Cr-1Mo steel substrates for the fabrication of DMWs and GTJs with different 

initial microstructures might have constituted for a little variation in the creep strain rates. Detailed 

explanation of minimum creep strain rates correlating to the initial microstructures in these base 

materials is done later in chapter 6. However, the major concerning observation in the creep 

behavior of 2000h GTJs is the evolution of a highly straining local region in 2.25Cr-1Mo HAZ 

and was driving the premature in these configurations. Minimum creep strain rates inside 2.25Cr-

1Mo HAZ, which were marginally higher the minium creep strain rates observed in the 2.25Cr-  
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Figure 5.4: Local creep strain rate (deyy/dt) as function of test time (hr) comparison of different 

local regions viz., (i) 2.25Cr-1Mo base material, and (ii) location of creep strain concentration 

inside 2.25Cr-1Mo HAZ for 2000h aged DMWs and GTJs (Inconel 82 and P87)                                                                  

Creep test condition: 625ºC, 50MPa, duration: 0-700h 

 

1Mo HAZ DMWs. The minimum creep strain rates observed in the 2.25Cr-1Mo HAZ of  GTJ-

Inconel and GTJ-P87 were 7.9 x 10-5 h-1 and 8.6 x 10-5 h-1 respectively.  

5.3.3. Identification of regions with accelerated creep strain rate within 2.25Cr-1Mo HAZ 

Creep strain (eyy) distribution along the entire gauge length (mm) is plotted as a function of test 

time (hr) in figures 5.5(a) & (b) for the 2000h aged Inconel 82 GTJ and P87 GTJ specimens, 

respectively to determine the location of creep strain concentration in these samples. In both the 

GTJ configuration, creep strain concentration occurred inside 2.25Cr-1Mo HAZ, at ~3.5mm away 

from the weld interface of 2.25Cr-1Mo material and 1st layer of graded transition. This region 

corresponded to the FGHAZ of 2.25Cr-1Mo steel. Incidentally, this observation was a total 

contrast to the location of creep strain concentration in 2000h aged DMWs, which was close to 

(~5μm) BCC/FCC boundary. SEM analyses of crept samples were performed to characterize the 

type and extent of creep damage in these locations. 
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Figure 5.5: Creep strain (eyy) evolution along the gauge length of 2000h aged (a) Inconel 82 GTJ, 

and (b) P87 GTJ specimens. Creep test condition: 625ºC, 50MPa, 0-700h 

 

Macro-examination photographs of crept samples (after 1180h) of Inconel 82, P87 and 347H GTJs 

are shown in figure 5.6. In all the crept macrographs, necking (reduction in cross section area) 

(indicated by red arrows) ocuured 3.5-3.8mm away from the weld interface (indicated by white 

arrows). Further creep cavity examination results in the region of creep strain concentration using 

SEM is shown in figure 5.7. Creep cavities were distributed along the entire thickness of crept 

specimen at 3.5-3.8mm away from the weld interface. Size of the creep cavities observed were in 

the range of 1-2.5μm and all these creep cavities were observed along the grain boundaries in the 

fine grained HAZ. Location and the extent of creep damage in all the three GTJs were similar.  

The location of creep damage along the grain boundaries resembled Type IV cracking observed in 

the creep tests of Cr-Mo steel welds [59,60]. 
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Figure 5.6: Macro photographs of (a) Inconel 82 GTJ, (ii) P87 GTJ, and (iii) 347H GTJ crept 

specimens depicting necking formation (marked by red arrows) taking place away from the weld 

interface of 2.25Cr-1Mo and the 1st graded transition layer (marked by white arrows). Creep test 

condition: 625ºC, 50MPa, after 1180h 
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Figure 5.7: SEM micrographs showing the presence of creep cavities in Fine grained HAZ 

(~3.5mm away from the weld interface of 2.25Cr-1Mo material/ 1st layer of grade transition in 

the crept 2000h aged (a) Inconel 82, (ii) P87, and (iii) 347H GTJ samples. Creep test condition: 

625ºC, 50MPa, after 1180h 
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5.3.4. Rationalization of creep strain concentration in 2000h aged GTJ samples 

Primary objective of developing GTJs is to eliminate detrimental microstructure that develops in 

2.25Cr-1Mo HAZ close to BCC/FCC boundary during high temperature service. In the bainitic 

and tempered martensitic regions of 2.25Cr-1Mo steel, a mixed distribution of Cr-rich carbides 

(M23C6, M7C3 type) and Mo-rich carbides (M2C type) evolves during isothermal tempering 

treatments below 650ºC. During prolonged exposure, Cr-rich carbides grow further at the expense 

of Mo-rich carbides leading to an equilibrium volume fraction of 3.3 percent of Cr-rich M23C6 and 

0.1% M6C carbides (temperature=625ºC). However, in the creep studies on baseline 2000h aged 

DMWs in 4.4.3, region of creep strain concentration was characterized by a network of Mo-rich 

M6C type carbides close to BCC/FCC boundary, with no trace of Cr-rich carbides indicating the 

occurrence of decarburization in that region. Hence it is imperative to investigate possibility of 

decarburization in the region of creep strain concentration in GTJs, similar to the case of DMWs. 

High resolution EDS maps of alloying elements: Cr and Mo, acquired at the same magnifications 

from the regions of creep strain concentration in both 2000h aged GTJs and DMWs, are shown in 

figures 5.8(a) & (b) respectively.  As a general comparison, region of creep strain concentration in 

GTJs is relatively enriched in carbides to that in DMW (see figures 5.8(a) & (b)). In addition, a 

mixed distribution of Cr-rich and Mo-rich carbides was observed in GTJs, suggesting no 

decarburizing has taken place in that specific region of creep strain concentration. Comparing the 

carbides (both Cr-rich and Mo-rich carbides) in the regions of strain concentration in GTJs (see 

figure 5.8(a)) with that of the parent 2.25Cr-1Mo material (see figure 5.8(c)) of GTJs indicates 

carbides have become spheroidized, suggesting the FGHAZ (region of creep strain concentration) 

in GTJs must have been overtempered compared to that of the 2.25Cr-1Mo base material, as a 

result of thermal cycles involved during weld processing.  
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Figure 5.8: Comparison of EDS maps of alloying elements: Chromium and Molybdenum in 

2000h aged GTJs (a) Location of creep strain concentration (FGHAZ, 3.5mm away from the 

weld interface, (c) parent 2.25Cr-1Mo material, and 2000h aged DMWs (b) Location of creep 

strain concentration (~5μm away from BCC/FCC boundary) (before creep test) 
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5.4. Summary 

Functionally Graded Transition Joints (GTJs) were fabricated with three different filler metals viz., 

Inconel 82, P87 and 347H (chemical analyses of GTJs shared in the appendix section) with a 

graded transition length of 20mm with an objective to overcome premature creep failure in 

conventional DMWs. Creep tests were carried out on the aged (600ºC for 2000h) samples of these 

GTJs in a test condition of 625ºC, 50MPa, to make an even comparison with the creep strain results 

of conventional DMWs tested in the same conditions. Key research findings from these studies 

are summarized as follows: 

 Similar to the creep results of DMWs, all the three GTJs exhibited a heterogenous creep 

behavior. Four distinct regions of creep strain evolution such as 2.25Cr-1Mo base material, 

2.25Cr-1Mo HAZ, BCC region of graded transition and Dual (mixture of BCC + FCC) + 

FCC region of graded transition were observed.  

 Creep strain was accumulating in the 2.25Cr-1Mo FGHAZ, at 3.5mm away from the weld 

interface and driving these premature of these GTJ configurations. Creep cavities in the 

size of 1-2.5μm were observed along the grain boundaries of FGHAZ and the damage was 

consistent along the entire specimen thickness. 

 Acquired EDS maps of Cr and Mo alloying from the region of creep strain concentration 

in GTJs (before creep test) didn’t show carbide distributions similar to that in the 

decarburized regions of DMWs. However, carbides in FGHAZ appear to have coarsened 

in comparison to the carbides in the parent 2.25Cr-1Mo material region, suggesting a Type 

IV weld failure mechanism in Cr-Mo steel welds. 
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Chapter 6  

Phenomenological creep model of Dissimilar Metal Welds (DMWs) involving ferritic      

Cr-Mo steels 

 

6.1. Introduction 

In the previous two chapters (Chapters 4-5), creep tests were performed on the aged (600ºC for 

2000h) samples of both Dissimilar Metal Welds (DMWs) and Graded Transition Joints (GTJs) to 

extract local creep constitutive properties of such heterogeneous weld configurations. Key research 

findings from these creep studies can be summarized (see Figure 6.1) as follows: 

I. Both the welded configurations exhibited creep strain accumulation inside 2.25Cr-1Mo 

heat affected zone (HAZ) and crept at strain rates higher than those of the respective 

2.25Cr-1Mo base materials, 

II. All the other local regions of transition and Ni-base parent materials showed negligible 

creep strain rates in comparison to these microstructurally distinct regions in 2.25Cr-1Mo 

material.  

Hence in this chapter, attempts have been made to develop a creep model framework to predict the 

heterogeneous creep strain rates observed in the different regions of 2.25Cr-1Mo steel. 
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Figure 6.1: Summary of creep strain rate (deyy/dt) evolution as a function of time in the 2.25Cr-

1Mo base material and 2.25Cr-1Mo HAZ in (a) DMWs (2000h and 4000h aged) and (b) GTJs 

(2000h aged) (Creep test condition: 625ºC, 50MPa) 

 

Several investigators [61–64] in the past have developed models to predict the creep strain rates 

(ε.) in structural components in elevated temperature service using the Rabatnov-Kachanov [65] 

creep damage based equations. These models were constructed based on the ‘creep damage’ 

parameter input, which was periodically studied in structural components during service. For 

instance, Storesund et. al.[61] predicted the creep strain rates in the Cr-Mo-V steel welds used in 

steam pipelines using creep damage based models. Damage parameter input used in their model 

was calibrated based on the creep cavity size and density evolution taken from the replicas of welds 

during a service life of almost 20 years. Even though, this model was an effective tool to predict 

the remnant lifetimes of welds in service, it is not suitable be able to predict the creep strain rates 

in components based on the inherent microstructural variations in them. Prediction of minimum 

creep strain rates based on the initial microstructures in materials is imperative for developing 

creep resistant microstructures. In this context, a few other researchers [66–68] have developed 

creep phenomenon based prediction models to describe the creep behavior in precipitate 
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strengthened alloy systems like modified 9Cr steels and Fe-30Cr-Al alloys. For instance, Shassere 

et. al. [67] extended the well-established Bird-Mukherjee-Dorn (BMD) creep equation [69] by 

incorporating the threshold stress concept to theoretically predict the minimum creep strain rates 

in the modified 9Cr steel, strengthened by a fine distribution of MX precipitates inside the BCC 

grains. A similar BMD creep equations-based modeling frame work was developed in this chapter 

to predict the minimum creep strain rates, depending on the initial carbide sizes and distributions 

in the different regions of strain evolution in 2.25Cr-1Mo steel.  

6.2. Experimental procedure 

Microstructural characterization was performed using scanning electron microscopy (SEM) 

technique to determine the initial (before creep) microstructures in the aged (600℃ for 2000h) 

DMW (600℃ for 2000h and 4000h) and GTJ (600℃ for 2000h) samples. Characterization was 

restricted to the two discrete regions of creep strain evolution during the creep test viz., 2.25Cr-

1Mo base material and the specific locations of creep strain concentration (5μm away from 

BCC/FCC boundary in the 2000h aged DMW, 400μm away from BCC/FCC boundary in the 

4000h aged DMW and 3.5mm away from the weld interface of 2.25Cr-1Mo material and the first 

layer of graded transition in all the 2000h aged GTJs) inside 2.25Cr-1Mo heat affected zone 

(HAZ), in both these sample configurations. Scanning electron miscrsocopy (SEM) analyses were 

performed using JEOL 6500 SEM equipped with both secondary electron (SE) and backscattered 

electron (BSE) detectors, with an accelerated beam voltage of 20kV was used. Samples for SEM 

were prepared by grinding through 1200-grit SiC grit papers, followed by diamond polishing in 

3μm and 1μm suspensions. For the purpose of carbide characterization in these 2.25Cr-1Mo 

regions, the polished DMW and GTJ samples were immersion etched in a freshly prepared 2% 

Nital solution for a minute. All the samples were etched for the exact same amount of time to 
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maintain consistent etching depths in all these samples. To obtain a good statistics of carbide sizes 

and distribution in different 2.25Cr-1Mo regions, SEM images were obtained at 5 locations starting 

from the top to bottom along the thickness of these samples. The greyscale images were imported 

to ImageJ® software to determine the following details: (i) average carbide particle radius (<r>), 

and (ii) average interparticle distance (<λ>) between particles in all the regions of interest. These 

particle analyses were performed after binary thresholding to delineate carbide particles from 

2.25Cr-1Mo ferritic matrix background. Carbide particle size calculation was perfomed using 

circularity values ranging from 0 (linear) to 1 (perfectly circular)  to accommodate varying shapes 

of carbide particles. Determined particle size values (in square units) were used to calculate 

equivalent carbide particle radius (r), so as to make an even comparison with the carbide particles 

of varying shapes. Average interparticle distance (λ) between particles, in a specific region of 

carbide particle distribution, was determined by calculating the average value of the entire set of 

nearest neighbor distances from the centroids of each and every particle in that region. This analyis 

is based on the in-built algorithm in ImageJ® software developed by Y. Mao [70]. Microhardness 

measurements were made on specific locations of mixed microstructure in 2.25Cr-1Mo parent 

material of 2000h aged DMW to identify the difference in phases using LECO TM103D 

microhardness tester. Microhardness indentation was carried out using a load of 50g diamond 

indenter for a dwell time of 20μs. 

6.3. Results and discussion 

6.3.1. Initial microstructure (before creep) distribution in aged DMWs 

DMW base materials: The parent 2.25Cr-1Mo material used for DMW fabrication consisted of a 

mixed microstructure of coarse-grained bainitic (αb) and relatively fine-grained ferritic (α) regions 

in both the 2000h aged and 4000h aged conditions as shown in Figures 6.2 & 6.3 respectively. 
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Grain sizes of ferritic and bainitic regions were approximately 10μm and 25μm respectively, 

measured using linear intercept method for grain size calculation. Strength gradients in these two 

regions were measured by performing microhardness measurements in the respective regions. 

Average microhardness values of ferritic grains were 155 ± 2 HV and that of the bainitic grains 

were 190 ± 10 HV. A similar mixed microstructure constituting of ferritic and bainitic regions are 

commonly observed in a normalized and tempered 2.25Cr-1Mo materials [31,71–73]. 

 

 

Figure 6.2: SEM micrograph of mixed microstructure of ferritic (indicated as α) (ferrite 

boundaries shown by dotted lines) and bainitic (indicated as αb) regions observed in 2.25Cr-1Mo 

parent material of DMW aged at 600ºC for 2000h. Also shown on the left is the carbide 

distribution inside ferritic (α) grain and on the right is the carbide distribution inside bainitic (αb) 

grain  
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Figure 6.3: SEM micrograph of mixed microstructure of ferritic (indicated as α) (ferrite 

boundaries shown by dotted lines) and bainitic (indicated as αb) regions observed in 2.25Cr-1Mo 

parent material of DMW aged at 600ºC for 4000h. Also shown on the left is the carbide 

distribution inside ferritic (α) grain and on the right is the carbide distribution inside bainitic (αb) 

grain  

 

Table 6.1: Results of carbide particle radius (r), and interparticle distance between carbides 

particles (λ) analyses in the 2.25Cr-1Mo base materials of 2000h aged and 4000h aged DMWs

 

 

Microstructural 

region

Average particle 

radius,                  

<r> (nm)

Average Interparticle 

distance,               

<λ> (nm)

Average Orowan-

Asbhy bowing stress, 

<σO-A> (MPa)

Ferrite 58 ± 44 320 ± 46 89

Bainite 59 ± 44 203 ± 8 140.4

Ferrite 58 ± 45 334 ± 55 85.3

Bainite 57 ± 40 246 ± 12 115.7

2000h aged

4000h aged
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Representative SEM images showing carbide distributions in ferritic (left side) and bainitic (right 

side) grains of 2000h aged and 4000h aged conditions are shown in figures 6.2&6.3 respectively. 

A general observation on the carbide morphology suggested needle shaped carbides 

(predominantly) in the ferritic regions and rod-shaped carbides (predominantly) in the bainitic 

regions of the 2000h aged condition. However, in the 4000h aged condition, carbides became more 

spheroidized in both the ferritic and bainitic regions. Detailed carbide morphology characterization 

studies by Depinoy et. al. [45] also reported a similar morphology change of carbides to globular 

shape, with an increase in the tempering time during an isothermal heat treatment in the 

temperature range 650-725ºC. Results of carbide size and distribution analyses along with the 

calculated Orowan-Ashby bowing stresses in the microstructural regions of ferrite and bainite, in 

both 2000h aged and 4000h aged conditions, are listed in Table 6.1. Average carbide particle radius 

<r> measured in both ferritic and bainitic grains were in the close range of 57-59nm and there was 

no noticeable difference observed between the carbide particle sizes between the two aging 

conditions. During isothermal tempering treatments, precipitates sizes and the interparticle spacing 

between precipitates are expected to increase with increase in aging time due to Oswald ripening 

phenomenon [74]. In the current investigation, carbide size characterization included the entire 

family of metastable (Mo-rich M2C, Cr-rich M7C3) and equilibrium (Cr-rich M23C6 and Mo-rich 

M6C) carbides observed in 2.25Cr-1Mo steel. Continued growth of equilibrium carbides 

accompanied by the dissolution of metastable carbides could have resulted in normalizing average 

carbide particle sizes between the two aging conditions. However, measured average interparticle 

distance (<λ>) values indicate a significant increase with increase in the aging times for both the 

ferritic and bainitic regions supporting Ostwald ripening phenomenon. In addition, it also needs to 

be noted that bainitic grains show denser distribution of carbides in comparison to that of ferritic 
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grains in both the aging conditions, supported by the average interparticle distances (<λ>) in those 

regions. Orowan-Ashby stress (σO−A) is the threshold stress required for dislocations, moving 

under the influence externally applied stress, to bow through a fine distribution of precipitates of 

average radius(<r>) and average interparticle spacing (<λ>).  Orowan-Ashby stress (σO−A) [75] 

was calculating using the following relation,  

σO−A = M.
Gb

2πλ
. ln (

2r

b
) − − − − − (1) 

Where, M- average Taylor factor (2.5), G- Shear modulus of BCC Fe matrix (47GPa), b is the 

burger vector length of edge dislocation in the parent BCC Fe lattice (2.48 x 10-10 m). Orowan-

Ashby bowing stresses (σO−A) calculated for both ferritic and bainitic regions in the 4000h aged 

condition decreased in comparison to those in 2000h aged condition owing to the increase in 

average interparticle distance between the particles. 

Locations of strain concentration in DMWs: Initial aged microstructures in the locations of creep 

strain concentration of 2000h aged and 4000h aged conditions are shown in figures 6.4 & 6.5 

respectively. In the 2000h aged condition, location of creep strain concentration consisted of 

coarse-grained (prior-austenite) tempered martensitic microstructure with a grain size of 

approximately 30μm. Average width of lath boundaries/ block boundaries in these prior-austenitic 

grains was 5μm. Morphology of the carbide particles in the grain (prior-austenite) interiors were 

mostly spherical shaped, however a few agglomerated particles were also observed (as indicated 

by arrows in figure 6.4). In the 4000h aged condition, location of creep strain concentration 

consisted of fine-grained (prior-austenite) bainitic microstructure with an average grain size of  

approximately 5μm. Morphology of the carbide particles in the grain interiors were a mix of rod 

shaped and spherical particles, however a few agglomerated particles were also observed, similar 
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to the location of creep strain concentration in 2000h aged condition (as indicated by arrows in 

figure 6.5). 

Results of carbide size and distribution analyses along with the calculated Orowan-Ashby bowing 

stresses in the locations of creep strain concentration, in both the 2000h aged and 4000h aged 

conditions, are listed in Table 6.2. Average carbide particle radius (<r>) observed in the 2000h 

aged and 4000h aged conditions were 105nm and 84nm respectively. These observed carbide 

particle sizes are significantly larger than those observed in both the ferritic and bainitic regions 

of the respective 2.25Cr-1Mo base materials. Similarly, measured average interparticle distance 

between carbide particles in these locations of creep strain concentration were 1024mm and 557nm 

respectively, approximately 2-3 times more than those observed in the respective base materials. 

Calculated Orowan-Asbhy bowing stress (σO−A) in the location of creep strain concentration in 

the 2000h and 4000h aged conditions are 30.5MPa and 54.2MPa respectively. In comparison to 

the applied stress of 50MPa, Orowan-Asbhy bowing stress (σO−A) was marginally higher in the 

4000h aged condition, while it was much lower in the 2000h aged condition. 
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Figure 6.4: Representative SEM micrograph revealing carbide distribution in the tempered 

martensite microstructure (prior-austenite grain boundary indicated by dotted lines) in the 

location of creep strain concentration (~5μm away from BCC/FCC boundary in 2.25Cr-1Mo 

HAZ) in DMW aged at 600ºC for 2000h.  
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Figure 6.5: Representative SEM micrograph showing carbide distribution in the bainitic 

microstructure (prior-austenite grain boundary indicated by dotted lines) in the location of creep 

strain concentration (~400μm away from BCC/FCC boundary in 2.25Cr-1Mo HAZ) in DMW 

aged at 600ºC for 4000h.  
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Table 6.2: Results of carbide particle radius (r), and interparticle distance between carbide 

particles (λ) analyses in the locations of creep strain concentration in 2000h aged (~5μm away 

from BCC/FCC boundary) and 4000h aged (~400μm away from BCC/FCC boundary) DMW 

samples  

 

 

 

6.3.2. Initial microstructure (before creep) distribution in aged GTJs 

GTJ base materials: Same heat of 2.25Cr-1Mo steel was utilized for the fabrication all the GTJs 

made with three different filler metals viz., Inconel-82, P87 and 347H. Microstructure observed in 

these 2000h aged 2.25Cr-1Mo base materials was predominantly bainite with an average grain 

size of 25μm as shown in figure 6.5a. Representative SEM images of carbide distribution in these 

bainitic grain interiors are shown in figure 6.5b. Majority of these carbides were rod-shaped, 

similar to those observed in the bainitic regions of 2000h aged 2.25Cr-1Mo base material of DMW.  

Table 6.3 shows details like the average carbide particle radius (<r>), average interparticle distance 

between these carbide particles (<λ>) along with their calculated Orowan-Ashby bowing stress for 

the respective carbide distributions. All these details were similar with no noticeable deviations in 

the values across all the GTJs. 

Average particle 

radius,                  

<r> (nm)

Average Interparticle 

distance,               

<λ> (nm)

Average Orowan-

Asbhy bowing stress, 

<σO-A> (MPa)

2000h aged 105 ± 77 1024 ± 264 30.5

4000h aged 84 ± 47 557 ± 98 54.2
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Figure 6.6: SEM micrograph showing uniform bainite microstructure (prior-austenite grain             

boundary indicated by dotted lines) in the 2.25Cr-1Mo parent material of GTJ- Inconel 82 aged 

at 600ºC for 2000h.  

 

Table 6.3: Results of carbide particle radius (r), and interparticle distance between carbide 

particles (λ) analyses in the 2.25Cr-1Mo base materials of 2000h aged GTJs (i) Inconel 82, (ii) 

P87, and (iii) 347H 

 

Average particle 

radius,                  

<r> (nm)

Average Interparticle 

distance,               

<λ> (nm)

Average Orowan-

Asbhy bowing stress, 

<σO-A> (MPa)

GTJ- In 82 66 ± 46 286 ± 34 101.6

GTJ- P87 68 ± 47 287 ± 23 102

GTJ- 347H 64 ± 50 266 ± 35 109
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Locations of strain concentration in GTJs: Initial aged microstructures in location of creep strain 

concentration (3mm away from weld interface in the fine grained heat affected zone (FGHAZ)) in 

GTJs are shown in figure 6.7. Microstrcuture observed in these regions was fine grained bainite 

with an average grain (prior-austenite) size of 5μm. Morphology of carbide partciles were a mix 

of spherical and rod-shaped. Results of average carbide particle radius (<r>) and the average 

interparticle distance between these carbide particles (<λ>) along with their calculated Orowan-

Ashby bowing stress for the respective carbide distributions are listed in Table 6.4. A close 

similarity in these values were osberved across all the GTJs, except for a slight increase in the 

average interparticle distance (<λ>) in GTJ-347H. Since all these GTJs were fabricated with the 

same heat of 2.25Cr-1Mo substrate and the same welding conditions, similarity in these details in 

the FGHAZ of these samples was indeed expected. 

 

 

Figure 6.7: SEM micrograph showing carbide distribution in the bainitic microstructure (prior-

austenite grain boundary indicated by dotted lines) in the location of creep strain concentration 

(3.5mm away from the weld interface between 2.25Cr-1Mo material and the 1st graded transition 

layer) of GTJ- Inconel 82 aged at 600ºC for 2000h.  
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Table 6.4: Results of carbide particle radius (r), and interparticle distance between carbide 

particles (λ) analyses in the bainitic regions at 3.5mm away from the weld interface (location of 

creep strain concentration) 

 

 

6.3.3. Phenomenological creep model framework based on modified BMD equation 

Shrestha et. al [66] and Shassere et. al [67] have articulated the phenomenological creep behavior 

of precipitate strengthened modified-9Cr steels utilizing a dislocation-climb controlled Bird-

Mukherjee-Dorn (BMD) constitutive creep equation as follows: 

εm
. .K.T

D.E
= ADis. (

σ−σTh

E
)

n

---------- (2) 

where ADis is the dimensionless constant correspoding to discloation climb based creep 

mechanism, K is Boltzmann’s constant (m2.Kg. s-2.K-1), T is the absolute test temperature (Kelvin), 

n is the stress exponent usually in the range of 4-5 for dislocation climb controlled creep, b is the 

burger vector length of edge dislocation in the parent BCC Fe lattice, E is the elastic modulus of 

parent BCC Fe matrix at the test temperature, σTh is the threshold stress required for mobile edge 

dislocations to overcome a fine dispersion of precipitates, D is the diffsuion coefficient of BCC 

pure Fe matrix calculated using the following relation,  

D = D0 exp (−
Q

R.T
)---------(3) 

Average particle 

radius,                  

<r> (nm)

Average Interparticle 

distance,               

<λ> (nm)

Average Orowan-

Asbhy bowing stress, 

<σO-A> (MPa)

GTJ- In 82 67 ± 58 410 ± 55 71.22

GTJ- P87 52 ± 41 409 ± 61 68.4

GTJ- 347H 66 ± 44 546 ± 70 53.3
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Where D0 is the self diffusion coefficient (m2/s) , Q is the activation energy required for a 

dislocation climb controlled creep deformation and R is the gas constant (J mol-1 K-1). In precipitate 

strengthened alloys, equation (2) applies for a specific range of  intermediate test stresses (10-4 – 

10-3 σ/E) and temperatures (0.3-0.6Tm), where the creep deformation is controlled by climb of 

moving edge dislocations over inherent hard particles (precipitates or dispersoids) distributed in 

the matrix. To use equation (2) in the current modeling, existence of dislocation climb controlled 

creep mechanism needs to be validated for the underling creep test condition: 50MPa (3 x 10-4 

σ/E) of applied stress and test temperature of 898K (0.42Tm). Deformation map developed by 

Mauyama et. al [76] for a 2.25Cr-1Mo steel material have confirmed that the dislocation climb 

(over inherent obstacle) controlled creep is active in the applied stress and temperature 

combination. Threshold stress (σTh) required by mobile dislocations to climb a particular 

distribution of carbide particles in 2.25Cr-1Mo alloy system consisting of semi-

coherent/incoherent [45] type carbide precipitates was given by Artz and Ashby [77] by the 

follwing relation, 

σTh = 0.3 x σO−R−−−−−−−−−− (4) (MPa) 

Figure 5.8 shows map of minmium creep strain rate (εm
. ) contours pertaining to the varaitions in 

carbide particle radius (r) and interparticle distance (λ) between carbide particles for the underlying 

creep test condition of Stress= 50MPa and temperature= 898K. Calculated minimum creep strain 

rates (εm
. ) using equation (2) vary from 10-6 h-1 to 1.4 x 10-4 h-1. These boundaries of creep strain 

rates represent the window for the dislocation climb (over carbide particles) controlled creep 

mechanism to be operable in 2.25Cr-1Mo material for the underlying creep test condition. For a 

combination of (r) and (λ) that corresponds to a creep strain rate of 1.4 x 10-4 h-1, applied stress 

(σA) becomes more than the Orowan-Ashby bowing (σO-A) stress required for the dislocations to 
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bow through a particular carbide particle distribution. Above 1.4 x 10-4 h-1, mobile edge 

dislocations can easily bow through the residual carbide particle distributions and the alloy tends 

to be no longer being strengthened by a fine dispersion of carbide particles. For a combination of 

(r) and (λ) that corresponds to a minimum creep strain rate below 10-6 h-1, calculated threshold 

stress (σTh) required to overcome the carbide particle distribution becomes more than that of the 

applied stress (σA), which makes it difficult for the mobile edge dislocations to climb through the 

carbide particle distribution.  

Creep parametes used in BMD equation: 

D = 0.0002. ex p (−
240000

8.314x898
) m2. s−1  [74] 

ADis = 6e7 [78] (no units) 

E = 2.55 x G = 119.8 GPa 

b = 2.48 x 10−10m 

k = 1.38 x 10−23m2. Kg. S−2. K−1 

σ = 50MPa 

T = 898K 

n = 3.7 ± 0.1 
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Figure 6.8: BMD dislocation climb based creep model framework to predict minimum creep 

strain rates (εm
. ) based on the carbide distribution characteristics (i) Particle radius (r), and (ii) 

Interparticle distance (λ) in precipitate strengthened 2.25Cr-1Mo material 

 

6.3.4. Prediction of minimum creep strain rates using phenomenological BMD creep 

model framework 

Theoretically calculated minimum creep strain rates (εth
. ) based on the localized distribution of 

carbides (using equation (2)) along with the experimetally observed creep strain rates (εexp
. ) using 

DIC technique (see Figure 5.1) are put together in phenomenological creep model framework in 

figures 5.9(a)&(b) for the 2000h aged and 4000h aged samples respectively. In the case of 2.25Cr-

1Mo base material with mixed microstructures, threshold stresses (σth) as calculated in both the 

ferritic (α) and bainitic regions (αb) individually were used to calculate theoretical minimum creep 

strain rate (εth
. )  using simple rule of mixtures relation as follows:  

εbulk
. = (εα

. ). Volume fractionα + (εαb

. ). Volume fractionαb
---------(5) 
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Despite several crystal plasticity models have been proposed to predict mechanical properties of 

regions of with mixed and complex micrsotructures [79,80], experimental methods to validate 

these models have not been established owing to the difficulties in measuring properties of these 

micron level micrsotructural regions. Hence a simple rule of mixtures based calculation was 

applied to predict the bulk material minimum creep strain rates in the 2.25Cr-1Mo regions. It can 

be inferred from figures 6.9 (a)&(b), theoretically calculated minimum creep strain rates (εth
. )  in 

the 2.25Cr-1Mo base materials are agreeable to that of the experimentally observed creep strain 

rates. Theoretically predicted calculated creep strain rates (εth
. )  are much closer to that of the 

ferritic region, since ferritic regions of 2.25Cr-1Mo base materials crept a little over a mignitude 

higher than the bainitic regions. 

 

 

Figure 6.9: Results from theoretical calculation of minimum creep strain rates (ε.) observed in 

(a) 2.25Cr-1Mo base material, and (ii) Location of creep strain concentration inside 2.25Cr-1Mo 

HAZ using the observed Interparticle distance (λ) and Particle radius (r) parameters for carbide 

distributions in these respective locations. Experimentally observed minimum creep strain rates 

(ε.) contours are also superimposed on the theoretically observed minimum creep strain rate map 
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Calculated Orowan-Ashby bowing stress (σO-A) for the carbide distribution in the region of creep 

strain concentration (5μm away from BCC/FCC boundary) in the 2000h aged condition (see Table 

6.2) is much lesser than the applied tensile stress of 50MPa, which would possibly lead to the 

mobile edge dislocations to bow through this particular carbide particle distribution without the 

need to climb over carbide particles. Minimum creep strain rates (εexp
. ) in these microstructural 

regions would be more than 1.4 x 10-4 h-1 as predicted by the BMD creep equations based model 

framework as defined in figure 6.8. However, the experimetally observed minimum creep strain 

rate (εth
. ) was 6 x 10-5 h-1 for this specific region. Discrepancy in the theoretically predicted and 

experimetally observed minimum creep strain rates could be due to any of the following two 

reasons: 

(i) DIC methods to measure local creep strain in this research study has a spatial resolution 

of ~300μm. Since creep strain accumulation in 2000h aged DMW occurred close to 

BCC/FCC boundary (see figure 4.8(a)), it is highly possible that the specific length 

over which creep strain was measured in that location could have included a portion of 

creep resistant austenitic material in transition adjacent to BCC/FCC boundary, which 

could have resulted in normalized local creep strain values.  

(ii) Possibility of an additional creep strengthening mechansim, in addition to the primary 

precipitate based strengthening mechanism in Cr-Mo steels was explored to explain 

this discrepancy. Klueh [11] proposed presence of Mo-C clusters in the BCC-Fe solid 

solution could exert a drag force on the moving dislocations, which results in solid 

solution strengthening. However, SEM and TEM EDS maps (see figures 4.11 & 4.12) 

of this local region showed Molybdenum is locked as Mo-rich M6C carbides, which 

rules out of this possibility. In the creep studies of modified 9Cr [81–83] steels, 
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researchers have proposed a possible subgrain boundary strengthening mechansim in 

the tempered martensitic microstructure. It was theorized that the lath/block boundaries 

with an average width of 0.2-0.5μm in a typical tempered martensite microstructure of 

these steels could result in an athermal yield stress given by the following relation, 

σyield = 10
Gb

λ
 --------(6) 

Where, λ is the average width of subgrain boundaries. However, role of subgrain boundaries in 

enhancing creep strength in tempered martensitic microstructure is still open to debate in the 

literature [84], since it is unclear whether the strengthening contribution is a result of fine subgrain 

boudaries (lath/block boundaries) or MX/M23C6 carbides distributed along the subgrain boundaries 

(lath/block boundaries). 

Experimentally observed and theoretically calculated minimum creep strain rates are of a good 

agreement in the location of creep strain concentration (~400μm away from BCC/FCC boundary) 

in the 4000h aged DMW as shown in figure 6.9(b).  Theoreticallly calculated minimum creep 

strain rate (εth
. ), calculated based on the initial carbide ditsribution in that local region, is close to 

the upper bound of creep strain rates, where the rate controlling creep mechansim is dislocation 

climb over a distribution of precipitates. This initial microstructure is not expected to last for a 

longer time during creep tests at a temperature of 625ºC, as the precipiates coarsen further during 

thermal exposure in creep tests and subsequently lose the precipitate strengthening capability. This 

inference was supported by the experimentally observed minimum creep strain rate (εexp
. )  in that 

local region, which exhibited steady state creep for a short time period of 160h (40h to 200h) 

during creep test (see figure 6.1), before getting into the tertiary stage of creep where creep strain 

rate accelerate with time.  
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Figure 6.10: Results from theoretical calculation of minimum creep strain rates (ε.) observed in 

(is) 2.25Cr-1Mo base material, and (ii) Location of creep strain concentration inside 2.25Cr-1Mo 

HAZ using the observed interparticle distance (λ) and Particle radius (r) parameters for carbide 

distributions in these respective locations. Experimentally observed minimum creep strain rates 

(ε.) contours are also superimposed on the theoretically observed minimum creep strain rate map 
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Theorectically calculated minimum creep strain rates (εth
. ) overlaid with the experimentally 

observed minimum creep strain rates (εexp
. ) in (i) 2.25Cr-1Mo base material, and (ii) location of 

creep strain concentration (~3.5mm away from weld interface) in Inconel 82 , P87 and 347H GTJs 

are illustrated in figures 5.10 (a), (b) & (c) respectively. As mentioned in 6.3.1.2, 2.25Cr-1Mo base 

materials used for all these GTJs had a fully bainitic microstructure. Minimum creep strain rates 

(εth
. ) were calculataed based on the carbide distribution in the bainitic grains of 2.25Cr-1Mo base 

material. It can be seen from the figures 5.10 (a), (b) & (c), theoretically and experimentally 

calculated minimum creep strain rates were of a good agreement in both in the base material 

regions and the regions of creep strain concentration in all these GTJs. While the theoretcially 

calculated creep strain rates in 2.25Cr-1Mo base material was close to the lower bound creep strain 

rate, crep strain rates of that of the regions of strain concentration are close to upper bound of creep 

strain rates defined by BMD model for dislocation climb over distribution of precipitates creep 

mechanism.  

6.4. Summary 

BMD creep equations based creep model framework was developed to predict the heterogeneous 

creep behavior of DMWs and GTJs based on the initial (before creep) microstructure distribution 

in them. Carbide characterization analyses were performed to determine (i) average carbide 

particle radius (<r>), and (ii) interparticle distance between carbides (<λ>) in the regions of (i) 

2.2Cr-1Mo base material, and (ii) location of creep strain concentration in DMWs and GTJs. These 

details were incorporated as microstructural inputs into the phenomenological creep model 

framework to see if theoretically predicted minimum creep strain rates are agreeable to the 

experimentally observed minimum creep strain rates obtained using DIC methods. Key 

conclusions of this research study are as follows: 
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 Parent 2.25Cr-1Mo steel used for DMWs’ fabrication consisted of a mixed microstructure 

of ferrite and bainite in both the aged conditions (600ºC for 2000h and 4000h). Minimum 

creep strain rates were calculated individually based on the initial carbide distributions in 

both the ferritic and bainitic regions before creep test. Bulk material creep strain rate was 

determined based on a simple rule of mixtures based calculation from the individual 

microstructure’s creep strain rate. Calculated bulk material creep strain rate was a good 

agreement to the experimentally observed minimum creep strain rates from those regions.  

 In the location of creep strain concentration in the 2000h aged DMW, experimentally and 

theoreticallly observed creep strain rates weren’t agreeable. Lack of spatial resolution in 

DIC methods could have resulted in normalized creep strain values in the local region close 

to BCC/FCC boundary. In t In the location of creep strain concentration in the 4000h aged 

DMW, experimentally and theoreticallly observed creep strain rates weren ver much 

agreable and was close to the upper bound creep strain rates as defined by BMD model for 

dislocation climb over a distribution of precipitates creep mechanism. 

 In all the GTJs, parent 2.25Cr-1Mo material consistuted of a fully bainitic microstructure. 

Theorectically calculated minimum creep strain rates based on the initial carbide 

distributions complied to the experimentally observed creep strain rates from these local 

regions. Location of creep strain concentration was comprised of fine grained bainitic 

structure, typical of FGHAZ in 2.25Cr-1Mo steel welds. Experimentally observed 

minimum creep strain rates in this location were almost 4 times higher than that of the 

2.25Cr-1Mo base material creep strain rates. Carbide particle density in these local regions 

decreased in comparsion to that in the parent 2.25Cr-1Mo regions, which further resulted 

in an increase in the average interparticle distance (λ) between particles in the grain 
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interiors. This eventually lead to an increase in the minimum creep strain rates in the region 

of creep strain concentration. This observation was also captured in the developed BMD 

creep model.  
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Chaper 7 

 

Conclusions and future directions 

 

7.1. Creep studies on the aged Dissimilar Metal Welds (DMWs) and Graded Transition 

Joints (GTJs) 

Creep studies were performed on Dissimilar Metal Welds (DMWs) (Chapter-4) and Graded 

Transition Joints (GTJs) (Chapter-5) made between ferritic steel and austenitic alloy using Ni-base 

weld consumable to study spatial and temporal variation of creep deformation in these 

heterogeneous weld configurations. Both the as-fabricated weld configurations were aged for 

longer times to simulate creep detrimental microstructure development in these configurations (if 

any. Creep tests were performed both on aged DMWs and GTJs in a creep test condition of 625ºC, 

50MPa. Key conclusions of these creep studies are as follows, 

 Local creep strain measurements made using DIC technique discretized the creep behavior in 

both DMWs and GTJs. Global creep strain from both the welded configurations was a result 

of creep strain evolutions from the 2.25Cr-1Mo base material and heat affected zone (HAZ) 

regions of the transition. In both the creep tests, creep strain was accumulating in 2.25Cr-1Mo 

HAZ and was driving the premature failure in these joints. 

 Results from the creep studies of 2000h aged DMW specimen replicated characteristics of 

service type interfacial failure seen in DMWs of power plant applications. Creep strain 

concentration and the apparent creep damage in the tertiary stage of creep occurred in the local 

ferritic region adjacent to the line of Type I interfacial carbides in 2.25Cr-1Mo HAZ. Strain 

concentration occurred in this local region due to the apparent local decarburization as a result 

of formation of line of Type I interfacial carbides close to BCC/FCC boundary. 
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 Results from the creep studies on 4000h aged DMW indicated creep strain and the subsequent 

creep damage accumulation in 2.25Cr-1Mo HAZ at a distance of ~400±200μm away from 

BCC/FCC boundary specimens used for these creep tests exhibited strain concentration in 

2.25Cr-1Mo HAZ at a distance of ~400±200μm away from BCC/FCC boundary. These 

specimens are perceived to have been overaged to replicate strain concentration close to 

BCC/FCC boundary as seen in both 2000h aged condition and ex-service welds. Strain 

concentration occurred in this local region due to the depletion of carbides in this region 

resulting from the relative enrichment of carbides close to BCC/FCC boundary. Failures in 

regions away from BCC/FCC boundary can also be envisaged, when power plants do not 

operate at their full capacties and experience frequent shutdowns. 

 In all the 2000h aged GTJs (Inconel 82, P87 and 347H) creep strain was accumulating in the 

2.25Cr-1Mo FGHAZ, and creep cavities were distributed at 3.5±0.2mm away from the weld 

interface and driving these premature of these GTJ configurations. Creep cavities in the size 

of 1-2.5μm were observed along the grain boundaries of FGHAZ and the damage was 

consistent along the entire specimen thickness. This observation was unexpected as the 

objective of this research study was to eliminate creep detrimental microstructure in 2.25Cr-

1Mo HAZ. 

 EDS maps of carbide distributions suggested that the region of creep strain concentration in 

GTJs didn’t show carbide distributions characteristic of the decarburized regions in the creep 

studies of 2000h aged DMWs. However, carbides in FGHAZ appear to have coarsened in 

comparison to the carbides in the parent 2.25Cr-1Mo material region, suggesting a Type IV 

weld failure mechanism in Cr-Mo steel welds. 
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 Carbon migration related problems associated with DMWs have not occurred in GTJs. 

However, GTJs were prone to typical Type IV failure problems in the Cr-Mo steel weldments. 

7.2. Phenemenolgical BMD creep model to predict heterogenous creep strain rates in these 

weld configurations 

BMD creep equations based creep model framework was developed to predict the heterogeneous 

creep behavior of DMWs and GTJs based on the initial (before creep) microstructure distribution 

in them. Microstrcuture based creep model framework is necessary to develop creep resistant 

microstructures in DMWs. Carbide size and distribution characteristics in these different regions 

of creep strain evolution in 2.25Cr-1Mo steel were analyzed and incorporated as microstructure 

based input to the BMD creep model. Key conclusions ofrom the findings of this modeling study 

are as follows: 

 Parent 2.25Cr-1Mo steel used for DMWs’ fabrication consisted of a mixed microstructure 

of ferrite and bainite in both the aged conditions (600ºC for 2000h and 4000h). Minimum 

creep strain rates were calculated individually based on the carbide distributions in both 

the ferritic and bainitic regions. Bulk material creep strain rate was determined based on a 

simple rule of mixtures based calculation from the individual microstructure’s creep strain 

rate. Calculated bulk material creep strain rate (1.4 x 10-5 h-1 for 2000h aged and 2.4 x 10-

5 h-1 for 4000h aged) was a good agreement to the experimentally observed minimum 

creep strain rates from those regions (1.9 x 10-5 h-1 for 2000h aged and 3.3 x 10-5 h-1 for 

4000h aged).  

 In the location of creep strain concentration in the 2000h aged DMW, experimentally and 

theoreticallly observed creep strain rates weren’t agreeable. Theoretically predicted creep 

strain rate was more than 1.4 x 10-4 h-1, however the experimentally observed creep strain 
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rate was 6 x 10-5 h-1. Lack of spatial resolution in DIC methods have been hypothesized to 

have normalized creep strain values in this local region close to BCC/FCC boundary. In 

the location of creep strain concentration in the 4000h aged DMW, experimentally (10-4 h-

1) and theoreticallly (1.2 x 10-4 h-1) observed creep strain rates weren’t very much agreable 

and was close to the upper bound creep strain rates as defined by BMD model for 

dislocation climb over a distribution of precipitates creep mechanism. 

 In all the GTJs, parent 2.25Cr-1Mo material consistuted of a fully bainitic microstructure. 

Theorectically calculated minimum creep strain rates based on the initial carbide 

distributions complied to the experimentally observed creep strain rates from these local 

regions. Location of creep strain concentration was constituted of fine grained (grain size 

of approximately 5μm) bainitic structure, typical of FGHAZ in 2.25Cr-1Mo steel welds. 

Experimentally observed minimum creep strain rates in this location (8-9 x 10-5 h-1) were 

almost 4 times higher than that of the 2.25Cr-1Mo base material creep strain rates (2 x 10-

5 h-1). Coarsening of carbide particles in these local regions resulted in an increase in the 

average interparticle distance (λ) between particles in the grain interiors, which eventually 

resulted in an increase in the minimum creep strain rates. This observation was also 

captured in the developed BMD creep model.  

 BMD creep equations based model framwork was effective in predicting creep behavior in 

the different micrsostrcuture regions of DMWs and GTJs. Stress exponent-n and activation 

energy- Q used in these constitutive equations need be be calibrated with a range of test 

conditions with temperatures in the range of 400-650ºC and stresses in the range 30-

80MPa. 
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7.3. Future directions 

7.3.1. Refinement of DIC methods of local creep strain measurement 

Local strain analysis in the DIC technique is based on tracking displacements in small pockets of 

regions (subsets) placed at finite distances (steps) in every deforming image of the specimen with 

reference to the undeformed image of the specimen. Invariably, spatial resolution of strain 

measurements using DIC technique depends on two factors: (i) subset size and step size selection, 

and (ii) magnification at which images were captured. Uniform subset size- 17 x 17 pixels and step 

size- 4 x 4 pixels were used for creep strain analyses in these experiments, which yielded a spatial 

resolution of 280-300μm. A better spatial resolution could not be achieved in these tests due to the 

combination of two factors: (i) lack of fineness in distribution of black and white speckle patterns 

associated with manually spraying of these paints, and (ii) errors in displacement values due to 

existence of convectional heat waves existing inside the furnace, which become increasingly 

prominent at high magnification images. Strain measurement methods in DIC need to be refined 

for a spatial resolution better than the current methods. To minimize thermal turbulence due to 

heat waves, a customized air knife arrangement [85] for a uniform flow of air can be used. The 

fineness of DIC speckle patterns can be  improved by using a fine point airbrush [86] to spray 

paints. However, these two recommendations need to be validated with an ample amount of 

experimental studies. 

7.3.2. Re-design of fabrication strategies of candidate GTJs 

GTJs were fabricated by depositing layers of increasing dilution of each of the three candidate  

filler metals viz., (i) Inconel 82, (ii) P87, and (iii) 347H on the 2.25Cr-1Mo steel substrate. In the 

current study, such fabrication methodology has resulted in the coarsening of carbides, due to 

excess tempering of 2.25Cr-1Mo material during weld processing. This further resulted in the 
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deterioration of creep properties in the fine grained HAZ (FGHAZ) of 2.25Cr-1Mo base material 

in all the candidate GTJs, in comparison to the 2.25Cr-1Mo base material (unaffected by weld 

themal cycles). To prevent the excessive tempering of 2.25Cr-1Mo susbstrate, fabrication strategy 

for GTJs needs to be re-designed. This can be done by interchanging the susbstrate used for 

depositing the graded transition layers. GTJs can be fabricated by depositing layers of increasing 

dilution of 2.25Cr-1Mo filler metal on the Alloy 800H substrate till the composition of transition 

layers becomes the undiluted 2.25Cr-1Mo steel. It can be expected that re-design of fabrication 

sequence will overtemper Alloy 800H material. Creep strain distribution results from 4.3.2 and 

5.3.2 show negligible creep deformation in the Alloy 800H material. Hence, overtempering of 

Alloy 800H shouldn’t deteriorate the creep properties of the GTJs. 

7.3.3. Integrated model to simultaneously handle precipitation kinetics and carbon 

diffusion kinetics in Dissimilar Metal Welds (DMWs) 

Creep model framework developed in chapter-6 is based on the initial microstructural (before 

creep) variations in 2.25Cr-1Mo steel regions of both DMWs and GTJs. However, both DMW and 

GTJ configurations were aged extensively to induce variable carbide distributions inside the 

different regions of 2.25Cr-1Mo steel (base material and heat affected zone (HAZ)). Thermal 

cycles during weld processing followed by the long-term aging heat treatments have resulted in (i) 

decarburization in 2.25Cr-1Mo HAZ close to BCC/FCC boundary in DMWs, and (ii) carbide 

coarsening in the FGHAZ of 2.25Cr-1Mo material of GTJs. It is neceassry to have a model that 

can accurately predict the variations in characteristics of carbide distribution (carbide size (r) and 

interparticle distance between carbides (λ)) in different regions of ferritic steel during both the 

weld processing and the subsequent aging treatments. Such a model will save thousands of hours 

and money spend in the aging treatments to simulate the heteregeneous microstructures. Currently, 
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there are two types of modeling tools available, namely CALPHAD based models and 

Simultaneous Transformation Kinetics (STK) models for this application. Homogenization 

module of the commercially available DICTRA sofware (CALPHAD based) is capable of 

modeling carbon diffusion based on the carbon chemical potential (driving force for carbon 

diffusion) gradients in the matrix. Researchers at lehigh university [50,54] have performed such 

modeling studies to predict the carbon diffusion across a dissmilar metal weld interface of ferritic 

steel and an austenitic alloy, for transition lengths varying from 50μm to 20mm. However, 

CALPHAD based models are not capable of accounting for simultaneous preicpitation of carbides 

of different morphologies along with carbon diffusion. STK based models are capable of modeling 

simultaneous nucleation and competitive growth of different carbide morphologies in a ferritic 

steel. The set of governing equations were developed by Bhadeshia and Jones [87] initially in 1997 

and later refined by Bhadeshia and Fujita [88] in 2002. STK based models were applied for 

predicting precipitation sequences in other alloy systems like Ti-6Al-4V as well [89,90]. An 

integration of these two models to simultaneously predict carbide precipitation and carbon 

diffusion will be necessary to theoretically determine the different carbide distributions in these 

DMW and GTJ configurations.  
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Results from design consideration for Graded Transition Joints (GTJs) [54] 

 

Figure i: Comparison of chemical potential of carbon (driving force for carbon diffusion) for a 

number of candidate alloys at temperatures: 400ºC, 500ºC and 600ºC [54] 
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Figure ii: Variations in carbon chemical potential as a function of dilution for the three candidate 

filler metals (a) Inconel 82, (b) P87, and (c) 347H [54] 
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Figure iii: Carbon concentration profiles for DMW as a function of transition distance (50μm) 

aged at (a) 400ºC, (b) 500ºC, (c) 600ºC; Carbon concentration profiles for GTJ made with 

Inconel-82 as a function of transition distance (10mm) aged at (d) 400ºC, (e) 500ºC, (f) 600ºC 

[54] 
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Figure iv: Carbon loss results from kinetic simulations from DICTRA for conventional DMWs 

and GTJs made with Inconel 82, P87 and 347H [54] 

Characterization results of GTJs [58] 

 

Figure v: EDS lines of alloying elements Fe, Cr, Ni, along with the hardness and martensite start 

temperature variations for (a) DMW and GTJs made with (b) Inconel 82, (c) P87 and (d) 347H 

[58] 
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Nucleation and growth of carbides inside ferrite grains of mixed microstructure of bainite 

and ferrite  

Mixed microstructure of ferrite and bainite observed in the 2.25Cr-1Mo base materials can be 

formed by a heat treatment cycle as shown in figure (vi):  

 

Figure vi: Heat treatment cycles for producing mixed microstructures of ferrite and bainite in 

2.25Cr-1Mo steel 

1. Austenizing at 50ºC above Ac3 for approximately 30 minutes followed by, 

2. Quenching to temperature above AC1 followed by, 

3. Holding for a few hours to form proeutectoid ferrite followed by, 

4. Quenching to bainite transformation temperature (around 450ºC) followed by, 

5. Holding for a few hours for the transformation of all retained austenite to bainite. Thus, 

producing a mixed microstructure of proeutectoid ferrite and bainite. 

Proeutectoid ferrite (in a mixed Ms) may be formed by quenching from austenizing temperature 

and holding at a temperature, a little above Ac1. At this temperature, ferrite will have maximum 

C solubility. However, on further cooling and holding at bainitic transformation temperature 

(around 450ºC), C solubility in the proeutectoid ferrite will decrease at that temperature. This will 

result in the formation of carbides inside proeutectoid ferrite grains during bainitic transformation. 
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