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ABSTRACT 

In addition to reducing carbon dioxide (CO2) emissions from fossil fuel combustion, 

removing atmospheric CO2 may be critical to limit global warming to less than two degrees 

Celsius above pre-industrial levels recommended by leading experts.  Since cropland occupies 

11% of the earth’s land and is intensively managed, cropland agriculture provides one approach 

for removing CO2 from the atmosphere to mitigate climate change.  However, current 

assessments indicate agriculture is a net emitter of CO2 and other greenhouse gases, and it is 

unclear how soil management can effect carbon sequestration.   

In this work micrometeorological methods are used to measure the exchange (flux) of 

CO2 between the surface and atmosphere and can assess whether an agricultural ecosystem is a 

source or sink for carbon.  Three studies were performed using micrometeorology to understand 

agriculture’s potential to sequester carbon.   

Using Bowen Ratio Energy Balance (BREB) micrometeorological methods, the first 

study measured CO2 flux from a maize crop grown on no-till and tilled soils to determine tillage 

effects on CO2 emissions during 104 days of the 2015 maize growing season in north central 

Ohio.  During this period, the no-till plot sequestered CO2, while the tilled plot was a net emitter. 

A second study determined if industrial biotechnology waste reutilization in agriculture 

could reduce CO2 emissions and generate environmental benefits, while meeting farmer yield 

expectations. Using both BREB and eddy covariance (EC) micrometeorological methods, CO2 

flux was measured over maize where heat-inactivated, spent microbial biomass (SMB) 

amendment was land applied and compared with typical farmer practices from October 2016 to 

October 2017 in Loudon, Tennessee.  While treatments with SMB emitted more CO2 than farmer 

practices, the SMB applications produced yields similar to farmer practices. 

Using BREB micrometeorology methods, the third study measured CO2 emissions over 

conservation agriculture (CA) practices as compared to conventional tillage from June 2013 to 

May 2016 in central Zimbabwe.  The CA practices of no-till and cover crops produced 

significantly fewer CO2 emissions than conventional tillage. 

These studies demonstrate that micrometeorology can detect short- and long-term 

differences in CO2 flux between practices, providing data supporting agriculture’s potential to 

reduce CO2 emissions and sequester carbon.  
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GLOSSARY OF TERMS 

The following terms, concepts and expressions used in this dissertation may not be 

familiar outside their disciplinary use and may also be defined differently within the scientific 

literature. 

Biomass is the mass of organic matter in an organism, population, given area or 

ecosystem (USDA, 2018) or the material produced from organisms (USGCRP, 2018).  In this 

dissertation, “biomass” has multiple meanings including the organic matter in human and animal 

waste (e.g., manure), the organic matter used in and produced by biotechnology processes, and 

the above-ground mass of maize vegetation (including leaves, stalks, husks, cobs and grain) 

produced by an agroecosystem through photosynthesis,. A related term used in the dissertation, 

biosolids (also known as sewage sludge), is derived from municipal wastewater treatment plants 

(USDA, 2018).  Biosolids and animal manure usually contain plant nutrients, such as N, P and K 

that are useful agricultural amendments.  The major types of biomass referred to include the heat 

inactivated cellular waste product generated from the production of 1,3-propanediol, i.e., spent 

microbial biomass (SMB), the living and dead plant material above and below ground of the crop 

and/or weeds in the ecosystem (plant biomass), or the living crop plant material above the soil 

(above-ground biomass), which includes stems, foliage and seed grain.  Soil amendment (or 

referred to simply as amendment) includes a range of materials from organic matter such as 

manure, biosolids or crop residue to inorganic material such as lime   Such amendments may be 

applied to agricultural soil for the purpose of enhancing soil chemical or physical properties, as 

well as plant growth (SSSA, 2018).  Yield is a term which can refer to the mass of the above-

ground maize biomass or the mass of the harvested grain per unit area (SSSA, 2018).   
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The Bowen ratio is the ratio of heat lost by conduction to heat lost by evaporation at the 

surface (Bowen, 1926), which was later described as the ratio of sensible heat flux to latent heat 

flux and subsequently named by Sverdrup (1943) as the Bowen ratio.  The Bowen ratio can be 

calculated from measurements of the gradients of temperature and vapor pressure above the 

surface.  Sensible heat flux is defined as the conductive or turbulent flow of heat between the 

earth’s surface and atmosphere (not associated with phase changes), while latent heat flux, also 

known as latent energy flux, is the turbulent flow associated with the condensation or 

evaporation of water vapor (Planton, 2013).  The Bowen ratio can be used to calculate sensible 

and latent heat fluxes in the Bowen ratio energy balance (BREB) micrometeorological method 

by assuming that the sum of sensible and latent heat fluxes can be equated to the sum of 

incoming solar and longwave radiation minus reflected shortwave and outgoing longwave 

radiation, while also subtracting the heat that goes into the ground (Penman, 1948).  This first-

order approximation omits the small consequence of energy used in photosynthesis as well as the 

heat storage within the vegetated canopy that might be present.  The latter is sometimes an 

important contribution to the surface energy budget, especially when the other terms are small 

(near dawn and dusk).  The BREB method can calculate a vertical gradient transport coefficient, 

also known as eddy diffusivity (K), from the sensible or latent heat flux to estimate the vertical 

flux of a gas proportional to its time-averaged vertical concentration gradient, also known as K 

gradient/profile transport or K-theory. An alternative gradient/profile transport approach called 

the aerodynamic method calculates eddy diffusivity from wind speed, canopy aerodynamic 

characteristics, and atmospheric stability. Energy, momentum, and scalar flux at the surface 

atmosphere boundary layer are defined as positive when they are moving upward from the earth 
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surface to the atmosphere and negative when they are moving down from the atmosphere to the 

surface.  Soil heat flux (G) is positive when the soil is being heated. 

Conservation Agriculture (CA) is a farming system based on the principles of (1) 

minimal soil disturbance (such as with no-till), (2) maintaining year-round soil cover with 

residue, mulch, and/or cover crops, and (3) crop rotation (Hobbs, 2007). Conservation 

Agriculture was established to address issues of soil erosion and degradation resulting from 

intensive agricultural practices such as tillage, while sustaining crop production and improving 

soil quality.  Since 2002, the United Nations (UN) Food and Agricultural Organization (FAO) 

has promoted CA adoption worldwide—especially among smallholder farmers (FAO, 2019). 

The C:N ratio is the ratio of the mass of carbon to nitrogen in a substance. When known 

for a crop residue or amendment, the C:N ratio can be an indicator of the potential 

decomposition rate in soil or on the soil surface (Linley and Newell, 1984).  Because soil 

microbes must take in a balance of nutrients to meet their cellular and energy needs, C:N ratios 

greater than about 24:1 will induce microbes to scavenge for additional N in the soil to meet their 

requirements, resulting in N immobilization (USDA-NRCS, 2011).  Residues or amendments 

with lower C:N ratios (e.g., legumes or manures) would have an excess of N that microbes 

release during decomposition to mineral forms of N such as ammonium and nitrate, in a process 

known as mineralization  (Jansson and Persson, 1982).  These mineralized forms of N are plant-

available, while organic forms of N in microbes and soil organic matter are considered 

immobilized, and are thus not plant-available. 

The CO2 fertilization effect refers to enhanced photosynthesis due to increases in 

atmospheric CO2 concentrations (Planton, 2013). This is a topic of interest in the context of 

climate change, but is also of relevance when concentrations of CO2 are increased within the 
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crop canopy due to soil and plant respiration, especially during periods of low atmospheric 

turbulence.  This effect has been studied experimentally and is now known to lead to greater 

yield and biomass production as atmospheric concentrations increase with time. 

An eddy is both a physical manifestation of air movement in the shape of a three-

dimensional vortex or whirl ranging in size from 10
-3

 to 10
3
 m as well as an abstract concept 

used for describing turbulence (Arya, 2001).  The atmosphere near the ground is 

characteristically turbulent, especially in daytime, and this turbulence serves to transport 

momentum, heat, and scalars through the atmosphere (Sutton, 1953).  

Eddy covariance (EC) is considered the most direct method for measuring the vertical 

flux of mass, energy, and momentum and is calculated as the covariance of the vertical wind 

velocity and the other quantity of interest (Swinbank, 1951).  Sonic anemometers provide precise 

3D measurements of the wind velocity and its variance over time, permitting the eddy flux of 

CO2, for example, to be quantified as the covariance between the vertical velocity wind 

component and the instantaneous CO2 concentration at the same location.  

A typical “farmer practice” generally refers to an accepted on-farm procedure.  In 

Chapter 2, the commercial inorganic fertilizer NPK application rate, which a local farmer chose 

to produce his/her economically optimum yields is the “farmer practice” and was compared to 

the case of additional biomass treatment.  

Flux for this dissertation refers to the flow of mass, energy, radiation, or momentum 

through a horizontal surface area per unit of time.  In meteorology, fluxes are defined as the 

transport of energy or mass from the earth’s surface to the atmosphere.  This dissertation 

includes fluxes of mass such as CO2, of momentum, and of energy, the last involving the 

sensible heat flux, H; the latent heat flux, LE, caused by the evaporation and condensation of 
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water; the net radiation, Rn, which is incoming solar energy minus outgoing reflected and emitted 

energy; and soil heat flux, G, the energy used to heat the soil. 

Friction velocity, u∗, is the velocity defined by the shearing stress exerted by the wind on 

the earth’s surface.  It depends on the magnitude of mean wind speed, the stability of the 

atmosphere, and the nature of the surface (Sutton, 1953).  Friction velocity can be calculated as 

the covariance of the instantaneous horizontal and vertical wind velocities (Sutton, 1953). 

Friction velocity can also be estimated from horizontal wind speed, turbulent flow and surface 

roughness parameters (the roughness parameter and zero plane displacement) if such quantities 

are well enough determined (Rosenberg et al., 1983). 

Industrial biotechnology is defined by the Belgian Academy Council of Applied 

Science as “the application of modern biotechnology for the industrial production of chemical 

substances and bio-energy, using inherently clean processes, with less waste generation and 

reduced energy consumption” (Vandamme et al., 2004).  In 1992, the United Nations 

Environment Program (UNEP) defined biotechnology as “any technological application that uses 

biological systems, living organisms, or derivatives thereof, to make or modify products or 

processes for specific use” (UNEP, 1992).  Industrial biotechnology is also known as “white 

biotechnology”, which is symbolic of clean or sustainable technologies (Vandamme et al., 2004). 

While meteorology is the study of the chemistry, physics, and dynamics of the earth's 

atmosphere, micrometeorology is the study of phenomena taking place between the surface 

(land, water and plants) and the lowest layers of the atmosphere (Sutton, 1953; American 

Meteorological Society, 2019).  Micrometeorology uses methods such as EC, BREB and 

aerodynamic methods to measure the exchange of energy, gases, and momentum between the 
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surface and atmosphere and can monitor the effects of human activities in the atmosphere 

(American Meteorological Society, 2019). 

Net ecosystem exchange (NEE) refers to the net vertical flux of CO2 between an 

ecosystem and the atmosphere (Bartlett et al., 1989) and is estimated through 

micrometeorological measurements of CO2 flux above the canopy or soil surface.  NEE is one 

component of the net ecosystem carbon balance, which is the total carbon accumulation or loss 

from an ecosystem and includes NEE and vertical and lateral movement of other organic and 

inorganic carbon (Chapin et al., 2006).  NEE represents the sum of ecosystem CO2 assimilation 

through photosynthesis and CO2 loss through respiration by ecosystem plants, animals and other 

organisms.  While the CO2 exchange between the atmosphere and surface has been studied since 

the 1960’s (Lemon, 1960) the first use of the term NEE was by Bartlett, et al. (1989). NEE is 

positive when CO2 is added to the atmosphere (emission) and negative when CO2 is removed 

from the atmosphere (sequestration).  NEE is essentially the same as the CO2 flux as measured 

and reported here, averaged or summed over a period of time.  In this dissertation, the term CO2 

flux is used interchangeably with NEE.  

The gradient Richardson number, Ri, is a ratio that relates buoyant energy production 

to energy dissipation through mechanical turbulence and is used as a parameter to indicate 

atmospheric stability (Monteith and Unsworth, 2013).  Negative Ri numbers correspond to 

unstable conditions, Ri numbers near zero are neutral, and positive Ri values indicate stable 

stratification.  In unstable conditions there is upward heat transport, in neutral conditions there is 

no vertical exchange of heat energy, and in stable conditions the atmosphere resists vertical 

motion. 
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Sensor resolution and accuracy are identified by the manufacturer.  Each sensor may 

have an accuracy prescribed within a range of measurements, e.g., temperature sensors being 

accurate within ± 0.1 °C over a range of -25 to +50°C.  Perez et al. (1999) explain that to 

minimize errors in BREB flux estimation, data within the instrument uncertainty should be 

excluded for gradient measurements, i.e., since the difference between the lower and upper 

sensor can be small and less than the sensor accuracy. 

A scalar is a physical quantity including energy (e.g., heat) or matter (e.g., water vapor, 

trace gases such as CO2, or particulate matter such as pollutants) (Paw U et al., 2005).   

Soil organic matter (SOM) is the organic fraction of soil, with larger flora or fauna 

removed that do not accompany soil across a 2-mm sieve (Vaughan and Ord, 1985; Nelson and 

Sommers, 1996). Soil organic matter has been identified as a key indicator of soil fertility 

(Kononova, 1966; Nannipieri and Sequi, 1982), because it serves as a plant nutrient reservoir in 

addition to its influence on soil chemical, biological and physical properties.  Studies have shown 

a relationship between soil organic matter and soil organic carbon (SOC), generally within the 

range of 1.72 to 2.0 parts SOM to SOC varying by soil (Davies, 1974; Nelson and Sommers, 

1996). Since measuring SOM is difficult, Nelson and Sommers (1996) suggested that SOC 

content be measured and reported as an index of SOM.  Soil organic carbon was measured and 

used as a gauge of both SOM and soil fertility. 

The specific surface is defined as the soil or other porous media solid-particle surface 

area divided by its mass or volume (SSSA, 2018).  Surface area increases as particle size 

decreases.  Specific surface area has an important role in water retention for soil and other 

porous media.  In this study the specific surface area of the spent microbial biomass is expected 

to have an important role in nutrient availability and also in decomposition.  As the size of spent 
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microbial biomass particles decreases and specific surface increases, nutrients become more 

available to roots and microbes, increasing decomposition, mineralization, and nutrient 

availability (Swift et al., 1979). 

Turbulent diffusivity, K, (also known as the coefficient for turbulent diffusivity, 

turbulent transfer coefficient, eddy diffusivity, eddy viscosity, eddy exchange coefficient and 

eddy diffusion coefficient) is the turbulent diffusion transport coefficient that associates fluxes 

with gradients (Stull, 2012).    
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INTRODUCTION 

Climate Change 

The scientific community has reached a consensus that since the beginning of the 

industrial age, the primary cause of global warming is the emission of anthropogenic greenhouse 

gases (GHGs).  Recent unprecedented increases in GHGs pose a threat to human populations 

through increases in hot temperature extremes, rising sea levels, and intensifying weather events 

(Clarke et al., 2014; IPCC-SR15, 2018; Cook et al., 2013; Seneviratne et al., 2014).  

Atmospheric GHGs contributing to global warming include carbon dioxide (CO2) (76% of total 

anthropogenic GHG emissions with each gas estimated in CO2 equivalent emissions per year in 

2010), methane (16%), nitrous oxide (6%), and fluorinated gases (2%) (IPCC, 2014).  Ice core 

records have shown that atmospheric concentrations remained under 300 ppm for the past 

420,000 years (Petit et al., 1999) until 100 years ago.  Current data shows that atmospheric CO2 

is at historically high levels with the recent global monthly average of CO2 concentration for 

December 2018 estimated at 409 ppm, which is a 46% increase above a representative pre-

industrial concentration of 280 ppm used by the National Oceanographic and Atmospheric 

Administration (NOAA) (Etheridge et al., 1996; NOAA, 2019). 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) 

generally focuses attention on the CO2 emissions from fossil fuel and industrial processes 

because they currently represent the majority of GHG emissions (65% of total GHG emissions in 

2010) as well as the greatest increase in emissions (6% increase between 1990 and 2010), and 

thus the largest problem to address (IPCC, 2014).   
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The Paris Agreement reached at the 2015 United Nations (UN) Climate Change 

Conference focuses on reducing GHG emissions, in order to keep the rise in global warming 

below 2C (UNFCCC, 2015), especially fossil fuel emissions considering the magnitude of that 

source (Houghton, 2007; IPCC, 2013a).  The Paris agreement also provides for the development 

of other climate change mitigation strategies that can show measurable, long-term benefits.  

Given the nature and importance of the problem of global warming as presented in the recent 

special report of the IPCC (2018), all manner of solutions and tools should be considered to 

reduce chances of potentially catastrophic events. 

The Carbon Cycle 

The global C cycle and budget provides some background and context for understanding 

the causes and effects of global warming.  The C cycle can be divided into two timescales: the 

first being a fast or active cycle on the order of a few years to millennia, also called a 

biogeochemical cycle of C (Schlesinger, 1995), that is comprised of reservoirs and fluxes of C in 

and between the ocean, atmosphere, and terrestrial vegetation, soil, freshwater, and fossil fuel 

reserves.  The second slower cycle, also known as a rock cycle or geochemical cycle, includes 

large C reserves in rocks and sediments that exchange C through erosion and chemical 

weathering of sediments, volcanic emissions of CO2, and sediment formation on the ocean floor 

(Ciais et al., 2013; Schlesinger, 1995; Sundquist, 1986). While most volcanism occurs on shorter 

episodic timescales, volcanism’s effect on and exchange with the faster biogeochemical cycle is 

roughly equivalent to the annual CO2 released from volcanos, which is about 0.018 - 0.13 

PgCa—range representing less than 1% of anthropogenic emissions—thus it is not consequential 

on the faster timescale (IPCC, 2013b; Schlesinger, 1995).  The following C cycle description 
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focuses on the faster biogeochemical cycle, which has the greatest impact on the phenomenon of 

current climate change. 

AR5 estimated the size of the main reservoirs of the biogeochemical C cycle as 38,703 

PgC in the ocean (not including ocean floor sediments), 828 PgC in the atmosphere, 450-650 

PgC in terrestrial vegetation, 637-1,575 PgC in fossil fuel reserves, and 1,500-2,400 PgC in soil, 

with an additional ~1,700 PgC in permafrost soils (Ciais et al., 2013).  Carbon moves within and 

between these reservoirs via many mechanisms, though the largest accumulative net fluxes are 

between the atmosphere and other reservoirs.  For example, the flux of C between the 

atmosphere and ocean before the industrial age was approximately 90 PgC per year in both 

directions and the C flux between atmosphere and terrestrial ecosystems through respiration and 

photosynthesis was ~120 PgC in both directions (Houghton, 2007).  An ecosystem is defined 

using the UN Environment Programme’s definition of ecosystem as “a dynamic complex of 

plant, animal and micro-organism communities and their non-living environment interacting as a 

functional unit” (UNEP, 1992).  Fluxes between these global reservoirs are measured through 

gas concentration gradients combined with kinetic and thermodynamic measurements and are 

also inferred through models of biogeochemical processes and circulation models (Wanninkhof 

et al., 2013). 

Since 1750, 470-640 PgC have been released to the atmosphere from the combustion of 

fossil fuels and 230-250 PgC from land use change—such as deforestation— resulting in an 

increase in atmospheric concentrations of CO2 of ~35% to 390 ppm in 2011 (IPCC, 2013b).  As 

a sink, the oceans may have taken up as much as 48% of the anthropogenic emissions during this 

period (Sabine, 2004). 
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Over the last 300 years the transformation of forest to agricultural land reduced the total 

amount of terrestrial C released as CO2 from this human activity—an estimated 156 PgC from 

1850 to 2000 (Houghton, 2003).  Atmospheric CO2 was identified as one of the drivers of 

climate change because of measurements in radiative forcing (RF), a method that compares the 

influence of most radiative forcing agents, such as solar radiation, gases, aerosols and albedo that 

produce a net change in earth’s energy balance and global mean surface temperature (IPCC, 

2013a).   IPCC’s AR5 found that since the beginning of the Industrial Era, and especially from 

1980-2011, CO2 was the largest contributor to the increase in total RF (IPCC, 2013a).   

Agriculture’s Role in Climate Change 

The U.S. Council for Agricultural Science and Technology (CAST) Task Force Report 

states that world-wide, agriculture produces 13.5% of GHG emissions (Follett et al., 2011).  The 

U.S. Environmental Protection Agency (USEPA) inventory of GHG emissions reported that 9% 

of total U.S. GHG emissions in 2015 were produced from activities associated with agriculture 

(USEPA, 2017).  

Agricultural activities that emit GHGs include soil and crop management, rice farming, 

livestock manure, livestock enteric fermentation, and burning of agricultural residue (Denef et 

al., 2011).  Denef et al. (2011) also attributed most of the CO2 emissions from agriculture to 

management practices that decrease soil organic carbon (SOC) stocks.  While methane and 

nitrous oxide are potent GHGs that are related to agriculture such as with rice farming and 

livestock manure, this dissertation focuses on CO2 emissions from cropland agriculture and soils.  

Quantifying the contributions of agriculture to GHG emissions has evolved over the five 

IPCC assessment reports due to agriculture’s interactions with other sectors such as energy, 
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forestry and land use change, and also due to agriculture’s role in food security given the 

growing human population (Porter et al., 2017).  Agriculture’s role in deforestation, including 

the transformation of forests into farmland and other land use change, accounted for a third of 

emissions since 1750, but represented 12% of emissions between 2000-2009 (Smith et al., 2014). 

The conversion of forests into farmland has been incorporated into the emissions category: land 

use, land-use change and forestry (LULUCF), by the United Nations Framework Convention on 

Climate Change (UNFCCC, 2019).  Vermeulen et al. (2012) connected agricultural impacts on 

forestry more directly, noting that of the 18% of global GHG emissions due to land use change, 

75% of those are from agriculture.  

While agriculture is currently a net emitter of CO2 and other GHGs, Lal (2004) estimated 

that agriculture could sequester up to 33% of annual atmospheric CO2 increases.  The term 

“terrestrial C sequestration” (hereafter referred to as C sequestration) is the conversion of 

atmospheric CO2 into plant biomass (organic C) through photosynthesis (Lal, 2008).  While 

some of the living and dead plant biomass can be respired back into the atmosphere through 

decomposition, some of the organic C can be converted over time into more stable forms of soil 

organic matter (SOM), a term which is often used interchangeably with SOC.  Many factors such 

as climate, soil, plant type, and disturbance influence the rate of decomposition or sequestration.  

The United Nations Food and Agriculture Organization (FAO) submission to the 

UNFCCC (FAO, 2009) and the CAST Task Force Report (Follett et al., 2011) both assert that 

agricultural management practices can reduce emissions and increase C sequestration into soils 

and plant biomass.  Caldeira et al. (2004) suggested that changing agricultural management 

practices provides an important option for reducing GHGs and increasing C sequestration in the 

short term.  Another consideration for agriculture’s role in mitigating CO2 emissions is that it 
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does not require the generation of new technology to increase the pool of C in soil (Powlson et 

al., 2011).   

Follett, et al. (2011) outlined agricultural management practices that have been shown to 

increase SOC stocks.  These practices include: high residue crops and crop residue retention, 

changing from conventional tillage to no-till, utilizing cover crops, changing from annual crops 

to perennials, reducing fallow, adding manure applications, improved soil fertility, irrigation to 

support greater plant biomass, and planting trees on cropland.  However, it is important to note 

that the CAST report referenced few experiments that determined which combination of 

agricultural practices would maximize soil C sequestration (Follett, et al., 2011).  This gap in 

data is central to this dissertation. 

To address issues of land degradation and decreasing soil fertility, a farming system 

called Conservation Agriculture (CA), which is based on the three principles of (1) minimal soil 

disturbance (such as with no-till), (2) maintaining permanent soil cover with residue, mulch 

and/or cover crops, and (3) crop rotation (Hobbs, 2007), was established to improve soil quality 

and to sustain crop production.  While the three principles of CA do not address the entire set of 

practices mentioned in the CAST report, they provide a beginning core set of practices for 

improving agricultural sustainability (Hobbs et al., 2008).  Since 2002, the UN FAO has 

promoted CA adoption worldwide—especially among smallholder farmers, and expanded the 

rotation principle to encourage species diversification (FAO, 2019).  This dissertation examines 

CA practices in Chapter 3. 

Many studies have investigated the differences between conventional tillage and no-till as 

an agricultural management practice to increase soil C (Ismail et al., 1994; West and Post, 2002).  

Conventional tillage disturbs soils and increases aeration within the top layer of the soil, which 
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enhances microbial decomposition of organic matter, which increases soil respiration and CO2 

emissions (Schlesinger and Andrews, 2000). 

West and Post (2002) found in their meta-analysis of 67 different studies that changing 

from conventional tillage to no-till produced significant increases in SOC in the top 15 cm of soil 

in all studies except under a wheat followed by fallow rotation (Halvorson et al., 2002).  In their 

research, Kern and Johnson (1993) also found that conventional tillage caused a loss of SOC, 

while no-till increased SOC.  They further distinguished the C sequestration potential of 

‘reduced’ or ‘minimum’ tillage, finding that reduced tillage remained C neutral and did not 

produce a net C loss like conventional tillage.  However, some research questions the potential of 

no-till to increase soil C (Manley et al., 2005; Baker et al., 2007; Powlson et al., 2011), 

especially deeper in the soil profile (Angers and Eriksen-Hamel, 2008).  Others suggest that no-

till has a compelling economic potential that justifies promoting its adoption (Derpsch et al., 

2010).   

In addition to reduced tillage, other practices that could increase SOC include the use of 

cover crops.  In a meta-analysis of 37 sites, Poeplau and Don (2015) found that cover crop 

treatments had greater SOC stocks than reference crops.  Other management practices may 

increase SOC, such as switching from monoculture to rotational cropping or crop intensification 

with intercropping or increased populations.  However, West and Post (2002) found that 

changing from conventional tillage to no-till sequestered on average more SOC than intensifying 

crop rotation practices. Similarly, Govaerts et al. (2009) found that reduced tillage had the largest 

reduction in CO2 emissions in Conservation Agriculture practices.  This suggests that many 

different combinations of agricultural management practices may increase SOC, but the effect 

varies by practice and may also vary by crop, soil type, and climate. 
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The Challenge of Measuring Soil C 

In order to recommend agricultural management practices that effectively sequester C, it 

is necessary to measure and quantify their impact on SOC.  The FAO submission to the 

UNFCCC identifies the challenges in measuring the potential of agricultural practices and soil to 

sequester or emit C including that: (1) within a field, soil C can be highly variable, (2) annual 

changes in soil C are small and hard to measure, (3) factors such as previous land use, climate 

and soil type impact soil C and finally, (4) there is a lack of measurements for most combinations 

of soil, crop, management practice and climate (FAO, 2009). 

One of the greatest challenges to determining the impact of any management practice is 

the amount of time it can take to detect changes in SOC. Smith (2004) found that it can take 

between 7 and 10 years to detect changes in SOC, even when extensive sampling is performed.  

Hungate et al. (1996) did not detect significant differences in SOC in an experiment lasting four 

growing seasons and Necpálová et al. (2014) found that it could take at least seven years to 

detect differences in SOC.  

One reason that it can take so long to measure changes in SOC is that climate may 

interact with or have a confounding impact on an agricultural management practice’s C 

sequestration or emission. Ogle, Breidt, and Paustian, (2005) found in a meta-analysis greater 

increases in SOC when converting to no-till in the following order of climates from smallest to 

largest gain in SOC: temperate dry, temperate moist, tropical dry, tropical moist.  Other studies 

found that no-till did not increase soil C in cold moist temperate soils (VandenBygaart et al., 

2003; Gregorich et al., 2005; Hermle et al., 2008). 

CO2 emissions also vary with soil temperature and soil respiration is expected to increase 

with increasing temperatures, potentially adding to greater GHG concentrations (Kirschbaum, 



9 

1995; Schlesinger, 1995).  Several studies have shown that moisture and temperature are the 

primary factors affecting SOC respiration (Craine and Wedin, 2002; Guntiñas et al., 2013).  

Consequently higher temperatures and greater precipitation due to climate change may reduce or 

eliminate net C sequestration of some agricultural management practices.  

There are other issues with understanding and measuring agriculture’s potential to 

sequester soil C including the question of “non-permanence” or potential reversibility of C 

sequestered in the agricultural soil and ecosystem (Smith, 2005; Alexander et al., 2015).  For 

example, soil organic C that has been sequestered can return to the atmosphere if agricultural 

management practices are not maintained (Follett, et al., 2011).  After changing management 

practices from no-till to conventional cultivation, Pankhurst et al. (2002) found a significant 

reduction in SOC in the top 0–5 cm within 3 years.  However, when going from conventional 

cultivation to no-till, there was a “negligible” effect on soil chemical properties (Pankhurst et al., 

2002), indicating that it takes less time to emit sequestered C in agricultural soils than it takes to 

build up C within the soil.  Therefore, understanding factors that cause emissions over the short 

term is critical to identifying the necessary conditions for C sequestration. 

Methods of CO2 Flux Measurement 

Due to the challenges inherent in determining changes in SOC, other methods can be 

used to quantify the net change of C between the atmosphere and an ecosystem.  The transfer of 

CO2 mass per unit area per unit of time (e.g., g CO2 m
-2

 hr
-1

) between the ecosystem and the 

atmosphere is the CO2 flux (also referred to as CO2 flux density).  By measuring CO2, flux we 

can quantify the net C loss or gain by the ecosystem over a period of time.  Chapin et al. (2006) 

refined carbon cycle terms for consistent measurements across systems and defined the net 
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ecosystem exchange (NEE) as “the net CO2 flux from the ecosystem to the atmosphere”.  

Therefore, a positive NEE indicates a net loss of CO2 from the ecosystem to the atmosphere and 

a negative NEE indicates the ecosystem is sequestering C from the atmosphere. 

There are two common types of systems for measuring CO2 flux over agriculture and 

other ecosystems including accumulation techniques such as static chambers and 

micrometeorological techniques (Follett, et al., 2011).  Chamber methods are limited in their 

ability to accurately capture the CO2 flux due to various factors.  Firstly, their size and ability to 

include plants within the chamber is limited, their spatial and temporal variation require 

extensive sampling, and they lastly are subject to error because they can alter the pressure 

differential and CO2 concentration gradient between the chamber headspace and outside air 

(Davidson et al., 2002). 

The main micrometeorological methods include the Bowen ratio energy balance (BREB) 

system and eddy covariance (EC).  BREB is a flux-gradient technique that measures the 

differences in vapor pressure and ambient air temperature over two heights above the soil or 

canopy to calculate the Bowen ratio (Bowen, 1926; Sverdrup, 1943).  Adding soil heat flux, net 

solar radiation, and the difference in CO2 concentrations at the two heights provides the data 

needed to calculate CO2 flux (Rosenberg et al., 1983; Dugas, 1993; Webb et al., 1980).  EC 

measures the covariance (fluctuations) around the mean of both the vertical wind velocity and 

the magnitude of energy or mass (such as CO2) (Kanemasu et al., 1979).  Because EC and BREB 

provide independent and different measurement approaches, they have been used to compare 

observations and refine measurements of meteorological properties and fluxes (Brotzge and 

Crawford, 2003; Shi et al., 2008; Alfieri et al., 2009). 
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Micrometeorological methods can provide NEE for short periods as well as long-term.  

Short-term flux measurements on the order of days to months can provide information about 

diurnal cycles, or real time impact on CO2 flux by agricultural management practices such as 

tillage or climate variables such as heat and moisture.  Long-term NEE data provides 

opportunities to assess the impact of a sequence of practices for understanding the mitigation 

potential of agricultural management practices for sequestering C. 

Knowledge Gaps in the Scientific Literature 

While BREB micrometeorological methods are still being used to estimate 

evapotranspiration (Irmak et al., 2014; Vanomark et al., 2018), with the advent of lower cost 

sonic anemometers and infrared gas analyzers, EC methods are currently the dominant 

micrometeorological method for quantifying NEE.  There are more than 900 EC 

micrometeorological measurement stations worldwide providing data increasing our knowledge 

and quantifying the role of terrestrial ecosystems for C sequestration (Baldocchi, 2014; Chu et 

al., 2017).  Gilmanov et al. (2017) and Skinner and Wagner-Riddle (2012) identified the need for 

annual studies comparing EC and BREB to evaluate historical BREB data for integration with 

current EC network data. Chapter 2 provides a side by side comparison of EC and BREB 

micrometeorological methods and an exploration of nighttime questions to address this need. 

While there is one AmeriFlux micrometeorological measurement station in Ohio, it is in 

the NW, measuring NEE, water, and energy fluxes over an oak woodland northwest Ohio.  There 

are no micrometeorological measurement stations measuring over agriculture in Ohio.  Chapter 1 

provides data about the impacts of contrasting agricultural tillage practices on 



12 

micrometeorological properties in north central Ohio, including abnormally wet and dry 

conditions during a growing season. 

BREB can provide information more representative of the surface since it measures 

closer to the canopy and soil surface.  Comparing BREB and EC provides an opportunity to 

explore the impact of the surface on CO2 flux especially at night during stable periods (low 

turbulence) when fluxes are not consistent with, or are near the limits of, the flux-gradient 

theory.  

While there are long-term studies comparing the use of biosolids applied as soil 

amendments to degraded crop soils (Tian et al., 2009), to our knowledge, there are few, if any 

studies that have compared the emissions of these amendments.  No studies were found in the 

literature measuring CO2 flux over cropland with industrial biotechnology waste applied as a soil 

amendment. Chapter 2 provides data to address this knowledge gap.   

The FAO submission to the UNFCCC in 2009 identified the lack of measurements for 

most combinations of soil, crop, management practice, and climate in assessing the potential of 

agricultural practices and soil to sequester C (FAO, 2009).  The CAST report also noted that 

field experiments involving only one or two agricultural management practices give an 

incomplete understanding of best practices to sequester C (Follett, et al., 2011).  The study 

described in Chapter 3 investigated the CO2 flux of a sequence of practices over three years to 

increase knowledge of the effects and differences of multiple crop sequences and combinations.  

Ciais et al. (2011) reviewed the C balances of African ecosystems and reported a need for 

more observations of C fluxes and stocks, recommending a network of EC flux towers for 

agroecosystems as well as other terrestrial ecosystems.  Few micrometeorological studies have 

measured CO2 flux over agriculture in Africa and most experiment durations have lasted less 
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than a year.  Chapter 3 provides close to 3 years of data to address the need for more 

observations of C fluxes in Africa. 

Research Goals 

The goal of the research described in this dissertation was to further understand 

agriculture’s potential to sequester C in climate change mitigation.  Using micrometeorological 

instrumentation, this research measured CO2 flux in real time over contrasting agricultural 

management practices to quantify the role of soil, climate, and management factors that 

contribute to C sequestration and CO2 emissions from agriculture.  This research measured and 

analyzed CO2 flux of agricultural management practices including tillage, biomass application, 

fallow periods, cover crops, and crop type to provide data on the potential of these practices to 

sequester soil C or at a minimum to reduce CO2 emissions to address climate change.  This 

research included the setup of BREB and EC micrometeorological instrumentation in Ohio, 

Tennessee and Zimbabwe, and the collection and analysis of data to determine the NEE over 

contrasting agricultural practices. 

Dissertation Organization 

Chapter 1 summarizes a four-month study comparing contrasting tillage practices on CO2 

flux over maize (Zea mays L.) after tilling a long-term no-till field as compared with a no-till plot 

using BREB micrometeorology during the 2015 growing season in Ohio. 

Chapter 2 describes the measurement of CO2 flux between October 2016 to October 2017 

over no-till maize with application of DuPont 1,3-Propanediol (PDO) manufacturing residue as 



14 

compared to a conventional fertilizer management.  This on-farm research used both BREB and 

EC micrometeorological instruments in East Tennessee.   

In Chapter 3, BREB micrometeorology elucidated differences between CA and 

conventional tillage practices over 35 months in Zimbabwe, beginning in June 2013 through 

May of 2016.  A sequence of agricultural management practices were measured over four plots.   

Terms Used in this Dissertation 

Note that this research is multidisciplinary, including the disciplines of soil science, 

micrometeorology, agronomy and including concepts from the biogeochemical C cycle to 

industrial biotechnology.  Many terms will be defined as they are introduced, however there is 

also a glossary immediately preceding this introduction on page xi, that defines many of the 

terms associated with soil science and micrometeorology. 
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CHAPTER 1  

REDUCING CO2 FLUX BY DECREASING TILLAGE IN OHIO: 

OVERCOMING CONJECTURE WITH DATA 

  



24 

A version of this chapter was originally published by the Canadian Center of Science and 

Education, citation:  

O'Dell, D., Eash, N.S., Hicks, B.B., Oetting, J.N., Sauer, T.J., Lambert, D.M., Logan, J., 

Wright, W.C. and Zahn, J.A.. “Reducing CO2 Flux by Decreasing Tillage in Ohio: Overcoming 

Conjecture with Data” Journal of Agricultural Science, 10(3), p.1-15. 

https://doi.org/10.5539/jas.v10n3p1 

 

This article was revised from the printed and online publication format including authors’ 

organizations, dates of receipt, acceptance and publication on the title page.  Collaborators 

included: Neal S. Eash, Bruce B. Hicks, Joel N. Oetting, Thomas J. Sauer, Dayton M. Lambert, 

Joanne Logan, Wesley C. Wright, and James A. Zahn.  The role of collaborators included 

research design and execution, instrumentation development, data analysis, as well as review and 

co-authorship of the manuscript.  I worked with major advisor, Professor Neal Eash, to plan and 

execute the research. I also provided the first draft of the manuscript and incorporated co-author 

input.  

Abstract 

While the literature is clear about excessive tillage decreasing soil carbon (C) content, 

there are few experimental studies that document the comparative effects of soil and crop 

management on C sequestration. Using micrometeorology we measured CO2 flux from a maize 

crop grown on both no-till and tilled soils in north-central Ohio. We used Bowen Ratio Energy 

Balance (BREB) systems to quantify the flux between the atmosphere and either the soil surface 

(at crop planting) or 0.2 m above the canopy once the crop was established and growing. The no-
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till plot sequestered 263 g CO2 m
-2

 (90% confidence interval -432.1 to -99.9) while the tilled plot 

emitted 146 g CO2 m
-2

 (90% confidence interval -53.3 to 332.2) during 104 days of the 2015 

growing season; a net difference of 410 g CO2 m
-2

. The difference is statistically significant at 

the 90% confidence level (based on a bootstrap analysis). The results indicate that no-tillage 

practices can sequester C, maintain soil productivity, and ensure landscape sustainability. 

Introduction 

The principal sinks for removing CO2 from the atmosphere are usually assumed to be 

oceans and forests; however, oceans will absorb less CO2 as they warm (Morrison et al., 2015) 

and forest area is shrinking due to agriculture and other land use changes (FAO, 2016). It has 

been shown that soil could be a strong sink for atmospheric CO2 (Paustian et al., 2016), partially 

offsetting increasing global greenhouse gas (GHG) emissions (Tubiello et al., 2015; EPA, 2014; 

Scripps Institution of Oceanography, 2016). Jenny’s (1941) classic work provides the basis for 

the collective understanding of the processes by which soils emit and sequester C through soil-

climate-vegetation interactions. These processes depend on many factors including soil type, 

climate, crop, and agricultural management practices.  

While agriculture is a major contributor to increases in GHG emissions, careful 

implementation of agricultural practices to enhance C sequestration presents an opportunity to 

manage soils to mitigate climate change. In particular, the practice of reduced tillage, especially 

no-till, has been found to reduce CO2 emissions from soils and potentially sequester C 

(Schlesinger, 1999; West and Post, 2002; O’Dell et al., 2014). Studies suggest that tillage can 

influence plant physiology including increased rooting depth from decreased moisture in surface 

layers of tilled soil (Dwyer et al., 1996) or decreased mechanical resistance (Cox et al., 1990). 
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Other studies indicate that tillage effects on plant physiology may interact with climate as Yu et 

al. (2016) found that no-till likely increased yield during drought periods by conserving soil 

moisture. Since arable land represents more than 10% of the global land base (FAO, 2011), 

arable soils could provide a C sink to offset fossil fuel emissions (Paustian et al., 2016; Lal, 

2004).  

Recent literature provides a conflicting story of the potential impact of different 

agricultural practices on soil C. While West and Post (2002) found significant increases in soil 

organic C (SOC) in the top 7-cm of soil in no-till practices compared to tillage across 67 long-

term studies, Vanden Bygaart et al. (2003) and Angers et al. (1997) did not find any differences 

between no-till and conventional tillage when sampling to a deeper soil depth. Vanden Bygaart 

and Angers (2006) note the obstacles in comparing measured SOC values due to differences in 

equivalent soil sampling depth, bulk density, landscape, climate, soil type and experiment 

duration. Another confounding factor is the lack of a standardized description of tillage, and the 

variety of related practices used in many research reports. Measurement difficulties also 

complicate the issue—changes in soil C can take up to a decade to detect if trends are measured 

using destructive sampling (Smith, 2004). Recently, several publications have been critical of 

conservation agriculture and no-till because some studies concluded that no-till does not increase 

C sequestration or increase crop yields (Baudron et al., 2012) especially in low yield environs 

common in Sub-Saharan Africa (Cheesman et al., 2016).  However, these results are not 

surprising; it is hypothetically difficult to increase SOC without substantial plant biomass. 

Some older research papers and textbooks provide examples of results obtained in the 

USA showing that tilling enhances CO2 emissions (e.g., Reicosky et al., 1995; Bear, 1953; West 

and Marland, 2002). Similarly, recent work found greater C sequestration with no-till during the 
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crop growing season using BREB in Lesotho and greater no-till sequestration when comparing 

fallow treatments with cover crops in Zimbabwe (O’Dell et al., 2014; O’Dell et al., 2015). Baker 

and Griffis (2005) compared the net ecosystem exchange (NEE) of contrasting tillage regimes 

and cover crops in a maize (Zea mays L.)-soybean (Glycine max L.) rotation using eddy 

covariance (EC) but found no significant differences in the NEE of strip tillage with a cover crop 

compared to conventional tillage with no cover crop. Hollinger et al. (2005) reported that maize 

sequestered C, while soybean emitted C during two years of a six-year maize-soybean rotation 

EC study. Using EC, Taylor et al. (2013) found that oat (Avena sativa L.) crops grown on fields 

converted from perennial hay/pasture were net emitters for more than three years while a control 

hay/pasture field sequestered C.  

Many researchers rely on SOC changes by soil depth as the means to determine if C is 

accumulated. Yet, without accurate surveying measurements from the bedrock to the soil 

surface, any total SOC estimates will be incomplete and the resulting determinations of changes 

in accumulated C will be questionable. An obvious example could be the subsidence post 

measuring soil depth from the bedrock at the Everglades Agricultural Area in Belle Glade, FL 

where oxidation of SOC in a histosol profile has resulted in dramatic soil loss as evidenced by 

the subsidence post markings (Stephens and Johnson, 1951; Shih et al., 1998).  

Micrometeorological methods including BREB systems and EC provide alternative 

methodologies for investigating changes in crop and soil carbon inventories. These methods have 

been used to quantify the differences in CO2 flux between agricultural practices (Dugas et al., 

1993; Taylor et al., 2013; O’Dell et al., 2015). The exchange (flux) of CO2 between the surface 

and the atmosphere can alternatively be measured using static or dynamic chambers. Chamber 

systems have spatial and temporal challenges somewhat similar to soil sampling (Norman et al., 
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1997; Davidson et al., 2002; Reicosky, 1997; Reicosky and Lindstrom, 1995), and are therefore 

less frequently used in contemporary studies. While the EC and BREB approaches are 

technically demanding, we believe them to be the optimal approach to evaluate how soil C 

sequestration can be manipulated to intensify management impacts. EC and BREB systems 

measure the flux of CO2 between the atmosphere and the terrestrial system and by summing this 

flux, the NEE can be determined for a type of ecosystem over a period of time (Chapin et al., 

2006). For the purposes of this paper, the term sequestration is used to reflect the capture of 

atmospheric CO2 by the ecosystem or treatment, e.g., through photosynthesis, while CO2 

emissions refers to a release of CO2 by the ecosystem to the atmosphere, such as through 

respiration. While the ecosystem includes soil, organic matter, plants and other biota, the NEE 

does not distinguish between the components of the ecosystem. The objective of the present 

study was to determine tillage effects on CO2 emissions during the maize growing season using 

the BREB methodology. 

Materials and Methods 

Site Description 

This study site was in north-central Ohio, USA (40.606° N, -82.674° W, 426 m asl). 

Micrometeorological and soil properties were measured from 6 May to 17 August 2015. The soil 

series on the 9-ha research site are classified as: Bennington (fine, illitic, mesic Aeric 

Epiaqualfs), Amanda (fine-loamy, mixed, active, mesic Typic Hapludalfs), Centerburg (fine-

loamy, mixed, active, mesic Aquic Hapludalfs), and Condit (fine, illitic, mesic Typic Epiaqualfs) 

in USDA Soil Taxonomy (USDA Soil Survey Staff, 1999). The surface soil texture is a silt loam 

and the study site has a slope of 2-6%. The climate is classified as humid continental (Dfb) 
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according to Köppen climate classification, with mean annual rainfall of 955 mm. The study site 

was managed as an annual row crop production system under no-till for seven years prior to the 

present study. The prior year’s crop was maize.  

The study site consisted of two adjacent square plots approximately 4.5 ha each; one plot 

managed as no-till and the other tilled. A BREB micrometeorological station was erected near 

the center of each plot. On the no-till plot, maize was planted directly without any tillage except 

for opening the seed slot (row cleaners were removed). The tilled plot was tandem disked (to 

manage crop residues), moldboard plowed to a depth of 15 cm, then tandem disked again 

followed by planting.  

Both plots were planted with maize (Zea mays L.) on 8-10 May 2015 at a population 

density of 84,000 plants ha-1 using 0.76-m rows using a John Deere 7200 6-row Conservation 

planter. Nitrogen (N) fertilizer was applied to both plots on 3 June 2015 as granular urea (46-0-0) 

at the rate of 224 kg N ha-1, phosphorus (P) was applied as triple super phosphate (0-45-0) at 

112 kg P ha-1 and potassium (K) was applied as potash (0-0-60) at 112 kg K ha-1 prior to 

planting.  

Micrometeorological Measurements and Data Analysis 

Air temperature, vapor pressure and CO2 concentrations were measured before and after 

planting by the BREB systems, at 0.2- and 1.8-m height above the soil or canopy (note: the 

BREB units were raised incrementally as the maize crop grew, see below). The BREB units had 

shielded horizontal air intake tubes facing the direction of prevailing winds (west). Temperature 

was measured with negative temperature coefficient bead type thermistors, vapor pressure was 

measured with relative humidity probes (model HC2-S3-L, Rotronic, Switzerland supplied by 

Campbell Scientific, Inc, Logan, UT) and CO2 concentrations were measured with non-
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dispersive infrared gas analyzers (model LI-820, LI-COR Inc., Lincoln, NE). Five-second sensor 

data were averaged and recorded every five minutes using a data logger (Model CR3000, 

Campbell Scientific Inc.). To overcome sensor bias at the two heights, the intake tubes housing 

the sensors were attached at the end of a centrally mounted rotating arm that swapped the 

position of the atmospheric sensors every five minutes. To allow for equilibration after sensor 

rotation, the data logger waited two minutes before collecting 5-s readings in estimating the 5-

min average from three minutes of data. As the crop grew, the BREB temperature, humidity and 

CO2 sensors were elevated so that the lowest sensor remained about 0.2 m above the crop 

canopy, with the height differential (1.6 m) between sensor intake points remaining constant.  

The BREB stations also measured net radiation, soil heat flux, soil temperature, and wind 

speed. Net radiation was measured with a net radiometer (NR Lite2, Kipp and Zonen, Delft, The 

Netherlands), soil heat flux with soil heat flux plates (model HFT3-L, Radiation Energy Balance 

System (REBS), Seattle, WA) and soil temperatures with four Type “T” thermocouples, two 

buried at 1.5 cm and two at 4.5 cm below the surface. Volumetric soil moisture content was 

measured 3 cm below the surface with a water content reflectometer (model CS616, Campbell 

Scientific, Inc, Logan, UT). Wind direction and speed were measured at the till BREB station 

with a mechanical wind sensor (Model 05305-5, R. M. Young, Inc. Traverse City, MI), and wind 

speed was measured at the no-till BREB station with a 3-cup anemometer (model 014A, Met 

One Instruments, Inc., Grants Pass, OR). Rainfall was measured at the no-till BREB station with 

a tipping bucket rain gauge (model TE525, Texas Electronics, Dallas, TX). Atmospheric 

pressure was recorded with one silicon altimeter/barometer pressure sensor (model MPX4115, 

Freescale Semiconductor, Inc., Tempe, AZ). All sensors except thermistors and thermocouples 
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were new and factory-calibrated. Thermistors were created and calibrated in the laboratory; 

thermocouples were created and calibrated in the field.  

Five-second micrometeorological measurements were averaged to calculate 30-min CO2 

fluxes according to BREB system theory (Bowen, 1926; Kanemasu et al., 1979; Webb et al., 

1980; Held et al., 1990; McGinn and King, 1990; Dugas, 1993; Perez et al., 1999; Rosenberg et 

al., 1983) using the following equations as reported by O’Dell et al. (2015). Values of the Bowen 

ratio () were derived as: 

 = [P  CP(ΘL – ΘU)]/[   (eL – eU)]                                     (1) 

where, P is measured atmospheric pressure, CP the specific heat capacity of air, ΘL and 

ΘU are the potential temperatures calculated from air temperatures measured at lower and upper 

positions, λ the latent heat of vaporization of water,  the ratio of the molecular weights of air 

and water, and eL and eU are the vapor pressures at lower and upper positions. 

Latent heat flux, LE (W m
-2

) was calculated as: 

LE = (Rn – G0)/(1 + )                                                 (2) 

where, Rn is the measured net radiation and G0 is the soil heat flux at the soil surface. The 

correction of soil heat flux for heat storage above the depth of the soil heat flux measurement, 

S, where, G0 = G0.06m + S was calculated as: 

S = C (T/t) z                                                     (3) 

where, S is the change in heat storage above the soil heat flux plate, C the volumetric 

heat capacity of the soil, T the change in temperature (current minus previous) of the soil above 

the heat flux plate taken from average soil temperature measurements at 1.5 and 4.5 cm depths, 
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t is the time step (s), z is the depth of the soil heat flux plate (6 cm). C was calculated (de Vries, 

1963) as: 

C = Cm (1 – f) + Cw                                                   (4) 

where, the volumetric heat capacity for dry soil is Cm (2.35 MJ m
-3

 K
-1

 (Ochsner et al., 

2001) the volumetric heat capacity of water is Cw (4.18 MJ m
-3

 K
-1

), and soil volumetric water 

content,  was based on measurements from soil moisture sensors in both the tilled and untilled 

plots. Soil porosity, f, was calculated as: 

f = 1 – (b/s)                                                         (5) 

where, b is soil bulk density, measured at 1.31 and 1.5 Mg m
-3

 for the till and no-till 

plots respectively. Soil particle density, s, was assumed to be 2.65 Mg m
-3

.  

In practice, two additional terms enter into consideration in the surface energy budget: (a) 

the storage of heat in the canopy biomass and its water content and (b) the energy used in 

photosynthesis. Meyers and Hollinger (2004) report a combined influence on the surface energy 

budget comprising about 15% of the net radiation for a fully developed maize canopy in daytime. 

For the Ohio study reported here, canopy biomass was estimated from yield and the harvest 

index factor for rainfed maize (Djaman et al., 2013). Heat storage in the canopy at the final stage 

of plant growth at the end of the experiment was found to rarely exceed 1% of net radiation. The 

photosynthetic energy used was also estimated to be small, and hence both terms have been 

omitted from the simple surface energy budget on which the analysis to follow rests. Sensible 

heat flux, H (W m
-2

) was calculated as: 

H = Rn – G0 – LE                                                        (6) 

Turbulent diffusivity for sensible heat, Kh (m
2
 s

-1
) was calculated as: 

Kh = (H/bCp)  (z/Θ)                                                 (7) 
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where, bCp is the volumetric heat capacity for air, z is the sensor separation distance 

(1.6 m). 

The CO2 flux, A, (kg m
-2

 s
-1

) was then calculated as:  

A = Kc (c/z)                                                        (8) 

where, Kc is the turbulent diffusivity for CO2 (m
2
 s

-1
), assumed to be equal to the 

turbulent diffusivity for sensible heat, and c is the average difference in CO2 density between 

measurement heights.  

The CO2 flux was corrected for temperature and vapor density differences in terms of 

latent and sensible heat flux using the following equation (Webb et al., 1980): 

Acorr = A + (c/a)  (0.649  10
-6

  LE + 3.358  10
-6

  H)                   (9) 

where, Acorr and A are in kg m
-2

 s
-1

, c is the average CO2 density at both measurement 

heights, a is the density of dry air. In practice, the correction is sufficiently small that its 

consequences are within the error bounds associated with the measurements. 

As expressed above, the purpose of the study was to explore the role of tillage within the 

context of CO2 emissions and/or sequestration. In view of the experimental complexity, we 

limited the study to the crop growth period. Sensor data recording began on 6 May 2015 (before 

seedling emergence) and extended to 17 August 2015 (crop senescence); therefore the 104-day 

experimental period encompassed the entire period of crop growth. The sign conventions used in 

this analysis follow standard micrometeorological practice wherein CO2 flux is positive when 

CO2 is emitted from the surface and negative when sequestered/absorbed. Data recorded while 

rain was falling or when sensor failures resulted in incomplete datasets were omitted.  

Flux calculations during the night and transition periods (sunrise and sunset, when 

temperature differences were close to zero) are problematic, resulting in many periods of large 
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uncertainty that produced spikes in calculations of CO2 flux, as also reported elsewhere (e.g., 

Gilmanov et al., 2003; Massman and Lee, 2002; Aubinet, 2008; Savage et al., 2009). We utilized 

an algorithm to remove data spikes in the half-hour CO2 flux data using a median filter similar to 

that used with eddy covariance data (Papale et al., 2006). The strength in this approach lies with 

the median’s resistance to local outliers. While a median filter can distort the flux signal, it is 

possible to adjust the window width and threshold value as a means to tune the median filter and 

limit this distortion. This limitation is solved with the use of a median filter extension called the 

Hampel identifier (Davies and Gather, 1993; Hampel, 1985). This filter depends on both the 

window width and an additional tuning parameter: a threshold. If the threshold value is reduced 

to zero, the Hampel identifier functions as a typical median filter, and if the threshold approaches 

infinity the filter effectively becomes an identity filter (Pearson, 1999). The parameters of the 

Hampel identifier for the two datasets were tuned by trial and error to best exclude outliers. The 

half width window was chosen to be 5 data points meaning that the window was in total 2.5 

hours (five 30-min data points). The threshold value was chosen as 5. Spikes remaining after the 

application of the median filter may be a reflection of atmospheric phenomenon or artifacts of 

the BREB method, especially during night and transition periods.  

Once the data spikes were identified they were removed and the data gaps were linearly 

interpolated. The maximum range of removed and/or missing values interpolated was limited to 

two hours or less (four 30-min data points). “Absent data” for periods longer than two hours 

were not interpolated. For consistent comparison, the total sum of CO2 flux was calculated for 

the period when flux data was available for both till and no-till instruments.  



35 

A non-parametric bootstrap procedure (Efron, 1979) was used to determine the variance 

around the time evolving accumulation of CO2, as described in O’Dell et al. (2015) and was 

performed with Stata version 14.1 (Stata Corporation, College Station, Texas, USA).  

Results and Discussion 

Figure 1.1 provides graphs showing continual 30-min CO2 flux for each month. During 

May there were positive CO2 fluxes (emissions) from both the till and no-till plots with greater 

emissions from the tilled treatment. The tilled plot was plowed on 6 May 2015 (Day of Year 

(DOY) 126) and planted 8-10 May 2015 (DOY 128-130) and Figure 1.1 shows positive CO2 

fluxes after plowing in May and during the period of emergence. For five days following tillage 

on DOY 126 the average daytime CO2 flux (between 1000 and 1600 hrs) for till and no-till were 

similar in magnitude at 0.61 +/- 0.03 and 0.40 +/- 0.02 g CO2 m
-2

 hr
-1

 respectively (plus or minus 

standard error of the mean). During the subsequent five-day period in May (DOY 132-137), 9.1 

mm of rain fell. Whereas before the rainfall the soil temperatures were similar (19.4 +/- 0.22 and 

19.3 +/- 0.22 ᵒC for till and no-till respectively), during the nine-day period (DOY 138-146) 

following the rainfall soil temperatures averaged over 2 ᵒC greater in the till than the no-till (17.4 

+/- 0.29 and 15.2 +/- 0.20 ᵒC respectively) due to collective effects of residue cover, albedo and 

greater evaporative cooling at the soil surface. The average daytime CO2 flux over the tilled plot 

(0.73 +/- 0.02 g CO2 m
-2

 hr
-2

) during this nine-day period following rain was three times greater 

than over the no-till (0.21 +/- 0.01 g CO2 m
-2

 hr
-2

), consistent with expected rates of microbial 

decomposition (Swift et al., 1979). Greater emission of CO2 is expected following intensive 

tillage due to aerobic and anaerobic decomposition of exposed organic matter that was occluded  
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Figure 1.1. Plots of continual 30-min calculated CO2 flux for each month of the experiment for 

the till treatment (red) and no-till treatment (green) beginning on 6 May to 17 August 2015 

(DOY 126-229). 
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in aggregates and unavailable to degradation prior to tillage (Elliott and Coleman, 1988; Beare et 

al., 1994; Six et al., 2000). 

Figure 1.2 shows the mean CO2 flux during May by time of day for the till (in red) and 

no-till (in green) treatments. The mean 30-min CO2 flux by time of day for the till and no-till 

treatments was then averaged and compared during four distinct periods: daytime between 0900 

and 1800 hrs, nighttime between 2200 and 0500 hrs, the sunrise transition period between 0500 

and 0900 and sunset transition period between 1800 and 2200 (Table 1.1). The mean CO2 flux 

during each of these periods in May was significantly different when till was compared to no-till 

using the Student's t-test (P<0.01). 

During June the maize plants were approaching exponential growth in biomass. The 

positive fluxes (emission) measured over both plots began to decrease (Figure 1.1) and negative 

fluxes began to appear near the end of June (roughly day 179-182). These trends are especially 

revealing because of the unusually heavy rainfall—nearly 200-mm above average rainfall (Table 

1.2). Of the monthly total of 300 mm, 232 mm fell during a ten-day period between June 12-20 

(DOY 162-171) (Figure 1.3). It seems likely that this period of heavy rain resulted in 

denitrification and subsequent N loss for the cropping season. June was followed by below 

average rainfall for the rest of the growing season (including periods of drought stress during R1 

growth stage).  
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Table 1.1. Mean CO2 flux (g CO2 m
-2

 hr
-1

) for each time of day period by month and 

treatment, when mean flux was significantly different between treatments according to a t-test  

(p < 0.01). Mean flux (when no significant difference found between treatments) are shaded in 

gray. 

Month Time Period Till No-till 

Significant 

Difference 

Net 

Sequestration 

Net 

Emission 

May Daytime
a
  0.651  0.292 Y N Y 

 Nighttime
b
  0.690  0.360 Y N Y 

  

Morning 

Transition
c
  0.542  0.284 Y N Y 

 

Evening 

Transition
d
  0.416  0.159 Y N Y 

June Daytime  0.128  0.161 N N Y 

 Nighttime  0.0841  0.179 Y N Y 

 

Morning 

Transition  0.166  0.245 N N Y 

 

Evening 

Transition  0.216  0.0624 Y N Y 

July Daytime -1.16 -1.33 N Y N 

 Nighttime  1.04  0.412 Y N Y 

 

Morning 

Transition  0.451 -0.017 Y Y Y 

 

Evening 

Transition  0.171 -0.116 Y Y Y 

August Daytime -2.17 -2.40 Y Y Y 

 Nighttime  2.21  0.701 Y N Y 

 

Morning 

Transition  0.695  0.375 N N Y 

 

Evening 

Transition -0.166 -0.341 N Y N 

Note. 
a
Daytime hours between 0900 and 1800; 

b
Nighttime hours between 2200 and 0500; 

c
Morning transition hours between 0500 and 0900; 

d
Evening transition hours between 1800 and 

2200.  
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Figure 1.2. Mean CO2 flux plus/minus one standard error for the till (red) and no-till (green) 

treatments by time of day for each month. 
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Table 1.2. Monthly precipitation measured at experiment site compared to monthly total and 30 

year mean recorded at Mansfield Ohio weather station 21.2 km NE of experiment site (NOAA 

National Centers for Environmental Information, 2016). 

 
May June July August 

 
------------------- mm ------------------ 

Monthly precipitation  measured at experiment site 83.1 300 93.0 27.4 

Monthly precipitation at Mansfield, OH weather 

station 112 189 37.8 32.3 

30-year mean monthly precipitation at Mansfield, OH 

weather station 115 121 111 111 

 

Figure 1.3. Upper graph is the accumulated sum of 30-min CO2 flux for duration of experiment 

and lower graph is daily rainfall for the same period. 
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Towards the end of June (DOY 175-181) both plots began to sequester CO2 during the 

day. The 30-min flux graph for June (Figure 1.1) shows greater sequestration by the tilled plot 

than the no-till plot, which corresponded with greener and taller plants. On the whole, during 

June the no-till plot emitted 98.7 g CO2 m
-2

 while the till emitted 59.2 (Table 1.3). This was the 

only month during which the no-till plot emitted more CO2 than the tilled. CO2 flux data for June 

(Figure 1.2 and Table 1.1) show no significant differences between the tilled and no-till 

treatments, except during the nighttime and evening when the no-till plot emitted more than the 

tilled. 

Rainfall during the experiment was erratic and excessive. June had near-record rainfall at 

the research site that continued into the first half of July (Table 1.2). As the soils drained and 

began to dry out there were some days of strong sequestration for both plot treatments, mainly 

occurring after 22 July 2015 (DOY 203) (see Figure 1.1). Precipitation measured in the field was 

300 and 93.0 mm for June and July, respectively. The C accumulations during July (Figure 1.3) 

were flat until after the rains ceased. At that time, sequestration rates paralleled increased crop 

growth as the crop approached the near exponential growth period. July shows negative CO2 

fluxes (Figure 1.1) during the day with higher emissions at night for the tilled plot (Table 1.1). 

Abnormally high rainfall resulted in marginally chlorotic (lighter green color) and shorter maize 

plants in several rows of both tillage treatments. These observations effectively predicted lower 

than normal crop productivity. While no-till has many benefits to long-term soil health and 

environmental sustainability, no-till fields are greatly impacted by high rainfall because the soil 

surface cover prevents the soil from drying, which slows soil warming, retards crop growth and 

development, and enhances denitrification conditions. Linn and Doran (1984) found maximum 

production of CO2 by soil microbes when the percentage of water-filled pores approached 60%, 
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Table 1.3.  Summation of 30-min CO2 flux by month and treatment between May 6 and August 

17. 

Treatment May June July August Sum of period 

 
-------------------------- g CO2 m

-2
 per period -------------------------------- 

Till 300 59.2 -145 -68.1  146 

No-till 141 98.7 -221 -282 -263 
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and they found on average greater percentages of water-filled pores in no-till compared to tilled 

soils. Greater precipitation during the first part of June likely contributed to greater microbial 

respiration on the no-till plot during that month. 

The BREB stations continued measuring fluxes through August 17 (Figure 1.1). The 

mean 30-min CO2 flux graph illustrates large negative daytime fluxes as well as large positive 

night time fluxes, with the net accumulation being negative for both plots during August (Table 

1.3). Table 1.1 shows that the crop and soil managed under no-till had, on average, less emission 

at night in August and greater sequestration during the day than soils that had been intensively 

tilled.  

Monthly evapotranspiration (ET) was estimated from the BREB latent heat fluxes, 

calculated as ET = LE/λ, and was compared with monthly precipitation rates in Table 1.4, 

expressed in units of mm per period. Comparison of monthly ET with rainfall can indicate water 

availability for crop growth (Dı́az-Zorita, et al., 2002; FAO, 1985). During May and June, 

precipitation exceeded ET; from May through July—the period with the most rain—the tilled ET 

was greater than no-till ET. During August—when ET was more than double the precipitation—

the no-till and tilled ET were similar, suggesting that most ET was from canopy transpiration 

and/or soil moisture conserved by the no-till residue that became available for the final period of 

crop growth during a dry period. Consistent with evapotranspiration, a comparison of sensible 

and latent heat flux showed greater latent heat flux for the till treatment and greater sensible heat 

flux for the no-till during May and June, while differences were not detected during July and 

August. A comparison of net radiation and soil heat flux did not show discernable differences 

between the two treatments. 



44 

Table 1.4. Monthly evapotranspiration computed from latent heat flux for each treatment 

compared with monthly measured precipitation. 

Treatment May June July August 
Sum of 

period 

 
------------------------------ mm -------------------------------- 

Monthly precipitation 82.6 300 93.0 22.1 497 

Till 71.3 89.4 109 58.9 329 

No-till 49.1 62.8 97.3 58.1 267 
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Average CO2 flux by time of day for each month (Figure 1.2) summarizes the diurnal 

flux patterns and their change over time. These graphs show a more consistent and smooth 

behavior for the daytime hours with greater variability at night, especially for the tilled treatment. 

During July and August, crop growth dominates the daytime flux resulting in smaller differences 

between treatments. However following the tillage in May, the tilled plot showed greater soil 

respiration (emission) than the no-till, a trend that continued through July and August at night. 

Calculated 30-min fluxes of CO2 were totaled by month and for the period from May 6 through 

August 17 for the till and no-till plots (Table 1.3). These calculations show that no-till 

sequestered 263 g CO2 m
-2

 while the tilled plot emitted 146 g CO2 m
-2

 during the 104 days of 

measurement, a difference of 410 g CO2 m
-2

.  

A rolling bootstrap simulation (Figure 1.4) was used to estimate the CO2 accumulation 

variance for each treatment (at 90% confidence interval). Data for periods when either treatment 

did not have values for over two hours were removed leaving ca. 75% of the original data (we 

also removed the first 10 days to create the initial set for resampling data). The 90% confidence 

intervals of the bootstrap distribution are shown in grey (Figure 1.4). The bootstrap accumulation 

for this 104 day period was 146 g CO2 m
-2

 (90% confidence interval -53.3 to 332) for the till plot 

and -263 g CO2 m
-2

 for the no-till plot (90% confidence interval -432 to -99.9).  

The difference in total CO2 flux between the two plots was 410 g CO2 m
-2

 for 104 days. 

Our results suggest that no-till soil management practices have the potential to sequester C 

compared to soil management practices that use intensive tillage. The results also suggest that 

the extreme rainfall that occurred the year of this study may have lessened the beneficial impact 

of no-till practices within the context of CO2 sequestration. While there is no such thing as a 

“normal” year, 2015 was a very wet year at the study site. The major rainfall event (in June   
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Figure 1.4. Comparison of accumulated sum of half-hour CO2 for till and no-till plots (shaded 

areas are 90% bootstrapped confidence intervals). 
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(DOY 162-171), as indicated in Figure 1.3) was followed by a period of very dry weather during 

pollination that greatly impacted overall yields.  

The crop produced below average yield—likely the lowest yields harvested in the recent 

history of the site—due to above average rainfall in June and below average rainfall in August 

during the pollination and grainfill periods. Denitrification stunted plants resulting in low ear 

placement (< 0.3 m above the soil surface) and excessively high combine header loss due to low 

ear placement on the maize stalk. An adjacent experiment comparing the combine harvest totals 

with two hand harvesting methods measured a significantly lower (p < 0.0001) combine harvest 

yield at 1.70 t ha
-1

 than both hand harvest methods at 2.75 t ha
-1

 for a ten-plant method and 2.72 t 

ha
-1

 for an in-the-row method (Sullivan, 2016). This adjacent experiment also measured a 

significantly lower yield (p < 0.0002) for the no-till at 2.17 t ha
-1

 compared to 3.26 t ha
-1 

for the 

till plot. Despite the lower yield for no-till, there was still some advantage by the no-till practice 

in sequestering C. In a typical year with greater crop yields and normal rainfall one could expect 

sequestration rates to be higher. The whole farm maize yield exceeded 14 t ha
-1 

the following 

year (2016) with a better rainfall—more normal—pattern.  

Studies have shown that surface residue decomposes more slowly than residue 

incorporated with greater soil contact (Coppens et al., 2004; Noack et al., 2014). Surface residue 

can act as an insulating barrier reducing soil temperatures and the no-till treatment also may have 

protected soil C with lower soil temperatures consistent with studies that found greater CO2 

emissions from soil covered with crop residue than from bare soil (Corradi et al., 2013; Al-Kaisi 

and Yin, 2005; Fortin et al., 1996). Fortin et al. (1996) showed a correlation between lower soil 

temperatures and lower CO2 flux for no-till treatment, but this was not found in the present 

study.  
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In general, the CO2 fluxes reported here are measurements made above the maize canopy. 

They represent the consequence of exchange with the soil plus exchange with crop biomass 

above the surface. If it was assumed that the measured CO2 BREB fluxes at night indicate 

exchange with the soil, with negligible involvement of the plants (whose stomata are then 

closed), then it is apparent that the tilled soil must lose CO2 considerably more rapidly than the 

no-till. Further, if this increased rate of CO2 loss from the tilled soil continues through the 

daytime, then the present data would indicate a substantial difference between the accumulation 

of CO2 by the growing canopies. An estimate of the rate of CO2 accumulation in the growing 

biomass can be derived by simply subtracting the mean nighttime CO2 flux from the daytime as 

shown in Table 1.5. While no more than a first-order approximation, the results show that when 

the crop is growing most rapidly in July and August, the tilled plot accumulated more biomass 

than the untilled—a conclusion that is compatible with farming expectations that tilling is 

economically beneficial over the short term. 

The present results indicate that no-till practices can reduce the loss of CO2 from the crop 

surface during the growing season, when compared with soil tilled after seven years of no-till. 

When combined with cover crops, it is possible that no-till practices could produce a substantial 

net annual sequestration of CO2. In the present study, tillage resulted in increased CO2 loss from 

the soil that appears to have continued throughout the study period. Tillage exhumes buried C 

sources and provides a means for the soil organisms to mineralize previously occluded organic 

matter and accelerate decomposition of recently buried crop residue. This study shows that more 

CO2 flux can be lost from the terrestrial system to the atmosphere during the first year of a 

transition from a no-till to a conventionally tilled management practice, confirming that tilling 
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Table 1.5. Accumulation rates of CO2 by the canopy assuming that nighttime losses from the 

soil are representative of the daytime mean fluxes (g CO2 m
-2

 hr
-1

) as shown in Table 1.1. 

Till May June July August 

Daytime flux 0.651 0.128 -1.16 -2.17 

Nightime flux 0.69 0.084 1.04 2.21 

  Excess daytime vs night -0.039 0.044 -2.2 -4.38 

No-Till May June July August 

Daytime flux  0.292 0.161 -1.33 -2.4 

Nighttime flux 0.36 0.179 0.412 0.701 

  Excess daytime vs night -0.068 -0.018 -2.74 -3.10 
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increased the decomposition and respiration of crop residues during the growing season resulting 

in a net C loss from soils.  

In addition to sequestering C, the retention of residues on the soil surface has many 

positive effects on soil by improving soil aggregation, reducing erosion, and the retention and 

transport of heat, water, and air in the soil (Larson et al., 1978). Though there were periods of 

high rainfall during the growing season, during drought conditions no-till surface residue can 

reduce soil moisture loss (Anderson, 2015). While it appears that climate patterns are becoming 

more erratic and extreme—as evidenced in this study—no-till can be an important management 

tool to enhance the role of soil in mitigating increased atmospheric CO2 levels. While C can be 

sequestered in humid areas under intensive agriculture, sequestering C in areas with marginal 

soils and rainfall will likely require that winter cover crops be used to further produce biomass 

that will be needed if soil C levels are to be improved.  

Conclusions 

The present study found that the CO2 flux for a growing season over an experimental 

tilled plot was 410 g CO2 m
-2

 greater than over an adjacent untilled plot. It is recognized that our 

maize yields were likely affected by excessive precipitation resulting in water-logged soil 

conditions, N loss, denitrification, and retarded crop growth. Higher emissions under the tilled 

treatment were likely due to a release of organic matter built up during seven preceding years of 

no-till practice, as reported in other studies. Subsequent tillage could remove more stored organic 

matter but would result in lower emissions over time (less new previously occluded organic 

matter becoming available for mineralization). The ability of no-till to keep the soil cooler may 

reduce decomposition and preserve soil C, providing a co-benefit in adapting to rising global 
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temperatures. While our maize yields were much less than average yields for this area, our 

results show that no-till can be an important practice that not only minimizes C loss from soil but 

can also be an important tool for sequestering C in an environment becoming more and more 

CO2 enriched. 

Although the results of this experiment add observational data in support of no-till as a 

practice to sequester C, more data are needed to understand and quantify these differences under 

varying climate regimes. To understand the potential magnitude of emissions, factors that impact 

those emissions, and the overall potential for agriculture to become a recognized climate change 

mitigant warrants further study. While no-till could reduce CO2 emissions when considering 

agricultural practices to offset emissions from other sectors, it can only be one small part of an 

agricultural program that ensures annual net agricultural C sequestration in high yield environs. 

Comparative studies of a suite of practices such as the use of cover crops, reduced tillage, and 

reduced fallow periods are likely necessary to reveal the extent of net soil C sequestration across 

a greater range of arable soils.  
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Appendix 

Abbreviations 

Excluding SI units and US States 

asl above sea level 

BREB Bowen ratio energy balance 

C carbon 

C volumetric heat capacity of the soil 

CO2 carbon dioxide 

Cm volumetric heat capacity for dry soil 

Cp specific heat capacity of air 

Cw volumetric heat capacity of water 

e vapor pressure 

DOY day of year 

EC eddy covariance 

ET evapotranspiration 

et al. et alia (and others) 

G0 soil heat flux at the surface 

G0.06m soil heat flux measured 0.06m below the surface 

GHG greenhouse gas 
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H sensible heat flux 

hr hour 

K potassium 

K turbulent diffusivity 

Kc turbulent diffusivity for CO2 

Kh turbulent diffusivity for sensible heat 

LE latent heat flux 

N nitrogen 

NEE net ecosystem exchange 

NOAA National Oceanic and Atmospheric Administration 

P phosphorus 

p probability 

P atmospheric pressure 

R1 reproductive stage of maize with R1 where silk becomes visible outside the 

     husk leaves 

Rn net radiation 

SOC soil organic carbon 

T temperature of the soil 

t time 
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USDA United States Department of Agriculture 

z depth of soil heat flux plate 

 Bowen ratio 

ΔS change in heat storage above the soil heat flux plate 

Δt change in time 

Δz sensor separation distance difference 

Δρc average difference in CO2 density between measurement heights 

ε ratio of the molecular weight of air and water 

Θ potential temperature  

 soil volumetric water content 

λ latent heat of vaporization 

ρa density of dry air 

ρb soil bulk density 

ρc average CO2 density at both measurement heights 

ρs soil particle density 

ϕf soil porosity 
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CHAPTER 2  

TILLAGE AND NUTRIENT SOURCE EFFECTS ON SOIL 

CARBON DIOXIDE EMISSIONS AND MAIZE YIELD 
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Abstract 

Re-use of the by-products from industrial biotechnology processes has become an 

important component of circular bio-economies whereby nutrient-rich wastes are returned to 

agricultural land to improve soil fertility and crop productivity.  Heat-inactivated spent microbial 

biomass (SMB) from the production of 1,3-propanediol is an industrial fermentation by-product 

with nutrients that could replace conventional fertilizers. Our objectives were to evaluate 

methods for measuring carbon dioxide (CO2) emissions over agriculture and determine if SMB 

utilization as a soil amendment in agriculture could reduce CO2 emissions and generate 

environmental benefits, while meeting farmer yield expectations. This study examined the 

replacement of typical farmer fertilizer practices with SMB, generated from a bio-manufacturing 

facility as applied to a local farm in East Tennessee, USA.  In addition to yellow dent corn (Zea 

mays var. indentata) grain yield, above-ground biomass, and soil organic carbon (SOC) were 

measured.  CO2 flux was measured using both Bowen Ratio Energy Balance (BREB) and eddy 

covariance (EC) micrometeorological methods.  This study also investigated the use of an 

aerodynamic method to replace BREB CO2 flux calculations when conditions were near the 
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limits of the BREB flux-gradient theory. The SMB applications provided yields typical of 

applications of low C:N products, with yields positively correlated with increasing application 

rates of SMB.  Treatments with SMB applications indicated greater increases in SOC and also 

emitted more CO2 (794 g CO2 m
-2

 yr
-1

) compared to a treatment with typical farmer practices 

(274 g CO2 m
-2

 yr
-1

) as measured by eddy covariance (EC).  In general, total CO2 emissions were 

greater, as detected by the Bowen Ratio Energy Balance (BREB) and aerodynamic methods than 

the EC method. Comparing the CO2 emissions of spent microbial biomass with typical fertilizer 

treatments provides information about nutrient cycling in the soil/plant ecosystem for improving 

productivity and increasing SOC. 

Introduction 

Climate change from unabated greenhouse gas (GHG) emissions presents an existential 

threat to humanity (Hansen et al., 2016; Xu and Ramanathan, 2017; Figueres et al., 2017) 

making the quantification of CO2 emissions from agriculture and industry important to 

understand.  Acknowledged goals of the biotechnology industry are to be environmentally 

friendly and to be perceived as being such.  As pointed out by the Ellen MacArthur Foundation 

(2013), when the waste of industrial biotechnology can be recycled into other industrial 

processes, then those materials promote the conservation of resources and reduction of waste.  

Using industrial waste as a resource elsewhere addresses sustainability goals and is a key 

element in the circular economy (Romero-Hernández and Romero, 2018).  Industrial 

biotechnologies applied to the production of bioenergy and chemicals use cleaner methods, 

require less energy, and produce less waste (OECD, 2011).  Moreover, recent industrial 

biotechnologies comply with a recently proposed definition of sustainability that “resources, 
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including energy, should be used at a rate at which they can be replaced naturally, and the 

generation of wastes cannot be faster than the rate of their remediation” (Cséfalvay, Akien, Qi, 

and Horváth, 2015; Horváth, 2018). 

An example of recovering resource value from recycled industrial waste is the use of 

industrial fermentation bioresidual waste as animal feed or nutrient input for crops (Westendorf 

and Wohlt, 2002; Moore, 2011; Tuck et al., 2012; Sullivan et al., 2017).  The use of waste as an 

input has been researched in agriculture with the use of manures since the 1800’s (Lawes, 1845; 

Lawes and Gilbert, 1863), but the use of industrial waste as a resource is a more recent 

phenomenon.  Bioresiduals generated by industrial biotechnologies tend to be rich in organic 

matter, containing macro- and micronutrients essential for plant growth, and therefore have 

agricultural value.  However, there remain technical, logistical, and social challenges and costs in 

value recovery as demonstrated by the municipal waste management industry (Rhyner et al., 

1995; Gregson et al., 2015), as highlighted by a negative reaction to dry biosolids being blown 

by high winds onto an adjacent property when New York City biosolids were applied to winter 

wheat (Triticum aestivum L.) farms in southern CO (Stulp, 1995).  

An additional criterion for assessing the sustainability of industrial biotechnology 

processes is the measurement of environmental impacts, such as the reduction of GHG emissions 

(Hermann et al., 2007; Adom et al., 2014). Comprehensive life cycle assessments (LCAs) can 

assess a spectrum of environmental impacts such as human and ecosystem toxicity (Jolliet et al., 

2003).  Guinée et al. (2011) state that a considerable portion of the total imposed environmental 

burden of product development is associated with the transport of the product itself as well as the 

eventual disposal of its waste or co-products.  Some LCAs that evaluate the sustainability of 

bioenergy utilize GHG emissions as one proxy to assess the environmental impact of a process 
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(Hermann et al., 2007; Chiaramonti and Recchia, 2010).  Measuring CO2 emissions from 

recovered wastes from one industry subsequently used as a valued input for another industry is 

one method to quantify the environmental sustainability of waste recovery. 

This study evaluates the use of an industrial fermentation waste product as a fertilizer 

replacement for agriculture.  Industrial fermentation uses biocatalysts such as micro-organisms to 

convert grain sugars and oils to produce bio-energy, food, pharmaceuticals, fibers, and chemical 

products.  The spent microbes are separated from the product. If these materials cannot be reused 

or recycled, they are disposed of in landfills (Halter and Zahn, 2017).  The present analysis 

examines the alternative strategy of using heat-inactivated spent microbial biomass generated 

from the production of 1,3-propanediol as a nutrient rich soil amendment.  The research focuses 

on two aspects: (1) yield benefits to farmers, and (2) environmental benefits in terms of soil 

fertility and CO2 emissions.  The specific research goals were to understand the C pathway (CO2 

flux rates and accumulation) of the spent microbial biomass into the soil-maize (Zea mays L.) 

ecosystem and atmosphere.  In particular, the study compares CO2 emissions from a plot treated 

with the spent microbial biomass with emissions from a plot treated with a typical farmer 

fertilizer practice.  The study was also designed to measure the extent to which applied spent 

biomass decomposes and is emitted as CO2.   

Micrometeorological methods, such as the BREB and EC systems, can be used to 

measure the exchange of heat, water vapor, and CO2 between the surface (soil and/or plant 

canopy) and the atmosphere (Dugas, 1993; Taylor et al., 2013; O’Dell et al., 2015).  Net 

ecosystem exchange (NEE) of CO2 is the net vertical CO2 flux between the soil/plant 

environment and the atmosphere (Chapin et al., 2006).  NEE provides estimates of the CO2 flux 

rate and accumulation of the spent biomass and farmer practice (FP) treated fields of the present 
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study, thereby allowing quantification of the beneficial aspects of the land application treatment.  

It is important to understand C sequestration pathways once a nutrient rich waste product is land 

applied and quantify CO2 emissions.  

The specific objectives of the present study were to (1) determine if there were 

differences in the NEE of CO2 over the course of one year, and (2) measure the maize yield 

following spent biomass application as compared to FP. 

Materials and Methods 

Site Description 

The study was conducted on a 19.1 ha farm in Loudon, TN (35.708° N, -84.373° W, 274 

m asl) with a slope of 2-12%.  The mapped soil series at the site were dominated by Decatur 

(fine, kaolinitic, thermic Rhodic Paleudults) and Emory series (fine-silty, siliceous, active, 

thermic Fluventic Humic Dystrudepts), with minor areas of Hermitage (fine-loamy, siliceous, 

semiactive, thermic Typic Paleudults) and Linside series (fine-silty, mixed, active, mesic 

Fluvaquentic Eutrudepts) (Soil Survey Staff, 2017).  The climate is classified as humid 

subtropical (Cfa) according to Köppen’s climate classification with mean annual rainfall of 1245 

mm (NOAA, 2019).  

The study site was managed as an annual row crop production system of maize under no-

till for three years prior to micrometeorological measurements and cropped to hay for five years 

prior to that.  

Treatment Applications 

The field site was divided between the SMB application and FP treatments.  The spent 

biomass was applied in March 2016.  In 2017 the site was subsequently divided into four 
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treatments to allow for incorporation of the SMB through a tillage operation, retaining no-till 

sections for both the FP and SMB.   

The present study reports one year of CO2 fluxes from October 2016 to October 2017, so 

as to accommodate a complete growing season and to follow the convention of summarizing net 

annual CO2 fluxes.  Flux calculations are presented for one year.  Accompanying factors such as 

farmer yield benefits or ecosystem impacts (e.g., changes in soil organic matter) are presented 

for two years.   

The study site was divided so that the north 8.4 ha area was set aside for the SMB 

application and the southern 10.3 ha received the FP treatment.  During the period 10-28 March 

2016, 9.34 t ha
-1

 of spent microbial biomass was spread on the SMB plot at a dry mass rate of 6.6 

t ha
-1

 (729 g kg
-1

dry matter as applied).  The SMB provided a potential loading that contributed 

592 kg N ha
-1

, 55 kg P ha
-1

, 22 kg K ha
-1

 of slow release mineralizable nutrients. 

Initial SMB application rates were based on chemical and historical values of organic soil 

amendments (Eghball et al., 2002; Gutser et al., 2005), assuming that approximately 50% of the 

N (296 kg N ha
-1

) was plant available the first year.  With the SMB applied using a side 

discharge manure spreader (Gehl model 1312 Scavenger, Gehl Company, West Bend, WI), many 

large clumps of SMB (> 100 cm
3
 in size) were found in the field. These clumps persisted 

throughout the growing season and reduced SMB nutrient mineralization and availability.  

Chemical analyses of the SMB indicated that approximately 25% of the N (148 kg N ha
-1

) was 

inorganic and immediately available to plants while the remainder was a slow-release organic 

form of N that was not available that cropping season.  Increased quantities of SMB application 

were applied the following growing season. 
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On 8 May 2016, 1.44 kg active ingredient (ai) ha
-1

 of glyphosate were applied to the 

entire field to kill weeds as a systemic burndown.  On 17 May, 2.2 kg ha
-1

 2, 4-

dichlorophenoxyacetic acid (2, 4-D) were applied for longer term control of broadleaf weeds.  

On 10 May, 20 kg P ha
-1

 as triple superphosphate and 74 kg K ha
-1

 were applied on both the FP 

and SMB plots and 179 kg N ha
-1

 were applied on the FP plot.  On 25-26 May 2016, maize 

(P1319HR, DuPont Pioneer, Johnston, IA) was no-till planted with an average population of 

63,600 plants ha
-1

.  Five 183-meter adjacent transects were harvested on the SMB and FP 

treatment plots on 7 October 2016 and grain weighed for yield calculations with a weigh wagon 

(Par-Kan model GW150, Par-Kan Company, LLC, Silver Lake, IN) with subsamples tested for 

moisture content.  The following year, the plots were harvested and grain yield samples weighed 

with the same weigh wagon on 14 November with three replicates harvested on the SMB no-till 

and four replicates on the remaining three treatment plots.  All grain yields were adjusted to 

15.5% moisture. 

On 30 May 2017, 1.44 kg ai ha
-1

 of glyphosate and 2.2 kg ha
-1

 2, 4-D were applied to the 

entire field.  From 12-15 June 2017, 19.5 t ha
-1

 of spent microbial biomass (dry mass rate of 13.1 

t ha
-1

 (with an average of 31% moisture) were spread on the SMB plot with a vertical beater 

manure spreader (Kuhn Krause Knight model 2044 ProPush, Kuhn Krause, Inc., Hutchinson, 

KS).  The biomass application was assayed as 1415 kg N ha
-1

, 104 kg P ha
-1

, 54.2 kg K ha
-1

, with 

approximately 354 kg N ha
-1

 expected to be plant-available within the first year of application.  

On 16 June 2017, a surface tillage operation was performed with a vertical tillage system (Kuhn 

Krause Excelerator model 8000-14, Kuhn Krause, Inc., Hutchinson, KS) to incorporate the SMB 

into the soil with the intent to reduce the size of persisting clumps, thereby increasing the SMB 

surface area and nutrient availability.  To compare the effects of tillage, the FP plot was also 
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tilled with a strip of approximately 18 m wide left untilled on each side of the line separating the 

SMB treatment from the FP.   

On 16 June, 112 kg N, 20 kg P and 74 kg K ha
-1

 were applied to the FP plot.  On 16-17 

June 2017, maize (Beck’s 6127A3 and XL
®

6575RR™ registered trademark of DuPont Pioneer 

and distributed by Beck’s Superior Hybrids, Atlanta, IN) was planted to both plots at a target 

population of 74,100 plants ha
-1

.  Seedling emergence rate was 63,000 plants ha
-1

, measured on 

27 June 2017.  A surface sidedress application of 67 kg N ha
-1

 was applied on 20 July 2017 to 

the FP plot.  

Soil bulk density and organic matter were sampled and measured to determine SOC 

content of the surface soil (0-15 cm depth).  Four discrete soil samples were collected before the 

biomass application in March 2016.  Twenty-seven discrete soil samples were collected in March 

2017 and 45 composite samples were collected in November 2017.  SOC concentration was 

measured on air-dried samples using automated thermal combustion instrumentation (model 

Flash EA 1112, Thermo Finnigan, Hemel Hempsted, UK).  Bulk density samples were taken for 

each of the composite samples in November 2017 and a subset of samples were averaged across 

similar treatment areas for March 2016 and 2017.  Bulk density was estimated from the soil core 

volume and rock-free oven-dried mass of soil.  SOC for each sample was then determined using 

an equivalent mass basis adjusting for bulk density by multiplying the SOC concentration by the 

bulk density and depth of the sample to arrive at total SOC per unit area (Mg SOC ha
-1

) for the 0-

15 cm depth (Ellert and Bettany, 1995; Nelson et al., 2008).  

Above-ground biomass of the maize including grain was randomly sampled for each of 

the four treatments on 20 September 2017.  Maize shoots with leaves and grain were cut off at 
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ground level from four 2.03 m
2
 areas per treatment.  Samples were oven dried at 105°C and 

weighed. 

CO2 Flux Measurements 

EC and BREB systems were used to measure micrometeorological and soil properties 

between 1 October 2016 and 30 September 2017.  Eddy covariance is the most commonly used 

method for measuring surface fluxes and NEE of CO2.  Prior to the development of inexpensive 

3D sonic anemometers and fast-response open-path IRGA’s, BREB systems were commonly 

used to estimate NEE, especially for grassland and agricultural ecosystems with short canopies 

(Angell et al., 2001), thus minimizing the need to include biomass heat storage terms in the 

energy balance relationship.  Some comparisons between EC and BREB methodologies yielded 

similar results (Frank and Dugas, 2001; Wolf et al., 2008), while Alfieri et al., (2009) found 

considerable differences between the methods for measurement of surface fluxes.  BREB 

systems are still being used to estimate evapotranspiration (Irmak et al., 2014; Vanomark et al., 

2018).  Gilmanov et al., (2017) and Skinner and Wagner-Riddle (2012) identified the need for 

annual studies comparing EC and BREB to evaluate historical BREB data for integration with 

current EC network data. 

Both the BREB and EC methods are based on the turbulent flow of air that transports 

heat, moisture, and trace gases such as CO2 between the surface and lower atmosphere.  The EC 

method estimates the vertical fluxes of energy and mass as the covariance of the vertical wind 

velocity and the energy or mass quantity; e.g., the product of the mean fluctuation of CO2 

concentration and vertical wind (Webb et al., 1980; Lee and Massman, 2011).  BREB is a flux-

gradient method that estimates the vertical flux of a gas from the time-averaged concentration 

gradient of the gas over a vertical profile by applying a turbulent transport coefficient known as 
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the turbulent diffusivity, K. Turbulent diffusivity coefficients for momentum, sensible heat, or 

latent energy are calculated from measurements of wind speed, temperature, and humidity; the 

last two made at two heights above the surface of interest.  The turbulent diffusivity for CO2 is 

assumed to be the same as that calculated for sensible heat (Monin and Obukhov, 1954; Dyer, 

1967; Brutsaert, 1982; Hicks, 1985). 

During daytime hours, mechanically-generated turbulence at the surface (due to the wind 

and friction) is augmented by convection resulting from solar heating of the ground and all its 

components, such as vegetation.  At night, and in the absence of this radiative heating, the lower 

atmosphere relaxes—with less turbulence—and becomes stratified and stable.  During the day, 

the stratification is usually unstable, i.e., turbulent.  At night, stratification can be such that air 

can decouple into layers within and above the plant canopy. Concentrations of CO2 from 

respiration can then build up or pool near the surface.  Since both the EC and BREB 

micrometeorological methods are based on an assumption that the air is well mixed, strongly 

stable periods pose challenges for both techniques.  EC systems measure at one fixed height 

above the canopy, and therefore may not be able to detect the buildup of CO2 near the surface 

but below the fixed measurement height, which could explain why EC tends to underestimate 

nighttime fluxes during stable conditions (Baldocchi, 2003; Lindroth et al., 1998; Wofsy et al., 

1993).  A practical solution to this problem used by the FLUXNET community is to apply a 

correction factor to adjust nighttime respiration measurements made when friction velocities, u∗, 

are low (Gu et al., 2005; Barr et al., 2013).  This approach was applied to the EC flux 

calculations as described below.   
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BREB calculations are also vulnerable to error in strongly stable conditions.  To make a 

first-order correction for the errors that may arise, an aerodynamic flux-gradient method was 

used when conditions of strong stratification prevailed (described below).  

A BREB and an EC station were located near the center of each plot, in each case with 

the EC instrument placed 12 m NE of the BREB instrument.  The BREB and EC instruments on 

the FP plot were positioned 155 m from the southern edge of the field and 60 m SW of the edge 

of the SMB plot.  The BREB and EC instruments on the SMB plot were located 68 m north of 

the southern edge of the SMB plot.  The EC instruments were oriented toward the prevailing 

wind direction of 225° SW and mounted at a 1.75 m height above the canopy or soil surface, 

adjusted throughout the growing season.  The mean flux footprint area using the Korman and 

Meixner model (Kormann and Meixner, 2001) showed that at least 80% of the EC flux 

measurements reflected atmospheric properties within the plot area. 

Eddy fluxes were measured using IRGASONs (Campbell Scientific Inc., Logan, UT) that 

include sonic anemometers for the measurement of the three-dimensional wind velocity.  

Coupling the derived vertical velocity signal with temperature data from the same sonic 

instruments yielded sensible heat fluxes.  Similarly, open-path infrared gas analyzers (IRGAs) 

measured water vapor and CO2 concentrations, yielding direct measurement of corresponding 

eddy fluxes as covariances according to the sonic anemometer vertical velocity data.  IRGASON 

data were collected at a frequency of 10 Hz. 

Despite technological advancements in sensor robustness, EC systems also experience 

system failures and data loss in addition to the issues associated with nighttime stability.  A 

FLUXNET survey reported a range of missing or rejected data between 9 and 65% with an 

average site loss of 35% of observations (Falge et al., 2001).  Gaps in data can result from power 
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or equipment failures, maintenance, sensor obstruction from precipitation, dew, or even bird 

droppings.  Erroneous CO2 flux calculations can also result from internal heating of open-path 

IRGAs especially during colder temperatures (Bonneville et al., 2008).  Several gap-filling 

strategies have been developed for addressing data loss.  REddyProc software (Reichstein et al., 

2005; Wutzler et al., 2018) provides quality-checks and filtering for EC based on relationships 

between measured flux and friction velocity, u∗, and was used for this study. REddyProc 

estimates u∗ thresholds and fills gaps in data based upon environmental conditions, including 

recalculation of nighttime fluxes.  The first application of REddyProc gap-filling and nocturnal 

recalculation showed low and negative nighttime fluxes, which were considered to be an effect 

of the sloping terrain. The planar fit tilt correction (Wilczak et al., 2001) was applied using 

EddyPro software (LI-COR Biosciences, Lincoln, NE, USA) recalculating most of the raw EC 

data, followed by the REddyProc marginal distribution sampling (MDS) gap-filling method 

(Reichstein et al., 2005). For this study, 26% of 30-min EC flux calculations for the FP and 27% 

for the SMB treatment were gap-filled and or recalculated by the REddyProc MDS gap-filling 

method. 

BREB flux calculations used 5-s average air temperature values, vapor pressure and CO2 

concentrations measured at two heights, 0.2 m and 1.8 m, above the vegetation or soil surface.  

Measurements were made within aspirated and shielded horizontal air intake tubes facing the 

direction of prevailing winds (from the SW) with fans drawing ambient air over the sensors. The 

BREB systems were built by an in-house team following designs developed for similar 

applications elsewhere (Irmak et al., 2014; Sauer et al., 1998).  Vapor pressure and temperature 

were measured using relative humidity probes coupled with platinum-resistance thermometers 

(model HC2-S3-L, Rotronic, Switzerland supplied by Campbell Scientific, Inc, Logan, UT). CO2 
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concentrations were measured with non-dispersive infrared gas analyzers (IRGA) (model LI-

820, LI-COR Inc., Lincoln, NE).  To overcome sensor bias at the two heights, the intake tubes 

housing the sensors were attached at the end of a rotating arm centrally mounted on a frame that 

exchanged the position of the atmospheric sensors every 5 minutes.  As the crop grew, the 

rotating arms were elevated so that the lower sensors were always approximately 0.2 m above 

the crop canopy with the differential between the upper and lower sensors remaining constant.  

The first 2 min of measurements following each arm rotation were discarded to ensure sample 

gases were purged from the lines before measuring at the new sample height. 

Precipitation was measured, as well as wind speed and direction, net radiation, soil heat 

flux, and soil temperature.  Rainfall was measured with a tipping bucket rain gauge (model 

TE525, Texas Electronics, Dallas, TX); wind direction and speed were measured with a wind 

monitor (Model 05305-5, R. M. Young, Inc. Traverse City, MI); wind speed was measured with 

a three-cup anemometer (model 014A, Met One Instruments, Inc., Grants Pass, OR); net 

radiation was measured with a net radiometer (NR Lite2, Kipp & Zonen, Delft, The 

Netherlands); soil heat flux was measured with soil heat flux plates (model HFT3-L, Radiation 

Energy Balance System (REBS), Seattle, WA); and soil temperatures with Type “T” (copper 

constantan) thermocouples buried at 0.015 m and 0.045 m below the surface. 

Five-second micrometeorological measurements were averaged over successive 5-min 

intervals by the BREB systems and used to calculate 30-min mean CO2 flux according to BREB 

system theory (Bowen, 1926; Tanner, 1960; Kanemasu et al., 1979; Webb et al., 1980; Dugas, 

1993) using the approach as reported by O’Dell et al. (2018).  Five-minute water vapor pressure 

and temperature differences were averaged over 30-min intervals to calculate the Bowen ratio, 

which was then used to calculate latent energy and sensible heat fluxes.  Sensible heat was used 
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to calculate turbulent diffusivity for sensible heat, KH, which was assumed to be the same as 

turbulent diffusivity for CO2 flux.  CO2 flux was then calculated as the product of the average 

difference of CO2 density between the two measurement heights.  Thirty-minute CO2 fluxes were 

calculated for 365 days between 1 October 2016 and 30 September 2017, after installation and 

configuration of the BREB and EC stations.   

The BREB method for calculating fluxes is limited by sensor, mechanical and analytical 

issues: (1) when the arms fail to change positions every five minutes; (2) when a problem occurs 

with one or more of the sensors used to calculate the Bowen ratio energy balance or CO2 

concentration; (3) when the difference between the upper and lower temperature and vapor 

pressure measurements are less than the measurement accuracy of the sensors (Perez et al., 

1999); (4) when the Bowen ratio is near -1 (Ohmura, 1982); (5) or when the sensible heat flux 

direction was not the same as the temperature gradient (Ohmura, 1982).  Because the BREB 

method uses turbulent diffusivity to calculate flux, the fluxes calculated during stable periods 

(low turbulence) are not consistent with, or are near the limits of, the flux-gradient theory.  

Several studies used the aerodynamic method for calculating turbulent diffusivity and CO2 flux 

during stable periods and the other conditions when BREB calculations are called into question 

as described above (Dugas et al., 1999; Frank and Dugas, 2001; Emmerich, 2003; Mielnick et 

al., 2005).  

Payero et al., (2003) developed the following inequality relationship to detect the 

conditions that Ohmura (1982) identified as being inconsistent with the flux-gradient 

relationship: 

λ(Δe + γΔT) (Rn – G) > 0                                                                         (1) 
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where λ is the latent heat of vaporization (J kg
–1

), Δe is the vapor pressure difference and 

ΔT is the difference in air temperature (°C) between the lower and upper position, Rn is the net 

radiation (W m
-2

), and G is the soil heat flux (W m
-2

).  The psychrometric constant, γ = (CpP/ε λ), 

where Cp is the specific heat of air (J kg
-1

 °C
-1

), P is atmospheric pressure and ε is the ratio of the 

molecular weight of water to that of dry air (0.622).   

The following aerodynamic method described by Dugas et al. (1999) was used to 

calculate turbulent diffusivity when the Payero et al. (2003) test and other tests identified 

conditions when the BREB method was in question as described above. 

The zero plane displacement, d (m), a measure of momentum transfer between surface 

roughness elements and horizontal flow associated with the flux used in the aerodynamic method 

was calculated as a function of crop height, h (m) (Stanhill, 1969):  

log10d = 0.979 log10h – 0.154                                                                    (2) 

The roughness parameter, z0 (m), a measure of surface roughness, was also calculated as 

a function of crop height (Tanner and Pelton, 1960): 

log10z0 = 0.997 log10h – 0.883                                                                   (3) 

The friction velocity, u∗ (m s
–1

), a measure of eddy velocities, was calculated from wind 

speed, u (m s
-1

) at height z (m), roughness parameter z0, and zero plane displacement, d, and the 

von Kármán constant, k, using a value of 0.41 (Dugas et al., 1999) with the following equation 

(Rosenberg et al., 1983): 

u∗ = u(z) k/ln((z – d) / z0)                                                                      (4) 

The change in wind speed to the change in height, ∂u/∂z, was calculated as (Monteith and 

Unsworth, 2013):  

∂u/∂z = u∗/[k (z − d)]                                                                          (5) 
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Eqs (4) and (5) are correct only for neutral conditions.  In other situations allowance must 

be made for the role of atmospheric stability.  In the present case, measurements were made 

sufficiently close to the surface that stability effects were generally small.  To examine this 

further, values of the gradient Richardson number, Ri, were computed from gradients of potential 

temperature, ∂θ (K) and wind speed ∂u (m s
-1

) as (Monteith and Unsworth, 2013): 

Ri = (gT 
-1

 ∂θ/∂z) / (∂u/∂z)
2
                                                                     (6) 

where g (m s
−2

) is the acceleration due to gravity, and T is the absolute temperature (K). 

Negative Ri numbers < -0.1 correspond to unstable conditions (Dyer and Hicks, 1970) and 

positive to stable conditions.  In stable stratification (mostly at night) the atmosphere resists 

vertical motion (Webb, 1970).  With increasing stability, turbulence is dampened and the 

relationships underlying the similarity theory (Monin and Obukhov, 1954) of flux-gradient 

methods are not valid (Mahrt, 2010).  Following Dugas et al. (1999), when Ri was greater than 

0.2, the turbulent diffusivity coefficient for sensible heat, KH, was set to 0.005 m
2
 s

-1
.  

In unstable conditions when Ri < -0.1 and there is a greater upward rather than horizontal 

transport of heat, the stability functions for momentum, sensible heat and water vapor, ϕM, ϕH, 

ϕW, respectively, were calculated from Ri by the following equation (Dyer and Hicks, 1970) after 

the conversion of the Monin-Obukhov length L to the Ri number via the relationship (z − d)/L = 

(ϕM
2
/ ϕH) (Monteith and Unsworth, 2013): 

ϕM
2
 = ϕH = ϕW = (1 − 16Ri)

−0.5
                                                                  (7) 

In conditions when Ri was greater than −0.1 and less than 0.2, the stability functions for 

momentum, sensible heat, and water vapor were equal and were calculated from results found by 

Webb, (1970) under stable conditions: 

ϕM = ϕH = ϕW = (1 − 5Ri)
−1

                                                                    (8) 
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Turbulent diffusivity for sensible heat, KH, was then calculated using the stability 

function in Eqs. 7 and 8 depending on the Ri number with the following equation in an iterative 

fashion (Campbell, 1985): 

KH = k u∗ (z − d) ϕH
−1

                                                                        (9) 

CO2 flux was then calculated according to methods described in O’Dell et al. (2018) as 

the product of the turbulent diffusivity for CO2 flux (assumed to be equal to KH) and the average 

difference of CO2 density between the two measurement heights.  The flux was then corrected 

for vapor pressure and temperature differences at the two measurement heights according to 

Webb et al. (1980).  

To evaluate the use of this aerodynamic method, we also applied a recent method for 

calculating the zero plane displacement and the roughness parameter (Graf et al., 2014).  Since 

the EC systems provided direct measurements of friction velocity, one aerodynamic method was 

developed using the EC u∗ measurements for comparison with calculations of u∗ and CO2 flux 

from BREB station wind speed measurements. 

In recognition of the distinctions among the alternative methodologies described above, 

and of the differences of their results in (primarily) nighttime conditions, several comparisons 

were conducted.  The results of these tests are presented below. 

Data Analysis 

Missing data resulting from power loss, or the failure of one or more critical sensors for 

periods greater than eight hours, resulted in approximately 6% data loss for the BREB and 

aerodynamic methods. During periods of less than eight hours, fluxes were linearly interpolated, 

which occurred for less than 1% of observations.  While no power losses or sensor issues 
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occurred for the EC stations, approximately 3% data loss occurred due to rain events and were 

gap-filled using REddyProc. 

We created five analytical methods to compare 30-min fluxes and to evaluate the effect 

of different aerodynamic inputs such as canopy height estimation and wind speed on the 

calculated flux.  A description of each follows: 

(1) “BREB-Aero” is a combined method using BREB when it satisfied the conditions as 

described above and using the aerodynamic method when it did not.  The aerodynamic method 

included the zero plane displacement (d) and the roughness parameter (z0) as a function of crop 

height as described by Dugas et al. (1999) and in lieu of wind measurements at the BREB 

stations, friction velocity, u∗, from the EC stations was used in the aerodynamic calculations.  

(2) “Aero-Stanhill” is an aerodynamic-only method using the results of Stanhill (1969) to 

calculate d, the zero plane displacement (Eq 2). Tanner and Pelton’s (1960) method was used to 

calculate z0 (Eq 3).  This method used the wind speed measured at each BREB station. 

(3) “Aero-Graf” refers to an aerodynamic-only method, which uses the method described 

by Graf et al. (2014) to calculate d and z0.  This method used the wind measured at each BREB 

station. 

(4) “Aero-EC u∗” is an aerodynamic-only method that uses the u∗ derived from EC 

measurements to calculate the change in wind speed to the change in height in Eq. 5 as described 

above. 

(5) “EC” are the flux calculations produced by the EC instruments after planar fit tilt 

correction, gap-filling and flux recalculation. 

The first year’s maize grain yield treatment means were analyzed using F tests and the 

Student’s t-test with Microsoft Excel (Microsoft Corporation, Redmond, WA).  Regression 
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analysis was performed using Excel.  The second year’s grain yield and above-ground biomass 

were analyzed using a two-way analysis of variance (ANOVA) mixed procedure of SAS (SAS 

V9.4, SAS Institute, Cary, NC) to account for the tillage sub-factor within the nutrient treatment.  

Mean SOC was analyzed using SAS’s one-way ANOVA and two-way ANOVA for the final 

November 2017 set of measurements. Yield, biomass, and SOC means were separated using the 

GLIMMIX procedure of SAS, which included the Fisher’s Least Significant Difference (LSD) 

test, Tukey’s Honest Significant Difference (HSD) and Bonferroni correction methods for mean 

separation.  Least squares mean separation output was converted to letter groupings with the 

PDMIX macro (Saxton, 1998).  

Results and Discussion 

The first harvest of maize occurred on 7 October 2016, 177 to 210 days after the SMB 

was applied.  The mean yield on the SMB plot was 7.73 Mg ha
-1

, which was significantly 

different than the mean yield of 8.64 Mg ha
-1

 on the FP plot (Student’s one-tail t-test, n = 5, p = 

0.000186) (Table 2.1).  The plant available N of 148 kg N ha
-1

 from the first SMB application at 

the estimated rate of 25% plant available was less than the 202 kg N ha
-1

 inorganic fertilizer that 

the farmer applied and is considered the major contributing factor to the yield difference.  The 

first year SMB application had irregular distribution due to issues with the spreader that may 

have influenced the available N.  The spreader was unable to adequately pulverize the SMB such 

that the larger clumps would not readily undergo mineralization, which limited nutrient release. 

For the following year, the harvested yield on 14 November 2017 was analyzed using a 

two-way ANOVA to account for the tillage factor within the nutrient application treatment 

(Table 2.2).  The yield data was transformed using rank transformation to meet ANOVA  
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Table 2.1. Mean 2016 maize grain yield (Mg ha
-1

) by nutrient effect. 

Treatment 
Grain yield 

(Mg ha
-1

) 

Standard Error 

(Mg ha
-1

) 

SMB 7.73 b † 0.114 

FP 8.64 a  0.106 

† Grain yield values followed by different letters indicate significant differences between 

treatments. 

 

Table 2.2. Mean 2017 maize grain yield (Mg ha
-1

) by nutrient, tillage, and tillage within nutrient 

effects. 

Effect Treatment 
Mean yield 

(Mg ha
-1

) 

Standard Error 

(Mg ha
-1

) 
n 

Nutrient 
SMB 3.72   a † 0.045 7 

FP 2.86   b  0.306 8 

Tillage 
Tilled 2.95   a  0.319 8 

No-till 3.63   a  0.127 7 

Tillage 

within 

Nutrient 

SMB Tilled 3.78   a  0.0609 4 

SMB No-till 3.65 ab 0.0399 3 

FP Tilled 2.11   b  0.0807 4 

FP No-till 3.61   a  0.236 4 

†Grain yield means followed by different letters indicate significant differences between 

treatments (Bonferroni adjusted mean separation, p ≤ 0.05). 
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assumptions of normality and equal variance. ANOVA type III tests for fixed effects indicated 

the nutrient effect was a significant factor of the yield (F(1,11) = 5.07, p = 0.0457), while the 

tillage effect was not (F(1,11) = 2.12, p = 0.173).  The interaction term between the nutrient and 

tillage effect was significant, indicating the nutrient effect varied by tillage (F(1,11) = 11.0, p = 

0.0069).  The mean differences were compared for the nutrient application effect, as shown in 

Table 2.2, which includes the yield for each of the nutrient treatments. The least-squares mean 

separation for the nutrient application effect signifies that the SMB application grain yield was 

significantly different than the FP yield (p < 0.05).  

The yield was further split into the tillage sub-factor (the tilled vs. the untilled section) in 

each of the nutrient application plots (Table 2.2).  When comparing the means of just the tillage 

effect, no significant differences were evident.  When comparing the means of the combined 

treatment factors (the tillage sub-factor within the nutrient treatment) there is a difference 

between the SMB tilled and the FP no-till vs. the FP tilled, though otherwise no significant 

differences were found between the other treatments. 

All 2017 yields were less than half of 2016 yields, likely a result of the later planting date 

and reduced rainfall following emergence in 2017.  These results suggest that the FP tilled 

treatment produced lower yields, which can be explained in part by a combination of two factors: 

(1) the farmer fertilizer application of 179 kg N and 20 kg P ha
-1

 was much lower than the 

estimated SMB N available at 354 kg N ha
-1

 and P applied at 104 kg ha
-1

, and (2) during the first 

21 days following planting (vegetative growth stages VE through V4) 98 mm of rain fell, 

followed by a period of 24 days with a total of 25 mm of rainfall during the final stages of 

vegetative growth (stages V5 through VT).  This might explain the higher maize grain yield in 

the no-till area due to no-till moisture retention providing an advantage during this dry period 
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and may indicate greater water holding capacity of the SMB within the tilled area of the SMB 

plot (Table 2.2). 

We evaluated five methods to determine the NEE for the nutrient treatments. Table 2.3 

provides a summary of annual totals of NEE in g CO2 m
-2

 yr
-1

 for each of the five methods for 

both FP and SMB treatment, with aerodynamic-only methods (2, 3 and 4) being the greatest for 

both treatments.  From an initial assessment of the five flux calculation methods, it was found 

that the aerodynamic-only methods (2, 3, and 4) underestimated daytime fluxes during the 

growing season as compared to EC (method 5).  However the combined BREB-Aerodynamic 

method (1) more closely resembled the EC method daytime fluxes, which is consistent with 

other studies (Dugas, 1993; Angell et al., 2001). 

NEE evaluations calculated by the three aerodynamic-only methods (2, 3 and 4) were 

similar during the daytime when averaged over two-week periods sorted by time of day and 

atmospheric stability (data not shown). While these methods could be used when the BREB 

method does not effectively calculate flux during stable periods at night or when the differences 

in the temperature or vapor pressure gradient is close to zero, the aerodynamic-only methods 

produced total accumulated NEE that exceeded both the EC method and the combined BREB-

aerodynamic method (Table 2.3).  The aerodynamic method that used the EC u∗ produced the 

lowest flux of the three aerodynamic-only methods (Table 2.3).  This may be due, in part, to 

greater accuracy of wind speed measurements at lower wind speeds by the EC system sonic 

anemometers as compared to the BREB systems’ mechanical anemometers that had higher 

starting thresholds for wind speed detection.   

The combined BREB-Aero method calculated 34% of the CO2 flux using the BREB 

method for the FP treatment and 36% of CO2 flux was calculated using the BREB method for the  
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Table 2.3. Total NEE (g CO2 m
-2

 yr
-1

) for each method from 1 October 2016 to 30 September 

2017. 

Treatment 
Method 1 

BREB-Aero 

Method 2  

Aero-Stanhill 

Method 3 

Aero-Graf 

Method 4  

Aero-EC u∗ 

Method 5 

EC 

SMB 1699 3498 3789 2460 794 

FP   232 1016 1174   685 274 
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SMB treatment, gap-filling the remaining periods with flux calculated using the aerodynamic 

method.  Much of the BREB calculated flux excluded was a factor of atmospheric stability as 

41% of atmospheric conditions over the FP and 38% of SMB field conditions were identified as 

stable.  Other studies substituted the aerodynamic method for the BREB method less often, with 

Dugas, et al. (1999) estimating its use at 10%, Frank and Dugas (2001) about 10%, Emmerich 

(2003) about 12%, Gilmanov et al. (2003) about 14%, Gilmanov et al., (2006) 16 and 21% 

depending on the site, and during a six-year study Mielnick et al., (2005) estimated that 23% of 

their flux data was gap-filled due to BREB issues.  Despite reducing the turbulent diffusivity for 

calculating CO2 to a constant of 0.005 m
2
 s

-1
 for a large portion of night and transition periods, 

the total NEE for the combined BREB-Aero method was still greater than that of the EC 

systems, indicating a greater accounting of nighttime respiration (Table 2.3).  

The aerodynamic-only methods (2, 3, and 4) showed less negative daytime flux (less 

sequestration) during the growing season than both the combined BREB-Aero (Method 1) and 

EC (Method 5) and greater negative flux (greater sequestration) during the non-growing season 

(data not shown).  With the wide use and substantiation of the EC method, which is considered 

accurate during the daytime, the drift of the daytime aerodynamic estimates raises questions 

about using the aerodynamic method during daytime conditions.  The BREB method has been 

shown to compare well with EC during the daytime; therefore, the combined BREB-Aero 

method appears to be more representative of atmospheric conditions.  Subsequent analysis to 

discern the differences between the methods used one aerodynamic-only data (method 4) that 

used the EC u∗, which had greater accuracy in windspeed especially during periods of low 

turbulence than the other two aerodynamic-only methods. The biggest question for EC flux 
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measurements and all of these methods, concern nighttime conditions when the EC method has 

been known to underestimate flux (Sun et al., 2007; Aubinet, 2008). 

The accumulated annual CO2 flux for the two nutrient treatments were compared and 

plotted for three methods in Figure 2.1: the combined BREB-Aero method 1, the aerodynamic-

only method 4 that uses the EC u∗, and the EC method 5. Amounts greater than zero represent 

net transfer of CO2 to the atmosphere, and less than zero represent net transfer from the 

atmosphere to the soil and plant canopy. A visual comparison of accumulation shows a small 

buildup of CO2 during the non-growing season from October 2016 through February, where 

respiration exceeded photosynthesis with a net transfer of CO2 from the soil and canopy to the 

atmosphere.  The greatest increases in emissions followed herbicide application on 31 May 2017 

and conclusion of biomass application and tillage on 16 June 2017.  Positive fluxes continued to 

increase until the maize canopy reached the V5 vegetative state around 10 July 2017, when 

photosynthesis from the growing canopy exceeded both day and night respiration.  

A comparison of CO2 flux (g m
-2

 hr
-1

) by time of day for the beginning of the non-

growing season from 1 October 2016 through 31 January 2017 combined is shown in Figure 2.2 

for the BREB-Aero method 1, the Aero-EC u∗ method 4 and the EC method 5 when fluxes were 

small and similar by time of day.  The EC method generally showed greater daytime 

sequestration by weed growth during this period, while the combined BREB-Aero and Aero-only 

methods generally showed net positive CO2 emissions during the day. The SMB treatment 

showed greater night emissions than the FP for all three methods. 
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Figure 2.1. CO2 flux accumulation shown for the BREB-Aero (1), Aero-EC u∗ (4), and EC (5) 

methods for both treatments with the FP treatment shown with dashed lines and the SMB 

treatment solid lines. 

 

 

 

Figure 2.2. CO2 flux by time of day for the first four months for BREB-Aero method 1, Aero-

EC u∗ method 4, and EC method 5 for FP (red) and SMB (green) treatments ± one standard 

error. 
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Figure 2.3 shows a comparison of flux by time of day and month from February to 

October 2017 for methods 1, 4 and 5 at a scale more than 10 times greater than Figure 2.2 to 

account for greater fluxes.  Generally, the combined BREB-Aero method is more similar to the 

EC method during the daytime hours of the growing season, July through September 2017, when 

the greatest photosynthesis is taking place.  The Aero-EC u∗ method shows greater negative 

daytime CO2 fluxes than the EC and combined BREB-Aero method in the spring during April 

and May 2017.  In general, during the spring and growing season, the BREB-Aero and Aero-EC 

u∗ methods show greater emissions for the SMB treatment than the FP treatment at night than the 

EC method. 
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Figure 2.3. CO2 flux by time of day and month for BREB-Aero method 1, Aero-EC u∗ method 

4, and the EC method 5 for FP (red) and SMB (green) treatments ± one standard error. Negative 

values below the bold line indicate a negative NEE or C sequestration into the soil ecosystem. 
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There is considerable agreement between BREB and EC during the day, providing 

evidence that these two methods more accurately estimate CO2 flux (Figure 2.3).  The 

aerodynamic method often overestimated daytime flux during cool temperatures and 

underestimated daytime flux during the growing season.  Nighttime BREB fluxes are most often 

replaced with the aerodynamic method, but this approach generally disagrees with the EC 

method.  It is not clear whether the EC or the Aerodynamic method is a better estimate of CO2 

flux at night.  The following example explores some of the nighttime variable interactions. 

Because of frequent stable conditions at night with low wind speed and thermal 

stratification of the lower atmosphere, CO2 concentrations can build up at the surface and are not 

detected by the EC system.  During these periods the BREB system detects differences in CO2 

concentrations where the lower sensor reads as much as 117 ppm higher than the upper sensor 

(the purple circle) shown in Figure 2.4 at 2 am on 17 June 2017 following biomass application 

and planting.  Figure 2.4 shows the difference in CO2 concentrations between the lower and 

upper sensors measured by the SMB BREB station during a five-hour period on 17 June, along 

with the calculation of CO2 flux for the combined BREB-Aero and Aero-EC u∗ (methods 1 and 

4).  All fluxes are the same for these two methods (method 4 in red on top of method 1 in green) 

signifying that during this stable period, the aerodynamic method was used to calculate CO2 flux 

in place of the BREB method because conditions were consistent with Ohmura’s criteria for 

rejecting Bowen ratio flux calculations (Ohmura, 1982).  For this period, the CO2 flux follows 

the increases and decreases of the CO2 concentration difference between the two heights, 

increasing as concentration increases and decreasing as the concentration decreases (Figure 2.4). 
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Figure 2.4. Half hour CO2 flux for the BREB-Aero method 1 (green) and Aero-EC u∗ method 4 

(red) from midnight to 5:00 am on June 17, 2017 with 30-min average CO2 differences (orange) 

between upper and lower sensor at the SMB BREB station. 
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Adding data from the EC method (Figure 2.5) for the raw 30-min average CO2 flux data 

from the IRGASON instrument (5-EC-raw, blue), the planar fit tilt correction (turquoise), and 

the REddyProc recalculation of nighttime flux (5-EC-gap-filled, purple) indicates the EC raw 

data does not sense the buildup of CO2 at the surface.  Unlike the raw data, the planar fit tilt 

correction does not show negative fluxes during this period, and the REddyProc gap-filled 

recalculation estimated a higher mean CO2 flux than the other methods for this five-hour period. 

REddyProc removes raw flux data below a u∗ threshold and then fills gaps with average values 

under similar meteorological conditions, smoothing the data for this period as shown by the 5-

EC gap-filled data (Figure 2.5).   
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Figure 2.5. Half hour CO2 flux for methods 1, 4 and 5 from midnight to 5:00 am on June 17, 

2017 with 30-min average CO2 differences between upper and lower sensor measured at the 

SMB BREB station. 
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The rise in CO2 concentration between 0000 and 0200 hrs does not appear to be detected 

by the raw EC data.  During the period between 0200 and 0300, the average wind speed (pink) 

increases (Figure 2.6) and the raw EC flux (5-EC-raw, blue) and the planar fit tilt correction flux 

(5-EC-planar-fit, turquoise) also increase, reflecting a mixing of the pooled CO2 to heights that 

are detected by the EC system.  As the windspeed decreases following the peak at 0300 hrs, the 

raw EC flux (blue) also decreases suggesting intermittent gusts of wind that provide for 

atmospheric mixing.  During this five-hour period, the REddyProc recalculation (5-EC-gap-

filled, purple) does not respond to windspeed or changes in CO2 concentration.  During this 

example of a stable nighttime period, the aerodynamic method estimates flux based more on the 

concentrations, while the post-processing of EC data with gap-filling produced a higher NEE for 

the period. 

During this nighttime example, CO2 concentration generally increased as wind speed 

decreased or averaged below 0.6 m s
-1

 (Figure 2.7) and concentrations decreased as wind speed 

increased illustrating a negative relationship between pooling concentrations at the surface and 

wind speed.  The axis for wind speed in Figure 2.7 is inverted to show the negative relationship 

between CO2 concentration and wind speed. 
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Figure 2.6. Half hour CO2 flux for method 5, EC raw data (blue), EC raw planar tilt correction 

fit (turquoise), EC Gap-filled (purple), and wind speed measurements (pink) at the SMB EC 

station from midnight to 5:00 am on June 17, 2017. 

 

 

Figure 2.7. Wind speed (pink) at the SMB EC station with inverted y-axis and CO2 differences 

at the SMB BREB station from midnight to 5:00 am on June 17, 2017. 
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This buildup of concentration near the surface is identified as a storage term in the 

quantification of CO2 flux (Finnigan, 2006; Yang et al., 2007; McHugh et al., 2017).  During 

stable periods at night (1-3 hour length), CO2 concentrations will increase at the soil or canopy 

surface until disbursed by downward turbulence described as nocturnal intermittency (Hicks et 

al., 2015).  While both EC and BREB systems detect the turbulent dispersion of CO2 often with a 

spike in flux, only the concentration profile provided by the BREB station can detect the surface 

buildup of CO2 before the intermittent turbulence.  Using the aerodynamic method, this 

concentration difference can be accounted for in the NEE using a very conservative constant for 

the turbulent diffusivity coefficient (0.005 m
2
 s

-1
) (Dugas et al., 1999).  By using this constant, 

the combined BREB-aerodynamic method system can more effectively estimate nighttime 

respiration that may be underestimated by EC. 

While the sum of CO2 flux over the SMB application is greater than the FP (indicating 

greater emissions of CO2) during the measurement period (Table 2.3 and Figure 2.1), the 

comparison of nighttime emissions with daytime emissions may provide an indication of the 

canopy CO2 accumulation rates.  The CO2 flux measurements represent the exchange of CO2 

between the soil and crop biomass above the soil surface with the atmosphere.  If it was assumed 

that CO2 flux measured at night is an indication of respiration by the soil, the SMB application 

and the canopy, then it is apparent that the SMB treatment is losing more CO2 than the FP at 

night.   

If it is assumed that a greater rate of CO2 loss continues during the day from the SMB 

treatment, then the data presented indicates that the accumulation of CO2 by the growing canopy 

during the day is also greater for the SMB treatment.  The rate of CO2 accumulation by the 

growing canopies can be compared between the two treatments by subtracting the mean 
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nighttime CO2 flux from the daytime as shown in Table 2.4 and as described by O’Dell et al. 

(2018). This approach averages the flux during the day between 1000 and 1600 hrs and night 

between 2200 and 0400 hrs for each month, omitting the morning and evening transition periods 

when changes to incoming and outgoing energy result in a change in direction of energy and 

flux.  Though NEE shows respiration occurring for more than half the day for most of the year, 

by subtracting the average nighttime respiration during similar conditions from the period of 

daytime photosynthetic activity, we derived a first-order measure of how much more the canopy 

compensates for greater nighttime respiration.  Table 2.4 shows day and nighttime means for the 

EC method with the daytime minus the nighttime means.  Highlighted cells indicate the 

treatment with the greater canopy accumulation.  

Data that supports this effect of greater canopy accumulation comes from above-ground 

biomass maize measurements (above-ground vegetation including maize grain) taken on 20 

September 2017.  Table 2.5 shows that the above-ground biomass of the SMB treatment canopy 

was significantly different than the FP treatment canopy when analyzed using a two-way 

ANOVA focused on the nutrient effect using the least-squares mean separation (p < 0.05).  

ANOVA type III tests for fixed effects indicated the nutrient effect was a significant factor of the 

above-ground biomass (F(1,12) = 5.46, p = 0.0376), while the tillage and the nutrient by tillage 

interaction effects were not significant.  
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Table 2.4. Monthly mean day and night CO2 flux using EC data (g CO2 m
-2

 hr
-1

), with day minus 

night means denoting excess nighttime respiration. 

  FP   SMB  

Month Day† Night‡ 
Day – 

Night§ 
Day Night 

Day - 

Night 

Oct 2016 -0.239 0.267 -0.506 -0.305 0.299 -0.604 

Nov 2016 -0.174 0.059 -0.234 -0.165 0.186 -0.351 

Dec 2016 -0.005 0.157 -0.162  0.012 0.205 -0.193 

Jan 2017  0.012 0.227 -0.215 -0.035 0.256 -0.290 

Feb 2017 -0.240 0.238 -0.478 -0.328 0.236 -0.564 

Mar 2017 -0.561 0.261 -0.822 -0.818 0.339 -1.156 

Apr 2017 -0.919 0.673 -1.591 -1.080 0.653 -1.733 

May 2017 -0.729 0.721 -1.450 -0.982 0.710 -1.692 

Jun 2017  0.224 0.730 -0.506  1.016 1.400 -0.383 

Jul 2017 -2.391 1.559 -3.950 -2.046 1.538 -3.584 

Aug 2017 -3.728 1.315 -5.042 -3.841 1.406 -5.248 

Sep 2017 -1.026 0.881 -1.907 -1.067 0.952 -2.019 

†Day values are mean flux between 1000 and 1600 hrs by month. 

‡Night values are mean flux between 2200 and 0400 hrs.  

§Day minus night in bold indicate treatment with greater accumulation rates for a particular 

month. 

 

Table 2.5. Nutrient effect for above-ground maize biomass 2017. 

Nutrient 

Treatment 

Mean 

(Mg ha
-1

) 

Standard error 

(Mg ha
-1

) 
n 

SMB 1.95 a† 0.154 8 

FP 1.47 b  0.126 8 

†Biomass means followed by different letters indicate significant differences between treatments 

(Fisher’s LSD test, p ≤ 0.05). 
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When comparing the tillage effect within the nutrient application treatment for the above-

ground maize biomass measurements using the two-way ANOVA, there was a significant 

difference between the no-till SMB and the FP tilled (Table 2.6).   There was otherwise no 

significant difference between the other treatments. 

The greater CO2 uptake by the canopy on the SMB plot could also indicate recycling of 

respired CO2.  Others have shown photosynthetic overcompensation by the canopy (i.e., a 

fertilization effect) that occurs with greater nighttime respiration (Wan et al., 2009) or greater 

concentrations of CO2 (Haworth et al., 2016).  It is possible that availability of greater 

concentrations of CO2 from nighttime respiration provides a photosynthetic boost in the 

morning.  Decomposition of the SMB during the day may also contribute to this CO2 fertilization 

affect.  While some C4 species like maize do not necessarily show an increase in net assimilation 

of CO2 with higher concentrations (Long et al., 2005; Abebe et al., 2016), C3 weed species may 

take advantage of greater CO2 concentrations (Patterson and Flint, 1980).  Other studies found 

that greater CO2 concentrations benefited maize growth under restricted water conditions 

(Leakey, 2009; Manderscheid et al., 2014), which may have enhanced the SMB treatment since 

two dry periods occurred during the 2017 growing season. 

A regression comparing the CO2 flux between the FP and SMP treatments during the 

daytime hours of 1000 to 1600 for the growing season (July-September 2017) suggests 

increasing biomass production by the SMB plot (Figure 2.8) by the end of the period.  The black 

lines in Figure 2.8 represent the linear regression while the red lines designate lines of equality 

(1:1 slopes).  The July regression indicates that the FP treatment sequestered more than the SMB, 

especially during the peak photosynthetic period, while the SMB treatment had greater positive  
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Table 2.6. Above-ground maize biomass for 2017 growing season by tillage within nutrient 

effect. 

Treatment 
Mean 

(Mg ha
-1

) 

Standard Error 

(Mg ha
-1

) 
n 

SMB Tilled 1.86 ab† 0.283 4 

SMB No-Till 2.03   a   0.162 4 

FP Tilled 1.33   b   0.207 4 

FP No-Till 1.62 ab 0.128 4 

†Biomass means followed by different letters indicate significant differences between treatments 

(Fisher’s LSD test, p ≤ 0.05). 

 

 

Figure 2.8. Linear regression equations and trendlines in black and lines of equality in red 

comparing the EC method CO2 flux (g m
-2

 hr
-1

) between the SMB (y-axis) and the FP (x-axis) 

treatments for July through September between 1000 to 1600 hrs. 

  



102 

emissions compared to the FP.  However, by the end of the growing season in September, the 

SMB treatment exhibited greater negative daytime fluxes.  

Mean SOC mass (the top 0-15 cm below the soil surface) was 31.3 Mg SOC ha
-1

 sampled 

before the first SMB application (March 2016) (Table 2.7).  The mean SOC for the SMB plot 

measured in March 2017 one year after the application was not significantly different than the 

mean FP plot, which were both still under no-till management.  Mean SOC, measured in 

November 2017 after the second SMB application, showed no significant differences between 

the SMB tilled plot (45.4 Mg SOC ha
-1

) and the SMB no-till (45.6 Mg SOC ha
-1

), while both 

SMB plots were significantly different than the FP tilled (35.8 Mg SOC ha
-1

) (Table 2.7).  These 

measurements indicate a 45% increase in SOC for the tilled SMB plot and 14% SOC increase for 

the tilled FP plot between March 2016 and November 2017, indicating a much greater increase 

in SOC on the SMB plots with a smaller increase on the FP practice plot.  Increases in SOC on 

the tilled plots may be due in part to residue incorporation.  

A two-way ANOVA examined the effects of the tillage factor within the nutrient 

application treatment for the November 2017 SOC measurements (Table 2.8) similar to the 

analysis of the November 2017 grain yield (Table 2.2) and used the same Bonferroni mean 

separation adjustment.  Similar to the grain yield, ANOVA type III tests for fixed effects showed 

the nutrient effect was a significant factor of SOC (F(1,41) = 13.2, p = 0.0008), while the tillage 

effect was not (F(1,41) = 2.34, p = 0.134).  Unlike grain yield, the interaction between the 

nutrient and tillage effect was not significant, indicating the nutrient effect did not vary by tillage 

(F(1,41) = 1.93, p = 0.173) for SOC.  Similar to the grain yield, the least-squares mean 

separation for the nutrient application effect shows that the SOC for the SMB application was   
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Table 2.7. Mean soil organic carbon (SOC) mass and standard error mass for the 0-15 cm depth 

below the soil surface before biomass application in March 2016, and for the FP and SMB 

treatments in March and November 2017. 

Treatment 
Month-Year of 

Measurement 

Mean SOC 

(Mg SOC ha
-1

) 

Standard Error 

(Mg SOC ha
-1

) 
n 

Field Before Treatment March 2016 31.3  c † 1.52   4 

FP No-Till March 2017 34.4  bc 0.650 13 

SMB No-Till March 2017 37.0  bc 0.937 14 

FP No-Till November 2017 41.4  ab 2.28   6 

FP Tilled November 2017 35.8  bc 1.16 16 

SMB No-Till November 2017 45.6  a 2.11   9 

SMB Tilled November 2017 45.4  a 1.88 14 

†SOC means followed by different letters indicate significant differences between treatments 

(Tukey’s Honest Significant Difference test, p ≤ 0.05). 

 

Table 2.8. Mean 2017 SOC mass and standard error for the 0-15 cm depth by nutrient, tillage, 

and tillage within nutrient effects for November 2017 SOC measurements. 

Effect Treatment 
Mean SOC 

(Mg SOC ha
-1

) 

Standard Error 

(Mg SOC ha
-1

) 
n 

Nutrient 
SMB 45.5   a † 1.38 23 

FP 37.3   b  1.16 22 

Tillage 
Tilled 40.3   a  1.38 30 

No-till 43.9   a  1.61 15 

Tillage 

within 

Nutrient 

SMB Tilled 45.4   a  1.88 14 

SMB No-till 45.6   a 2.11   9 

FP Tilled 35.8   b  1.16 16 

FP No-till 41.4   ab 2.28   6 

†SOC mass means followed by different letters indicate significant differences between 

treatments (Bonferroni adjusted mean separation, p ≤ 0.05). 
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significantly different than the FP SOC (p < 0.05), while the mean SOC was not significantly 

different for the tilled than the no-till treatments (Table 2.8).   

Both SMB tilled and SMB no-till showed significantly greater mean SOC than the mean 

FP tilled SOC (Table 2.8).  This was different than the mean grain yield which showed 

significant differences between both no-till treatments and the mean FP tilled grain yield.  The 

differences between mean SOC nutrient factor and the grain yield tillage factor between the 

treatments could be explained in part by the greater water use efficiency that no-till can provide 

in improving yield during dry periods. 

The SMB application before the start of CO2 flux data collection in October 2016 and 

toward the end of the experiment totaled 166 Mg dry biomass for 8.4 ha or a total of 87.6 Mg C.  

The difference in emissions between the SMB plot area and an equivalent FP area totaled 68.2 

Mg of CO2 for the field or 18.6 Mg of C, when using EC NEE calculations extrapolated for the 

569 days from the first SMB application.  The higher CO2 emissions from the SMB treatment is 

believed to be due to the breakdown of organic carbon, which represents approximately 53% of 

the SMB based on dry matter (Sullivan, et al., 2017).   

Given concerns about the underestimate of nighttime EC flux, the combined BREB-

aerodynamic method may provide a more conservative estimate of the total emissions for use in 

quantifying environmental impact and the potential to sequester carbon.  Combining the increase 

in soil organic matter with overall NEE could provide supporting evidence to assess the value of 

SMB applications. 

Over time, more of the SMB C may be respired through decomposition and respiration, 

however this experiment shows that along with greater emissions there is also potential to 

increase biomass and soil organic matter accumulation and fertility.  Tian et al. (2009) reviewed 
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the impact of biosolids-amended fields in Illinois and found increases in soil organic C that was 

greater than fertilizer controls over 34 years of land reclamation, even suggesting that biosolids 

could turn degraded crop soils into C sinks. While our flux measurements showed that SMB 

applications have greater emissions than typical farmer fertilizer practices, as Tian (2009) 

indicates, there is value and many co-benefits to the soil and ecosystem biomass C cycling from 

the beneficial reuse of waste.  Given that the costs of waste incineration or landfilling far 

outweigh the benefits (Golueke and Diaz, 1996), measuring the agronomic, soil and atmospheric 

effects of industrial fermentation waste recycling can provide greater understanding of the life 

cycle impacts for greater environmental sustainability.   

When conditions are “favorable” (i.e., “turbulent”) during the day, the EC and BREB 

methods agree. The nature of nighttime turbulence poses challenges for measuring NEE using 

turbulence-based methods, such as EC, BREB, and aerodynamic methods.  The data presented in 

this study showed that during the night, the EC and aerodynamic method generally did not agree.  

New scientific investigation should focus on the pooling and drainage of CO2 at the surface 

during stable conditions at night.  While the network of EC stations grows to increase 

understanding of the carbon cycle in agriculture and other ecosystems, profiles of meteorological 

measurements as provided by BREB and other approaches can be used to understand the 

nighttime buildup of CO2 and other atmospheric characteristics near the surface.  This 

complexity needs to be addressed using both spatial differences and turbulent exchanges. 

Conclusions 

The application of spent microbial biomass from industrial fermentation can achieve 

yields that are similar to typical farmer practices, though further study is required to determine 
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application rates and timing that would be economically competitive and provide optimum value 

to the farmer.  While multiple instruments and five methods were used to calculate CO2 flux, all 

methods showed greater CO2 emissions over the spent microbial biomass treatment than the 

farmer practice.  Of particular interest was investigating the nighttime flux that can be 

underestimated by the EC method.  Alternate flux-gradient micrometeorological approaches 

including BREB and aerodynamic methods, showed greater total NEE for both treatments and 

can be used to estimate nighttime flux especially during periods of low turbulence when 

micrometeorological techniques are challenged.  This study found that while annual NEE for the 

spent microbial biomass application was greater than for the farmer practice, some of the excess 

emissions are apparently recycled back into the ecosystem through enhanced photosynthesis to 

produce more plant biomass and soil C.  The additions of the spent microbial biomass provided 

yields on par with typical farmer practices when applied at greater rates and have the potential to 

enrich ecosystem productivity and environmental sustainability through conversion of waste 

nutrients into plant biomass and soil organic matter. 
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Appendix 

Abbreviations 

Excluding SI units and US States 

ai active ingredient 

ANOVA analysis of variance 

asl above sea level 

BREB Bowen ratio energy balance 

C carbon 

C3  C3 photosynthesis 

C4  C4 photosynthesis 

CO2 carbon dioxide 

°C degrees Celsius 

Cp specific heat of air 

d zero plane displacement 

EC eddy covariance 

et al. et alia (and others) 

Eq. equation 

F F-test statistic 

FP farmer practice 
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G soil heat flux 

GHG greenhouse gas 

h crop height 

H heat 

H sensible heat flux 

hr hour 

IRGA infrared gas analyzer 

k von Kármán constant 

K potassium 

K turbulent diffusivity 

Kh turbulent diffusivity for sensible heat 

LCA life cycle assessment 

LE latent heat flux 

M momentum 

MDS marginal distribution sampling 

n the number of replications or observations in a statistical sample 

N nitrogen 

NEE net ecosystem exchange 

OECD Organization for Economic Co-operation and Development 
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p probability value 

P phosphorus 

P atmospheric pressure 

PDO 1,3-propanediol 

R reproductive stage  

Ri gradient Richardson number 

Rn net radiation 

SMB spent microbial biomass 

SOC soil organic carbon 

SOM soil organic matter 

T temperature 

U wind speed 

u∗ friction velocity 

USDA United States Department of Agriculture 

USGS United States Geological Survey 

UTK University of Tennessee, Knoxville 

V vegetative growth stage of plants 

VE vegetative stage: emergence 

V1-Vn vegetative stages from appearance of leaf 1 to the total number of leaves (n) 
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VT vegetative stage: tasseling 

W water vapor 

yr year 

z wind speed height 

z0 roughness parameter 

Δ difference 

∂ change 

γ  psychrometric constant 

ε ratio of the molecular weight of water to dry air 

λ latent heat of vaporization 

ϕ stability function 
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CHAPTER 3  

CONSERVATION AGRICULTURE AS A CLIMATE CHANGE 

MITIGATION STRATEGY IN ZIMBABWE 
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and analysis as well as manuscript co-authorship.   

Abstract 

Quantifying agriculture’s potential to sequester carbon (C) can inform global approaches 

aimed at mitigating climate change effects.  Many factors including climate, crop, soil 

management practices, and soil type can influence the contribution of agriculture to the global 

carbon cycle. The objective of this study was to investigate the potential C sequestration 

potential of conservation agriculture (CA), which includes minimal soil disturbance, maintaining 

permanent soil cover and crop rotations.  The study described here used micrometeorological 

methods to measure carbon dioxide (CO2) flux from several alternative CA practices in central 

Zimbabwe.  The study found that micrometeorological methods can detect differences in total 

CO2 emissions of agricultural management practices and that CA practices produce less CO2 

emissions.  Over three years of measurement, the mean and standard error (SE) of CO2 emissions 

for the plot with the most consistent CA practices was 0.705 ± 0.0323 g CO2 m
-2

 hr
-1

, 

significantly less than 0.963 ± 0.0321 g CO2 m
-2

 hr
-1

 for the plot treated with conventional 

agricultural management practices.  Micrometeorological measurements revealed that the CA 
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practices of no-till and cover crops produced fewer CO2 emissions than conventional tillage and 

fallow. 

Introduction 

Reducing CO2 emissions from fossil fuel combustion is a critical step towards averting 

catastrophic changes to the climate if global temperature change exceeds the 2°C threshold 

above pre-industrial levels (Clarke et al., 2014; IPCC-SR15, 2018).  The role of agriculture in the 

global context of climate change cannot be ignored.  Smith (2016) concluded that agriculture 

offers several strategies that could help moderate the expected increases in atmospheric CO2 

concentrations.  He proposed employing wide-scale changes in soil management that would 

promote soil C sequestration, such as changes that include restoration, reduced tillage, crop 

residue retention, cover crops, more diverse crop rotations, better utilization of organic 

amendments, deeper rooting plant varieties, optimal population densities, and optimal nutrient 

management (Smith; 2016).  However, it is necessary to account for site-specific factors such as 

climate, soil type, and previous land use. 

Following atmospheric convention, a flux is deemed to be positive when CO2 is emitted 

from plants or soil to the atmosphere.  This flux corresponds to the net ecosystem exchange 

(NEE) of the ecological community, although care must be taken about the sign convention 

(Chapin et al., 2006).  The rate of exchange is considered to be negative when CO2 is extracted 

from the atmosphere and “sequestered” into ecosystem plants (Baldocchi et al., 2001).  Soil C 

reserves are accumulated over millennia, from the decay and assimilation of the organic matter 

deposited on and within the soil as plants die and decay, such as in prairie/grassland soils, 

wetlands, peatlands, marshes and the topsoil under forests.  The organic C that plants produce 
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from the sequestration of atmospheric CO2 is transferred to the soil after plant necrosis with both 

root and plant residue mineralization being fundamental to soil C formation (Kirschbaum, 2000).  

From the soil ecosystem perspective, the C cycle continues with CO2 released (emitted) back 

into the atmosphere through decomposition of both soil and plant organic matter by 

microorganisms (respiration) and can be accelerated by tillage.  

Modifying agricultural practices would appear to be an obvious choice for climate change 

mitigation, since cropland occupies 11% of the earth’s land surface (FAO, 2011) and is 

intensively managed.  Like forests, crop production produces plants that remove CO2 from the 

atmosphere.   

The three principles of Conservation Agriculture (CA)—minimal soil disturbance, 

maintaining soil cover with residue and/or mulch, and crop rotation (Hobbs, 2007)—are among 

the crop management practices described by Smith (2016) that sequester soil C. However, field 

studies have not always confirmed that these practices sequester soil C (Alvarez and Alvarez, 

2005; Gregorich et al., 2005; Ogle et al., 2005; Cheesman et al., 2016).  Soil C sequestration 

depends on the site management, crop, yield, climate, soil type, and agro-ecologies involved.   

The current assessment of agriculture is that it is generally a net emitter of CO2 and other 

greenhouse gases because of the dominant contribution of CO2 emissions from soils (Clarke et 

al., 2014).  Many of the relevant soil C sequestration uncertainties result from challenges in 

measuring soil C stocks, which is made especially difficult considering soil spatial and temporal 

variability as well as the time needed to measure changes on a mass or volume basis (Eswaran et 

al., 1993; Paustian et al., 2016). Considering the temporal and spatial variability of soil C, small 

annual changes in soil C can take greater than five years to detect (Smith, 2004; Necpálová et al., 

2014).  Taking into account the impact of both climate and management practice on soil organic 
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C, it is understandable that many studies do not show consistent soil C sequestration results 

(Powlson et al., 2016). 

Micrometeorological methods allow measurement of the exchanges of physical 

quantities—such as heat and mass—in the atmospheric boundary layer and can be used to 

estimate the movement of CO2 and other trace gases between the surface (vegetation canopy, soil 

or soil cover) and the atmosphere at the field scale (Arya, 2001).  By measuring CO2 flux using 

micrometeorological methods (e.g., eddy covariance (EC) or Bowen ratio energy balance 

(BREB)) (Kanemasu et al., 1979), we can estimate the NEE of CO2 between a surface and the 

atmosphere for a given agricultural management practice over a given period of time.  The NEE 

summarizes whether an ecosystem is a CO2 source or sink for a season or a year.  Measuring 

CO2 flux over several years can provide information about climate and agricultural management 

impacts on NEE not available from other experimental methods.  Negative NEE (net removal of 

CO2 from the atmosphere to the ecosystem for a time period) does not always translate into soil 

C sequestered.  However, NEE can be used to show both the short- and long-term CO2 sink and 

source potential of an ecosystem and the comparative benefits of factors such as climate and 

management practice that contribute to the overall CO2 exchange.  For example, the global and 

regional networks of more than 900 EC measurement stations distributed around the world have 

produced more than 7000 site-years of data, all of which shed light on factors such as the 

disturbance of vegetation or soil, plant phenology and climate, which contribute to NEE 

(Baldocchi, 2014; Chu et al., 2017).  

Mixed results have been reported from EC micrometeorological studies that have 

measured the C sequestration potential of soils managed using CA principles.  Baker and Griffis 

(2005) measured the NEE of a spring cover crop using conventional tillage (CT) and compared it 
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to a site using strip tillage for two years of a maize (Zea mays L.)-soybean (Glycine max L.) 

rotation near Minneapolis, MN.  They found no significant reduction of emissions from the 

reduced tillage practice and both systems were net sources of atmospheric C.  Hollinger et al. 

(2005) found a six-year no-till maize-soybean rotation near Champaign, IL to be a net C sink 

overall, though during soybean years, the ecosystem was a net source.  In a three-year no-till 

study, Verma et al. (2005) found that a rainfed maize-soybean rotation was C neutral, while an 

irrigated continuous maize field was close to C neutral or a small C source.  Additionally Verma 

et al. (2005) found that an area of irrigated maize-soybean rotation emitted more C than the 

irrigated continuous maize.  When expanding the study to eight years, Suyker and Verma (2012) 

found that a rainfed maize-soybean rotation remained C neutral, while an irrigated maize-

soybean rotation moved closer to being C neutral from being a C source.  During a four-year 

maize-soybean rotation that included tillage near Ames, IA, Hernandez-Ramirez et al. (2011) 

concluded that maize appeared to be C neutral while soybean may have been a net source.  These 

EC studies show that no-till maize can range from being a C sink to a slight C source, while the 

addition of soybean rotations, irrigation and tillage practices generally increased emissions.  

These studies also support other soil C measurements showing that soybean residues decompose 

faster than maize due to a lower C:N ratio reducing soil C sequestration (Reicosky et al., 1995; 

West and Post, 2002).  

Several chamber studies have examined CO2 emissions over agriculture in Africa 

(Mapanda et al., 2010, 2011; Kim et al., 2016; Kimaro et al., 2016; Rosenstock et al., 2016).  

Studies using chambers confront many challenges, including spatial and temporal variability and 

cumbersome sample processing (Kimaro et al., 2016; Rosenstock et al., 2016).  Hence, several 

studies in Africa have used micrometeorological methods to measure CO2 exchange rates, 
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though most have been over savanna ecosystems (Kutsch et al., 2008; Williams et al., 2009; 

Tagesson et al., 2015).  Ciais et al. (2011) reviewed the C balances of African ecosystems and 

reported a need for more observations of C fluxes and stocks, recommending a network of EC 

flux towers for agroecosystems as well as other terrestrial ecosystems.  There are also fewer 

micrometeorological stations measuring CO2 flux in subtropical climates as opposed to 

temperate climates. 

Few micrometeorological studies have measured NEE over CA in Africa and most 

experiment durations have been for less than a year (e.g., O’Dell et al., 2014; 2015).  This three 

year study evaluates cross-seasonal micrometeorological data near Harare, Zimbabwe.  The 

objective was to compare the CO2 exchange consequences of CA practices with conventionally 

tilled controls to investigate their potential for soil C sequestration.  Measurements used the 

BREB method due to its ability to enable relevant data to be obtained close to the surface and 

because of its demonstrated utility for measuring trace gas exchange (Gilmanov et al., 2017). 

Materials and Methods 

Site Description 

This study was conducted from 15 June 2013 to 1 May 2016 at the International Maize 

and Wheat Improvement Centre (CIMMYT) Southern Africa Regional Offices in Harare, 

Zimbabwe (17.7220º S, 31.0209º E, 1494 m elevation asl) at the same location and using the 

same instrument setup as described by O’Dell et al. (2015).  

The site’s climate is classified as temperate highland tropical, with a unimodal rainfall 

pattern of dry winters and rainfall between 700–1000 mm during the six-month growing season. 

The soils are classified as Chromic Luvisols (Nyamapfene, 1992; IUSS Working Group WRB, 
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2015), which correspond to Rhodustalfs in the USDA soil taxonomic classification system (Soil 

Survey Staff, 2014). The soil texture is a sandy clay loam and the study site has a slope of less 

than 2%. The study site was fallow for two years prior to the beginning of micrometeorological 

measurements in June 2013. 

The study site included four square plots approximately 0.64 ha in size upon which 

different tillage and crop treatments were applied.  Plots were identified by number and 

treatment sequence summary as is shown in Figure 3.1.  BREB stations were established a few 

meters downwind of the center of each plot; the predominant wind direction from the southeast. 
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Figure 3.1.  Plot layout image (imagery date 6 July 2013) about 2 months following initial 

planting in 2013, showing BREB station locations in orange circles (Google Earth Pro 

v7.3.2.5491; data provider DigitalGlobe 2018). 
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Treatment applications 

The analysis that follows distinguishes between wet and dry seasons by year (Figure 3.2).  

The wet season is considered the same as the cropping season described by Mhlanga et al. 

(2015). For the purposes of this experiment, the wet season is assumed to start on 1 November 

and end 30 April of the following year and the dry season is assumed to start on 1 May and end 

31 October.  An exception is that the dry season experimentation for 2013 was delayed until 15 

June when micrometeorological measurements began and was the only season that included 

irrigation of plots 3 and 4 that were planted with cover crops.  Otherwise, the wet and dry season 

rainfall pattern was similar across years providing comparable environmental conditions by 

season and year.   

  



131 

 

Figure 3.2. Total rainfall by month for each season-year with rainfall amounts (mm) displayed 

above each bar.  The blue curves show the accumulation of rainfall during each of the seasons. 
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Table 3.1 provides a description of the treatments over the experiment period.  CA 

treatments were selected to compare the net CO2 flux between CA practices such as no-till and 

conventional tillage and the effect of additions to CA practices such as intercropping.  For 

example, during the first wet season in 2013, plot 2 (2-CTMaize) was plowed and planted with 

maize in a conventional approach, while plots 3 (3-NTMaize) and 4 (4-NTMaizeVBI) were 

planted maize using no-till with a velvet bean (Mucuna pruriens) intercrop added (4-

NTMaizeVBI) to determine if additional CO2 would be sequestered through rotation/cropping 

system intensification. During the second and third wet seasons in 2014 and 2015, a maize trial 

was conducted on plot 4, which staggered the planting of maize. 

To improve comparisons between treatments across years, planting dates would best be 

scheduled for similar calendar dates on each year.  However, scheduling presented logistical 

issues due to labor availability and resource demand from competing experimental programs.  

Optimal planting dates also vary based on climate conditions.  Simba and Chayangira (2017) 

describe how small holder farmers in Zimbabwe schedule planting based on the mean start of the 

growing season, which varies by month depending on the district and is usually dictated solely 

by the onset of effective planting rains, determined as rainfall of 30-50 mm falling after 15 

November. 
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Table 3.1. Plot treatment operations and dates by season-year. 

Treatment 

Period 

Plot 

 # 

Treatment 

Abbreviation 
Treatment Operation Date 

Dry season 

2013 

1 

2 

3 

4 

1-CTFallow 

2-NTFallow 

3-NTWheat 

4-NTBlueLupin 

Tillage followed by fallow 

No-till fallow with maize and grass residue  

No-till wheat (Triticum aestivum) 

No-till blue lupin (Lupinus angustifolios L.) 

13 Jun 2013 

 

Early May 2013 

Early May 2013 

Wet season 

2013 

2 

2 

3 

4 

4 

1 

2-CTMaize 

2-CTMaize 

3-NTMaize 

4-NTMaizeVBI 

4-NTMaizeVBI 

1-CTFallow 

Tillage 

Maize planting 

No-till planted with maize 

No-till planted with maize 

Velvet bean (Mucuna pruriens) intercrop 

Tillage of weed growth followed by fallow 

05 Oct 2013 

08 Nov 2013 

20 Nov 2013 

20 Nov 2013 

30 Jan 2014 

20 Feb 2014 

Dry season 

2014 
1-4 1-4-NTFallow None (all plots fallow)  

Wet season 

2014 

1 

1 

2 

3 

4 

4 

1-CTFallow 

1-CTFallow 

2-CTMaize 

3-NTMaize 

4-NTMaizeSP 

4-NTMaizeSP 

Tillage followed by fallow 

Hand weeding with hoes 

Tillage followed by maize planting 

No-till planted with maize 

No-till half plot planted for maize trial 

No-till remainder of plot planted with maize 

17 Jan 2015 

2 Feb 2015 

17 Jan 2015 

23 Jan 2015 

11 Dec 2014 

23 Jan 2015 

Dry season 

2015 

1 

2-4 

1-CTFallow 

2-4-NTFallow 

Tillage followed by fallow 

Plots 2-4 left fallow 

17 Jul 2015 

Wet season 

2015 

3 

 

4 

1 

2 

4 

1 

2 

3-NTJackBean 

 

4-NTMaizeSP 

1-CTFallow 

2-NTPigeonpea 

4-NTMaizeSP 

1-CTFallow 

2-NTPigeonpea 

No-till planted with jackbean (Canavalia 

 ensiformis) 

No-till half plot planted for maize trial  

Herbicide application followed by fallow 

No-till with pigeonpea (Cajanus cajan) 

No-till remainder of plot planted with maize 

Tillage followed by fallow 

Additional pigeonpea planted to fill in gaps 

18 Dec 2015 

 

18 Dec 2015 

6 Jan 2016 

6 Jan 2016 

18 Jan 2016 

20 Jan 2016 

29 Jan 2016 
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Similar practical difficulties affected the continuity of measurement.  The experimental 

environment was challenging, and maintaining all sensors in a properly calibrated fashion was 

sometimes difficult—especially in a remote environment.  However, despite the difficulties, we 

accomplished a data recovery rate of 73%, a value consistent with other BREB/EC data (Falge et 

al., 2001). 

BREB methodology was selected for use because of its relative simplicity and its 

advantage for application over small plots.  To obtain in-air measurements that are indeed 

relevant for studying the characteristics of the surface underneath, it is clearly best to make the 

measurements as close to the surface as experience and theory permit.  In this regard, the BREB 

approach is better than alternative EC because BREB measures meteorological properties closer 

to the surface (frequently less than 0.5 m) while EC instruments typically measure at heights 

generally many meters above the surface. Due to the fact that BREB measurements are closer to 

the surface, they are more likely to be representative of it.  The BREB analysis procedure does 

not impose a need for determination of an eddy viscosity with which to derive fluxes from 

measured gradients.  Instead, it assumes equality of these eddy diffusivities and apportions heat 

fluxes according to the gradients based on the assumption that the contributing diffusivities are 

the same.  Hence, the conventional micrometeorological requirement for extensive fetch (of the 

order of 100 times the height of measurement, see Rosenberg et al. (1983)) is not relevant and 

measurements can therefore be made closer to the surface than would be required if the 

analytical (or measurement) methodology were different.  Whereas a fetch/height ratio of 100 

might well be appropriate for the use of eddy correlation methods, studies elsewhere confirm that 

consistent flux estimates can be obtained using the Bowen ratio method at fetch to height ratios 

as low as 20:1 (Heilman et al., 1989). 
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CO2 Flux Measurements 

Micrometeorological sensor outputs were recorded at five-second intervals.  To eliminate 

sensor biases, the present BREB measurements were made with a rotating arm system designed 

to switch the level of measurement by temperature, humidity, and CO2 sensors every five 

minutes, yielding five-minute averages of differences in temperature, humidity and CO2 

concentration between the levels accessed by the arms (O’Dell et al., 2015). The resulting five-

minute averages were then combined to produce 30-min averages, used as input for the BREB 

analysis routine (Bowen, 1926; Kanemasu et al., 1979; Dugas, 1993; Perez et al., 1999; McGinn 

and King, 1990; Webb et al., 1980).  CO2 fluxes were then derived as described by O’Dell et al. 

(2015).  Data have been excluded for which the apparent 30-min turbulent diffusivity was 

negative (Savage et al., 2009).  Occasions in which spikes in the flux results exceeded four times 

the standard deviation of the running average, flux data were removed and linearly interpolated 

(Vickers and Mahrt, 1997). 

Statistical Analysis 

Graphical representations of data were developed using the R programming language and 

environment (The R Foundation, 2018). Statistical analysis of variance (ANOVA) was 

conducted with the GLIMMIX procedure (SAS V9.4, SAS Institute, Cary, NC).  The above-

ground maize biomass and grain yield data were available for the 2013 wet season and a one-

way ANOVA was used to analyze treatment effects with mean separation analysis performed 

using Fisher's least significant difference (LSD) test with mean separations converted to letter 

groupings using the PDMIX800 macro (Saxton, 1998).  Maize grain yield was adjusted to 12.5% 

moisture content.   
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The mean CO2 flux by season and for the entire experiment period was analyzed using a 

repeated measures ANOVA with Tukey's honest significant difference (HSD) mean separation 

test.  Data are presented as mean or sum ± SE. 

Results and Discussion 

Table 3.2 provides the treatment sequence for each plot over the six seasons of the 

experiment, using abbreviated plot-treatment names for subsequent reference, with the following 

acronyms used: conventional tillage (CT), no-till (NT), velvet bean intercrop (VBI), staggered 

planting for maize trial (SP), pigeonpea (PP), jackbean (JB), fallow (F), and maize (M).  In 

addition to tillage type, the total period sequence label includes all three growing season crop 

treatments.  Note that plot 4 had staggered maize planting during the 2014 and 2015 growing 

seasons.  

Table 3.3 provides a summary of CO2 fluxes by season-year and treatment.  The NEE for 

all seasons are positive, indicating net emissions for all of the study periods.  Results during the 

2013 dry season are greater than the estimates previously reported by O’Dell et al. (2015) due to 

the present rejection of flux evaluations when the indicated turbulent diffusivity was negative.  

Thus, negative nighttime fluxes were rejected—making total nighttime emissions greater.  Table 

3.3 shows plot 3 (3-NTJackBean) produced significantly fewer emissions than all of the other 

plots during the wet season 2015.  For four of the six seasons (dry seasons 2014 and 2015 and 

wet seasons 2013 and 2015), plot 1 (1-CTFallow) produced significantly greater emissions than 

all the other plots. 
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Table 3.2. Sequence of treatments for each plot by season-year using abbreviated plot-treatment 

labels. 

Season - Year Plot 1 Plot 2 Plot 3 Plot 4 

Dry Season 2013 1-CTFallow 2-NTFallow 3-NTWheat 4-NTBlueLupin 

Wet Season 2014 1-NTFallow 2-CTMaize 3-NTMaize 4-NTMaizeVBI 

Dry Season 2015 1-CTFallow 2-NTFallow 3-NTFallow 4-NTFallow 

Wet Season 2013 1-CTFallow 2-CTMaize 3-NTMaize 4-NTMaizeSP 

Dry Season 2014 1-CTFallow 2-NTFallow 3-NTFallow 4-NTFallow 

Wet Season 2015 1-CTFallow 2-NTPigeonpea 3-NTJackBean 4-NTMaizeSP 

Total Sequence Name 1-CTF 2-CTM 3-NTCA 4-NTM 

Table 3.3. NEE, SE, number (N) of 30-min measurements, and mean CO2 flux followed by 

Tukey's HSD letter group for each treatment by season-year as compared with repeated measures 

ANOVA. 

Season Year 
Plot-Treatment 

Abbreviation 

NEE 

(kg CO2  

m
-2

 season
-1

) 

SE of  

the NEE 
N 

Mean NEE 

(g CO2  

m
-2

 season
-1

) 

 2013 1-CTFallow 3.05 0.0451 6120 0.987  a 

  2-NTFallow 2.72 0.0443 6200 0.860  a 

  3-NTWheat 1.41 0.112 5587 0.427  b 

  4-NTBlueLupin 1.02 0.0258 5672 0.375  b 

 2014 1-NTFallow 4.47 0.0465 8277 1.096  a 

Dry  2-NTFallow 3.66 0.0485 8347 0.874  b 

  3-NTFallow 3.15 0.0363 8431 0.737  c 

  4-NTFallow 2.01 0.0384 5153 0.814  bc 

 2015 1-CTFallow 2.16 0.0376 5042 0.833  a 

  2-NTFallow 2.52 0.0345 7077 0.707  b 

  3-NTFallow 2.55 0.0587 8347 0.610  c 

  4-NTFallow 2.23 0.0443 6418 0.629  c 

 2013 1-TFallow 4.65 0.0764 5776 1.80    a 

  2-CTMaize 2.15 0.113 6160 0.941  b 

  3-NTMaize 1.67 0.136 6170 0.908  b 

  4-NTMaizeVBI 2.12 0.0999 6372 0.915  b 

 2014 1-TFallow 3.61 0.0731 6476 1.30    ab 

Wet  2-CTMaize 2.54 0.0507 3769 1.42    a 

  3-NTMaize 1.27 0.0601 3111 1.01    b 

  4-NTMaizeSP 4.19 0.0637 6658 1.38    a 

 2015 1-TFallow 3.69 0.0625 5027 1.60    a 

  2-NTPigeonpea 3.32 0.0736 6513 1.42    b 

  3-NTJackBean 1.85 0.115 6021 1.00    c 

  4-NTMaizeSP 3.02 0.0601 5272 1.40    b 
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The values listed in Table 3.3 lead to the conclusion that there were indeed differences 

among the plots, as they were affected individually by different treatments and crops.  To 

examine the cause of emission disparity, a closer examination of the data is needed. 

Comparisons of the CO2 flux plotted by time of day for each season-year and each 

treatment are shown in Figure 3.3.  CO2 flux differences are most clearly observed during the 

daytime, while nighttime emissions rates often overlap.  All plots yielded emissions during the 

night.  For the wet growing seasons, only 2013 shows net sequestration during the day for all 

three plots planted to maize, while during the 2014 and 2015 wet seasons, only 3-NTMaize and 

3-NTJackBean show net daytime sequestration.   

The 2013 dry season was different from the other dry seasons; cover crops were planted 

on plots 3 and 4 (3-NTWheat and 4-NTBlueLupin) and those plots were irrigated.  For the 2013 

dry season, only 3-NTWheat had net C sequestration during the day.  The other three plots had 

net daytime emissions.  The 2014 and 2015 dry seasons show very little difference in emissions 

between treatments, except for lower daytime (during the hours of 0800 to 1600) emissions for 

3-NTFallow during the final 2015 dry season.  

All wet seasons (Figure 3.3) show the greatest daytime C sequestration (negative values) 

for plot 3 (3-NTCA), which had the most consistent application of CA.  During the 2013 dry 

season, 3-NTWheat showed the greatest daytime sequestration and 3-NTFallow showed the 

lowest daytime emissions during the 2014 and 2015 dry seasons.   

Harvest data was available during the 2013 wet season for the total grain yield and 

above-ground biomass (Table 3.4).  The above-ground biomass for 3-NTMaize was significantly 

greater than both 2-CTMaize and 4-NTMaizeVBI (maize with velvet bean intercrop), while the 

grain yield for 3-NTMaize was only significantly greater than the grain yield for 2-CTMaize.    
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Figure 3.3. Mean CO2 flux by time of day and season-year for each treatment ± one SE shown in 

translucent colors. Negative values represent uptake of CO2 by the canopy and positive values 

represent emissions from the surface to the atmosphere. 

 

Table 3.4. Mean and SE (Mg ha
-1

) for grain yield (at 12.5% moisture content) and above-ground 

biomass for the 2013 wet season harvest for three maize treatments (plots 2-4).  Means with 

different letters were significantly different (P<0.05, ANOVA Fisher LSD, N = 10). 

Plot#-Treatment 

Abbreviation 

Grain yield 

(Mg ha
-1

) 
SE 

Above-ground 

biomass 

(Mg ha
-1

) 

SE 

1-CTFallow     

2-CTMaize 5.67  b 0.274 9.29  b 0.429 

3-NTMaize 6.55  a 0.262 11.6  a 0.542 

4-NTMaizeVBI 5.92  ab 0.251 9.34  b 0.387 
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The results for grain yield are consistent with the mean CO2 flux for this season, which shows 

significantly greater emissions from 2-CTMaize than 3-NTMaize, and no significant difference 

between and mean CO2 flux for 3-NTMaize and 4NTMaizeVBI.  

Figure 3.4 shows the latent heat flux (LE) by time of day and season-year.  Daytime LE 

was considerably greater during the 2013 dry season due to irrigation for the two cover crops (3-

NTWheat and 4-NTBlueLupin) than during the 2014 and 2015 dry seasons.   

The nighttime data illustrated in Figures 3.3 and 3.4 are particularly informative, since 

the high exchange rates evident for the CO2 results are not mirrored in the LE data. The 

negligible nighttime LE in the wet season, when water was plentiful, is as expected.  The ability 

of the BREB methodology to reproduce this expected LE can be interpreted as an indication that 

the approach is working.  The high CO2 flux at night, especially during wet seasons (Figure 3.3), 

can be attributed primarily to sub-surface biotic factors (soil microbes and root respiration).  

However, given that available heat energy becomes very small at night, the magnitude of 

positive nighttime CO2 flux can be uncertain when quantified by turbulence-based 

micrometeorological methods, such as BREB (Dugas et al., 1999). 
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Figure 3.4. Mean latent heat flux (LE) (W m
-2

) by time of day and season-year for each 

treatment ± one SE shown in translucent colors. 
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In the dry seasons, the outstanding feature that highlights the association between water 

and CO2 flux is exemplified by the irrigated wheat crop of 2013 (Figure 3.3).  It is evident, 

therefore, that the high CO2 emission rates at night are associated with the presence of water.  

The origin of this nocturnal CO2 emission was indisputably associated with both plant respiration 

and soil microbial activity.  Irrigation not only provides for cover crop growth during the dry 

season, but also enhances microbial activity as shown during nighttime hours in Figure 3.3 

(Orchard and Cook, 1983; Liu et al., 2010).  Inspection of Figure 3.4 shows, however, that it is 

only for the irrigated plots in 2013 that the LE at night indicates respiration.  Elsewhere, the 

nighttime LE rates are low, as expected, and indicative of the conventional curtailment of plant 

transpiration at night. 

Examples of distinctive LE and CO2 flux relationships include the greatest daytime 

sequestration found in 3-NTMaize (blue) along with the greatest daytime LE during the 2013 wet 

season (Figure 3.5).  Another relationship that can be seen when comparing LE with CO2 flux is 

apparent during the 2013 wet season where the greatest daytime CO2 emissions occurs over the 

1-TFallow (red) with the smallest daytime LE during that period showing that total 

evapotranspiration is decreased without plant transpiration, while daytime respiration rates 

contribute to total evaporation from the soil (Figure 3.5).  
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Figure 3.5. CO2 flux and latent heat flux (LE) by time of day for wet season 2013 with blue 

arrows showing the relationship between CO2 flux and LE for 3-NTMaize and red arrows 

showing the relationship between CO2 flux and LE for 1-CTFallow. 
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During the first dry season in 2013, the total NEE for the two cover crops, 3-NTWheat 

(1.41 ± 0.113 kg m
-2

 ) and 4-NTBlueLupin (1.02 ± 0.0258 kg m
-2

) were significantly less than 

the two fallow plots and not significantly different from zero (at the 90% probability level), i.e., 

the cover crops were essentially in carbon-cycle equilibrium.  The negative mean daytime fluxes 

(Figure 3.3) indicate strong photosynthesis by 3-NTWheat, while the greater nighttime flux 

indicates greater respiration for the wheat cover crop at night. 

Several micrometeorological studies reported that winter wheat sequestered C (Moureaux 

et al., 2008; Gebremedhin et al., 2012), while Gilmanov et al. (2014) found that many legume 

crops, such as soybean, peanut (Arachis hypogaea L.) and pea (Pisum sativum L.), were net 

sources of C—though the perennial legume, alfalfa (Medicago sativa L.), sequestered more C 

than wheat.  In a seven-year experiment comparing the effects of N fertilization with leguminous 

and non-leguminous cover crops, Sainju et al. (2002) found that the non-legume, rye (Secale 

cereale L.), produced greater SOC concentrations than two legumes, hairy vetch (Vicia villosa 

Roth.) and crimson clover (Trifolium incarnatum L.), supporting greater C sequestration shown 

for wheat in this experiment as compared to blue lupin. 

During the first wet season in 2013, the total NEE was less in 3-NTMaize treatment (1.67 

± 0.136 kg m
-2

) than 4-NTMaizeVBI (2.12 ± 0.0999 kg m
-2

) though the velvet bean intercrop 

was expected to increase total sequestration (Table 3.3).  This is counter-intuitive and may be a 

result of the greater residue cover left by the preceding wheat cover crop (on plot 3), which may 

have provided a catch crop releasing nutrients for the following maize crop.  It is also possible 

that the preceding blue lupin cover crop (on plot 4) provided a more labile substrate for greater 

decomposition and respiration during the 2013 wet season.  Interestingly, it appears that 3-

NTMaize had greater daytime C sequestration, while 4-NTMaize-VBI had lower nighttime 
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emissions (Figure 3.3).  The 2-CTMaize treatment, which had the advantage of nutrient 

mineralization from tillage (Reicosky et al., 1995; Lupwayi et al., 2004), did not produce 

significantly greater total CO2 emissions (2.15 ± 0.0113 kg m
-2

) for the 2013 wet season than 

both CA no-till maize plots (3-NTMaize at 1.67 ± 0.0136 kg m
-2

 and 4-NTMaizeVBI at 2.12 ± 

0.0999 kg m
-2

).  Though the daytime mean flux for the 2-CTMaize (Figure 3.3) was within one 

SE of the 4-NTMaizeVBI, both 2-CTMaize and 4-NTMaizeVBI show more than 2 SEs greater 

daytime flux than the 3-NTMaize treatment. 

The dry seasons in 2014 and 2015 are comparable in environmental conditions 

representing a typical cool non-growing dry season; all treatments were no-till fallow with no 

cover crops or irrigation, except for plot 1 which was tilled in 2015.  CO2 flux by time of day for 

these seasons were very similar (Figure 3.3). The final 2015 wet/growing season showed 

differences in daytime CO2 flux with the 3-NTJackBean treatment sequestering CO2 while all the 

other plots emitted CO2 (Figure 3.3).  The total NEE for 3-NTJackBean of 1.85 ± 0.115 kg m
-2

 

for the season was more than 3 SEs and significantly less than 4-NTMaizeSP at 3.02 ± 0.0601 kg 

m
-2

 (Table 3.3).  While 3-NTJackBean produced the lowest NEE for this season, there was still a 

net CO2 emission on this plot, suggesting that even with CA practices, it is possible that many 

crops will still be a net source of C.  

It is important to note that precipitation was close to 200 mm less during the 2014 and 

2015 growing seasons than the 2013 growing season.  While some crops like jack bean and 

maize are known for rapid growth, it is also possible that the buildup of plant residues from the 

previous CA treatments also contributed to reduced evaporation at the soil surface and greater 

water use efficiency during a growing season with less rainfall (Greb, 1966; Mupangwa et al., 
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2007).  This example provides evidence that CA may help farmers adapt to climate change under 

reduced rainfall conditions.  

Table 3.5 provides the CO2 flux sum (NEE) and mean for each plot for the total 34.5-

month period of measurement.  Consistent with individual seasons, the plot with the greatest 

NEE (1-CTF, 21.6 ± 0.341 kg CO2 m
-2

 period
-1

) was fallow and received more conventional 

tillage than all other plots, while the plot with the least total emissions (3-NTCA, 10.6 ± 0. 518 

kg CO2 m
-2

 period
-1

) had the most systematic applications of CA treatments.  

Plot 3 (NTCA) had the most consistent CA practices and the lowest mean CO2 flux 

(0.705 ±0.0323 g CO2 m
-2

) for the three-year period, which was significantly different than all 

other plots (Figure 3.6, Table 3.5).  Plot 4 (NTM) also included CA practices, however, its mean 

CO2 flux (0.899 ± 0. 0325 g CO2 m
-2

) was lower and significantly different than 3-NTCA 

(Figure 3.6).  Several possible explanations may account for this difference, including that 4-

NTM had staggered planting, which may have contributed to increased emissions.  Additionally, 

4-NTM was planted with maize for three consecutive years, and continuous maize deviates from 

CA’s third principle of crop rotation.  Plot 1 (CTF), which was fallow and received the most 

tillage, had a greater mean CO2 flux and was significantly different than the other three plots for 

the experiment period. 
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Table 3.5. Total NEE and SE (kg CO2 m
-2

 period
-1

), number of 30-min measurements, mean 

NEE (g CO2 m
-2

 hr
-1

) followed by Tukey's Honest Significant Difference (HSD) letter group and 

SE of the mean (g CO2 m
-2

 hr
-1

) for each plot over the 34.5-month experiment period. 

Plot # - Treatment 

Sequence Name 

Accumulated 

NEE (kg CO2  

m
-2

 period
-1

) 

SE of 

the NEE 
N 

Least Squares 

Mean NEE  

(g CO2 m
-2

 hr
-1

) 

Least 

Squares 

SE of the 

mean 

1-CTF 21.6 0.341 36718 1.24   a 0.0323 

2-CTM 17.7 0.365 38066 0.963 b 0.0321 

3-NTCA 10.6 0.518 37667 0.705 c 0.0323 

4-NTM 14.6 0.332 35545 0.899 b 0.0325 

 

Figure 3.6. Mean CO2 flux (g CO2 m
-2

 hr
-1

) with 95% confidence intervals for the 34.5-month 

experiment period and the ANOVA least squares mean separation output converted to letter 

grouping using Tukey’s HSD.  
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Our results with micrometeorological methods show differences in net CO2 flux between 

contrasting agricultural management practices. Further, effective rainfall utilization—as is 

common with CA practices—can be used to reduce total CO2 emissions as evidenced by results 

from plot 3 (NTCA).  The most consistent application of CA principles was on plot 3, and this 

plot produced significantly fewer CO2 emissions than all the other treatment combinations as 

well as almost half the total emissions as compared to the tilled fallow treatment (1-CTF).  This 

can be viewed in Figure 3.3 for all blue shaded daytime CO2 flux, which showed the lowest 

(positive) emissions during dry seasons 2014 and 2015 and the greatest (negative) sequestration 

during the remaining seasons.  

Of interest is plot 4 (NTM), which also had CA treatments, though its total emissions 

were not much lower than plot 2 (CTM) with conventional tillage.  This result implies that CA 

may not sequester more C over time than conventional practices when CA principles are not 

fully implemented such as with crop rotation and sufficient soil cover.  This experiment suggests 

that CA enhanced with a dense cover crop and its subsequent thick residue cover may reduce 

evaporation losses and trap nutrients, which will promote greater productivity in the following 

crops.   

Conclusions 

While there are intense constraints imposed on agriculture in a unimodal wet season/dry 

season climate, there is potential to reduce emissions using CA practices.  Micrometeorology—

as with BREB methods used here—can detect differences between soil and cropping practices 

both in the short term (by season) and over longer terms (multiple years).  This study found that 

basic no-till CA practices coupled with cover crops produced healthy crop stands that emitted 
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less CO2 than tilled treatments.  CA may be able to improve water use efficiency and crop yields 

in semi-arid climates in Africa.  Furthermore, this research provides data regarding CA’s 

potential to reduce C emissions (Thierfelder et al., 2017).  The data show CO2 emissions that 

appear related to the effects of reduced soil organic matter from tillage and surface residue that 

can impact evaporation, respiration, and crop productivity.  These results indicate that CA may 

help to mitigate the consequences of climate change and adapt to climate change impacts such as 

reduced rainfall in tropical and/or semi-arid regions like southern Africa. 
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Appendix 

Abbreviations 

Excluding SI units and US States 

ANOVA analysis of variance 

asl above sea level 

BREB Bowen ratio energy balance 

C carbon 

CA conservation agriculture 

CT conventional tillage 

CTM conventional tillage followed by maize crop 

CO2 carbon dioxide 

°C degrees Celsius 

EC eddy covariance 

et al. et alia (and others) 

F fallow 

FAO Food and Agriculture Organization of the United Nations 

hr hour 

HSD honest significant difference 

IPCC Intergovernmental Panel on Climate Change 
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JB jackbean 

LE latent heat flux 

LSD least significant difference 

M maize 

N number of measurements 

NEE net ecosystem exchange 

NT no-till 

NTCA no-till with conservation agriculture practices 

NTM no-till with maize crop 

PP pigeonpeastandard error 

SE standard error 

SP staggered planting 

VBI velvet bean intercrop 

USDA United States Department of Agriculture 
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CONCLUSIONS 

Research Results 

The research presented in this dissertation measured net ecosystem exchange (NEE) of 

CO2 over agricultural management practices using micrometeorological methods to understand 

the potential for agriculture to sequester atmospheric CO2 to support climate change mitigation.  

These studies employed micrometeorology, including Bowen Ratio Energy Balance (BREB) and 

Eddy Covariance (EC) systems, to measure the exchange of CO2 between the agricultural surface 

and the atmosphere over the short-term (by season) and over longer terms (one to three years) to 

determine whether agricultural practices can sequester CO2. 

The first study measured CO2 flux using BREB micrometeorological methods from a 

maize crop grown on no-till and tilled soils to determine tillage effects on CO2 emissions during 

a growing season in north central Ohio in 2015.  The study found that the no-till plot sequestered 

263 g CO2 m
-2

 (90% confidence interval -432.1 to -99.9) while the tilled plot emitted 146 g CO2 

m
-2

 (90% confidence interval -53.3 to 332.2) during 104 days of the 2015 growing season; a net 

difference of 410 g CO2 m
-2

.   

The second study also explored agriculture’s role in recycling industrial biotechnology 

waste to reduce CO2 emissions while generating environmental benefits and meeting farmer 

yield expectations.  Using both BREB and EC micrometeorological methods, CO2 flux was 

measured over maize where heat-inactivated, spent microbial biomass soil amendment was land 

applied and compared with typical farmer practices from October 2016 to October 2017. 

Findings indicate that annual NEE for the industrial biotechnology waste application was greater 

than for the farmer practice, however, excess emissions may be recycled back into the ecosystem 
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through enhanced photosynthesis to produce more plant biomass and soil C.  The additions of the 

biotechnology waste provided maize yields on par with typical farmer practices when applied at 

greater rates.  Using industrial biotechnology by-products as a soil amendment has the potential 

to enrich ecosystem productivity and environmental sustainability through conversion of waste 

nutrients into plant biomass and soil organic matter.  

This study also investigated the challenge of measuring nighttime emissions using 

turbulence-based methods, such as EC, BREB, and other aerodynamic methods.  When 

conditions were turbulent during the day, the EC and BREB methods agreed, however, the study 

found that during the night, the EC and aerodynamic methods generally did not agree. 

The third study measured CO2 emissions over conservation agriculture (CA) practices 

including no-till and cover crops as compared to conventional tillage from June 2013 to May 

2016 in central Zimbabwe.  The CA practices of no-till and cover crops produced significantly 

fewer CO2 emissions than conventional tillage.   

Notable results of the first and third studies demonstrated that, in general, the CA practice 

of no-till produces significantly fewer emissions than tilled plots. Tillage disinters buried organic 

matter and provides a means for the soil organisms to mineralize previously occluded C sources 

and accelerates decomposition of recently tilled and buried crop residue.   

These studies found that no-till practices may sequester C for a growing season, but did 

not sequester C over a year or longer, even when combined with cover crops.  Several 

possibilities may explain these results, including fallow periods during non-growing seasons or 

between crops.  These fallow periods emit CO2 through ecosystem respiration, with little to no 

photosynthetic removal of atmospheric CO2, producing a net gain to the atmosphere.  Another 

explanation is the uncertainty of nighttime CO2 flux using turbulence-based methods, such as 
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EC, BREB and other aerodynamic methods, resulting in a possible over-estimate of nighttime 

emissions—especially with the BREB calculations as used for most of these studies.  

One unexpected result was that one CA implementation over a three-year period 

produced a significantly lower mean CO2 emission rate than a plot with conventional tillage, 

while another plot that also used CA practices was not significantly lower.  One possible 

explanation is that at the beginning of the experiment, one CA plot was planted with a wheat 

cover crop, which produced a dense surface residue cover that may have contributed to reduced 

emissions over subsequent seasons.  The other CA plot was planted with a leguminous cover 

crop that took time to establish and produced labile residue that quickly decomposed, providing 

sparse soil cover.  Also, the CA plot with greater emissions included staggered planting with no 

crop rotation.  This suggests that when CA practices are not effectively applied—such as 

insufficient soil cover and/or not including crop rotation—CA practices may produce greater 

CO2 emissions. 

These results indicate that micrometeorology can detect differences between management 

practices over the short-term by season, the longer term by year, and with a sequence of 

management practices and crops over several years.  These findings provide valuable 

information about NEE of a combination of crops, crop practices, and climate over time.  These 

findings also provide data about management practices and crops that have greater potential to 

sequester C, and also provides data support for modifications to practices, such as earlier 

planting to reduce fallow periods and cropping during non-growing seasons.  
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Implications for Policy 

There are several implications of this research that can inform agricultural policies for 

climate change mitigation.  The evidence provided supports the ability of the CA practices of no-

till, cover crops, and the retention of residue to reduce CO2 emissions, which has implications for 

climate change mitigation.  Data provided by this research illustrates that reduced evaporation at 

the soil surface and greater water use efficiency from the buildup of plant residues from CA 

practices may support crops in climates with reduced rainfall and rising temperatures, which has 

implications for policies supporting adaptation to climate change.   

The CO2 emissions, maize grain and biomass yield, and soil organic carbon data of the 

study that applied industrial waste as an amendment and replacement for mineral fertilizers has 

implications for sustainable resource and waste management, because nutrient rich industrial 

wastes can enrich soil, fortify agricultural production and reduce use of mineral fertilizers.  

Applying the waste output from one industry as a resource input into another industry reduces 

waste and conserves resources, which are essential principles of sustainability.  By reducing 

greenhouse gas (GHG) emissions from both the manufacturing industry and agriculture through 

recycling of waste, industry and agriculture become more sustainable and contribute to climate 

change mitigation. 

The greatest implication of this research is the potential for micrometeorology to identify 

the capacity of agricultural management practices to reduce CO2 emissions and in quantifying 

the impact of other factors on emissions including climate, soil type, crop and sequence of 

practices over time.  This data can be used to inform policies that identify agricultural 

management practices for carbon offsets.   
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This research provided data to address the need for more observations of C fluxes in 

Africa especially over agriculture and support for the use of CA for small-holder farming, 

especially to address adaptation to rising temperatures and drought.  This research can provide 

lessons for future agro-meteorology measurement programs in Africa, especially with the use of 

BREB systems, which enable measurements closer to the soil and crop surface. 

Future Areas of Research 

These studies point to several avenues for future research, such as the identification of 

optimal crops, practices, and conditions for year round production that has the potential to be a 

roadmap for sustainable agriculture that sequesters C for consideration as a negative CO2 

emissions technology.  Questions to be explored include how much residue and what kinds of 

residue reduce the ephemeral nature of plant and soil carbon.  Can emissions be reduced, while 

value to the farmer is increased, through various combinations and timing of management 

practices such as using winter season or between season cover crops, as well as intercropping 

and intensification?   Micrometeorology is one of the best tools for measuring the sequestration 

potential of agricultural management practices, especially when it can measure not only CO2 but 

also the other important agricultural greenhouse gases including methane and nitrous oxide. 

Future research should also investigate the agricultural application of industrial 

biotechnology waste, such as determining amendment rates, timing and material composition to 

identify best management practices in achieving optimal value for the farmer.  Also, to identify 

the sustainability of both agriculture and industrial processes, research could quantify the total 

life cycle costs and emissions of landfill disposal of industrial biotechnology waste as compared 

to the cost and benefit of using those wastes as agricultural inputs that enrich ecosystem 
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productivity and environmental sustainability through conversion of waste nutrients into plant 

biomass and soil organic matter.  Bioresiduals generated by industrial biotechnologies tend to be 

rich in organic matter, containing macro- and micronutrients essential for plant growth, and 

therefore have agricultural value.  However, there remain technical, logistical, and social 

challenges and costs in value recovery. 

The network of more than 900 EC measurement stations distributed around the world 

provides valuable empirical observational data on meteorological properties and GHG fluxes 

near the surface, which is critical for models of the C cycle for use in climate change predictions.  

The research presented in this dissertation shows that BREB systems can produce data more 

representative of the surface, which is important in quantifying the role of agroecosystems in 

these models, considering that cropland occupies 11% of the earth’s terrestrial surface.  

Undoubtedly, there is a need for models to consider incorporation of more surface data as 

collected by BREB and other systems. 

Finally, an important subject for future research is the exploration of nighttime CO2 flux 

given the issues that turbulence-based micrometeorological methods have under low turbulence 

conditions.  New scientific investigation should focus on the pooling and drainage of CO2 at the 

surface during stable conditions at night.  While the network of EC stations grows to increase 

understanding of the carbon cycle in agriculture and other ecosystems, profiles of meteorological 

measurements as provided by BREB and other approaches can be used to understand the 

nighttime buildup of CO2 and other atmospheric characteristics near the surface.  This 

complexity needs to be addressed using both spatial differences and turbulent exchanges. 
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