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ABSTRACT 
 

Safeguarding spent fuel in spent fuel pools, during transportation, and at dry cask 

storage sites has been a continuing priority for the International Atomic Energy Agency 

(IAEA.) The IAEA implements partial defect testing on all easily dismountable fuel before 

transfer to difficult-to-access storage. This project is focused on developing a new imaging 

capability using fast neutron emission tomography in support of the IAEA’s mission. The 

capability is intended to address the buildup of spent fuel inventories around the world 

from decommissioning activities by creating an efficient and effective tool for verification 

of a variety of fuel types for long-term disposition.  

While the sensitivity of gamma emission tomography is limited by self-attenuation, 

neutron measurements may have better sensitivity for resolving individual pins toward the 

center of larger fuel assemblies. Because the neutron signal originates primarily from 
244Cm, which is sensitive to exposure, this method could also be sensitive to assemblies 

containing fuel pins replaced after a single cycle in the reactor and subsequently irradiated 

in the core. This work describes a set of simulation and measurement work completed in 

order to investigate and converge on the final design of a fast neutron emission tomography 

system for imaging a spent nuclear fuel assembly. To conduct a constrained optimization 

for the design, a range of imager design parameters were identified to be varied, and MCNP 

was used to build hundreds of geometries to investigate. The analysis was split in two 

components for gamma or neutron analysis. Simulations and proof-of-concept 

measurements presented here suggest that it is viable to build a compact equivalent to a 

parallel slit collimator imager that has sufficient spatial resolution to image spent fuel pins.  

Furthermore, it is expected to be able to withstand the high photon rates present in the 

relevant environment.  Recommended future work is also discussed. 
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1. INTRODUCTION 

In the field of international safeguards, there are many tools that the International Atomic 

Energy Agency (IAEA) uses to provide credible assurances that States are honoring their 

legal obligations to ensure that nuclear material is being used only for peaceful purposes [1]. 

Within the nuclear fuel cycle, safeguarding spent fuel is a high priority for the IAEA and the 

project presented in this dissertation aims to address an identified gap in the IAEA’s current 

toolset. This chapter will set the stage by providing some safeguards context as it relates to 

spent fuel safeguards, the characteristics and signatures from spent fuel that are used for 

attribute testing, an overview of tomography and the advantages it can provide in spent fuel 

measurement, and an outline of the remainder of the document.  

1.1.  Safeguards Context 

The IAEA’s safeguards mission is to prevent the spread of nuclear weapons via early 

detection of the misuse or diversion of nuclear material and related technology. The 

international safeguards system is built to act as a confidence-building measure and an early 

warning mechanism to set in motion other responses by the international community if the 

need arises [2]. Spent fuel from nuclear reactors is an important aspect in a country’s fuel 

cycle that needs to be safeguarded.  A spent fuel assembly that has been discharged from a 

commercial power reactor (~40GWd/MTU burnup) contains about 1% plutonium (Pu). For 

a typical pressurized water reactor (PWR) assembly, this corresponds to approximately 5 kg 

of total elemental Pu, or slightly less than one-half of a significant quantity (SQ) of irradiated, 

direct use material [3]. Due to the sensitivity associated with the material contained in spent 

fuel, safeguarding the fuel assemblies at the spent fuel pools at facilities, during 

transportation, and at dry cask storage sites has been a continuing priority for the IAEA. Of 

the thousands of SQs that are under IAEA safeguards, the majority has originated from light 

water reactor (LWR) operation over the last 50 years [4]. The IAEA Safeguards Research 

and Development (R&D) Plan that was released in January 2018 states that a top priority 

R&D need for them is to “develop safeguards equipment to establish and maintain 

knowledge of spent fuel in shielding / storage / transport containers at all points in their life 
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cycle.” [5] Ultimate disposition plans vary from country to country and, due to some 

countries lacking a final disposition pathway, there is an ever-increasing amount that 

accumulates at facilities. Due to the thousands of metric tons of heavy metal being discharged 

from nuclear reactors globally, countries like Finland and Sweden are taking the lead to 

develop underground repositories to store their used nuclear fuel [6] [7]. The three main 

aspects that influence how the IAEA safeguards LWRs are [4]:  

• LWR fuel assemblies are considered items; 

• LWR cores are periodically opened and emptied; and 

• Spent fuel assemblies are stored in open pools. 

The IAEA considers spent fuel storage facilities as an item facility, meaning that all nuclear 

material is contained in identifiable items (e.g. fuel assemblies, sealed canisters, spent fuel 

casks). In the case of spent fuel in pools, an individual spent fuel assembly is considered an 

item and IAEA safeguards are based on item accounting procedures which include item 

counting, identification, nondestructive assay (NDA), and containment and surveillance 

methods [8]. The normal core loading at a LWR  occurs in 12 to 18 month intervals, during 

which spent fuel is transferred from the core to the storage ponds, where it is then verified 

by the IAEA inspector [8]. Starting in the 1980’s, LWR operators were replacing leaking 

fuel rods during outages. Although most of the fuel elements remain untouched throughout 

the irradiation cycle, a small subset of pins is replaced or stripped out from fuel assemblies 

[4]. This complicates and calls into question the item-specific measurements performed 

because item accountancy is only satisfactory as long as the fuel assembly integrity can be 

assured [9]. One way to address the uncertainty associated with the item-specific approach 

is to measure and quantify the amount of nuclear material within each assembly, however 

this technique would be too difficult for the IAEA to reconcile differences between 

measurements and simulations. The primary reason for the difficulty in quantifying material 

is that determining the composition of the spent fuel is the limited accuracy of burnup codes 

that have uncertainties of a few percent. More sophisticated methods that do a better job of 

reducing the uncertainties in the material unaccounted for, or discrepancies between 

measurements and operator declarations, rely on destructive analysis techniques, which are 
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not possible on intact spent fuel assemblies destined for long term storage. As a result, the 

IAEA has to rely primarily on NDA techniques.   

The main purpose of performing nuclear material accountancy using NDA and resolving 

inspector findings with operator records is to detect missing items or gross defects [10]. In 

2010, the IAEA recognized that gross defects sampling plans alone are not sufficient and, to 

strengthen safeguards, it should rely more on partial defect testing to assure the inspectors 

that at least half (50%) of the fuel pins are present in the fuel assembly being inspected [11]. 

The stated IAEA policy is to perform verification on the spent fuel assembly or item prior to 

transfer to difficult to access storage [12]. The partial defect test as implemented by the IAEA 

currently only covers the diversion scenario where irradiated pins are extracted from the fuel 

completely or the pins are replaced with unirradiated material. A more complicated scenario 

where the pins are replaced and undergo subsequent irradiation is not within the detection 

scope of the current suite of partial defect safeguards tools. As a result, more advanced partial 

defect tools based on imaging techniques are being investigated and these will be discussed 

in Chapter 2. Since all fuel consolidation systems most likely have some mechanism for 

handling single pins that are either damaged or unacceptable for consolidation, a “trickle 

diversion” removing single pins over time could be possible and a successful safeguards tool 

should be able to detect single pin diversion [9]. The fast neutron emission tomography 

system presented in this dissertation aims to address this diversion scenario.  

1.2.  Spent Fuel  

A typical spent fuel assembly is irradiated in high neutron fluxes within a reactor for 3 to 6 

years and this changes the original isotopic content of the fuel (238U, 235U, and 16O), and 4-

7% of the initial mass is converted to other actinides or fission products [13]. The ability to 

calculate the spent fuel compositions when the design and operating conditions are well 

known is established, but if this information is unavailable, the amount of uncertainty is fairly 

large. This is often the case since reactor operators can vary the isotopic content in spent fuel 

by changing parameters such as [13]: 

• Power level over time, 

• Length of refueling outages, 
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• Location of fuel assemblies within the reactor core, which changes the burnup, 

• Boron concentration circulating through the reactor as a function of time, 

• Removal of an assembly for some cycles of operation, or 

• When control blades are inserted. 

Because of the high amount of variation an inspector could encounter in inspecting fuel 

assemblies, imaging techniques have the ability to provide insight into the completeness and 

irradiation history of fuel assemblies at the pin level that other existing methods do not. This 

section will cover the signatures and attributes from spent fuel that are normally used and 

the spent fuel assembly parameters that are used in this project to perform simulations 

detailed later in this dissertation.   

1.2.1. Spent Fuel Signatures 

In applying nuclear material accountancy, IAEA safeguards inspectors measure attributes or 

observables of spent fuel assemblies using non-destructive assay techniques. The attribute 

test, according to the IAEA Safeguards Glossary is a statistical test of a characteristic of an 

item to which the response is either a ‘yes’ or ‘no’ [14]. For spent fuel, this means that a 

‘yes’ indicates the presence of radiation in a specified range, and a ‘no’ is indicative of a 

possible defect [4]. Typical attributes of spent fuel are gammas, spontaneous fission 

neutrons, and Cherenkov light emission. The gamma-rays from fission products and the 

neutrons from the transuranic nuclides mask the gamma-rays and neutrons from the U and 

Pu isotopes in the fuel; thus, instruments have to rely on indirect measurement techniques to 

perform material accountancy, and these are described below. 

1.2.1.1. Cherenkov Light 

The gamma rays from fission and activation products produce high speed electrons, and 

when they travel faster than the phase velocity of light in the spent fuel pond water, 

Cherenkov light is created. The most significant production of Cherenkov light is from high-

energy fission product gamma-rays interacting with the fuel cladding or water [15]. The 

gamma-rays produce electrons and positrons by Compton scattering, pair production, and 

beta-plus decay. The light is a soft blue glow that can be used for safeguards monitoring 

when photographed using a tool such as the Digital Cherenkov Viewing Device (DCVD). A 
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more comprehensive discussion of the DCVD and its capabilities and limitations will be 

presented in Chapter 2. The absolute Cherenkov light intensity and its decay over time are 

correlated to the burnup of the pins in the fuel assembly [15]. 

1.2.1.2. Gamma-rays 

Since the direct gammas from the U and Pu in the spent fuel are masked by the ones that 

originate from the fission products, for this reason the buildup of specific fission products 

can be used as a quantitative measure of the burnup of a fuel assembly [15]. For gamma 

spectroscopy, the gamma signature can be used to estimate burnup if certain criteria are met 

[16]: 

• The gamma emitting fission product should have similar fission yields for the major 

U and Pu fissioning nuclides; 

• The fission product itself must have a low neutron capture cross section; 

• The fission product must have a relatively long half-life compared to the irradiation 

time; or 

• The gammas being emitted must have high enough energy so that they can escape 

the fuel assembly without significant attenuation. 

137Cs is one of about 10 dominant gamma emitting fission products in spent fuel and is the 

most commonly used indicator of fuel burnup because its neutron absorption cross section 

and also its yields from 235U and 239Pu are about equal, as shown in Figure 1, which means 

the gamma ray emissions from this can be used to determine the total number of fissions 

[15]. The major isotopes that are gamma emitters a typical spent fuel assembly that can be 

measured are shown in Table 1. 

In addition to the fission product yields of 137Cs being about the same for both U and Pu, its 

long half-life and the fact that its concentration grows linearly with exposure makes it the 

best candidate for monitoring burnup as shown in Figure 2. The 137Cs activity can be used to 

determine burnup with an accuracy of 1-4% for individual fuel pins [15]. The production of 
137Cs as a function of burnup is insensitive to irradiation history and initial enrichment, and, 

due to its long half-life, it can be used as a signature to measure fuels with longer cooling 

times [17]. In addition to 137Cs, both 134Cs and 154Eu emit gamma rays that can be observed 

in the gamma spectrum from a typical spent fuel assembly [18]. 
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Figure 1. Fission product distribution for thermal fission of 235U and 239Pu [15]. 
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Table 1. Major isotopes and their measurable gamma rays in a typical spent fuel assembly [17]. 

Fission Product 
Isotope Half-life Fission Yield 

in 235U (%) 
Fission Yield 
in 239Pu (%) 

Gamma 
Energy (keV) 

Branching 
Ratio (%) 

95Zr 64 days 6.5 4.89 
724.2 

756.7 

43.1 

54.6 

95Nb 35 days 6.5 4.89 765.8 99.8 

103Ru 39.4 days 3.04 6.95 
497.1 

610.3 

86.4 

5.4 

106Ru-Rh 366.4 days 0.40 4.28 
622.2 

1050.5 

9.8 

1.6 

134Cs 2.06 years 1.27 x 10-5 9.89x 10-4 

604.7 

795.8 

801.1 

1167.9 

1365.1 

97.6 

85.4 

8.7 

1.8 

3.0 

137Cs 30.17 years 6.22 6.69 661.6 85.1 

144Ce-Pr 284.5 days 5.48 3.74 

696.5 

1489.2 

2185.6 

1.3 

0.3 

0.7 

154Eu 8.5 years 2.69 x 10-6 9.22 x 10-5 

996.3 

1004.8 

1274.4 

10.3 

17.4 

35.5 
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Figure 2. 137Cs fission product concentration (weight % of initial U concentration) as a function of exposure 
or burnup (GWd/tU) [15].  

 

 

The 137Cs is produced via neutron capture in 136Xe and from beta decay of 137I to 137Xe, which 

decays to 137Cs.  Another method to estimate the burnup of spent fuel is by using the ratios 

of 134Cs /137Cs and 154Eu/137Cs. The 134Cs is produced primarily from resonance absorption 

of neutrons by 133Cs and has a quadratic relationship to burnup. At higher fuel enrichments, 

there is a smaller amount of 134Cs produced because a fewer number of neutrons are needed 

at high enrichments, so fewer neutrons exist to be captured by 133Cs and contribute to 

production of 134Cs. The production of 154Eu is more complicated and can be produced by 

20 different reaction chains, including (n,g) reaction with 153Eu [16] [17]. 

1.2.1.3. Neutrons 

The neutron signature from spent fuel offers an advantage over the gamma signatures in that 

the fast neutrons emitted are more penetrating and do not scatter or get absorbed as much 

within the fuel assembly as they travel out. Spent fuel normally has a relatively high neutron 
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emission rate (on the order of 107 to 108 n/s per assembly) [16]. The uranium in the fuel 

captures neutrons, and, as a result, neutron emitting transuranics build up in spent fuel. The 

main sources of neutrons in fuel assemblies are 244Cm, 242Cm, 240Pu, 238Pu, and 242Pu. The 

emission rate of 242Cm falls as a function of cooling time due to its short half-life, thus not 

making it very useful for monitoring purposes. Figure 3 shows the emission rates for the five 

primary neutron emitters in spent fuel as a function of the assembly cooling time for a typical 

PWR fuel assembly with a burnup of 31.5 GWd/tU [15]. From the image, it can be seen that 

at longer cooling times the total neutron rate is mostly dominated by the 244Cm emission rate 

and has a half-life of about 18.2 years. Many of these neutron emitters produce neutrons via 

spontaneous fission reactions or (a,n) reactions. The neutrons from photofission and 

photoneutron reactions can be excluded since their intensity is insignificant in comparison 

[19]. In heavy nuclides, the probability that the nucleus will spontaneously fission due to 

repulsive forces being strong is high. For U and Pu, the spontaneous fission rate is fairly low 

(except for the isotopes 238Pu, 240Pu, and 242Pu), but the spontaneous fission yields for 242Cm 

and 244Cm are several orders of magnitude higher, as seen in Table 2. 

Overall, the neutron emission from spent nuclear fuel is dominated by the spontaneous 

fission of 244Cm. A single fuel pin from an assembly that has been exposed to 40 GWd/tU 

has a total neutron emission rate of 2.55 x 105 neutrons s-1 m-1. The contribution from 244Cm 

makes up most of that and can be seen in Figure 4. The 244Cm emission rate per second per 

meter per pin is shown for a range of burnups for fuel with 4% initial enrichment, and the 

rate increases as a function of burnup. The total neutron emission rate for a single pin (244Cm 

and other fission products) is shown in red and is not much higher than the 244Cm emission 

rate fit curve, indicating that most of the neutrons emitted from spent fuel can be attributed 

to emissions from 244Cm. The goal of this project is to use the fast neutron emission from 
244Cm as the chosen attribute to perform tomography and verify the completeness of a fuel 

assembly on a pin-by-pin basis. The following sections will detail why the 244Cm signature 

is a better safeguards approach to verify completeness than using neutron emissions to 

quantify Pu in the spent fuel.   
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Figure 3. The main neutron sources from a PWR fuel assembly and their emission rates as a function of 
cooling time [15]. 

 

 

Table 2. Spontaneous fission and (a,n) yields for the major neutron emitting isotopes in spent fuel [20]. 

Isotope Spontaneous Fission 
Yield [n(SF)/s-tU] 

(a,n) Yield 
[n(a,n)/s-tU] 

238Pu 3.67 x 105 2.48 x 106 
240Pu 2.02 x 106 4.66 x 105 
242Pu 8.16 x 105  

242Cm 5.44 x 107 1.15 x 107 
244Cm 2.07 x 108 1.88 x 106 
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Figure 4. Neutron rate per fuel rod due to Cm-244 as a function of burnup or exposure within an average 
commercial PWR (shown for 4% initial enrichment and 2-year cooling time) [21]. 
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1.2.2. Pu vs. Cm 

Traditional methods of measuring neutrons from spent fuel result in the measurement of 
239Pu content. However, Pu content is only known to a few percent in burnup codes, and the 

effort to resolve any discrepancies in the operator declaration would be too difficult. Figure 

5 shows that the Pu content saturates with increased burnup or exposure. This means that 

instruments that use this technique for spent fuel accountancy would be minimally sensitive 

to rod replacements made after the first cycle in a reactor. Unlike the Pu content, the 244Cm 

does not saturate as a function of burnup as shown in Figure 4, so using this as the signature 

of choice would enable an imager to be sensitive to rod replacements made after the first 

cycle. For the initial simulations of the neutron response and the point spread functions 

presented in this dissertation, a line source of 244Cm was used. 

 

 

 

Figure 5. 239Pu content as a function of fuel assembly burnup or exposure [21]. 
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1.2.3. Fuel Assembly Parameters 

A typical LWR fuel pin is made up of a stack of UO2 pellets in a zircalloy cladding, which 

is a long cylindrical tube that is about 4 m tall and ~1 cm in diameter. The dimensions of the 

assembly itself, the pitch, and the cladding thickness depend on the type of fuel [22]. There 

are currently over 440 nuclear reactors operating worldwide, and, as a result, over 10,000 

tons of heavy metal are unloaded from these reactors each year. The majority of countries 

that generate electricity using nuclear power do not possess reprocessing capabilities or any 

spent fuel disposition pathway. As a result, they have adopted a “wait and see” position, 

making spent fuel storage and repositories a likely solution [23]. Typical pressurized water 

reactor (PWR) lattices are 17×17 in dimension with 264 fuel pins, and boiling water reactor 

(BWR) lattices are 8×8 in dimension with 63 fuel pins. To maintain efficient reactor 

performance, about a third of the spent fuel is removed every year or 18 months, to be 

replaced with fresh fuel. The length of the fuel cycle is correlated with the use of burnable 

absorbers in the fuel, which also allows for higher burn-ups [24]. Westinghouse-type fuel 

assemblies can be 14×14, 15×15, or 17×17 arrays, depending on the plant design. The 

14×14 and 15×15 arrays each contain 20 guide tubes and a central instrument tube. The 

17×17 array contains 24 guide tubes and a central instrument tube [25]. Typical fresh fuel 

enrichments range from 3-5%, and for calculations in this work involving simulated spent 

fuel, an initial enrichment of 4% was assumed in a 17×17 PWR lattice. Figure 6 shows the 

neutron emission rate [neutron s-1 m-1] on a pin by pin basis for the fuel assembly used for 

simulations in this study. The initial enrichment is 4%, exposed to 40 GWd/tU burnup, and 

1-year cooling time.  

The empty pin slots correspond to locations where the control rods go, and the gray pins 

correspond to the gadolinium (Gd) rods used as burnable poisons. These rods are inserted 

into the fuel lattice since they have a higher absorption cross section for neutrons than 235U, 

compensating for excess reactivity during the early stages of core lifetime. The absorbers are 

meant to burn out or transmute faster than the fuel burns, so that later in the core life they 

can contribute negligible negative reactivity. Burnable poisons allow for larger initial fuel 

inventories, so the core lifetime is increased without any decrease in control safety [26]. 
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Figure 6. Neutron count rate [neutrons per second per meter] by pin for a typical 17 x 17 fuel assembly with 
initial enrichment of 4%, 40 GWd/tU burnup, and a 1 year cooling time. 

 

 

1.3.  Tomography Overview 

Computed tomography (CT) is a common technique used in medical physics. Tomography 

is the mechanism by which cross-sectional imaging (in a 2D case) of an object is conducted 

by either transmission or emission data collected by illuminating the object from many 

different directions [27]. X-ray CT has been commonplace for decades and emission 

tomography such as positron emission tomography (PET) and single photon emission 

computed tomography (SPECT) are the primary techniques used in the medical field.  The 

conventional active or transmission CT scanners measure the attenuating effects of an object 

using an incident interrogating beam that travels in a straight path. In traditional tomography 
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methods, a source interrogates the object to be imaged, and the quantity that is reconstructed 

is the line integral of the attenuation paths of the particles, as described by the Beer-Lambert 

law [28]  

5[7(9), <] = ? @[7(9), A]BC
D

= (E F
GH[7(9), <]
G[7(9), <]

I 

( 1 ) 

where du is the incremental distance along L (the ray path) [28]. Conventional tomography, 

therefore, is attenuation-based and relies on lines of response or paths through the object. 

The traditional method involves having an external source of particles that is collimated by 

slits, apertures, or collimator systems to interrogate the object [29]. A diagram of a general 

CT is shown in Figure 7 [30]. A radiation source (photons, neutrons, etc.) is collimated such 

that a beam with intensity I0 interrogates the sample. The particles that are transmitted 

through the sample have an intensity I, which is then recorded in the detector array on the 

other side of the sample. The sample is scanned in a large number of positions and is rotated 

and translated so that the attenuation of the source particles is measured for each projection 

by the detectors. This data is then reconstructed into an image where the different attenuation 

coefficients in the materials in the sample correspond to different intensities.  

 

 

 

Figure 7. General CT measurement set up where a radiation source is collimated and the beam interrogates 
the sample of interest. The sample is then rotated so the detector array can acquire data from all projections 
[30]. 
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Neutrons and photons interact differently in matter and as a result, they can provide 

complimentary information about the structure of the material under investigation. 

Depending on the energy and the atomic number Z of the elements in the material, photons 

will interact by means of the photoelectric effect, Compton scattering, or pair production. 

When neutrons interact, they may undertake a variety of nuclear processes including elastic 

scattering, inelastic scattering, radiative neutron capture, induced fission, and other types of 

nuclear reactions such as (n, p), (n, d), (n, a), etc. For some elements with low Z, the 

interaction cross section for elastic scattering is relatively high [32]. Due to the varying 

attenuation coefficients, neutron and gamma-ray tomography can yield different results 

when imaging the same objects [31]. Traditional external sources used in neutron 

tomography include nuclear reactors, accelerators or spallation sources, neutron generators, 

and radioactive sources like AmBe or 252Cf [30]. Neutron tomography systems typically 

consist of a source of neutrons, a collimator, a means for gathering a variety of projections 

of a given sample (using a rotating platform), and a detector system [32]. This work aims to 

use passive emission tomography – the passive emissions from spent fuel instead of an 

external source to reconstruct an image. The identification of nuclear material is often based 

on the detection of the radiation they emit, and this can be done in a passive method 

depending on the signature or attribute [31]. Emission tomography does not require an 

external source to image the object since the object being inspected emits the radiation 

necessary. In this method, a collimator is used to isolate the lines of response through the 

object similar to the attenuation-based method. In the case of passive fast neutron emission 

tomography, a line of response refers to a path through the inspected object along which an 

observable (such as neutron emission activity) can be integrated, rather than the traditional 

way of measuring the intensity of the attenuated beam. The neutron counts in the detectors 

at the end of each collimator slit correspond to an integral of neutron activity along the 

corresponding path. The end result after reconstructing this data is an image that shows the 

amount of activity at each position within the fuel assembly, instead of an image showing 

the contrast in attenuation. Figure 8 shows the concept is essentially the same since in the 

image on the left the level of attenuation is measured over the lines of response, and in the 

image on the right the neutron activity is integrated over the lines of response [29] [33].  
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Figure 8. The image on the left shows the scanning of a slice where traditional tomography is performed 
(attenuation based) where the lines of response are formed by the transmitted intensity [29]. The image on the 
right shows the method of performing emission tomography where the inspection object is the source and a 
collimator is used to isolate lines of response along which the activity is measured [33].  

 

 

1.3.1. Conventional emission tomography methods 

In neutron imaging, due to neutron scattering, large detectors are required to isolate neutrons 

along a path (especially if moderation is required). There are currently two design that allow 

for the use of large detectors, a parallel slit design and a radial collimator system. Figure 9 

shows a concept diagram of the two designs adapted for spent fuel measurement applications. 

On the left is the parallel slit design where the sample is rotated, and at each projection 

requires fine scanning with the detectors to gather projections at all 360°. The benefit of this 

is that it is a practical size, but the downside of this design is the measurement time would 

be too long to be of practical use in the field. The second option, shown on the right, is the 

radial collimator option where there are many large detectors. The neutrons from the fuel 

assembly are collimated through a slit, and the radial collimator points to several detectors. 

Here the sample would need to be rotated to gather projections at all angles, but due to the 

larger number of detectors, it would take less time to conduct a single measurement in 

comparison with the parallel slit option. The downside to this design is that it would be too 
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large of a physical footprint to be practical to implement. Ultimately the imager must be 

practical for safeguards use, it is important to understand the various challenges that need to 

be addressed.  

 

 

  

Figure 9. Diagram of sample conventional imager designs adapted for use to measure spent fuel using 
emission tomography [34]. See text for details. 
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1.3.2. Application challenges 

Several challenges need to be considered when developing the physics design for a practical 

and feasible imaging system with which one may measure spent fuel. These challenges 

include maintaining detection efficiency, reconstructing an image with sufficient resolution, 

minimizing the gamma exposures at the detector, and limiting the design to a practical size. 

The neutron source strength from the fuel assembly is fairly modest relative to the gamma 

strength, which necessitates the efficient use of the neutrons that are emitted from the spent 

fuel. The efficiency can be optimized by placing larger detectors closer to the fuel assembly, 

and by increasing the collimator slit widths. Using larger slit widths with a traditional parallel 

slit design would be unfeasible since the open fraction would detract from the collimation 

effectiveness of the other slits. Spatial resolution in the case of imaging spent fuel pertains 

to the ability to resolve individual fuel pins. In order to resolve individual pins, assuming a 

Westinghouse 17 x 17 lattice fuel assembly in which pins have a diameter of about a 

centimeter and pitch of 1.27 cm, the collimator slits need to be small enough to resolve the 

gaps between the fuel pins, and the collimator needs to be thick enough so that a line of 

response can be created. The other factor to keep in mind is mitigating the gamma exposures 

at the detector. In order to do so, a collimator that moderates or absorbs neutrons is not 

sufficient. A high-Z shielding component needs to be incorporated in order to reduce the 

high gamma exposures from spent fuel. Figure 10 shows the gamma exposures 1 m from 

PWR and CANDU fuel assemblies over a range of cooling times [35]. At cooling times less 

than 5 years, the exposure is around 100 Sv/hr, which corresponds to 10,000 Rad/hr. This 

rate is too high for detectors to operate in reasonably; hence, shielding with lead, tungsten, 

or stainless steel is required in addition to the low-Z neutron moderation material. 

Finally, to be accepted into a facility for measurements, the imager needs to be a compact 

size so it doesn’t disrupt operations. The most compact geometry is a ring geometry, which 

is what the imager design presented in this work is based on.  It is possible to achieve fast 

neutron tomography having the desired resolution provided each line of response sufficiently 

isolates a path through the object, the object is sampled with a sufficient number of lines of 

response, and there are a sufficient number of views through the object to invert measured 

data to form an image. 
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Figure 10. Exposures at 1 meter perpendicular to the center of a PWR or CANDU fuel assembly as a function 
of cooling time [35]. 

 

 

1.4. Overview of Dissertation 

The work presented in this dissertation includes an overview of the imager design concept, 

parameters considered, simulations conducted, and gamma and neutron experiments 

conducted at Oak Ridge National Laboratory (ORNL) to characterize the neutron detectors 

used. Chapter 2 will include a literature review on prior research and work that has gone into 

developing the tools currently used by the IAEA and in producing viable tomography 

systems for spent fuel accountancy for safeguards. Chapter 3 will present the Monte Carlo 

simulation results of the gamma exposures from the various imager designs considered with 

a full up fuel assembly. Chapter 4 will cover the Monte Carlo simulation results of the 

neutron response of the various imager designs considered using a line source. An overview 

of the measurements conducted with the prototype detector at ORNL in gamma radiation 

fields will be provided in Chapter 5. This chapter will also include measurements of inter-

detector scatter with a prototype detector. Chapter 6 will cover simulated reconstruction 

results with the final imager design selected to be built and include the neutron response to 

a full fuel assembly. Chapter 7 will discuss the conclusions and future work. 
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2. LITERATURE REVIEW 

Since safeguarding spent fuel is a high priority for the IAEA, tools have been developed to 

assay spent fuel and there are tools that are being investigated currently to address the partial 

defect challenge. This chapter will focus on the tools that are currently used by the IAEA in 

spent fuel safeguards verification and the efforts underway to develop technologies to 

address the partial defect problem presented in Chapter 1. Additionally, this chapter will 

cover the existing gaps in technology, and the novel contributions of the project presented in 

this dissertation.  

2.1.  Verification Methods 

There are two types of detection levels that the IAEA implements when inspecting spent 

fuel: gross and partial defect tests. A gross defect is detected when an entire fuel assembly is 

missing or has been substituted with a dummy or fake assembly. A partial defect test 

confirms whether or not more than 50% of the pins are missing from a single fuel assembly 

[36]. The IAEA is interested in safeguarding the fissile material in spent fuel since it can be 

a primary source of 239Pu and 235U (233U for thorium fuel cycles). NDA methods can be 

applied in verification of spent fuel in cases where continuity of knowledge is lost or 

interrupted, to verify records with depletion calculations made with burnup codes, and as a 

deterrence to possible diversion [37]. As mentioned in Chapter 1, the stated IAEA policy is 

to perform verification on the spent fuel assembly or item prior to transfer to a difficult-to-

access storage [12]. The following sections will describe the technologies used to perform 

gross and partial defect testing, as well as their associated limitations.  

2.2.  Gross Measurement Techniques 

Gross defect refers to an item or a batch that has been falsified to the largest extent possible 

so that all or most of the declared material is missing [14]. The IAEA has approved the use 

of several instruments to perform gross defect testing of spent fuel based on gross gamma 

and neutron counting. These are described below:  
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2.2.1. Fork Detector Irradiated Fuel Measuring System (FDET) 

The FDET system is one of the most commonly used tools in spent fuel measurements by 

the IAEA. It is a U-shaped device that measures spent fuel assemblies individually under 

water. The components include a detector head and gamma/ neutron detector electronics. 

There are two different types of detector heads that can be used based on the type of fuel 

being measured (boiling water reactor or pressurized water reactor fuel). The detectors in the 

detector head consist of four gas-filled fission chamber proportional counters as neutron 

detectors and two gas filled ionization chambers as the gamma-ray detectors. Figure 11 

shows an image of the system performing a measurement of a spent fuel assembly under 

water [10]. Figure 12 shows the location of the gamma and neutron detectors in each of the 

detection arms.  

The ratio of the gross neutron (from 244Cm) and gamma-ray count rates (from 137Cs) to the 

fourth power are used to verify the spent fuel assemblies. The FDET works by evaluating 

the consistency of signatures within a population of items. The benefit of the device is that 

it is fairly easy to use and can be installed in facilities, but it is limited in its ability to detect 

diversion of pins since the ratio of the neutron to gamma counts is not sensitive enough if 

the fuel pins are carefully rearranged. Figure 13 shows the neutron-to-gamma ratio results 

from a fork detector measurement for various configurations. The data on the Y-axis is the 

ratio value normalized to the ratio of a complete fuel assembly. The assemblies shown here 

have 50% of the fuel pins removed. A ratio of a 100% indicates that the signal from the 

configuration is similar to that of a full configuration [38]. Configurations 69 and 70 have 

signals similar to a complete fuel assembly even with half the rods removed. A diagram of 

the two configurations is shown in Figure 14 where the fuel pins have been removed in a 

homogeneous way. The results show that an inspector would not be able to easily tell the 

difference between a full assembly and one with half the pins removed [38].  

 



 

23 
 

 

Figure 11. Fork detector irradiated fuel measuring system (FDET) [10]. 
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Figure 12. (Left) View from the top of the fork detector with detector arms around a 17x17 fuel assembly 
being inspected. (Right) the vertical cross-sectional view of the fork detectors showing where the fission 
chambers and ion chamber sit [38]. 

 

 

 

Figure 13. Results of the Nc/(Gc)4 ratio, normalized to the ratio of a full configuration, for several 
configurations of spent fuel with 50% of the fuel pins missing [38].  
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Figure 14. Configuration 69  (left) and 70 (right), where 50% of the fuel pins has been removed in a 
homogeneous way [38]. 

 
 

2.2.2. Safeguards MOX python (SMOPY) 

The SMOPY device uses gross neutron counts from a fission chamber and low-resolution 

gamma spectroscopy from a lead-shielded CZT (cadmium-zinc-telluride) detector to 

characterize spent fuel. The way the device is used is to lift a spent fuel assembly through a 

measurement cavity, and during the course of a measurement the device will verify the 

burnup of a spent fuel assembly and can distinguish between mixed-oxide (MOX) and low-

enriched uranium (LEU) fuel [37]. A two-step approach is used to confirm item integrity. 

First, the burnup is confirmed using the gamma spectrometry, and then, the detection of 

missing elements is done by comparing the measured and simulated neutron count rates. The 

device can detect if ~25% of rods are missing. The SMOPY device does provide inspectors 

with a slightly more accurate tool than the FDET or DCVD, but it cannot detect at lower 

defect levels [4].   

2.2.3. Neutron Gamma Attribute Tester (NGAT) 

The NGAT is a gross defect measurement device that is used underwater to verify fission 

product presence in an irradiated fuel assembly. It can also be used to verify fresh MOX fuel 

assemblies as well as open or closed containers with irradiated and non-irradiated materials 

including non-fuel items [10].  
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2.2.4. Spent Fuel Attribute Tester (SFAT) 

The SFAT device is a gross measurement system that only verifies the presence of fission or 

activation products at the top of spent fuel assemblies [4]. The SFAT is used by inspectors 

when Cherenkov radiation from the fuel is too weak to use the DCVD like in the case of 

lower burnups, longer cooling times, or unclear water. This is not a quantitative measurement 

and only provides a qualitative check that spent fuel is present via the gross detection of 137Cs 

or 95Zr/95Nb gamma-rays [10].  

2.2.5. Irradiated Fuel Attribute Tester (IRAT) 

The IRAT is a gross measurement device that uses CZT detectors and can be suspended from 

a spent fuel bridge. This device only differentiates between irradiated non-fuel items and 

irradiated fuel items in fuel ponds using the gamma-ray emissions from fission products. 

This does not get down to the single pin level. The presence of fission product isotopes like 
137Cs, 134Cs, 144Pr, and 154Eu, is used to confirm the irradiated fuel characteristics. In the case 

of a structural item, the presence of certain isotopes like 60Co  indicates prior exposure to a 

significant neutron flux [10]. 

2.2.6. CANDU Bundle Verifier (CBVB) 

The CANDU Bundle Verifier consists of a highly collimated and shielded CdTe detector, 

which uses the 662 keV line to verify the presence of spent fuel cooled for longer than two 

years, and uses the ratio of 757/766 keV lines corresponding to the ratio 95Zr/95Nb for 

shorter cooling times [10]. This instrument uses the intensity to detect the presence of 

CANDU bundles that are stored in spent fuel pools [37]. 

2.2.7.  Cask Radiation Profiling System (CRPS) 

The CRPS consists of a CZT detector in a verification tube that is inside of a dry storage 

cask and is placed parallel to the spent fuel contents. The scan is used for re-verification 

purposes where an acquired fingerprint is compared to a baseline fingerprint. Consistency 

between fingerprints indicates that the spent fuel has not been disturbed [10].  
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2.2.8. Optical Fiber Radiation Probe System (OFPS) 

The OFPS is a gross gamma measurement system that uses an optical fiber scintillator to re-

verify the presence of CANDU spent fuel assemblies. The benefit of the OFPS is that it is 

not obstructed by the funnel structure like the CRPS is [10].  

2.2.9. Neutron Coincidence Techniques 

2.2.9.1. Advanced Experimental Fuel Counter (AEFC) 

The AEFC is a neutron coincidence counter that measures research reactor fuel under water. 

It can be used in a passive or active mode where an AmLi source is either removed or inserted 

to induce fission in the fuel. In the passive mode, the device measures 240Pu content, and in 

active mode the residual 235U mass is measured [39].The device consists of six 3He detectors 

that are embedded in a high density polyethylene (HDPE) matrix and arranged in two rows 

as shown in Figure 15.  The four detectors in the inner row measure neutron coincidences to 

distinguish fission neutrons from background radiation [40]. The two detectors in the outer 

row are placed farther back within the polyethylene moderator, and the signal seen by them 

is approximately proportional to the fission rate in the fuel item.  

 

 

 
Figure 15. Cross section view of the AEFC device. The 3He detectors are placed in two rows and are housed 
in an HDPE matrix. The measurement is done under water where a fuel assembly is inserted through the 
annulus shown in blue [39]. 
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2.2.9.2. Spent Fuel Coincidence Counter (SFCC) 

The SFCC is a neutron counter that can be used underwater to verify operator declarations 

of Pu content in breeder reactor spent fuel by looking for partial defects [10]. The counter 

has an ion chamber that measures the gamma exposure to identify the optimal high voltage 

to operate at to minimize pileup in the neutron detectors. The SFCC consists of a ring of 20 

neutron detectors (3He tubes) embedded in polyethylene. A cross-sectional view in shown in 

Figure 16 [41].  

 

 

 

Figure 16. Cross sectional view of SFCC. The 20 3He tubes are shown in yellow, and the ion chamber is 
shown in red [41]. 
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2.2.10. Cherenkov Viewing Devices 

The Improved Cherenkov Viewing Device (ICVD) and the Digital Cherenkov Viewing 

Device (DCVD) are image intensifier viewing devices that are sensitive to ultraviolet 

radiation. The ICVD and DCVD work by performing gross measurements that detect the 

Cherenkov radiation emitted from the spent fuel as described in Section 1.2.1. The 

Cherenkov light emitted from spent fuel in the pools is from high-energy fission product 

gamma-rays interacting with the fuel cladding or water [15]. The DCVD and ICVD only 

give a qualitative check of the assembly integrity but the advantage is that they are non-

intrusive, and the spent fuel assembly being inspected does not have to be moved from its 

place for the inspector to verify the presence or look for partial defects. The DCVD is 

mounted on the railing above the fuel pool, while the ICVD can be used as a hand-held 

device. There are several factors that influence the Cherenkov intensity from spent fuel that 

can affect the inspector’s ability to draw an accurate conclusion. These factors include: 

• The fuel type: the fuel geometry influences the intensity of the light emitted because 

varying spacer grid and top plate geometries can change the amount of light generated 

or escaping.  

• Rod reflectivity: The probability of a Cherenkov photon to scatter off a surface or get 

absorbed.  

• Water quality: The quality of the spent fuel pool water is not very clear and may 

contain particles that may disperse the light, diverting it from the camera. The 

circulation pumps also cause turbulence in the water that alters the measured intensity 

of light.  

• Fuel Materials: The gamma transmission changes depending on the fuel material.  

• Light from environment: Background from the pool or facility lights can interfere 

with measurements.  

• Near neighbor effect: The light from other fuel assemblies in other parts of the spent 

fuel pool or the neighboring assemblies can interfere with the assembly being 

inspected.  
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The DCVD, although approved for partial defect verification, does not work as well for fuel 

that has been cooled for a long time or in murky spent fuel pool conditions. It also does not 

tell the inspector anything about the items beyond the presence of irradiated material.  

2.2.11. Passive Neutron Albedo Reactivity (PNAR) 

The PNAR NDA method involves comparing the neutron count rate of the fuel assembly in 

two different configurations – one where the sample is surrounded by a material to enhance 

neutron multiplication and the second where the multiplication is decreased by surrounding 

it with a different material [42]. Multiplication is increased by measuring the fuel in water, 

whereas for the second configuration, to lower multiplication, a Cd liner is moved into 

position to surround the fuel cavity [43]. The ratio of the singles or doubles count rates from 

both configurations are used to calculate a PNAR ratio. The PNAR ratio scales with the 

assembly multiplication and fissile content. A calibration measurement to determine the 

expected multiplication from operator declared burnups needs to be performed first. Most 

assemblies of the same fuel type will be expected to have the same multiplication, so PNAR 

could be used to detect partial defect if the measured multiplication of one assembly is 

inconsistent with other measured signatures or with what is expected using operator 

declaration [42].  

The PNAR system design consists of four neutron detectors (either fission chambers or 3He 

tubes) that are housed in polyethylene to thermalize the neutrons and lead to shield from the 

intense gamma radiation. The instrument needs to be adapted to the dimensions of each fuel 

type, so there is no one universal PNAR instrument – currently BWR and VVER specific 

PNAR systems have been designed. Figure 17 shows the horizontal cross-sectional view of 

a BWR specific PNAR instrument. The instrument was designed to be similar to the FDET 

system. 3He detectors can be used instead of fission chambers to reduce the count time to 

less than 5 minutes, but for low burnup and long cooling times, the measurement time could 

take up to 20 minutes. The PNAR instrument can easily detect a significant removal of fissile 

material from the assembly.  
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Figure 17. Horizontal cross-sectional view of the PNAR system optimized for BWR fuel [43]. 

 

 

Figure 18 shows the calculated PNAR ratio as a function of assembly burnup for 12 different 

assemblies of three different initial enrichments in water with a cooling time of 20 years. The 

PNAR Ratio decreases as a function of burnup for a given initial enrichment. Figure 19 

shows the PNAR ratio as a function of the net multiplication (ratio of the number of neutrons 

that started in the fuel to the number of neutrons during the course of the simulation). The 

cluster of points at the bottom left that indicate the fully irradiated assemblies with different 

initial enrichments and cooling times. Regardless of the initial enrichment and cooling time, 

for fully irradiated assemblies, the PNAR ratio remains around 1.14 and the multiplication 

value is around 1.4 [43]. The instrument is sensitive to large changes or removal of fissile 

material in the assembly. So, if a fully irradiated assembly were replaced with a non-

multiplying assembly, then the PNAR ratio would change from 1.14 to 1.002, alerting the 

inspector of a mismatch between assembly declarations and measurements. PNAR’s role is 

to verify that fissile material is present, and simulations with SCALE and MCNP6 have the 

role of verifying that the total neutron count rates, gross gamma intensity and multiplication 

are all consistent with the declaration [44]. In order to detect a single missing pin, PNAR 

needs to be used with a more sensitive imaging technique. 
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Figure 18. the BWR PNAR Ratio, simulated with fresh water, is illustrated as a function of burnup for 12 
assemblies with three different initial enrichments [43]. 

 

 
Figure 19. PNAR Ratio for BWR assemblies as a function of net multiplication [43]. 
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2.3.  Imaging  

The gross techniques discussed up until this point all measure the fuel assembly as a single 

item; thus, the ability to detect a partial defect at the pin level is limited in most cases. When 

dealing with complex geometries such as fuel assemblies, imaging can prove to be a better 

tool to acquire information from each fuel pin. Imaging is the visual representation of the 

spatial distribution of an observable. Methods based on tomographic verification are being 

investigated in order to image fuel assemblies. In order to gather information from all rods 

in the fuel assembly, high energy gamma-rays or neutrons need to be used as the signature 

of interest. As mentioned in Section 1.3, imaging techniques involve reconstructing an image 

from measured radiation intensity profiles of an object. Measurements of the objects are 

made by scanning, and a measurement at a certain angle is called a projection [45]. Since 

1993, the use of gamma-rays emitted from spent fuel to detect partial defect via imaging has 

been investigated [45]. Initial efforts were based on an Algebraic Reconstruction Technique, 

and the results were presented in graphical form (normalized relative intensity as a function 

of fuel rod number) [46]. In 2000, gamma tomography methods were used to generate a three 

dimensional map of deviations from average activity from each pin location in a mock 

assembly for two scenarios: the removal of rods and the replacement of rods with fresh fuel 

or dummy material [47]. An imaging method based on the detection of gamma-rays emitted 

from spent fuel called the passive gamma emission tomography system discussed in this 

section is the only tomography system to date that has been accepted by the IAEA as a tool 

for verification of partial defects in 2017 [48].  

2.3.1. Passive Gamma Emission Tomography 

The passive gamma emission tomography system (PGET) is a result of research that began 

in the 1980s. Research on this topic was conducted and implemented in a series of member 

state support program (MSSP) tasks and is still continuing today. The original method 

development and the evaluation of feasibility was conducted by the Finnish Support program 

more than a decade ago [49]. The goal of this system is to conduct NDA partial defect 

verification of spent LWR fuel without a priori information of the operator-declared-data 

and generate a radiation intensity map using gamma emissions. The PGET system consists 
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of two collimated detector arrays that rotate around the spent fuel assembly similar to single 

photon emission computed tomography (SPECT). The detectors rotate step-by-step around 

the assembly, and each array measures a complete 360˚ with 4 mm sampling. The detector 

arrays are made of CdZnTe and the collimator is made of tungsten [50]. The final design of 

the PGET system consists of 174 detectors split between the two detector heads [51]. The 

prototype arrangement is shown in Figure 20 [50]. Each detector array is in a sealed chamber 

and the device is designed in order to conduct measurements underwater. The outer 

appearance of the system housing is a torus with a central annulus where the fuel assembly 

will be inserted during measurement. The cavity diameter is 32.5 cm so as to accommodate 

a standard 17 x 17 PWR fuel assembly. The outer diameter of the system is about a meter 

[50]. The final design of the PGET and its components are shown in Figure 21. 

 

 

 

Figure 20. PGET prototype arrangement [50]. 
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The gamma-ray emitting isotopes of interest that are measured by PGET are 137Cs (661.65 

keV) and 154Eu (1274.43 keV) due to their longer half-lives of 30.1 years and 8.6 years, 

respectively, and high energies, which means the probability of escaping the fuel assembly 

is larger [52]. The two neutron detectors included in the PGET device only measure the total 

neutron count rate (counts per second) to verify the declared burnup. The PGET device has 

been demonstrated on VVER, BWR, PWR, and random pin geometries, as shown in Figure 

22 [51]. The reconstructed image is clear for smaller fuel assemblies and is a bit blurrier for 

larger assemblies due to the increased number of mean free paths that the gammas need to 

traverse to get through the fuel assembly. PGET has been field tested at Ringhals, Sweden 

in 2009; Ispra, Italy in 2012; Olkiluoto, Finland in 2013; and Loviisa, Finland in 2014 [50]. 

Although PGET has now demonstrated the ability to resolve assemblies down to the pin 

level, for spent fuel with longer cooling times (~80 years), the imager relies on the 137Cs line 

due to its long half-life of 30.17 years. Compared to the shorter lived isotopes, 137Cs has a 

lower energy of 661.7 keV, resulting in a decreased ability to resolve the innermost pins of 

large PWR assemblies [53].  The mean free path of a 661.7 keV photon in UO2 is 0.75 cm, 

while the mean free path of the most probable 244Cm energy neutron (~1.5 MeV) in UO2 is 

3.98 cm [54]. Since fast neutrons are more penetrating, this is where neutron emission 

tomography can help complement measurements made by passive gamma emission 

tomography methods. 
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Figure 21. The final design of the PGET consists of 174 CdZnTe gamma detectors split between two heads, 
two 10B neutron detectors, a data acquisition system, safety sensors, and a motor assembly  [51]. 

 

 
 

Figure 22. Tomography data from PGET measurements of various fuel assemblies [51].   
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2.3.2. Neutron Emission Tomography 

Prior work at ORNL has successfully demonstrated that tomographic imaging of fuel pins 

can be performed using neutron emanations to distinguish pins containing Pu from those not 

containing Pu. An imager was designed, constructed, and tested at Idaho National 

Laboratory’s Zero Power Physics Reactor (ZPPR) to measure fast neutrons from MOX fuel 

rodlets [55]. Fast-neutron imaging is difficult to perform for the very reason that it is 

desirable – fast neutrons penetrate a good deal of shielding allowing them to escape highly 

attenuating material unlike gamma-rays. Imaging depends on the modulation of the incident 

flux by some sort of an aperture, the simplest of which is a pinhole. The imager used in this 

proof of concept utilized a pinhole and radial slits as shown in Figure 23 [55].  

 

 

  

Figure 23. (Left) Schematic diagram of the imager. (Right) Prototype of the slit-collimator imager [55]. 
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The two-component collimator is made of high-density polyethylene (HDPE). The ‘thick 

pinhole’ part of the collimator is closest to the source and serves to shield the detectors from 

neutrons that would reduce the resolution. The radial component of the collimator consists 

of slits that all center on the opening of the pinhole such that the collimated neutrons originate 

primarily from the source itself. The detector array consists of pixelated liquid scintillator 

imaging detectors arranged in five columns of three detectors each positioned along an arc 

that placed the detector front faces 52.5 cm from the slit position [55]. For initial proof-of-

concept tomographic measurements at ORNL, a set of five identical 252Cf sources was used 

whose emission rates were each approximately 42,000 neutrons/second as of February 2011. 

The arrangement and results from tomographic reconstruction of data from the slit imager 

measuring 252Cf sources is shown in Figure 24. The samples with black stoppers contain 

machining grit, and the containers with yellow stoppers contain 252Cf. The reconstructed 

image on the right clearly shows the position of each neutron source, and this experiment 

proved that neutron emission tomography can resolve sources that are placed as close as 

1.5cm apart (comparable to a fuel pin pitch). 

 

 

 

Figure 24. (Left) Experimental setup of 252Cf sources (yellow) and machining grit (black). (Right) 
Tomographic reconstruction of the sample on the left showing location of the five sources [55]. 
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The imager was then used to image a soup can containing MOX fuel rodlets at the ZPPR 

facility at INL. The imager needed to be modified to shield the detectors from gamma-rays. 

The measurement sample was a soup can containing 32 positions for fuel pins. 31 of the 32 

positions contained 6-inch-long Pu MOX fuel rodlets that each contained 3.66g of 240Pu that 

produced about 3700 neutrons per second from spontaneous fission. The remaining position 

marked by the ‘X’ in Figure 25 was filled with a depleted uranium (DU) rod. The 

tomographic reconstruction of the sample shown on the right side of in Figure 25 shows a 

visual representation of neutron sources as a function of position, and the location of the DU 

rodlet is clearly visible [55], [56]. The experiments performed at INL and ORNL successfully 

demonstrated the capability of neutron emission tomography using fresh MOX and 252Cf 

sources. The imager design and components would need to be modified in order to be used 

on spent fuel since the gamma-ray fields would be too high for the segmented scintillator 

detectors.  

 

 

 
Figure 25. (Left) Picture of the soup can containing 31 Pu MOX fuel rodlets and one DU rodlet marked by 
the 'X'. (Right) Tomographic reconstruction of the neutron source strength as a function of source position. 
The blue region corresponds to the location of the DU rodlet  [55] [56]. 
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2.4.  Gaps in Technology 

Currently, a tool based on passive neutron emission tomography to measure and image spent 

fuel down to the pin level does not exist. To date, various techniques based on gross counting 

of neutrons and gamma-rays from spent fuel have been developed and utilized by the IAEA 

to verify operator declarations to draw safeguards conclusions. Although they can detect 

partial defects in spent fuel assemblies, the gross measurement systems are not sensitive 

enough to detect the diversion of a single pin. As a result, the IAEA recognized the need for 

a more sensitive imaging-based approach to spent fuel accountancy. The only imaging 

technique to date that has been approved by the IAEA for use in spent fuel tomography is 

the PGET system that is based on looking at the passive gamma emissions. The gamma-rays 

from spent fuel cannot easily escape the center of the fuel assembly due to the high atomic 

number materials present in spent fuel. As a result, PGET may not be able to resolve down 

to the single pin level in larger assemblies at longer cooling times. This is where fast neutron 

emission tomography could potentially have an advantage since fast neutrons are more 

highly penetrating than gamma rays. To date, passive neutron emission tomography has not 

been successfully demonstrated as a spent fuel imaging tool. Another issue is that is that the 

only diversion scenarios addressed by the tools are: (1) fuel pins have been removed, and (2) 

fuel pins have been replaced with dummy rods or fresh fuel. The tools that are in use have 

not been designed to work to detect rods that have been replaced with fresh fuel pins that 

have then been subsequently irradiated.  

The imaging capability presented in this project is intended to verify the integrity of spent 

fuel assemblies, and not to quantify the presence of Pu. The Pu content saturates with burnup, 

as discussed in Section 0. This means that traditional techniques that use the presence of Pu 

in spent fuel to confirm burnup are not as sensitive to rod placements made after the first 

irradiation cycle in a reactor. The neutron emission from spent nuclear fuel is dominated by 

the spontaneous fission of 244Cm. Due to 244Cm’s unique relationship with respect to burnup, 

using the fast neutrons emitted by 244Cm, a neutron emission-based imager can be sensitive 

to rod replacements at higher burnups. Expected advantages of a neutron-based tomography 

measurement system include: 
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• Neutron measurements rely chiefly on the ingrowth of 244Cm, which occurs mostly 

at the end of the exposure cycle, so the technique should be sensitive to assemblies 

containing fuel pins that were replaced after a single cycle in the reactor and 

subsequently irradiated in the core.   

• Because fast neutrons can penetrate the entire fuel assembly, fast neutron emission 

tomography may be the only method with the potential to detect single-pin diversion 

in larger fuel assemblies where the attenuation of gamma radiation is significant.   

• Fissile loading of each pin can possibly be determined in addition to 244Cm content. 

• This technique could be used to verify the burnup profile of a spent fuel assembly. 

2.5.  Novel Contributions 

This dissertation makes novel contributions to the areas of spent fuel NDA by developing a 

physics design for a new passive capability for detecting the diversion of single fuel pins 

(rods) from nuclear spent fuel assemblies using fast neutron emission tomography. To date, 

a viable spent fuel imaging system using passive fast neutron emission tomography has not 

been demonstrated. The work presented in this dissertation will serve as a benchmark for 

developing a neutron emission tomography-based tool for spent fuel safeguards.  

First, an approach to converge on the ideal physics design for an imager was developed as 

part of this project. The two parts that fed into the design considerations were surveying the 

parameter space and component optimization. With regards to the parameter space survey, 

size constraints were identified to reasonably deploy an imager with facility considerations. 

Three parameter sets were identified to be varied for this project – total collimator thickness, 

different steel and borated polyethylene thicknesses, and slit widths of the collimator. Based 

on this, a range of total collimator thicknesses was identified while keeping in mind the 

maximum imager radius. In addition, the slit widths in the collimator were varied – both 

parallel and tapered. MCNP models of the imager were developed for each of the different 

parameter variation combinations. The surface definitions for the collimator geometry were 

generated with help from the Reactor and Nuclear Systems Division (RNSD) at ORNL1. 

                                                
1 Courtesy of Dr. Jinan Yang. 
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The second novel contribution of this project was a new way to estimate the neutron response 

for this complicated geometry and all parameter variations using fewer simulations. Neutron 

response of the imager for a source’s signal, collimator penetration, and edge effects were 

all calculated in addition to simulations of the inter-detector scatter to feed into a signal-to-

noise ratio (SNR) calculation that was then used to evaluate the various geometries. Such a 

comprehensive survey across the imager design space has not been conducted before. 

Additionally, for this new design concept, simulations of gamma exposures for the various 

parameter combinations were conducted for the first time, and a constant exposure contour 

method was developed. This method can be used for future applications of this imager to 

identify the ideal imager parameters that would optimize neutron response for a given 

cooling time and gamma exposure.  

In conjunction with gamma exposure simulations, this project involved conducting proof-of-

concept experiments with a single detector module to evaluate the gamma rejection ability 

of the boron straw detectors at extremely high exposures. The proof-of-concept 

measurements provided new insight into how these neutron detectors could be used for this 

application and what their limitations are. The experiments with the 137Cs irradiator were 

conducted at the Radiation Standards and Calibration Laboratory (RAScal) facility at ORNL 

and provided information on the gamma sensitivity for the unique detector configuration and 

provided information on how to optimize the circuit. Gamma sensitivity measurements at 

high exposure rates (430 R/hr) for this detector configuration have never been conducted 

before. These measurements were used to find the operational limit of the detector 

configuration, which was used in conjunction with the simulation results to converge on an 

optimal design.  

Finally, using an ORNL-developed SNR code, each of the different geometry configurations 

was evaluated for its neutron response. The most optimal configuration was found, and a 

laboratory proof-of-concept experiment was designed based on the simulation 

recommendations for the optimal design. The proof-of-concept measurements based on the 

simulations showed for the first time that an imager based on passive neutron emission 

tomography with the required spatial resolution to identify individual fuel pins is feasible.  
 



 

43 
 

3. SYSTEM DESIGN 

This chapter will provide an overview of the imaging system design concept and simulations 

conducted that fed into selecting the optimal imager design. Both gamma exposure and 

neutron simulations were conducted, but the data for those will be presented in the following 

chapters. This chapter opens by describing the isolation of lines of response based on 

collimation.  Then, the concept of the parallel-slit ring collimator is introduced.  Last of all, 

the baseline imager design is presented as a basis for comparison of a suite of imager designs 

having different dimensions. 

3.1.  Lines of Response and Collimation 

As covered in Chapter 1, a crucial element of computed tomography and image 

reconstruction is to be able to divide the object being inspected into lines of response. Lines 

of response refer to the paths through the object along which an observable, which in this 

case is the neutron emission rate, is summed or integrated over several projections. In passive 

neutron imaging, collimation is used to isolate paths, or lines of response through a fuel 

assembly, and neutron counts registered by detectors at the end of each collimator slit 

correspond to the summed activity along a particular path. It is possible to perform fast 

neutron emission tomography with the desired resolution as long as each line of response 

sufficiently isolates a path through the object, the object is sampled with sufficient number 

of lines of response, and there are an adequate number of views through the object to generate 

an image. 

In order to illustrate the concept of a line of response, a series of simulations were performed 

using a collimator consisting of an annulus of 5% enriched (10B) borated polyethylene with 

a single 3 mm wide slit cut in it.  MCNP6 simulations were performed with a 244Cm point 

source placed at the 172 locations corresponding to a grid separated by the pin pitch of a 

17	 × 	17 PWR fuel assembly. (However, note that a full fuel assembly with structural 

components was not simulated.) For each simulation, the neutron counts were tallied at the 

exit of the slit via the FMESH card with the F4 tally for calculating neutron flux through a 

cell.  
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Figure 26 shows the point spread functions for a set of different thicknesses of stainless steel 

and borated polyethylene in the collimator. The ideal point spread function is one that looks 

like a delta function, so the most desirable collimator is one that maximizes the signal 

(component that traverses down the slit) and minimizes the collimator penetration or noise. 

The curves in the figure are normalized with respect to the 10 cm borated polyethylene and 

30 cm stainless-steel data. It can be seen that beyond 25 cm of borated polyethylene there is 

not much of a difference in the noise suppression.  

  

 

 

Figure 26. Shows the point spread functions for various thicknesses of stainless steel evaluated. The curves 
are normalized to the 10cm borated polyethylene / 30cm steel data. There is not much difference in the 
‘noise’ between the 25cm borated poly case and 40 cm borated poly case. 

 

 

 

 

-10 -8 -6 -4 -2 0 2 4 6 8 10

Source Position (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 C
el

l A
ve

ra
ge

d 
Fl

ux

40cm Borated Poly
15cm SS, 25cm Borated Poly
20cm SS, 20cm Borated Poly
25cm SS, 15cm Borated Poly
30cm SS, 10cm Borated Poly



 

45 
 

A schematic diagram of the geometry for simulations done with a cylindrical collimator is 

shown in Figure 27 (a). The resulting image in Figure 27 (b) shows the neutron counts 

associated with each source location for a collimator thickness of 15 cm.  In this image, there 

is an identifiable path through the inspection volume that is strongest along a path seen by 

the collimator slit, but significant contributions remain from all the neighboring source 

positions.  Similarly,  Figure 27 (c) shows the counts associated with each source location 

for a collimator thickness of 30 cm.  Here, almost all response is limited to a particular path 

across the inspection volume, but the larger collimator thickness reduces the total intensity.  

Based on the initial single slit line of response simulation results, a minimum amount of 

borated polyethylene consisting of 30 cm was chosen as the limiting criteria for evaluating 

several designs options. Although the initial point spread function simulation showed little 

difference in noise suppression beyond 25 cm borated polyethylene, since the final collimator 

will have numerous slits cut into it, the effective density of the collimator is reduced, thus 

reducing the modulation effectiveness of the collimator. 

 

 

 

Figure 27. Example lines of response for a detector counting neutrons that exit a single 3 mm wide collimator 
slit, shown (a) as a schematic diagram. The results of a 244Cm point source simulated at each assumed fuel pin 
location are shown (b) for a 15 cm thick collimator and (c) for a 30 cm thick collimator [34]. 
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As a result, increasing the borated polyethylene thickness to 30 cm may compensate for the 

reduced density. For the various simulations presented and discussed in this dissertation, a 

minimum borated polyethylene thickness of 30 cm was used.  

3.2.  Imaging System Requirements 

As mentioned in Chapter 1, measuring fast neutrons for material accountancy is desirable 

because neutrons penetrate a good deal of shielding and can escape from high density 

materials within the fuel assembly.  Unfortunately, their ability to penetrate shielding is also 

what makes fast neutrons difficult to collimate and measure with fine spatial resolution.  The 

challenges posed by using fast neutrons for safeguards verification make it such that 

attributes of an ideal detector or collimator conflict with one another when trying to optimize 

several facets like resolution and detection efficiency.  The intent of the work discussed here 

is to develop a functional equivalent to a parallel slit collimator. The ideal imager has to have 

the following characteristics: 

1. High efficiency: The neutron emissions from spent fuel is not as strong as the gamma 

ray emissions. High efficiency is a requirement for practical measurement times, and 

in order to satisfy this the detectors need to be placed closer to the spent fuel. Another 

way to increase the efficiency is to increase the slit width, but this would result in a 

reduction of shielding material. Large detectors are a requirement when it comes to 

neutron measurements since neutrons have a tendency to scatter. Using a traditional 

parallel slit collimator with large detectors would mean that fine scanning and 

rotation would be required, making the measurement time impractically long.  

2. High resolution: In order to be able to identify individual pins, the resolution needs 

to be such that it is possible to differentiate and identify the gap between fuel pins. 

The fuel pin pitch (from pin center to neighboring pin center) in a standard 17 × 17 

fuel assembly is 1.26 cm, and the pin outer diameter including the cladding is around 

0.914 cm. Thus, slits on the order of a few millimeters are required to resolve the 

gaps between the pins and generate a good enough line of response through the 

assembly. Another way to increase resolution is to increase the amount of moderating 

material used in the collimator, but although using only borated polyethylene would 
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create a better response, the high gamma exposure would still be a problem for the 

detectors.  

3. Gamma exposure minimization: The gamma exposure from spent fuel is too 

overwhelming for the neutron detectors to operate without any shielding since for 

fuel with short cooling times (less than 5 years) the exposures are on the order of 

10,000 R/hr. Most neutron detectors are sensitive to some degree to gamma-rays in 

addition to neutrons. In any detector, gamma-rays can transfer energy to electrons in 

the detector materials via Compton scattering interactions. If this were to take place 

in the detector fill gas, the resulting high energy electron would ionize the fill gas and 

other material within the detector. When the electronic pulses from gamma-rays are 

similar in size to the neutron pulses false counts can be registered in the detectors. If 

the induced gamma-ray pulses are smaller, they can pile up in a short amount of time, 

also resulting in false neutron counts. As a result, gamma shielding needs to be 

incorporated into the imager design even when using relatively gamma-blind 

detectors. The most gamma-blind detectors with a high fast-neutron interaction 

probability are moderated neutron detectors, where the neutrons lose energy in the 

moderating material that the detectors are embedded in.  

4. Compact size: A compact detector size is desirable so that it may be practically field 

tested and used in a facility without disrupting facility operations. The most compact 

geometry for an imager is in the shape of a ring.  

3.3.  Parallel-Slit Ring Collimator Design Concept 

A more compact version of a parallel-slit collimator in the form of a ring can be constructed 

to address the challenges and requirements detailed in the previous section. If 100 detectors 

were to be used in a parallel slit design, it would not be possible to build it in a compact 

enough size and maintain enough material between slits to modulate neutrons effectively or 

shield the detectors from gamma-rays.  In addition to not having enough material to shield 

or modulate the radiation, the detectors would have to be on the order of a few millimeters, 

which is not feasible for neutron detection. The modified parallel-slit ring collimator is based 

on the traditional parallel slit collimator, but since it would be impossible to build a compact 
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parallel slit collimator with 100 neutron detectors in a compact form, the slits are moved by 

rotated each by a known angle so the slits and detectors at the end of each slit located on the 

outer ring are equally spaced from one another. By doing so, the modified parallel-slit ring 

collimator maintains correspondence to the traditional parallel slit collimator. This way, the 

same lines of response that would have been isolated through the sample with parallel slits 

can be isolated along the sample using this modified ring collimator. By moving the slits 

further apart around the ring, the detector size can be increased. Figure 28 illustrates how the 

collimator starting from the traditional parallel slit form (a) can be modified to a parallel-slit 

ring equivalent (e). In this diagram only 20 slits are shown for ease of viewing, but for the 

remainder of the simulations 100 slits and 100 detectors will be used. In (a) there is not 

sufficient collimator material between the slits to modulate the neutrons effectively to 

generate a good line of response. Also, the detectors would have to be incredibly small to fit. 

The detectors can be moved apart by taking each slit and rotating them to equiangular points 

around the circle as shown in (e). The modified parallel-slit ring collimator would have a 

neutron detector on the outside at the end of each slit. To gather data from all projection 

angles, the collimator would rotate around the object, while the object and detectors can stay 

stationary. This is an added advantage to this imaging system since the object and detector 

positioning doesn’t have to be too precise as long as there is no relative motion during the 

measurement.  
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Figure 28. The parallel-slit ring collimator (e) is equivalent to the parallel slit collimator in (a). As shown in (b)-(d), each slit is rotated from the dashed red 
to the solid red line so that after rotation, the resulting slits are (e) spaced equally around the circle. Each slit still inspects the same chord of the inspection 
volume [57]. 
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3.4.  Baseline Design 

The imager is made up of an annular collimator surrounded by a ring of detectors, where 

each detector is positioned at the outer end of each slit. Between the detectors and the 

collimator is a thin layer of cadmium to eliminate the lower energy neutrons and ensure the 

detectors are most sensitive to fast neutrons that make it through. There is another cadmium 

layer on the outer radius of the detectors as well. The next section will describe the detectors 

in more detail. On the outside of the outer layer of cadmium is a layer of borated polyethylene 

in order to limit the number of neutrons that would be reflected back into the detectors and 

also to shield the detectors from other neighboring neutron sources that may be in the 

vicinity. Figure 29 shows a closeup of the collimator with slits pointing to the detectors that 

have cadmium on the inner and outer radii.  

 

 

 

Figure 29. Close up of the borated polyethylene component of the collimator with slits pointing to detectors. 
The two cadmium (Cd) layers are shown in addition to the outer borated polyethylene layer to prevent in-
scatter. The high-density polyethylene matrix that the straws are embedded in is shown in red.  
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The inner radius of the imager annulus is 17.667 cm, which was calculated to accommodate 

an assembly 1cm greater than the half diagonal of a standard 17 × 17 fuel assembly (24 cm). 

The total outer radius limit of the imager (including the outer layer of borated polyethylene) 

was selected so that it can be reasonably handled by a facility based on the envisioned 

concept of operations of the imager. This means that the imager can fit in a spent fuel cask 

or cask-like container that operators at spent fuel encapsulation facilities would typically 

handle. A concept considered here in this project is to house the imager in a fuel cask-type 

of container in order to shield the surroundings from the intense gamma radiation from the 

spent fuel assembly being measured. For the baseline imager, two commercial casks with 

different internal diameters were used to evaluate different collimator thicknesses. For eleven 

of the sixteen collimator geometries, an imager outer diameter was chosen so the device 

would fit within the internal cavity of the GNS Castor series of transport casks (internal 

cavity diameter of 148 cm), as this cask type is commonly used for international fuel 

shipments.  For the remaining five geometries, the Fuel Solutions TS125 cask with an 

internal cavity diameter of 170 cm was used to constrain the imager outer diameter. Figure 

30 shows the plan view of the baseline design of the imager along with a 17 × 17 fuel 

assembly in the center of the cavity. As can be seen, the collimator is made up of two 

materials – the inner 10 cm is made of stainless steel (green) and the outer 30 cm is made of 

borated polyethylene (yellow).  

The collimator as described above briefly consists of two materials – the borated 

polyethylene and a stainless-steel component. The stainless-steel component is towards the 

center of the collimator and has two roles: acts as high-density material shielding for the 

detectors to lower the gamma exposures from the spent fuel, and also for structural integrity 

since the slits cut in pretty closely, and since the envisioned imager is about a meter in length, 

there may be warping along the length if the borated polyethylene were to be placed towards 

the center. The borated polyethylene is meant to act as the neutron moderating material that 

effectively modulates the neutrons so that the fast neutrons are the ones that primarily get 

down the slits. The collimator active length (height) was chosen to be ~1 m in order to 

maximize the measurement efficiency. However, the length is also constrained because spent 

fuel assemblies may warp along the entire 4 m length by as much as 1cm. If the imager active 
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length was longer than 1m, the image reconstruction may not be as accurate. This way, the 

maximum amount of uncertainty as seen by the imager would be 0.25cm along the fuel 

length, which is comparable to the space between each pin. A three-dimensional view of the 

imager that shows its length compared to that of a fuel assembly is shown in Figure 31. There 

is shielding made up of borated polyethylene and stainless steel on the top and bottom of the 

imager to protect the detectors from the fuel assembly shine resulting from the fuel assembly 

extending out on either side of the imager. 

 

 

 

Figure 30. Plan view of the entire imager with a 17 × 17 fuel assembly in the center. 
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Figure 31. Three-dimensional configuration of the collimator and neutron detectors around a typical fuel 
assembly (green). The imager is shown (left) without and (right) with stainless steel (pink) and borated 
polyethylene shielding (yellow) at the top and bottom of the imager to shield from fuel assembly shine  [34].  

 

 

3.5.  Imager Geometries Considered 

In order to converge on the optimal imager design, a survey of the design space was 

conducted. First, the parameters to be varied in the imager design were identified, then the 

various permutations of imager geometries were simulated in MCNP to calculate a neutron 

response and expected gamma exposures. The parameters of the imager that were identified 

to be varied while constraining the design by practicality considerations for deployment are: 

stainless steel thickness, borated polyethylene thickness, and slit width. The size constraint 

to fit the imager into one of the two identified commercial transportation casks in 

combination with the point spread function simulation results presented in Section 3.1 that 

showed the minimum amount of borated polyethylene required (30cm) was used to come up 

with sixteen different combinations of stainless steel and borated polyethylene thicknesses 

in the collimator, resulting in seven different total thicknesses. The 16 thickness 

combinations that were simulated are shown in Table 3. In addition to varying the stainless-

steel and borated polyethylene thicknesses, 32 different slit widths were simulated. These 

included 9 parallel slit dimensions (1 mm to 5 mm in 0.5mm intervals), 23 tapered slit 

combinations with inner dimensions of 1 mm, 2 mm, 2.5 mm, and 3 mm going to an outer 
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dimension of 5 mm in 0.5 mm intervals, resulting in 512 different geometries. Figure 32 

shows a 3-dimensional SolidWorks rendering of the proposed imager housed in a GNS 

container. On the outside of the imager detectors, to limit the amount of backscatter of 

neutrons, a layer of borated polyethylene was simulated between the detector outer radius 

and the stainless-steel portion of the container. The dimensions of the borated polyethylene 

and stainless-steel components of the collimator and the container are shown in the table 

below. 

 

 

Table 3. List of sixteen combinations of stainless-steel and borated polyethylene thicknesses making up the 
imager collimator that were used as the basis for evaluating different imager geometries [58] [59]  . 

Transport Cask 
Name 

Collimator Components Outside Detector 
Steel 

Thickness 
(cm) 

Borated 
Polyethylene 

(cm) 

Total 
Thickness 

(cm) 

Outer 
Borated 

Poly Filler 
(cm) 

Steel 
Container 
Thickness 

(cm) 
GNS 5 35 40 5.822 48 
GNS 10 30 40 5.822 48 
GNS 6 36 42 3.822 48 
GNS 5 38 43 2.822 48 
GNS 6 37 43 2.822 48 
GNS 7 36 43 2.822 48 
GNS 5 40 45 0.822 48 
GNS 6 39 45 0.822 48 
GNS 7 38 45 0.822 48 
GNS 8 37 45 0.822 48 
GNS 10 35 45 0.822 48 

FUELSOLUTIONS 5 45 50 6.912 13.6 
FUELSOLUTIONS 10 40 50 6.912 13.6 
FUELSOLUTIONS 5 48 53 3.912 13.6 
FUELSOLUTIONS 5 50 55 1.912 13.6 
FUELSOLUTIONS 10 45 55 1.912 13.6 
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Figure 32. (left) A commercially available transport cask by GNS. (right) A 3-D rendering of imager concept 
in a cask-like container that would fit in a fuel encapsulation facility [59] [34]. 

 

 

3.5.1. Procedure 

In order to converge on the ideal detector geometry, a comprehensive set of simulations were 

conducted investigating the imager parameters described in the previous section. The best 

design minimizes the time to resolve individual fuel pins. The simulation, measurement, and 

data evaluation procedure needs to identify the best compromise between efficiency, 

resolution, and gamma exposure management in a package of acceptable size. 

Computationally, this is split into two – gamma exposure evaluation, and neutron response 

simulations. The simulations, measurements, and analysis methodology is outlined below.  

• Gamma Exposures 

o Using the “worst case scenario” spent fuel source, compute exposures for a 

survey of parameter space using MCNP for all 512 geometries. The fuel source 

used in all the gamma simulations was a standard 17 × 17 fuel assembly with a 



 

56 
 

homogeneous distribution of gammas throughout the pins. A burnup of 

40GWd/MTU was used after 1-year cooling time. This is the minimum time 

before a fuel assembly can be moved and would have the highest exposures.   

o Understand how exposures at the detectors scale with imager parameter changes 

and, develop a way to relate the required exposure to required imager geometry. 

The gamma exposures and various close and open fractions will be used to 

develop an equation to predict the ideal geometry to limit the gamma-ray 

exposures to a specific value.  

o Identify limits of ability of a single module of neutron detector to reject gamma-

rays using measurements. This will help identify operational requirements 

(threshold) for real in-field measurements. The measurements will be described 

in a following chapter. 

o Identify configurations that are acceptable based on the measurement data and 

simulations predicting the largest exposures seen at the detectors using the worst-

case source.  

• Neutron Response 

o The collimator creates a complicated neutron response that is hard to predict. 

First, simulations using a 244Cm line source will be used to understand what the 

expected point spread function looks like for the various imager geometries being 

considered.  

o Ideally it would be nice to know the detector response to every point within the 

fuel cavity. However, this is not feasible since it would require running ~100,000 

simulations for each of the 512 configurations. The number of simulations was 

estimated at 100,000 because the fuel annulus has an area roughly around 350 

mm × 350mm, and to get the resolution down to the mm scale, ~100,000 

simulations would be required.  A smaller set of simulations using a 244Cm line 

source will be conducted in order to feed into understanding how the neutron 

counts scale and be extrapolated to a full response. This will include estimating 

and calculating how the direct signal component, the slit edge component, and 
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the noise or collimator penetration scales for each configuration. This will all feed 

into the reconstruction code in order to correct for errors. 

o A signal to noise ratio (SNR) code developed for this data will be used to identify 

the “good” or acceptable data that agrees with the findings from the gamma 

exposure analyses. The set of configurations where the SNR starts to deteriorate 

will also be identified. 

o A final detector geometry will be selected. The final geometry will be used to 

simulate a setup of five line sources in order to test that reconstruction is possible. 

A follow-up simulation of a full up PWR fuel assembly will be conducted and a 

sonogram of the data will be calculated. This will be the input data for the 

reconstruction code.  

3.6.  Neutron Detectors 

The detectors selected for this application and project are commercially available boron straw 

detectors. The rationale for selecting this particular detector was that it was the easiest way 

to maximize neutron efficiency while minimizing the gamma-ray sensitivity in an affordable 

manner. All neutron detectors are sensitive to gamma-rays to some extent because most 

nuclear material emits 10 or more times as many gamma rays as neutrons [60]. For spent fuel 

applications gamma exposures over 2000 R/hr are common, making the gamma-ray 

sensitivity of the detectors a high priority. The gammas transfer energy to electrons in the 

detector fill gas via Compton scattering interactions. The resulting high energy electron 

produces a column of ionization along its path, and the electronic pulses produced may be 

comparable to neutron pulses, or if many small pulses are registered close together within 

the resolving time of the detector electronics, they can pileup resulting in potential false 

counts.  Detector materials can be designed to favor neutron absorption. Thermal neutrons 

can be absorbed with a higher probability than gamma-rays, but when it comes to fast-

neutrons, the gamma-ray interaction probabilities are comparable to the neutron interaction 

probabilities as shown in Table 4 [60].  

From the data presented in in the table, it can be seen that the thermal neutron detectors have 

the best combination of neutron sensitivity and gamma-blindness. The two top choices for 
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thermal neutron detectors are boron-lined proportional counters and 3He detectors.  Boron-

10 lined cylindrical proportional counters are one of the oldest developed neutron detection 

technologies but once 3He became more widely available, it became the most common 

approach for neutron detection. The high cost of 3He then made alternatives like boron lined 

detectors more attractive for applications  [61]. The advantages of boron-lined straws are: 

• Gas detectors are fairly stable and can be easily deployed 

• The detectors have high neutron interaction probabilities while maintaining low 

gamma interaction probabilities, making it useful in spent fuel applications where the 

detectors need to be placed close to the spent fuel (~50-60 cm away).  

• The neutron capture process can be modeled and simulated using existing transport 

codes.  

• Although these are small detectors, the straws can be scaled up and instrumented in 

larger arrays to make larger detectors that is a requirement for neutron imaging to 

increase the efficiency due to the modest neutron source.   

 

 

Table 4. Neutron and gamma-ray interaction probability for common neutron detectors [60]. 

 Interaction Probability 

Thermal Detectors Thermal Neutron 1-MeV Gamma-ray 
3He (2.5 cm diam., 4 atm) 0.77 0.0001 

Ar (2.5 cm diam., 2 atm) 0.0 0.0005 

BF3 (5 cm diam., .66 atm) 0.29 0.0006 

Al tube wall (0.8 mm) 0.0 0.014 

 Interaction Probability 

Fast Detectors 1-MeV Neutron 1-MeV Gamma-ray 
4He (5 cm diam., 18 atm) 0.01 0.001 

Al tube wall (0.8 mm) 0.0 0.014 

Scintillator (5.0 cm) 0.78 0.26 
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3.6.1. Boron Coated Straw Detector Configuration 

The boron coated straws selected for this application are commercially available and are 

manufactured by Proportional Technologies, Inc. (PTI). The design concept is to embed the 

boron straws in a matrix of high density polyethylene (HDPE) to moderate the fast neutrons 

from spent fuel down to thermal energies to be detected by the straws. A single straw consists 

of a long copper tube that has a thin layer of 10B-enriched boron carbide (10B4C). The fast 

neutrons that are thermalized are captured by the 10B in the B4C layer and are converted into 

secondary particles via the B + $	 → 	 Li + 	)	
*

	
+,  reaction. The Li	*  particle has 0.84 MeV of 

energy and the ) particle has an energy of 1.47 MeV and when either of these two particles 

escape the boron carbide layer, they enter the detector fill gas and ionizes it as they traverse 

through it. The straw detector acts as a proportional counter, where the tube wall acts as the 

cathode, and the thin anode wire passes down the center of the straw. The electrons that are 

created in the gas drift towards the anode wire and a signal is generated when the detector 

threshold is exceeded. A cross section diagram of a single straw is shown in Figure 33. 

The thickness of the boron carbide layer can be varied in order to maximize the neutron 

efficiency. In order to minimize gamma sensitivity, the number of straws instrumented per 

readout channel should be minimized. A single detector for this system is envisioned as a 

group of straws arranged in rows embedded in a HDPE matrix. PTI investigated three 

different straw pitches (1.0, 1.1, and 1.2 cm) for a geometry with 100 detectors and different 

thicknesses of B4C to calculate the expected efficiency. A figure of the three detector 

geometries evaluated is shown in Figure 34. The results from the evaluation of the three 

straw pitches is shown in Figure 35. 

The simulation results below show that the efficiency peaks at different thicknesses for the 

three different pitches investigated. For this particular system, one way to minimize gamma 

sensitivity to a detector, is to reduce the active volume of the detector, or choose the geometry 

with the least number of straws. The largest pitch case has a maximum efficiency at 1.4 µm 

thick B4C which is ~2.5% less than the most efficient configuration. This proves to be the 

most favorable design since the large pitch size means that this geometry requires the least 

number of straws per detector, making it more economical and least gamma sensitive. The 

chosen design for most of the simulations presented here consists of 23 straws per detector 
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(pitch size of 1.2 cm), with 100 detectors in total and a 100 slits pointing down to the center 

of each detector. For the simulations to follow for the 100-detector geometry, 1mm of Cd 

was inserted as a layer on the inner radius of the detectors, and 3mm of Cd was modeled on 

the outer radius of the detectors. The main components in the straw along with their 

dimensions are shown in Table 5. These detector component dimensions are also used in the 

simulations. Although the final geometry of the detectors changed in the end (as will be 

described in a later chapter), the straw components in the table below remained the same. 

Figure 36 shows a cross sectional view of an MCNP model of a single straw. 

 

 

 

Figure 33. Cross sectional image of a single boron carbide straw [62]. 

 

 

 

Figure 34. Illustration of three different detector straw geometries simulated by PTI [34]. 
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Figure 35. Detector efficiency as a function of boron carbide thickness for the three different pitch sizes 
simulated [34]. 

 

 

Table 5. Main components of a boron carbide straw and respective dimensions and material parameters [61]. 

Component Material Radius (cm) Thickness (cm) Density (g/cm3) 

Fill gas 90% Ar,  
10% CO2 0.22150 - 1.20x10-3 

Boron Carbide B4C with 10B 
enriched to 96% 0.22164 1.4x10-4 2.38 

Coating tube Copper 0.22434 2.7x10-3 8.96 
Detector wall Aluminum 0.27666 5.2x10-2 2.70 
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Figure 36. MCNP model of a single straw and its various components located in a high density polyethylene 
matrix. 

 

 

3.7.  Simulated Geometry 

To build a complete imager geometry, over 300 plane surfaces were used in just building the 

collimator slits and had to be generated at different positions for each of the 512 geometries. 

The detectors were constructed using a repeated hexagonal lattice structure to alternate the 

number of straws 8-7-8. Each lattice consisted of universes corresponding to either an empty 

polyethylene hexagon cell or a hexagon filled with a straw detector surrounded by 

polyethylene. A box constructed with four surfaces enclosed the lattice of 23 detectors, and 

this box was translated and repeated 100 times going around 360˚. A close-up of the lattice 

is shown in Figure 37. The translations for the detector boxes and the 49 planes that bound 

the 100 detector wedges were calculated for each of the different geometries using a 

MATLAB script. A Python script was then used to generate the 512 MCNP input decks by 

combining the collimator surface cards and cells with the detector surface cards and cells. 
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Figure 37. (Left) The detector box with a repeated hexagonal lattice filled with 23 straws in an 8-7-8 pattern. 
(Right) A close-up of what the 100 repeated detector cells look like when the box on the left is translated. 
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4. GAMMA EXPOSURE SENSITIVITY 

When it comes to evaluating neutron detectors for use in high gamma-ray exposure 

environments, pulse pileup can be of concern and may cause false count rates in the detector. 

This chapter will focus on the experiments conducted with a detector module provided by 

PTI at ORNL. The experiments were used to evaluate the detector electronics’ capability to 

reject gamma counts and identify the operational limits of the system. The experiments were 

followed by a series of simulations evaluating all 512 geometries identified in the previous 

chapter to calculate the maximum gamma-ray exposures seen at the detectors when exposed 

to a full fuel assembly.  

4.1. Experiments 

To experimentally determine the sensitivity of the boron straw detectors to high exposures, 

a series of measurements were performed at the ORNL RaSCaL cesium-137 irradiator facility 

with a prototype neutron detector with 23 straws. At the time of these experiments, the 

activity was 1012 Ci. A picture of the detector mounted on the irradiator table is shown in 

Figure 38 and a view of the straws as seen from the detector end is shown in Figure 39.   

 

 

 
Figure 38. The prototype detector during irradiation experiments at the RaSCaL facility. The gamma 
radiation from the 137Cs source was centered on the crosshairs of the red laser,  
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Figure 39. View from end of detector showing all 23 straws. 

 

 

To emulate exposure to comparable exposures to those originating from spent fuel, the 

detector was exposed to the highest possible exposures available from the irradiator. This 

was done by positioning the irradiator table a distance 78 cm from the irradiator opening. At 

this distance, the source illuminated approximately 1/3 of the detector with a maximum 

exposure of 432 R/hr, a configuration equivalent to exposing 8 straws of the 23 in their 

entirety to 432 R/hr. Table 6 shows the list of exposures the detector was exposed to in the 

series of measurements conducted.  

In total, three different experiments were conducted at the RaSCaL facility in order to test 

different preamplifier circuit designs and their ability to perform at the higher exposures. The 

initial circuit that was tested with the detector was designed at ORNL. A diagram of the 

experimental setup is shown in Figure 40. The detector was setup in the irradiation bay on a 

platform that could move it further and closer to the 137Cs irradiator. Long BNC cables were 

connected from the detector, out the shielded doors, into the neighboring measurement room 

where the computer controlling the irradiator was. The electronics were also placed in the 

measurement room as shown in the diagram below. For the first two experiments, the signal 

out of the detector feeding into the quad single channel analyzer (SCA) was a low voltage 

TTL, but for the final set of experiments the signal was a linear analog output, which is why 

the setup varied slightly between the first two and the last measurement campaign.  

The difference was in how the threshold was set. In the first two experiments, the threshold 

was set by using an external low-noise, high-precision voltage source and in the last 
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experiment the threshold was set directly at the SCA as shown in Figure 40 using the same 

source in its auxiliary lower threshold input. The goal of the measurements was to evaluate 

the detector’s ability to reject gamma-ray counts for various exposures in order to converge 

on the final operating threshold that makes the detector sensitive primarily to neutrons. The 

terminated signal out of the detector was fed into the Quad SCA which is connected to the 

threshold setting box. The threshold box allows for varying the threshold without having to 

adjust it on the detector itself. The terminated output from the Quad SCA is then fed into a 

counter. The counts registered by the counter were then divided by the measurement time to 

calculate a count rate. Depending on the threshold value, the measurement time was varied 

from 1 minute to 5 minutes to get statistically accurate count rates.  

 

 

Table 6. Gamma source information for Cs-137 irradiator facility (RaSCaL) at ORNL. The exposure at three 
different source-detector distances is shown along with the attenuation factors. 

Source Type Cs-137 

Half-life 30.17 years 

Exposure (on Feb 1, 2018) 
(R/hr) 

Source-Detector Distance 
(cm) Attenuation Factor 

430 77.9 $-$. 

105 156.9 × 4 

22 240.2 × 20 
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Figure 40. Experimental setup for the final measurement campaign conducted at the RaSCaL facility. 

 

 

4.1.1. Measurement Campaign #1 

The first set of measurements were performed on October 4, 2017. For this set of 

measurements, a 252Cf source was placed in a polyethylene block on the back side of the 

detector (opposite side exposed to the irradiator). The placement of the block with the 252Cf 

source is shown in Figure 41.  The count rate data from exposing the detector to the three 

different exposures as a function of varying detector threshold is shown in Figure 42. The 

reason the exposures is slightly different from those listed in Table 6 is because of the source 

calibration data listed was acquired after the first campaign. This circuit had a 250 ns peaking 

time bipolar signal. The tail on the left side of the curve is due to the count rates increasing 

significantly as the threshold is reduced because the detector is accidentally triggering on 

gamma pulse pileup events. The data set shown in grey (0R/hr) shows count rate data taken 

with just the 252Cf source present. Ideally, once the threshold is set high enough, the count 

rates seen should only be reflective of the detector counting neutrons, and the blue, red, and 

pink curves should align with the 0R/hr curve. However, it was observed that the count rates 

dipped lower than the 0R/hr curve as the threshold was increased. It was observed that this 

data was gathered without termination on the signal cables. A second set of measurements 

was conducted with 50 W terminators on the signal cables. The data from the second set of 
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measurements is shown in Figure 43. The curves align slightly better with the 0R/hr data as 

expected at higher threshold values, but still drift slightly below the 0R/hr line. Also, the 

counts only drop down to match the 0R/hr data around 110 mV. The goal is to get the 

threshold at which the gamma pileup dies down to be as low as possible, so measurement 

times can be decreased.  

 

 

 

Figure 41. Setup with 252Cf source for the first measurement campaign on October 4, 2017. 
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Figure 42. Count rate measured as a function of threshold setting using the first bipolar circuit design for the 
three different exposures as well as a 0R/hr measurement. This data set was collected without cable 
termination.  

 

 

  
Figure 43. Count rate measured as a function of threshold for different exposures with 50W termination on the 
signal cable. 
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4.1.2. Measurement Campaign #2 

The second measurement campaign was conducted on November 29, 2017 and December 

13, 2017 and the ORNL circuit was replaced with a circuit manufactured by PTI and 

improved by ORNL. This circuit had a short unipolar signal with a 50 ns peaking time. The 

downside of this choice for the signal shape is that the baseline will not be able to remain at 

0 at high count rates, which may result in the count rates seen at the higher exposures drifting 

below the 0 R/hr line. This was somewhat mitigated by the presence of a Robinson baseline-

restorer, but the problem remained at very high exposures. Data from this measurement is 

shown in Figure 44.  

There are two possible reasons as to why the count rates drifted below the 0R/hr line: (1) the 

detector gas itself can only give off so many electrons, so the ionizations from the intense 

gamma rays are so overpowering that there aren’t enough electrons to make up the gain for 

the neutrons detected, or (2) the gain in the detector is not constant, and goes down as the 

count rate in the detector increases because of the high voltage filtering resistor used in the 

circuit. The reason for the count rates dipping below the 0 R/hr line ended up being due to 

the gain shift at higher exposures induced by the company-supplied high voltage filter 

resistor. A simple circuit diagram is shown below in Figure 45. Here, at higher exposures the 

gamma-ray signals are so frequent that they look like a continuous current to the detector. 

This current creates an additional voltage drop across the resistor shown in Figure 45, so the 

high voltage seen by the detector is lower (since it is the difference between the high voltage 

applied and the voltage drop). Thus, the effective gain applied to the detector goes down, and 

as a result the pulses generated by the detector may not be high enough in amplitude to hit 

the set threshold level, thus it appears as if the detector registers less counts, making the count 

rate at higher exposures fall below the 0 R/hr line. One way to mitigate this is to replace the 

megaohm resistor used in this circuit with a resistor of a lower value. 
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Figure 44. Count rate as a function of threshold for different exposures using the circuit provided by PTI with 
the 252Cf source present. 

 

 

 

Figure 45. Circuit diagram of PTI's configuration. 
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4.1.3. Measurement Campaign #3 

The third measurement campaign took place on February 1, 2018. For this set of experiments, 

the same circuit was used as in Figure 45, but the megaohm resistor was replaced with a 10 

kilo-ohm resistor in order to reduce the current pull at higher count rates and lessen the effect 

of the count rates dipping below the 0 R/hr line at higher count rates. The reduced resistor 

value was chosen to ensure that the high voltage filtering effect was still effective. The data 

for this set of experiments is shown in Figure 46. The data here is more promising since the 

count rate at higher exposures does not dip below the 0R/hr line. To get a better idea of 

whether the detector circuit is limited by large single gamma pulses, the 430R/hr curve was 

divided by 4. If the electronics are limited by large gamma pulses, the gamma tail (at lower 

thresholds) for the 430 R/hr data divided by 4 should be identical to and line up with the 

105.1 R/hr gamma tail. The same goes for the 105.1 R/hr data divided by 4.77 compared to 

the 22 R/hr gamma tail. The assumption here is that at 22R/hr the detector is able to measure 

all pulses. Figure 47 shows the count rate data for all three count rates in addition to the two 

scaled curves. 

 

 

 

Figure 46. Count rate as a function of threshold for different exposurees using the circuit with resistor 
replaced. 
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Figure 47. Count rate as a function of threshold for different exposurees using the circuit with resistor 
replaced. The two additional curves shown are the count rates for 430 R/hr divided by 4 and 105.1 R/hr 
divided by 4.77. 

 

 

The gamma tail of the 430 R/hr curve divided by 4 does not line up close to the 105R/hr data, 

and the gamma tail of the 105 R/hr data divided by 4.77 is not identical to the 22 R/hr but is 

close. There are two reasons as to why the gamma tails do not line up exactly. The first has 

to do with the baseline shifting at higher count rates (as mentioned before, the simple 

baseline-restorer used is not completely effective.) When using unipolar pulses, ideally the 

baseline stays at 0 which means that between each pulse, sufficient time is allowed to let the 

signal come down to 0 as shown in Figure 48. Since the circuit does not have a baseline 

restorer, during high count rate situations, the pulses do not have the ability to get down to 0 

between each event, which causes the pulses to overlap, and as a result the baseline to rise 

above 0 and the pulses cross the threshold shown by the dashed line in Figure 49. 
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Figure 48. Unipolar pulses with 50 ns peaking time where the signal goes down to 0 between each pulse. 

 

 

 

Figure 49. Example of overlapping unipolar pulses in a high-count rate situation where the pulse cannot die 
down to 0.  
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When the baseline rises, the effect it has on the pulses is equivalent to lowering the threshold, 

which means that the circuit is counting more counts than it should. This is why when using 

the counts from 430 R/hr (C’) to scale down to predict 105.1 R/hr (C), when dividing C’ by 

a constant factor (f), it will not equal C exactly at low threshold values.  This explains why 

the two curves (C and C’) for both the 22 R/hr and 105.1 R/hr on the gamma tail do not line 

up. The second feature seen on the 430 R/hr curve that isn’t evident on the lower exposure 

curves is the fact that the count rates roll over at lower thresholds. This is an effect that is 

evident in the 430 R/hr divided by 4 curve which does not line up at all with the 105.1 R/hr 

curve and is shaped differently. This has to do with the filtering resistor effect where at high 

count rates the charge (/) running through the detector causes the current across the resistor 

(Figure 45) to increase and the gain to drop. With the lower gain, the count rates are lower, 

resulting in the curved shape at the higher count rate. This means that the detectors are at 

their functional limitation at 430 R/hr when all 23 rows are instrumented together. The 

experiments showed that in order to tolerate these higher exposures, the detector rows may 

need to be instrumented individually in the final design. Oscilloscope traces of the detector 

baseline when exposed to different exposures are shown in Figure 50. This set of traces also 

shows that at the highest exposure of 430 R/hr, there is significant deviation from the 

baseline. The cause of the baseline deviation could be attributed to either pileup effects or 

gamma rays from the irradiator depositing large amounts of energy. 

Figure 51 shows MCNP simulation results of the pulse height registered in 23 straws as a 

function of the energy deposited (MeV). The gamma simulations are shown on the left and 

agree with the scope traces from the measurements in that at high exposures, large amplitude 

signals become highly probable from 137Cs photons depositing higher energies in the gas, 

thus increasing the count rates. For the gamma simulations, MCNP5 was used to get results 

from a high statistics simulation. A total of 7.13´1010 histories of 662 keV gammas were 

simulated. A one second simulation of 432 R/hr exposure is equivalent to 9.55´1010 gammas. 

The neutron spectrum simulation was provided by Dr. Jianwei Hu. 
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Figure 50. Scope traces from the detector exposed to different gamma exposures [63]. 

 

 

 

 

Figure 51. Pulse height spectrum vs. energy (MeV) from a MCNP simulation of a (a) beam of 662-keV 
photons incident on a single detector and (b) pulse height spectrum for neutrons [63]. 
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Looking at the two curves in Figure 51, it is important to identify the threshold parameter 

that would ideally exclude all of the gamma contributions [63]. The gamma pulse height 

spectrum along with the simulated neutron pulse height spectrum was used to calculate the 

expected count rate as a function of threshold setting (mV) for 430 R/hr and 22 R/hr. A 

conversion of 300 mV/MeV in the straw detector was used, the simulated curves were plotted 

along with measured data for exposures of 0 R hr-1, 22 R hr-1, and 430 R hr-1, and are shown 

in Figure 52 [63]. Here, the calculated count rates track well with the measured count rates 

at 430 R/hr but over-predict the count rates for lower discriminator thresholds at 22 R/hr. 

This discrepancy is most likely due to differences in the experimental and modeled spectra 

from the irradiator. The simulations used a beam of 662 keV gamma-rays as the source, 

whereas the measurement source includes down-scattered energies from the collimator and 

attenuators.  The simulations show that the detectors are at or close to their fundamental 

limitation set by low-probability, large amplitude interactions of single gamma rays. As a 

result, only configurations having a maximum exposure less than 500 R/hr should be 

considered for this application. To ensure that the amount of detector pileup in imaging 

measurements is no more than that encountered in the high exposure measurements, the 

detectors will be instrumented with a preamplifier per row of straws.   
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Figure 52. Measured (solid) and simulated (dashed) counts per second in a single detector module as a 
function of detector threshold for different exposures [63]. 
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5. SIMULATION DESIGN STUDY: GAMMA EXPOSURE 

This section will detail the simulations performed to understand how the imager response to 

gamma-rays from spent fuel changes as a function of the physics design. This data in 

combination with the neutron response design study (next chapter) will help converge on the 

optimal imager design. To evaluate the gamma-ray response, exposure rates were calculated 

for each detector in each configuration and these results were used to understand how the 

exposures are expected to scale with collimator parameters. The following steps were 

implemented and will be detailed in this chapter: 

• Maximum and average exposures were calculated for a survey of parameter space 

using MCNP5 for all 512 geometries.  

• Understand how exposures at the detectors scale with imager parameter changes and, 

develop a way to relate the required exposure to required imager geometry. The 

gamma exposures and various close and open fractions will be used to develop an 

equation to predict the ideal geometry to limit the gamma-ray exposures to a specific 

value.  

• Identify configurations that are acceptable based on the measurement data and 

simulations predicting the largest exposures seen at the detectors using the worst-case 

source.  

5.1.  Gamma Source Term 

The gamma source term used was a standard 17 × 17 fuel assembly with a homogeneous 

distribution of gammas throughout the pins. The source term was provided by the Reactor 

and Nuclear Systems Division (RNSD) at ORNL. The software SCALE/TRITON was used 

to generate the ORIGEN libraries for the source term and ORIGAMI was used with those 

libraries and power histories to generate the final isotopic compositions for the source term. 

In the MCNP deck, the source definition specified the gamma emission probabilities for 20 

different energy bins, and the material card for the fuel pellets contained the isotopic 

information output by ORIGAMI for a fuel assembly with a burnup of 40GWd/MTU and a 

1-year cooling time. To evaluate the gamma exposures, a 1-year cooling time was used since 
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that is the absolute earliest a fuel assembly can be moved in the pool. This is the worst-case 

scenario for gamma exposure that the imager needs to be able to tolerate since gamma 

sensitivity is the main limitation of such a system. Monte Carlo simulations for all 512 cases 

were run, and the interactions within the P-10 fill gas in the detectors were tallied using the 

F6 tally. The F6 tally in MCNP when used with photons, calculates the track length estimate 

of energy deposition by photons in the material of interest (P-10 gas) and is given by 

Equation ( 2 ) below 

01234(6)8(6)
9:
;

 

( 2 ) 

Where 0is the particle weight, 12 is the track length in centimeters which is equal to even 

transit time × particle velocity, 34(6) is the microscopic total cross section in barns as a 

function of particle energy, and 8(6) is the heating number < =>?

@A22BCBAD
E which is the difference 

between incident gamma energy and the sum of the product between probability of reaction 

(for incoherent or Compton scattering, pair production, and photoelectric absorption) and 

average exiting gamma energy for the specific reaction type. Finally, 9: is the atom density 

< :4AFC
G:HD	IF

E, and ; is the cell mass in grams. The F6 Tally results from the simulations were 

gathered for each detector cell (every row of 3) and is in units of =>?

JH:F	∗	LMA4AD
. A sample F6 

tally specification for a single detector is shown below: 

F6:p   (11 < 902 < 21 < 201) 

 The geometry is built with repeated universes and lattices of straws (cell 11 is the single 

straw cell corresponding to the P-10 gas, and cell 902 is the repeated hex lattice), so the tally 

specification above means that the total F6 response is recorded for all 23 occurrences of cell 

11 in each detector wedge. This is then converted to R per hour [R/hr] using the following 

conversion shown in Equation ( 3 ). MCNP in the F6 tally, divides the response by the 

(volume × mass density) of a single straw, and since a detector wedge contains a total of 23 

straws, the output tally results need to be divided by 23 again to get the correct wedge 

averaged result. 
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N
ℎ-PQ

=
S6 U V.W

X ∗ Yℎ-Z-$[ ∗ 	4.02507 × 10
+c UYℎ-Z-$dd.e-$f [ ∗ 3600	 <

d.e-$fd
ℎ-PQ E	

6.24 × 10* U V.W
Nhf ∗ XQh;[ ∗ 0.876	 <

Nhf
N E

 

( 3 ) 

where the photon intensity of 4.02507 × 10+c <LMA4ADC
C>IADj

E was derived from the conversion 

shown in Equation ( 4 ). This assumes that there is 450 kg (0.45 metric tons) of uranium in a 

typical PWR fuel assembly. 

 

8.9446 x 1015 LMA4ADC

C>IADj	∗	,.+	=kl
∗ 0.45	 =kl

mn>2	:CC>FG2o
 = 4.02507 × 10+c <LMA4ADC

C>IADj
E 

( 4 ) 

5.2.  Exposure Simulation Results 

Each of the 512 configurations discussed in Chapter 3 were simulated, and for each 

simulation, 100 tallies were recorded corresponding to each detector. One simulation was 

conducted recording the exposures at each individual straw for 3 mm wide parallel slits and 

a collimator with 10 cm of stainless steel and 30 cm of borated polyethylene. The straw-to-

straw variations in exposure were useful to understand to see what fidelity simulations were 

necessary. Figure 53 and Figure 54 show the plan and side views of the MCNP geometry 

modeled respectively for the gamma exposure simulations. The MCNP simulations were run 

with 1.0 x 109 photon histories. 
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Figure 53. Plan view of the imager with 3 mm parallel slits in the collimator with 10 cm steel and 30 cm 
borated polyethylene. 
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Figure 54. Side view of the MCNP geometry of the fuel assembly, imager, and container. 
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The simulations were conducted with shielding on the top and bottom (7 cm of stainless steel 

and 15 cm of borated polyethylene) of the imager to shield the straws from the fuel assembly 

shine on either side. Figure 55 shows a visual representation of the exposures seen by each 

of the 2,300 straws in R/hr. The maximum exposures seen at the individual straw level do 

not exceed 500 R/hr, proving that the imager geometry can successfully bring down the 

maximum exposure seen by the straws to manageable levels.  

The exposures at the detectors are not uniform because of the varying amount of stainless 

steel between the source and the detectors as you go around. The effective thickness seen by 

each detector varies as a function of detector position. Figure 56 shows the exposure seen at 

each of the 100 detectors going around starting at detector 1 (corresponding to the first slit 

that lies almost horizontal and tangential to the fuel assembly cavity) and ending with 

detector 100. There are two peaks in the plot corresponding to the parts of the collimator that 

has the lowest stainless-steel effective density due to the high number of slits that cut in at 

those positions. As a result, detector number 20 sees the highest average exposure of ~295 

R/hr. 

 

 

 

Figure 55. Map of gamma exposures [R/hr] seen at all the detector straws for a collimator with 10 cm 
stainless steel, 30 cm borated polyethylene, and 3 mm parallel slits with a 40 GWd/MTU burnup fuel with 1-
year cooling time as the source term [34]. 
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Figure 56. Exposure rate [R/hr] at each detector for an imager with 10 cm stainless steel, 30 cm of borated 
polyethylene, and 3 mm parallel slits [34].  

 

 

The exposures seen at detector 20 for the same collimator thickness as before and varying 

only the slit widths (both parallel and tapered) are shown in Figure 57. Parallel slits going 

from 0.5 mm to 5 mm in increments of 0.5 mm, and tapered slit cases with inner slit widths 

from 2 mm to 4.5 mm increasing in increments of 0.5 mm with an outer slit width of 5 mm. 

With the parallel slits, the exposure increases significantly faster than it otherwise would 

with tapering the slits because increasing slit width means more radiation can stream down 

the slits, lowering the average collimator density.  

According to PTI’s initial findings, the detectors (a set of 23) should be able to perform in 

radiation fields up to 1000 R/hr. In order to narrow down the geometries being considered, 

the collimator geometries with maximum exposures higher than 1000 R/hr can be eliminated. 

However, due to the reasons presented in Chapter 4 about the gamma ray sensitivity 

measurements of the detector prototype, the maximum exposure tolerable by any of the 

detectors should be 500 R/hr. Figure 58 shows the maximum exposures for all the cases 

simulated as a function of stainless steel open fraction. By setting a limit at 500 R/hr (red 

line), 134 geometries can be eliminated from consideration due to unmanageable exposures. 

This means that the neutron response will have to be used to calculate the signal to noise 

ratio for 366 cases. 
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Figure 57. The exposure [R/hr] at Detector #20 which had the maximum exposure as a function of slit width 
for 10 cm stainless steel and 30 cm borated polyethylene [34]. 
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Figure 58. Maximum exposure rates for all 512 geometries modeled as a function of the stainless-steel open 
fraction. The red line shows the geometries that fall above and below the 500 R/hr limit for maximum 
exposure tolerable by the detectors. 

 

 

Figure 59 shows the maximum exposure for all geometries plotted against the corresponding 

borated polyethylene or stainless-steel open fraction. This shows that the exposure is affected 

by the borated polyethylene but is more affected by the open fraction in the stainless steel 

(blue) as opposed to the borated polyethylene and is split into clear bands for each thickness. 

The role of the borated polyethylene is to modulate the neutrons but as can be seen doesn’t 

do too much to reduce the exposure. The wider the slits, the more gamma-rays the detectors 

are exposed to, but as will be discussed in the following sections, wider slits and smaller 

collimators increase efficiency. For this reason, the best design will be dependent on the 

maximum exposures seen at the detectors, rather than just on the efficiency maximization. 

From the gamma simulations performed, the tapered slits for all the 16 cases investigated are 

successful at limiting the exposures, without hurting the neutron efficiency.  
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Figure 59. Maximum exposure rate for all 512 geometries being considered plotted as a function of the open 
fractions of the collimator components. The data in the red is the maximum exposure plotted as a function of 
the borated polyethylene open fraction, and in blue against the stainless-steel open fraction. 

 

 

5.3.  Constant Exposure Contour 

The ideal imager physics design is bound to vary depending on the type of fuel being 

measured and the cooling time. The second goal of the gamma-ray based simulations was to 

understand how exposures at the detectors are expected to scale with imager parameter 

changes and to develop a way to relate a prescribed maximum exposure to required imager 

geometry. In order to do this, a stainless-steel close fraction and borated polyethylene close 

fraction was calculated using MCNP for each of the 512 geometries. Since the collimator 

geometry is not made up of symmetric cells, MCNP was not able to calculate the cell volume 

as it usually does. 1,024 simulations were conducted in MCNP to calculate the closed fraction 

of each geometry. Two sets of 512 simulations were conducted, both tallying the surface 

current using the F1 tally on the top collimator surface using a disk source pointing 

downwards in the negative Z direction. For one set of simulations, only the neutrons going 

through the borated polyethylene were tallied, and for the second set, only the neutrons going 



 

89 
 

through the stainless-steel portion were tallied. The gamma exposures and the calculated 

close fractions will be used to develop an equation to predict what combinations of geometry 

parameters result in a desired gamma exposure at the detectors. The areal density for both 

steel and borated poly is given by Equation ( 5 ). 

9:H>:2_qq = 	9C4>>21C4>>2rSC4>>2 

9:H>:2_st = 	9st1strSst 

9:H>:2_4A4 = 	9:H>:2_qq +	9:H>:2_st 

( 5 ) 

In the equations shown above, 9C4>>2 is 8 g/cm3 and 9st is 1.05 g/cm3, 1C4>>2 and 1st are the 

thicknesses of the stainless-steel and borated polyethylene components of the collimator 

respectively in centimeters, and rSC4>>2 and rSst are the closed fractions of the stainless-

steel and borated polyethylene respectively. The simulated mean gamma-ray exposure per 

centimeter of stainless steel was plotted against the collimator areal density for all 

configurations and is shown in Figure 60. 

Referring to Figure 60, the relationship given by the equation in red was used to formulate 

an equation that would help find an acceptable set of configurations given a desired mean 

exposure. In order to develop this relationship, the set of configurations with a total 

collimator thickness of 45 cm and parallel slits was used for simplicity since that was the 

thickness with the most data (45 of the 512 cases). The data for all the parallel slit cases with 

total collimator thickness of 45 cm is in Table 7.  
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Figure 60. The mean gamma-ray exposure per centimeter as a function of the total collimator areal density 
[63]. 
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Table 7. MCNP calculated closed fractions and mean exposures for all 45 of the parallel slit cases with total collimator thickness of 45 cm. 

Inner Slit Width 
(mm) 

Outer Slit 
Width (mm) 

Steel 
Thickness (cm) 

Borated Poly 
Thickness (cm) 

SS Closed 
Fraction 

BP Closed 
Fraction 

Total Areal Density 
(g/cm2) 

Exposure 
[R/hr] 

1 1 5 40 0.905 0.961 76.564 257.311 
1.5 1.5 5 40 0.857 0.942 73.830 303.862 
2 2 5 40 0.810 0.922 71.146 363.265 

2.5 2.5 5 40 0.764 0.903 68.467 435.623 
3 3 5 40 0.717 0.884 65.790 519.299 

3.5 3.5 5 40 0.671 0.864 63.154 618.693 
4 4 5 40 0.626 0.845 60.516 735.106 

4.5 4.5 5 40 0.582 0.825 57.966 869.636 
5 5 5 40 0.540 0.806 55.454 1032.495 
1 1 6 39 0.908 0.962 82.974 193.845 

1.5 1.5 6 39 0.862 0.943 79.994 233.377 
2 2 6 39 0.817 0.923 77.026 282.232 

2.5 2.5 6 39 0.772 0.904 74.068 341.204 
3 3 6 39 0.726 0.885 71.117 413.543 

3.5 3.5 6 39 0.682 0.866 68.209 498.659 
4 4 6 39 0.638 0.847 65.297 602.456 

4.5 4.5 6 39 0.595 0.828 62.463 723.904 
5 5 6 39 0.553 0.809 59.660 864.177 
1 1 7 38 0.911 0.962 89.429 148.437 

1.5 1.5 7 38 0.867 0.943 86.186 180.692 
2 2 7 38 0.823 0.924 82.966 219.128 

2.5 2.5 7 38 0.779 0.906 79.742 269.353 
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Table 7. Continued. 
Inner Slit Width 

(mm) 
Outer Slit 

Width (mm) 
Steel 

Thickness (cm) 
Borated Poly 

Thickness (cm) 
SS Closed 
Fraction 

BP Closed 
Fraction 

Total Areal Density 
(g/cm2) 

Exposure 
[R/hr] 

3 3 7 38 0.735 0.887 76.538 330.319 
3.5 3.5 7 38 0.692 0.868 73.379 402.728 
4 4 7 38 0.649 0.849 70.229 493.209 

4.5 4.5 7 38 0.607 0.830 67.139 597.969 
5 5 7 38 0.566 0.811 64.089 725.541 
1 1 8 37 0.914 0.963 95.882 116.173 

1.5 1.5 8 37 0.870 0.944 92.388 140.733 
2 2 8 37 0.828 0.925 88.936 173.926 

2.5 2.5 8 37 0.785 0.907 85.489 213.550 
3 3 8 37 0.743 0.888 82.032 265.121 

3.5 3.5 8 37 0.701 0.870 78.630 329.854 
4 4 8 37 0.659 0.851 75.257 406.898 

4.5 4.5 8 37 0.619 0.832 71.947 497.101 
5 5 8 37 0.579 0.814 68.654 607.907 
1 1 10 35 0.919 0.964 108.926 77.841 

1.5 1.5 10 35 0.878 0.945 105.010 94.217 
2 2 10 35 0.838 0.927 101.126 116.302 

2.5 2.5 10 35 0.798 0.909 97.246 144.014 
3 3 10 35 0.758 0.891 93.371 179.713 

3.5 3.5 10 35 0.718 0.873 89.538 225.759 
4 4 10 35 0.679 0.855 85.708 281.395 

4.5 4.5 10 35 0.640 0.836 81.950 346.976 
5 5 10 35 0.602 0.818 78.209 429.481 
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Looking at the equation relating exposure per cm to the total areal density in Figure 60, the 

equation ! = 5354.9()*.*+,	. can be rewritten as ! = /()0	.. Picking two points along the 

curve, the respective equations can be written as: 

!, = /()0	.1 

!2 = /()0	.3 

( 6 ) 

Rearranged, the areal density of the two points can be represented by: 

4, = 	
−1
7 89 :

!,
/ ; 

42 = 	
−1
7 89 :

!2
/ ; 

( 7 ) 

The difference in 4 moving along the curve is given by: 

42 −	4, = 	
−1
7 89 :

!2
/ ; +	

1
7 89 :

!,
/ ; 

 

42 −	4, = 	
89 =!,!2

>

7  

( 8 ) 

The closed fraction (?@) can be re-written in terms of the open fraction (A@) as: 

?@ = 1 − A@ 

( 9 ) 

The total areal density for point (4,, !,) can be rewritten as: 

EFGHFI_KLK_, = 	EMKHHINMKHHI_,O1 − A@MKHHI_,P +	EQRNQR__,(1 − A@QR__,) 

( 10 ) 

To find the total areal density at the second point along the curve corresponding to (42, !2), 

the difference between the two 4 terms shown in ( 8 ) needs to be added to Equation ( 10 ). 

Doing so, gives Equation ( 11 ) below. 
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EFGHFI_KLK_, 	+ 	
89 =N,_SKHHIN2_SKHHI

>

7 = 	EMKHHINMKHHI_,O1 − A@MKHHI_,P +	EQRNQR__,(1 − A@QR__,) 

( 11 ) 

The equation is not entirely accurate in its current form, because the open fraction needs to 

be scaled going from one thickness of stainless steel to another by a constant value to account 

for the change in collimator slit width required to maintain the mean exposure at a particular 

value. A value ‘T’ can be calculated to represent the factor by which the slit width needs to 

change. The constant T incorporating it into Equation ( 11 ) gives: 

EFGHFI_KLK_, 	+ 	
89 =N,_SKHHIN2_SKHHI

>

7
= 	EMKHHINMKHHI_,O1 −T	A@MKHHI_,P +	EQRNQR__,(1 −T	A@QR__,) 

 

EFGHFI_KLK_, 	+ 	
89 =N,_SKHHIN2_SKHHI

>

7
= 	EMKHHINMKHHI_2 +	EQRNQR__2
−TOEMKHHINMKHHI_2	A@MKHHI_, + EQRNQR__2A@QR__,	P 

( 12 ) 

Solving for T gives Equation ( 13 ): 

U =	
EFGHFI_KLK_, +

89 =N,_SKHHIN2_SKHHI
>

7 −	EMKHHINMKHHI_2 +	EQRNQR__2	
−EMKHHINMKHHI3	A@MKHHI1 − EQRNQR__2A@QR__,

 

( 13 ) 

Using the data from Table 7 and the first case of 1 mm parallel slits, 5 cm stainless steel and 

40 cm of borated polyethylene as the reference, it is possible to demonstrate the ability to 

predict the total required areal density, and the slit width change for a given change in 

stainless steel thickness to maintain the exposure at 257.311 R/hr. The goal here is to show 

how much the slit width would need to be changed if the amount of stainless steel were to 

increase from N,_SKHHI equal to 5 cm to N2_SKHHI equal to 6, 7, 8, and 10 cm to maintain the 
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mean exposure at 257.311 R/hr. Corresponding T values for increasing the stainless-steel 

thickness from 5 cm to the various values using Equation ( 13 ) were calculated and are 

shown in Table 8. Since the base case used 1 mm parallel slits and the T value calculated 

for 5 cm of stainless steel is 1 means that the T value for larger thicknesses can be interpreted 

to mean the amount by which a 1 mm slit width needs to be scaled by for each of the larger 

thicknesses to maintain the same exposure.  

Assuming the T values are equivalent to scaling a 1 mm slit width, the above table can be 

interpreted as meaning that in order to maintain the exposure at 257.311 R/hr, increasing the 

amount of stainless steel from 5 cm to 6 cm means that the slit width can be increased from 

1 mm to 1.53 cm. The MCNP calculated total areal densities for the corresponding slit values 

can be read from Table 7. Note that the slit values simulated go up from 1 mm in increments 

of 0.5 mm, so exact areal values pertaining to slit widths of 1.53 mm, 2.01 mm, 2.45 mm, or 

3.19 mm will have to be interpolated or can be assumed to be comparable to the areal density 

values to the closest 0.5mm increment in slit width (i.e. T = 1.53 is comparable to a slit 

width of 1.5 mm, T = 2.01 to 2 mm, and T =2.45 to 2.5 mm.) For T = 3.19, the total areal 

density was estimated by plotting the areal density data from Table 7 for 10 cm stainless-

steel and 35 cm borated polyethylene and fitting a line to it as shown in Figure 61. The fit 

equation was then used to calculate the MCNP-estimated total areal density at a slit width of 

3.19 mm. Table 9 shows the areal density values from MCNP (calculated and interpolated) 

and the total areal density values calculated using Equation ( 12 ). 

The calculated values do not line up completely with the MCNP areal density values and are 

increasingly underpredicted as the steel thickness increases. This is because although the T 

value accounts for the amount by which the slit width needs to be increased, it does not account for 

the change in the open fraction as the radius of the stainless-steel increases and the radius of the 

borated polyethylene decreases. Hence, the steel open fraction and the borated polyethylene open 

fractions need to be scaled by two different scaling factors as a function of the different radii shown 

in Figure 63. 
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Table 8. Calculated m values using Equation 13 for a starting thickness of 5 cm stainless steel and increasing. 

Stainless-steel Thickness 
(cm) V 

5 1.00 
6 1.53 
7 2.01 
8 2.45 
10 3.19 

 

 

 

Figure 61. Total areal densities for various stainless-steel thicknesses as a function of slit width while 
maintaining a total collimator thickness of 45 cm. 

 

 

Table 9. MCNP predicted and calculated total areal densities for various stainless steel and borated 
polyethylene combinations to maintain a given exposure. 

Stainless-steel 
Thickness (cm) 

Borated Poly 
Thickness (cm) V MCNP total Areal 

Density [g/cm2] 

Areal Density 
calculated using V 

[g/cm2] 
5 40 1.00 76.56 - 
6 39 1.53 79.99 79.55 
7 38 2.01 82.97 82.08 
8 37 2.45 85.91 84.27 
10 35 3.19 92.00 87.93 
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Figure 62. Total collimator areal density as a function of steel thickness to maintain the same exposure. The 
red curve shows what the MCNP calculated areal density values should be, and the blue curve shows the areal 
density values calculated using the equation derived and the T value.  

 

 

 

Figure 63. Diagram showing the radius values used to correct for the change in open fraction as the stainless 
steel (grey) and borated polyethylene (blue) radii change. 
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In the diagram, r0 stays constant at 17.6777 cm, r1 is the original stainless-steel thickness 

(using the example above, r0 + r1 = 5 cm + 17.6777 cm = 22.6777 cm), Dr is the change in 

radius of the stainless-steel component as the steel thickness is increased, and rtot is the total 

collimator thickness, which is 45 cm in this example. The open fraction needs to be corrected 

for the change in radius by: 

	A@MKHHI3 =
A8W	XY9Z[\]^_`[Y9	a8[`	_^(_	 × U × a`((8	aX_8[9\	Z_X`Y^

A8W	XY9Z[\]^_`[Y9	`Y`_8	_^(_	 × 9(c	`Y`_8	_^(_
Y8W	`Y`_8	_^(_

 

	A@MKHHI3 = 	A@MKHHI1	U	ddd = 	 	A@MKHHI1	U	
(^1 − ^0 + ∆^) (^1 − ^0)⁄

hi(^1 + ∆^)2 − ^02k
hi^12 − ^02k

 

dSS = 	
( ,̂ − *̂ + ∆^)( ,̂

2 − *̂
2)

[( ,̂ + ∆^)2	 − *̂
2]( ,̂ − *̂)

 

( 14 ) 

Likewise, to scale the borated polyethylene open fraction to account for the change in radius, 

the final borated polyethylene open fraction is scaled by U and a ratio of the areas similar to 

Equation ( 14 ) and can be written as: 

	A@QR3 = 	A@QR1	U	dQR = 	A@QR1	U	
( K̂LK − ,̂ − ∆^) ( K̂LK − ,̂)⁄

h[ K̂LK2 −	 ( ,̂ + ∆^)2]
h[ K̂LK2 − ,̂

2]

 

 

dQR = 	
( K̂LK − ,̂ − ∆^)( K̂LK

2 − ,̂
2)

( K̂LK − ,̂)[ K̂LK2 − ( ,̂ + ∆^)2
 

( 15 ) 

The final equation to calculate the areal density using all three correction factors and knowing 

the initial can be written as: 

?_8X]8_`(W	/^(_8	n(9a[`! = 	ESSNSSO1 − 	A@MKHHI1UdSSP + EQRNQRO1 − 	A@QR1UdQRP 

( 16 ) 

The calculated areal densities are shown below in Table 10 and Figure 64. Compared to 

Figure 62 the calculation predicted areal density values are closer to the MCNP calculated 

values. This proves that Equation ( 16 ) can be used to successfully predict the required areal 
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densities for a given thickness of stainless-steel to maintain a given mean exposure. The 

mean exposure is affected by both the stainless-steel and borated polyethylene open fractions 

as well as the slit width. Using the various parameters, a method to identify configurations 

that are acceptable and can satisfy a mean exposure was identified and demonstrated in this 

chapter. If a facility with a known fuel type and cooling time needs to optimize the imager 

design, this method can be used to identify the set of acceptable configurations.  

Looking at the U value, and how it scales as a function of the steel thickness gives a good 

idea of how the slit width changes for a given increase in steel thickness to maintain a 

constant exposure. Figure 65 shows the calculated U values plotted against the steel 

thickness to maintain the exposure at 257.311 R/hr. As the steel thickness in the collimator 

increases, the slit width can also be increased. To increase the slit width by about 1 mm, 2 

cm more of steel need to be added to the collimator configuration to maintain the exposure. 

This type of analysis can be applied to other configurations if a different exposure contour is 

to be calculated. 

 

 

Table 10. MCNP predicted and calculated total areal densities using all corrections for various stainless steel 
and borated polyethylene combinations to maintain a given exposure. 

Stainless-steel 
Thickness (cm) 

Borated Poly 
Thickness (cm) V MCNP total Areal 

Density [g/cm2] 

Areal Density calculated 
using all correction 

factors [g/cm2] 
5 40 1.00 76.56 - 
6 39 1.53 79.99 79.75 
7 38 2.01 82.97 82.66 
8 37 2.45 85.91 85.42 
10 35 3.19 92.00 90.84 
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Figure 64. The total collimator areal density calculated using all correction factors as a function of steel 
thickness to maintain the exposure at 257.31 R/hr. The MCNP areal density values are in red, and the blue 
curve shows the areal density values calculated using all correction factors. 

 

 

 
Figure 65. Calculated U values for the various steel thicknesses that maintain the exposure at 257.311 R/hr. 
The U is reflective of the required collimator slit width at a given steel thickness. 
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6. SIMULATION DESIGN STUDY: NEUTRON RESPONSE 

To identify the best compromise between efficiency, resolution, and gamma exposure 

management to build a practically sized imager, neutron response simulations in addition to 

the gamma exposure simulations were conducted. Since the collimator creates a complicated 

neutron response that is hard to predict, the first set of simulations used a single 244Cm line 

source to understand what the expected point spread function looks like and how it would 

change for the various imager geometries being considered. This chapter will focus on the 

various simulations conducted with neutron sources in order to understand the various factors 

and responses that need to be accounted for in the image reconstruction software. In addition, 

the “ideal” final geometry will be identified using an SNR calculation. The various 

components impacting the resolution of the imager are the collimator slit widths, the slit bore 

scattering, collimator penetration, and the scattering between detectors. These effects can be 

seen in the point spread function in the spread of the signal peak, which in an ideal situation 

would be a delta function. The detector response to each of these effects are discussed in this 

chapter. 

6.1.  Neutron Response 

The neutron response simulations were conducted to calculate the expected response and 

performance of the imager components and the ability of the imager to detect a single missing 

fuel pin within a fuel assembly. Ideally, a full tomography simulation would be conducted 

for each of the 512 geometries considered, and an SNR would have to be calculated for each 

image that has been reconstructed. However, this would involve computation and time 

resources that are not feasible or practical. As a result, an SNR was defined using an 

approximate imager response using fewer simulations that consisted of simulations looking 

at individual response components. These components included the inter-detector scattering, 

the direct (centerline) response to a source, response when the source is located close to the 

slit edge, and collimator penetration response. The goal in this section is to gather the 

necessary neutron responses that would be able to generate the ideal correction factors to be 

incorporated into the reconstruction code. The neutron response of concern in this project is 

only the absorption reaction of neutrons in the boron carbide layer within each straw. The 
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idea is that the fast neutrons from the source (244Cm) would traverse down the collimator 

slits. The borated polyethylene portion of the collimator will help modulate the neutron 

response so the lower energy neutrons do not reach the detectors, and primarily fast neutrons 

traversing down each slit will reach the detectors. The fast neutrons then will be thermalized 

within the high-density polyethylene matrix that the 23 straws are embedded in, after which 

they will be detected by the thermal neutron detectors via neutron absorption reaction. Figure 

66 shows a plot of the neutron cross sections in the detector’s boron carbide layer enriched 

to 96% in 10B. The blue curve shows the total cross section, and the red shows the absorption 

cross section for neutrons. At thermal neutron energies (2.5E-8 MeV), the absorption cross 

section is about 2969 barns (b), which is significantly higher than the neutron absorption 

cross section of the other detector materials. 

 

 

 

Figure 66. Total neutron cross section and the absorption cross section for neutrons in boron carbide [64].  
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The approximated neutron response from the tallied absorption reactions will form the basis 

of the SNR calculation and the optimal design’s response will be used as the forward 

projection data in the iterative reconstruction code to generate the final image map. All of 

the neutron response simulations were conducted using MCNP6. In order to tally the neutron 

absorption in the straws, the F4 tally function was used. The F4 neutron tally by itself is a 

track-length estimate of the average cell flux. If a particle of weight o makes a track of 

length N (cm) within a specified cell of volume p (cm3), the contribution to the flux in the 

cell is given by Equation ( 17 ) below [64]. 

o
N
p 

( 17 ) 

The sum of these contributions is reported as the F4 tally in the MCNP output. The units of 

the F4 tally outputs are in particles per centimeter squared. Since the quantity of interest is 

the reaction rate of neutrons captured on boron carbide, a tally multiplier was used to convert 

the F4 tally to a reaction rate as shown below. 

F14:n 12(12<902<21<201) 

Fm14 -1 6 -2 

The first line of the two in the tally example above specifies which detector cell and within 

which lattice universe to tally the neutrons in. The second line is the tally multiplier for F14. 

The ‘-1’ instructs MCNP to use the atomic density of the material number specified by the 

next term, which is ‘6’ (corresponds to the definition for boron carbide), and the ‘-2’ tells 

MCNP to tally using the corresponding neutron capture cross section [64]. The final units of 

the tallied quantity is the reaction rate per number of source particles (nps), and is shown in 

Equation ( 18 ). 

neutron	capture	reactions	per	nps	 = 	@4	|}F~Mp 

( 18 ) 
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where | is the number density of boron carbide : FKL�M
~FGÄ	Å�Ç;, }F~M is the absorption cross 

section of the boron carbide in barns, and p is the volume of boron carbide a single detector 

straw in cubic centimeters. 

6.2.  Point Spread Function 

As introduced in Chapter 3, the point spread function (PSF) is used to characterize an 

imaging system and, more importantly, determines its spatial resolution. The PSF of an 

imaging system is the response of the system to a single point source, and the degree of 

spreading in the PSF is a measure of the resolution limitation of the imager. The PSF can be 

thought of as being made up of two portions, a “true” response in the center and a “scatter” 

response elsewhere and underlying the true response in the center. For the imager design 

being investigated, PSFs for all 512 geometries being considered were generated using a 
244Cm line source centered on detector 51 as shown in Figure 67. The detectors are numbered 

starting from 1 to 100 starting at the bottom collimator slit that sits tangential to the fuel 

assembly cavity and going around clockwise. 

To generate the PSF, the reaction rate for each neutron detector was tallied, as described 

earlier in this chapter, and plotted against the detector number. Since it is not computationally 

feasible to conduct 100,000 simulations for each of the 512 configurations to understand the 

detector response at the mm scale, a smaller set of simulations using a 244Cm line source 

were conducted in order to feed into understanding how the neutron counts scale and be 

extrapolated to a full response. To understand how the direct (peak) and collimator 

penetration (noise) scale as a function of the various parameters, simulations with a 244Cm 

line source at two locations along the centerline of slit 51 were conducted. Detector 51 was 

selected as the template because the slit pointing at this detector had the most direct view 

compared to the other slits that have the slits pointing at a different angle with respect to the 

detector. A response for how the neutron signal peaks as it passes down each slit will be 

applied and correct for the detector response for neutrons passing down each of the slits.  

Figure 68 is a diagram of the two source positions used in the two sets of simulations, both 

aligned to slit 51. The first source position selected along the slit 51 centerline is 14.30 cm 

from the slit opening (shown in red.) 
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Figure 67. Simulation set up showing location of the 244Cm line source aligned to the centerline of the slit 
opening to detector number 50. The detectors are numbered 1 to 100 starting at the bottom tangent slit (#1) 
going around clockwise to detector 100 [34].. 

 

 

This position closer to the origin was chosen to assess how the collimator penetration changes 

as a function of geometry since the PSF here has a clean baseline. A second source position 

(blue) was chosen to be closer to the slit opening (7.40 cm from the opening) so it would be 

1cm outside of the area overlapped by slits 50 and 51. This second source position is not in 

the direct line of sight of slit 50. This allows the source at this position to provide an estimate 

of the direct ‘down-slit’ component of the signal. The point spread function curves for the 

two source positions are shown in Figure 69 below. The reason for the two peaks around 

detectors 23 and 79 on the blue curve is because at that particular source position, those 

detectors have a field of view that overlaps with detector 51.  

To illustrate how different slits, have different views of the line source as it changes position, 

a single 244Cm line source was moved and simulated at 114 different equally spaced out 

positions along the slit 51 centerline from the slit opening all the way across the field of view. 

The detector response was calculated for the source at each of the positions, and an intensity 
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map was generated. To show clearly how the counts at each detector compare to the central 

detector 51, a ratio of the counts at detector 51 to each of the detectors was calculated and 

the resulting image is shown below in Figure 70. When the source is close to the slit opening 

along the centerline, three peaks as seen in the blue curve in Figure 69 appear, and as the 

source moves further down the centerline the detectors that have a field of view of the source 

change, and eventually the field of view converges to a single peak close to 14.30 cm from 

the slit opening.  

 

 

 

Figure 68. Diagram showing the areas overlapped by the fields of view of slits corresponding to detectors 50 
and 51. The two source positions along slit 51’s centerline used to generate the PSFs are also shown here 
relative to the origin (0,0), which is the center of the fuel cavity. The 244Cm was first placed in the position 
marked by the red dot to generate PSFs for background quantification and was placed in the position marked 
by the blue dot outside of the overlap region of the two slits for a second set of simulations to accurately 
quantify the signal [65]. 
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Figure 69. Point spread functions for a 244Cm line source at two different distances from the slit 51 opening 
using a collimator with 10 cm stainless steel and 30 cm borated poly and 3 mm wide parallel slits [65]. 
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Figure 70. Ratio of counts seen at detector 51 to all the other detectors for a line source moving down the 
centerline of slit 51 across the field of view. 

 

 

Using the point spread functions for the source placed in the non-overlap region (closer to 

the slit), the peak counts (only at detector 51) were extracted and plotted and are shown in 

Figure 71 and Figure 72 below. The peak counts do not increase in a constant manner as the 

slit width increases. This makes it harder to use this data set to predict how the direct 

component scales. To understand how the peak height or signal changes as a function of the 

slit width, the slit 51 count data was plotted against the open fraction of the borated 

polyethylene component of the collimator for all 512 cases. Since the borated polyethylene 

component of the collimator contributes most to the neutron moderation, the neutron count 

rates seen at the detectors are expected to change primarily as a function of the open fraction 

of borated polyethylene. Figure 72 shows the absorption rate at detector 51 when the source 

is placed in location 2 (the non-overlap region) as a function of the borated poly open 
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fraction. The signal component has a mostly quadratic relationship with respect to the borated 

poly open fraction. It was later found that the source position used to conduct this was not 

far enough away from the neighboring slits as the slit width increased, thus the amount of 

leakage into the neighboring slits was an issue, contributing to the non-constant count rate 

increase. To fix this, a set of simulations with a single slit were conducted in order to better 

understand the direct contribution. 

 

 

 
Figure 71. Detector 51 response to a 244Cm line source placed in the non-overlap region (source position 2). 
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Figure 72. Signal at detector 51 for all 512 cases as a function of the borated polyethylene open fraction. 

 

 

6.3. Inter-Detector Scatter 

One of the biggest factors limiting the resolution of the imager is the inter-detector scatter of 

neutrons traveling down a particular slit. Inter-detector scattering occurs when neutrons go 

down one slit and then scatter from the intended detector at the end of the slit into another 

neighboring detector before being detected. This results in the imager having lower spatial 

resolution because a fraction of detected neutrons associated with a particular collimated path 

are wrongly attributed to a nearby path. To understand the amount of inter-detector scattering 

to expect in the system, a simulation with a simple geometry consisting of 11 detectors for 

simplicity sake with a single slit pointing to the center detector was performed by pointing a 
244Cm beam into the center detector as shown in Figure 73. In this figure, all of the neutron 

interactions (collision and absorption) with the collimator/detector materials are shown in 

order to show how far the neutrons aimed at the central detector traverse. This proved that 

no more than 11 detectors need to be simulated in order to identify the full width half 

maximum of the inter-detector scatter spread.  
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Figure 73. All interactions (collision and absorption) of neutrons in the imaging system originating from a 
beam of 244Cm neutrons shot at the central detector. The red points show where the maximum probability of 
interaction is, and the blue shows areas with lower interaction probabilities [34]. 

 

 

Figure 74 shows a visual representation of only the neutrons absorbed by the boron carbide 

in each of the detector straws. This fraction represents those that will be detected by the 

proposed detector system. The image below and above both show a significant amount of 

the neutrons entering the center detector are scattered into the adjacent detectors and are 

subsequently absorbed. The detectors immediately next to the center detector see ~66% of 

the counts the center detector sees, and the counts seen at the detectors one removed from 

the center goes down to ~23%. The spread across detectors observed will directly affect the 

spatial resolution. The desired spatial resolution should be on the order of 1 cm to be able to 

identify individual pins. The resolution achieved with this simulation is also on the order of 

1 cm assuming the spatial spread is equal to the FWHM of the spread multiplied by the slit 

spacing. The FWHM is about 3 detectors, and the slit spacing is 0.3cm. Geometries that can 

achieve this level of resolution will be good enough to identify the gaps between individual 

pins. The amount of expected inter-detector will limit the SNR and will be accounted for in 

the reconstruction code. 
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Figure 74. Visual representation of neutron absorption reactions seen in each straw (in the boron carbide 
layer) when a beam of 244Cm neutrons is shot to the center detector only. The bottom plot shows the average 
relative counts of boron captures (per 106 source particles) [34] [63].  
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Ideally, a given detector in the imager would be sensitive only to neutrons along the path that 

the corresponding collimator slit sees. However, when accounting for the inter-detector 

scatter from neighboring detectors, a given detector is sensitive to neutrons along the 

neighboring detectors’ paths to some degree as specified by Figure 74. An example image 

showing what the detector response actually looks like when accounting for inter-detector 

scatter is shown in Figure 75. The image shows what the detector 50 response looks like 

when accounting for inter-detector scatter to each point in the inspection area (counts/source 

neutron) for an imager with 3 mm slits.  

 

 

 

Figure 75. Detector 50 response in counts per source particle to each point in inspection area for an imager 
with 3 mm slits  [65].  
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6.4. “Direct” and “Edge” Effects on Neutron Counts 

Since the collimator geometry is more complicated than a standard parallel slit collimator, to 

understand the individual contributions to the neutron response such as the response at the 

edge of a slit, the signal peak, and collimator penetration over the field of view, a simplified 

geometry was used. The entire imager geometry was assumed to have a single slit (pointing 

at detector 51). To see how the response changes across the field of view, a single 244Cm line 

source was moved perpendicular to the slit 51 centerline at three different distances from the 

slit opening (5.04 cm, 10.08 cm, and 20.16 cm). The collimator thickness used for this set of 

simulations was 5 cm of steel and 45 cm of borated polyethylene. The response with various 

parallel slit widths was investigated for only the source-slit distance of 10.08 cm. The goal 

from this simulation study was to understand the single slit response and apply it to multiple 

slits in the reconstruction code as a sum of responses to individual slits. 

Figure 76 shows a diagram of the single slit geometry and the various source positions 

simulated are shown as points (red, black, and blue) in the center annulus. The line in black 

corresponds to the chord 10.08 cm away from the slit 51 opening and the positions when the 

line source was moved along the chord. The source was placed in 118 different positions 

going from -150 mm to +155 mm with respect to the distance from the slit 51 centerline. 

From distances going from -35 mm to +35 mm, the source was moved in 1 mm increments, 

beyond which the source was moved in 5mm increments along the chord. For the 118 source 

positions along the 10.08 cm away chord, the response to various slit widths was simulated 

as well. These included 0, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 mm. The red line in the Figure 

76 corresponds to the perpendicular chord 5.04 cm away. A total of 240 source positions 

extending from -118 mm to +120 mm from centerline were simulated at this distance with 

the source being moved in 0.5 mm increments between -40 mm and +40 mm, beyond which 

the source was moved in 2 mm increments. Each of the 240 source positions along this chord 

were simulated with slit widths of 0 mm and 5 mm. Finally, the blue line shows the source 

moving along the perpendicular chord that is 20.16 cm away from the slit opening. At this 

distance 285 source positions were simulated. Similar to the 5.04 cm chord, the source was 

moved in 0.5 mm increments between -40 mm and +40 mm relative to the slit 51 centerline, 
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and was then moved in 2 mm increments extending to -162 mm and +166 mm. Each of the 

source positions along this line were also simulated with 0 mm and 5 mm slit widths.  

 

 

 

Figure 76. Single slit geometry pointing at Detector 51 (highlighted in pink) used to simulate a line source at 
3 different distances moving perpendicular to the slit 51 centerline  [65]. 
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Figure 77 shows the detector response for the different source positions along the 10.08 cm 

chord for the 9 different slit widths. As the slit width increases, so does the intensity of the 

detector response. The “peak” signal at distance from centerline equal to 0 can be plotted 

from this data set to show how the signal component in a point spread function would actually 

change as a function of the slit width. To understand how the central peak counts behave as 

a function of slit width, the net central counts – the difference between the peak counts 

(source at centerline) and “noise” (source location furthest from centerline) – was plotted as 

a function of slit width. The response is pretty linear for the peak signal. Figure 78 shows the 

net peak counts as a function of slit width when the source is located directly on the centerline 

of detector 51. Unlike the trend seen in Figure 71, here the peak counts scale linearly as the 

slit width increases. This is the correct predicted response since this geometry had only one 

slit and the probability of leakage into the neighboring slits was eliminated. The fact that the 

counts scale linearly at the center mean that the direct peak component is proportional to the 

solid angle of the detector for a given slit width. 

The collimator penetration is the second aspect that needs to be understood. This part is 

everything beyond either side of the peaks seen in Figure 77. The collimator penetration 

plotted against the source position relative to the slit centerline is shown in Figure 79. The 

collimator penetration has an overall quadratic relationship, and the fits are shown in the plot 

below as well. In addition to understanding how the direct component changes as a function 

of the slit width, these simulations with the single slit were used to understand the amount of 

“leakage” into the neighboring detectors to expect for a source at various positions in the 

sample cavity when the source is close to the edge of a slit and the probability of neutrons 

leaking into a neighboring slit need to be quantified in order to be able to account for it in 

the reconstruction. In order to illustrate the data from the three distances on the same scale, 

a projected width (oÉ) was calculated. The projected width is illustrated in the image below 

and is the edge of the slit seen by the opposite end of the detector at a given distance. As the 

source gets further away from the detector, the projected width gets larger. The calculated 

oÉ values for each of the chords and slit widths are shown in Table 11.  
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Figure 77. Detector 51 response for various source positions along the 10.08 cm away chord for the different 
slit widths investigated. 

 

 

 
Figure 78. Plot of the peak counts registered at Detector 51 with the single slit geometry when the source is 
located on the slit 51 centerline 10.08 cm away for various parallel slit widths. 
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Table 11. Calculated oÑ values for the different distances and slit widths simulated 

Chord Perpendicular 
Distance from Slit 51 

Opening 
(mm) 

Slit Width 
(mm) 

Collimator 
Thickness  

(mm) 

ÖÜ  
(mm) 

100.8 1 500 0.2016 
100.8 1.5 500 0.3024 
100.8 2 500 0.4032 
100.8 2.5 500 0.504 
100.8 3 500 0.6048 
100.8 3.5 500 0.7056 
100.8 4 500 0.8064 
100.8 4.5 500 0.9072 
100.8 5 500 1.008 
50.4 5 500 0.504 
201.6 5 500 2.016 

 

 

A scaled intensity of counts seen at Detector 51 was calculated for each source position for 

each of the three chord distances by subtracting a calculated collimator penetration value at 

each source position using the respective polynomial fit constants corresponding to Figure 

79 from the MCNP registered tally counts. The scaled intensity for each of the three chords 

were then normalized to their respective maximum values so that the source positions with 

direct line of sight to the detector had scaled intensities of 1. The scaled intensity for each of 

the chords is plotted against the source distance from the slit edge in units of oÉ, as shown 

in Figure 80. This way 4 = 	0 corresponds to the slit edge position for all three curves. This 

scaled relative intensity data as a function of the distance from slit edge in terms of oÉ is 

shown in Figure 81. For the 10.08 cm curve data for all 9 slit widths is also included and they 

all fall very close together as shown in black. 
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Figure 79. Collimator penetration components of the detector response for the 3 distances as a function of the 
source position relative to the slit centerline. 

 

 

Figure 80. Projected width (oÑ)  in the single slit geometry  [65]. 
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Figure 81. Scaled intensity calculated for all source positions at the three distances and plotted as a function 
of the source distance from the slit edge in terms of oÉ	[63] [65]. 

 

 

From the figure above, it can be seen that the response for all three curves is similar because 

when scaling the 4 to be in terms of oÉ, the detector’s view of the source for each of the 

three lines is similar. However, the lines do not completely overlap and the difference in 

source distance from slit opening has more of an effect than the slit width itself on the scaled 

intensity. This can be attributed to the fact that at the three different distances, the neutrons 

have varying amounts of collimator thickness to traverse due to the circular geometry, and 

at the shorter distance (5.04 cm), the neutron’s path length is shorter, which elevates the 

scaled intensity. The neutron leakage can be estimated using this plot. The source can be 

assumed to be completely out of sight of a neighboring slit once it is beyond 3oÉ from the 

respective slit’s edge. Between 0 and 3oÉ there is a non-negligible probability that the source 

is in the field of view of the slit. This intensity scaling once applied in the reconstruction 

code should be able to scale the response seen by each detector based on the source position 

and the relative distance to the corresponding slit edge.  
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6.5.  Collimator Penetration 

The collimator penetration are the components of the point spread function on either side of 

the peak as shown by the red curve in Figure 69. It is important to understand and be able to 

predict how the collimator penetration at every point and for every detector since the 

collimator is not homogenous dues to the slits cutting in at different angles and the collimator 

open and closed fractions do not stay constant as you go around the imager, thus the number 

of neutrons that pass through the collimator or down the slits varies around all 360°. The 

collimator penetration is a component of the noise, and it needs to be well characterized and 

understood so that it can be subtracted from the signal component accurately in order to 

improve the SNR and be able to reconstruct individual pins accurately. An additional source 

of noise in addition to the collimator penetration is the neutrons that scatter back into the 

detector from the surrounding borated polyethylene and stainless steel. The amount of 

backscatter into the detectors will differ for each of the seven different geometry radii 

because the neutrons reaching the detectors scale as 1/^, and there are two different fuel cask 

configurations considered to house the imager which had different thicknesses of borated 

polyethylene and stainless steel on the outside.  

The goal of this section is to predict the collimator penetration for the various geometries 

and parameters using the simulated dataset. The backscatter neutrons were found to be an 

issue after simulations looking at the detector response with no collimator at the seven 

different detector radii (40 cm, 42 cm, 43 cm, 45 cm, 50 cm, 53 cm, and 55 cm.) The point 

spread functions for a source located 14.30 cm from the slit 51 opening (same as source 

position 1) were computed using a single line source for the seven radii and are shown in 

Figure 82. The no collimator response is to be used in scaling the registered response with 

the collimator in place in order to correct for the 1/^ drop off. The point spread function for 

the 45 cm case does not lie between 43 and 50 as would be ideally expected with the 1/^ 

relationship. 
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Figure 82. Normalized point spread functions for the seven different detector radii with no collimator in 
place.  

 

 

The predicted 1/^ dropoff was calculated using the change in total radius (fuel assembly 

cavity + collimator thickness + air gap thickness + inner Cd layer) to the detector. The 

calculated 1/^ points are shown in black in Figure 83, and the MCNP calculated response at 

Detector 51 normalized is shown in red. The normalized data plotted against each of the 

seven collimator thicknesses confirms that the detector response for the 45 cm thick 

collimator is indeed higher than would be predicted, and unlike the other data points, does 

not sit on the 1/^ curve. As a result of this, a set of simulations looking at the direction of 

neutrons passing each surface was tallied to verify what effect was causing this.  

To verify that this was caused by the backscattered neutrons, seven more simulations were 

conducted with the source in the same position, but the F1 MCNP tally was used instead of 

the F4 to give the particle current through the surface. To be able to identify backscatter 

neutrons from neutrons escaping the imager, a cosine bin was used to separate the neutrons 

exiting the surface (moving away from the center) and entering the surface (moving towards 
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the center of the geometry). The F1 cosine bin tally was implemented on the outer Cd layer 

to see what fraction of neutrons entered back into the detector versus what fraction traveled 

out. Figure 84 shows the diagram of the imager geometry used to conduct the no collimator 

simulation and the F1 backscatter simulations. The issue with the back scattered neutrons is 

that they elevate the count rate but can also increase inter-detector scatter. This, it would be 

good to limit geometries to those with limited backscatter. Table 12 lists the outer borated 

polyethylene thicknesses simulated for each of the collimator thicknesses.  

Using the MCNP simulation F1 tally data and taking the ratio of the neutrons backscattered 

into the detectors to the neutrons leaving the detector and representing it as a function of the 

outer borated polyethylene layer thickness is shown in Figure 85.  

 

 

 

Figure 83. Normalized Detector 51 F4 response per source particle for each of the 7 collimator radii 
(corresponding to different collimator thicknesses). The black dots are calculated 1/^ and the red dots show 
the actual drop-off seen with the MCNP simulations.  
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Figure 84. Diagram of imager geometry without collimator used to conduct the backscatter and 1/r 
simulations. 

 

 

Table 12. List of the total collimator thicknesses and outer borated polyethylene thicknesses. 

Collimator Thickness 
(cm) 

Outer Borated Poly Layer 
Thickness 

(cm) 
40 5.822 
42 3.822 
43 2.822 
45 0.822 
50 6.912 
53 3.912 
55 1.912 

 

Stainless Steel

Borated Poly
Outer 
Cd Layer

Inner
Cd Layer

Detectors

244Cm Line Source
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Small thicknesses of borated polyethylene result in a larger amount of backscatter, and the 

relationship tapers off at a non-uniform rate as the thickness is increased. The normalized 

surface flux (going into the detector) is shown in Figure 86. The highest number of particles 

being reflected back into the detector correspond to the collimator thickness of 45 cm, which 

has the thinnest amount of borated polyethylene on the outside of the detectors (0.822 cm). 

The amount of backscatter can be reduced by 50% by increasing the amount of borated 

polyethylene on the outside to 5.822 cm.  

 

 

Figure 85. Ratio of the neutrons backscattered into the detector to the ones leaving the detector as a function 
of the thickness of the outer borated polyethylene. 

 

 



 

126 
 

 

Figure 86. Plot of the normalized particle flux on the surface showing the fraction of particles backscattered 
into the detectors for each of the seven different radii.  

 

 

6.5.1. Predicting Collimator Penetration 

 
The next step is to take the no collimator data, the no slit data, the open and closed fractions 

of the borated polyethylene, and the open and closed fractions of the stainless steel to try to 

predict the collimator penetration for a given configuration. In order to do this, the 512 point 

spread functions generated with the 244Cm line source located at the first source position 

(14.30 cm from the slit 51 opening) were used. The collimator penetration from the MCNP 

simulations was calculated for each configuration by assuming it was equivalent to the 

average count rate between detector 25 to 30 and 70 to 75 since the detector response in the 

PSF was the flattest in this range of detectors. Assuming for a given collimator total thickness 

NKLK, à, is the inner radius of the collimator, à2 is the outer radius of the collimator, and NSS 

is the stainless-steel thickness. The respective dimensions are shown in Figure 87 below. 
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Figure 87. Dimensions of the collimator components labeled. Steel is shown in grey and borated polyethylene 
is shown in green. 

 

 

For a solid shield (no slits), the transmission through the material scales as 

| =	|*()âä 

where ã is the material attenuation coefficient, and N is the material thickness. A first order 

prediction of how the collimator penetration, or transmission, scales through a collimator 

consisting of two materials with slits cut into it can be presented as: 

Transmission = 	
1
R2

e)èêë
íìîïñìó	êë
íòôöñï	êë

(õ3)õ)e)èúú
íìîïñìó	úú
íòôöñï	úú

(ùúú) 

( 19 ) 

where ρü†°¢ü£	§• is the density of the borated polyethylene component of the collimator with 

the slits cut in, ρ¶ß®¢°	§• is the density of the borated polyethylene component of the 

collimator assuming no slits were cut into the collimator and was a completely solid donut. 

Similarly, ρü†°¢ü£	©© is the density of the stainless-steel component of the collimator with slits 

cut into it, and ρ¶ß®¢°	©© is the density of the stainless-steel portion of the collimator with no 

slits cut into it.  Finally, µ§• and µ©© are the attenuation coefficients of borated polyethylene 

and stainless-steel respectively. The value for the borated polyethylene attenuation 
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coefficient was assumed to be 0.2 cm-1, and 0.02 cm-1 for stainless steel. The density ratios 

are proportional to the close fractions (F¨	) of the collimator components calculated using 

MCNP. Equation ( 19 ) can be re-written as an expression of the mean free paths 
ρü†°¢ü£	§•
ρ¶ß®¢°	§•

= 	F¨	§• 

 
ρü†°¢ü£	©©
ρ¶ß®¢°	©©

= 	 F¨	©© 

 

− log(R2 ∗ Transmission) = 	µ§•F¨	§•T§• + µ©©F¨	©©T©© 

( 20 ) 

The right side of the equation directly above gives the estimated mean free path, which can 

be compared to the MCNP-calculated mean free path. The MCNP-calculated mean free path 

is the actual thickness and can be calculated using the MCNP generated simulations by using 

the neutron response from the no collimator cases (N®ß	†ß££±≤ü°ß≥) for each case and the 

neutron response or transmission (|) for each geometry. The actual thickness, or 

transmission through the collimator is given by  

MCNP	Calculated	Transmission = 	 log ∏
N®ß	†ß££±≤ü°ß≥

N π = 	 log(Nõü°±ß) 

( 21 ) 

If the predicted mean free path equation shown on the right side of Equation ( 20 ) is an 

accurate prediction, the calculated transmission should be equivalent to the actual MCNP 

modeled transmission in Equation ( 21 ). The difference between the calculated value and 

the actual MCNP transmission is the error in mean free paths (	Δ) where  

	Δ = Calculated	Thickness − Actual	Thickness 

( 22 ) 

The error if the predicted equation is correct, should be constant and centered around 0 for 

all measured transmission values. Using Equation ( 20 ) and Equation ( 21 ), the error was 

calculated for all 512 geometries, and it is plotted against the actual transmission in Figure 

88. The 16 different data sets plotted are the different stainless-steel and borated polyethylene 

combinations. As the actual transmission increases, the error goes down. Additionally, the 
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error is not close to 0. This indicates that Equation ( 20 ) is missing some correction factors. 

The curves are also staggered, and the error seems to get higher (curves are displaced higher) 

the thicker the layer of borated polyethylene is. The orange curve has the lowest error values 

and corresponds to the 10 cm steel and 30 cm borated polyethylene case, and the curve that 

has the highest error values is the case with the largest amount of borated polyethylene with 

5 cm steel and 50 cm of borated polyethylene. The borated polyethylene content primarily 

influences the neutron transmission as a result, it would be expected that for all the cases, the 

ones with similar borated polyethylene open fractions would have similar transmission 

values. To visualize how the error changes relative to the polyethylene content it plotted 

against the borated polyethylene open fraction for each of the 512 cases shown in Figure 89. 

The lines are clustered closer together, but the error goes up as the open fraction goes up. 

This effect is due to the fact that the calculated thickness value does not account for streaming 

paths that are created in the slit or the effect of the stainless steel in attenuating the neutrons.  

The first step in trying to get closer in estimating the calculated transmission as accurately 

as possible to the actual transmission is to eliminate the dependence on the stainless-steel 

component of the collimator. If the stainless-steel had a negligible effect on the collimator, 

then the slopes of all the lines in Figure 89 would be approximately the same regardless of 

the steel thickness; however, that is not the case. Also, the lines with same borated 

polyethylene thickness and different steel thicknesses cross each other as the borated 

polyethylene open fraction increases. This can be seen in the 5 cm steel / 40 cm borated 

polyethylene and 10 cm steel / 40 cm borated polyethylene cases. This shows that the steel 

has an effect that needs to be accounted for in the calculated estimate of the effective 

thickness.  A correction factor for the stainless-steel component needs to be calculated in 

order to develop a more accurate estimate of the calculated transmission. Each of the 16 data 

sets has a linear slope, and the slope for each of the cases is listed in Table 13. 
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Figure 88. The error or the difference in mean free paths between the calculated transmission and the actual 
tranmission plotted against the actual transmission for all 512 geometries. 
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Figure 89. Error, or difference between the calculated and actual transmission plotted as a function of the 
borated polyethylene open fraction. 
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Table 13. To extract the stainless-steel correction factor, the slope of each line from the previous figure was 
extracted. The slopes of the lines with the same steel thicknesses are similar and are listed here.  

Case 
Stainless Steel 

Thickness 
(cm) 

Borated Polyethylene 
Thickness 

(cm) 
Slope 

1 5 35 4.044 
2 10 30 6.2451 
3 6 36 4.5048 
4 5 38 3.9039 
5 6 37 4.3692 
6 7 36 5.0243 
7 5 40 3.5386 
8 6 39 4.0312 
9 7 38 4.5164 
10 8 37 4.9246 
11 10 35 5.8792 
12 5 45 4.4985 
13 10 40 6.328 
14 5 48 3.9565 
15 5 50 4.2101 
16 10 45 5.9438 
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The slopes from Table 13 were plotted as a function of the stainless-steel thickness and the 

data was fit to a line to understand the effect of adding stainless steel. The data is shown in 

Figure 90, and the points with same steel thickness should have similar slope values, but will 

not be the same because each of the cases with the same steel thickness have different 

thicknesses of borated polyethylene on the outer layer, which would prevent the transmission 

responses from being the same. The data, however, does appear to lie along a line, and the 

slope from the fit equation could be used to develop a correction term to incorporate into the 

equation to calculate the transmission.   

The correction term to incorporate into the calculated thickness equation was estimated to be 

a function of the steel thickness, steel close fraction, and the corresponding open fraction of 

the borated polyethylene (Fæ	§•). The borated polyethylene open fraction is incorporated in 

this correction factor because it has to be scaled for two reasons– once for the steel 

component since the open fraction changes for each of the steel thicknesses, and once for 

streaming paths. Using the slope of the data in Figure 90 as a factor by which to scale these 

components results in the last term in the following equation 

Calculated	Thickness = 	µ§•F¨	§•T§• + µ©©F¨	©©T©© − 	0.414	Fæ	§•	T©©F¨	©©	 

( 23 ) 

Using this to calculate the effective thickness of the collimator and looking at the difference 

between the calculated values and the MCNP values shows that the different slopes seen in 

Figure 89 were corrected for the most part, and the lines with different steel thicknesses and 

same polyethylene thicknesses are close together and do not cross each other as the open 

fraction increases. This shows that the steel component correction developed in Equation ( 

23 ) was a decent approximation. The revised error values using Equation ( 23 ) is shown 

below in Figure 91. The values at borated polyethylene open fraction of 0 correspond to the 

cases with no slits.  
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Figure 90. To understand how the stainless-steel affects the neutron transmission through the collimator, the 
slope values of the lines for each of the 16 cases was extracted and are plotted against the steel thickness.  
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Figure 91. Error, or difference between the calculated and actual transmission corrected for the stainless steel 
component plotted as a function of the borated polyethylene open fraction 
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The calculated thickness equation as it stands currently assumes a homogeneous material 

with the open fraction distributed uniformly throughout the collimator material, but that is 

not the case. As slits are cut into the collimator, streaming paths for neutrons are created, 

which means not all the neutrons interact with the same amount of collimator as they traverse 

through the material. This affects how the effective thickness needs to be calculated to match 

up better with the MCNP model. The streaming paths created require a correction to the open 

fraction of the borated polyethylene, after which the slope of the lines in Figure 91 should be 

eliminated. To eliminate the change in difference between the calculated and actual 

thicknesses as a function of the borated polyethylene open fraction, the slopes of the lines in 

Figure 91 were extracted. The respective slopes of each of the data sets were used as the 

factors to scale the open fraction by. Equation ( 23 )  was modified by subtracting the open 

fraction of borated polyethylene scaled by the respective slope values (m) to yield 

Calculated	Thickness = 	µ§•F¨	§•T§• + µ©©F¨	©©T©© − 0.414	Fæ	§•	T©©F¨	©© − m	Fæ	§• 

( 24 ) 

Using this revised estimation of the effective thickness results in error values for each of the 

16 cases where the slope is altogether eliminated, thus effectively eliminating the streaming 

path effects. The revised error values using Equation ( 24 ) are shown in Figure 92. The 

estimate of the calculated thickness in Figure 92 has corrected for streaming paths but is not 

quite right because it is assuming that the behavior of log(N)	versus the effective through the 

collimator is linear, but that is not the case. Plotting the log of the average noise for all 512 

cases in Figure 93 against the initial estimate of the effective thickness in Equation ( 20 ) 

shows that the relationship is not quite linear, and as the thickness increases and the neutrons 

traverse through more material, the data curves up and a tail appears. This means that the 

attenuation coefficient does not stay constant as the neutrons penetrate the collimator. If the 

attenuation coefficients were constant, then the line would be linear. Figure 93 shows that 

the attenuation coefficients are decreasing at larger effective thicknesses since the logarithm 

of the counts does not decrease at the same rate at lower thicknesses.  
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Figure 92. Error values (difference between the calculated and actual transmission) after corrected for steel 
and streaming paths as a function of the borated polyethylene open fraction. 
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Figure 93. The log(noise) as a function of the effective thickness for each of the different cases simulated. 
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This effect of changing attenuation coefficients is due to beam hardening, which means the 

average energy of the neutron spectrum is increasing as it goes through more material since 

the borated polyethylene absorbs more of the lower energy neutrons as the neutrons pass 

through the collimator material. This means the relationship between calculated transmission 

and measured transmission isn’t perfect yet. The energy shift in the neutrons increases 

rapidly in the initial amount of distance traversed and stabilizes after a crossed thickness. 

Another constant needs to be applied to correct for the borated polyethylene thickness based 

on each case to correct for the beam hardening effect. Once this is incorporated, the error 

values should be close to 0 for all cases, and the data sets in Figure 92 should be clustered 

closer together about ø = 0. Since the offset from ø = 0 requires a correction factor applied 

to the borated polyethylene collimator thickness, the ø intercepts of the data in Figure 92 

were extracted again. The ø intercepts were then plotted as a function of the polyethylene 

thickness as shown in Figure 94. The data was then fit to a line. The fit equation shown in 

the plot was applied to the borated polyethylene thickness, which becomes the beam 

hardening correction. The final version of the equation to calculate the transmission for a 

given geometry and predict the average noise in the imager is: 

Calculated	Thickness = µ§•F¨	§•T§• + µ©©F¨	©©T©© − 0.414	Fæ	§•	T©©F¨	©© 

−0.1135T§• − 4.1983 

( 25 ) 

The error values calculated using this revised equation are plotted in Figure 95. The error 

values are all centered around 0.00 ± 0.22 mean free paths. Accounting for the steel 

correction, the effect of the streaming paths on the borated polyethylene open fraction, and 

the beam hardening effects on the neutrons as they traverse larger thicknesses reduces the 

error significantly.  

Finally, plotting the calculated transmission using all the correction factors in mean free paths 

against the actual transmission also in mean free paths in Figure 96. The values lie 

approximately along a straight line. Although it is not a perfect one-to-one relationship due 

to the complicated collimator geometry, the correction factors developed in this section 

provides a good approximation of the average noise for each of the different collimator 

geometries. 
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Figure 94. Extracted ø intercept values from the open fraction correction applied plot as a function of the 
borated polyethylene thickness. 

 

 

 

Figure 95. Error between the calculated and actual transmission as a function of the borated polyethylene 
open fraction. The calculated transmission here accounts for all the correction factors. 
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Figure 96. Calculated thickness using all three correction factors in mean free paths versus the simulated 
actual thickness in mean free paths for all 512 cases. 
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6.6.  Parametric Study and Signal-to-Noise Ratio Results 

To evaluate the 512 different configurations and identify the best one suited for spent fuel 

tomography, an SNR code was developed to process the data. For this work, the SNR was 

defined as the metric by which the 512 designs would be evaluated in lieu of a full up 

reconstruction code. The SNR calculation will help identify the most desirable configuration 

that is compact in size, has good spatial resolution, and can manage the gamma exposures 

effectively at the detectors. The goal of the SNR is to use the point spread functions from the 

two sets of 512 simulations with the source placed at the two different locations. From the 

previous sections, it is evident that the background, or collimator penetration values decrease 

as the collimator thickness increases or the slit width decreases. The signal increases linearly 

with the slit width, and also increases with thinner collimators. The inter-detector scatter 

plays a role in calculating the SNR, and also the signal at a particular detector depends on 

where relative to the respective slit edge the source is located since the amount of leakage 

down a neighboring slit depends on the source location. All of these factors affect how the 

reconstruction will be conducted, and also the ability of the imager to associate the neutron 

activity with an individual fuel pin versus the space between the fuel pins. The most ideal 

configuration will have the most drastic difference between the source (fuel pin), and the gap 

between the pins. The signal is the difference between the calculated response of the imager 

to each pin and the activity attributed to the gap or the “halo” around each pin. A cartoon 

highlighting the respective areas is shown in Figure 97.  

The SNR is a comparison of the magnitude by which the signal changes to the counts from 

a complete assembly, so the noise component which is the denominator ends up being the 

square root of the counts of the complete assembly. The SNR is shown in Equation ( 26 ) 

and is the sum over all 100 projections. 

d|à = 	¡
|	à(aÑY9a(	`Y	a[9\8(	Ñ[9 − à(aÑY9a(	`Y	Ñ[9	ℎ_8Y|

ƒà(aÑY9a(	`Y	XYUÑ8(`(	_aa(U≈8!
 

( 26 ) 
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Figure 97. Image of a 17 × 17 fuel assembly with the two components making up the signal highlighted. In 
the left image, a single pin is shown, and on the right, the area around the pin, the “halo” is highlighted [63]. 

 

 

A pictorial of the SNR equations showing the respective sinograms that contain the data used 

for a sample projection is shown in Figure 98. To calculate an SNR for a given configuration, 

the imager response across the entire field of view needs to be estimated on a millimeter 

scale to be able to identify a fuel pin with a diameter of 0.90 cm, and a pin pitch of 1.2780 

cm. This means that the imager needs to be able to identify the gap between the pins, which 

is 0.378 cm. The approximate imager response was developed using the point spread 

functions from the simulations of the 244Cm placed at two different positions. The direct 

component and collimator penetration values from the neutron simulations detailed in this 

chapter were used and the response was extrapolated to the various points in the field of 

view. The signal component is the difference between the peak and the collimator penetration 

in the point spread function. The peak value for each position was scaled based on the 

distance between the source location and the detector. The estimated response to the source 

positions that do not lie directly in line with a slit is found by using the projected slit width. 

The response is scaled using the data shown in Figure 81 since the response from the edge 

of the slit to 1.8 projected slit widths lies along a line. The numerator and denominator in the 

SNR equation were scaled by the number of source particles in the MCNP simulations 

(1×106) per pin per projection. The resulting SNR values for all the configurations are shown 

in Figure 99 as a function of the geometric mean of the slit widths. The geometric mean of 

the slit widths is the square root of the product of the inner and outer slit widths. The SNR 
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values for the parallel slit cases with slit widths greater than 2.5mm calculated using Equation 

( 26 ) needed to be scaled because the source position used to generate the point spread 

functions resulted in some leakage down the neighboring slits at larger slit widths, thus 

artificially increasing the peak value. Ideally, the peak at the center needs to rise linearly as 

a function of slit width, but as shown in Figure 71, this didn’t end up being the case. Scaling 

factors for each of the 16 cases were calculated by plotting the peak heights for the parallel 

slit widths, and fitting a linear slope to the 1mm, 1.5mm, 2mm, and 2.5mm data. Since the 

expected peak height for larger slit widths is expected to lie along a line, the fit equation was 

used to solve for the expected peak values that were then compared to the actual peak values 

to find the scaling factors.  

 

 

 

Figure 98. Pictorial of the SNR equation used to evaluate all the geometries with sinograms  [65]. 
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Figure 99. SNR values for all 512 cases plotted against the geometric mean (cm) of the slit widths. 
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To visualize more clearly how for a given case the SNR varies, the cases with the least (30 

cm) and most (50 cm) amounts of borated polyethylene are shown below. The case with the 

least amount of borated polyethylene has the lowest SNR, and the case with the most borated 

polyethylene has the highest SNR. The SNR increases as the slit width geometric mean 

increases, so even if a smaller collimator design was chosen, the desired SNR could be 

achieved by modifying the slit width. The SNR values do not roll over completely because 

the slit width that limits the spatial resolution enough to lower the SNR was not simulated.   

To narrow down and select the set of geometries that satisfy the most important factor in 

developing a neutron imager – tolerance of gamma exposures – the scaled SNR is plotted 

against the maximum gamma exposures for each of the 512 cases. As covered previously, 

the fundamental limitation for the detectors is that they cannot operate at exposures higher 

than 500 R/hr. Figure 101 is a plot of all the SNRs for all 512 configurations and the 

corresponding maximum gamma exposures. A line showing the 500 R/hr limitation is also 

shown. Each of the 16 configurations lies on its own trajectory with increasing SNR 

corresponding to increasing maximum exposures since the slit width increases as well. As 

the steel thickness increases the curves move more to the left, and the points get closer 

together. The curves show that with more steel and less polyethylene an imager with 

sufficient SNR can be built in a more compact form factor that meets the gamma exposure 

limitation.  

The SNR values for the two cases with the most compact geometry (40 cm thick collimator) 

and the two sets of data making up the largest geometry (55 cm thick collimator) were plotted 

in Figure 102. The amount of steel makes the most difference in cutting down the gamma 

exposure. While maintaining the same total thickness of the collimator at 40 cm, comparable 

SNRs can be achieved by increasing the steel thickness to 10 cm from 5 cm. Increasing the 

total thickness to 55 cm can also lower the maximum exposure, but the improvement in SNR 

achievable is not notable. The curves for the 10 cm steel / 30 cm borated polyethylene and 

the 5 cm steel / 50 cm borated polyethylene overlap for the most part and diverge as the 

parallel slit widths increase. An SNR of 5 or better is achievable with the 10 cm steel / 30 

cm borated polyethylene case if more tapered slit cases were investigated.  
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Figure 100. SNR for all 512 cases plotted against the geometric mean (cm) of the slits. The case with the least 
amount of borated polyethylene (10cm steel and 30 cm borated polyethylene) and the most amount of borated 
polyethylene (5 cm steel and 50 cm borated polyethylene) are highlighted.  
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Figure 101. The SNRs for all 512 geometries plotted against the maximum gamma exposures for each 
configuration. The line defining the 500 R/hr operational limit for the detectors is shown on the plot as well. 
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If a size constraint did not exist for the imager, the 10 cm steel and 45 cm borated 

polyethylene case (shown in green in Figure 102) would provide the best SNR value (> 6) if 

extrapolated out to 500 R/hr. Assuming an SNR of 5 and above is sufficient, an imager with 

a smaller footprint with 10 cm of steel and 30 cm of borated polyethylene can be built. Figure 

103 shows the SNR values for the 10 cm steel and 30 cm borated polyethylene case broken 

up by slit width case (parallel slit and the four different tapered slit sets). Also shown on the 

plot is a fit line extrapolating how the SNR for the 3mm inner slit width tapered cases would 

increase if the outer slit width were increased. Since the gamma exposure mitigation occurs 

mostly closer to the inner diameter of the collimator, keeping the inner slit width smaller and 

increasing the outer slit width allows for higher neutron efficiency while keeping the gamma 

exposure down to manageable levels better than the parallel slit cases would. Thus, the ideal 

configuration for the imager that has to comply with the resolution requirement and size 

limitation would be one that has a 10 cm steel and 30 cm borated polyethylene collimator 

with tapered slits. The tapered slits with 3mm inner slit width and larger that 5mm outer slit 

width would be able to meet the spatial resolution requirements, cut down the exposures to 

manageable levels, while increasing the neutron efficiency. For the final imager design, to 

get to an SNR greater than 5 with this configuration while keeping the maximum gamma 

exposures below 500 R/hr, a tapered slit was chosen with 3mm on the inside and 8mm on 

the outside. 
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Figure 102. SNR values for the four cases with the thickest (55cm) and thinnest (40cm) collimator 
configurations as a function of the maximum exposure. 

 

 

 

Figure 103. SNR values for the 10 cm steel and 30 cm borated polyethylene case broken up by parallel slits, 
tapered slits with inner slit widths of 1 mm, 2 mm, 2.5 mm, and 3 mm. A line of fit (yellow) shows what the 
SNR would scale as if the inner slit width remained at 3 mm and the outer slit width were increased beyond 5 
mm.  
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7. FINAL IMAGER DESIGN 

The results of the comprehensive parametric study showed that the ideal imager design to 

achieve the desired SNR has 10 cm of stainless steel and about 30 cm of borated 

polyethylene. To achieve the desired SNR with a compact design, tapering the collimator 

slits is expected to help achieve higher efficiency and maintain the spatial resolution. The 

final simulated design has 96 slits with 3 mm inner slit width and 8 mm outer slit width. The 

initial envisioned design had 100 detectors and 100 slits, but because the electronics have 8 

channels, the number of detectors has to be a factor of 8. Thus, the number of detectors was 

reduced to 96. This chapter will detail the final selected geometry, the results of MCNP 

simulations, SNR calculations using the final geometry, experiments with a prototype 

detector module, and the outcome of simulating a complete fuel assembly.  

7.1.  Final Geometry 

The detectors in the final geometry are no longer separated by 3 rows. The final imager has 

12 separate detector modules, with each module containing 24 rows of 8 detectors. The rows 

are not parallel to each other, and all have the same origin of geometry as the rest of the 

imager unlike the previous design where each detector was made up of 3 parallel rows of 

detectors placed in an 8-7-8 pattern. Each of the 96 slits point to the center of every 3 rows, 

and each row of 8 straws has a single read out. The signal from every three rows is summed 

to calculate a final detector response. The final dimensions of the imager are shown in Table 

14. The final imager design also has 5 cm of borated polyethylene on the outside of the 

detector. A picture of the final prototype detector module is shown in Figure 104 and an 

image of the MCNP model of the module is shown in Figure 105. The module consists of 24 

rows of 8 straws.  
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Table 14. Dimensions of the final collimator design.  

Imager Component Dimension 
Overall imager height 100.000 cm 

Fuel assembly cavity radius 17.677 cm 
Stainless steel thickness 10.000 cm 

Borated polyethylene thickness 29.523 cm 
Air gap between collimator and detector 0.300 cm 

Inner slit width 0.300 cm 
Outer slit width 0.800 cm 

Al wall 0.0635 cm 
Cd layer 0.0406 cm 

Detector HDPE thickness 9.9187 cm 
 

 

 

Figure 104. Photos of the final detector module with 24 rows of straws. (Top) the view of the detector 
circuitry with the top open. (Bottom) The outer view of the detector module aluminum casing and the 6 
readout ports [57].  
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Figure 105. MCNP model of a single detector module in the final geometry. A single module contains 24 
rows of 8 straws, and the imager contains 12 modules, or 288 rows of straws [57].  

 

 

The MCNP model was constructed by creating a single module of 24 rows embedded in a 

high-density polyethylene (HDPE) matrix. A single row of 8 detectors was translated 24 

times in a lattice spacing calculated carefully based on the experimental prototype. The pitch 

between individual straws is 1.1988 cm, and each row is rotated 1.25° about the origin. A 

single detector module consisting of the 24 rows of straws in HDPE, the air gap surrounding 

the HDPE matrix containing the straws, aluminum walls, and Cd layers on the inner and 

outer radii make up another universe in MCNP that is rotated and repeated 12 times to make 

up 360° of detectors. Figure 106 shows what the interface between two modules looks like. 

The purple walls are the Al walls of the detector modules, and the green is the outer Cd layer, 

and the pink is the air gap within the detector. A close-up of the imager geometry is shown 

in Figure 107. The first slit points to row number 14 the way the MCNP geometry was 

constructed. Every single slit points to the center of every 3 rows. The parts in yellow in the 

image correspond to borated polyethylene. The blue on the outside of the borated 

polyethylene layer is the stainless steel of the ‘cask-like’ container, and the pink in the slits 

and between the detector and collimator is the air-gap.  
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Figure 106. Close-up of two detector modules showing the Al walls (purple), air gap (pink), and the Cd layer 
(green). 
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Figure 107. Close-up of the final imager geometry in MCNP. The slits corresponding to the first (1) detector 
and last (96) are labeled in the picture, as are the first and last rows as constructed in MCNP. 
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7.2.  Edge Effects in the Final Geometry 

Similar to the study done in Section 6.4, to accurately account for the edge effects the final 

geometry was modified in MCNP to just have a single slit at detector 49, and a single 244Cm 

source was moved perpendicular to the slit at three different distances – 5.04, 10.08, and 

20.16 cm from the slit opening. A projected width (oR) was calculated for the tapered slit 

case as shown in Figure 108. The projected width is the distance from the centerline of the 

slit when a line is drawn from the far-side of the detector in the outer slit width and the 

opposite side of the inner slit width. A scaled intensity of counts seen at Detector 49 was 

calculated for each source position for each of the three chord distances by subtracting a 

calculated collimator penetration value at each source position. This was done by subtracting 

counts calculated using respective polynomial fit constants corresponding to the respective 

quadratic fits of the collimator penetration for each of the three distances. The normalized 

data from all the distances is shown in Figure 109. The scaled intensity response is similar 

to that seen in Figure 81 for the 100-detector parallel slit geometry. There is a linear drop 

between 0 < oR < 1.8, and for the 5.04 cm case the drop off there is more leakage than for 

the other 2 cases at each projected width, and the leakage for 10.08 cm is slightly but 

insignificantly more than that for 20.16 cm. The reason for this is because at closer distances 

like 5.04 cm the amount of collimator that the neutrons have to traverse isn’t significant 

enough to shield them, so the counts are higher than they are for the two other distances.  
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Figure 108. Diagram showing how the projected width for a tapered slit is calculated for a source at a specific 
perpendicular distance from the slit. 

 

 

 

Figure 109. Scaled intensity at Detector 49 for a source moved perpendicular to a single slit at three different 
distances (5.08, 10.08, and 20.16 cm).  
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To develop an estimate of how to predict the scaled intensity as a function of the collimator 

thickness, an average pathlength through the collimator was calculated for each of the 45 

source positions along each of the three chords. The average pathlength for a given position 

was found by calculating the amount of collimator the neutrons would traverse to get to 9 

equidistant points along the outer slit width. To calculate the average pathlength for each of 

the 45 source positions, the following formula was used: 

1
9¡()

RFK«IHÄ»K«…
�HFÄ	 GHH	ÉFK«

À

ÃÕ,

 

( 27 ) 

The mean free path was estimated to be 7 cm. The average pathlength plotted alongside the 

scaled intensity values are shown in Figure 110 to Figure 112 for each of the three distances. 

The results from these simulations show that the average pathlength calculated using 

Equation ( 27 ) is a close enough approximation to the scaled intensity at a detector for a 

single slit when looking at the edge effects. The path length estimate can therefore be used 

in the reconstruction code for a given source position to estimate the leakage.  

 

 

 

Figure 110. Scaled intensity calculated using the MCNP results plotted against the calculated average path 
length for a 244Cm line source moved perpendicular to a single slit 5.04 cm away from the slit opening. 
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Figure 111. Scaled intensity calculated using the MCNP results plotted against the calculated average path 
length for a 244Cm line source moved perpendicular to a single slit 10.08 cm away from the slit opening. 

 

 

 
 
Figure 112. Scaled intensity calculated using the MCNP results plotted against the calculated average path 
length for a 244Cm line source moved perpendicular to a single slit 20.16 cm away from the slit opening.  
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7.3.  Correction Factor for Direction of Slit 

The imager’s collimator geometry is complicated in that although it acts as a functional 

equivalent to a parallel slit collimator, the slits are not parallel to one another. Additionally, 

the slits do not open up perpendicularly to the corresponding detector, thus the signal in some 

cases will peak at the neighboring detector or detector row. To be able to correct for the 

different rows the signal peaks at for a given slit, a series of 96 simulations were conducted 

where a beam of 244Cm neutrons were shot down each slit. The detector response at all 288 

rows was tallied, and the 96 curves were fit individually to find the centroid and peak widths. 

The response from the detector rows next to the Al walls of the module (rows 1 and 24) were 

found to have lower efficiencies, so for each of the 12 modules, the response in the respective 

1st and 24th rows was multiplied by 1.0688 to get rid of the reduced efficiency on either side 

of the Al. 

The results of the 96 simulations showing the detector response of neutrons being shot down 

each of the 96 slits is shown below in Figure 113. The detector row numbers were adjusted 

so that the row the respective slit the source was shot down was row 0, and this way all the 

detector row responses could be plotted together to see the deviation in centroid and full-

width half max (FWHM). The figure also shows that the signal for some of the cases as 

predicted does not peak at the row of interest (row 0), instead peaks at the row next to the 

row at which the slit points directly at (row -1 or +1). This can create some level of 

uncertainty in the reconstruction, as a result the centroid correction and FWHM need to be 

well understood for this imager geometry.  

A double Gaussian fit was found to be a closer approximation to fit each of the peaks. The 

basic equation for a double Gaussian is shown below: 

/,(
)(.)~1)3

2Œ13 + /2(
)(.)~3)3

2Œ33  

( 28 ) 

Here, /, and /2 are the respective amplitudes of the two Gaussian curves, ≈,and ≈2 are the 

centroids of the two curves, and }, and }2 are the standard deviations of the two curves. To 

simplify the equation, the second term was written in terms of the first Gaussian. The two 

centroids are assumed to be the same, so ≈,= ≈2. To get }2 in terms of  },, the ratio between 
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Figure 113. Response of all detector rows for 96 simulations where a 244Cm source was shot down each of the 
96 slits in turn. The row numbers were adjusted so that for a given slit the source was being shot down, the 
row was renumbered as 0 to make it easier to visualize the detectors at which the signals peak and show that 
not all slits point directly perpendicular into the row of interest so the signal peaks at the neighboring row. 
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the mean FWHM of the second curve and the first curve was taken to be the scaling term 

since the FWHM is given by  

@oœ– = 2.35482} 

( 29 ) 

A standard double Gaussian fit was used to solve for FWHM and centroid of all the 96 

curves. To find the scaling factor by which to scale }2 in terms of },, all of the FWHM values 

for the two curves were plotted against one another to see how they scaled. Figure 114 shows 

the two FWHM terms plotted against one another for all 96 cases. There are two regions 

where the FWHM of the curves cluster – one on the top left part of the plot, and one on the 

bottom right part. To further investigate which of the two clusters of points can be used to 

scale the second FWHM in terms of the first, the centroid values ≈,and ≈2 for all 96 curves 

calculated from the fit were plotted as a function of the slit number to see how they aligned. 

Figure 115 shows the calculated centroid values for the first and second Gaussian term. 

Centroid values between +1 and -1 for the two Gaussians overlap the closest.   

To accurately find the term by which to scale one of the FWHM terms, the curves that had 

similar centroid values between +1 and -1 were selected, and the corresponding FWHM 

values for the double gaussian term when plotted similarly to Figure 114. The FWHM terms 

of the first and second Gaussian curves which have similar centroid values between the two 

curves are shown in Figure 116. The data in Figure 116 shows that the FWHM values of 

interest are the FWHM values that lie in a line in the top left part of Figure 114. The scaling 

factor by which to scale the second FWHM term by to be in terms of the first gaussian was 

found by taking the ratio of the mean FWHM values. The ratio of the average FWHM values 

of the second Gaussian to the average FWHM values of the first gaussian using the select 

points in Figure 116 is 1.745. Thus, assuming and forcing 	≈2 = 	≈,, the standard deviation 

values of the two curves can be related by  

}2 = 	1.745	}, 

( 30 ) 
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Figure 114. Plot of the FWHM (in unites of detector rows) of the two Gaussian curves against one another for 
each of the 96 curves.  
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Figure 115. Centroid values for the first and second Gaussian terms calculated for all 96 slits. 
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Figure 116. FWHM values of the first and second Gaussian curves making up the data that has centroid 
values ≈,and ≈2  between +1 and -1. 
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Employing the relationship above, a revised equation for the double Gaussian fit was used 

where the standard deviation of the second gaussian term was written in terms of the first, 

and the two centroids were assumed to be equal. The final equation used to generate fit 

coefficients for all 96 curves is  

/,(
)(.)~1)3

2Œ13 + /2(
	 )(.)~1)

3

2(,.“”‘Œ1)3  

( 31 ) 

A MATLAB function was used to generate and solve for the best coefficients to fit each of 

the 96 curves. A [96 ×4] matrix of coefficients was generated by the code, and all the 

coefficients are listed in the Appendix. The four constants solved for were: /,, /2, ≈,, and 
},. The FWHM as a function of the simulation or slit down which the source was pointed is 

shown below in Figure 117. The FWHM outliers that go up and down the most correspond 

to the rows that are closer to the Al walls in the detector. There seems to be an outlier for slit 

number 5, where the FWHM is the lowest. A closer look at the slit 5 data with the custom fit 

superimposed  in Figure 118 shows that visually the fit is actually pretty consistent with the 

data, so the fact that the FWHM is lower than the others should not be an issue when it comes 

to fitting the data and incorporating it into the reconstruction algorithm.  

The centroid values ≈, for all 96 curves that was output from the custom fit plotted as a 

function of the slit number is shown in Figure 119. The centroid shifts from peaking to the 

left side of the intended row, to 0, and eventually to the right side of the intended row as the 

slit number being considered goes from 1 to 96. This is expected based on the geometry of 

the slits and the relative direction in which they open up to the detector rows on the outer 

radius. 
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Figure 117. Calculated FWHM using the custom double Gaussian equation for all 96 simulations. 
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Figure 118. Data for source pointing down slit 5 (black points) along with the custom double Gaussian fit 
(blue). 

 

 



 

169 
 

 

Figure 119. Centroid values for curves generated for source pointing down each of the 96 slits. The centroid 
values increase from -1 to +1 as the slit numbers increase.  
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7.4.  Predicting Collimator Penetration  

For a given point spread function, the areas on either side of the peak are due to the collimator 

penetration of neutrons being transmitted through the collimator. The distribution is not flat 

on either side of the peak and varies based on the amount of open fraction of collimator each 

detector sees. To get a more accurate estimate of the collimator penetration and the offset 

from 0 of the peak to feed into the reconstruction, this distribution needs to be able to be 

predicted. As covered in the previous chapter, the collimator penetration depends on two 

factors – the change in effective thickness for different collimator dimensions, and the other 

is the change in effective thickness due to different collimator slit widths. The effect of the 

change in effective thickness due to different collimator dimensions is beam hardening, the 

effect of the effective thickness changing due to the different slit widths is the change in 

streaming paths. A more simplified equation that calculates an initial guess of the effective 

thickness (NH  ,ÅFIÅ) for a completely solid collimator assuming the primary component 

acting in changing the collimator penetration is the borated polyethylene is given by the 

product of the thickness of borated polyethylene (NQR), and the attenuation coefficient (ã).  

For a collimator with slits cut into it, the thickness needs to be scaled using the closed fraction 

of borated polyethylene (@’	QR), so the calculated thickness can be written as ãNQR@’	QR. The 

beam hardening effect of the neutron energy spectrum shifting as they pass through the 

collimator needs to be accounted for since this means that the attenuation coefficient changes 

as a function of the polyethylene thickness. The attenuation coefficient accounting for the 

beam hardening effect can be expressed as a quadratic: ã ≈ ã*(1 − ∆ãNQR) [63]. 

Incorporating this into the calculated thickness equation gives 

NH  ,ÅFIÅ = 	ã*NQR@’	QR(1 − ∆ãNQR@’	QR). 

( 32 ) 

The effect of the streaming paths needs to be accounted for in the collimator geometry and 

is represented as a linear function of the open fraction of the borated polyethylene [63]. The 

calculated thickness assuming only the borated polyethylene component affects the 

collimator penetration becomes 
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NH  ,ÅFIÅ = 	ã*NQR@’	QR(1 − ∆ãNQR@’	QR) −	?MIÃNQR(1 − @’	QR). 

( 33 ) 

This estimate of the calculated thickness works well for the 5 cm steel thickness collimator 

cases, but not well for the 10cm steel thicknesses. The estimate of the calculated thickness 

presented in Chapter 6 is more accurate since it accounts for the steel components as much 

as possible. However, the estimate in Equation ( 33 ) is good enough to accurately calculate 

the close fraction seen by each detector along the point spread function. The reason for trying 

to better estimate the close fraction for each of the detector rows is that the collimator 

penetration in a given point spread function is not constant on either side of the peak and dips 

low towards the ends (close to the large borated polyethylene wedge). This changing 

collimator penetration as a function is evident in the point spread function on either side of 

the peak shown in Figure 120.  

To more accurately reconstruct an image, a better estimate of the close fraction that each of 

the detector rows sees would be useful. The approach to be able to predict the collimator 

penetration as a function of detector number chosen was to use the existing suite of 

simulations from the 10 cm steel and 30 cm borated polyethylene case to find the values of  

ã*, ∆ã, and ?MIÃK that make the close fractions as estimated in Equation ( 33 ) equal to the 

MCNP calculated closed fractions. To start with, Equation ( 33 ) was programmed and initial 

guesses for the three constants were iterated upon to find the calculated thicknesses for the 

corresponding 32 simulations conducted for the 10 cm steel and 30 cm borated polyethylene 

case with 32 different slit widths. The closed fractions used in Equation ( 33 ) to obtain the 

calculated thicknesses were the values calculated previously for the 32 different geometries 

using MCNP. The results were then plotted against the actual thickness in mean free paths 

for each of the 32 geometries, which was calculated using the logarithm of the ratio of the 

mean counts without a collimator present and with the collimator present. The constants were 

manipulated by looking at a visual output of how close the MCNP vs. calculated thickness 

in mean free paths data for the 32 points were to a 1-to-1 line. The best fit is shown below in 

Figure 121 where the blue data points are the thicknesses in mean free paths and the red line 

is a reference 1-to-1 line. The goal was to find the set of 3 constants that would result in the 

blue dots lying along the red line. Even the best combination of 3 numbers did not result in  
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Figure 120. Point spread function for a 244Cm line source placed close to the origin (17.5cm from the slit 49 
opening). 
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Figure 121. The MCNP effective thickness in mean free paths plotted against the calculated effective 
thickness using Equation (33) for 10 cm steel and 30 cm borated polyethylene. Each of the 32 points 
corresponds to a different slit width case simulated.  
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all the 32 data points falling along the red line. This is probably due to the fact that Equation 

( 33 ) was formulated using only the data from 5 cm steel cases, and at 10 cm steel, the 

relationship is too simple and doesn’t account for the effect the steel may have on altering 

the collimator penetration. The final set of constants that best aligned the 32 points along the 

slope of 1 line are shown in Table 15.  

The next step was to fix the values for ã*, ∆ã, and ?MIÃK in Equation ( 33 ), and to infer a 

closed fraction value for each of the 288 detector rows for the final geometry, which will 

then be used to calculate the effective thickness seen by each of the 288 rows, and the 

collimator penetration (?◊) seen at each of the 288 rows. To use this equation to calculate 

the closed fractions seen by each of the detector rows and compare it to an MCNP calculation, 

two sets of MCNP simulations were used with the final geometry. Two simulations of the 

final geometry with and without the collimator with a 244Cm source placed close to the origin 

(17.5 cm from the slit 49 opening) were conducted. The effective thickness of the collimator 

in terms of mean free paths is equivalent to the logarithm of the ratio of mean counts from 

either side of the peak between a case with no collimator present and a case with the 

collimator present. For a given detector row i, the effective thickness (NH  ) is given by  

NH  ,			Ã = log
?Y]9`aÿL	’LII
?Y]9`a’LII

 

( 34 ) 

 

Table 15. Values for the three constants (ã*, ∆ã, and ?MIÃK) in Equation ( 33 ) that result in the calculated 
effective thickness in mfp plotted against the MCNP calculated effective thickness in mfp lying along a slope 
of approximately 1. 

Constant Value 
ã* 0.44 
∆ã 0.0158 
?MIÃK 0.3148 

 

 

 

 



 

175 
 

Looking at the simulation data for the final geometry with the collimator present in Figure 

120, the detector response for the rows corresponding to the peak, which are rows 122 to 

170, were set to 0 in order to ignore the points during the fit of the ?◊. To get the effective 

thickness in terms of mean free paths for each of the 288 rows, the MCNP data from the two 

simulations was substituted into Equation ( 34 ) to get the effective thicknesses for each 

detector row. The resulting matrix of 288 NH   values were then set equal to Equation ( 33 ) 

along with the constants from Table 15, and with NQR=29.523 cm. The equation was then 

solved symbolically and evaluated for all 288 detectors for @’	QR. The closed fractions from 

solving this reflect the closed fractions each of the detector rows sees and were saved in a 

matrix. These closed fractions were then plotted against the detector number and a 6th degree 

polynomial was fit to the data. The data along with the line of fit and corresponding equation 

are shown in Figure 122. The equation coefficients from the line of fit in in Figure 122 were 

extracted to form the basis for a ‘predicted closed fraction’.  

 

 

 

Figure 122. Closed fraction of the collimator seen by each of the 288 detector rows as calculated using 
Equation ( 33 ), the constants from Table 15, and the borated polyethylene thickness of 29.523 cm.  
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The line of fit was used to calculate the collimator closed fractions for each of the 288 

detector rows. To show that using these closed fractions provide a decent estimate of the ?◊ 

on either side of the peak, the values were used in Equation ( 33 ) to find the calculated 

effective thickness in mean free paths (NH  ,ÅFIÅ). The effective thickness in terms of mean 

free paths is shown below in Figure 123 using both the MCNP model (blue points) and the 

calculated data (red points). Using the effective thickness values, a calculated collimator 

penetration (?◊ÅFIÅŸIFKH⁄)  for each detector i was solved for using Equation ( 35 ). The 

calculated collimator penetration was overlaid on top of the MCNP point spread function in 

Figure 124. This shows that the calculation provides a very good estimate of the detector 

response at each of the rows by accounting for the closed fraction each of the detector rows 

sees. 

?◊ÅFIÅŸIFKH⁄,			Ã =
1
288∑ ?Y]9`aÿL	’LII2‹‹

ÃÕ,

(ä›fifi,fl‡·fl,			Ã
 

( 35 ) 
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Figure 123. Calculated effective thickness and the MCNP effective thickness in mean free paths seen for each 
of the detector rows. 
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Figure 124. Detector response per source particle from the MCNP simulation (blue), and the calculated 
collimator penetration (red). 

 

 

The detector response predicted by the collimator penetration provides a good estimate to be 

incorporated into the reconstruction code. The varied closed fractions seen by each of the 

detector rows will be used to scale the response in each detector in combination with 

adjusting the 1/^ scaling of the response for each of the detectors according to a given source 

position within the fuel assay area with respect to the data generated in this study at a source 

position close to the origin.  

7.5.  Expected Signal-to-Noise of Final System 

In order to understand how the SNR of the final geometry scales for various slit widths, a 

series of simulations with parallel slits and a 244Cm line source placed at two different 

positions – one placed 5 cm from the slit opening, and one 17.5 cm from the slit opening – 
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were conducted. The position close to the slit opening was selected to be 5 cm from the slit 

49 opening along the centerline since this would keep the source 3 oR away from the edge 

of the neighboring slits for the largest parallel slit width configuration simulated (1.1 cm) 

using the definition of projected width shown in Figure 80, thus minimizing leakage down 

the neighboring slits. Although this source position was geometrically 3.11 oR away from 

the neighboring slit, the slits for this collimator at the larger slit widths cut into each other, 

causing more collimator material to be removed to accommodate the slit size. Figure 125 

shows a comparison of how going to larger slit widths like 1.1 cm (left) in this modified 

radial collimator geometry would result in more collimator material being removed 

compared to narrower slit widths (Right). The image on the right is a collimator with 3mm 

inner slit width and 8mm outer slit width.  

 

 

 

Figure 125. (Left) diagram of the collimator with 96 slits with a slit width of 1.1 cm. This shows how 
extending the slit width to larger sizes requires that more of the collimator be removed. (Right) Diagram 
showing what the collimator with 96 tapered slits looks like with 3 mm inner slit width and 8 mm outer slit 
width. 
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Looking at the peak values as the parallel slit width increases, the detector response values 

of the detector row centered on slit 96 (row 158), does not increase linearly as should be 

expected because of the fact that more of the collimator is being cut into at larger slit widths. 

The detector response registered at the detector (row 158) pointing at slit 49 for a 244Cm 

source on the centerline 5 cm away for a variety of parallel slit widths ranging from 0.1 cm 

to 1.1 cm is shown in Figure 126. The signal increases in a linear fashion up until 0.4 cm slit 

width, after which the signal increases as a third order polynomial. As a result, similar to 

how the SNR values for the 512 cases simulated were scaled, the SNRs for the final geometry 

were scaled as well by fitting the detector response data below from a slit width of 0.1 cm to 

0.4 cm to a line. The values of the detector response beyond 0.4 cm were then scaled 

according to what the expected values would be along a trendline to find the scaling factor. 

A list of the scaling factors is shown in Table 16.  

 

 

Figure 126. Detector response registered at the detector (row 158) pointing at slit 49 for a 244Cm source on the 
centerline 5 cm away for a variety of parallel slit widths ranging from 0.1 cm to 1.1 cm. 
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Table 16. List of slit widths and corresponding scaling factors. 

Slit Width (cm) Detector Response Scaling Factor 
0.1 8.04E-06 9.19E-01 
0.2 1.66E-05 9.49E-01 
0.3 2.58E-05 9.85E-01 
0.4 3.59E-05 1.03E+00 
0.5 4.75E-05 1.09E+00 
0.6 6.18E-05 1.18E+00 
0.7 8.18E-05 1.34E+00 
0.8 1.09E-04 1.55E+00 
0.9 1.51E-04 1.92E+00 
1 2.00E-04 2.28E+00 

1.1 2.47E-04 2.56E+00 
 

 

The scaling factors were used to scale the respective SNR values. In addition to the 11 slit 

width cases ranging from 0.1 to 1.1 cm, an SNR calculation was completed for the tapered 

slit case the final geometry was based on: 3mm inner slit width and 8mm outer slit width. 

The SNR for the tapered slit case was scaled using the 0.3 cm parallel slit scaling factor 

found from fitting the data points in in Figure 126. This is because for the tapered slit case, 

the primary shielding effects and the leakage is calculated based on the inner slit width. The 

scaled SNR values for all 11 tapered slit cases and the final tapered slit design are shown 

below as a function of the geometric mean of the slit width in Figure 127. The SNR of the 

tapered slit case (red point) was calculated to be 5.809, which is very close in SNR to the 

parallel slit case with 0.5 cm slit width. This shows the advantage of tapering the slits – the 

tapered slits will shield the detectors from the gamma exposures better than the 0.5 cm 

parallel slit case would.  

From Figure 103 it can be seen that the 0.5 cm parallel slit case results in a maximum gamma 

exposure above 800 R/hr, which would mean the exposure would be well above the operation 

limit of 500 R/hr. But the 0.3 cm tapered slits keep the maximum exposure under the 500 

R/hr limit while achieving an SNR similar to the 0.5 cm parallel slits. Additionally, the slit 

width geometric mean to achieve the highest SNR was identified. An imager geometry with 

a geometric mean slit width of 0.6 cm achieves the highest SNR of 6.234, beyond which the 
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SNR starts dipping low. This is expected since as the slit width is increased, the spatial 

resolution deteriorates since the imager is trying to resolve pins on the 1 cm scale, and resolve 

the gap between pins which is on the order of 0.378 cm. Having a 0.3 cm inner slit width and 

0.8 cm outer slit width allows for the imager to resolve the gap or “halo” around each of the 

1 cm diameter fuel pins with sufficient spatial resolution according to the SNR calculations.  

 

 

 

Figure 127. SNR for all 11 parallel slit cases and the final tapered slit design with 3mm inner slit width and 
8mm outer slit width. 
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7.6.  Tomography Simulations 

With the selection of the final imager design completed, two sets of tomography simulations 

were conducted using MCNP. The tomography simulations were done by generating 

collimator and surface cards in 96 different positions or geometries corresponding to the 96 

rotation positions the collimator would have to acquire data in to gather detector response 

from 360° around the sample cavity. A python script was used to combine the different 

collimator geometries along with the existing static detector surface and cell card definitions 

and the source definitions, and finally submit the files to run on the cluster. The first set of 

tomography simulations that were conducted were with only five 244Cm line sources spaced 

according to the fuel pin pitch. The line sources were placed in positions that would give 

insight into whether or not the imager to could resolve lines next to each other, diagonal from 

each other, or one removed. A diagram of the source positions is shown in Figure 128 which 

is a sample empty fuel pin lattice, and the red points show where the line sources were placed 

relative to one another. The results of the tomography simulations are shown in the form of 

sonograms in Figure 129. The sonogram was generated by plotting an intensity map of counts 

seen at a particular detector per projection angle. From the picture, 5 different threads are 

visible, indicating that the imager works and has the ability to discern 5 sources in close 

proximity to one another. Figure 130 shows the reconstructed image using the MCNP data, 

and five source locations are clearly visible. The reconstruction accounts for the slit response, 

inter-detector scattering, collimator penetration, and the lowered efficiency at the detector 

edges. This proves that the imager design does work and can image sources placed close 

together. 
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Figure 128. The red points are overlaid on a 17 ×17 fuel assembly lattice to show where the 244Cm line 
sources were placed for the tomography simulations [57]..  

 

 

 

Figure 129. Sinograms from a tomography simulation of five-line sources. The fact that we are able to isolate 
5 threads in the sinogram proves that imaging with this geometry could be feasible [57]. 
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Figure 130. Reconstructed image using the sinogram data from the simulations of five line sources. 

 

 

The second set of tomography simulations conducted were with a standard PWR 17 ×17 fuel 

assembly that had homogenous or equal burnup in each pin, but five pins were removed in 

the assembly. The fuel source definition for this set of 96 simulations had the same 

characteristics as the assembly source term used for the gamma exposure simulations, but 

instead of the gamma emissions, the neutron emission probability in each energy bin was 

provided by another group at ORNL. The source definition, surfaces and cells corresponding 

to the fuel assembly geometry were deconflicted and integrated into the imager input deck 

using a python script and were submitted to run on the cluster. Figure 131 shows a diagram 

of the fuel assembly. The fuel pins are shown in grey, the guide tubes in pink, and the five 

missing or removed pins are shown in yellow. These five positions were selected to remove 

fuel pins from because they reflected different scenarios of interest to test the imager’s 

expected capability to detect a pin missing where the: 
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• Missing pin spot sees highest fuel interference 

• Missing pin is surrounded mostly by air 

• Missing pin is surrounded by both air and fuel 

• Missing pin is hidden between two air cells 

• Missing pin is exposed 

The sinograms from the tomography simulation are shown in Figure 132. Both in Figure 129 

and Figure 132, the sinograms are diagonal along the detector and projection number because 

of the unique collimator geometry. For a standard design, the sinograms would be upright, 

but regardless, the data contained in these figures are equivalent to what would be collected 

using a standard parallel slit collimator. Although visually it is impossible to discern 

individual fuel pins in the picture below, there are a couple of features worth noting. The 

horizontal lines seen running across the image are most likely due to the Al walls placed 

every 24 rows, which lower the efficiency slightly of the corresponding detector rows. As a 

result, in the reconstruction the response of those rows will have to be scaled accordingly. 

Additionally, there are patches running across the yellow portions, which most likely 

correspond to the inter-pin spacing. Although the reconstruction code is currently under 

development and will eventually be needed to show that the 5 missing pins can be identified, 

the sinograms from the two simulations are promising. 
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Figure 131. Diagram of a standard 17 ×17 fuel assembly used in the tomography simulations. The grey points 
correspond to fuel pins, the pink ones are empty guide tubes filled with air, and the yellow points are the 
positions where fuel pins were removed in the tomography simulations.  

 

 

Figure 132. Sinograms from a tomography simulation of a standard 17 ×17 fuel assembly with five pins 
missing.  
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Figure 133. Plan view of the final imager geometry with 96 slits and a fuel assembly in the center with five 
pins removed. 
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7.7.  Testing of Detector Prototype 

A single detector prototype in the final design was shipped to ORNL for testing in October 

2018. The goal for the set of measurements presented here was to investigate and show what 

the inter-detector scatter looks like for the final module and compare it to the simulation 

results. The single module incorporated a circuit designed by ORNL and had a single readout 

per row of straws. The low-voltage differential signaling (LVDS) signal for every 4 rows 

was fed and read out by 6 ethernet cables while still retaining the single row data. A picture 

of the top of the detector rows and each row’s preamplifier without the high voltage board is 

shown below in Figure 134 on top, and the picture of the high voltage board with the six 

readout ports is shown in the middle of the same picture, and the top cover with readout ports 

for the detector is shown at the bottom. 

The high voltage supplied was 800 Volts (V), and the DC power was supplied at ±7 V, and 

the threshold was set at 63 mV. The LVDS signals are read out from the detector and are fed 

into a 32-channel interface box. The output from the interface box was read out in two ribbon 

cables and fed into a CAEN Board model V1190 which has four TDC (time to digital 

conversion) chips with the ability to accept a total of 128 signals or channels, but in this setup 

only 2 were used. Figure 135 shows a picture of the six ethernet cables containing the signals 

from all 24 rows feeding into the interface box and the two ribbon cables that feed into the 

CAEN board. 

Another ribbon cable containing the output of a 20 kHz pulser was fed into another chip of 

the CAEN TDC after being processed through the NIM bin shown in Figure 136 in order to 

convert the signals to NIM pulses, which after going through the ribbon cables are 

transformed into ECL pulses, which are accepted by the CAEN board. In addition to the 

detector signals, a 20 kHz pulser was fed into a Quad CFD and converted from NIM signals 

to ECL pulses that were directed to the CAEN TDC. The reason for incorporating the 20 kHz 

pulser was to tell the post processing software that one clock rollover has occurred and keeps 

track of which cycle the clock is in so that the counts over total time can be accurately 

registered. A simpler block diagram of the overall setup is shown in Figure 137. Finally, a 

USB-VME bridge mounted onto the CAEN module was used to convert the output to USB2 

which is fed into a computer.  
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Figure 134. (Top) Final detector module top view without the high voltage board. Here the 24 rows of straws 
with their corresponding preamplifiers are shown. (Middle) Readout board showing the 6 ethernet cable ports 
that are used to readout the signals from each straw. (Bottom) Top layer of the detector with various readouts 
and ports labeled. 
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Figure 135. Interface box that takes in the 24 LVDS signals from the 6 ethernet cables reading the 24 rows 
and sends the signals out in 2 ribbon cables that feed into a CAEN TDC.  
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Figure 136. Ribbon cables from the interface box feeding into the CAEN boards. (Not Shown) a 20KHz 
pulser was used for timing synchronization because of the way the post processing software was written.  

 

 

 
Figure 137. Block diagram of the readout electronics from a single detector. 
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The post processing software was developed at ORNL for a prior project and was modified 

to acquire the data for the experiments with this final detector module. To test the final 

detector module, a single slit collimator wedge made of 30 cm of borated polyethylene was 

built at ORNL. The collimator was built with eight 1” slabs of borated polyethylene. The 

collimator slit was formed by bolting 4 slabs on either side spaced by 1mm thick spacers on 

either end of the slit. A tapered slit with 3mm on one side and 8mm on the other side was 

used in the measurements. The source used in the set of experiments was a tube filled with 

six 252Cf pellets that were fabricated at the same time and have the same initial activity. The 

source information is given in Table 17.  

The six pellet sources were placed inside a piece of tubing and taped to the slit opening. To 

shield the sides of the source and the detectors, blocks of polyethylene were placed behind 

and to the sides of the source to prevent the neutrons being emitted from the 252Cf sources 

from bouncing off the surroundings in the lab and being detected in the detector module. In 

addition to the polyethylene blocks, sheets of borated aluminum were placed along the 

detector sides and behind the blocks on the backside of the source to absorb any other 

neutrons that would escape the polyethylene blocks. The data acquisition software was 

initiated using the command prompt on the laptop by running a script developed by others at 

ORNL. The input parameters included a command to specify the measurement count time, 

but when the measurement was initiated, the actual count time was 10 to 15% more than 

specified. A picture of the measurement setup with the detector, collimator, the polyethylene 

blocks and borated aluminum sheets are shown in Figure 138. The 252Cf pellets aligned to 

the center slit cannot be seen in the picture because it is hidden behind the shielding blocks.  

For the single slit experiments, the single slit collimator was pointed at row number 13, and 

the source was taped to the center of the slit opening and halfway along the length of the 

collimator. Figure 139 shows a picture of the center-slit positioning of the tubing with the 

source pellets in them. A series of measurements were conducted with the sources placed in 

different positions as shown in Figure 140. The three measurements with the source present 

were all about 15 minutes long, and the background measurement was 10 minutes long. 
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Table 17. Source information for the six 252Cf pellets used in the experiment along with the initial activity and 
date created.  

Source ID Activity (Ci) Date Created 
Cf252-4863 5 × 10-4 2/15/1996 
Cf252-4864 5 × 10-4 2/15/1996 
Cf252-4865 5 × 10-4 2/15/1996 
Cf252-4866 5 × 10-4 2/15/1996 
Cf252-4867 5 × 10-4 2/15/1996 
Cf252-4868 5 × 10-4 2/15/1996 

 

 

 

Figure 138. Measurement setup for the single slit experiment showing the single module, borated 
polyethylene collimator, the polyethylene shielding blocks, and the borated aluminum sheets. The six 252Cf 
pellets are present and aligned to the slit but are hidden in this setup. 
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Figure 139. The tubing with six 252Cf pellets taped to the center of the slit opening, and aligned to the middle 
of the collimator length-wise. The tubing was surrounded by polyethylene blocks to shield from neutrons 
escaping the source. 

 

 

 
Figure 140. The three source positions used to acquire data for the single slit measurements. 
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In addition to aligning the source to the center, the two other experiments with the source 

present were conducted by moving the source 1” to the right of the slit and 1” to the left of 

the slit while maintaining the same height off the floor. The reason for doing so was to be 

able to quantify the amount of collimator penetration through the collimator on either side of 

the slit. The background count rate data is shown below in Figure 141 for a 10-minute 

measurement along with the corresponding error bars. The count rate is fairly constant across 

detector rows except there seems to be an outlier at row 5. This probably has to do with the 

high voltage boards being manufactured defectively due to components being placed too 

close together, and for a future iteration of the detector module, the design will be revised 

according to specifications provided by ORNL. To mitigate the effect of additional counts 

being registered falsely, SF6 gas was flushed through the detector module since as an 

insulating gas, thus preventing the electronics from firing falsely.  

 

 

 

Figure 141. Count rates with corresponding error bars for the background measurement. Count rates for each 
of the 24 rows are presented. 
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The background subtracted count rate data and corresponding error bars for the source placed 

at the three positions is shown in Figure 142 for each of the 24 rows. The data shown in black 

is for the source placed down the center at the slit opening centered on row #13. As expected, 

the count rate peaks at row 13. The center slit data is not only background subtracted but the 

average of the count rates from the source placed 1” to the left and right is subtracted too. 

This was done in order to account for the collimator penetration on each side and see if the 

data is comparable to the single slit inter-detector scatter simulation conducted with the older 

design. The count rates on the sides (rows 1-3 and 21-24) fall below 0 for the center position 

because the collimator penetration subtraction is an approximate contribution. Looking only 

at the center data in black, the counts for every 3 rows (assuming row 13 was the center of a 

detector) were summed since in the final prototype this is how the detector count rates will 

be analyzed. The count rates were summed in rows of three and then divided by the respective 

measurement times, background subtracted, corrected for collimator penetration, and then 

normalized. The normalized measurement data along with the normalized simulation data is 

shown in Figure 143. The simulation data is what was presented in Figure 74 and shows the 

average relative counts of boron captures (per 106 source particles) for a beam of 244Cm 

neutrons being thrown into the central detector. The relative spread of counts from the 

measurements is comparable to what was found via the simulations when corrected for the 

collimator penetration and background, thus validating the MCNP models. 
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Figure 142. Count rate data for the source placed at the three different positions after subtracting the 
background contribution. 
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Figure 143. Normalized count rates for the source centered on the single slit corrected for background and 
collimator penetration from the measurements (blue), and the simulation data showing the spread of inter-
detector scatter (red). 
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8. CONCLUSIONS AND FUTURE WORK 

This dissertation describes a set of simulation and measurement work completed in order to 

investigate and converge on a final design of a fast neutron emission tomography system for 

imaging a spent nuclear fuel assembly to be used in order to check for its completeness in 

safeguards applications. If a full-scale system is constructed, this would be a first-of-its-kind 

system since no feasible neutron-based emission tomography system exists for safeguards 

applications. The novelty of this imager is in its compact size and its equivalency to a 

parallel-slit collimator. The neutron-based system offers the advantage that it is possible to 

be sensitive to the center of larger fuel assemblies since neutrons travel further than gamma-

rays do, given that their mean free paths are larger when traversing through dense materials 

like nuclear fuel and associated structural components.  

In order to conduct a constrained optimization for the design, a range of imager design 

parameters were identified to be varied, and MCNP was used to build the hundreds of 

geometries to investigate. The analysis was split in two components – a gamma analysis part 

and a neutron analysis part.  The gamma simulations were conducted with a complete 17 × 

17 fuel assembly (modeled at 1-year cooling time and 45 GWd/MTU burnup) placed in the 

assay area, and the exposures at each of the 100 detectors were tallied. Measurements using 

a single detector module were conducted at the ORNL RaSCaL facility to investigate the 

detector’s ability to operate at high gamma exposure fields. The detector’s operational limit 

was identified to be at 500 R/hr, and the need to instrument each row of straws individually 

was identified as well. These measurements were used in conjunction with MCNP 

simulations to identify the subset of design geometries that satisfied this operation limit. The 

geometry of the collimator (slit width, steel thickness, and borated poly thickness) is 

determined by the fuel burnup and cooling time. For the optimal geometry identified in this 

project, a fuel with burnup up to 45 GWd/MTU and cooling time of 1 year can be measured. 

As a part of this analysis, a method and relationship were also developed to be able to identify 

a constant exposure contour, or the range of collimator geometries that would satisfy a given 

exposure limit. This is useful for identifying different collimator geometries that may be 
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better suited for various fuel types and cooling times that may have different gamma 

exposure limitations.  

In addition to the gamma simulations, all 512 geometries were simulated using a 244Cm line 

source placed at two positions along a slit centerline to investigate how the point spread 

function is expected to vary between each case (including analysis of both signal and 

collimator penetration). The inter-detector scatter was also analyzed by shooting a beam of 

neutrons down a single slit to observe the expected spread in the signal, which would affect 

the spatial resolution. The spatial resolution achievable according to the simulations is about 

1 cm FWHM.  Over 300 simulations were conducted to understand how the leakage of 

neutrons is expected to change based on the source position relative to the slit’s edge in terms 

of projected width. The simulated results showed that the leakage is expected to be 

proportional to the average pathlength the neutrons have to traverse through collimator 

material to get to the opposite end of the slit. The collimator transmission was also analyzed, 

and a series of correction factors were identified to compensate for the beam hardening 

effects and streaming paths within the collimator for the different geometries. This resulted 

in the ability to calculate the effective thickness of each of the collimators, yielding results 

close to what the measured effective thicknesses are based on MCNP simulations. An SNR 

code was used to analyze all 512 cases, using the results of over 1,500 simulations. The 

expected SNR values were then used in conjunction with the expected maximum exposures 

seen at the detectors for each of the 512 cases. These results showed that the steel is expected 

to play a huge part in shielding the detectors from the gamma-rays, and also that to achieve 

an SNR of 5 or better, it is not expected to be necessary to go for the largest simulated 

collimator. Tapering the slits helps achieve a higher neutron detection efficiency and higher 

SNR without exposing the detectors to high exposures that would otherwise cause an issue 

with parallel slits. The ideal imager configuration amongst the ones investigated was found 

to be one that contained 10 cm of steel and 30 cm of borated polyethylene with tapered slits 

of 3 mm on the inside and above 5 mm on the outside. As a result, for the final configuration 

an imager with 10 cm of steel and 29.5 cm of borated polyethylene with a 3 mm inner slit 

width and a 8 mm outer slit width was chosen. The final design of the imager also has 96 

detectors instead of a 100 due to the electronic channels having to be a multiple of 8. The 
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final detector module will contain 24 rows of 8 boron straws, and each of the rows will be 

instrumented separately. 

Various simulations to incorporate into the reconstruction code for the final geometry were 

conducted. The detector response to a source positioned at various projected widths from the 

slit edge was calculated to verify that the relationship seen in the old geometry still stood. A 

correction for the relative positioning of the slit opening to the detectors all around the 

collimator was conducted because the slits do not point directly perpendicular to each of the 

detector rows, which could result in the signal peaking at a neighboring row of the intended 

one. A double Gaussian was used to fit the response, and fit constants and centroids were 

identified for all 96 slits. Since the collimator is not a simple design, an estimate of the 

calculated collimator penetration (?◊ÅFIÅŸIFKH⁄)  for each of the detector rows was found by 

calculating the closed fraction seen by each of the detector rows. This also will feed into the 

final reconstruction code. An SNR study of the final detector and collimator with 96 slits 

was conducted by varying the slit widths. Eleven different parallel slit widths were studied, 

and the SNR was found to peak at around a geometric mean of 6 mm, beyond which the 

spatial resolution would not be sufficient to identify a single fuel pin. The final design with 

the tapered slits with 3 mm inner and 8 mm outer slit width has an expected SNR of 5.809, 

which is sufficient for imaging down to the single pin level.  

To test this selected geometry in simulation space, two sets of tomography simulations were 

conducted. The first simulated test was with five 244Cm line sources placed close together, 

and the second simulated test was with a 17 × 17 fuel assembly that had five fuel pins 

removed from various locations. A quantity of 96 projection simulations were conducted for 

each of the two cases, and the data was compiled to generate sinograms of the two simulation 

sets. The sinogram of the five line sources show that five individual lines appear, thus 

showing that the imager design is expected to be able to resolve sources placed close 

together. The sinogram with the complete fuel assembly showed that the rows of detectors 

closest to the Al walls of the detector module are expected to have lower efficiency than the 

inner rows, thus a scaling factor needs to be incorporated to correct for this. The fuel 

assembly sinogram is complicated, and individual fuel pin threads cannot be clearly 

identified as expected. The reconstruction code was developed at ORNL and uses the data 
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generated by the work presented here to account for the slit response, inter-detector 

scattering, collimator penetration, and the lowered efficiency at the detector edges. The 

reconstructed image of the five line sources using the MCNP data proves that the imager 

design does work and can image sources placed close together. 

Finally, a set of measurements with a neutron source were conducted at ORNL to test the 

inter-detector scatter and compare to MCNP simulations. The measurements showed that the 

inter-detector scatter spans across three detectors on either side and the relative counts from 

the measurement are in very close agreement to the simulations, thus validating the MCNP 

model of the imager. The simulations and analysis presented so far show that the imager 

design identified is expected to be able to provide sufficient spatial resolution to image 

individual fuel pins.  

With regards to future work, the imager geometry should be simulated with other types of 

fuel, including VVER-1000 fuel. PGET has not been tested with this type of fuel yet. Also, 

a fuel assembly with cooling times longer than 1 year and closer to 40 or 50 years needs to 

be simulated since the PGET only relies on the 662 keV gamma-rays for long-cooled fuel 

and those gamma rays may be too weak to escape the fuel assembly, and it would be hard to 

detect any missing pins at that point. Furthermore, fuel assemblies with pins that have varied 

burnups should be simulated in order to see if one can expect the intensity varying based on 

the neutron emission rates to be picked up by the imager. Moreover, it would be useful from 

a safeguards perspective to test the expected ability of the imager to generate a burnup profile 

of a fuel assembly. Currently inspectors rely only on operator declarations of the burnup, and 

they use the FDET to verify a gross measurement, not a pin-by-pin measurement.   

In summary, a feasible design for an imager based on fast neutron emission tomography has 

been investigated and identified with spent nuclear fuel verification for international 

safeguards applications in mind. Simulations and proof-of-concept measurements suggest 

that it is viable to build a compact equivalent to a parallel slit collimator imager that has 

sufficient spatial resolution to image spent fuel pins.  
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Table 18. Coefficients for the double Gaussian fit 

Slit 
Number A1 b s A2 

1 1.0545 -1.0158 2.8049 0.5184 
2 1.0623 -0.9912 -2.8094 0.5149 
3 0.9365 -0.9709 2.6737 0.6453 
4 1.1025 -0.9373 2.9246 0.4520 
5 0.6366 -0.9583 2.4826 0.8835 
6 0.9273 -0.8924 2.6745 0.6565 
7 1.0273 -0.8702 -2.7472 0.5669 
8 1.0701 -0.8497 2.7946 0.5201 
9 1.0695 -0.8269 2.7926 0.5208 
10 1.0716 -0.8049 2.7910 0.5208 
11 0.9297 -0.7957 2.6358 0.6686 
12 1.1190 -0.7660 2.9192 0.4446 
13 1.1500 -0.7904 3.0330 0.3706 
14 0.8834 -0.7268 2.6071 0.7063 
15 1.0238 -0.7061 2.7231 0.5772 
16 1.0649 -0.6868 2.7684 0.5341 
17 1.0529 -0.6637 2.7591 0.5433 
18 1.0530 -0.6419 2.7580 0.5435 
19 0.9149 -0.6228 2.6183 0.6839 
20 1.1146 -0.5850 2.9071 0.4508 
21 1.1607 -0.6184 2.9949 0.3895 
22 0.8869 -0.5549 -2.5797 0.7254 
23 1.0409 -0.5374 2.7059 0.5826 
24 1.0767 -0.5179 2.7374 0.5500 
25 1.0701 -0.4977 2.7208 0.5643 
26 1.0811 -0.4772 2.7282 0.5568 
27 0.9235 -0.4592 2.5729 0.7185 
28 1.1565 -0.4181 2.8993 0.4468 
29 1.1882 -0.4437 2.9664 0.3982 
30 0.8969 -0.3907 2.5461 0.7461 
31 1.0535 -0.3705 2.6865 0.5882 
32 1.0691 -0.3507 2.7078 0.5681 
33 1.0578 -0.3288 2.6983 0.5770 
34 1.0480 -0.3063 2.6829 0.5878 
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Table 18. Continued. 

Slit 
Number A1 b s A2 

35 0.9155 -0.2892 2.5560 0.7207 
36 1.1402 -0.2484 2.8772 0.4469 
37 1.1458 -0.2741 2.9138 0.4227 
38 0.8912 -0.2168 2.5472 0.7241 
39 1.0238 -0.2010 2.6631 0.5863 
40 1.0177 -0.1804 2.6627 0.5826 
41 1.0018 -0.1585 2.6559 0.5837 
42 0.9952 -0.1395 2.6574 0.5759 
43 0.8601 -0.1219 2.5440 0.6886 
44 1.0444 -0.0716 2.8479 0.4432 
45 1.0352 -0.1021 2.8563 0.4313 
46 0.8349 -0.0481 2.5493 0.6590 
47 0.9323 -0.0295 2.6441 0.5557 
48 0.9215 -0.0097 2.6351 0.5629 
49 0.9225 0.0103 2.6355 0.5620 
50 0.9321 0.0317 2.6437 0.5563 
51 0.8361 0.0495 2.5502 0.6580 
52 1.0288 0.1026 2.8462 0.4391 
53 1.0412 0.0729 2.8445 0.4461 
54 0.8662 0.1211 2.5494 0.6825 
55 0.9955 0.1400 2.6570 0.5764 
56 1.0064 0.1589 2.6600 0.5796 
57 1.0124 0.1806 2.6561 0.5883 
58 1.0193 0.2012 2.6579 0.5908 
59 0.8886 0.2179 2.5452 0.7266 
60 1.1485 0.2753 2.9165 0.4201 
61 1.1408 0.2473 2.8791 0.4459 
62 0.9134 0.2898 2.5554 0.7226 
63 1.0588 0.3065 -2.6969 0.5754 
64 1.0641 0.3286 2.7038 0.5711 
65 1.0691 0.3505 2.7072 0.5682 
66 1.0501 0.3710 2.6849 0.5907 
67 0.8978 0.3905 2.5480 0.7444 
68 1.1854 0.4444 -2.9621 0.4013 
69 1.1600 0.4183 2.9029 0.4438 
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Table 18. Continued. 

Slit 
Number A1 b s A2 

70 0.9297 0.4591 2.5789 0.7122 
71 1.0812 0.4767 2.7298 0.5565 
72 1.0678 0.4971 2.7181 0.5670 
73 1.0768 0.5182 2.7361 0.5506 
74 1.0429 0.5369 2.7080 0.5804 
75 0.8872 0.5556 2.5815 0.7243 
76 1.1629 0.6196 2.9986 0.3873 
77 1.1109 0.5855 -2.9013 0.4551 
78 0.9163 0.6246 2.6202 0.6819 
79 1.0512 0.6425 2.7553 0.5455 
80 1.0474 0.6636 2.7512 0.5494 
81 1.0622 0.6869 2.7662 0.5364 
82 1.0235 0.7070 2.7237 0.5765 
83 0.8835 0.7286 2.6082 0.7052 
84 1.1517 0.7908 3.0364 0.3684 
85 1.1215 0.7638 2.9203 0.4434 
86 0.9399 0.7962 2.6474 0.6582 
87 1.0739 0.8053 2.7937 0.5175 
88 1.0646 0.8280 -2.7867 0.5258 
89 1.0740 0.8503 -2.7990 0.5162 
90 1.0251 0.8706 2.7470 0.5678 
91 0.9044 0.8927 2.6513 0.6795 
92 1.1526 0.9612 3.0720 0.3533 
93 1.1034 0.9365 2.9266 0.4506 
94 0.9422 0.9697 2.6812 0.6389 
95 1.0621 0.9905 2.8083 0.5155 
96 1.0622 1.0149 2.8158 0.5095 
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