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ABSTRACT 
 

OBJECTIVE: An exploratory analysis demonstrating that U.S. radiation 

policymaking should be remade in a manner that considers the risk tradeoffs associated 

with dose-limiting regulations. 

METHODS: Three studies contribute separate chapters to this manuscript. The 

first study is a systematic review conforming to PRISMA guidelines. PubMed and the 

U.S. Nuclear Regulatory Commission’s web-based public recordkeeping database were 

searched for evidence demonstrating a concern for risk tradeoff. The second study 

conceptualizes a theory based model for predicting risk tradeoff in radiation 

policymaking. The model integrates sources of risk tradeoff and constructs of moral 

disengagement theory. The third study reviews radiological data obtained during 11 

cyclotron decommissioning projects. The data are translated into meaningful metrics that 

are valuable for examining risk tradeoffs made by low-level radioactive waste 

policymaking.  

RESULTS: A total of 64 relevant documents were returned by the literature 

review, but only eight documents were concerned with radiation risks. Only one of the 

documents reflects an analysis of risk tradeoff, whereas six express a need for forward-

thinking policymaking that considers countervailing risks. The result of the second study 

is an illustrative conceptual model. The model predicts that well-intentioned 

policymakers, faced with jurisdictional boundaries and other pervasive sources of risk 

tradeoff, may offer policy solutions that reduce target risks but ignore countervailing 

risks. Policymaking accomplished in this manner will fail to offer maximum risk 

protection. Calculated dose equivalents for the 11 sites examined by the third study 
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ranged from 0.01 to 43.2 mSv y-1 and correspond to a risk of 0.1 to 432 extra cases of 

solid cancer or leukemia per 100,000 persons. Waste from nine of the sites exceeds the 

dose limit specified in the U.S. Nuclear Regulatory Commission’s radiological criteria 

for unrestricted use. Notwithstanding such findings, cyclotron waste is not regulated as 

low-level radioactive waste. 

CONCLUSIONS: The paradigm for radiation protection policymaking should be 

remade in a manner that looks beyond the perceived immediate benefits of limiting dose. 

For a new paradigm to prevail, research that examines risk tradeoffs with a logical 

framework is needed, and the public must be educated on the unembellished actual risks 

associated with radiation.   
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INTRODUCTION  

Background  

The term “radiation” is used to describe energy that propagates through space or 

matter in the form of electromagnetic waves or fast moving particles (Hall and Giaccia 

2012). Radiation is characterized as being either ionizing or nonionizing. Ionizing 

radiation is the subset of all radiation that is energetic enough to create ion pairs by 

dislodging electrons from an atom and includes x-rays, gamma-rays, neutrons, and 

charged atomic particles (NAS 2006, Hall and Giaccia 2012). Nonionizing radiation does 

not have sufficient energy to create ion pairs and includes ultraviolet, visible, and infrared 

light; microwaves; and radio waves. The radiation paradigm and public health policies 

this research examine pertain to ionizing radiation, but the term “radiation” will be used 

throughout. This is consistent with common usage of the term and much of the literature 

reviewed, including a 2006 report by the National Academy of Sciences that is important 

to a discussion of the current paradigm. That report defines radiation as “energy emitted 

in the form of waves or particles by radioactive atoms as a result of radioactive decay or 

produced by artificial means, such as x-ray generators” (NAS 2006). This definition 

conspicuously excludes nonionizing radiations.  

The world was formally introduced to radiation in 1895 when a German physicist 

named Wilhelm Roentgen discovered x-rays and their unique ability to pass through the 

human body and produce radiographic images (Walker 2000). In the first few decades 

following Roentgen’s discovery, incredible advances were made in the field of medicine 

and by scientists seeking to harness atomic properties for energy and defense (Walker 

2000). Unfortunately, such advances were made in the absence of any policies protecting 



2 

the health of researchers or their subjects. Early work often assumed that radiation was 

innocuous, and it was handled with few controls and to the detriment of experimenters’ 

health (Walker 2000, Jones 2005, Colvett 2006). For instance, the x-ray proved to be an 

effective instrument for probing tissues and materials; however, researchers frequently 

conducted experiments on themselves and others and in a manner leading to severe 

overexposures (Walker 2000). Erythema (skin reddening) and burns associated with early 

research were often dismissed as temporary effects, and it was not until years later that 

we would learn of radiation’s long term consequences.  

Within a few decades of its discovery, radiation was known to cause sterility, 

bone disease, cancer, and other harm (Walker 2000). Notwithstanding the evidence of 

harmful effects that was accumulating, radiation continued to be used and researched 

absent of any formal policies or policymaking. Radiation remained a somewhat distal and 

mysterious phenomenon to much of the public until its harmful effects were 

demonstrated in spectacular fashion when the U.S. dropped two atomic bombs on Japan 

in August of 1945 (Holmes 2005, Jordan 2016). Imagery returned from the aftermath in 

the cities of Hiroshima and Nagasaki suddenly informed the world of insidious harms 

that could not be forgotten. This would forever change our normative beliefs, and from 

that point forward it has been impossible to consider any level of radiation aside from its 

effects.  

Features of the Existing Framework for Radiation Policy 

Over time, people became as curious about radiation’s harmful effects as its other 

mysterious qualities. As researchers’ interests evolved, their findings informed a new 

field - radiation protection, or what is called health-physics by U.S. practitioners. 
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Radiation protection policymaking can be traced back to the Second International 

Congress on Radiology in 1928, where an International X-Ray and Radium Protection 

Committee was formed from a group of scientists and physicians (Walker 2000, Jones 

2005). Its U.S. counterpart, the Advisory Committee on X-Ray and Radium Protection, 

was formed the following year (Walker 2000, Jones 2005). Both organizations involved 

themselves in advocacy measures intended to increase awareness and improve handling 

practices; however, neither group was endowed with statutory authority (Walker 2000). 

The framework for U.S. policymaking has evolved considerably over the years. 

Today, the responsibility for the nation’s radiation policymaking is shared by multiple 

federal agencies: Environmental Protection Agency (EPA), Nuclear Regulatory 

Commission (NRC), Department of Energy (DOE), Department of Defense (DoD), 

Department of Health and Human Services (DHHS), Department of Labor (DOL), 

Federal Emergency Management Agency (FEMA) (EPA 2000). The jurisdictional 

boundaries of these agencies are not necessarily reflected by mutually exclusive 

responsibilities, which complicates the rules they publish in the Code of Federal 

Regulations (CFR). For example, NRC and EPA have overlapping responsibility related 

to waste from cleanup of radioactive sites. Other significant intersections exist, such as 

occupational health and safety, transportation, waste disposal, and responsibilities 

transferred to states. The result is a complex patchwork of regulations that do not seek 

unified radiation protection and health outcomes. 

The Energy Reorganization Act of 1974 transferred certain congressionally 

mandated responsibilities to the NRC, including an obligation to protect people and the 

environment from unnecessary exposure to radiation as a result of civilian uses of nuclear 
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materials: nuclear power plants, research reactors, and other medical, industrial, and 

academic uses (NRC 2015). Moreover, states wishing to regulate certain materials within 

their borders enter into agreements with the NRC, and in doing so, adopt regulations that 

do not vary considerably from NRC. Thus, the NRC’s role in radiation policymaking is 

unique in terms of scope and reach.  

 A key feature of the regulatory framework used by the NRC is that it authorizes 

civilian uses of nuclear materials through a process called licensing. The licensed 

organizations, or “licensees”, then operate nuclear facilities or use or transport nuclear 

materials according to the NRC’s rules. The rules are published in Title 10 of the CFR 

(i.e., 10 CFR). The complete set of rules contains 199 parts; however, most of parts apply 

to rules within the NRC’s jurisdiction but not specifically concerned with controlling 

radiation.  

The NRC’s Standards for Protection Against Radiation are specified in 10 CFR § 

20 and consist of rules pertaining to general provisions, radiation protection programs, 

occupational dose limits, radiation dose limits for individual members of the public, 

radiological criteria for license termination, surveys and monitoring, control of exposure 

from external sources in restricted areas, respiratory protection and controls to restrict 

internal exposure in restricted areas, storage and control of licensed material, 

precautionary procedures, waste disposal, records, reports, exemptions, additional 

requirements, and enforcement. 

The Radiation Paradigm and Risk Tradeoff 

The word “paradigm” is used to describe the prevailing group of ideas and 

theories about how something should be done, made, thought about, or researched (Kuhn 
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1962). In this regard, and due in part to public concerns and Hollywood embellishments 

that can be traced back to the 1940s, the radiation protection paradigm is that any amount 

of radiation is harmful and should be avoided. Policymaking accomplished by the NRC 

and other actors according to this paradigm results in rigid dose-limiting regulations and, 

because any dose is presumed harmful, a subsequent requirement is to make every 

reasonable effort to maintain exposures as far below the dose limits as is practical (NRC 

2018a, NRC 2018b). Thus, radiation policymaking is singularly focused on improving 

health outcomes by lowering radiation dose.  

As well-intended as policymaking accomplished according to the radiation 

paradigm may seem, efforts to reduce one health risk often increases other unmeasured 

risks. The risks unintentionally or unknowingly fostered are called countervailing risks, 

and choosing to manage one risk in light of countervailing risks is called a risk tradeoff 

(Graham and Wiener 1995). Trading one risk for another is a phenomenon encountered in 

everyday decision-making, and countervailing risks are described by familiar terms such 

as side effects, collateral damage, and unintentional consequences (Graham and Wiener 

1995).  

Objectives 

The three studies contributing as chapters to this manuscript are related in that 

they are concerned that U.S. radiation policymaking is not conducted according to a 

framework that adequately considers risk tradeoff. It is intended that the articles 

comprising this manuscript will be published in a manner contributing to the literature 

that federal agencies will look to as they consider the appropriateness of their policies and 

regulations. Three articles examining three different questions are presented. 



6 

Question 1: Is Risk Tradeoff Analysis (RTA) a suitable means of exploring U.S. 

radiation policymaking decisions? The proposed question is examined with systematic 

review accomplished according to Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines. The study provides a scoping review of the 

pervasiveness of risk tradeoff concerns in research indexed by PubMed or documents 

made public by NRC.  

Question 2: How is radiation policymaking leading to risk tradeoffs 

conceptualized with a psychosocial theory-based model? This question is examined by 

integrating concepts from Moral Disengagement Theory and RTA into an illustrative 

model that can be used to examine radiation policymaking that is accomplished according 

to a linear-no-threshold (LNT) model of radiation dose response. 

Question 3: Do wastes from cyclotron decommissioning projects pose health 

disparities that U.S. nuclear waste policies currently ignore? This question is examined 

with an analysis of data collected during cyclotron decommissioning projects completed 

by Ameriphysics, LLC. The data reflect radionuclide-specific activity concentrations in 

concrete. Activity concentrations are transformed to peak dose to a critical group 

according to federal guidance, wherein the critical group is defined as “the group of 

individuals reasonably expected to receive the greatest exposure to residual radioactivity 

for any applicable set of circumstances” (NRC 2006, NRC 2018a). The transformed 

doses are compared against decommissioning cleanup criterion in 10 CFR 20 and 

translated into population risk estimates using predictions from the National Research 

Council of the National Academy of Sciences.   



7 

CHAPTER I 
RISK TRADEOFF AND RADIATION PROTECTION: A SCOPING REVIEW 
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 A version of this chapter is being prepared for submission to Environmental 

Health Perspectives for consideration. 

 The student developed the search strategy, selection criteria, and data extraction 

criteria and drafted the manuscript. The student’s Committee reviewed and approved the 

strategies and criteria developed by the student and read, provided feedback, and 

approved the final manuscript. 

Abstract 

OBJECTIVE: To accomplish a systematic review of documents indexed by 

PubMed and the Nuclear Regulatory Commission public records database to explore the 

use and suitability of Risk Tradeoff Analysis as a means of informing U.S. radiation 

policymaking.  

METHODS: The aforementioned databases were searched using the inclusionary 

terms “risk trade”, “risk tradeoff”, and “risk tradeoffs” and exclusionary terms related to 

patient choices and preferences and animal predation. Unique documents that were 

printed in English and concerned with matters of public health were coded according to 

target risk, constructs of comparative risk assessment, and relevance. Relevance was 

rated high when constructs of risk tradeoff were discussed in conjunction with radiation 

risks and low when such constructs were presented in association with other risks. 

Results are tabulated and followed by a mostly narrative synthesis of findings.  

RESULTS: A total of 64 relevant documents were returned by the search, 60 from 

PubMed and four from Web-based ADAMS. Only eight documents were determined to 

be highly relevant (i.e., concerned with radiation risks), four from PubMed and four from 

Web-based ADAMS. Only one of the highly relevant documents reflects an analysis of 
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risk tradeoff, whereas the majority (75%) express a need for forward-thinking 

policymaking that considers countervailing risks.  

CONCLUSIONS: The paradigm for radiation protection policymaking should be 

remade in a manner that looks beyond the perceived immediate benefits of dose-limiting 

regulations, and Risk Tradeoff Analysis provides a logical framework that has benefited 

other public-health related decision making. 

Introduction 

Radiation exposure is a dreaded environmental hazard, with evidence of public 

fears tracing back to atomic bombings that occurred in Japan in 1945 and the media 

reports and Hollywood embellishments that followed (Walker 2000, Jones 2005). The 

reality of the evidence contemplating radiation’s effects on humans, however, is that the 

risks attributable to low, and in particular, very low, levels of ionizing radiation on 

humans are unknown (GAO 2000, Tubiana et al. 2009). Epidemiological studies do not 

have the statistical power needed to describe the dose–response relationship at low doses 

(Suzuki and Yamashita 2012). Moreover, the actual risk remains unknown in the 

presence of data from hundreds of thousands of diverse human subjects that have been 

collected over the better part of a century. That is, the fact that the exact risk remains 

unknown is not because scientists lack data, but because the preponderance of data 

suggest that the risk is so small at low doses that it cannot be discriminated. 

Due in part to the public’s perception of the seriousness of exposure to 

environmental radiation, policymaking is accomplished according to the paradigm that 

any amount of radiation is harmful and should be avoided (Cohen 2002, Calabrese 2013, 

Doss 2013). Because the U.S. framework for policymaking is highly fragmented, 
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multiple federal agencies demonstrate some responsibility for protecting the public from 

radiation (Levi 1946, U.S. Congress 1946, GAO 2000, GPO 2001). The result is a 

patchwork of detailed and rigid radiation protection policies that are largely unrelated to 

each other and do not seek unified health outcomes except to reduce dose to as low a 

level as reasonably achievable.  

An implicit concern of regulatory action is that well-intentioned efforts to reduce 

one risk may cause other adverse health outcomes (Viscusi 1994, Graham and Wiener 

1995). These adverse outcomes are “costs” of the regulatory action. These costs are not 

exclusively financial; rather, they encompass any type of countervailing risk that arises 

(Hofstetter et al. 2002). Whenever the portfolio of risk is changed by an action that 

knowingly or inadvertently generates a countervailing risk (i.e., cost as previous 

described), a risk tradeoff is said to have occurred (Graham and Wiener 1995). 

Thus, policies aimed at reducing dose because any amount of radiation is presumed 

harmful may unknowingly lead to important risk tradeoffs, especially if the risks due to 

radiation are lower than predicted or nonexistent as suggested by contemporary critics 

(Tubiana et al. 2009, Suzuki and Yamashita 2012, Doss 2013). Until the benefits sought 

by dose-limiting regulations are compared against countervailing risks with a suitable 

comparative analysis method, we cannot be sure if such policymaking results in optimal 

health outcomes.  

The pool of possible comparative analysis methods is large. Hofstetter et al. 

examines a variety of popular tools and introduces a subset of methods that provide a 

means of analyzing risk tradeoffs including life cycle assessment, programmatic 

comparative risk assessment, benefit-cost analysis, cost-effectiveness analysis, health-
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health analysis, comparative risk analysis of alternatives, and risk tradeoff analysis 

(RTA)(2002). RTA differs from many of the other methods in that it is explicitly 

proposed as a means of analyzing the effectiveness of decisions designed to reduce risk, 

and not just the financial costs borne by taxpayers, regulated industries, and consumers to 

reduce risk (Graham and Wiener 1995). This unique feature of RTA allows decision 

makers to determine if, at a given financial cost, a policy action optimally minimizes risk 

(Graham and Wiener 1995). As a mechanism for eliminating policy options that are 

clearly not to society’s benefit, one source claimed that a risk-versus-risk analysis is 

superior to approaches that rely on cost-effectiveness, particularly in those contexts 

where there is reluctance to make tradeoffs between monetary costs and health (Viscusi 

1994). 

Agencies populating the U.S. Executive Branch have been required to weigh the 

costs and benefits of any regulatory action since February 1981 when President Reagan 

issued Executive Order 12291 (Presidential Documents 1981, NRC 2017d). That Order 

was replaced (i.e., revoked) by Executive Order 12866 in September 1993 by President 

Clinton, but the new Order maintained a requirement to assess all costs and benefits of 

available regulatory alternatives (Presidential Documents 1993, NRC 2017d). Moreover, 

the Order compelled federal agencies to “select those approaches that maximize net 

benefits (including potential economic, environmental, public health and safety, and other 

advantages; distributive impacts, and equity)” (Presidential Documents 1993). Executive 

Order 12866 was reaffirmed in January 2011 by President Obama and remains relative 

today (Presidential Documents 2011).  
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Due in part to instructions from the Executive Branch, a number of U.S. laws 

require some form of comparative risk assessment. The 1990 Clean Air Act Amendment 

requires the Environmental Protection Agency to assess its efforts to reduce risks and 

report any adverse health or environmental impacts of such actions, including unintended 

consequences (Rascoff and Revesz 2002). The 1996 amendment to the Safe Drinking 

Water Act reflects a similar requirement (Rascoff and Revesz 2002). The Office of 

Management and Budget (OMB), which administers the federal budget and assesses the 

performance of federal agencies, has used RTA in its analysis of federal agency 

policymaking. In one instance, OMB even suspended its review of OSHA rulemaking 

until that agency considered the risk tradeoffs of regulations that would establish 

permissible exposure levels for more than 600 workplace air contaminants (Rascoff and 

Revesz 2002).  

Despite the availability of comparative risk measures, Executive Orders informing 

regulatory reviews for nearly four decades, and consideration of risk tradeoff by other 

agencies, the comprehensive analysis of countervailing risk is not a chief concern of the 

U.S. federal agency tasked with mitigating radiation-induced detriment in humans, the 

Nuclear Regulatory Commission (NRC). NRC maintains that as an independent agency, 

it is not statutorily required to conduct regulatory analysis (NRC 2017d). Instead, NRC 

“voluntarily complies” with Executive Order 12866 through a set of regulatory analysis 

guidelines that demonstrate the agency’s “desire to meet the spirit of Executive Orders 

related to cost-benefit reform and decision-making” (NRC 2017d). 

The methodology NRC uses for estimating and evaluating the risks and benefits 

of any decisions conducted under its jurisdiction are described in its regulatory analysis 
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guidelines, but the attributes examined are changes in radiation exposures which are then 

converted to dollars and summed to obtain the net monetary value (NRC 2017d). The 

guidelines were originally published in 1983 and are updated from time to time, with the 

fifth revision being offered as a “draft for comment” in 2017. The draft guidelines remain 

committed to benefit-cost analysis in dose-converted monetary terms rather than to a 

strategy for weighing radiation versus other risk(s). A main focus of the guidelines 

continues to be an emphasis on Probabilistic Risk Assessment (PRA), an analysis tool 

that examines the monetized population dose that is averted and other economic costs of 

a decision (NRC 2017d). As evidence of the pervasiveness of PRA in the guidelines, the 

term is used 44 times in NRC’s explanation of its regulatory analysis. 

RTA differs considerably from the methodology presented in the NRC’s 

guidelines as it consists of identifying risk tradeoffs, weighing the comparative 

importance of target and countervailing risks, and exploring opportunities to reduce 

overall risk (Graham and Wiener 1995). Thus, RTA is pragmatic in that it seeks to reduce 

overall risk rather than trading one kind of risk for another (Graham and Wiener 1995). 

This study proposes that constructs of RTA are used in a variety of contexts impacting 

public health outcomes and should be considered similarly suitable for examinations of 

radiation protections, particularly if NRC intends to meet the spirit of Executive Orders 

pertaining to regulatory analysis as it claims.  

The objective of this study is to systematically review the literature for qualitative 

evidence that explores the use and suitability of the RTA framework as a means of 

informing U.S. radiation policymaking. A scoping review conforming to PRISMA 
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(Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines is 

intended. To this end, the proposed review will answer the following questions: 

1.  How frequently is risk tradeoff a primary concern in radiation-related research 

indexed in PubMed compared to other public health disciplines (i.e., 

environmental, economic, healthcare, food safety)? 

2. How frequently is risk tradeoff a topic of concern in records the U.S. NRC makes 

available to the public via its web-based database? 

3. For documents identified via the searches accomplished to answer questions 1 and 

2, how are concepts of risk tradeoff described in association with radiation risk? 

Note that although these questions are involved exclusively with concerns of risk 

tradeoff, this study is not intended to discredit other comparative analysis tools, or even 

PRA for that matter. Environmental decision-making is generally associated with 10 

categorically different types of risk, and no framework ideally covers all risk types 

(Hofstetter et al. 2002). Moreover, different levels of decision making (i.e., from micro to 

macro) and dimensions of analysis (i.e., society, environment, and economy) are needed, 

and some tools perform well for one level or dimension but not the others (Hofstetter et 

al. 2002). Thus, the goal of this literature review is not to demonstrate that RTA is better 

than, or a replacement for, other methods of risk analysis as that argument would be 

moot. Instead, this study hypothesizes that RTA should be part of a holistic approach to 

maximally optimize net risk reductions.  

Methods 

Two databases, PubMed and Web-based ADAMS (WBA) were searched 

according to the process depicted in Figure 1 and explained herein. PubMed is an index 
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Figure 1. Data Evaluation Process 
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of more than 28 million citations for biomedical literature from MEDLINE, life science 

journals, and online books (NCBI 2018). WBA is an interface to the NRC official records 

repository, the Agencywide Documents Access and Management System (ADAMS) 

(NRC 2017a). More than 730,000 regulatory guides and reports, inspection reports, NRC 

documents, correspondence, and other regulatory and technical documents and 2 million 

bibliographic citations are searchable via WBA (NRC 2017a). 

Because it is important to the current study to identify literature wherein risk 

tradeoff is a major element, a search using variations of the term “risk tradeoff” was 

conducted with each database. The search terms “risk trade”, “risk trade-”, “risk 

tradeoff”, and “risk tradeoffs” were used and returned 125 documents in PubMed and 245 

documents in WBA. The exclusionary terms “discrete choice experiment”, “patient 

preference”, “predator”, “predators”, and “predation” were used to narrow the results to 

85 and 236 documents, respectively. The searches were conducted on December 7, 2018.  

Titles and abstracts of the remaining documents were scrutinized by the principal 

investigator to determine applicability to the current study. For documents other than 

journal articles, the respective executive summaries, introductions, and conclusions were 

reviewed to garner a sense of content. Documents were rejected if they were (1) printed 

in a language other than English; (2) substantially duplicated in another document, e.g., 

drafts and reprints; (3) concerned with matters other than public health, e.g., technical 

criteria for reactor mechanical equipment; or (4) related to the previously described 

exclusionary terms.  

Surviving documents were examined and coded by the principal investigator 

according to three criteria: (1) target risk, (2) constructs of comparative risk assessment, 
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and (3) relevance to this review. Risks were categorized as (1) radiation, (2) 

environmental, (3) economic, (4) healthcare, (5) food safety, (6) other, or a combination 

thereof; constructs were categorized as (1) risk tradeoff, (2) benefit-cost, (3) life cycle 

impact (4) programmatic risk assessment, or a combination thereof. Relevance is rated 

(1) high when subject or implied risks included radiation and discussions within the 

document inferred constructs of risk tradeoff and (2) low when constructs of risk tradeoff 

are discussed in conjunction with risks other than radiation. These data and the document 

title, author, and year of publication were transcribed into conventional software (i.e., 

Microsoft Excel) by the principal investigator. Where the relevance of the source is coded 

as high, excerpts and major features indicating the manner in which constructs of risk 

tradeoff were used were also recorded.  

Except for counting the number of documents related to each of the risk 

categories (i.e., radiation, environmental, economic, healthcare, and food safety) to 

compare radiation risk against other categories, the data are not suitable for quantitative 

analyses. Instead, a mostly narrative synthesis is used to explore the manner in which risk 

tradeoffs are described in source documents. Excerpts from documents coded as highly 

relevant are tabulated along with title, author(s), and year of the document and the name 

of the database returning the document (i.e., PubMed or WBA). Excerpts are arranged 

from newest to oldest so that the manner in which references to risk tradeoff have 

changed over time is observable. Excerpts are followed by a table indicating major 

features of relevant documents and a narrative synthesis of findings. The narrative is brief 

because the number of sources is small.  
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Results 

The data collected by the search and relevant to this review (i.e., coded “high” or 

“low”) are used to populate Table 1 and provide an indication of the use of risk tradeoff 

in documents available via the two databases. Note that as some documents were 

concerned with multiple disciplines, it is possible that the document is counted more than 

once. For this reason, n is the total number of documents recovered from each database 

rather than the summation of disciplines counted. 

As the table demonstrates, risk tradeoff is a pervasive feature of public health 

literature. The benefits of medicines, treatments, and diagnostic methods are carefully 

compared against risks (Cross et al. 2011, Marchant and Lindor 2012, Brass et al. 2013, 

Evans et al. 2016, Kim et al. 2017, Guk et al. 2018, Reader et al. 2018). Water and air 

quality controls are discussed in terms of risks and benefits (Rabinovici et al. 2004, 

Nevers et al. 2013, Gingerich and Mauter 2017). Risk tradeoffs associated with 

pesticides, mercury, octane, flame-retardants, mycotoxin, and other chemical and 

environmental exposures are investigated (Gray and Hammitt 2000, Murphy et al. 2000, 

Stikkers 2002, Charnley 2003, Wu 2004, van Klaveren and Boon 2009, Shimshack and 

Ward 2010). Hazardous waste cleanup and transportation, the built environment, 

recreational promotions, ecosystem management, fish consumption, disinfectants - even 

helmet laws and the shelf lives of certain foods – are all examined in terms of risk 

tradeoffs (Hammitt et al. 1999, Breslin et al. 2007, Glickman et al. 2007, de Nazelle et al. 

2009, Newbold 2012, Rheinberger and Hammitt 2012, Yang et al. 2012, Crookes et al. 

2013, Stern et al. 2014, Guillou et al. 2016).  
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Table 1. Risk Tradeoff in Primary Sources 

Database n 
Public Health Disciplines Represented 

Radiation Environmental Economic Healthcare Food 
Safety 

PubMed 60 4 38 1 18 2 
WBA 4 4 1 1 0 0 
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Where the relevance of the primary source is coded as high indicating a 

relationship to radiation risk, Table 2 provides excerpts demonstrating the implicit 

manner in which constructs of risk tradeoff analysis are applied, intended, or 

recommended. The tabulated sources are arranged from newest to oldest.  

Finally, Table 3 demonstrates the manner in which concepts of risk tradeoff were 

used in the eight documents that were found to be highly relevant. 

Discussion 

Despite considerations of risk tradeoff across an array of topics important to 

public health, analysis of such tradeoffs is not a pervasive feature of radiation literature as 

this scoping review located only eight documents that anticipated risk tradeoffs when 

investigations contemplate radiation risks. Only one document, the 2015 article by 

Murakami et al., reflects a methodological analysis of risk tradeoff. Overwhelmingly, the 

majority of documents (75%) generally express a need for forward-looking policymaking 

that looks beyond the perceived immediate benefits of dose-limiting regulations in a 

manner that considers countervailing risks (NRC 1985, OMB 2003, Burger et al. 2004, 

Damon 2006, NRC 2008, Agapova et al. 2017). 

Since as early as 1985, NRC has understood that prescriptive policymaking 

interferes with the commission’s ability to make risk-superior decisions (NRC 1985). 

Similarly, U.S. Department of Energy (DOE) was warned in 2004 through research it 

funds that the agency had already spent more than $60 billion on cleanup without 

realizing a reduction in actual health risk because of the number of ecological, temporal, 

and human health tradeoffs involved (Burger et al. 2004). Notwithstanding such findings,  
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Table 2. Key Excerpts from Relevant Primary Sources 
Year Database Authors Title/Topic Excerpts Relative to Risk Tradeoff 
2018 PubMed Murakami M., 

Kumagai A., 
Ohtsuru A. 

Building Risk 
Communication 
Capabilities 
among 
Professionals: 
Seven Essential 
Characteristics 
of Risk 
Communication 

1. "[R]isk communication professionals 
should point out possible risk trade-
off problems to support people’s 
decision-making, if they are not 
aware of them."  

2. "To communicate information on 
risks to people, professionals and 
authorities need to understand that 
there is another quality of risk, rather 
than assuming risk could be 
adequately assessed with statistical 
data."  

3. "Using a narrative of risk trade-offs..., 
we introduce the seven essential 
characteristics required by medical 
professionals and authorities involved 
in risk communication."  

2017 PubMed Agapova M., 
Bresnahan B.W., 
Linnau K.F., 
Garrison L.P. Jr, 
Higashi M., 
Kessler L., 
Devine B. 

Toward a 
Framework for 
Benefit-Risk 
Assessment in 
Diagnostic 
Imaging: 
Identifying 
Scenario-
Specific Criteria 

1. "Diagnostic imaging has many effects 
and there is no common definition of 
value in diagnostic radiology. As 
benefit-risk trade-offs are rarely made 
explicit, it is not clear which 
framework is used in clinical 
guideline development. We describe 
initial steps toward the creation of a 
benefit-risk framework for diagnostic 
radiology."  

2015 PubMed Murakami M., 
Ono K., 
Tsubokura M., 
Nomura S., 
Oikawa T., 
Oka T.,  
Kami M.,  
Oki T. 

Was the Risk 
from Nursing-
Home 
Evacuation after 
the Fukushima 
Accident Higher 
than the 
Radiation Risk? 

1. "The most important points are that 
we need to take evacuation-related 
risk into account together with 
radiation exposure risk, and that we 
need to improve our social system in 
order to mitigate evacuation-related 
risks."  

2. "[C]ompulsory evacuation needs to 
be well balanced with the trade-off 
against radiation risk and in 
consideration of the concept of 
acceptable risk. Comprehensive 
strategies that fully consider both 
radiation risks and evacuation-related 
risks will minimize the overall risk to 
society."  

2008 WBA U.S. NRC Enclosure 1 - 
Risk-Informed 
Decisionmaking 
for Nuclear 
Material and 
Waste  

1. Figure 4.1 of the source document 
conveys a flowchart entitled "Risk 
Assessment Process". One of the 
steps is "Assess changes in risk", and 
in input to that assessment is 
"competing risks". 
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Table 2. Continued 
Year Database Authors Title/Topic Excerpts Relative to Risk Tradeoff 

   Applications 
Revision 1. 

2. "Understanding the risks and their 
trade-offs can only enhance the 
perspective. It is also important to 
communicate the benefits as well as 
the risks of a given situation or 
decision." 

2006 WBA Damon D.R. A Risk-Benefit-
Control 
Paradigm for 
Decision-
Making 

1. "Legitimate activities in society are 
conducted to produce benefits for the 
organizations conducting them. 
However, even a legitimate and 
beneficial activity may have adverse 
impacts (risks) as well. In fact, there 
may be multiple types of both 
positive and adverse impacts, which 
differ among different individuals or 
groups. While it is clear that it is 
desirable to increase benefits and 
reduce risks, the fact is that a given 
action may produce both effects, and 
may affect different persons 
differently. Hence, it is desirable to 
have precision decision-rules and 
principles in order to choose among 
alternative actions."  

2004 PubMed Burger J.,  
Powers C., 
Greenberg M., 
Gochfeld M. 

The Role of 
Risk and Future 
Land Use in 
Cleanup 
Decisions at the 
Department of 
Energy 

1. "[L]inking cleanup decisions and 
goals with the final end state involves 
a number of risk tradeoffs, including 
(1) ecological versus human health, 
(2) worker versus public health, (3) 
among competing contaminated 
areas, (4) among temporal patterns of 
cleanup, (5) among different 
ecological receptors (plants vs. 
animals, one animal vs. another), and 
(6) among the sites across the DOE 
complex. For the nation, balancing 
among risks is essential within sites 
and among Department of Energy 
sites, as well as among other 
remediation sites (such as those of 
Department of Defense and 
Superfund sites)."  

2. "Looking at the current compliance‐
driven program, the DOE top‐to‐
bottom review team asserted that 
'since the program's inception in 
1989, more than $60 billion has been 
spent without a corresponding 
reduction in actual risk.'"  
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Table 2. Continued 
Year Database Authors Title/Topic Excerpts Relative to Risk Tradeoff 

    3. "There is general agreement that 
cleanup and remediation of 
contaminated sites is an important 
and urgent task. However, there is 
less consensus concerning the 
strategy for such cleanup with respect 
to the role of risk to humans and the 
environment, and the impact of future 
land use(s) on cleanup decisions and 
goals."  

4. "[R]isk balancing is required within 
and among sites for a complex such 
as the DOE." 

2003 WBA Office of 
Management and 
Budget 

NRC Pre-Filed 
Hearing Exhibit 
NRC000060, 
Office of 
Management 
and Budget 
Circular A-4, 
"Regulatory 
Analysis" 

1. “[Policy] analysis should look beyond 
the direct benefits and direct costs of 
your rulemaking and consider any 
important ancillary benefits and 
countervailing risks. An ancillary 
benefit is a favorable impact of the 
rule that is typically unrelated or 
secondary to the statutory purpose of 
the rulemaking (e.g., reduced refinery 
emissions due to more stringent fuel 
economy standards for light trucks) 
while a countervailing risk is an 
adverse economic, health, safety, or 
environmental consequence that 
occurs due to a rule and is not already 
accounted for in the direct cost of the 
rule (e.g., adverse safety impacts 
from more stringent fuel-economy 
standards for light trucks)."  

1985 WBA U.S. NRC NUREG-1070 
"NRC Policy on 
Future Reactor 
Designs - 
Decisions on 
Severe Accident 
Issues in 
Nuclear Power 
Plant 
Regulation" 

1. "Forward-looking policy needs to be 
developed in a manner that would 
encourage innovative ways of 
achieving superior safety levels at 
reasonable costs. A highly 
prescriptive set of technical 
performance criteria for functions 
important to severe accident safety 
would have the effect of preventing 
the sort of risk-risk tradeoff decisions 
in plant design that might achieve 
such optimal results."  

2. "The [NRC] staff, in making severe 
accident decisions, will draw from the 
research performed under the aegis of 
the safety goal evaluation program to 
explore safety-cost tradeoffs within 
the framework of permissible risk-
risk tradeoffs."  
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Table 3. Major Features of Relevant Documents 

Feature n Document(s) 
Presents a quantitative analysis of risk tradeoff 1 Murakami et al. 2015 

 
Conveys a need to improve skills and 
approaches for communicating risk tradeoffs  
 

1 Murakami et al. 2018 

Conveys a need to employ a decision 
framework for managing risk tradeoffs 

6 Agapova et al. 2017,  
NRC 2008, Damon 2006, 
Burger et al. 2004,  
OMB 2003, NRC 1985 

  



25 

no evidence was found indicating that either agency had adapted its rulemaking in a 

manner to weigh target risk reductions against increases in countervailing risk(s).  

Two of the eight “highly relevant” articles returned by the PubMed search reflect 

lessons learned from the 2011 disaster at the Fukushima Daiichi nuclear power plant. 

These and other articles examining health outcomes related to evacuation of the 

Fukushima prefecture make the strongest contemporary case for analyzing risk tradeoffs 

in radiation policymaking. Impacted areas were evacuated as a means of avoiding 

radiation exposures of 20 – 100 millisieverts (mSv), an amount commensurate with 

common medical diagnostic procedures, and such evacuations are known to have resulted 

in increased mortalities (Murakami et al. 2015). In one study of nursing home residents, 

the total loss of life expectancy (LLE) due to evacuation-related risks was 11,000 

persons-days whereas the total predicted LLE due to the radiation levels involved was 

several orders of magnitudes less, between 0.11 and 27 persons-days (Murakami et al. 

2015). In other research related to Fukushima Daiichi, more than 1,900 deaths were 

attributed to the physical and mental stresses related to evacuee living by 2015, and five 

years after the accident, more than 100,000 people were still forced to live in temporary 

accommodations (Hayakawa 2016). One source states that “[D]isaster-related deaths are 

undeniably an element of man-made disaster, as these individuals were saved by 

emergency evacuation and subsequently lost their lives due to insufficient measures to 

support them (Hayakawa 2016). Furthermore, “Fear of invisible radioactive 

contamination inactivated [traditional] outdoor activities such as farming, dairy, fishing, 

gardening, hiking and wild-vegetable/mushroom hunting” and “brought serious social 

pains although [the radiation] did not acutely hurt our bodies” (Ishikawa 2013). Although 
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the literature is rich with evidence from Fukushima Daiichi substantiating the need to 

consider the risk tradeoffs associated with managing radiation risks (Murakami et al. 

2015, Hayakawa 2016, Murakami et al. 2018), U.S. policymaking remains concerned 

with keeping radiation exposures as low as possible rather than with utilization of a 

comparative risk measure such as RTA to reduce overall risk. 

Limitations 

 This review only searches two databases whereas searches via numerous other 

databases are possible. As a scoping review was intended, this limitation is by design, 

and PubMed was specifically used because of its popularity among public health 

researchers and professionals. The other database, WBA, is not a collection of peer-

reviewed literature. Rather, it serves as a searchable source of official NRC records 

including guides, reports, technical documents, correspondence, and other regulatory 

information written by NRC staff, contractors, licensees, and other agencies or submitted 

by members of the public (NRC 2017a). In the case of the paper by Dennis Damon, for 

example, the document reflects the author’s submission to the 8th International 

Conference on Probabilistic Safety Assessment and Management (2006). The paper 

contains a common disclaimer indicating that it was prepared by an employee of the NRC 

but does not represent an agreed staff position. Thus, the WBA database represents a 

powerful tool for searching NRC’s official records but not necessarily for discerning 

scientific consensus. Nonetheless, the documents available via WBA are valuable to the 

current study because they demonstrate the depth and manner in which risk tradeoffs are 

considered by the records NRC believes are important enough to share with the public. 
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 By necessity, the search and exclusionary criteria include somewhat generic terms 

that complicated the review and data reduction. For example, the word “risk” enjoys 

bountiful use throughout health and policy literature, and just searching this term returns 

millions of documents. The identification of exclusionary terms was similarly 

problematic, as few exclusions were possible without rejecting the limited number of 

papers pertinent to the current study. Searches relying on and complicated by 

commonplace terms returned a large number documents, making judgement calls on 

relevance challenging. This is particularly true in the case of documents retrieved via 

WBA where less than 2% of the 236 documents remaining after exclusions performed by 

the search engine were found to contain data pertinent to the current study. Nonetheless, 

the data show that risk tradeoff is considered in a variety of public health contexts but not 

usually in a manner that informs radiation policy. The fact that the principal investigator 

was tasked to sort through a large number of documents from WBA was eventually 

considered to benefit this study as many of the rejected documents demonstrated NRC’s 

preference to PRA over comparative risk measures.  

A limitation of Table 1 and the frequencies contained therein is that the data are 

not valuable for resolving outright questions of popularity. For example, the PubMed 

search located 18 healthcare-related items but only four radiation-related articles. 

Because it is reasonable to expect healthcare-related literature to outnumber what is 

published concerning environmental radiation, it would be incorrect to conclude from the 

data that risk tradeoff is a far more popular concern among healthcare researchers than 

persons interested in radiation risk. Moreover, the data do not show how popular RTA is 

compared to other common methods of comparative risk assessment such as benefit-cost 
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analysis. This limitation is accepted because questions of popularity are outside the scope 

of this review.  

Conclusion 

RTA provides a logical framework for examining risk tradeoffs in radiation 

protection, and research specifically examining risk tradeoffs relative to radiation 

policymaking is needed. Nevertheless, strict application of the RTA framework in a 

manner leading to a meaningful estimate of the net change in health due to radiation 

rulemaking remains a complicated endeavor. Risk-risk comparisons across a diverse set 

of health endpoints requires an integrated measure of risk (Gray and Hammitt 2000), and 

while LLE and Quality-Adjusted Life Years (QALYs) are examples of such measures, 

neither is currently suitable for aggregating across all health endpoints. Comparing risk 

versus risk in radiation policymaking is further complicated because the actual effects of 

low and very low doses of radiation remain unknown.  

Nonetheless, research that weighs risk versus risk should not be avoided because 

of such difficulties. Even when presented with incomplete information, weighing risks 

according to magnitude, size of impacted population, certainty of estimates, type of 

adverse outcome, distribution, and timing will move decision-making toward 

optimization of overall risk (Graham and Wiener 1995). Thus, the paradigm for radiation 

policymaking should be remade in a manner that relies on a framework such as RTA to 

consider risk tradeoff. 
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CHAPTER II 
A SOCIAL-COGNITIVE CONCEPTUAL MODEL FOR PREDICTING RISK 

TRADEOFFS IN RADIATION POLICYMAKING 
  



30 

A version of this chapter is being prepared for submission to Health Physics for 

consideration. 

 The student developed the methodology, conducted the study, and drafted the 

manuscript. The student’s Committee reviewed and approved the methodology developed 

by the student and read, provided feedback, and approved the final manuscript. 

Abstract 

OBJECTIVE: To integrate elements of radiation-dose response, risk tradeoff 

analysis, and social cognitive theory into a conceptual model that can be used to explore 

and explain dose-limiting policymaking that occurs as a result of the radiation paradigm.  

METHODS: Seminal literature describing risk tradeoff analysis and moral 

disengagement theory are reviewed. Key constructs from each are presented alongside 

evidence demonstrating the applicability of such constructs to an investigation of 

radiation policymaking. A conceptual model is synthesized that demonstrates how the 

current thinking about radiation is complicated by sources of risk tradeoff and unintended 

behavior in a manner that leads to policymaking that ignores countervailing (non-

radiation) risks. 

RESULTS: Sources of risk tradeoff for which evidence is provided include 

bounded roles, omitted voice, heuristics, old-technology bias, and compensating 

behavior. Behaviors leading to moral disengagement for which evidence is provided 

include moral justification, palliative comparison, euphemistic labeling, displacement of 

responsibility, diffusion of responsibility, minimizing the consequences, dehumanization, 

attribution of blame, and transformative power of moral disengagement. 
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CONCLUSIONS: The integrated model predicts that well-intentioned 

policymakers, informed by the radiation paradigm and facing pervasive sources of risk 

tradeoff, will offer policy solutions that reduce target risk(s) within the policymaker’s 

jurisdiction and ignore countervailing risk(s) outside of that person’s jurisdiction. The net 

result is policies that fail to offer maximum risk protection, and optimal health outcomes 

are not achieved. 

Introduction 

Risk Types and Tradeoffs 

Risk is broadly defined as “the chance of an adverse outcome to human health, 

the quality of life, or the quality of the environment” (Graham and Wiener 1995). 

Specifically, risks include threats of accidents and illness and to material well-being, 

happiness, privacy, mobility, and other intangible aspects of health (Graham and Wiener 

1995). Risks do not present themselves as outcomes in every individual exposed; rather, 

the outcomes are observed according to some probability when an entire population is 

considered. Risk is not explicit to humans, as nonhuman lifeforms can also incur risk and 

often do when environmental factors are involved (Suter II et al. 1995).  

A target risk is the primary focus of a risk-management action (Hofstetter et al. 

2002). Conversely, a countervailing risk is the chance of an adverse outcome that 

presents itself in association with measures aimed at the target risk (Hofstetter et al. 

2002). A risk tradeoff occurs when the portfolio of risk is changed by an action that 

knowingly or inadvertently generates a countervailing risk (Graham and Wiener 1995).  

Risk tradeoff is a normal consequence of everyday decision-making. For example, 

a person at work has weighed the advantages gained from earning that day’s wage and 
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other ancillary benefits of employment against the risk of being injured or killed in a 

traffic accident while commuting to work. Had that person observed degraded traffic 

conditions due to snow or ice when leaving for work, he or she may have decided to stay 

home instead. Just as each person weighs risk versus risk numerous times throughout a 

single day, research examining health and environmental protections demonstrate that 

risk tradeoff is a pervasive feature of policymaking (Graham and Wiener 1995).  

Environmental risk management actions are often investigated in terms of 

countervailing risks, and examples include examinations of chemicals, cleaners, 

pesticides, pollution, traffic accidents, foodborne illness, building codes, and accidents at 

work (Hammitt et al. 1999, Gray and Hammitt 2000, Calandrillo 2001, Kikuchi et al. 

2011, Kishimoto 2013). Some of the nation’s laws require formal analyses as a means of 

assessing and resolving risk tradeoffs; for example, the 1990 Clean Air Act Amendment 

requires the Environmental Protection Agency to assess its efforts to reduce risks and 

report any health or environmental consequences of such actions (Rascoff and Revesz 

2002). Radiation policymaking, however, is accomplished according to the paradigm that 

any amount of radiation is harmful and should be avoided (GAO 2000, NAS 2006). 

Policymaking informed by such a paradigm is understood to lead to important ecological, 

temporal, and human health tradeoffs (Burger et al. 2004).  

The Radiation Paradigm 

Radiation protection recommendations worldwide, and the policies, regulations, 

and regulatory guidance borne from these recommendations, are based on a presumed 

linear-response relationship between radiation dose and cancer risk (Aleta 2009, Doss 

2013). The linear dose-response theory was popularized in the mid-20th century and 
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suggests that if a single radiation interaction with DNA, or theoretical “single-hit”, is 

capable of causing mutagenesis, then more hits would result in proportionally more 

damage (Cohen 2002, Calabrese 2013, Doss 2013). Since the theory is the extrapolation 

of a single-hit, all radiation exposure carries some cancer risk, and there is no threshold 

below which we can consider radiation to be safe (Cohen 2002). Because the theory is 

primarily characterized by a linear relationship between dose and risk and the absence of 

a threshold dose, it is commonly referred to as the linear-no-threshold model, or the LNT 

model.  

Due to the reasonably large number of cancers that occur in the absence of 

radiation, there is no way to precisely determine if a single hit of radiation is what leads 

to oncogenesis (Tubiana et al. 2009). Radiation epidemiology is further complicated by 

the fact that radiation from natural sources including the earth’s crust and solar activity 

bathe us constantly (Tubiana et al. 2009), and it is impossible to discriminate cancers 

caused by natural radiation from those caused by manmade sources. Consequently, at low 

doses of radiation we do not have any conclusive scientific evidence correlating dose to 

adverse health effects (GAO 2000, Tubiana et al. 2009). 

The meaningfulness of the previous sentence is lost unless one understands the 

context in which the term “low dose” is used. According to the National Academy of 

Sciences committee responsible for reporting the health risks from radiation, a low dose 

is defined as a dose below 0.1 sievert (Sv) where Sv is a standard international unit of 

dose equivalence (NAS 2006). While 0.1 Sv is low on the scale of doses received by the 

cohort from which the Academy substantially bases its findings, atomic bomb survivors, 

it is far above what a sensible person would consider a low dose. It is about the same 
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dose a person would expect to receive from 10 whole body CT scans; 1,000 chest x-rays; 

or 10,000 dental x-rays (HPS 2010, NRC 2017b).  

There is generally consensus among scientists that cancer risk increases 

proportionally with acute doses above around 0.1 Sv and protracted doses above around 

0.5 Sv (Tubiana et al. 2009, Vaiserman 2010). Consensus wanes at low doses, however, 

where precise evidence is lacking and the risks may be higher or lower than the linear 

model or reflect a threshold at which no harmful effects are observed (GAO 2000, 

Tubiana et al. 2009, Vaiserman 2010). As a result, the LNT model has competed with 

other models of radiation risk since its inception (Aleta 2009). The alternate models 

usually considered are a higher risk model, a lower risk model, and a threshold model 

(GAO 2000). Some of the threshold models even predict a net benefit at lower doses, and 

the theory that health may be improved by exposures to low levels of radiation is called 

hormesis (GAO 2000, Vaiserman 2010, Doss 2013).  

The reality is that the risks attributable to low levels of radiation on humans are 

unknown. Epidemiological studies do not have the statistical power needed to describe 

the dose–response relationship at low doses (Suzuki and Yamashita 2012). Moreover, 

these risks remain unknown in the presence of data from hundreds of thousands of 

diverse human subjects that have been collected over the better part of a century. That is, 

the unknowingness is not because scientists lack data, but because the preponderance of 

data suggest that the risk is so low that it cannot be discriminated.  

Although precise evidence of low dose effects in humans remains elusive, the 

literature is somehow rich with unyielding support for or against many of the dose-

response models. Faced with conflicting scientific opinion, policymakers are left to 
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decide which model of radiation effects best describes the dose-response and serves the 

public’s interest. Due in part to the public’s perception of the seriousness of exposure to 

environmental radiation, U.S. policymaking is accomplished according to a so-called 

“conservative” approach wherein it is assumed that any amount of radiation causes some 

harm, and adherence to the LNT model is considered such an approach (NAS 1972, 

Walker 2000).  

The aim of public health is improved health outcomes through evidence-based 

practices. Thus, the problem with assuming that the current paradigm is conservative is 

that such a conclusion fails to consider the net effects of radiation policy. That is, if the 

net effect of presumed conservative policies is poorer health outcomes as a consequence 

of other exposures, degradation of the environment, or misappropriation of public funds, 

then such policies fail to serve the public’s best interest and should not be deemed 

conservative. The problem with seemingly conservative models is exacerbated if low 

levels of radiation are actually harmless or beneficial.  

This discussion of the radiation paradigm is not meant to argue for or against any 

of the radiation dose-response models, and those readers seeking evidence regarding 

which model is best should look elsewhere. Rather, an overview of the paradigm and 

criticism is intended as a means of introducing this study aimed at examining the 

policymaking behaviors exhibited as a consequence of aligning decision-making with the 

current dose-response model. 

Predicting Risk Tradeoffs 

In broad terms, the set of tools available for analyzing the risks associated with 

decision alternatives are called comparative risks analysis (Hofstetter et al. 2002). 



36 

Hofstetter et al. examines a variety of environmental assessment tools and introduces a 

subset of methods that (1) are used in comparative analysis, (2) provide a means of 

analyzing risk tradeoffs, and (3) have value where decision-support is needed (rather than 

monitoring-support) (Hofstetter et al. 2002). One of these tools, Risk Tradeoff Analysis 

(RTA, or risk-risk analysis) is particularly well suited to assess countervailing risks that 

arise from actions aimed at mitigating target risks (Viscusi 1994, Hofstetter et al. 2002). 

An advantage of RTA over other methods of comparative risk assessment is that it 

focuses on the risk effects of a policy rather than tradeoffs between financial costs and 

health (Viscusi 1994). Where policy options are clearly not benefiting society, RTA may 

offer greater promise than other approaches (Viscusi 1994).  

It is hypothesized that well-intentioned policymakers, informed by the radiation 

paradigm and facing pervasive sources of risk tradeoff, will offer policy solutions that 

reduce target risk(s) within the policymaker’s jurisdiction and ignore countervailing 

risk(s) outside of that person’s jurisdiction. The net result is policies that fail to offer 

maximum risk protection, and optimal health outcomes are unlikely to be achieved.  

Materials and Methods 

As a means of providing a simple starting point for the current study, a model 

illustrating the concept of ideal policymaking is provided by Figure 2. It is a 

simplification of thinking conveyed by the Health Belief Model, which states in part that 

the actions a person will take to solve a health problem are influenced by their attitudes 

and knowledge (Glanz and Rimer 1997, Glanz et al. 2008). Ideally then, well-intentioned 

policymakers furnished with facts about health outcomes will make decisions that benefit 

the public.  



37 

 

Figure 2. Ideal Policymaking 
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The research of others demonstrates risk tradeoffs from which we can conclude 

that radiation policymaking is not accomplished according to the ideal (Burger et al. 

2004, Murakami et al. 2015, Hayakawa 2016). If we assume that policymakers’ actions 

are well-intentioned, then the simple model shows that conduct leading to less than ideal 

health outcomes must be informed by imperfect knowledge rather than a factual 

understanding of risk. Thus, constructs from RTA and a theory of social cognitive 

behavior, moral disengagement, are used to estimate an integrated conceptual model 

capable of predicting risk tradeoffs in radiation policymaking. First, seminal literature 

describing RTA and moral disengagement theory are reviewed for key constructs, and 

such constructs are demonstrated to be factors influencing radiation policymaking. 

Finally, an integrated model is synthesized. 

Sources of Risk Tradeoff 

The basic decision-making principle of RTA is that when all of the likely 

consequences of a regulation or management option are assessed in terms of their costs 

and benefits, an option presenting the lowest overall risk is selected (Hofstetter et al. 

2002). RTA is pragmatic in that it is concerned with finding risk superior alternatives that 

reduce overall risk rather than trading one kind of risk for another (Graham and Wiener 

1995). In seeking opportunities for risk superior alternatives, it is important to understand 

why risk tradeoffs occur, and according to Graham and Weiner, important sources of 

tradeoffs include bounded roles, omitted voice, heuristics, old-technology bias, and 

compensating behavior (Graham and Wiener 1995).  

Bounded roles are an unfortunate consequence of specialization (Graham and 

Wiener 1995). Structurally, the agencies responsible for mitigating risk are organized into 
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pools of experts that will accomplish decision-making according to their competencies 

and sometimes contrary to the expertise of organizations representing other 

specializations. Countervailing risks are unlikely to respect the functional boundaries 

used to discriminate agency jurisdictions.  

Omitted voice is a concern when affected parties are absent from the decision-

making process (Graham and Wiener 1995). Decision makers are less likely to consider 

countervailing losses and organized interests will enjoy disproportionate influence when 

impacted constituencies are not participating in the dialogue. All parties impacted by 

decision-making should have a voice as a matter of practical ethics, and it is important to 

consider the risks borne by nonhuman life forms, ecosystems, and future generations that 

are unable to advocate for themselves.  

Heuristics are the cognitive tools humans have acquired through evolution to sort 

through vast amounts of information and expedite their decision-making (Graham and 

Wiener 1995). The tendency is to focus on immediate concerns, leaving side effects of 

decisions to be managed later. Via heuristics, recent events or crises are viewed as issues 

requiring a response, even when the risk from repeat or like occurrences may be very 

small.  

Change is difficult, and existing, off-the-shelf technologies and methods are easier 

to come by and garner support around. Where decision-making occurs in space supported 

by influential organizations or industries, it can be difficult to introduce new or 

competing alternatives. In these instances, old technology bias will lead to risk tradeoffs 

(Graham and Wiener 1995).  
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Finally, public health interventions are almost always aimed at influencing 

behavior, and sometimes such influences will lead to unplanned human behavioral 

responses (Graham and Wiener 1995). The target group may not perform the desired 

behavior, or the desired behavior may lead to other unintended behaviors.  

Moral Disengagement Theory  

When discussed as a source of risk tradeoff in the usual sense, behavioral 

responses are the unintended behaviors that negate reductions in the target risk. For 

example, if helmet laws make motorcyclists feel safer, wearers may be more inclined to 

operate their vehicles in a manner that is considered unsafe without a helmet. In addition 

to behavioral responses that are characteristically unplanned, intentional behaviors are 

also important to a discussion of policymaking conducted according to the radiation 

paradigm. Such behaviors are examined herein with a popular social cognitive theory, 

moral disengagement.  

According to Bandura's moral disengagement theory, an individual exhibits moral 

reasoning based on a set of embedded moral standards (2002). This reasoning guides the 

individual in choosing behaviors that reflect such standards and is ultimately linked to his 

or her moral action. That is, because people know right from wrong and are intrinsically 

interested in acting in a moral manner, their behavior is expressed via a self-regulated 

process that prevents violating a set of personally-held moral standards (Bandura 2002).  

Moral disengagement refers to the psycho-social maneuvers that an individual 

uses on oneself in order to bypass these self-regulating influences (Bandura 2002). Such 

tricks allow an alternative set of behaviors to be interpreted as not at odds with one’s 

moral character, including behaviors that would otherwise be deemed reprehensible 
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(Bandura 2002). Behaviors that arise as a result of suppressing normal morality with 

moral disengagement include inhumane conduct and various forms of physical, social, 

and cognitive harm onto others (Bandura 2002). Moral disengagement is characterized by 

constructs that express the practices one uses to accept destructive behavior.  

Moral justification refers to the processes by which harmful conduct is deemed 

justifiable because it serves a moral purpose (Bandura 2002). By rationalizing the 

behavior in such a manner, it becomes personally and socially acceptable. Individuals 

who use moral justification see themselves acting as social or moral agents that are 

benefiting society (Bandura 2002).  

Palliative comparison refers to the cognitive process wherein harmful conduct is 

justified by comparing it against the unacceptable acts it is meant to contradict, prevent, 

or eliminate (Bandura 2002). In advantageous comparison, an action that would 

otherwise be suppressed by moral controls is deemed a righteous retaliatory behavior. An 

example is one violent act justifying another, or “an eye for an eye” (Bandura 2002).  

Euphemistic labeling is accomplished by applying language skills to soften the 

moral response to harmful conduct (Bandura 2002). It includes sanitizing language; for 

example, referring to human beings as “targets” or civilian deaths as “collateral damage” 

in time of war (Bandura 2002). Another euphemistic tool is agentless passive voice, 

wherein reprehensible conduct appears to be the work of nameless forces or inanimate 

objects rather than people (Bandura 2002).  

In displacement of responsibility, an individual minimizes his or her role as an 

agent in the harm that is caused (Bandura 2002). The individual may cast off any 

responsibility for the action if it can be attributed to a group decision, even when the 
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harm comes from a group to which they belong (Bandura 2002). Similarly, an individual 

may claim that they are not responsible for a harmful practice because he or she was not 

the one who authorized it (Bandura 2002). Displacement of responsibility is likely to 

occur when regulatory agencies are divided into groups of specialists and each group is 

assigned to tackle specific risks.  

Diffusion of responsibility refers to the mechanism by which personal agency is 

softened by attributing responsibility to other actors (Bandura 2002). When working in a 

group, individual tasks may be seen as more moral than the collective effort, making it 

easier to align oneself with certain tasks (Bandura 2002). Group decision-making also 

allows individuals to shirk responsibility and blame immoral behavior on others (Bandura 

2002).  

Minimizing, ignoring, or misconstruing the consequences is used to minimize, 

disregard, or distort the impact of one's actions (Bandura 2002). Implementation of such 

practices is easiest in the absence of evidence to the contrary (Bandura 2002). Thus, 

individuals are less likely to be morally restrained when physical or temporal limitations 

prevent them from witnessing the harm that their actions cause (Bandura 2002).  

Dehumanization is used to turn off empathetic reactions that arise from our 

morality (Bandura 2002). By stripping away human qualities from people or dividing 

them into groups that are not like us, it is easier to treat them in a harmful manner 

(Bandura 2002). Other forms of depersonalization, such as stereotyping and name-

calling, are also used to justify immoral action (Bandura 2002).  

Attribution of blame allows people to view themselves as victims (Bandura 2002). 

Consequently, they are driven to behave in a manner that is harmful to others because of 
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perceived compelling circumstances (Bandura 2002). Self-exoneration is realized 

because the harmful conduct is viewed as a protective response rather than a personal 

decision that would require moral control (Bandura 2002). 

People are not instantly transformed into cruel actors (Bandura 2002). 

Transformative power of progressive moral disengagement is the construct by which 

small changes contrary to a person’s moral compass are achieved (Bandura 2002). By 

starting with mildly harmful behaviors and slowly progressing to more harmful ones, 

moral self-restraint is diminished until ruthless acts are possible with little or no remorse 

(Bandura 2002). Through the transformative power of progressive moral disengagement, 

inhumane practices become routine (Bandura 2002). 

Results 

Evidence of Risk Tradeoff and Moral Disengagement 

Table 4 provides examples demonstrating sources of risk tradeoff and behaviors 

of moral disengagement. The examples are not intended to reflect every instance where 

radiation policymaking is undermined. Rather, the table is expected to validate this 

study’s claim that constructs of the subject theories are germane to the resulting 

integrated conceptual model.  

Integrated Conceptual Model 

Figure 3 conveys the model suggested by the current study. A significant 

departure from the ideal model is the manner in which imperfect knowledge, i.e., the 

radiation paradigm complicated by sources of risk tradeoff and moral disengagement, is 

used by policymakers as a suitable approximation of factual risk to enact prescriptive  
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 Table 4. Theoretical Constructs and Examples from Radiation Policymaking 

Theory Construct Evidence 
Risk tradeoff Bounded roles • Bounded roles is a prominent feature of the U.S. regulatory 

framework, with at least the Environmental Protection 
Agency, Nuclear Regulatory Commission, Department of 
Energy, Department of Defense, Department of Health and 
Human Services, Department of Labor, and the Federal 
Emergency Management Agency all demonstrating some 
responsibility for radiation policymaking (EPA 2000).  

• Section 274 of the Atomic Energy Act of 1954 exacerbates 
the matter of bounded roles because it provides the statutory 
basis under which the federal government relinquishes 
portions of its regulatory authority to the states (NRC 2015). 
 

 Omitted voice • Policies through which cleanup criteria are established are 
based entirely on reducing radiation-induced risks to a 
theoretical group of human receptors (NRC 2006), but 
ignore actual radiation risk to ecological receptors and any 
non-radiation-induced risks (NRC 2006).  

• Because U.S. policymaking is accomplished in a framework 
characterized by bounded roles, groups with similar 
expertise will hear from the same actors, share similar 
viewpoints on the seriousness of avoiding the target risk, 
and collectively disregard countervailing risks (Graham and 
Wiener 1995).  

• When efforts are organized in a manner that focuses on a 
singular risk, as in the case of regulations aimed at reducing 
radiation-induced effects, omitted voice ensues because the 
general public is not generally informed enough about the 
countervailing risks to speak up against them (Graham and 
Wiener 1995). 
 

 Heuristics • Decisions to evacuate following the Fukushima Daiichi 
nuclear disaster areas posing little actual radiation risk 
resulted in a large number of countervailing evacuation-
related deaths (Murakami et al. 2015, Hayakawa 2016).  

• The incident at Fukushima Daiichi also caused some 
countries to completely abandon their nuclear energy 
programs amid concerns over similar radiation releases even 
though such programs demonstrated impeccable safety 
records and had supplied clean and reliable energy for 
decades (Moniz 2011).  

• Humans innately accomplish relative risk-ranking according 
to heuristics (Graham and Wiener 1995), and such processes 
align with the assumption that all radiation is harmful and 
should be avoided (Walker 2000).  

• Cancer, DNA lesions, and other mutagenesis are likely to 
rank higher than other risks, particularly in terms of public 
perception, but research shows a tremendous gap exists 
between the public's perception of risk and factual accounts 
of risk (Tonn et al. 1989, Vassie et al. 2005). In one analysis  
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Table 4. Continued 
Theory Construct Evidence 

  • of individual risk belief structures, researchers conclude that 
“the chasm between fact and perception is most notable in 
the case of nuclear power” (Tonn et al. 1989). 

 Old technology 
bias 

• Adherence to “conservative” models of radiation dose 
response in light of a growing body of evidence from 
radiation biology indicating the efficacy of cellular repair 
mechanisms (Tubiana et al. 2009).  

 Human 
behavioral 
responses 

• Nuclear regulations enforce compensating behaviors via a 
policy of maintaining exposures “as low as (is) reasonably 
achievable” or ALARA. This policy requires nuclear 
operators to make every reasonable effort to maintain 
exposures to ionizing radiation as far below the dose limits 
as practical, which over time has resulted in acceptance of 
actions that pile conservatisms on top of other conservatisms 
(GAO 2000, Walker 2000, Jones 2005). 
 

Moral 
disengagement 

Moral 
justification 

• Rulemaking accomplished according to the radiation 
paradigm is routinely defended as “conservative” when such 
policies may not result in an actual reduction in risk (GAO 
2000, Burger et al. 2004). 
 

 Palliative 
comparison 

• The target risk of dose-limiting regulations is cancer; thus, it 
is easy to support compelling actions to the contrary.  

• Radiation’s effects are often exaggerated (Walker 2000), 
and actors leveraging such embellishments are likely to 
accomplish even more advantageous comparisons. 
 

 Euphemistic 
labeling 

• The two major dose limits of the Nuclear Regulatory 
Commission are its “occupational dose limits” (NRC 2018c) 
and “dose limits for individual members of the public” 
(NRC 2018d). The former apply to nuclear workers, and the 
latter apply to everyone else. This terminology serves to 
separate workers from the rest of the public. What is not 
immediately obvious is that working at the occupational 
limit would put workers at 50 times the risk of developing a 
solid cancer as would working at the public limit.  
 

 Displacement of 
responsibility 

• Nuclear policymakers are tasked to reduce the risks from 
radiation hazards, and other agencies are responsible for 
managing the countervailing risks posed by their decision-
making 
 

 Diffusion of 
responsibility 

• In a response to the U.S. Government Accountability Office 
regarding uncertainties in risk estimates at low doses of 
radiation, the Environmental Protection Agency claimed 
“Until the evidence suggests otherwise, EPA is simply 
following the consensus of scientific organizations in 
continuing to use the LNT model to estimate risks” (GAO 
2000). 
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Table 4. Continued 
Theory Construct Evidence 

 Minimize, 
ignore, or 
disregard 
consequences 

• Nuclear policymakers disregard consequences when they 
fail to consider the countervailing risks posed by their 
decisions because of jurisdictional boundaries.  

• Cleanup of former nuclear sites is associated with important 
and possibly irreversible ecological risks, and since 
ecological systems cannot speak for themselves, it is easier 
to disregard such risks (EPA 1978, Burger et al. 2007). 
 

 Dehumanization • Regulatory dose limits depend upon whether one is a worker 
or member of the general public, with the former allowed to 
received 50 times more dose in any given year than the latter 
(NRC 2018c, NRC 2018d). Workers may be our friends, 
neighbors, and family members, but separating them under a 
worker label makes it easier to accept that that they are due 
50 times more risk. When the public is divided into two 
groups, nuclear workers and everyone else, it becomes 
easier to garner support for policies that put one group at 
greater risk than the other.  
 

 Attribution of 
blame 

• Members of the public who live near nuclear power plants 
or other potential source of environmental radiation may see 
themselves as victims of big business or uninterested 
governments (Walker 2000). Consequently, they may put 
pressures on decision makers to implement increasing 
restrictive regulations to protect them from radiation, even 
when such regulations may be transferring risks elsewhere 
or onto other groups. 
 

 Transformative 
power of moral 
disengagement 

• Decision makers are practicing transformative power of 
progressive moral disengagement when they disagree with 
the premise of the LNT model but support it anyway as 
mechanism for conservative policymaking because it has 
worked for them in the past. 
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Figure 3. Conceptual Model 
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dose-limiting regulations. The dotted line in the model represents an impasse defined by 

jurisdictional boundaries where autonomous action is not practiced to minimize the 

countervailing risks that arise. The model also suggests that as conduct leading to 

policymaking is practiced, a transforming effect is observed that makes such conduct 

easier to repeat. This reciprocal effect is predicted by the construct transformative power 

of progressive moral disengagement that is inherent to Bandura’s theory.  

Discussion 

The research of others demonstrates that prescriptive policymaking accomplished 

according to the radiation paradigm leads to risk tradeoffs that offset target risk 

reductions. For example, in a Department of Energy funded study linking cleanup 

decisions and risk tradeoffs, Burger et al. cite that in the 12 year period spanning 1989 to 

2001, the Department’s own review team had determined that its environmental 

management program had spent more than $60 billion without a corresponding reduction 

in actual risk (Burger et al. 2004). In other contemporary research, decisions to evacuate 

the Japanese prefecture surrounding the 2011 Fukushima Daiichi reactor accident are 

linked to increased mortality (Murakami et al. 2015, Hayakawa 2016). Evacuations that 

were undertaken to avoid radiation dose on the order of 0.02 mSv, a level commensurate 

with routine medical diagnostic procedures, are believed to have caused more than 1,900 

deaths from evacuation-related social stresses (Hayakawa 2016). “[D]isaster-related 

deaths are undeniably an element of man-made disaster”, the authors of one article claim, 

“as these individuals were saved by emergency evacuation and subsequently lost their 

lives due to insufficient measures to support them” (Hayakawa 2016). Such outcomes are 
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possible because decision makers have become accustomed to accomplishing radiation 

policymaking in a manner that ignores countervailing risk. This is the real value of the  

model predicted by the current study - the evidence-based understanding it provides of 

the cognitive and behavioral factors that lead policymakers to accept the side effects of 

their rulemaking.  

A key limitation of the current study is that it provides little more than an 

introduction of risk tradeoff in a radiation-policy context. It is hoped that by 

demonstrating this model, a case is made for research and subsequent actions that will 

move the model’s dotted boundary down and to the right in a manner that brings 

countervailing risks into the purview of policymakers. A follow-on analysis of existing 

dose-limiting regulations with RTA is an opportunity to do so, as the framework RTA 

reflects is intended to shift the decision paradigm from one that concentrates solely at 

reducing target risk to one that seeks a reduction across the entire portfolio of risks 

(Graham and Wiener 1995). 

In its consideration of target, countervailing, and coincident risk, RTA seeks to 

determine the specific set of circumstances representing a “risk protection frontier” at 

which an increase in protection against one risk means a decrease in protection against 

the other risk when available interventions are maximally and effectively applied 

(Graham and Wiener 1995). Along this frontier, risk tradeoff occurs and efforts expended 

to increase protection against the target risk lead to lesser protection against 

countervailing risk and vice versa. At the risk protection frontier, maximum risk 

protection is achieved with the resources at hand, and “risk superior” alternatives that 

reduce overall risk are needed rather than continued pressures from actions that only 
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trade one risk for another (Graham and Wiener 1995). In application, there may be 

multiple countervailing risks to consider, so it is useful to consider the risk protection 

frontier as operating in a numerous directions (Graham and Wiener 1995).  

RTA has been used to assess a variety of health and environmental risks 

(Hammitt et al. 1999, Gray and Hammitt 2000, Calandrillo 2001, Kikuchi et al. 2011, 

Kishimoto 2013), but in terms of tradeoffs caused by policymaking that protects the 

public from radioactive hazards, the literature is silent. Instead, contemporary research 

informing the field of radiation protection seems overwhelmingly set on target-risk 

reductions and resolving which of the dose-response models best predicts the association 

between low-level radiation and cancer incidence. Policies that continue to ignore 

countervailing risks will not achieve maximum protection along the risk protection 

frontier. Such policies represent a systematic failure to see the “whole patient”, where the 

term “patient” implies the person, population, ecosystem, or combination thereof 

impacted by the intervention (Graham and Wiener 1995).  

Society agrees to regulations under the premise that such regulations are issued in 

society's best interest, and where a regulation will do more harm than good, it should not 

be pursued, irrespective of its benefit to a singular risk and apart from any political 

motivation (Viscusi 1994). Consequently, research is needed that seeks to determine the 

net effect of radiation policymaking. For example, research by others connects 

environmental cleanup activities and risk tradeoffs (Burger et al. 2004, Burger et al. 

2007), but the connections are yet to be well quantified due to a lack of comparable risk 

measures. Risk occurs across a diverse set of health endpoints, and a suitable measure for 

aggregating across all endpoints is difficult to define (Gray and Hammitt 2000). 
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Comparing radiation’s risks against other risks is further complicated because the actual 

effects of low doses of radiation are unknown and may remain so for the foreseeable 

future. Thus, continued research into risk comparison measures and the effects of low 

dose radiation are also needed. 

Conclusion 

Absent a completely factual understanding of the radiation-induced health effects 

attributable to low-dose radiation, policymakers are left to decide which model of 

presumed effects best serves the interests of the public. Contemporary policymaking is 

accomplished according to the paradigm that any amount of radiation dose is harmful, a 

premise that some claim will lead to risk tradeoffs because it ignores research from 

radiation biology demonstrating cellular repair and the harmful effects of overregulation. 

Although risk tradeoff is understood to be a pervasive feature of health and 

environmental policymaking, the extent to which radiation rulemaking results in 

countervailing risks is not well researched. It seems clear from at least an exploratory 

analysis with popular methods of comparative risk assessment and social cognitive theory 

that radiation policymaking is complicated by certain social and behavioral phenomenon 

that are known to lead to risk tradeoffs. Because of these findings, research 

demonstrating the net health effect of radiation rulemaking is needed to determine if a 

shift in the policymaking paradigm is substantiated. As the integrated model predicted by 

this study demonstrates, an appropriate paradigm shift would push countervailing risks 

into the purview of decision makers. Doing so would upset many of the sources of risk 

tradeoff and lead toward risk-superior rulemaking, even in the face of ongoing 

uncertainty related to radiation’s low-dose effects. 
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CHAPTER III 
A CRITIQUE OF U.S. LOW-LEVEL RADIOACTIVE WASTE POLICY USING 

DATA FROM CYCLOTRON DECOMMISSIONING PROJECTS 
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consideration 
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by the student and read, provided feedback, and approved the final manuscript. 

Abstract 

OBJECTIVE: This study makes a case for parity in U.S. radioactive waste 

policymaking by presenting and interpreting data from cyclotron decommissioning 

projects.  

METHODS: Records from 11 cyclotron sites previously decommissioned provide 

data conveying the characteristics of residual radioactivity in concrete bioshielding. The 

dose potential associated with concrete from each site is determined with the RESRAD-

BUILD computer code. The resulting doses are (1) compared against the U.S. Nuclear 

Regulatory Commission’s radiological criteria for unrestricted use and (2) translated into 

population-risk by applying popular risk estimates from the National Research Council of 

the National Academy of Sciences. Other data to help frame the concern regarding waste 

from these projects are presented, including an estimate of the waste volume generated by 

each site. 

RESULTS: Calculated dose equivalents ranged from 0.01 to 43.2 mSv y-1 and 

correspond to a risk of 0.1 to 432 extra cases of solid cancer or leukemia per 100,000 

persons. Waste from nine of the sites (82%) exceeds the 0.25 mSv y-1 dose limit specified 

in the U.S. Nuclear Regulatory Commission’s radiological criteria for unrestricted use. 
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CONCLUSION: According to an international inventory, approximately 350 

cyclotrons were believed to be operating worldwide in 2006. These sites do not operate 

forever, and when they are vacated, decommissioning activities including remediation 

and demolition are used to make them safe for reuse. These activities generate waste that 

is not regulated as low-level radioactive waste according to U.S. policy, but would be if 

generated at a reactor site instead of by a cyclotron.  

Introduction 

Cyclotrons are particle accelerators; they use electromagnetic forces to propel 

subatomic particles. The particles are accelerated as a means of achieving a desirable 

increase in energy, and the energized particles are bombarded against select targets. 

Desirable nuclear transformations are caused in target materials when the incoming beam 

of particles, usually protons or deuterons, displaces other subatomic particles. Neutrons 

that are ejected from incident nuclei go on to cause unintended nuclear transformations in 

other materials, including those comprising the building structure, the cyclotron, and 

ancillary support equipment. The materials impinged by neutrons become radioactive in 

the process. Since the particle beam is not perfectly efficient, any losses (i.e., stray 

particles) will cause similar transformations and induced radioactivity in whatever 

adjacent materials are impacted.  

Cyclotrons and the facilities in which they are used do not operate indefinitely, 

and when such facilities are vacated, cleanup activities are accomplished including 

remediation and demolition. The term “decommissioning” is used to describe these and 

other activities that are enacted to reduce residual radioactivity and make the site safe for 
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reuse (NRC 2018a). Activities comprising the decommissioning process generate 

radioactive waste material that the public expects to have managed in its best interest.  

In a 2018 critique of U.S. nuclear waste policymaking, data were presented to 

demonstrate the similarities between wastes from one reactor and two cyclotron sites 

(Hansen 2018). The data in that critique were comprised of radioisotopic activity 

concentrations in concrete bioshielding, and were used to show how wastes from three 

sites presenting virtually identical radiological hazards were regulated in a manner 

leading to very different long-term management solutions. The calculated dose 

equivalents from residual radioactivity in concrete were 2.75 millisieverts per year (mSv 

y-1) for the reactor site and 0.778 and 4.91 mSv y-1 for the cyclotron sites (Hansen 2018). 

The corresponding overall risk of solid cancer or leukemia across all three sites was 8 to 

50 extra cases per 100,000 persons (Hansen 2018).  

Dose calculations in the previous study were based on pathway analysis using the 

RESRAD-BUILD computer code. The code was developed by Argonne National 

Laboratory for the U.S. Department of Energy and is specifically designed to analyze 

human radiation exposures resulting from occupation of radiologically contaminated 

building (Resrad.evs.anl.gov n.d.). RESRAD-BUILD is additionally approved by the 

U.S. Nuclear Regulatory Commission (NRC) for use in evaluating contaminated 

buildings that will be decommissioned and released from regulatory control 

(Resrad.evs.anl.gov n.d.). The dose outputs from RESRAD-BUILD were translated to 

risk with estimates published by the National Research Council of the National Academy 

of Sciences. A limitation of the previous study is that because it was intended to serve as 

an exploratory analysis, it only examined wastes from two cyclotron sites (Hansen 2018). 
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Moreover, although the data were assumed to reflect typical activity concentrations, the 

sites were selected as a matter of convenience rather than according to a specific 

methodology.  

The current study aims to improve upon conclusions from previous research by 

examining data from 11 cyclotron closeouts accomplished by an NRC-licensed 

decontamination and decommissioning firm, Ameriphysics, LLC (Ameriphysics). This 

previously unpublished dataset summarizing Ameriphysics’ commercial experience is 

important as it reflects post shutdown radiological data from a variety of uniquely 

configured, operated, and located cyclotron facilities.  

Radioactive Waste Disposal Regulations 

The Energy Reorganization Act of 1974 transferred federal responsibility for 

regulating commercially generated U.S. radioactive wastes onto the NRC (NRC 2015). 

How the NRC regulates waste is determined by which of four broad classifications it falls 

into. Categories include high-level waste, low-level waste, uranium mill tailings, and 

waste incidental to reprocessing, where the latter refers to certain waste that results from 

reprocessing spent nuclear fuel (NRC 2017c).  

Regulations pertaining to disposal of high-level radioactive waste are found in 10 

CFR §§ 60 and 63. These wastes are irradiated reactor fuel, waste resulting from 

reprocessing irradiated reactor fuel, and other highly radioactive waste that require 

permanent isolation. These wastes are intended to be disposed in a facility that is part of a 

geologic repository. In its Nuclear Waste Policy Act of 1982, the U.S. Congress outlined 

a plan for managing high-level waste (NRC 2015).  
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Regulations pertaining to the licensing requirements for land disposal of low-level 

radioactive waste are found in 10 CFR § 61. Low-level waste is radioactive waste that is 

not classified as high-level waste, transuranic waste, spent nuclear fuel, or certain 

byproduct materials (NRC 2018g). Disposal of low-level waste occurs at or near the 

ground’s surface. Consequently, these wastes are “classed” according to 10 CFR § 61.55 

(NRC 2018h). Class A low-level waste is the most innocuous of the classifications, and it 

is waste that does not require stabilization or segregation (NRC 2018h). Class B low-

level waste presents a greater hazard than Class A and must be structurally stable (NRC 

2018h). Class C low-level waste presents a greater hazard than Class B, and requires both 

structural stability and measures at the disposal facility to protect against inadvertent 

intrusion (NRC 2018h).  

Waste that is greater than Class C is not acceptable for near-surface disposal and 

must be disposed in a geologic repository designed for high-level waste (NRC 2018h). 

According to the Nuclear Waste Policy Act of 1982, the U.S. Department of Energy is 

responsible for siting, constructing, and operating such repositories, and the NRC is 

responsible approving or disapproving applications to construct, license, and close them 

(NRC 2015).  

Certain byproduct materials are not regulated as either high-level or low-level 

waste. These materials are defined in 10 CFR § 20.1003 and include mill tailings from 

uranium or thorium ore, discrete sources of 226Ra, material that has been made 

radioactive by use of a particle accelerator, and other discrete sources of naturally 

occurring radioactive material other than source material (NRC 2018a). Disposal of these 
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materials is not regulated except at the state-level and then only when the state chooses to 

do so. 

Cyclotron Waste and Prevailing U.S. Radioactive Waste Policy 

According to the definition of waste used throughout the rulemaking promulgated 

by the NRC, any material that has been made radioactive by use of a particle accelerator 

is exempted from the regulations pertaining to radioactive waste (NRC 2018a, NRC 

2018g, NRC 2018f). Since cyclotrons are particle accelerators, their waste need not be 

disposed in the same manner as waste generated at reactor facilities, even though such 

wastes may be indistinguishable in terms of radiological content and corresponding 

health risk. Meanwhile, according to the rules of other federal agencies, specifically the 

U.S. Department of Labor (via the Occupational Safety and Health Administration) and 

the U.S. Department of Transportation, radioactive materials are regulated according to 

the severity of the hazard they present (Hansen 2018). That is, it seems wastes are 

regulated by the NRC according to the type of site responsible for generating the hazard, 

whereas other agencies regulate radioactive material according to its radionuclide-

specific concentration and potential for adverse health risk (DOT 2008, DOL 2018a). 

According to an inventory published by the International Atomic Energy Agency 

(IAEA), approximately 350 cyclotrons were believed to be operating worldwide in 2006 

(2006a). These sites will eventually close, and with such a large number of closures 

looming, the value of the current study is that it provides an opportunity to make a mostly 

prospective examination of the health risks associated with continuing to dispose of 

cyclotrons according to exiting U.S. policies and resulting regulations.  
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U.S. radioactive waste policies are public health policies. A principal goal of 

public health is to seek out and eliminate disparities, or situations where health outcomes 

are expected to be observed in a greater or lesser extent between populations 

(Healthypeople.gov 2018). Where some wastes are controlled with regulations in manner 

that minimizes public exposures and other wastes presenting the same health risk are not, 

an examination of disparity is warranted.  

This study is not a call for more or less regulation; rather, it proposes that U.S. 

radioactive waste policies intended to benefit the public’s health should be risk-based. If 

cyclotron decommissioning waste presents a risk commensurate with other material 

classed as low-level radioactive waste, then the same rules for disposal should apply, 

regardless of whether those rules result in more or less regulation for waste from a 

specific group of licensees. That is, either stricter rules for cyclotron waste or fewer rules 

for low-level waste from reactor sites and other material licensees would resolve existing 

disparities.  

Materials and Methods 

Description of Data  

Ameriphysics has completed 25 projects requiring some form of cyclotron 

removal, replacement, or dispositioning since the firm’s inception in 2008 until the 

present day. Because these projects were accomplished for purposes other than a critique 

of U.S. nuclear policymaking, not all of these projects were expected to provide robust 

quantitative data from which meaningful side-by-side comparisons are possible. 

Nonetheless, the records from all 25 sites were reviewed and scrutinized, and ultimately, 

data of sufficient quality was recovered from 11 projects for this study.  
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Similarly, the nature of the projects conducted by Ameriphysics constrain any 

robust analysis to investigations of concrete. The rooms in which cyclotrons are housed 

are constructed of concrete, and these concrete “vaults” serve as bioshields by attenuating 

the neutron and gamma radiations that are observed during operation. The bioshields are 

often characterized with robust methods as a means of demonstrating that the area is 

suitable for some other use or release from radiological control. In such instances, 

samples of known geometry are collected and controlled in accordance with strict quality 

procedures. The samples are subsequently prepared and analyzed by an accredited 

radiochemical laboratory. In contrast, only those concise data necessary to achieve site-

specific objectives were usually collected from the radioactive equipment used or kept 

inside the bioshielding. For example, analogous comparison is sometimes used to 

estimate the source term of the cyclotron and ancillary support equipment. Although such 

estimates provide a suitable means for accomplishing site activities related to closeout, 

they are not sufficiently rigorous for comparative analysis. That is, if the data from one 

site are used to predict the data from another site in lieu of a separate collection activity, 

erroneous conclusions are possible.  

Certain circumstances related to the collection and analysis of concrete samples 

remain site specific. Samples from different sites are analyzed by different contract 

laboratories. Those laboratories sometimes base their analyses on customer-defined 

libraries, and other times they use their own. Consequently, laboratory reports are rarely 

identical in terms of the search criteria they reflect. Nonetheless, the data are valuable to 

a study examining waste policy as they convey principal contaminants, isotopic 

concentrations, and uncertainty. 
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Site Specification 

The 25 projects reflecting the entire commercial cyclotron experience of 

Ameriphysics were reviewed for evidence indicating that the scope included activities 

leading to concrete characterization, remediation, and waste management. In 10 of the 25 

cyclotron projects, the situation defining the work was such that bioshielding was not 

sampled; for example, if the room was to be reused for radioactive material storage, 

closeout sampling was unnecessary. Concrete characterization data from the remaining 

15 projects were examined to determine the representativeness of results. That is, 

operational concerns sometimes interfere with implementation of an ideal sampling 

strategy, as in the case of sites where the cyclotron cannot be removed prior to room 

characterization. In such instances, samples may not be retrieved from beneath or behind 

the machine where significant neutron activation is possible due to beam losses, and the 

missing data would potentially lead to lower dose estimates and biased conclusions. Four 

of the remaining 15 projects were impacted by such concerns of validity, leaving 11 of 

the originally identified 25 projects to contribute data to the analysis. Thus, in terms of 

high quality data relevant to the current study, these 11 projects are considered to reflect 

the entirety of Ameriphysics’ cyclotron decommissioning experience (i.e., no high 

quality cases are omitted). 

Data Compilation, Transformation, and Analysis  

Data pertinent to the current study – principal contaminants, activity 

concentration, and uncertainty - are extracted from radiochemical laboratory reports and 

summarized herein. The laboratory reports are owned by Ameriphysics, but the analyses 

themselves were carried out by subcontract laboratories. Because of inter- and intra-
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laboratory differences in how the data were reported, the compiled data are not a strict 

repetition of primary data sources. Rather, the radionuclides detected in any of the 

samples were listed in the leftmost column, and the resulting matrix of site versus 

radionuclide was populated with data from the laboratory reports. Consequently, the table 

demonstrates instances where the radionuclide was not detected (ND) or reported (NR) 

where the latter reflects missing data. The cyclotron make and model are included atop 

each column of data, but the site owner and location are intentionally unidentified and 

remain so throughout this analysis as a measure of confidentiality. 

The characterization strategy and therefore the number of samples differed from 

site to site based on project-specific objectives. As an objective of examining 

radioisotopic data in this study is to make a decision as to whether residual radioactivity 

is present in excess of the NRC’s radiological criteria for unrestricted use (10 CFR § 

20.1402), the sample from each site reflecting the highest cumulative activity is used. The 

purpose of examining maximum concentrations is not to decide which cyclotron-type 

poses the most risk as the data are not valuable or comparable in that manner. Rather, the 

value of the data is that it can be used to decide (1) if cyclotron sites are impacted by the 

same contaminants, (2) if such contaminants are the same as expected from reactor sites, 

and (3) if remediation is needed to meet the usual federal regulatory criterion that allows 

release from radiological controls. 

As a means of transforming the data in a manner that benefits a critique of 

policymaking, the RESRAD-BUILD computer code is used to compute dose equivalent, 

and the resulting dose is compared against the NRC’s cleanup standard and translated to 

cancer risk using popular estimates published by the National Research Council of the 
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National Academy of Sciences. Project records were also searched for other data to help 

frame the concern regarding waste from cyclotron decommissioning projects, including 

an estimate of the waste volume attributed to each site and factors impacting waste 

volume. 

Results 

Concrete Radiological Data 

Data from analytical laboratory reports showing residual radioactivity 

concentration in 5 cm diameter x 15 cm deep (nominal) concrete core samples are used to 

populate Table 5 for Sites 1 through 11. The data must be considered in context; else, 

they do not seem to demonstrate that the sites are impacted by the same contaminants. 

The CS-22 cyclotron operated at Site 4, for example, was shut down in 2000, almost 12 

years prior to characterization. Thus, it is reasonable that contaminants exhibiting a half-

life of a few years or less have decayed to negligible levels. The characterization sample 

from Site 10 did not return detectable concentrations of 154Eu, but this contaminant is 

only expected to be present in small concentrations relative to 60Co and 152Eu, as 

demonstrated by the other site operating a Siemens Eclipse, Site 2. Finally, 55Fe and 3H 

were not reported for any except two sites, but that is because the teams characterizing 

the sites assumed the results would be negligible in terms of dose based on measurements 

acquired during operation. Given these factors and the relative magnitude of each 

radionuclide in individual samples, the concrete waste from cyclotron sites is considered 

to be impacted primarily by long-lived 60Co, 152Eu, and 154Eu.  
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Table 5. Radiological Data by Facility 
Isotope Activity in Bq g-1 (2 Sigma Uncertainty) or ND and MDC Value when < MDC 

Half-Life 
(ICRP 2008) 

Site 1: 
GE 

MINItrace 

Site 2: 
Siemens 
Eclipse 

Site 3: 
IBA 

Cyclone 30 

Site 4: 
Cyclotron 

Corp. CS-22 

Site 5: 
GE  

PETtrace 

Site 6: 
Custom  

Unit 

Site 7: 
IBA  

Cyclone 30 

Site 8: 
GE 

PETtrace 

Site 9: 
GE 

PETtrace 

Site 10: 
Siemens 
Eclipse 

Site 11:  
Scanditronix 

MC-40 
108mAg NR NR NR NR 1.70 x 10-1 NR ND ND ND ND ND 
418 y         (4.26 x 10-2)   < 3.16 x 10-3 < 7.07 x 10-3 < 8.07 x 10-3 < 2.27 x 10-3 < 3.89 x 10-3 
109Cd NR NR NR NR 6.62 x 10-1 NR ND ND ND ND ND 

461.4 d     (3.44 x 10-1)  < 8.07 x 10-2 < 1.45x 10-1 < 1.97 x 10-1 < 4.92 x 10-2 < 8.99 x 10-3 
57Co NR 6.99 x 10-2 NR NR 1.97 x 10-1 NR ND ND ND ND ND 

271.74 d   (2.21 x 10-3)     (1.80 x 10-1)   < 9.77 x 10-3 < 5.18 x 10-3 < 2.97 x 10-2 < 1.67 x 10-3 < 1.39 x 10-2 
58Co ND ND 7.15 x 100 NR ND ND ND ND ND ND ND 

70.86 d < 5.85 x 10-4 < 3.53 x 10-3 (6.14 x 10-2)   < 6.25 x 10-2 < 1.29 x 10-2 < 5.00 x 10-3 < 1.15 x 10-2 < 1.34 x 10-2 < 3.66 x 10-3 < 6.22 x 10-3 
60Co 5.33 x 10-3 2.41 x 10-1 1.04 x 101 5.37 x 100 7.96 x 100 2.00 x 100 1.88 x 10-1 4.48 x 10-1 6.70 x 10-1 8.81 x 10-2 4.51 x 10-2 

5.2713 y (1.24 x 10-3) (5.77 x 10-3) (6.11 x 10-2) (9.77 x 10-3) (6.11 x 10-1) (1.90 x 10-2) (7.59 x 10-3) (1.82 x 10-2) (2.15 x 10-2) (5.74 x 10-3) (6.44 x 10-3) 
134Cs ND 3.04 x 10-2 2.29 x 100 NR 3.30 x 10-1 4.07 x 10-1 1.49 x 10-2 9.07 x 10-2 2.48 x 10-2 1.43 x 10-2 ND 

2.0648 y < 6.92 x 10-4 (4.26 x 10-3) (4.55 x 10-2)   (4.22 x 10-2) (1.05 x 10-2) (4.81 x 10-3) (1.27 x 10-2) (1.46 x 10-2) (4.74 x 10-3) < 6.36 x 10-3 
152Eu 8.81 x 10-3 2.30 x 10-1 4.74 x 101 1.03 x 101 8.29 x 100 1.84 x 100 7.84 x 10-1 8.55 x 10-1 3.60 x 100 1.61 x 10-1 6.03 x 10-1 

13.537 y (3.81 x 10-3) (9.62 x 10-3) (1.86 x 10-1) (3.03 x 10-1) (5.14 x 10-1) (3.33 x 10-2) (2.04 x 10-2) (3.92 x 10-2) (6.55 x 10-2) (1.36 x 10-2) (2.81 x 10-2) 
154Eu ND 3.17 x 10-2 5.07 x 100 7.22 x 10-1 7.55 x 10-1 3.81 x 10-1 8.14 x 10-2 1.09 x 10-1 4.40 x 10-1 ND 3.13 x 10-2 

8.593 y < 2.49 x 10-3 (4.44 x 10-3) (1.44 x 10-1) (1.34 x 10-2) (9.81 x 10-2) (3.45 x 10-2) (1.16 x 10-2) (2.57 x 10-2) (3.51 x 10-2) < 1.30 x 10-2 (1.53 x 10-2) 
155Eu ND NR 1.94 x 10-1 NR 3.26 x 10-1 ND ND ND ND ND ND 

4.7611 y < 2.76 x 10-3   (1.09 x 10-1)   (7.22 x 10-2) < 3.39 x 10-2 < 1.22 x 10-2 < 2.21 x 10-2 < 3.10 x 10-2 < 7.18 x 10-3 < 1.36 x 10-2 
55Fe NR NR NR NR NR NR 2.10 x 100 NR NR NR ND 

2.737 y             (3.53 x 10-1)       < 4.18 x 10-1 
59Fe ND ND 3.51 x 10-1 NR 1.23 x 100 ND ND 2.12 x 10-2 ND 4.85 x 10-2 ND 

44.495 d < 1.46 x 10-3 < 7.14 x 10-3 (9.69 x 10-2)   (1.12 x 10-1) < 2.68 x 10-2 < 9.07 x 10-3 (1.99 x 10-2) < 2.28 x 10-2 (1.02 x 10-2) < 1.13 x 10-2 
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Table 5. Continued 
Isotope Activity in Bq g-1 (2 Sigma Uncertainty) or ND and MDC Value when < MDC 

Half-Life 
(ICRP 2008) 

Site 1: 
GE 

MINItrace 

Site 2: 
Siemens 
Eclipse 

Site 3: 
IBA 

Cyclone 30 

Site 4: 
Cyclotron 

Corp. CS-22 

Site 5: 
GE  

PETtrace 

Site 6: 
Custom  

Unit 

Site 7: 
IBA  

Cyclone 30 

Site 8: 
GE 

PETtrace 

Site 9: 
GE 

PETtrace 

Site 10: 
Siemens 
Eclipse 

Site 11:  
Scanditronix 

MC-40 
3H NR NR NR NR NR NR 8.58 x 10-1 NR NR NR 1.92 x 10-1 

12.32 y             (2.61 x 10-1)       (1.01 x 10-1) 
54Mn ND ND 1.18 x 100 NR 9.10 x 100 1.96 x 10-1 1.12 x 10-2 ND 2.19 x 10-1 ND ND 

313.12 d < 8.99 x 10-4 < 3.52 x 10-3 (5.74 x 10-2)   (8.66 x 10-1) (1.20 x 10-2) (4.37 x 10-3) < 1.06 x 10-2 (1.72 x 10-2) < 3.54 x 10-3 < 6.29 x 10-3 
22Na ND 3.53 x10-1 NR NR 2.75 x 10-1 7.51 x 10-1 2.87 x 10-2 ND ND ND ND 

2.6019 y < 8.44 x 10-4 (3.06 x 10-3)   (3.63 x 10-2) (1.75 x 10-2) (4.07 x 10-3) < 1.44 x 10-2 < 2.31 x 10-2 < 2.66 x 10-3 < 8.99 x 10-3 
95Nb NR NR 2.17 x 10-1 NR 5.96 x 10-2 NR ND ND ND ND ND 

34.991 d   (5.66 x 10-2)  (3.77 x 10-2)  < 5.03 x 10-3 < 9.84 x 10-3 < 1.24 x 10-2 < 3.70 x 10-3 < 6.29 x 10-3 
124Sb NR NR NR NR 3.52 x 10-1 NR ND ND ND ND ND 

60.20 d     (5.29 x 10-2)  < 3.04 x 10-3 < 1.22 x 10-2 < 6.07 x 10-3 < 5.66 x 10-3 < 8.84 x 10-3 
46Sc ND NR 3.03 x 100 NR 8.29 x 100 1.62 x 10-1 ND 1.18 x 10-1 4.66 x 10-2 8.95 x 10-2 ND 

83.79 d < 7.70 x 10-4  (1.06 x 10-1)  (6.29 x 10-1) (1.44 x 10-2) < 5.00 x 10-3 (1.36 x 10-2) (1.27 x 10-2) (7.07 x 10-3) < 6.29 x 10-3 
65Zn ND 1.01 x 10-2 2.60 x 100 NR 1.21 x 100 1.34 x 10-1 ND ND ND 3.50 x 10-2 ND 

244.06 d < 1.15 x 10-3 (6.66 x 10-3) (1.91 x 10-1)  (1.39 x 10-1) (2.87 x 10-2) < 2.05 x 10-2 < 2.76 x 10-2 < 2.63 x 10-2 (9.07 x 10-3) < 1.41 x 10-2 
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Dose Equivalence 

Residual radioactivity in concrete is transformed to dose equivalent in units of 

mSv y-1 with the RESRAD-BUILD computer code, Version 3.5. The code considers 

exposures from direct external radiation, inhalation, and incidental ingestion of 

contaminated dust to determine the radiation dose associated with residual radioactivity 

in contaminated buildings (Yu et al. 2003, Resrad.evs.anl.gov n.d.). Except for the 

radionuclides and concentrations from Table 5, the code was operated with its preloaded 

defaults for all parameters. Thus, the geometry of the source to which the characterization 

data are applied is assumed to be a concrete volume of 5.4 m3 (a 36 m2 circular area x 15 

cm deep) with a density of 2.4 g cc-1 (Yu et al. 2003). The default model also assumes 

that the entire radioactive volume erodes at a rate of 2.40 x 10-8 centimeters per day in a 

manner that, over time, releases 10% of the radioactivity into the air in the respirable 

particulate range (Yu et al. 2003). 

In cases where the data were ND and NR, the corresponding radionuclide is not 

used as an input to the RESRAD-BUILD model. The output equivalent dose is lower 

than would be achieved by using reported results, the detection limit when ND, or 

assuming a value when NR. This is deemed an appropriate data management solution, as 

the question this study seeks to answer is resolved without presuming the presence of 

radioactivity. That is, the added dose would only further support conclusions that are 

already possible whereas the reverse would not necessarily be true.  

The dose-outputs of the RESRAD-BUILD code are captured in Table 6. The code 

will not perform calculations for tritium (3H) at the same time as other radionuclides. 

Thus, in the two instances where characterization data included tritium, the code was  
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Table 6. Site Characteristics 

Site 

Dose from 
RESRAD-

BUILD 
(mSv y-1) 

Dose from 
60Co, 152Eu, 

154Eu  
(mSv y-1) 

Risk relative 
to 

unrestricted 
use criterion 

Cancer 
incidence per 

100,000 
people 

Waste 
volume (m3) Self-shielded Cyclotron 

disposed 

Site 1: 
GE 

MINItrace 
1.17 x 10-2 1.17 x 10-2 0.05 0.1 0.1 Yes No 

Site 2: 
Siemens 
Eclipse 

4.89 x 10-1 4.51 x 10-1 1.8 4.5 2.2 Yes No 

Site 3: 
IBA 

Cyclone 30 
4.56 x 101 4.32 x 101 172.8 432 2257.5 No Yes 

Site 4: 
Cyclotron 

Corp. CS-22 
1.30 x 101 1.30 x 101 52.0 130 287.8 No Yes1 

Site 5: 
GE 

PETtrace 
1.63 x 101 1.51 x 101 60.4 151 149.0 No Yes 

Site 6: 
Custom 

208 MeV 
4.91 x 100 3.78 x 100 15.1 37.8 476.8 No Yes 

Site 7: 
IBA 

Cyclone 30 
7.78 x 10-1 7.34 x 10-1 2.9 7.3 65.6 No Yes 

Site 8: 
GE 

PETtrace 
1.18 x 100 1.11 x 100 4.4 11.1 7.5 Yes No 

Site 9: 
GE 

PETtrace 
3.25E+00 3.16E+00 12.6 31.6 11.6 Yes Yes2 

Site 10: 
Siemens 
Eclipse 

2.18 x 10-1 2.02 x 10-1 0.8 2.0 1.7 Yes No 

Site 11: 
Scanditronix 

MC-40 
4.21 x 10-1 4.20 x 10-1 1.7 4.2 48.1 No Yes 

  

                                            
 
 
 

1 Cyclotron previously disposed, and volume not captured in estimate. 
2 Cyclotron disposed, but integrated shields shipped to another site for reuse. 
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operated twice, once with and once without tritium, and the results were summed to 

determine dose equivalent. To demonstrate that most of the dose is attributable to 60Co, 

152Eu, and 154Eu, the code was operated a final time for each site using only those 

radionuclides. These results, i.e., the site-specific doses from 60Co, 152Eu, and 154Eu, were 

translated to risk relative to the NRC’s radiological criteria for unrestricted use, 0.25 mSv 

y-1, and to cancer risk using estimates published by the National Academy of Sciences.  

Radiological Criteria for Unrestricted Use 

Specific controls, such as access restrictions, are used at operating nuclear sites to 

provide protections against undue risks from radiation and radioactive materials (NRC 

2018a). Decommissioning is the formal process to safely remove a site from service and 

to have such controls lifted (NRC 2018a). At NRC-regulated sites seeking to remove all 

access restrictions, cleanup is accomplished during decommissioning until the residual 

radioactivity that is distinguishable from background radiation results in a total effective 

dose equivalent that does not exceed 0.25 mSv y-1 (NRC 2018e). Thus, this criterion for 

unrestricted use is valuable to the current study in that it provides a numerical basis 

against which dose outputs from RESRAD-BUILD are compared.  

That is, a site demonstrating a dose equivalent of greater than 0.25 mSv y-1 above 

background when its radioisotopic data are transformed with RESRAD-BUILD is 

expected to undergo remediation that generates waste, and such waste is disposed 

according to prevailing policy. Moreover, judgments against the unrestricted use criterion 

allow calculation of meaningful quantitative conclusions. For example, a site 

demonstrating a total effective dose equivalent of 0.50 mSv y-1 is said to be twice the 

cleanup limit whereas a site demonstrating 0.125 mSv y-1 is one-half.  
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Nine of the 11 site evaluations with RESRAD-BUILD returned results exceeding the 

NRC’s radiological criteria for unrestricted use and required cleanup before they could be 

released from radiological control. The calculated dose for concrete from Site 3 is the 

highest, more than 170 times NRC’s criteria, and the calculated doses for Sites 4, 5, 6, 

and 9 were more than 10 times the criteria.  

Cancer Incidence 

Dose-equivalent units are not convenient for communicating health risks to the 

greater public. Consequently, risk is inferred from a 2006 report entitled Health Risks 

from Exposure to Low Levels of Ionizing Radiation, BEIR VII, Phase 2. This report, 

commonly called BEIR VII, predicts that on average, one in 100 people would develop a 

solid cancer or leukemia from a dose of 100 mSv once U.S. sex and age distributions are 

considered (NAS 2006). As an example of how such translation is valuable, the dose 

attributed to 60Co, 152Eu, 154Eu in concrete for Site 3, 43.2 mSv y-1, corresponds to 432 

extra cases of solid cancers or leukemia per year per 100,000 persons when BEIR VII 

inferences are used. 

Due in part to the speculative nature of the BEIR VII risk estimates, several 

scientific organizations including the Health Physics Society and the American 

Association of Physicists in Medicine have warned against multiplying such estimates by 

large populations to make sensational claims about cancer risks from low doses of 

radiation (Hendee and O’Connor 2012). The objective of predicting cancer incidence in 

the current analysis is not sensationalism; rather it is to critique policymaking that is 

accomplished according to the paradigm such estimates represent. Thus, BEIR VII 
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estimates are used, but their speculative nature is accepted as an important limitation that 

is discussed in greater detail following a presentation of results. 

Other Data 

Table 6 is populated with other data that are valuable for understanding each site 

and factors related to waste management. The total waste volume associated with each 

project is estimated from transfer paperwork and is provided to convey the magnitude of 

the policymaking concern such disposal represents. These waste estimates should be 

considered minimum volumes as shipping records do not account for material that was 

recycled or disposed via landfills as allowed by regulations that exempt cyclotron wastes. 

When contemplating the volume of waste these projects generate, it is useful to know that 

1 cubic meter of standard concrete weighs approximately 2.7 tons and 1 cubic meter of 

steel weights approximately 8.7 tons.  

Important waste minimizing elements are also recognized. Some sites are 

configured with integrated shields that lessen neutron-induced radioactivity in structural 

surfaces in all except the downward vector, and such sites are said to be “self-shielded”. 

In some instances, cyclotrons are transferred to other sites after shutdown where they can 

be reused or rummaged for spare parts in lieu of disposal.  

Discussion 

As the results in Table 6 demonstrate, the concrete bioshielding at all except two 

sites were impacted by residual radioactivity in concentrations capable of delivering a 

dose above the NRC’s release criterion. Moreover, much of the dose is attributable to 

neutron-induced 60Co, 152Eu, and 154Eu. These findings are not unique to cyclotron sites, 

as reactor bioshielding is also known to contain these principal contaminants in levels 
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sufficient to require remediation (Hansen 2018). In fact, the data reflected throughout 

Table 5 are so similar to residual radioactivity expected in reactor bioshielding that it is 

unlikely that even the most experienced health-physicist would be able to determine, 

explicitly, that the data were obtained from cyclotron sites without the headings and 

narrative accompanying the table (Hansen 2018). 

The fact that the wastes representing irradiated concrete at cyclotron and reactor 

sites are virtually identical is not a novel concept. Nuclear reactors and cyclotrons are 

devices that emit neutron radiation as they perform the function for which they were 

designed, and the process through which neutrons go on to cause other materials to 

become radioactive is well understood. Induced radioactivity, due to nuclear 

transformations in the devices themselves, surrounding equipment, and building materials 

is observed as a function of proximity to the neutron source. The transformed materials 

are said to become activated, meaning that they are now residually radioactive, and 

remain so even after the radiation-producing machinery is shut off. 

Although the data in Table 5 describe residual radioactivity in bioshielding, the 

judgment that cyclotrons and reactors produce similar wastes should not be limited to 

concrete. Induced radioactivity in steel, other metals, water, plastic, wood, drywall, and 

every other material occurs according to a well understood concept of nuclear and 

particle physics that is used to express the likelihood of interaction between an incident 

neutron and a target nucleus, neutron cross section. The standard unit for measuring the 

cross section is the barn, which is equal to 1 x 10-28 m2, and the larger the neutron cross 

section, the more likely a neutron will react with the nucleus. Thus, the extent to which a 

material is activated is a consequence of its intrinsic isotopic constituency rather than the 
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source of neutrons (i.e., reactor or cyclotron) when the neutron flux and energy are 

constant.  

Critique Using Data from Cyclotron Sites 

In review, nuclear fuel and wastes that were generated adjacent to the fuel of a 

nuclear reactor are managed as high-level waste according to 10 CFR §§ 60 and 63. The 

remaining wastes from reactor sites are designated as low-level waste, classed as Class A, 

B, or C, and disposed according to 10 CFR § 61. Cyclotrons are particle accelerators; 

thus, they need not be classed or disposed as radioactive waste according to the 

definitions of “waste” and “byproduct material” from 10 CFR § 20. 

Notwithstanding such exemptions, the data show that cyclotron decommissioning 

projects are usually impacted by wastes exceeding the NRC criteria for unrestricted use, 

and when such sites are remediated, waste exhibiting residual radioactivity is generated. 

Where concrete is concerned, the long-lived radioactivity in waste is primarily due to 

60Co, 152Eu, and 154Eu, but we can infer due to a well-understood concept of physics that 

other materials will also be radioactive according to an intrinsic characteristic called 

neutron cross section. The field of physics also tells us that items nearest the neutron flux 

(i.e., the cyclotron and its targets) are subject to more induced radioactivity than the rest 

of the site due to the manner in which neutrons are attenuated. 

As demonstrated by Table 6 and the accompanying narrative, cyclotron 

decommissioning projects generate substantial quantities of waste, and the decision-

making leading to present regulations appears to have missed such impacts. The facilities 

at which cyclotrons are used do not operate indefinitely, and eventually, all 350 cyclotrons 

presumed to be operating by IAEA in 2006 and any new sites will require disposal. 
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According to a summary of the National Environmental Policy Act of 1969 

(NEPA) that NRC publishes on its website on a page dedicated to its governing 

legislation, every proposal for a major U.S. federal action significantly affecting the 

quality of the human environment requires a detailed statement on the environmental 

impact of the proposed action and alternatives (NRC 2018i). NEPA predates the Energy 

Reorganization Act (1974), the Low-Level Radioactive Waste Policy Amendments Act 

(1985) and 10 CFR § 20 (1991); nonetheless, rulemaking that exempts cyclotron wastes 

appears to have circumvented the environmental impact investigation process.  

Limitations 

This article expands upon previous research in that it examines radiological 

characterization data from 11 cyclotron sites. These data are valuable for demonstrating 

the site characteristics encountered by Ameriphysics during execution of its projects, but 

they should not be used to generalize across all cyclotrons. These data are important, but 

only represent seven out of the dozens of cyclotron makes and models. Moreover, the 

experience of a different decommissioning firm could lead to different conclusions. For 

example, a firm experienced primarily with the GE MINItrace (Site 1) might not 

conclude that cyclotron sites present a significant hazard, whereas a firm involved only 

with projects like Sites 3, 4, or 5 may recognize a grave concern.  

A site operating one of the cyclotrons for which data is presented should not use 

the data to predict a source term for their facility. A number of factors besides make and 

model must be considered when estimating the amount of residual radioactivity 

impacting a site, including but not limited to site layout, operating history, target 
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configuration, and time since shutdown. Well planned, site-specific characterization 

remains the best way to determine the nature and extent of induced radioactivity.  

The dose calculated by RESRAD-BUILD is only as good as the inputs, and the 

inputs in this case were limited. A single sample from each site is used to model a 

concrete volume of 5.4 m3, and it is possible that this over or underrepresents the actual 

hazard. The intent of using RESRAD-BUILD to determine dose equivalent is merely to 

predict dose potential for comparisons against cleanup criterion, not to attribute an 

absolute dose to each site.  

Similarly, risk projections based on the dose model are only as good as the BEIR 

VII inferences. In all instances, the modeled concrete volume returns doses less than 100 

mSv, and as already mentioned elsewhere, it is careless to multiply the risk speculated at 

low doses by large populations in order to make sensational claims concerning effects. As 

an example of how the data should not be used, multiplying the incidence forecasted for 

Site 3 (432 cases per 100,000 persons) by an approximated population of the U.S. (325 

million) returns a result of more than 1.4 million excess cancers. The data are not 

valuable in this manner, and the incidence is calculated and reported only as a means of 

examining which sites could reasonably be assumed to demonstrate some risk. That is, 

the risk associated with Site 1 is one in 1 million, and had all sites exhibited a 

commensurate level of risk, a discussion of waste policy may have been moot.  

Conclusion 

As demonstrated in Table 6 and the accompanying narrative, cyclotron 

decommissioning projects have the potential generate substantial quantities of waste 

exceeding NRC’s dose limits for unrestricted use, and the decision-making leading to 
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present regulations appears to have missed such impacts. The facilities at which 

cyclotrons are used do not operate indefinitely, and eventually, all 350 or more cyclotrons 

presumed to be operating in 2006 will require disposal. Several sites have already been 

decommissioned as indicated by the projects contributing data to this study. 

The NRC definition of waste specifically excludes materials produced by particle 

accelerators; thus, cyclotron wastes are not regulated as low-level waste. If the exemption 

was removed, such wastes would be classed as Class A and would require disposal at a 

licensed facility according to 10 CFR § 61. Admittedly, Class A presents the lowest 

hazard of any of the wastes NRC regulates. Nonetheless, an important conclusion is 

possible based on this premise: low-level waste policymaking is not accomplished strictly 

according to risk.  

The disparity represented by this policy approach is due to the fact that wastes 

conveying the same level of induced-cancer risk as materials defined as low-level 

radioactive waste may be disposed differently or not at all. In turn, populations benefiting 

from regulated disposal will have their doses controlled whereas populations impacted by 

unregulated disposals or releases will not. Since radiation-induced cancers are related to 

dose, not the words bureaucrats use to populate the glossaries that introduce their 

rulemaking, important risk tradeoffs may be occurring.  

Finally, this research is not a call for more or less regulation; rather, it seeks 

parity. Cyclotron wastes either do or do not present a hazard based upon the radiation 

dose potential and corresponding risk of cancer incidence demonstrated by this research. 

If Class A reactor wastes are presumed to present a hazard significant enough to manage, 

then so should cyclotron wastes presenting commensurate risk(s). On the other hand, if 
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cyclotron waste is decided to be innocuous enough that strict management is not needed, 

then regulations causing such management of Class A waste from reactors and other 

nuclear sites should be revisited to verify that they are benefiting the public.  



77 

CONCLUSION 

Concise Review of Findings 

This research is concerned with the risk basis for U.S. radiation policymaking; 

specifically, that such policymaking is not conducted according to a framework that 

adequately considers risk tradeoff. Three questions and corresponding studies were 

proposed and accomplished. 

Question 1: Is RTA a suitable means of exploring U.S. radiation policymaking 

decisions? The literature review returned 64 documents that were concerned with risk 

tradeoff in some manner, but only 8 documents were concerned with radiation risks. 

None of the radiation-related documents specifically relied on the RTA framework. Six 

express a need for forward-thinking policymaking that considers countervailing risks, 

however, and RTA provides a logical framework that has benefited other public-health 

related decision making. 

Question 2: How is radiation policymaking leading to risk tradeoffs 

conceptualized with a health-behavior based model? Graham and Weiner propose five 

prevailing sources of risk tradeoff, and evidence was found linking radiation 

policymaking to all five. Similarly, policymaking seems impacted by each of the 

compensating behaviors described by Bandura’s moral disengagement theory. A 

conceptual model predicts that well-intentioned policymakers, informed by the radiation 

paradigm and facing pervasive sources of risk tradeoff, will offer policy solutions that 

reduce target risks within the policymaker’s jurisdiction but ignore the countervailing 

risks that are presented outside of that person’s jurisdiction. The net result is policies that 

fail to offer maximum risk protection, and optimal health outcomes are not achieved. 
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Question 3: Do wastes from cyclotron decommissioning projects pose health 

disparities that U.S. nuclear waste policies currently ignore? Calculated dose equivalents 

from the 11 sites examined ranged from 0.01 to 43.2 mSv y-1 and correspond to a risk of 

0.1 to 432 extra cases of solid cancer or leukemia per 100,000 persons. Waste from nine 

of the sites exceeds the NRC’s criteria for unrestricted use, 0.25 mSv y-1. When these 

sites are remediated, the resulting waste is not regulated as low-level radioactive waste 

according to U.S. policy, but would have been if generated at a site other than a cyclotron 

facility. A case for disparity is identified because populations benefiting from regulated 

disposal will have their doses controlled whereas populations impacted by unregulated 

disposals or releases will not. 

Limitations 

Each of the studies was impacted by a unique set of limitations. As those article-

specific limitations are sufficiently examined in the discussion sections of respective 

chapters, there is no value in restating them here.  

A key limitation of the overall research effort reflected by the compiled works is 

that this is exploratory work at best. As demonstrated by the systematic review, this 

research did not identify a single study wherein the formal framework suggested by 

Graham and Wiener was used to analyze risk tradeoffs when radiation was a concern. 

Moreover, none of the articles presented herein convey a formal analysis according to 

such a framework. Nonetheless, an exploratory analysis was the goal, and this research is 

considered important because it shows (1) risk tradeoffs are likely occurring, (2) an 

evidence-based framework exists to assess such tradeoffs, and (3) radiation researchers 

and policymakers are not currently relying on this framework. 
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Another limitation is that in making a case for a new paradigm for policymaking, 

this research does not present any new finding that are valuable for determining which 

model of dose-response best predicts the association between radiation dose and adverse 

health effects. This limitation is by design, as the controversy surrounding such models is 

expected to continue for some time. What this research demonstrates is the manner in 

which policymaking can be improved by examining the circumstances leading to risk 

tradeoffs, regardless of which model of dose-response prevails.  

Recommendations for Future Research 

The fundamental recommendation of this work is that in order for a new 

policymaking paradigm to be made, analyses that specifically examine the countervailing 

risks posed by dose-limiting regulations are needed. Such examinations should weigh the 

benefits of radiation dose risk reductions against costs due to countervailing risk 

according to (1) magnitude of risk, (2) size of population impacted, (3) certainty of risk 

estimates, (4) type of adverse outcome, (5) distribution, and (6) timing (Graham and 

Wiener 1995). Where possible, the comparisons should be quantitative, but qualitative 

studies would suffice where meaningful qualitative measures do not exist or are being 

developed.  

The NRC’s rules, in particular its Standards for Protection Against Radiation, 

seem complicated by sources of risk tradeoff and likely to benefit from an examination 

with RTA. The NRC is an institution of specialists charged with reducing specific risks. 

Moreover, due to jurisdictional boundaries, other agencies are responsible for risks 

outside of NRC’s purview, including countervailing risks caused by NRC’s rules. These 

issues demonstrate complexities due to bounding roles, and is exemplified by EPA’s 
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responsibility to protect human health and the environment from hazards beyond 

radiation (EPA 2000, EPA/NRC 2002) and OSHA’s responsibility to assure safe and 

healthful working conditions in the presence of all hazards (NRC/OSHA 2013, DOL 

2018b). Evidence of omitted voice is provided by NRC’s reliance on BEIR VII for risk 

estimates. That report is informed primarily by research from the Radiation Effects 

Research Foundation on atomic bomb survivorship, and some critics claim that the voices 

representing other research are dismissed too easily (Fabrikant 1981, Goldman 1996, 

GAO 2000, Calabrese 2007, Luckey 2008, Aleta 2009, Tubiana et al. 2009, Vaiserman 

2010, Suzuki and Yamashita 2012, Calabrese 2013, Doss 2013). Old-technology bias is 

exemplified by a reluctance to deviate from the LNT model and other conservative 

measures reflecting the status quo (GAO 2000, Calabrese 2013). Heuristic processes 

align with the assumption that all radiation is harmful and should be avoided (Walker 

2000), and cancer, DNA lesions, and other mutagenesis are likely to rank higher than 

other risks, particularly in terms of public perception. Regulations enforce compensating 

behaviors via the NRC’s policy of maintaining exposures as low as reasonably achievable 

(ALARA), which over time has resulted in acceptance of actions that pile conservatisms 

on top of other conservatisms (GAO 2000, Walker 2000, Jones 2005). Aside from these 

blatant examples of risk tradeoff sources, the NRC has formally demonstrated a desire to 

practice risk-based policymaking according to a 1995 final policy statement on the matter 

(NRC 1995). NRC’s radiation-risk-mitigating limits predate its acceptance of this policy, 

however, and were developed with deterministic methods (NRC 2007). Finally, the NRC 

is under some pressure to reduce its dose limits in a manner conforming to 
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recommendations from the International Commission on Radiological Protection, and 

many consider the existing rules to provide sufficient protection (Cool 2012). 

A disparity reflected by the NRC’s dose-based cleanup criteria, 0.25 mSv y-1, is 

that workers accomplishing cleanup are subject to 200 times the radiation-induced solid-

cancer risk of a theoretical critical group representing the general population based on 

estimates from BEIR VII and the rules regulating their exposures. Moreover, cleanup 

workers are exposed to a large number of non-radiological industrial health and safety 

hazards. Heavy equipment operation, the use of power tools and torches, demolition, 

earthmoving, transportation, lifting and rigging, and the handling of hazardous chemicals 

and cleaners are examples of health and safety challenges (i.e., tradeoffs) that are 

encountered while cleaning up small amounts of radioactive contamination.  

The environmental burden caused by cleanup is also considerable. Since as early 

as 1978, EPA has recognized that ecological impacts are caused by land restoration and 

cleanup (EPA 1978). Natural ecosystems, managed ecosystems, and wildlife may be 

negatively affected by cleanup efforts (EPA 1978, Burger et al. 2007). In some cases, the 

effects may be irreversible, as in the destruction of habitats and slow-growing lifeforms 

such as lichens (EPA 1978). Ecological environments are slow to recover, and resolving 

the effects of cleanup is not as easy as backfilling or revegetating. Cleanup work is 

accomplished with equipment that burns fossil fuel, and it is not unusual for a large 

cleanup project to burn tens of thousands of gallons of diesel fuel. Similarly, innocuous 

levels of radioactive waste are transported across the country by diesel-burning 

conveyances. Moreover, a large commitment of land is required to bury and manage 

these wastes. Where soil remediation occurs, backfill and topsoil must be stripped from 
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another location to restore the remediated site, and such resources are not easily renewed. 

In addition to leaving the donor site barren, the removal and transportation processes also 

require the use of diesel-burning heavy equipment and trucks. 

As these examples demonstrate, a number of countervailing risks are introduced 

by the NRC’s cleanup criterion that, according to BEIR VII estimates, corresponds to 

approximately two solid cancers developing (not deaths) per 100,000 people. If the LNT 

model is incorrect, if a threshold exists, or if hormesis is a legitimate factor, the 

countervailing risks are experienced without any corresponding reduction in population 

risk. Moreover, cleanup criteria do not correlate to exposures shared by a large 

population; rather, they correspond to the peak dose to a theoretical, average member of a 

small “critical group” who, at some point over the next 1,000 years, builds and lives in a 

house on the contaminated land (NRC 2006). During that time, this hypothetical 

individual is expected to drink from a contaminated well, breathe contaminated air, and 

grow vegetables and raise animals on contaminated farmland that serve as his (a 

reference man is modeled) primary source of food (NRC 2006). This conservative, 

bounding theoretical scenario is called “resident farmer” (NRC 2006). Thus, the dose this 

limit represents is an intangible dose; in fact, a radiation detector has not been invented 

that measures resident-farmer dose. Rather, the dose limit is translated with computer 

models into surface or mass concentrations against which comparisons can be made with 

field and laboratory equipment (NRC 2006). There is considerable uncertainty associated 

with such models (NRC 2006), and according to the behavioral norms discussed 

elsewhere, it is common to pile conservatism on top of conservatism in an attempt to 

reconcile uncertainty and keep exposures ALARA. Finally, international 
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recommendations include cleanup criterion as low as 0.01 mSv (IAEA 2006b), which 

would further exacerbate possible tradeoffs. EPA, some Agreement States, and France, 

German, Spain, and the United Kingdom already have lower cleanup limits than the NRC 

(EPA 1997, Meck 2012, Commonwealth of Massachusetts 2016, State of New Jersey 

n.d.).  

Data pertaining to countervailing occupational health outcomes are available from 

a variety of sources. Nationally, the U.S. Department of Labor’s Bureau of Labor 

Statistics collects and publishes data on mortality according to its Census of Fatal 

Occupational Injuries (CFOI) and on morbidity according to its Survey of Occupational 

Injuries and Illness (SOII). Data pertaining to occupational outcomes are also available 

from national surveillances not specific to occupational health. Such secondary sources 

include the National Health Interview Survey (NHIS) and the National Health and 

Nutrition Examination Survey (NHANES). At least 15 states have received funding from 

the National Institute for Occupational Safety and Health (NIOSH) to accomplish 

surveillances activities within their borders (Souza et al. 2010). State surveillances 

provide important information on local occupational health differences and intervention 

activities (Souza et al. 2010). Moreover, state surveys sometimes provide superior data in 

terms of occupational illness and particularly in the case of chronic illness (Souza et al. 

2010). It is not possible to discriminate radiation workers from other workers; however, 

and important differences may exist between these groups. For example, worker health 

and safety risk estimates are possible for construction workers, but radiological 

construction workers may participate in more robust health and safety programs than the 

average construction worker. 
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Risks pertaining to airborne pollutants, such as the emissions released from the 

burning of fossil fuels, have been quantified by other researchers and associate ambient 

airborne pollution exposures to mortality from all-causes, cardiovascular disease, and 

respiratory disease (Pope et al. 1995, Pope et al. 2002, Pope et al. 2004, Hoek et al. 

2013). Specifically, Kloog et al. examines the short-term and long-term effects of PM2.5 

exposures on population mortality (Kloog et al. 2013), and Pope and Dockery have 

published a meta-analyses connecting fine particulate air pollution and adverse health 

effects (Pope and Dockery 2006).  

Characterizing ecological risks with quantitative measures for comparison 

purposes is more difficult. Traditionally, the bioindicators researchers rely on relate to 

either ecological health or human health (Burger and Gochfeld 2001). Arguably, human 

health assessment is the easier of the two. Ecosystems cannot speak for themselves and 

are unable to respond to surveillances in the same manner as humans. Moreover, humans 

are a single species and experience a relatively limited range of health endpoints, whereas 

ecological health assessment must consider many species, endpoints, and higher order 

interactions (Burger and Gochfeld 2001). Since as early as 1978, EPA has recognized 

that ecological impacts are caused by land restoration and cleanup (EPA 1978). Natural 

ecosystems, managed ecosystems, and wildlife may be negatively affected by cleanup 

efforts (EPA 1978, Burger et al. 2007). In some cases, the effects may be irreversible, as 

in the destruction of habitats and slow-growing lifeforms such as lichens (EPA 1978). 

Ecological environments are slow to recover, and resolving the effects of cleanup is not 

as easy as backfilling or revegetating.  
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The NRC’s low-level waste management policymaking may also be conflicted in 

a manner that causes risk tradeoffs. The NRC does not regulate waste disposal according 

to dose. Instead, waste is defined in the NRC’s regulations with complex language and 

wastes meeting the definition are regulated. The disparities represented by this approach 

are due to the fact that wastes conveying the same level of induced-cancer risk may be 

disposed differently or not at all. In turn, populations benefiting from regulated disposal 

will have their exposures controlled whereas populations interfacing with unregulated 

disposals or releases will not. Since radiation-induced cancers are related to effective 

dose, not the words bureaucrats use to populate glossaries, risk tradeoffs may be 

occurring. 

Evidence Supporting a Paradigm Shift 

The research contributing to this paper identified certain concise evidence that 

supports the need for a radiation policymaking paradigm that considers risk tradeoffs.  

1) In 1978, EPA’s Office of Radiation Programs published a Technical Report 

entitled The Ecological Impact of Land Restoration and Cleanup recognizing 

the short and long term consequences (i.e., tradeoffs) associated with the 

Agency’s policies. The report was written “primarily from the viewpoint of 

radiation protection” according to the Deputy Assistant Administrator for 

EPA’s Radiation Programs at the time (EPA 1978). It is valuable to note that 

this report was published fewer than eight years after the EPA was created and 

just three years after the NRC began its operations. From this evidence, we 

can conclude that radiation policymaking has been known to be associated 
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with risk tradeoffs since before either agency was considered a mature 

organization.  

2) Since at least 1985, just 10 years after opening its doors, NRC has understood 

that prescriptive policymaking interferes with the commission’s ability to 

make risk-superior decisions (NRC 1985). This evidence comes from NRC’s 

Office of Nuclear Reactor Regulation and is published in its policy on future 

reactor designs, NUREG-1070. The document contains a call for development 

of “forward-looking policy” that explores “safety-cost tradeoffs within the 

framework of permissible risk-risk tradeoffs” (NRC 1985).  

3) In 2002, a DOE top-to-bottom review team concluded that since establishing 

its Office of Environmental Management in 1989, the Agency had spent more 

than $60 billion on cleanup without realizing a reduction in actual health risk 

because of the number of ecological, temporal, and human health tradeoffs 

involved (Burger et al. 2004). A follow-on study examining 36 sites in 17 

states with an environmental management mission concluded that DOE 

needed a decision making tool capable of balancing a number of different 

ecological and health risks (Burger et al. 2004).  

4)  According to a 2016 article concerning the disaster Fukushima Daiichi and 

related mortality, nearly 2,000 deaths can be attributed to policymaking 

accomplished according to the paradigm that any amount of radiation is 

harmful and should be avoided. The article was published in the Annals of the 

International Commission on Radiological Protection and concludes that the 

number of people killed as a consequence of evacuating the prefecture to 
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avoid low-dose radiation exceeded the number of Fukushima inhabitants who 

were killed directly by the earthquake and tsunami (Hayakawa 2016).  

A key takeaway from these findings is that the top federal agencies concerned 

with radiation protection have understood, almost since their inception, that risk tradeoff 

is a pervasive feature of their policymaking. Nonetheless, these agencies continue to base 

their rules and regulations on a policymaking paradigm that reduces dose but not 

necessarily risk. As demonstrated by observations from Fukushima Daiichi, adverse 

health outcomes are possible when the countervailing risks associated with dose-limiting 

policymaking are ignored.  

Education Needs 

Finally, this paper would be negligent if it failed to emphasize a need for 

education. A new policymaking paradigm will not be realized unless (1) the public is 

educated on the genuine risk presented by exposure to low levels of environmental 

radiation and (2) radiation protection professionals and practitioners are better trained to 

communicate such risk to the public. 

It is a fact that the risks associated with low doses of radiation are very small or 

nonexistent; a claim that is substantiated by the risk estimates and narrative provided by 

BEIR VII (2006). In the end, we find that environmental radiation is not a very effective 

carcinogen. While adverse non-cancer health effects are also possible, what the public 

typically recognizes as “radiation sickness”, such outcomes require very large exposures 

– far above the levels with which dose-limiting policymaking is concerned. Finally, 

radiation exposure is not associated with the perverse somatic and genetic effects 

sensationalized by Hollywood. While dose-limiting policymaking is concerned with 
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preventing damage leading to DNA mutations, these mutations are “broadly similar to the 

types that occur naturally” such as changes leading to oncogenesis (NAS 2006). 

Radiation exposure does not endow anyone with any special powers or abilities or cause 

tails or other extra appendages to spontaneously sprout.  

Public sentiment does not align with the statements of fact comprising the 

previous paragraph (Jordan 2016). In part, this is because the media and other social 

experiences are working harder and faster than the science programs in our primary and 

secondary schools. Thus, educational programs necessarily involve an element of un-

teaching previously conceived attitudes and beliefs where radiation is concerned. But 

some blame is due to the radiation protection professionals who are responsible for 

educating and communicating risk to the public. In a 2018 article published in Radiation 

Protection Dosimetry, a case is made for essential characteristics of risk communication. 

These characteristics include use of techniques such as understanding how to frame 

information given a person’s values, building trust, and fully considering how 

information is provided (Murakami et al. 2018). We cannot expect practitioners to 

understand the dual nature of risk communication - as professionals and humans – unless 

they are trained and educated accordingly.  
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