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Abstract 
Pain mitigation for surgical procedures is a topic of concern for the public, 

producers, and veterinarians. The objective of this study was to determine the 

efficacy of meloxicam for pain mitigation in adult lactating dairy cattle following a 

right-side laparotomy with omentopexy. Twenty-four dairy cattle (mean age: 2.51 

+/- 0.54 years) were enrolled. Cattle were assigned blocks based on parity, days 

in milk, milk yield, and pregnancy status, and randomly allocated to groups 

Meloxicam (MEL) or placebo treated control (CON). The study had two phases; 

sham (day 0-14) and surgery (day 15-28). On day 0, cattle were prepared for 

surgery. Injectable meloxicam (MEL) or saline placebo (CON) was administered 

(dose: 0.5 mg/kg) 5 minutes before simulated surgery (restraint for 30 minutes). 

On day 15, the surgical procedure was performed. Meloxicam or saline were 

administered prior to surgery. A right flank laparotomy, brief abdominal 

exploration, and omentopexy was performed on all animals. Blood was collected 

via jugular catheter at hours 0, 2, 4, 8, 12, 24, 36, 48, 60, & 72 during both 

phases for cortisol, and at hours 0, 2, 4, 8, 12, 24, 48, 72, 96, 120, 144, & 168 for 

haptoglobin, PGE2, and fibrinogen. Mechanical nociceptive threshold (MNT) was 

measured using an algometer and collected at hours 0, 1, 4, & 8 after sham and 

hours 0, 1, 2, 4, 8, 12, 24, 36, 48, 60, & 72 after surgery. Infrared thermography 

(IRT) was taken of the incision site at hours 0, 1, 4, & 8 hours after sham and 0, 

2, 4, 8, 12, 24, 36, 48, 60, & 72 after surgery. PGE2 concentrations displayed a 

treatment by time interaction where concentrations were higher in the CON 

animals (P = 0.003). Total cortisol concentrations were significantly increased in 
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CON 4 hours post-operatively (P=0.004). Haptoglobin was significantly increased 

in CON 72 and 96 hours post-operatively (P< 0.001). There was no difference for 

fibrinogen (P=0.43), MNT (P=0.24) or IRT (P=0.68). This study indicates using 

meloxicam significantly reduces biomarkers of inflammation and indirect 

measures of pain and suggests meloxicam is effective in mitigating post-

operative pain in adult lactating dairy cattle. 
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Introduction 
 
 Whether for a simple headache or a highly invasive surgery, most humans 

would need and demand the use of pain medications to alleviate pain and return 

to a comfortable state. This has also become the expectation for our beloved 

house pets: dogs, cats, bird, etc. But only recently has the need for approved 

analgesia for food and fiber animals become a concern, receiving attention from 

not only veterinarians and producers but by the general public as well. Many 

surveys have been conducted asking consumers about their perceptions of food 

and fiber animals’ well-being. In a survey to the general public about their 

perspective on the ideal pig farm, respondents cited humane treatment as an 

important aspect to include (Sato et al., 2017). In a survey polling Australians, 

respondents from the general public had a better perception of castrations and 

disbudding when some form of pain management was given (Phillips et al., 

2009). Routine husbandry practices such as castration and dehorning have been 

a part of normal production for many years, but are now perceived as painful 

procedures worthy of pain mitigation by the public, producers and veterinarians. 

An approved, economical, pain management modality is needed now and is both 

desired and demanded by all aspects of the industry in animal agriculture.  
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Basic Mechanism of Pain 

What is pain? 

Pain is be defined as an unpleasant sensory experience, resulting from a 

noxious stimuli, arising from tissue damage caused by disease, inflammation or 

acute injury. Specialized sensory neurons within tissues are excited by their 

respective stimuli, which activate the pain pathway and the ultimate perception of 

the painful process (Millman, 2013). The International Association for the Study 

of Pain defines pain as “an aversive sensory experience caused by actual or 

potential injury that elicits progressive motor and vegetative reactions, results in 

learned avoidance behaviors, and may modify species specific behavior, 

including social behavior.”   

Pain can further be categorized into distinctive types: physiologic and 

pathologic. Physiologic pain is characterized by pain caused by a noxious stimuli 

causing tissue damage. This type of pain serves as a warning signal and is part 

of the body’s defense mechanism to prevent tissue damage. It is well localized, 

rapidly transmitted, and only exists for a brief time. The second type of pain is 

pathologic pain. Pathologic pain is the pain that occurs after the tissue damage 

has occurred. It is can be experienced in a number of different ways including 

causalgia (a dull, burning sensation), hyperalgesia (exaggeration of sensation to 

a noxious stimuli), and allodynia (exaggeration of a sensation that normally does 

not cause pain). Tissue damage followed by inflammation and nerve damage is 

accompanied by persistent pain, or pain that exists even after the noxious stimuli 
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has been removed. Pathologic pain is further divided into acute and chronic pain 

based on duration of the sensation. Acute pain is associated with withdrawal 

reflexes and protection of the affected areas. Typically, this type of pain is 

associated with soft tissue injury and inflammation. An example of acute pain is 

the pain present after an injury that creates a behavioral modification that 

prevents overexertion and incidentally, re-injury. Chronic pain is when the 

expected pain persists for longer than anticipated. Cancer pain, osteoarthritic 

pain and phantom limb pain are all considered chronic pain events (Lamont et 

al., 2000).  

What is the function of pain? 

 Millman et al. (2013) states that pain's functions are to “warn the animal of 

actual damage to its tissues, predict when tissue damage is likely to occur, to 

warn conspecifics of the presence of danger.” (Millman, 2013). The first function 

is most closely associated with physiologic pain, while the later describe changes 

in behavior and are more appropriate descriptions of pathologic pain. Pain leads 

to physiologic and behavioral responses such as fight, flight or freezing.  

What is the basic pain pathway? 

Nociception is the term used to refer to the physiologic components of the 

pain pathway (Anderson & Muir, 2005a). The pain pathway consists of five 

distinct steps which occur within various areas of the peripheral and central 
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nervous system: Transduction, Transmission, Modulation, Projection and 

Perception.  

 Transduction is the conversion of a noxious stimuli (thermal, mechanical, 

or chemical) into an action potential by nerve fibers present at the source, called 

nociceptors. Nociceptors are classified into two groups: A-fibers and C-fibers. 

When A-fibers are activated, the signal transmitted is associated with a sharp 

pricking sensation. This is referred to as the “first pain”. When C-fibers are 

activated, the resulting sensation is a diffuse, dull, burning sensation and is 

referred to as the “second” or “slow pain” (Lamont et al., 2000; Anderson & Muir, 

2005b). 

These action potentials originate in the nociceptors and are then 

transmitted to the central nervous system (CNS) by their corresponding afferent 

nerve fibers. A-delta nerves are myelinated, larger fibers that rapidly conduct 

action potentials. C nerves are smaller and unmyelinated and conduct signals 

much slower than A-delta (Lamont et al., 2000).  

 Action potentials reach the CNS via their respective fibers and are 

modulated at the level of the spinal cord. Modulation of an action potential is 

facilitated by descending inhibitory neurons, which occurs in the dorsal horn of 

the spinal cord. These neurons amplify or depress the signal based on several 

external variables including pharmaceutical effect. Once modulated, action 

potentials are projected to the brain where they are perceived as pain (Anderson 

& Muir, 2005b).  
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Pain management for cattle 

What is currently available? 

 United States Department of Health and Human Services Guidance for 

Industry (GFI) #123 states that for label claims of pain alleviation, the FDA 

“recommends that this indication be based on the control of clinical signs of pain 

associated with a disease.” This GFI further states “We encourage the use of 

validated methods of pain assessment in the target species.” Although guidelines 

are in place, limited validated methods for pain assessment in cattle exist, 

making new drug labeling increasingly difficult (FDA, 2006).  

 One product has been introduced to the market with a label specifically for 

pain. Transdermal flunixin meglumine (Banamine Transdermal by Merck) is the 

first drug ever for cattle to have a label indication for pain and was released in 

2017. The label specifies that this product is indicated for the treatment of pain 

associated with foot rot, but is not indicated for use in cattle over 20 months of 

age. Despite this important advance, there still is no approved products for post-

operative pain in adult lactating dairy cattle. Moreover, due to the narrow 

indications for its approval the use of Banamine Transdermal for other etiologies 

of pain is considered extra-label use.  

 Because cattle are food animals, restrictive guidelines exist to prevent 

violative residues of medications and their metabolites from entering the food 

supply. The Animal Medicinal Drug Use Clarification Act (AMDUCA) of 1994 was 

created to provide veterinarians the opportunity to determine appropriate extra-



6 
 

label uses of pharmaceuticals for veterinary species, based on their clinical 

judgment. One stipulation of extra-label drug use in food and fiber species is the 

lack of allowable tolerance or zero tolerance of detectable residues in meat or 

milk. This means when veterinarians use drugs in an extra-label manner, any 

detection of that drug or its metabolites constitutes a violation (AMDUCA, 1994).  

Assessment of pain in other species 

 Pain assessment indicators should be specific, repeatable and sensitive. 

This means that an indicator should be measuring pain and no other conditions 

(specific), repeatable within and between observers, and able to detect pain even 

when in low amounts (sensitive). Assessing the accuracy and precision of pain 

indicators, like other diagnostic tests, should be conducted by comparing them to 

a gold standard. However, there is not a gold standard for comparison when 

assessing pain in animals. Therefore, many experimental studies derive efficacy 

of pain management though comparison to animals receiving pain medication to 

those that not, or who have received varying dosages of pain medication (Ison et 

al., 2016).  

Pain in other species of animals has been validated and study extensively. 

Human medicine has identified multiple indicators of pain. Human pain 

researchers have the advantage of patients that self-report pain. For non-verbal 

patients such as infants, the elderly, or patients with language barriers, other 

mechanisms including facial grimace scales such as the Wong/Baker faces 
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rating scale can be used. Other non-verbal cues of pain in humans include 

changes in vital signs, vocalization, and muscle tension (Fink, 2000).  

 There is some controversy over whether animals experience pain in the 

same way as humans. Animals and humans share similar anatomical pathways 

as well as similar CNS responses evoked by pain. This suggests the basis for 

comparative pain perception and physiology.  

 In mice, a validated grimace scale, has been developed that takes into 

account orbital tightening, nose bulge, cheek bulge, ear position, and whisker 

changes as collective indicators of pain (Langford et al., 2010). Similar scales 

have also been developed in rabbits (Keating, Thomas, Flecknell, & Leach, 

2012), sheep (Hager et al., 2017) and horses (Dalla Costa et al., 2014). 

In pigs, consistent behavioral changes were seen following castration, tail 

docking, and needle teeth clipping including trembling, tail wagging, and head 

shaking, respectively. Removal or reduction of these behaviors upon treatment 

also suggests validity in the assessment of painful conditions, such as the 

reduction of escape behaviors seen in piglets following administration of a local 

anesthetic prior to castration. Attempts to quantify the pain threshold in pigs have 

been developed through the use of nociceptive threshold testing, either by 

thermal or mechanical means. In this method, a noxious stimulus is applied and 

the force or length of time applied is measured as an indirect assessment of the 

animal’s tolerance of the stimulus. Physiologic markers such as Fos-positive 
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neurons, cortisol, substance P, and prostaglandin E2 have also been evaluated 

as objective measures of pain in multiple species (Ison et al., 2016).  

Several issues sited in studies of pain are the unwillingness of the animal 

to show pain because an observer is present or because of sampling methods. 

Many of the domesticated food animals are prey species and have the inherent 

need to hide pain for their survival.  

Assessment of pain in cattle 

What are the methods? 

Ontologically cattle are a prey species that often hide pain in order to 

avoid predation. An example of this is the feedlot steer with respiratory disease 

that clearly elicits clinical illness when the observer is out of sight, but may 

override these signs so successfully as to be unrecognized as ill when the 

observer is present. Likewise, pain can be masked when fear overrides its 

physiologic manifestation. Cattle fear responses to humans are also influenced 

by breed and management conditions the animal has experienced. These 

responses therefore can be attenuated through positive interactions with human 

caregivers, typically from a young age, or conditioning through highly repetitive 

exposures. For example, a hand raised dairy calf is less likely to exhibit a fear 

response to a novel human than a calf that has never seen a human.  

To compound the issue, signs of pain in cattle are subject to interpretation 

by each observer. Subjective measures of pain and cattle wellness vary by 
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observer training, experience, age and gender (Coetzee, 2013). When signs of 

pain are overt and point to a specific limb or body area the assessment becomes 

more reliable, but assessment of generalized pain can be difficult (Le Bars et al., 

2001). The most common types of pain assessment in veterinary medicine are 

visual assessments where observers attempt to discern behavioral changes in 

attitude, posture, or disposition. These subjective assessments can be improved 

with the addition of categorization and appraisal of focal points such orbital 

tightening, head and neck position, and ear position. Locomotion scoring 

provides a good example where the scale for severity is divided into 4 - 5 

categories and focal points of interest are back arch, stride length, and head 

position (Grégoire et al., 2013; Groenevelt et al., 2014).  

To directly measure pain would be to directly measure the physiologic 

changes of the pain pathway. For example, measuring the frequency and 

amplitude of action potentials leaving the area of the noxious stimuli as well as its 

influence on structures within the central nervous system. Nerve conduction 

studies and electroencephalograms can provide some approximation of this data, 

but their impracticality limit implementation on a wider scale. Moreover, these 

methods do not capture the impact of pain on the affective state and therefore 

assessment of pain in cattle can truly only be measured indirectly.  

Objective measures of pain are quantifiable and are not biased by the 

observer. These methodologies produce discrete observations within animals 

overtime with response variables that can be compared across treatment groups. 



10 
 

Objective measures of pain include frequency monitoring of specific behaviors, 

blood biomarkers, pressure algometry, infrared thermography, heart rate 

monitors and remote activity monitors such as accelerometers or real-time 

location systems. Each of these methods have been used extensively in 

monitoring cattle wellness and stress.  

Subjective measures are those assessed by proxy and vary based on 

observer experience and knowledge. These are often in the form of scales, such 

as the locomotion scoring system or grimace scales. Objective measures are 

those that are not biased by the observer. These include measures such as 

blood metabolites and heart rate. Some indicators are somewhere in the middle. 

An example would be in the case of mean nociceptive threshold (MNT). This 

measures the force excreted to cause a pain reaction. Although the output is an 

objective measure, the ability of the observer to recognize the painful reaction 

would be subjective, making the overall observation open to possible bias due to 

knowledge and experience.  

Numerous indirect methods have been used to measure pain in cattle 

associated with lameness, metritis, castration, and dehorning. Methods have 

been both subjective and objective measures of inflammatory mediators and 

stress hormones, physiologic parameters, production data, and behavioral data. 

Inflammatory mediators include cortisol, haptoglobin, fibrinogen, substance P, 

and serum amyloid A. Physiologic parameters include rectal temperature and 

heart rate variation. Production data includes feed intake, average daily gain, 
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morbidity and mortality, dry matter intake and milk yield. Finally behavioral data 

includes lying time, step lengths, feed bunk aggression/displacement, and chute 

exit velocity (J. F. Coetzee, 2013a).  

Physiologic parameters 

PGE2 

Prostaglandin E2 is a positive acute phase protein and is one of the most 

important mediator for inflammatory pain (Kawabata, 2011). Prostaglandins are 

produced through the arachidonic acid pathway through cyclooxygenase (COX). 

Cyclooxygenase 1 is found across the mammalian body in peripheral tissues and 

the central nervous system. COX-1 is important for renal and gastrointestinal 

homeostasis, and its expression is increased by inflammation and pain. 

Cyclooxygenase 2 is also found in the central nervous system and is present in 

the cell in low numbers until the proper stimulus is provided (factors released by 

dying or damaged cells) (Coetzee, 2011). Cyclooxygenase 1 and 2 convert 

arachidonic acid to prostaglandin G2 which is converted further to prostaglandin 

H2 by a peroxidase. This prostaglandin H2 is converted to a number of different 

prostaglandins including PGE2, PGI2, TXA2, PGD2, and PGF2a 

(Chandrasekharan & Simmons, 2004).  

Prostaglandin E2 has an effect on the central nervous system, vascular 

smooth muscle, platelets and kidneys, and is generated from PGH2 by 3 

separate isomerases: cytosolic PGE synthase, microsomal PGE synthase-2, and 
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microsomal PGE synthase-1. Both cPGES and mPGES-2 are widely expressed 

and are important for renal homeostasis and gastrointestinal protection. The 

mPGES-1 is upregulated with COX-2 in response to an inflammatory mediators 

leading to the production of PGE2 that creates the inflammation (Kawabata, 

2011). COX-1 is responsible for the initial release of prostaglandins and is 

followed in 2-8 hours by the COX-2 mediated release. Prostaglandins cause the 

neurons’ threshold to lower, allowing for an increase in nociceptive activation. 

PGE2 is responsible in part for the central hyperalgesia that is seen with 

increased dorsal root excitability (Coetzee, 2011).  

Most research on PGE2 is focused on the reduction of this molecule in 

tissue through the inhibition of the cyclooxygenase pathway. Non-steroidal anti-

inflammatory drugs are used to decrease the inflammatory process by stopping 

the production of prostaglandins and other pro-inflammatory molecules by 

inhibiting the cyclooxygenases. NSAIDS will be discussed in further detail at the 

end of this review.  

Novel ways of inhibiting the production of PGE2 without the side effects of 

NSAIDS are being explored. These possible avenues involve blocking other 

areas in the cyclooxygenase pathway such as inhibiting mPGES-2 or selectively 

binding PGE2 receptors antagonist. A study in guinea pigs showed that by 

selectively inhibiting mPGES-1, PGE2 production is decreased apart from the 

other prostaglandins involved in this pathway (Xu et al., 2008). More specifically, 

a human study concluded that PGE2 is involved in the mediation of visceral pain 
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by inhibiting the receptors specific to PGE2 and mitigating the pain felt by 

subjects (Sarkar et al., 2003).  

Prostaglandin E2 can be measured from serum or urine. Because the 

PGE2 molecule is not stable, commercial assays are available to measure the 

metabolites and form an estimation of the PGE2 level.  

Cortisol and CBG 

Cortisol is used as a marker of stress in both humans and animals and is 

produced via activation of the hypothalamic-pituitary- axis (HPA). This axis is 

regulated by the hypothalamus releasing corticotrophin-releasing factor (CRF) 

and vasopressin (AVP). This activates the release of adrenocorticotrophic 

hormone (ACTH) from the pituitary. ACTH acts on the adrenal glands, 

specifically the zona fasciculata of the adrenal cortex, to release glucocorticoids 

such as cortisol. Glucocorticoids then act as negative feedback on the secretion 

of CRF and AVP from the hypothalamus as well as directly on the pituitary 

corticotropes to inhibit the secretion of ACTH (Pariante & Lightman, 2008). 

The HPA axis is activated in response to physical and psychological 

stressors. Cortisol’s role in the body focuses primarily on regulating metabolism 

of the cells and reducing inflammation (Ison et al., 2016). Excessive, sustained 

amounts of cortisol in the blood is referred to as hypercortisolism, and is 

commonly known as Cushing’s disease. An insufficient level of cortisol in the 

body is known as hypocortisolism, and is commonly known as Addison’s or 

Nelson’s disease.  
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Cortisol levels are affected by the intensity, duration and site of the noxious 

stimuli, and are not a measure of pain directly, but is an evaluation of the body’s 

response to distress. Activation of the HPA is prompted by a variety of physical, 

emotional and physiological challenges including surgical procedures, anxiety, 

unusual handling, extreme temperature changes, vigorous exercise and many 

other stimuli (Mellor et al., 2000). Other stressors affecting the plasma cortisol 

levels in dairy cattle include age, diet, milk yield, and environmental factors 

(Dunlap et al., 1981). Cortisol may have a maximum level it can reach in the 

body. In a study by Coetzee et al. 2008, simulated castration and surgical 

castration had similar plasma cortisol levels, which suggest that handling alone 

can reach the maximum threshold for cortisol levels. Since cortisol can rise from 

the handling alone, sample collection could cause an increase and lead to 

confounding results. To further complicate cortisol evaluation, endogenous 

cortisol secretion has a diurnal rhythm of secretion and is variable between 

individuals (Coetzee et al., 2008). After administration of exogenous cortisol, beef 

cattle’s clearance rate of the cortisol was approximately 30 minutes (Dunlap et 

al., 1981). 

Cortisol levels are also affected by the use of local anesthetics. In a study 

evaluating cortisol and dehorning, calves dehorned with the use of a local 

anesthetic had a slight rise in cortisol as a result of handling and had a second, 

large rise in cortisol after the local anesthetic wore off (Mellor et al., 2000). 
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Corticosteroid-binding globulin (CBG) is the major binding protein in the blood 

for cortisol and is produced by the liver. CBG has a high affinity for cortisol and 

binds 75% of total cortisol. Free cortisol makes up 10% of total cortisol levels, 

with another 15% bound to albumin. CBG can bind up to approximately 25 µg/dL 

of cortisol in the plasma. Once this level of binding is reached, the free cortisol 

level increases rapidly to exceed the usual 10%. This unbound portion of cortisol 

is the active cortisol that is regulated through the HPA axis. In humans, CBG is 

increased during pregnancy, hyperthyroidism, diabetes and some genetic 

disease and is decreased in hypothyroidism and protein deficiencies seen with 

severe liver disease (Carroll et al., 2011).  

In the face of inflammation, CBG has been defined as a negative APP, 

meaning it decreases in response to inflammation. This decreases the bound 

cortisol carrying capacity in the blood and would increase the amount of free 

cortisol. Because free cortisol has a short half-life, the total cortisol level may not 

change or are underestimated if CBG is decreased (Trevisi et al., 2013).  

Free Cortisol Index (FCI) is the total cortisol to CBG ratio. This has been used 

as a correlate of serum free cortisol. In a human study following healthy adults 

through major elective surgeries, FCI increased by 130% while total cortisol rose 

55% and CBG fell 30%. This measure takes into account CBG’s role in cortisol 

levels and its effect on cortisol measurement and interpretation (le Roux et al., 

2003).  
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Haptoglobin and MMP-9 

Haptoglobin (Hp) is a major positive acute phase protein (APP) in cattle 

produced by the liver and is one of the most specific APPs for inflammation and 

infection. In healthy adults, Hp is present at less than 0.1 g/L. In acutely ill adults, 

Hp levels increase over 100-fold and reach maximum levels between 48 and 96 

hours (Bannikov et al., 2011). Bovine Hp is made of an alpha and beta chain 

linked by a disulfide bond (Ceciliani et al., 2012) Hp increases during the acute 

phase of both infectious and inflammatory conditions such as those following 

surgical trauma (Chan et al., 2004). Hp also increased in times of stress due to 

increased levels of circulating cortisol (Guzelbektes et al., 2010). It has also been 

used to distinguish between chronic and acute inflammation due to the 

significantly higher levels in the acute phase of inflammation (Paulina & Tadeusz, 

2011).  

A major function of Hp is to scavenge hemoglobin released by damaged 

red blood cells. Once bound, the two proteins form a stable complex that is taken 

up by macrophages for breakdown (Alayash, 2011). This allows haptoglobin to 

act as an anti-oxidant against the oxidative damage that hemoglobin can cause. 

Hp is also responsible for some regulation of the innate immune response of 

white blood cells and has bacteriostatic effects (Ceciliani et al., 2012). It is 

essentially an anti-inflammatory during this process. Macrophages upregulated 

anti-inflammatory mediators in response to hemoglobin-haptoglobin complexes 

binding to CD163 receptors. The anti-inflammatory mediators released include 
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IL10 and heme oxygenase-1 which activate the anti-inflammatory response 

further. Haptoglobin also downregulate neutrophil activity directly by inhibiting 

lipoxygenase and cyclooxygenase or by inhibiting the respiratory burst. Hp 

further inhibits the Th2 cytokine release to suppress T cell proliferation. Finally, 

bacteriostatic activity of Hp is achieved when bacteria that need iron to grow are 

inhibited by Hp due to its scavenging of free hemoglobin. Bacteria can overcome 

the binding to utilize the heme if they are have an iron acquisition system 

(Ceciliani et al., 2012).  

In cattle, haptoglobin is used for the diagnosis and prognosis of several 

diseases including mastitis, enteritis, peritonitis, pneumonia, and metritis. The 

reproductive tracts of cattle also have Hp expression that some have 

hypothesized are part of the normal physiology of the tract. Hp also increases in 

response to disease of the reproductive tract. Dairy cattle with increased 

metabolic stress (measured through beta-hydroxybutyric acid) at the time of 

calving were found to have increase Hp. Cows with retained fetal membranes 

and those multiparous cows with assisted calving also had increases in 

haptoglobin levels  (Pohl et al., 2015).  

Hp is expressed in high rates in the liver but is also seen in the abomasum 

and forestomaches. Because the forestomach is continuously exposed to 

microbes, this explains the need for Hp as a part of the immune system dealing 

with possible breaches in the epithelium (Dilda et al., 2012).  
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In cattle, increased expression of Hp is seen with LPS infusion into the 

mammary gland as well as E. coli infections. Haptoglobin has been used as an 

indicator of disease in cattle for many years. A study measuring haptoglobin in 

milk verses serum found that animals administered LPS directly into the 

mammary gland showed an increase in Hp both in the blood and in the milk (Hiss 

et al., 2004).  

In the future, Hp may be a useful tool in slaughterhouses to assist with the 

meat inspection process. In a study comparing Hp levels of dairy cows with 

infection and metabolic disease, Hp levels were 6-fold higher than in animals with 

minor lesions. In a separate study, Hp was 40-fold higher dairy cows with acute 

lesions than healthy animals (Eckersall & Bell, 2010).  

Matrix Metalloproteinase 9 (MMP 9) is a zinc dependent proteinase in the 

gelatinase B group. They are stored in neutrophils and released during 

degranulation. They are able to breakdown the extracellular matrix and 

components of the basement membrane which increases white blood cell 

migration during inflammation. MMP 9 is also capable of activating IL-8 creating 

a positive feedback loop for more neutrophil recruitment. The Hp-MMP 9 

complex forms in the neutrophil and are stored here until degranulation. The 

release of this complex represents neutrophil activation. Measuring the Hp-MMP 

9 complex allows to differentiation of acute and chronic inflammation since it is 

only released by activated neutrophils in response to acute inflammation 

(Hanthorn et al., 2010). A study compared ELISAs for free Hp, free MMP 9 and 
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Hp-MMP 9 complexes in acute infection, chronic infection and healthy cattle.  

The results showed Hp-MMP 9 was not detectable in healthy animals and was 

the highest in animals with acute inflammation (Bannikov et al., 2011).  

Fibrinogen  

Fibrinogen is a moderate positive APP in cattle and found in healthy 

animals between 1.58-2.94 g/L (Ceciliani et al., 2012). The liver is the major 

organ for Fb production, where liver parenchymal cells produce and store Fb until 

it is needed. The major role of Fb in the body is as a precursor for fibrin formation 

and a molecule in the coagulation cascade. Fb levels following tissue damage 

increase within 24 hours and decreases once its maximum concentration is met. 

In cases of disease causing Fb to be increased, levels remain high until the 

disease has subsided (McSherry et al., 1970).  

In a study by McSherry 1970, 9 cows presented with displaced abomasa 

(DA). Three of these had fibrinogen levels greater than the reference range 

(range: 9.0-10.25 g/L). The six remaining cows were within the reference range 

(3.1-8.0 g/L) (McSherry et al., 1970). This was also seen in several other studies 

looking at fibrinogen in response to naturally occurring DAs. In a study by Jawor, 

seven cows that presented with a DA had fibrinogen levels within the 

physiologically normal range with only one elevated. This animal also had 

bronchitis as a concurrent disease (Jawor et al., 2009).  

 In a study of naturally occurring abdominal disorders (LDA, RDA and 

dystocia), Fb levels were within the reference range (3.0-7.0 g/L) prior to surgery. 
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Furthermore, surgical intervention did not elevate the levels of Fb on a systemic 

level. This study also evaluated naturally occurring traumatic reticulo-peritonitis. 

These animals had a significantly higher concentration of Fb than all other 

groups (mean: 11.6 g/L) which increase slightly following surgery and then 

lowered over time. These authors further suggest that fibrinogen is more specific 

to infectious causes of disease and that an increase after surgery would be more 

indicative for peritonitis associated with surgery (Hirvonen & Pyorala, 1998). 

Mean Nociceptive Threshold 

Mean Nociceptive Threshold (MNT) is measured by the application of a 

continuously increasing stimuli applied to tissues that reaches a pain tolerance 

threshold and causes a withdrawal or avoidance response. This threshold 

represents the maximum pressure (or pain) the subject is willing to suffer before 

a response is occurs.  Several stimuli have been used including electrical, 

thermal, chemical and mechanical. These stimuli are applied to the tissues and 

produces a quantifiable outcome that is repeatable and is non-invasive.  

Electrical stimulation meets the criteria for repeatability, quantification and 

non-invasiveness. However, this type of stimulus stimulates not only nociceptive 

fibers but also large diameter fibers used for hot and cold sensation. This 

stimulus is not typically found in the animal’s natural environment and 

effectiveness of the test may vary due to difference in impedance of different 

tissues. Thermal stimulation also meets the criteria needed for an MNT method. 

This type of stimulation does cause the activation of thermoreceptors as well as 
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nociceptors. One of the disadvantages see with this type of stimulation is the 

difference seen over black or darker areas of skin. This was demonstrated in a 

study of guinea pigs where black animals had a nociceptive threshold 8% lower 

than white animals when radiant heat was used. For chemical stimulation, an 

algogenic agent is administered and causes a slow stimulus over a longer period 

of time than the other stimuli listed. This type of stimulus is unique from others 

because the measured outcome is a measure of behavioral changes in response 

to an inescapable stimulus (Pongratz & Licka, 2017). 

The final type of nociception stimulus, and the focus of this section, is 

mechanical stimulation. An algometer is used to quantify the threshold based on 

a force exerted on the tissue. This method’s use in damaged tissues is based on 

the association of inflammation from tissue damage causing hyperalgesia or 

allodynia.  (Di Giminiani et al., 2016). This type of stimulus will also activate 

mechanoreceptors in the tissues as well as nociceptors (Pongratz & Licka, 

2017).  

The mechanical stimuli are applied until a response is obtained. Examples 

of responses to stimuli in mice and rates include tail flicking or paw withdrawals. 

In cattle, the responses measured include withdrawing the head after dehorning 

(Heinrich et al., 2010), moving away from the device, looking back at the device, 

tail flicks, and kicking.  

 Several principles have been demonstrated when using an algometer as 

a measure of pain. Tissues that are damaged whether from disease or surgical 
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trauma will have a lower threshold than those tissues that are healthy. Smaller 

algometry tips result in a lower MNT while larger tips result in a higher MNT 

(Pongratz & Licka, 2017). A certain level of variability is always present and is 

multifactorial.  

In a study of pain in dogs undergoing ovariohysterectomy and 

ovariectomy, algometry was used to measure cutaneous pain of the incision site. 

During this study a response was classified as a sudden movement away from 

the algometry unit, attempting to stand, looking at the algometry unit, 

vocalization, and attempting to bite. This study showed no difference in the two 

surgeries when comparing algometry reading, but the authors do state there is 

not an effective way of testing pain from within the peritoneal cavity at this time 

(Tallant et al., 2016).  

In a study of horse back pain, algometry tips were compared based on the 

diameter and how they elicited a response. This study found that tips with a 

contact area of 1 cm2 produced more similar results than larger or smaller tips. 

Furthermore, the shape of the tip was examined. Rounded (hemispheric shape) 

rips resulted in a higher pain threshold than cylindrical, flat tips. This study also 

compared measurements in the thoracic region verses the lumbar region of live 

horses. Because there is increased tissue thickness in the lumbar region, this 

area had a higher threshold than the thoracic region (Pongratz & Licka, 2017). 

In a study assessing the effects of meloxicam on dairy calves after cautery 

dehorning, calves were tested with a pressure algometer. Calves treated with 
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meloxicam were less sensitive to algometry 4 hours after dehorning when 

compared to calves without meloxicam (Control MNT = 1.62 ± 0.13 kg of force; 

Meloxicam MNT = 2.13 ± 0.15 kg of force) (Heinrich et al., 2010).  

This method has further been used as a way of objectively determining 

claw pain relation to locomotion scoring in dairy cattle. In this study, algometry 

was used to measure the pain in claws. The response to a stimulus in this study 

was withdrawal of the foot (Dyer et al., 2007).  

Algometry has several factors that make the results less reliable. 

Individual variation is one of the biggest factors affecting results for algometry. An 

individual’s sex, breed, age, body condition, and overall pain tolerance effect its 

MNT. The stage of disease or stage in the healing process affect the response to 

stimuli such as pressure readings. Algometry is also affected by the operator. In 

most studies, algometry is carried out by one operator who has been trained on 

the possible responses the subject by exhibit that require removal of the 

pressure. Algometry is limited by the need for repeated measurements. While 

triplicates are required for many statistical readings, subjects may become 

habituated to these readings over time. One of two scenarios could occur. One, 

the animal becomes habituated to the noxious stimuli, and its threshold will be 

falsely increased. Two, the animal begins giving the desired avoidance response 

earlier than originally intended in order to avoid the experience all together 

causing a false decrease in the threshold.   
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Thermography 

 “Running a fever” has long since been a telltale sign of sickness. 

Hippocrates speculated that when a patient was covered in mud, areas that dried 

faster had greater heat and were therefore diseased. Since the invention of the 

thermometer in the 17th century, body temperature has been used as an 

objective and quantitative means to measure sickness and its severity. An 

increased body temperature can tell physicians that body is fighting off infections, 

has an increase in inflammation, or is overheating due to the environment.  

Infrared thermography is being used in many fields to distinguish 

temperature differences, from law enforcement using this technology to rescue 

people to building engineers using this to detect heating leaks from a building. 

Now medical personnel are exploring the possibilities of how infrared 

thermography can help diagnose and monitor medical conditions.  

This modality is helpful in measuring the sympathetic adrenomedullary 

system. In a fight or flight response, skin temperature decreases as blood 

vessels constrict in the periphery to move more blood to the muscle and internal 

organs.  IRT is also helpful in measuring inflammation and pyrexia. The five 

cardinal signs of inflammation are heat, redness, swelling, pain, and loss of 

function. Temperature in inflammation increases due to vasodilation of the 

vessels at the area to increase blood flow which is also accompanied by 

inflammatory mediators such as cytokines, eicosanoids, and complement 
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proteins. These mediators work to activate PGE2 that then acts on the preoptic 

area in the brain to increase overall body temperature (Bradford et al., 2015). 

Thermal imaging is being used as a screening tool in animals and humans 

for a change in overall body temperature and the assessment of local 

inflammation. This method allows for assessing temperatures noninvasively and 

requires no physical contact between subjects and screeners. Thermal imaging 

was used to screen people at airports for increases in body temperature during 

the avian influenza outbreaks. It has been used experimentally for the detection 

and monitoring for foreign animal disease such as foot-and-mouth disease virus 

and bluetongue virus, monitoring wildlife for infectious diseases such as rabies, 

and decreasing the time needed for testing for tuberculosis in cattle (Rekant et 

al., 2016).  

Many studies have demonstrated the use of IRT for screening patients for 

increased body temperature [due to a febrile state]. In a study in calves 

inoculated with a high virulent type 2 Bovine Viral Diarrhea Virus (BVDV), 

infrared thermography of the eye was used to detect disease as early as 1 day 

post experimental inoculation, which was significantly different from pre-

inoculation temperatures, and coincided with the expected course of disease. 

This correlated with changes in rectal temperature. In this study, thermal images 

were taken of the side, back, hooves, ears, nose and eyes as well as samples of 

serum cortisol, haptoglobin and salivary IgA levels. Ocular infrared temperatures 

were the most reliable and consistent for detection of disease (A. L. Schaefer et 



26 
 

al., 2004). Because of this work, any disease that causes an animal to become 

febrile (bovine respiratory disease complex, metritis, peritonitis, etc.), can be 

detected and monitored earlier than by other traditional method without having a 

direct interaction with the patient.  

Thermal imaging has also been used for the detection and monitoring of 

localized inflammation in cattle such as hoof lesions or mastitis. These localized 

inflammatory processes are characterized by the dilation of blood vessels, 

hyperemia, swelling, and hyperthermia.  (Rekant et al., 2016). In a study of dairy 

cattle, IRT was compared to the California Mastitis Test (CMT) on its ability to 

detect subclinical mastitis. The udder skin surface temperature (SST) and CMT 

were positively correlated, while rectal temperature had a weak correlation to 

both (Colak et al., 2008). In a study of lameness in dairy cattle, temperature 

increases in the hoof with a lesion were observed before behavioral signs 

became evident and decreased once corrective trimming was performed to 

alleviate the lesion (Wood et al., 2015).  

Thermography’s use in detecting inflammation has become even more 

important when assessing the welfare of animals. Inflammation in the limbs of 

gaited horses caused by soring is being detected by governing official using IRT 

as an objective adjunct tool.  

One of the greatest advantages of IRT is the ability to collect individual 

data by a remote, noninvasive means. Observers are able to essentially snap a 
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picture of a location of interest and have a diagnostic picture of the animal’s 

health or a screening tool for monitoring herd health.  

Cow factors that would affect the quality of the thermal image include hair 

vs non-haired skin, color of skin, and age. Hair is an insulator, which holds heat 

to the body and out of sight from the IRT camera. For this reason, haired skin 

tends to appear cooler than non-haired skin. This remains true in the case of 

clipping for a surgical procedure. Black also absorbs heat more than lighter 

colors. In black and white colored cows, the black areas will be warmer than 

white areas. Finally, age has been shown to have a possible effect on body 

temperature of the eye in human subjects. Other areas where not studies but can 

be inferred to also affect theses as well.  

Environmental factors that can affect the quality of the thermal image 

include ambient temperature, air movement, sunlight, rain, and various other 

weather conditions. With the great variety of climate changes throughout a day 

and the small window of precision that the IRT camera has, the likelihood that the 

environment may alter outcomes is relatively high. For this reason, evaluating 

animals in controlled environmental conditions is imperative for the evaluation of 

thermal images. Further factors in the environment are the presence of moister 

and debris on the subject. These can limit the use of IRT in veterinary medicine 

and in practical implication in the field (Rekant et al., 2016).  
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Meloxicam 

Non-steroidal anti-inflammatory drugs (NSAID) are one of the options 

veterinarians have for treating pain and inflammation in cattle. NSAIDs inhibit 

cyclo-oxygenase enzymes (COX) from acting on the arachidonic acid pathway 

and producing prostaglandins as well as other inflammatory mediators, thereby 

decreasing pain and inflammation. COX is found in two isoforms: COX-1 and 

COX-2. COX 1 is primarily related to homeostats of the abomasal mucosa and 

renal perfusion and is constantly expressed in the CNS and PNS. Long term 

alteration in COX-1 expression can lead to effects of the medications such as 

ulceration of the abomasum. COX-2 is found in the CNS constantly, but is 

induced by release of factors from injured tissue. This leads to its role as a major 

enzyme in prostaglandin production. After a tissue insult, COX-2 mRNA 

expression takes 2-8 hours to reach maximum levels. For this reason, COX-1 is 

predominantly responsible for the initial release of prostaglandins (Coetzee, 

2013b).  Medications that are more selective for COX-2 are thought to be less 

potent (Anderson & Edmondson, 2013) 

Meloxicam is a non-steroidal anti-inflammatory drug (NSAID) in the 

oxicam class. Meloxicam is more selective for the COX-2 isoform. The dose 

approved by the European Union is currently 0.5 mg/kg IM or SC and has a 15-

day meat withdrawal and a 5-day milk withdrawal time.  

Meloxicam is currently approved in the USA for use in dogs and cats. In 

dogs, meloxicam is approved for use to control pain and inflammation associated 
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with osteoarthritis ("Metacam Injectable for Dogs"). In cats, meloxicam is labeled 

for control of post-operative pain and inflammation from spays, neuters, and 

orthopedic surgery. This label does have a box warning stating that repeated 

doses in cats is associated with acute renal failure and death ("Metacam 

Injectable for Cats").  

There are a number of studies evaluating meloxicam’s efficacy in cattle for 

several different indications. The American Association of Bovine Practitioners 

guidelines for castration and dehorning sites meloxicam as a possible long-acting 

pain medication to mitigate pain associated with these procedures (Practitioners, 

2014). Allen and colleagues (Allen et al., 2013) found that calves treated with 

meloxicam had significantly lower cortisol levels at 4 hours after dehorning and 

substance P levels at 120 hours than control calves regardless of time of 

meloxicam administration (either 12 hours pre-procedure or at time of 

procedure). Heinrich and colleagues (Heinrich et al., 2010) found that calves 

treated with meloxicam 10 minutes prior to dehorning flicked their ears less 

during the first 44 hours, had less head shaking during the first 9 hours, and were 

less sensitive to pressure algometry at 4 hours after the procedure than the 

control calves. Barrier and colleagues (Barrier et al., 2014) found that beef cows 

given meloxicam following caesarean section spent more time lying and had 

more lying bouts than control animals, suggesting that increased lying times are 

representative of increased comfort.  
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Coetzee and colleagues (Coetzee et al., 2009) evaluated the pharmacokinetics 

of meloxicam in ruminant calves receiving the medication either orally (1 mg/kg) 

or intravenously (0.5 mg/kg). Oral meloxicam had a mean peak plasma 

concentration of 3.10 µg/mL at 11.64 hours with a half-life of 27.54 hours. 

Intravenous administration of meloxicam had a half-life of 20.35 hours. Malreddy 

and colleagues evaluated the pharmacokinetics of meloxicam in lactating dairy 

cattle when given orally with two different dosing levels of gabapentin. Oral 

meloxicam had mean peak plasma concentration of 2.89 µg/mL at 11.33 hours. 

The mean peak milk concentration was 0.41 µg/mL at 9.33 hours (Malreddy et 

al., 2013).  
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Chapter 1 

Markers of Pain Mitigation in Cattle Following Soft Tissue 

Surgery 
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Abstract  

Mitigation of pain for surgical procedures has become a topic of concern 

for the public, producers, and veterinarians. The objective of this study was to 

determine the efficacy of meloxicam for pain mitigation in adult lactating dairy 

cattle following a right-side laparotomy with omentopexy. Twenty-four dairy cattle 

(mean age: 2.51 +/- 0.54 years), between 50 and 188 days in milk (median: 117 

days +/- 43.15 days) were enrolled. Cattle were administered a 7-day acclimation 

period to the new environment and social hierarchy and assigned blocks based 

on parity, days in milk, milk yield, and pregnancy status, and randomly allocated 

to groups Meloxicam (MEL) or placebo treated control (CON). The study had two 

phases; sham (day 0-14) and surgery (day 15-28). The objective of the sham 

phase was to collect baseline behavioral and physiologic data and permit cows to 

become acclimated to human intervention during the intensive sampling periods. 

On day 0, cattle were prepared for surgery including local blocks with lidocaine. 

mailto:mcaldwell@utk.edu
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Injectable meloxicam (MEL) or saline placebo (CON) was administered (dose: 

0.5 mg/kg) 5 minutes before simulated surgery (restraint for 30 minutes) and then 

returned to their home pen for data collection. On day 15, after a 14-day washout 

period, the surgical procedure was performed. Meloxicam and saline were 

administered prior to surgery to each respective group. A right flank laparotomy, 

brief abdominal exploration, and omentopexy was performed on all animals. 

Blood was collected via jugular catheter at hours 0, 2, 4, 8, 12, 24, 36, 48, 60, & 

72 during both phases for cortisol, and at hours 0, 2, 4, 8, 12, 24, 48, 72, 96, 120, 

144, & 168 for haptoglobin, PGE2, and fibrinogen. PGE2 concentrations 

displayed a treatment by time interaction where concentrations were higher in the 

CON animals (P = 0.003). Total cortisol concentrations were significantly 

increased in CON 4 hours post-operatively (P=0.004). Haptoglobin was 

significantly increased in CON 72 and 96 hours post-operatively (P< 0.001). 

There was no difference for fibrinogen (P=0.43). This study indicates the use of 

meloxicam significantly reduces biomarkers of inflammation and indirect 

measures of pain and suggests meloxicam is effective in mitigating post-

operative pain in adult lactating dairy cattle. 

 

Introduction 

Cattle undergo painful livestock management procedures every day such 

as dehorning and castration as well as surgical repairs of displaced abomasum 

(DA), rumenotomies, and caesarian section (C-section). According to the United 
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States Department of Agriculture (USDA), there are an estimated 9.4 million 

dairy cows in the US in 2018 (Cessna, 2018). The incidence of left displaced 

abomasum (LDA) in lactating dairy cattle is approximately 5% with a projected 

cost of $250 to $450 per case (van Winden, 2002). Therefore, approximately 

470,000 cows undergo surgical correction for LDAs each year. Veterinarians 

scored abdominal surgeries, such as DA corrections and caesarian sections, as 

the most painful procedures cattle undergo with an average pain score of 7.3 and 

8.0, respectively (Fajt et al., 2011). To address pain mitigation, practitioners used 

a variety of medications including nonsteroidal anti-inflammatory drugs 

(NSAIDS), opioids, α2 adrenergic receptor agonist, local anesthetics, or a 

combination of these for pain in response to surgery. 

Although practitioners are aware of the pain induced with abdominal 

surgery and use a wide variety of medications to alleviate pain, only one 

medication is currently labeled for the mitigation of pain in cattle. The recently 

approved transdermal flunixin meglumine (Banamine® Transdermal, Merck 

Animal Health, 2017) has a label indication for pyrexia associated with bovine 

respiratory disease and control of pain associated with foot rot. However, this 

product is not currently labeled for use in dairy cattle over 20 months of age. This 

obligates practitioners to continue to use medications in an Extra Label Drug Use 

(ELDU) manner under the guidance of the Animal Medicinal Drug Use 

Clarification Act (AMDUCA). The cattle industry needs new products labelled 

specifically for post-operative pain that are safe, effective and cost efficient.  
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Meloxicam, although not approved for use in cattle in the United States, is 

widely used for pain and other indications in cattle of many ages and production 

systems. In Canada, meloxicam (Metacam®20, Boehringer Ingelheim (Canada) 

Ltd., Burlington ON) is indicated for calf diarrhea, mastitis, and the relief of pain 

associated with dehorning and abdominal surgery. Meloxicam acts by inhibiting 

cyclooxygenase enzymes from converting arachidonic acid to prostaglandins and 

prostacyclins. There are two isoforms of the COX molecule: COX-1 and COX-2. 

COX-2 is present in low levels within the cell and is upregulated in response to 

inflammation. Meloxicam preferentially inhibits COX-2 thereby decreasing the 

inflammatory mediators release and depressing the inflammatory response. 

Following a single subcutaneous dose, meloxicam displays peak plasma 

concentrations in 7.7 hours (Cmax = 2.1μg/ml) and an elimination half-life of 

approximately 22 hours in young cattle (Stock & Coetzee, 2015). Meloxicam’s 

efficacy in alleviating pain associated with castration and dehorning has been 

well documented (Allen et al., 2013; Brown et al., 2015; Heinrich, Duffield, 

Lissemore, & Millman, 2010; Melendez et al., 2017). Barrier et al. recently 

demonstrated changes in lying time and lying bouts in beef cows undergoing 

emergency caesarian section following a single subcutaneous dose of 

meloxicam. Likewise, meloxicam treated cattle displayed a higher dry matter 

intake and altered lying time after implantation of a rumen fistula compared to 

ketoprofen treated cattle (Barrier et al. (2014).  



36 
 

A major hurtle in the approval of new pain medications is the ability to 

objectively measure and quantify pain in cattle to meet FDA specifications ("GFI 

#123-Target Animal Safety-Approval of NSAIDS,"). Pain is an inherently variable 

and individual response, influenced by temperament, breed, and each animal’s 

physiologic and/or affective state. Current research methodology attempts to 

quantify pain indirectly through inflammatory or neuropeptide biomarkers, 

changes in behavior, or changes in production parameters. Cattle are 

ontologically prey species, and are behaviorally conditioned to mask pain or 

disease in order to avert predation. Therefore, the pursuit of systemic biomarkers 

that are byproducts of the pain or inflammatory response are attractive for 

evaluating the efficacy of pain therapies in clinical studies. To the authors’ 

knowledge, no previous studies have evaluated the efficacy of meloxicam in 

alleviating post-operative pain in lactating dairy cattle.   

Thus, the objective of this study was to evaluate the efficacy of 

subcutaneously administered meloxicam in alleviating post-operative pain in 

lactating dairy cattle following elective laparotomy with prophylactic omentopexy. 

Our hypothesis was that cattle administered meloxicam would demonstrate lower 

concentrations of relevant biomarkers associated with pain and inflammation 

(cortisol, CBG, PGE2, Hp, Hp – MMP9 complex, and fibrinogen) compared to 

placebo administered cattle.  
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Material and methods 

 The University of Tennessee Institutional Animal Care and Use Committee 

approved all experimental procedures under the supervision of the university 

veterinarian (Protocol # 2246-0314). 

The study was conducted in two phases. Animals were first subjected to a 

sham surgical procedure to ensure habituation to the intensive sampling 

procedures followed by application of the surgical procedure after a 14-day wash 

out period. Data are presented in relationship to each phase.  

Animals 

Twenty-four adult dairy cattle, greater than 20 months of age (mean age: 

2.51 +/- 0.54 years), were housed at the East Tennessee Research and 

Education Center - Little River Dairy Animal and Environmental Unit (Latitude: 

35.772115; Longitude: -83.850182) during the months of June, July and August 

and were maintained in an ambient temperature. Animals were between 50 and 

188 days in milk (median: 117 days +/- 43.15 days) and weighed between 512 kg 

and 705 kg (mean: 596.4 kg +/- 41.8 kg). Cows were allocated into two equal 

groups: Meloxicam (n = 12; MEL) and Control (n = 12; CON). Groups were 

balanced based on days in milk (Median: 111 days MEL; 127 days CON; Range: 

50 – 188 days), milk yield (Mean: 74.0 lbs. MEL; 77.5 lbs. CON; Range: 57.6 – 

93.1 lbs.), and pregnancy status (n = 2 MEL; n = 2 CON). Exclusion criteria for 

enrollment in the study included clinical signs associated with potentially 

systemic inflammation (i.e. mastitis, metritis, ketosis, lameness, etc.) or history or 
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evidence of previous abdominal surgery. All animals were considered healthy 

based on a physical exam performed by a veterinarian 1 day prior to the start of 

the study.  

Cattle were housed in a free stall barn approximately 20 m x 12.5 m (800 

sq. m) with 24 sand-bedded stalls and 32 headlock stanchions. Stocking density 

was maintained at 75% and did not exceed 100% during the study (lowest was 

22 cows per 24 stalls = 91%). Cattle were milked twice daily (at approximately 

7:30 AM and 4:30 PM). Milk was discarded throughout the entire of the 

experiment.  A total mixed ration (TMR) was fed ad libitum during the study and 

was formulated according to Nutrient Research Council requirements to meet or 

exceed nutrient requirements of lactating dairy cattle. Nutrient analysis of TMR 

was conducted prior to and upon completion of the study. Fresh TMR was 

prepared and dispensed twice daily in parallel with milking. Twice daily at 

approximately 12:00 PM and 6:00 PM residual TMR was pushed up the 

headlocks. Waste TMR was collected twice daily immediately prior to the 

dispensing of each new feeding and weighed to determine pen level feed intake. 

Throughout the study animals were also provided ad libitum access to water. The 

cattle were permitted 7 days prior to the initiation of the study to acclimate to the 

new environment and social hierarchy. During this time, the cattle were also 

acclimated to handling via halters and grooming to simulate the contact 

associated with the intense sampling periods.  
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Phase 1: Sham Procedure 

In order to determine the effect of the intense sampling scheme and 

experimental assessments alone without the influence of the surgical procedure, 

a sham experimental phase was imposed on the cattle. On day -1, a 14-gauge X 

13 cm polyurethane IV jugular catheter (MILACATH-Extended Use, Mila 

International, Inc. Florence, KY) was placed and were maintained with 

heparinized saline until 4 days after the procedure, at which point they were 

removed and subsequent samples taken via direct venipuncture.  

On day 0, a sham procedure was performed.  Cows were prepared for 

sham surgery by clipping and sterilely preparing. Cows were blocked with 2% 

lidocaine (90 ml or 1800 mg, local tissue infusion, VetOne, MWI Animal Health, 

Boise, ID) in a line block pattern on their right side approximately 15 cm below 

the transverse process of the 3rd lumbar vertebrae and 10 cm caudal to the 

costal arch. Meloxicam (0.5 mg/kg, Metacam®20, Boehringer Ingelheim Ltd., 

Burlington, Ontario, Canada) was administered SQ in the neck to the meloxicam 

treatment group (MEL) and saline (0.025 mL/kg, 0.9% Sodium Chloride Injection 

USP, Hospira, Inc. Lake Forest, IL) was administered SQ in the neck to the 

control group (CON). Ampicillin trihydrate (10 mg/kg, Polyflex®, Boehringer 

Ingelheim Ltd., St. Joseph, MO) was administered intramuscularly to all cows on 

the contralateral side of the neck from the treatment.  

Four veterinarians were designated as surgeons during the study (MC, 

DA, BW, and LS). Six replicates of sham procedures occurred with 4 animals per 
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cohort. Each cohort was equally balanced for MEL and CON cattle (2 MEL and 2 

CON). Each surgeon performed six procedures with equal numbers of MEL and 

CON cattle (3 MEL and 3 CON). A sham surgical simulation was performed with 

the surgeon standing adjacent to the animal while it was restrained for 30 

minutes. Procedure initiation for each cohort was staggered and administration of 

treatment and sampling time points were relative to each animal’s sham 

procedure start time.  

Following the sham procedure, cattle were returned to their home pen for 

sample collection lasting up to 7 days. Following completion of phase 1, the 

cattle were provided a 7-day washout period. Therefore, a total of 14 days 

following administration of the meloxicam or saline placebo elapsed prior to 

initiation of phase 2.    

Phase 2: Surgical Procedure 

The methods used for the phase 2 were similar to those executed during 

phase 1 with the exception of preforming right flank laparotomies with 

prophylactic omentopexy for all cattle. Briefly, on day -1 before the surgical 

procedure, cattle were refitted with heart rate monitors and jugular catheter was 

placed. As previously, jugular catheters were maintained with heparinized saline 

through the first 96 hours of the sampling period then removed and subsequent 

blood samples collected via direct venipuncture. On day 0, approximately 5 

minutes prior to the initiation of each animals’ surgical procedure, meloxicam (0.5 

mg/kg) was administered SQ in the neck to the meloxicam treatment group 
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(MEL) while a saline placebo (0.025 mL/kg) was administered SQ in the neck to 

the control group (CON). Ampicillin trihydrate (10 mg/kg) was administered 

intramuscularly to all cows on the contralateral side of the neck from the 

meloxicam or saline treatment. 

The same four veterinarians carried out the surgical procedures in 6 

replicates of 4 cows. All treatments were balanced within each cohort and 

balanced across each surgeon. Each laparotomy, abdominal exploratory and 

prophylactic omentopexy were performed according to a standardized protocol. 

The right paralumbar fossa was clipped, the skin was aseptically prepared, and a 

line block with lidocaine (120mL of lidocaine) was performed as previously 

described. After aseptic preparation, a 15 cm vertical incision was made starting 

10-cm caudal to the caudal curvature of the last rib and 15 cm ventral to the 

transverse process of the 3rd lumbar vertebrae. The incision progressed through 

the skin, external abdominal oblique muscle, internal abdominal oblique muscle, 

transversus abdominus muscle, and peritoneum. The surgeon then placed the 

left arm into the abdomen and briefly explored the abdomen to identify and 

palpate the rumen, omentum and abomasum. Similar to the techniques 

described in Turner and McIlwraith’s Techniques in Large Animal Surgery (2013), 

a standard omentopexy was performed by suturing the omentum, peritoneum 

and transversus closed using #2 polyglactin 910 (Vicryl, Ethicon, Inc. Somerville, 

NJ) in a simple continuous pattern. The external abdominal oblique muscle and 

internal abdominal oblique muscle were also closed using #2 polyglactin 910 in a 
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simple continuous pattern. Finally, the skin was closed using #4 nylon (Supramid 

Extra II. S. Jackson, Inc. Alexandra, VA) in a continuous interlocking pattern. 

Prostaglandin E2 (PGE2) 

Blood samples (5 mL) were collected into a lithium heparin tube at 0 

(baseline), 2, 4, 8, 12, 24, 48, 72, 96, 120, 144, and 168 after sham/surgery. 

Plasma was harvested after centrifugation and frozen until analyzed. A 

commercially available kit was used to measure the PGE2 metabolites 

(Prostaglandin E Metabolite (Kit # 514531), Cayman Chemical Company, Ann 

Arbor, MI) following previously described methodology (Fraccaro et al., 2013). 

Briefly, the stable metabolite of PGE2 was measured in a competitive assay with 

a PGE metabolite conjugated with acetylcholinesterase. The concentration of 

PGE metabolite tracer was determined spectrophotometerically and used to 

calculate the concentration of free PGE metabolite. Absorbances were read by 

an ELX808 (BioTek Instruments, Inc., Winooski, VT). Intra- and inter-assay CV (n 

= 570) of pooled bovine plasma was 10.7% and 4.0%, respectively. 

 

Cortisol and Corticosteroid Binding Globulin  

Blood samples (6 mL) were collected into a lithium heparin tube at 0 

(baseline), 2, 4, 8, 12, 24, 36, 48, 60, and 72 after sham or surgery. Plasma was 

harvested by centrifugation and frozen until analyzed. Isolation and purification of 

corticosteroid-binding globulin from bovine plasma (CBG) and development and 

validation of an ELISA for its quantification followed the procedures outlined by 
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Roberts et al. (2003) for porcine CBG.  For the CBG assay the absorbances 

were read by an ELX808 (BioTek Instruments, Inc., Winooski, VT) and data were 

collected using Gen5 software version 2.03.1 (BioTek Instruments, Inc., 

Winooski, VT).  Intra- and inter-assay CV of pooled bovine plasma was 5.6% and 

9.7%, respectively. Total serum cortisol concentration (ng/mL) was determined 

using the RIA procedure of Coat-A-Count Cortisol (Siemens Medical Solutions 

Diagnostics, Los Angeles, CA) as performed previously in our lab (Doherty et al., 

2007).  The free cortisol index (FCI; nmol/mg) was calculated using the ratio of 

plasma total cortisol (nmol/L) to CBG (mg/L; Le Roux et al., 2003). 

Fibrinogen 

Blood samples (6 mL) were collected into a lithium heparin tube at 0 

(baseline), 2, 4, 8, 12, 24, 48, 72, 96, 120, 144, and 168 hours after the sham 

and surgery procedures. Serum was harvested by centrifugation and frozen until 

analyzed. Fibrinogen was measured using the heat precipitation method. Two 

microhematocrit tubes were filled with plasma. The first tube was centrifuged and 

the total protein was measured using a refractometer. The second tube was 

heated to 56 C° for 3 minutes, centrifuged, and the total protein was measured. 

This precipitates the fibrinogen from the plasma. The second protein 

measurement from the heated tube was subtracted from the first protein 

measurement of the unheated tube with the difference being the fibrinogen level. 

The % CV of all samples (n = 576) was 8.1%.  
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Haptoglobin and MMP 9 

Blood samples (5 mL) were collected into a serum clot activator tube at 

baseline prior to sham/surgery and hours 2, 4, 8, 12, 24, 48, 72, 96, 120, 144, 

and 168 after sham/surgery. Blood were collected into a serum clot activator 

tube. Serum was harvested by centrifugation after clotting and frozen until 

analysis. Hp was analyzed as previously described using a commercially 

available bovine haptoglobin ELISA test kit following the manufacturer’s 

instructions (Hanthorn et al., 2014). 

Study conclusion 

A 30-day investigational withdrawal period, mandated by the food-use 

authorization, was used for edible tissues following the last treatment. In addition, 

a 10-day investigational milk discard time was used following the last treatment 

of meloxicam.  

Statistical analysis  

All statistical analyses were performed in Statistical Analyses System 

(SAS Version 9.1: SAS Institute Inc., Cary NC; 1991-2001). The level of 

significance was established to be P< 0.05. 

 Normality test of the data and residuals was performed for each indicator. 

Surgery total cortisol, fibrinogen, and PGE2 concentrations were normally 

distributed. Surgery CBC, free cortisol index, Hp-MMP 9 and Haptoglobin 

concentrations were normally distributed following log transformation. Non-
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normally distributed data was log transformed to achieve normal distribution. 

Data was analyzed using the GLIMMIX procedure of SAS with Tukey adjustment. 

Fixed effects included treatment group. Time was used as a repeated measure.  

Animal ID was used as a random effect for all blood markers. Surgeon and time 

of surgery (surgery block) was analyzed as a random effect, but did not have a 

significant effect on any blood markers and was therefore removed from the 

analysis.  

Results 

 Two animals were removed during the course of the study; one due to 

developing mastitis (CON) and one due to surgical complications (MEL), and 

have not been included in the statistical analyses. Cows included in the results is 

n = 22 (n = 11 MEL; n = 11 CON).   

Surgeries were performed in the unused free stall pen adjacent to the 

home pen. The surgery time began when the incision was started and ended 

when the last suture was tied. Surgeries ranged from 12 to 36 minutes (mean 

time was 24.41 minutes). If surgeons finished before 30 minutes, cattle were 

maintained in their surgical position until 30 minutes was completed. Time point 0 

hours represents the start of the incision for each animal.  

PGE2 

During the sham procedure, there was not a treatment by time interaction 

(P = 0.31). There was an effect of treatment (P = 0.02; Figure 1) and time (P < 
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0.001; Figure 2) on plasma concentrations of PGE2 such that CON PGE 

concentrations were greater than MEL.  

During the surgery period, there was not an effect of treatment (P = 0.11). 

However, there was an effect on time (P < 0.001) and a treatment by time 

interaction (P = 0.003; Figure 3) on plasma PGE2 concentrations, such that the 

CON group had greater concentrations at 2 and 8 hours after surgery (P= 0.004 

and P<0.001, respectively). 

Cortisol and Cortisol Binding Globulin 

During the sham phase, total cortisol concentration was affected by time 

(P = 0.016), but not significantly affected by treatment (P = 0.14), nor was there a 

time by treatment interaction (P = 0.27). However, all cows displayed a decline in 

total cortisol concentration over the observation period (P = 0.015, Figure 4). 

CBG displayed a similar pattern were there was a time effect (P < 0.001), but 

was not affected by treatment (P = 0.08) or a treatment by time interaction (P = 

0.58). However, a decline in CBG over time was observed for all cows (P > 

0.001, Figure 5). Finally, due to the comparative declines in both total cortisol 

and CBG, the FCI had no significant time (P = 0.10), treatment (P = 0.25), or time 

by treatment interaction (P = 0.17, data not shown).  

Total cortisol concentration was affected by both a time across treatment 

groups (P < 0.001) and a time by treatment interaction (P = 0.004) following the 

surgical procedure. Figure 6 displays the least squares mean concentrations of 

cortisol by treatment group over time after surgery. Cows that received 
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meloxicam had significantly lower cortisol concentrations at 4 hours after surgery 

(P < 0.001) than placebo-treated controls.  

Unlike the observations made in the sham phase, CBG concentrations 

demonstrated a significant rise over time in both treatment groups (P < 0.001, 

Figure 7), but these differences were not significant by treatment (P= 0.14) or 

time by treatment interaction (P = 0.52, Figure 8). Due to the overall rise in total 

cortisol in the early post-operative period and the slowly rising CBG 

concentration in both treatments, FCI demonstrated a significant elevation post-

operatively that declined as cortisol normalized, and CBG continued a parallel 

rise for both treatment groups (P < 0.001, Figure 9). However, despite the 

differences in early total cortisol concentrations, there was no significant 

treatment effect (P = 0.34) or time by treatment interaction (P = 0.29, Figure 10).  

Fibrinogen 

 Interestingly, fibrinogen concentrations slowly declined over the 

observation period during the sham phase (P < 0.001), despite the lack of 

induced inflammation in either group, and as expected there were no treatment 

(P = 0.52) or time by treatment interactions (P = 0.96, Figure 11). 

During the surgery phase, fibrinogen concentration displayed a rise and 

plateau between 4-hr and 144-hr post-operatively with a significant time effect (P 

< 0.001, Figure 12), however there was no treatment effect (P = 0.56, Figure 13) 

or time by treatment interaction (P = 0.43).  
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Haptoglobin and MMP 9 

 During the sham procedure, Hp concentrations exhibited a peak at 72-hr 

with an overall time effect for all cattle (P = 0.002), but no treatment (P = 0.42) or 

time by treatment interaction (P = 0.39, Figure 14). Hp-MMP 9 complex 

concentration likewise, exhibited brief spikes in concentration at 24-hr and 144 – 

168-hr during the sham procedure with an overall time effect (P < 0.001), but no 

treatment (P = 0.15) or treatment by time interaction (P = 0.36, Figure 15).  

 During the surgery procedure, Hp concentration were observed to have 

both time effects (P < 0.001) and time by treatment interaction (P < 0.001), but 

not a treatment effect (P = 0.66, Figure 16). Placebo-treated control animals had 

significantly higher Hp concentrations are 72 and 96 hours after surgery (P = 

0.015 and <0.001, respectively). 

Hp-MMP 9 complex concentration, displayed a similar pattern with a peak 

in concentration around 48-hr for both treatment groups (Figure 17) with a 

significant time effect and time by treatment interaction (P < 0.001 and P = 0.012, 

respectively), but no difference between treatments (P = 0.5317). Control cows 

had a significantly lower Hp-MMP 9 complex concentration at 72 hours post-

surgery. Hp-MMP 9 complex concentrations in all cows over time displayed a 

significant time effect (P < 0.001, Figure 18). Complex concentrations at hours 8, 

12, 24, and 48 were significantly higher in all cows following surgery. 
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Discussion 

This study supports the hypothesis that meloxicam is effective in reducing 

pain and inflammation following soft tissue surgery. The increase in PGE2, 

cortisol and haptoglobin in the control animals indicate a response to the acute 

inflammation and pain following an elective laparotomy with prophylactic 

omentopexy. Meloxicam reduced these markers at varying time points after 

surgery in treated animals.  

Surgical Model 

The surgical model chosen for this study was a standing right flank 

laparotomy with prophylactic omentopexy (simulated correction of an LDA). This 

model accurately reproduces the sharp, acute pain associated with a surgical 

procedure as well as the inflammatory pain experienced during the healing 

process. All the animals enrolled in the present study recovered without 

complication with the exception of one. This animal developed an intestinal 

entrapment associated with the omentopexy and was subsequently exclude from 

the statistical analysis on the basis of the exaggerated inflammatory response 

she was perceived to be experiencing. An additional animal developed a new 

intramammary infection during the study and was excluded as well on the basis 

of the confounding inflammatory process. Cattle enrolled in the present study can 

be characterized as early to mid-lactation (DIM: 50 – 188 days, median: 121 

days). Naturally occurring displaced abomasa often occur at higher incidence 

earlier in lactation, classically within the first 14 DIM and frequently occur as the 
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result of or along with concurrent co-morbidities such as ketosis, hypocalcemia, 

retained fetal membranes, metritis or mastitis. Likewise, cattle with disease 

processes indicating surgical intervention, such as dystocia requiring Cesarean 

delivery, may be in an altered physiologic state compared to the cattle 

represented in the present study. Whether these co-morbidities would have 

confounded the results demonstrated here is not known, but it probable that 

NSAID therapy, such as meloxicam, would provide therapeutic benefit for cattle 

experiencing these types of systemic inflammatory responses. Regardless, these 

factors should be considered when comparing the results observed here to 

clinical applications.  

PGE2 

 The reduction of prostaglandins by NSAIDs is the main method of 

analgesia and anti-inflammatory effects produced by these drugs. PGE2 is one 

product of the Arachidonic Acid pathway and is upregulated by the COX-2 

enzyme increases during inflammation. For this reason, PGE2 is expected to 

decrease when the patient is given a COX-2 inhibitor such as meloxicam. This 

has been demonstrated in several studies prior to the current one. Meloxicam 

significantly reduced PGE2 concentrations in blood and synovial fluid of dogs 

treated with meloxicam for 21 days. This is consistent with the suppression of the 

COX-2 enzyme (Jones, Streppa, Harmon, & Budsberg, 2002).. In a human study 

using whole blood and microsomal assays, meloxicam preferentially inhibited 

human COX-2 at 0.01 to 1 µmol/L but was as potent of an inhibitor of both COX-
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1 and COX-2 at higher concentrations. In the microsomal assay, meloxicam was 

again highly selective for COX-2 (Churchill et al., 1996). Finally, in a study of 

cautery dehorning in calves, meloxicam treated calves had a significantly lower 

PGE2 level than control calves (Allen et al., 2013). The present study follows 

these same principles of PGE2 reduction in response to meloxicam. The 

reduction of PGE2 was significant at 2- and 8-hours following surgery. Some 

studies even suggest that spinal PGE2 may be responsible for the increased 

excitability in the dorsal root leading to hyperalgesia (J.F. Coetzee, 2011). 

Because PGE2 is a known inflammatory mediator and cause pain, regulating the 

magnitude of this response mitigates pain. 

Inhibition of prostaglandin and prostacylin production is the primary target 

of NSAID therapy. Reduction in these products, reduces the downstream 

mediation of inflammation and pain. PGE2 is one product of the arachidonic acid 

pathway and is increased upon induction of the cyclooxygenase-2 (COX-2) 

enzyme during inflammation. For this reason, PGE2 is expected to decrease 

when the patient is given a COX-2 inhibitor such as meloxicam. In fact, multiple 

COX-1 and COX-2 inhibitors such as, acetylsalicylic acid, flunixin meglumine and 

a celecoxib have been shown to reduce PGE2 production in in vitro isolated 

bovine peripheral mononuclear cells (Myers et al., 2010). Because PGE2 is a 

well described marker of inflammatory pain, regulating the magnitude of this 

response mitigates pain. Moreover, it has been suggested in cattle that spinal 

PGE2 may play a role in increased excitability in the dorsal root of the spinal 
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cord, leading to hyperalgesia, therefore systemic administration of meloxicam 

and reduction of incipient PGE2 production may decrease the overall 

transduction and perception of pain (Coetzee, 2011).  

In the present study, meloxicam suppressed the synthesis of PGE2 at 2- 

and 8-hours following surgery. Although the plasma kinetics of meloxicam were 

not directly measured in these animals, the reduction in PGE2 concentrations 

parallel previously reported pharmacokinetics data following subcutaneous 

administration of meloxicam. Other studies have demonstrated meloxicam Cmax 

was reached between 6 – 8 hours following administration. Allen et al (2013) 

observed a decline in PGE2 concentrations in dairy calves treated with oral 

meloxicam at the time of cautery dehorning that extended out 48 hr. after the 

procedure. Likewise, cattle subjected to a tissue cage implantation model, 

demonstrated a 48 hr. reduction in PGE2 in the cage exudate when treated with 

meloxicam following a sterile inflammatory stimulus. Other studies evaluating 

meloxicam however, have not observed a concomitant decrease in PGE2 

following the induction of similar painful or inflammatory conditions, perhaps 

indicating the timing of meloxicam administration or the severity of the stimulus is 

relevant to induction of COX-2 enzyme (Fraccaro, 2013).  

Cortisol 

 Cortisol has been studied as a marker of the stress response associated 

with pain with several models including dehorning and castration. It is an indirect 

measure of the HPA axis and autonomic nervous system activation. Two studies 
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evaluating the impact of meloxicam on cortisol concentration following cautery 

dehorning demonstrated a peak in cortisol within 4 – 6 hours after the procedure. 

This time frame suggests the pain response and activation of the HPA axis is 

delayed until the effect of local analgesics had dissipated. Both groups in each 

study had the benefit of local anesthesia yet, in spite of the immediate effect on 

cortisol concentration in both groups, calves treated with meloxicam continued to 

demonstrate significantly lower cortisol responses compared to non-treated 

calves. (Allen et al., 2013; Heinrich et al., 2009). In the present study, peak 

cortisol concentration for placebo-treated control cows at 4 hours post-

operatively displayed a similar pattern, indicating a similar delay in induction of 

the stress response after return of sensation to the previously anesthetized area. 

Meloxicam treatment, however, abrogated the rise in cortisol during that time 

frame and treated cattle maintained significantly lower cortisol concentration. 

This suggests that, in addition to the pain mitigation of local anesthesia, 

meloxicam alleviated pain sufficiently to blunt the stress response in treated 

cattle.   

 CBG is the major binding protein of cortisol in the blood. In the face of 

inflammation, CBG concentrations decrease in response to an increase of 

elastase from activated neutrophils (Lewis & Elder, 2014). The degradation of 

CBG releases bound cortisol, making it available at the site of inflammation, and 

increasing free cortisol concentrations (Bladon et al., 1996). However, because 

free cortisol has a short half-life of approximately 2 minutes and is rapidly 
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metabolized, total cortisol concentrations may be unchanged or underestimated 

when CBG is low (Trevisi et al., 2013). For this reason, a higher than normal total 

cortisol can be assumed to be correct, whereas a lower cortisol may not be an 

accurate assessment of inflammation and ongoing stress.  

 In this study, CBG was not significantly different between groups but did 

increase over time after surgery. As a negative acute phase protein, CBG would 

have been expected to decrease throughout the observation period. A rising 

CBG concentration is contrary to the currently established interactions of CBG 

and the inflammatory process. In humans evaluated post-operatively or during 

sepsis, CBG characteristically decreases in response to inflammation (le Roux et 

al., 2003: Bladon et al., 1996; Ingenbleek & Young, 1994). In these reports, CBG 

measurement was made immediately post-operatively and may not accurately 

reflect ongoing changes in those patients. Relevant examples of the change in 

CBG in response to inflammation over time in cattle are limited, but Sharma et al. 

observed a static to slightly increasing CBG concentration during the clinical 

phase of anaplasmosis in cattle. (Sharma, 1986) When considered with results 

from the present study, it suggests that CBG may have different induction stimuli 

and more research into CBG alternations during inflammation and surgery are 

warranted.  

 The free cortisol index is the ratio of total cortisol to CBG. This ratio 

permits the assessment of cortisol that is biologically active in the context of 

variations in CBG and reflects free cortisol more accurately than total cortisol 



55 
 

concentrations (Dhillo et al., 2002). In the present study, FCI was did not 

significantly differ between groups. However, there was a trend toward increased 

FCI in non-treated cattle at 4 hours post-operative, paralleling a rise in total 

cortisol at the same time point. In the face of concurrent static CBG 

concentrations, this suggests a rise in free cortisol and stronger induction of the 

HPA axis in non-treated cattle compared to meloxicam treated cattle.  

 Fibrinogen was not significantly different between treatment groups, 

however there was a significant interaction between concentration and time. 

Despite an elevation for both treatment groups between 4 – 120 hours, all cattle 

remained within or below established reference ranges (300-800 mg/dL). This 

finding is consistent with other studies where Fb was not elevated in cattle 

affected with displaced abomasa and surgical correction. McSherry et al in a 

review of Fb concentrations in cattle following DA correction, animals that 

developed post-operative complications such as peritonitis where the only 

individuals with concentrations above reference ranges, while the majority of 

cattle remained normal. (McSherry et al., 1970) This suggests that the 

inflammation associated with laparotomy alone is insufficient to induce a 

profound Fb response. Additionally, a retrospective analysis of cattle presenting 

with naturally occurring dystocia or right- or left- sided DA, surgical intervention 

did not influence Fb concentration. (Hirvonen & Pyorala, 1998).  In the present 

study, with the exception of one animal whose data were discarded for analysis, 
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there was minimal sequalae associated with surgery and perhaps limited 

induction of Fb.  

 Haptoglobin is a positive APP produced in the liver. In healthy adults, Hp 

is present at less than 100 µg/mL. However, in acute inflammation, Hp 

concentration can greater than 100-fold within 48 to 96 hours (Bannikov et al., 

2011). The limitations of Hp as a diagnostic indicator include a lack of specificity 

as to the source of inflammation and extended half-life with limited discrimination 

between acute and chronic inflammation (Bannikov et al., 2011). A study by 

Mainau et al. (2014) found that the administration of meloxicam to naturally 

calving dairy cattle, not experiencing dystocia, had no effect on Hp concentration 

(Mainau et al., 2014).  The lack of effect was, in their estimation, due to an 

imprecise timing of administration in relation to the delivery process and an 

overall lack of inflammatory response in normal births. In addition, they 

concluded that cattle experiencing dystocia may still benefit from meloxicam 

treatment, despite a lack of response in normal births. In the present study, Hp 

concentrations were significantly increased at 72 and 96 hours after surgery in 

placebo-treated control cows compared to meloxicam treated cows. All animals 

were evaluated daily by blinded, experienced personnel and consistently 

displayed low clinical illness scores, suggesting elevations in Hp were solely 

induced by the experimental laparotomy and was significantly reduced by the 

administration of meloxicam.   
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 The Hp-MMP 9 complex is found specifically in activated neutrophils and 

is release during acute inflammation. Bannikov et al. (2011), evaluated the 

diagnostic specificity of Hp, MMP-9 and the Hp-MMP 9 complex in correlation 

with the severity of naturally occurring diseases. Hp concentration was increased 

in cows with both acute and chronic inflammatory conditions, while un-complexed 

MMP-9 concentration varied greatly and was not strongly correlated severity of 

inflammation or Hp concentration. The combined Hp-MMP 9 complex however, 

was elevated in acute inflammatory conditions but not in more chronic cases and 

therefore, was a more accurate predictor of timing of the response than each 

analyte independently. In the current study, the Hp-MMP 9 complex 

concentration was significantly lower at 72 hours for control cows, in contrast to 

the predicted outcome, although all cattle demonstrated a significant time effect 

at 8, 12, 24 and 48 hours. These observations indicate that the experimental 

surgical procedure did induce complex formation, but was not affected by 

meloxicam administration.  

Conclusion 

 Although NSAIDs, specifically meloxicam, are known to have analgesic 

effects in dairy cattle, there are limited options for alleviating pain in livestock 

specifically, for post-operative pain or in lactating dairy cattle. Our results 

demonstrate that administration of meloxicam at a dose of 0.5 mg/kg SQ 

abrogated relevant markers of pain and inflammation, namely cortisol, 
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haptoglobin, and PGE2, in lactating dairy cattle following soft tissue surgery 

compared to placebo-treated control animals. 

The attributes of the elective surgical model described here include 

uniformity in the induction of the pain and inflammatory stimulus and a more 

controlled temporal comparison of treatments. Collectively, these suggest that 

laparotomy with prophylactic omentopexy a promising model for the study of 

post-operative pain in cattle. Pain and inflammation are common responses to 

surgical procedures in cattle, and this model provides an avenue to investigate 

other therapeutic techniques in the future.   
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Chapter 2 
Non-Invasive Assessment of Pain Mitigation in Cattle Following 

Soft Tissue Surgery 
  



60 
 

Amber F. Moore, DVM1; Marc Caldwell, DVM, PhD1,*; Brian K. Whitlock, DVM, 

PhD1; Lew Strickland, DVM, MS2; Peter Krawczel, MS, PhD2; Liesel Schneider, 

PhD2;  David E. Anderson, DVM, MS1 

1 Department of Large Animal Clinical Sciences, University of Tennessee, 

Knoxville, TN 37996 

2 Department of Animal Science, University of Tennessee, Knoxville, TN 37996 

* Corresponding author: mcaldwell@utk.edu  

Abstract 

Mitigation of pain for surgical procedures has become a topic of concern 

for the public, producers, and veterinarians. The objective of this study was to 

determine the efficacy of meloxicam for pain mitigation in adult lactating dairy 

cattle following a right-side laparotomy with omentopexy. Twenty-four dairy cattle 

(mean age: 2.51 +/- 0.54 years), between 50 and 188 days in milk (median: 117 

days +/- 43.15 days) were enrolled. Cattle were administered a 7-day acclimation 

period to the new environment and social hierarchy and assigned blocks based 

on parity, days in milk, milk yield, and pregnancy status, and randomly allocated 

to groups Meloxicam (MEL) or placebo treated control (CON). The study had two 

phases; sham (day 0-14) and surgery (day 15-28). The objective of the sham 

phase was to collect baseline behavioral and physiologic data and permit cows to 

become acclimated to human intervention during the intensive sampling periods. 

On day 0, cattle were prepared for surgery including local blocks with lidocaine. 

Injectable meloxicam (MEL) or saline placebo (CON) was administered (dose: 

mailto:mcaldwell@utk.edu
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0.5 mg/kg) 5 minutes before simulated surgery (restraint for 30 minutes) and then 

returned to their home pen for data collection. On day 15, after a 14-day washout 

period, the surgical procedure was performed. Meloxicam and saline were 

administered prior to surgery to each respective group. A right flank laparotomy, 

brief abdominal exploration, and omentopexy was performed on all animals. 

Mean nociceptive threshold (MNT) was measured using an algometer and 

collected at hours 0, 1, 4, & 8 after sham and hours 0, 1, 2, 4, 8, 12, 24, 36, 48, 

60, & 72 after surgery. Infrared thermography (IRT) was taken of the incision site 

at hours 0, 1, 4, & 8 hours after sham and 0, 2, 4, 8, 12, 24, 36, 48, 60, & 72 after 

surgery. There was no difference for MNT (P=0.24) or IRT (P=0.68). This study 

indicates that meloxicam does not significantly affect these measures and that 

the use of these technologies need to be studied further for its usefulness in 

accessing pain in cattle.  

 

Introduction 

 Cattle are frequently subjected to painful procedures related to health 

interventions or production management. These may include dehorning, 

castration, or surgical correction of displaced abomasum and caesarean 

sections. Current practitioner and producer surveys indicate changing 

perspectives on the inherent benefit of pain mitigation for livestock species. This 

underscores the need for evidenced based recommendations and FDA approved 

medications. At present, there are no treatments approved for the alleviation of 
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pain due to soft tissue surgery in the US. Recently a transdermal flunixin 

meglumine product was approved for use in treating pain associated with foot rot 

in beef cattle and dairy calves, but is not approved for adult dairy cattle greater 

than 20 months of age.  

A major roadblock in evaluating the efficacy of pain management under 

experimental conditions is the prey nature of cattle. Cattle demonstrate a 

profound behavioral modification involving the masking signs of pain and distress 

in order to appear fit in the presence of danger. Therefore, accurate assessment 

of pain can be difficult and requires specialized equipment and training to detect 

subtle behavioral cues. The cattle industry needs innovative, noninvasive 

methods of detecting pain and distress in cattle. Two possible methods are mean 

nociceptive thresholds and infrared thermography.  

 Mechanical Nociceptive Threshold (MNT) is the mean threshold at which 

an animal will respond to a painful stimulus. Another interpretation is the 

maximum pain stimulus an animal will endure before altering its behavior. MNT is 

measured by pressure algometry were and observer consistently applies 

increasing force applied to specific tissues. When a pain tolerance threshold is 

breached, the stimulus induces a withdrawal or avoidance response. This 

threshold can be highly modulated based on factors within the tissue such as 

trauma as well as external factors such as physiologic and psychologic states as 

well as the use of desensitizing medications. Following a surgical disruption of 

tissue, inflammation is induced at the surgical site and is a necessary precursor 
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to healing. An exaggerated or uncontrolled inflammatory process can potentially 

create more sensitivity and pain. Therefore, MNT can provide an objective 

assessment of the nociceptive threshold and provide a useful means of 

determining the efficacy of pain therapy.  

MNT has been used primarily in the detection of lameness and monitoring 

sensitivity of hoof lesions in cattle. Laven et al described differences in MNT 

comparing corrective trimming and/or NSIAD therapy on allodynia inducing hoof 

lesions in dairy cattle (Laven et al., 2008). Raundal et al (2014) later compared 

the accuracy and precision of hand held algometers in loose-housed dairy cows 

and concluded that these devices poor reproducibility between observers, 

suggesting that future studies habituate cows prior to application (Raundal et al., 

2014) . In a follow up study, pre-habituation prior to MNT testing, such stroking in 

an attempt to remove fear of the applicator and anticipation, increased the 

reliability of the test in dairy cattle (Raundal et al., 2015). These studies indicate 

that while MNT can be useful to assess the pain threshold in cattle, attention to 

the experimental procedure and technique is necessary to produce valid 

measurements.  

 Infrared thermography is an imaging technique that detects radiation in the 

long-infrared spectrum and translates that data into a color map or thermogram. 

The amount of radiation emitted by a surface is affected by its intrinsic 

temperature. In warm-blooded animals, physiologic changes, such as 

inflammation or infection, that alter vascular resistance and increase blood flow 
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to a tissue, subsequently increase the surface temperature of the overlying 

cutaneous tissues. These changes can be monitored and provide a non-invasive 

tool for clinical assessment. In cattle, thermography has been used in the 

detection of hoof lesions (Stokes et al., 2012), to estimate tick infestation on 

cattle (Barbedo et al., 2017), in the detection of diseases(Schaefer et al., 2012) 

(Polat et al., 2010), to estimate live bull weight (Stajnko, Brus, & Hočevar, 2008), 

to determine body condition score in dairy cattle (Halachmi, Klopčič, Polak, 

Roberts, & Bewley, 2013), to measure stress in dairy cattle (Stewart et al., 2007), 

and in monitoring health and welfare of dairy cattle (Stewart, Wilson, Schaefer, 

Huddart, & Sutherland, 2017). 

 The objectives of the present study were to: 1) evaluate the efficacy of 

MNT and IRT in assessing pain and inflammation following elective right flank 

laparotomy with prophylactic omentopexy in adult lactating dairy cattle and; 2) 

use MNT and IRT to determine the efficacy of meloxicam in reducing pain and 

inflammation following soft tissue surgery in adult lactating dairy cattle.  Our 

hypothesis was that an experimental laparotomy will induce sufficient 

inflammation to reduce the MNT and increase the skin surface temperature 

adjacent to the laparotomy incision. A secondary hypothesis was that the 

administration of meloxicam will significantly reduce the pain and inflammation 

induced by the procedure such that MNT and IRT will discriminate between 

treated and non-treated control animals.  
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Material and methods 

  

The University of Tennessee Institutional Animal Care and Use Committee 

approved all experimental procedures under the supervision of the university 

veterinarian (Protocol # 2246-0314). 

The study was conducted in two phases. Animals were first subjected to a 

sham surgical procedure to ensure habituation to the intensive sampling 

procedures followed by application of the surgical procedure after a 14-day wash 

out period. Data are presented in relationship to each phase.  

 

Animals 

Twenty-four adult dairy cattle, greater than 20 months of age (mean age: 

2.51 +/- 0.54 years), were housed at the East Tennessee Research and 

Education Center - Little River Dairy Animal and Environmental Unit (Latitude: 

35.772115; Longitude: -83.850182) during the months of June, July and August 

and were maintained in an ambient temperature. Animals were between 50 and 

188 days in milk (median: 117 days +/- 43.15 days) and weighed between 512 kg 

and 705 kg (mean: 596.4 kg +/- 41.8 kg). Cows were allocated into two equal 

groups: Meloxicam (n = 12; MEL) and Control (n = 12; CON). Groups were 

balanced based on days in milk (Median: 111 days MEL; 127 days CON; Range: 

50 – 188 days), milk yield (Mean: 74.0 lbs. MEL; 77.5 lbs. CON; Range: 57.6 – 

93.1 lbs.), and pregnancy status (n = 2 MEL; n = 2 CON). Exclusion criteria for 



66 
 

enrollment in the study included clinical signs associated with potentially 

systemic inflammation (i.e. mastitis, metritis, ketosis, lameness, etc.) or history or 

evidence of previous abdominal surgery. All animals were considered healthy 

based on a physical exam performed by a veterinarian 1 day prior to the start of 

the study.  

Cattle were housed in a free stall barn approximately 20 m x 12.5 m (800 

sq. m) with 24 sand-bedded stalls and 32 headlock stanchions. Stocking density 

was maintained at 75% and did not exceed 100% during the study (lowest was 

22 cows per 24 stalls = 91%). Cattle were milked twice daily (at approximately 

7:30 AM and 4:30 PM). Milk was discarded throughout the entire of the 

experiment.  A total mixed ration (TMR) was fed ad libitum during the study and 

was formulated according to Nutrient Research Council requirements to meet or 

exceed nutrient requirements of lactating dairy cattle. Nutrient analysis of TMR 

was conducted prior to and upon completion of the study. Fresh TMR was 

prepared and dispensed twice daily in parallel with milking. Twice daily at 

approximately 12:00 PM and 6:00 PM residual TMR was pushed up the 

headlocks. Waste TMR was collected twice daily immediately prior to the 

dispensing of each new feeding and weighed to determine pen level feed intake. 

Throughout the study animals were also provided ad libitum access to water. The 

cattle were permitted 7 days prior to the initiation of the study to acclimate to the 

new environment and social hierarchy. During this time, the cattle were also 
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acclimated to handling via halters and grooming to simulate the contact 

associated with the intense sampling periods.  

Phase 1: Sham Procedure 

In order to determine the effect of the intense sampling scheme and 

experimental assessments alone without the influence of the surgical procedure, 

a sham experimental phase was imposed on the cattle. On day -1, a 14-gauge X 

13 cm polyurethane IV jugular catheter (MILACATH-Extended Use, Mila 

International, Inc. Florence, KY) was placed and were maintained with 

heparinized saline until 4 days after the procedure, at which point they were 

removed and subsequent samples taken via direct venipuncture.  

On day 0, a sham procedure was performed.  Cows were prepared for 

sham surgery by clipping and sterilely preparing. Cows were blocked with 2% 

lidocaine (90 ml or 1800 mg, local tissue infusion, VetOne, MWI Animal Health, 

Boise, ID) in a line block pattern on their right side approximately 15 cm below 

the transverse process of the 3rd lumbar vertebrae and 10 cm caudal to the 

costal arch. Meloxicam (0.5 mg/kg, Metacam®20, Boehringer Ingelheim Ltd., 

Burlington, Ontario, Canada) was administered SQ in the neck to the meloxicam 

treatment group (MEL) and saline (0.025 mL/kg, 0.9% Sodium Chloride Injection 

USP, Hospira, Inc. Lake Forest, IL) was administered SQ in the neck to the 

control group (CON). Ampicillin trihydrate (10 mg/kg, Polyflex®, Boehringer 

Ingelheim Ltd., St. Joseph, MO) was administered intramuscularly to all cows on 

the contralateral side of the neck from the treatment.  
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Four veterinarians were designated as surgeons during the study (MC, 

DA, BW, and LS). Six replicates of sham procedures occurred with 4 animals per 

cohort. Each cohort was equally balanced for MEL and CON cattle (2 MEL and 2 

CON). Each surgeon performed six procedures with equal numbers of MEL and 

CON cattle (3 MEL and 3 CON). A sham surgical simulation was performed with 

the surgeon standing adjacent to the animal while it was restrained for 30 

minutes. Procedure initiation for each cohort was staggered and administration of 

treatment and sampling time points were relative to each animal’s sham 

procedure start time.  

Following the sham procedure, cattle were returned to their home pen for 

sample collection lasting up to 7 days. Following completion of phase 1, the 

cattle were provided a 7-day washout period. Therefore, a total of 14 days 

following administration of the meloxicam or saline placebo elapsed prior to 

initiation of phase 2.    

Phase 2: Surgical Procedure 

The methods used for the phase 2 were similar to those executed during 

phase 1 with the exception of preforming right flank laparotomies with 

prophylactic omentopexy for all cattle. Briefly, on day -1 before the surgical 

procedure, cattle were refitted with heart rate monitors and jugular catheter was 

placed. As previously, jugular catheters were maintained with heparinized saline 

through the first 96 hours of the sampling period then removed and subsequent 

blood samples collected via direct venipuncture. On day 0, approximately 5 
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minutes prior to the initiation of each animals’ surgical procedure, meloxicam (0.5 

mg/kg) was administered SQ in the neck to the meloxicam treatment group 

(MEL) while a saline placebo (0.025 mL/kg) was administered SQ in the neck to 

the control group (CON). Ampicillin trihydrate (10 mg/kg) was administered 

intramuscularly to all cows on the contralateral side of the neck from the 

meloxicam or saline treatment. 

The same four veterinarians carried out the surgical procedures in 6 

replicates of 4 cows. All treatments were balanced within each cohort and 

balanced across each surgeon. Each laparotomy, abdominal exploratory and 

prophylactic omentopexy were performed according to a standardized protocol. 

The right paralumbar fossa was clipped, the skin was aseptically prepared, and a 

line block with lidocaine (120mL of lidocaine) was performed as previously 

described. After aseptic preparation, a 15 cm vertical incision was made starting 

10-cm caudal to the caudal curvature of the last rib and 15 cm ventral to the 

transverse process of the 3rd lumbar vertebrae. The incision progressed through 

the skin, external abdominal oblique muscle, internal abdominal oblique muscle, 

transversus abdominus muscle, and peritoneum. The surgeon then placed the 

left arm into the abdomen and briefly explored the abdomen to identify and 

palpate the rumen, omentum and abomasum. Similar to the techniques 

described in Turner and McIlwraith’s Techniques in Large Animal Surgery (2013), 

a standard omentopexy was performed by suturing the omentum, peritoneum 

and transversus closed using #2 polyglactin 910 (Vicryl, Ethicon, Inc. Somerville, 
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NJ) in a simple continuous pattern. The external abdominal oblique muscle and 

internal abdominal oblique muscle were also closed using #2 polyglactin 910 in a 

simple continuous pattern. Finally, the skin was closed using #4 nylon (Supramid 

Extra II. S. Jackson, Inc. Alexandra, VA) in a continuous interlocking pattern. 

MNT 

Mechanical nociceptive threshold was measured using a pressure 

algometer (Wagner Mark-10 M3, Wagner Instruments, Greenwich, CT) using a 

conical steel tip (FD/S-3, Wagner Instruments, Greenwich, CT, Figure 19). 

During the sham phase, MNT was measured at hours 0, 1, 4, and 8 respective to 

time 0 hours beginning immediately prior to the sham procedure and during the 

surgical phase at hours 0, 1, 2, 4, 8, 12, 24, 36, 48, 60, and 72 hours respective 

to time 0 hr. prior to the surgical procedure. For each time point and for both 

phases, the right flank adjacent to the mock or actual incision was divided into 6 

test locations (Figure 20). Cows were randomly assigned to one of two starting 

positions where measurements were initiated. These were either the cranial 

group, where the sequence of measurements proceeded as 1, 2, 3, 4, 5, 6 or the 

caudal group where the sequence proceeded 4, 5, 6, 1, 2, 3. The assignment 

and sequence remained constant for each cow and all MNT measurements and 

were balanced across treatment groups. Immediately prior to measurement, the 

cattle were restrained using a halter or headlocks within the pen. The observer 

placed a hand gently on the incision to habituate the cow to their presence before 

the measurement was taken. The algometer was applied at a steady force of 
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approximately 1 kgf/s to each of location until the cow presented an avoidance 

response. These responses included movement away from the pressure, tail 

flicking, ear twitching, looking back and kicking. All MNT measurements were 

carried out by the same individual who was blinded to treatment.  

IRT 

Thermograms were obtained of each cow at hours 0, 1, 4, and 8 hours 

beginning immediately prior to the sham procedure and at hours 0, 1, 2, 4, 8, 12, 

24, 36, 48, 60, and 72 hours beginning immediately prior to the surgical 

procedure. Cows were restrained using a halter or headlocks located within the 

pen. The camera (Med2000TM, Meditherm, Inc. Fort Myers, FL) was positioned 

approximately one-meter distance from the incision so that the entire incision and 

paralumbar fossa was included in the image. Triplicate images were taken for 

each time point and saved for future analysis. Using the accompanying software 

(IRIS 7.5, WinTes II, Meditherm, Inc. Fort Myers, FL), the incision was isolated 

from the image using the programs cropping function, and the maximum, 

average, and minimum temperatures were recorded for each thermogram.  

Statistical analysis  

All statistical analyses were performed in Statistical Analyses System 

(SAS Version 9.1: SAS Institute Inc., Cary NC; 1991-2001). The level of 

significance was established to be P< 0.05.  
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 Normality test of the data and residuals was performed for each indicator. 

MNT was normally distributed following log transformation then was analyzed 

using the GLIMMIX procedure. All sites were averaged to give one reading per 

time period to get the average reading. During the analysis, hours 0 and 1 were 

removed from the time by treatment interaction. Animal ID and cranial site vs 

caudal sites were used as a random effect. Surgeon and surgery block were 

analyzed as random effect but had no significant effect and were removed from 

the model. Fixed effects included treatment group. Time was used as a repeated 

measure. Next, the three cranial sites and three caudal sites were divided, 

averaged and analyzed. Tukey adjustment was used for MNT.  

Maximum, mean and minimum temperatures for IRT were normally 

distributed. Fixed effects included treatment group. Time was the repeated 

measure.  Animal ID was used as a random effect. Protected LSD was used for 

adjustment. Surgeon and time of surgery (surgery block) was analyzed as a 

random effect, but did not have a significant effect on any blood markers and was 

therefore removed from the analysis.  

Results 

 Two cows were removed from the study and not included in the results. 

Cows included in the results is n = 22.   
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Mechanical Nociceptive Threshold  

All cattle demonstrated a time effect with a significantly higher tolerance of 

pressure observed at 0 and 1 hr. following the surgical procedure (P < 0.001, 

Figure 21). When the 0 and 1 hr. time points were excluded from the analysis in 

an attempt to isolate responses that occurred without the influence of lidocaine, 

the significance observed over time was removed (P = 0.24, Figure 22).  

Numerically, cattle treated with meloxicam to demonstrate a higher tolerance of 

pressure at 24- and 36-hours following surgery, but this effect was not significant 

(P = 0.37). Location with respect to the incision on the MNT demonstrated a 

significant difference, with the cranial sites requiring less force to elicit a 

response (lower MNT) than the caudal sites (P = 0.03, Figure 23Figure ). 

However, randomization of the start site had no effect on the overall MNT and 

therefore was not included as a variable in the model.  

Infrared Thermography 

A significant time effect was observed for the maximum, average, and 

minimum IRT observations for all animals (P< 0.001 for each corresponding 

variable, Figure 24). There were no significant differences observed between 

treatments or time by treatment interaction of the maximum skin surface 

temperatures (P = 0.46 and 0.71 respectively, Figure 25). Cattle administered 

meloxicam had slightly lower average and minimum surface temperatures at 2 

hours following the surgery, but an overall treatment and time by treatment effect 

was not observed (P = 0.91 and 0.67; P = 0.42 and 0.63, respectively, Figure 26 
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and Figure 27). Table 1 displays the values for maximum, mean, and minimum 

temperatures.  

Discussion 

 In the present study, pressure algometry and IRT were used to evaluate 

pain sensitivity and inflammation following an elective right flank laparotomy with 

prophylactic omentopexy. Each technology successfully detected changes over 

time compared to baseline observations. The administration of meloxicam 

however, did not alter pain sensitivity or skin surface temperature sufficiently to 

discriminate between treated and non-treated cattle.  

In our study, the meloxicam treated cattle had significantly higher MNT 

recordings than control cattle at baseline and 1-hour post-operative. This could 

be the result of type 1 error, despite efforts to randomize cattle to groups. The 

baseline measurements were taken prior to the administration meloxicam and 

lidocaine and based on the reported pharmacokinetics of meloxicam, it’s doubtful 

therapeutics concentrations were present at 1-hour post-administration. When 

these time points were removed from the analysis, no significance was found at 

all other clinically relevant time points. However, the time effect for all animals 

does demonstrate that the surgical model created surgical and inflammatory pain 

that was quantifiable using algometry.  

Another finding in the present study was the differences observed 

between sites cranial and caudal to the incision. We believe this is due to the 

severing of the superficial innervation and loss of sensory input in the caudal 
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area as the incision was made. Although innervation was not completely 

removed as evidence by reduced MNT for all caudal measurements compared to 

baseline, the fact that some sensation was removed is interesting and selection 

of response sites should be considered carefully for future studies.  

Several studies have evaluated MNT changes in cattle following 

dehorning.(Allen et al., 2013; Heinrich et al., 2010; Stock et al., 2016; Tapper et 

al., 2011) A common experimental design of these studies has been to collect 

baseline observations prior to induction of the painful procedure, as has been 

done here. In each of these studies, a significant reduction in MNT was observed 

from baseline samples prior to dehorning compared to post-dehorning 

observations. Another frequent design aspect is to maintain an independent 

cohort that receives a sham procedure concurrently with animals receiving the 

actual procedure. In the study presented here, the sham procedure was 

conducted on the principal animals 2 weeks prior to initiation of the surgical 

procedure. The advantages of this approach are the habituation of the animal to 

sample collection and the direct comparison of results within the same animal. 

Both approaches provide consistent application of the methodology and 

comparison between affected and non-affected groups.  

It appears that pressure algometry and MNT are most useful in the 

presence of inflammation and active lesions. This bears true when the technique 

has been applied to naturally occurring and experimentally induced lameness. 

Whay et al. (1997) found a significant correlation between the severity of visually 
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assessed lameness scores and pressure sensitivity in primiparous Holstein 

heifers (Whay et al., 1997). Cutler et al (2013) demonstrated that digital 

dermatitis lesions could be accurately identified by MNT as active, healing, or 

healed lesions (Cutler et al., 2013).  Likewise, Mohling et al. (2014) observed a 

reduction of as much as 50% MNT in sows being subjected to chemically 

induced lameness (Mohling et al., 2014). On the other hand, Wheeler et al (2013) 

found that the probability of healthy calves to respond to pressure externally 

applied to joints did not correlate with other indicators of inflammation and 

therefore pressure algometry was not recommended for the assessment of 

lameness in young calves (Wheeler et al., 2013).   

Millman (2013) discusses the need to refine this technique by providing 

proper restraint and blind folding calves to avoid anticipation and fear-based 

responses. This would lead to more reliable testing for both intraobserver and 

interobserver measurements. Raundal et al. found a high level of individual 

animal variation and low agreement of MNT readings between observers 

(Raundal et al., 2014). Tallant et al., found dogs became accustomed to 

algometry and tolerance varied by position and observer (Tallant et al., 2016). 

Blindfolding was not performed in the current study and the only attempt to 

acclimate and normalize responses was the placement of the observer’s hand 

near the incision. Perhaps had additional efforts been used to remove the 

anticipatory effects of the approaching observer, greater differences among the 

treatment groups would have been observed.  
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 Changes in the maximum, mean and minimum skin surface temperatures 

at the surgical site were observed over time for both treatments, suggesting the 

successful induction of physiologic mechanisms that influence these 

temperatures. Maximum and mean temperatures increased from baseline and 

remained elevated throughout, while the minimum temperatures decreased from 

the time of surgery. This was likely the result of post-operative inflammation and 

was an expected response as has been described with IRT mapping of surgical 

wounds (Celeste et al., 2013).  

The administration of meloxicam did not appear to alter the inflammatory 

process at the level of the incision sufficiently to induce detectable differences in 

skin temperature. However, there was a numerical trend for treated cows to have 

lower mean and minimum skin temperatures at 2 hours. In most recent studies, 

utilizing IRT in cattle, the technique is more often used to monitor periocular 

temperature and systemic autonomic responses to painful conditions (Coetzee et 

al., 2012; Schaefer et al., 2012; Stewart et al., 2009; Stewart et al., 2010). In 

many of these studies, NSAID therapy has reduced periocular temperature and 

stabilized the autonomic or stress induced response. In the current study, 

periorbital temperature was not recorded and the impact of the changes in the 

autonomic nervous system on skin temperatures at the surgical site is unknown, 

but presumably has limited effect.  

 An unexpected observation made during the analysis of the thermograms 

revealed a spurious assignment of low temperatures associated with the suture 
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material in each incision. Each surgeon left an irregular length of suture tag, 

where longer tags had an influence on the range and minimum surface 

temperatures assigned in the region of interest, which could not be excluded. 

However, these variations as well as other animal independent differences were 

accounted for in the statistical model during final analysis.  

 To our knowledge, this is the first study to evaluate the efficacy of 

meloxicam as post-operative pain management for cattle following a simulated 

surgical DA repair. Barrier et al. (2014) evaluated beef cattle undergoing 

cesarean section and found that meloxicam treated cattle had greater lying times 

in the first 16 hours after delivery. An additional head to head to clinical trial 

comparing meloxicam and ketoprofen in cattle after rumen fistulation surgery, 

found evidence of pain after surgery, but no differences between treatments. 

These studies suggest a limited efficacy of meloxicam in soft tissue surgery, but 

this appears to be in stark contrast to studies evaluating its efficacy in other 

painful conditions. For example, multiple studies have revealed a benefit from 

meloxicam treatment in reducing stress and inflammatory biomarkers, improving 

pressure tolerance and MNT, and improving behavioral responses of cattle 

undergoing cautery dehorning, castration, mastitis and transportation. Therefore, 

care should be used when drawing the conclusion that meloxicam therapy is 

ineffective for pain mitigation associated soft tissue surgery.   
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Conclusions 

 Although a difference between treatment groups was not detected, MNT 

and IRT are promising noninvasive technologies for inflammatory pain detection. 

These technologies would be ideal for monitoring pain sensitivity and 

inflammation following surgical interventions and would be useful in assisting 

veterinarians and producers in making decision about pain management.  
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Conclusions 
 
 
Approximately 470,000 cows undergoing painful surgical procedures 

every year, producers and veterinarians are seeing the effects of pain first hand. 

Objective measurements are need to quantify this pain as well as a model to 

research this pain and analgesic methods.  

This study presents several possible methods of measuring pain including 

blood parameters and non-invasive objective technology. The blood biomarkers 

that demonstrated the highest degree of difference in meloxicam treated cattle 

compared to placebo-treated control cattle were PGE2, haptoglobin, and cortisol. 

Cows that received meloxicam had significantly lower PGE2 levels at 2 and 8 

hours after surgery (P= 0.0044 and P=0.0001, respectively), significantly lower 

haptoglobin levels are 72 and 96 hours after surgery (P = 0.0153 and 0.0002, 

respectively), and significantly lower cortisol levels at 4 hours after surgery (P < 

0.0001) than placebo-treated controls. Although fibrinogen showed no significant 

difference between the groups, fibrinogen concentration did show a time effect (P 

< 0.0001), though these changes never increased over a clinically relevant 

threshold.  

 This study also evaluated mechanical nociceptive threshold and infrared 

thermography. MNT measurements in cattle treated with meloxicam trended to 

demonstrate a higher tolerance of pressure at 24- and 36-hours following 

surgery, but this effect was not significant (P = 0.3710). Cattle administered 

meloxicam had slightly lower mean and minimum skin surface temperatures at 2 
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hours following the surgery, but an overall treatment and time by treatment effect 

was not observed (P = 0.9144 and 0.6736; P = 0.4186 and 0.6277, respectively). 

While these non-invasive methods did not detect a difference between the 

treatment groups, it did detect a change in the post-operative period, confirming 

that this surgical model does in fact create inflammation and pain that is 

quantifiable. These observations are consistent with the routine inclusion of these 

technologies in other pain studies and underscores the relevance of their use in 

pain studies in cattle.  

This study demonstrates meloxicam provides analgesia for dairy cattle 

undergoing soft tissue surgery. Moreover, this study demonstrates that cattle 

experience pain and should be provided multi-modal analgesia for painful 

procedures. As responsible advocates of agriculture and animal welfare, it is the 

animal agriculture community’s duty to see that these animals are treated 

appropriately. We should be at the forefront of these issue and determining the 

best way to provide the best well-being to these animals based on sound 

scientific research.  

More research is needed to advance pain management for cattle. 

Because these animals are stoic and difficult to assess pain in, new and 

innovative methods of detecting pain are needed. This study has found methods, 

both blood parameters and technologies, that address this issue. More of these 

techniques are needed to further improve our ability to assess pain. It also 

demonstrates using a unique surgical model to create and then assess pain in 
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dairy cattle.  Finally, from this study, not only have we provided a number of 

assessment tools of pain, but have also confirmed the use of meloxicam as an 

analgesia. There is a major need for research to prove that not only meloxicam, 

but other analgesic methods are not only useful tools but warranted measures 

both as a single modality or in a multi-modal approach.  
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Figure 1 – Sham PGE2 concentrations by treatment group  

PGE2 concentration for control cattle (shaded) and meloxicam treated cattle 
(solid) were significantly different between the treatment groups during the sham 
prodecure (P = 0.02). 

 

 

Figure 2 – Sham PGE2 concentrations over time in all cattle  

PGE2 concentrations were determined at each time point for all cattle over time 
during the sham phase. Data represent the mean for all cattle over time. PGE 
was affected by time (P < 0.001). 
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Figure 3 – Surgical PGE2 concentrations in 
meloxicam and placebo-treated cattle   

Least square means PGE2 concentrations in 
placebo-treated cows (dash line and □) and 
meloxicam-treated cows (solid line and ●) over 
time after an elective laparotomy with 
prophylactic omentopexy. A time by treatment 
interaction was observed (P = 0.003). Control 
cows had significantly higher PGE2 levels at 2 
and 8 hours after surgery than meloxicam 
cows (P = 0.004 and P < 0.001, respectively). 

* 
 * 

 



105 
 

 

Figure 4 – Sham total cortisol over time for all cattle 

Total cortisol concentrations were determined at each time point during the sham 
procedure. Data represent the LS mean for all cattle over time. There was a 
significant difference over time (P = 0.015) 

 

 

Figure 5 – Sham CBG concentration over time for all cattle  

CBG concentration was determined at each time point during the sham 
procedure. Data represent the LS mean for all cattle over time. There was a 
significant difference in time points (P > 0.001).  

 
 

0

2

4

6

8

10

12

14

0 2 4 8 12 24 36 48 60 72

C
o

rt
is

o
l n

g/
m

L 

Hours after Sham

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 8 12 24 36 48 60 72

C
B

G

Hours after Sham



106 
 

 
 

 
 
 
 

0

5

10

15

20

25

30

0 2 4 8 12 24 36 48 60 72

C
o

rt
is

o
l (

n
g/

m
L)

Hours after surgery

Figure 6 – Surgical cortisol concentration 
in meloxicam and placebo treated cattle  

LS means of cortisol (ng/mL) in placebo-
treated cows (dash line and □) and 
meloxicam-treated cows (solid line and ●) 
over time after an elective laparotomy with 
prophylactic omentopexy. Control cows had 
significantly higher cortisol concentrations 
than meloxicam cows at 4 hours after 
surgery (P < 0.001).  
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Figure 7 –Surgical Cortisol Binding 
Globulin concentration in all cattle over 
time 

LS means of CBG for all animals over time 
following elective laparotomy with prophylactic 
omentopexy. CBG was affected by time (P > 
0.0001) but not by treatment group or time by 
treatment interaction (P = 0.1396 and P = 
0.5187, respectively). 
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Figure 8 – Surgical Cortisol Binding 
Globulin (CBG) in meloxicam and placebo 
treated cattle  

LS means of CBG (mg/L) in placebo-treated 
cows (dash line and □) and meloxicam-
treated cows (solid line and ●) over time 
after an elective laparotomy with prophylactic 
omentopexy. CBG was affected by time, but 
there was not difference observed between 
treatment or time by treatment interaction (P 
= 0.14 and P = 0.52, respectively) 
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Figure 9 – Free cortisol index (FCI) for all cattle 
following elective laparotomy  

LS means of FCI over time after elective laparotomy with 
prophylactic omentopexy. FCI was affected by time (P < 
0.001), but not by treatment or time by treatment 
interaction (P = 0.34 and P = 0.29, respectively). 
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Figure 10 – Free Cortisol Index in meloxicam and placebo-
treated cattle over time  

LS means of FCI (nmol/mg) in placebo-treated cows (dash line 
and □) and meloxicam-treated cows (solid line and ●) over time 
after an elective laparotomy with prophylactic omentopexy. FCI 
was affected by time, but there was not difference observed 
between treatment or time by treatment interaction (P = 0.34 and 
P = 0.29, respectively) 
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Figure 11 – Sham Fibrinogen concentration in all cattle over time  

Fibrinogen concentration (mg/dL) in all cattle over time for all cattle showed a 
significant time effect (P > 0.001) but did not show a treatment (P = 0.52) or time 
by treatment interaction (P = 0.96). 
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Figure 12 – Surgical Fibrinogen 
concentration in all cattle over time 

LS means of fibrinogen for all animals over time 
after elective laparotomy with prophylactic 
omentopexy. A time effect was seen in response 
to the time of surgery (P < 0.001). 
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Figure 13 – Surgical Fibrinogen 
concentrations in meloxicam and placebo-
treated cattle  

LS means fibrinogen concentration in placebo-
treated cows (dash line and □) and meloxicam-
treated cows (solid line and ●) over time after an 
elective laparotomy with prophylactic 
omentopexy. Treatment groups did not differ (P 
= 0.56) nor was a time by treatment interaction 
observed (P = 0.43).  
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Figure 14 – Sham Haptoglobin concentrations over time for all cattle  

Haptoglobin concentration slowly increased after the first 24 hours during the 
sham procedure over time for all cows (P = 0.0019). 

 

 

Figure 15 – Sham Haptoglobin and Matrix Metalloproteinase 9 complex 
concentration in all cattle over time  

Hp and MMP 9 complexes displayed spikes at 24 hr. and 120 hr. after sham 
procedure with an overall a significant time effect (P > 0.0001). 
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Figure 16 – Surgical Haptoglobin 
concentration in meloxicam and placebo-
treated cattle 

LS means haptoglobin concentration in placebo-
treated cows (dash line and □) and meloxicam-
treated cows (solid line and ●) over time after an 
elective laparotomy with prophylactic 
omentopexy. CON had significantly higher Hp 
concentrations (mcg/mL) at 72 and 96 hours 
after surgery (P = 0.0153 and 0.0002, 
respectively). 
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Figure 17– Surgical Haptoglobin and Matrix 
Metalloproteinase 9 complex concentration in meloxicam 
and placebo-treated cattle 

LS means of Hp-MMP 9 complex concentration in placebo-
treated cows (dash line and □) and meloxicam-treated cows 
(solid line and ●) over time after an elective laparotomy with 
prophylactic omentopexy.  A time effect and a time by treatment 
interaction was found (P < 0.0001 and P = 0.0107, respectively) 
but no treatment effect was observed (P = 0.5317). Contol cows 
had a significantly lower Hp-MMP 9 complex concentration at 72 
hours post surgery.   
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Figure 18 – Surgical Matrix Metalloproteinase concentration in all 
cattle over time 

LS means of Hp-MMP 9 complex concentrations in all cows over time 
after elective laparotomy with prophylactic omentopexy. A significant 
time effect was observed (P < 0.0001). Hours 8, 12, 24, and 48 were 
significantly higher in all cows after surgery. 
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Figure 19 - FD/S-3 conical 
steel tip used for MNT 
measurements. 
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Figure 100 - Example of algometry sites 
around the incision. Sites 1, 2, and 3 are 
cranial sites and 4, 5, and 6 are caudal sites.  



118 
 

 

0

1

2

3

4

5

6

7

8

0 1 2 3 8 12 24 36 48 60 72

M
N

T 
(f

o
rc

e
)

Hours After Surgery

MNT over Time

Figure 21 – Mechanical nociceptive threshold following a right 
flank laparotomy and prophylactic omentopexy (including 
times 0 and 1 hour) 

There was a significant time effect observed with hours 0 and 1 
being significantly higher than all other hours (P < 0.001). Prior to 
the surgical procedure, lidocaine was used to induce local 
anesthesia. The significant decrease in the pain threshold at hour 2 
demonstrates the change in sensitivity to pressure due to 
inflammation and surgical pain without the influence of lidocaine.  
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Figure 22 - Mechanical nociceptive threshold following a right 
flank laparotomy and prophylactic omentopexy in cattle treated 
with meloxicam or placebo (excluding times 0 and 1 hour) 

There was no significant difference between treatment groups 
(MEL; solid line with circles, CON; dashed line with open squares, P 
= 0.37). No time by treatment interaction was observed (P = 0.24) 
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Figure 23 - Combined mean MNT for all cranial and caudal test sites 
for all cattle 

There was a significant difference between the cranial and caudal 
readings across all cows with the cranial sites requiring less force to elicit 
a response (lower MNT) than the caudal sites (P = 0.031). 
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Figure 24 – Maximum, Mean, and Minimum skin surface temperatures 
collected by infrared thermography on all animals over time  

Maximum (dashed with squares), mean (solid with circles), and minimum 
(dotted with diamonds) temperatures displayed a significant time effect 
(P<0.001, for each variable).  
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Figure 25 - Maximum skin surface temperatures collected by infrared 
thermography following a right flank laparotomy and prophylactic 
omentopexy in cattle treated with meloxicam or placebo.  

The least square mean of the maximum IRT temperatures were affected by 
time (P< 0.0001), but showed no significant difference between treatment 
and time by treatment interaction (P = 0.46 and 0.71 respectively). 
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Figure 26 - Mean skin surface temperatures collected by infrared 
thermography following a right flank laparotomy and prophylactic 
omentopexy in cattle treated with meloxicam or placebo.  

The least square mean of the mean surface temperatures was affected by time 
(P < 0.001), but showed no significant difference between treatment and time 
by treatment interaction (P = 0.91 and 0.67 respectively). 
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Figure 27 - Minimum skin surface temperatures collected by infrared 
thermography following a right flank laparotomy and prophylactic 
omentopexy in cattle treated with meloxicam or placebo.  

The least square mean of the minimum IRT temperatures were affected by 
time (P < 0.0001), but showed no significant difference between treatment 
and time by treatment interaction (P = 0.42 and 0.63 respectively). 
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Table 1 – Maximum, Mean and Minimum skin surface temperature within 72 hours of elective right flank 
laparotomy with prophylactic omentopexy 
a-d represent significant differences between LS means of temperature within columns over time for all cows 
 
 

 

 
 
 
 
 
 
 

 

 Maximum Temperatures Average Temperatures Minimum Temperatures 

Hours 
After 

Surgery 

LS Mean of 
Temperature 

Standard 
Error 

LS Mean of 
Temperature 

Standard 
Error 

LS Mean of 
Temperature 

Standard 
Error 

0 32.3619 a 0.3037 33.7420 d 0.1928 32.3619 a 0.3037 

2 31.3499 cd 0.3037 34.9772 bc 0.1928 31.3499 cd 0.3037 

4 31.2245 d 0.3037 34.7308 c 0.1928 31.2245 d 0.3037 

8 31.5420 bcd 0.3037 34.9952 bc 0.1928 31.5420 bcd 0.3037 

12 31.1350 d 0.3037 34.8856 c 0.1928 31.1350 d 0.3037 

24 31.2822 d 0.3037 34.8861 c 0.1928 31.2822 d 0.3037 

36 32.1091 abc 0.3111 35.5564 a 0.1974 32.1091 abc 0.3111 

48 32.2800 ab 0.3037 35.4355 ab 0.1928 32.2800 ab 0.3037 

60 31.1001 d 0.3037 34.8668 c 0.1928 31.1001 d 0.3037 

72 31.5238 abcd 0.3331 34.9008 bc 0.2113 31.5238 abcd 0.3331 
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